NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems // View article cyber_2021_1_160_80095


Sharing FANCI Features: A Privacy Analysis of Feature Extraction for DGA Detection

Authors:
Benedikt Holmes
Arthur Drichel
Ulrike Meyer

Keywords: Data privacy; Intrusion detection; Machine learning.

Abstract:
The goal of Domain Generation Algorithm (DGA) detection is to recognize infections with bot malware and is often done with help of Machine Learning approaches that classify non-resolving Domain Name System (DNS) traffic and are trained on possibly sensitive data. In parallel, the rise of privacy research in the Machine Learning world leads to privacy-preserving measures that are tightly coupled with a deep learning model's architecture or training routine, while non deep learning approaches are commonly better suited for the application of privacy-enhancing methods outside the actual classification module. In this work, we aim to measure the privacy capability of the feature extractor of feature-based DGA detector FANCI (Feature-based Automated Nxdomain Classification and Intelligence). Our goal is to assess whether a data-rich adversary can learn an inverse mapping of FANCI's feature extractor and thereby reconstruct domain names from feature vectors. Attack success would pose a privacy threat to sharing FANCI's feature representation, while the opposite would enable this representation to be shared without privacy concerns. Using three real-world data sets, we train a recurrent Machine Learning model on the reconstruction task. Our approaches result in poor reconstruction performance and we attempt to back our findings with a mathematical review of the feature extraction process. We thus reckon that sharing FANCI's feature representation does not constitute a considerable privacy leakage.

Pages: 58 to 64

Copyright: Copyright (c) IARIA, 2021

Publication date: October 3, 2021

Published in: conference

ISSN: 2519-8599

ISBN: 978-1-61208-893-8

Location: Barcelona, Spain

Dates: from October 3, 2021 to October 7, 2021

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.