NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // International Journal On Advances in Life Sciences, volume 10, numbers 1 and 2, 2018 // View article lifsci_v10_n12_2018_7


A Complete Set-up to Evaluate the Correlation Between Blood Pressure and Pulse Transit Time

Authors:
Adhurim Hajzeraj
Marco Belcastro
Davide Alfieri
Brendan O'Flynn

Keywords: blood pressure; pulse transit time; ECG; PPG; calibration; real time data; clinical trials

Abstract:
Blood pressure (BP) has always been one of the most important parameters in monitoring cardiovascular system conditions and coronary artery diseases (CAD), such as angina and myocardial infarction (commonly known as a heart attack). This is due to the fact that many of the changes within the cardiovascular system, such as clogged arteries, for example, are reflected by changes in BP. A number of methods and devices that can measure BP are available on the market for both clinical and consumer use. However, being able to measure one’s own BP non-invasively, with the required frequency (even continuously) in a comfortable fashion remains an unsolved problem using currently available systems. To date, the Pulse Transit Time (PTT) measurement method has been seen as a feasible approach to help bring current blood pressure monitoring systems to a stage where non-invasive, continuous measurements are viable. However, developing a system which uses the PTT method for blood pressure measurement is as yet an unsolved problem and it remains a challenge to achieve accurate BP results despite considerable research in the past decade. In this paper, we present the first step in building a smart sensing system that overcomes the technical difficulties associated with accurate measurement of PTT. The novel hardware developed incorporates multi-modal sensing capability to explore and quantify the relationship between blood pressure and PTT. The evaluation system is completed by efficient, simple and fast embedded software algorithms, user interface, and clinical validation trials that will enable delivering a novel PTT-based blood pressure monitor.

Pages: 65 to 74

Copyright: Copyright (c) to authors, 2018. Used with permission.

Publication date: June 30, 2018

Published in: journal

ISSN: 1942-2660

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.