NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // DATA ANALYTICS 2018, The Seventh International Conference on Data Analytics // View article data_analytics_2018_9_10_68006


Efficient Use of Geographical Information Systems for Improving Transport Mode Classification

Authors:
Jorge Rodriguez-Echeverria
Sidharta Gautama
Nico Van de Weghe
Daniel Ochoa
Benhur Ortiz-Jaramillo

Keywords: Transport mode classification; Crowdsourcing; Tracking data; Receiver operating characteristic

Abstract:
Comparison between transport mode classifiers is usually performed without considering imbalanced samples in the dataset. This problem makes performance rates, such as accuracy and precision, not enough to report the performance of a classifier because they represent a cut-off point in the classifier performance curve. Our rule-based method proposes to combine both, the network elements associated with the transport mode to identify, and the elements associated with other means of transport. We performed a comparison between our proposed method and another GPS/GIS-based method, by applying a real-world representative dataset with a target class imbalance. We evaluated the performance of both methods with five experiments, using the area under the Receiver Operating Characteristic curve as metric. The results show that the tested methods achieve the same false positive rate. However, our method identifies correctly 84% of the true positive samples, i.e., the highest performance in our test data (data collected in Belgium). The proposed method can be used as a part of the post-processing chain in transport data to perform transport and traffic analytics in smart cities.

Pages: 130 to 135

Copyright: Copyright (c) IARIA, 2018

Publication date: November 18, 2018

Published in: conference

ISSN: 2308-4464

ISBN: 978-1-61208-681-1

Location: Athens, Greece

Dates: from November 18, 2018 to November 22, 2018

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.