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The Fifth International Conference on Applications and Systems of Visual Paradigms
(VISUAL 2020), held between October 18–22, 2020 continued the inaugural event in putting
together complementary domains were visual approaches are considered in a synergetic view.

Visual paradigms were developed on the basis of understanding the brain’s and eye’s
functions. They spread over computation, environment representation, autonomous devices,
data presentation, and software/hardware approaches. The advent of Big Data, high speed
images/camera, complexity and ubiquity of applications and services raises several requests on
integrating visual-based solutions in cross-domain applications.

We take here the opportunity to warmly thank all the members of the VISUAL 2020
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
VISUAL 2020. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the VISUAL 2020 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that VISUAL 2020 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the area
of visual oriented technologies.
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Abstract—Visualization of big data using mixed reality is
challenging and promising at the same time. In this work, we
present a comprehensive overview of the existing work in this
area with a focus on several aspects of visual analytics. Even
if the methods used in different scientific papers and projects
are similar, the approaches and results differ very often, due
to specific goals of the visual representations. Using our work
the professionals can better understand the reality-virtuality
continuum and choose an appropriate approach more easily
in order to solve their specific big data analytical visualization
problem.

Index Terms—Augmented Reality, Big Data, Mixed Reality,
Virtual Reality, Visual Analytics, Visualization, Visual Interaction

I. INTRODUCTION

Visualization has always been an important part of data ex-
ploration. Every analytical procedure requires some illustration
of concepts, techniques, results, etc. This includes primarily
presentation of mostly abstract data or workflows for data
processing in visual form for easy understanding. Visualization
went through many phases over time and has become more
and more diverse due to new types of data and manifold data
processing techniques. Starting with cave paintings and maps,
visualization evolved into simulations and 3D representations.
Forms, types and displays changed due to a better understand-
ing of human seeing and perception. A human eye possesses
approx. 70 % of all human sensory receptors, and the data
is passed to the brain with the highest bandwidth. Our brain
is able to process visual information in parallel using large
arrays of neurons, extracting features from every part of the
visual field simultaneously. Treisman described in [1] the
result of brain processing as a set of feature maps. This parallel
processing proceeds whether we like it or not and is mostly
independent of what we choose to pay attention to (although
not where we look). It is also rapid. Colin Ware indicates in
his book [2] that if we want people to understand information
quickly, we should present it in such a way that it can be
easily detected by these large, fast computational systems in
the brain.
The process of thinking or exploring that accompanies human
conscious perception, cannot be done entirely inside peoples
heads [3]. Mostly, an interaction with cognitive tools is nec-
essary to support the process. These tools can be of different
kinds, e.g., pencils and paper, calculators, or computer-based

tools and information systems. Computer tools alone are
insufficient, human interaction is highly important. Especially,
visual analytics strongly relies on effective interaction of a
human and a machine. As we described in [4], the Human in
the Loop (HiL) concept is characteristical for the continuous
support of machine processing by human feedback. In the
context of Visual Analytics, HiL stands for providing continu-
ous feedback, correcting algorithmic approaches and selecting
appropriate techniques during the analytical process.

A. Visualization and Visual Analytics

Visualization and Visual analytics are both dealing with
visual representation. Their scope, application and impact
are, however, different. Visualization provides techniques for
presentation of data or relationships for the purpose of expla-
nation, interpretation, communication etc.
Visual analytics encompasses a process of knowledge discov-
ery by supporting the analyst to discover patterns in data,
building formal models that can be processed by machines, and
developing new hypotheses. This domain is often defined as an
interdisciplinary approach to support exploratory knowledge
discovery especially regarding large and complex data sets [5],
[6], [7].
Visual Analytics focuses on the whole analytical process
and is not limited to visualization and automated analysis.
It also includes the entire infrastructure for creating visual
analytics tools. Processing power and capacity of existing
technologies allow to implement visual analytic techniques to
huge amounts of heterogeneous and dynamic data (Big Data),
where visualization cannot be used. Several visual analytics
tools were developed in the last years, e.g., [8], [9] or [10].
The purpose and effectiveness of these tools varies depending
on utilization scenarios, provided visualization techniques and
user knowledge.

B. Visual Analytics with Mixed Reality

The application area of Visual Analytics can be roughly
divided into two parts [11] scientific area and information
representation for special purposes. The mixed reality tech-
niques are already widely used in the scientific area [12].
However, the development of such techniques for information
representation in general remains challenging. Due to the
complex concepts behind mixed reality, it is more appropriate
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to implement them to domains with highly dimensional and
unstructured data where other techniques cannot be used.
The idea of using virtual reality for visualization of huge
datasets is not new. Steve Bryson pointed out already in
1996 the challenges, possibilities and opportunities of such
approaches [13]. Over time, the technical requirements and
system capabilities changed enormously, and new concepts,
such as Be the Data [14], emerged in this field.

Fig. 1. The reality-virtuality continuum [15].

II. MIXED REALITY

One of the first descriptions of mixed reality can be found in
[15]. Figure 1 represents the concepts of this work. There are
many stages between real and virtual worlds. The transition
from one environment to the other cannot always be divided
into some clear steps. The term mixed reality describes here
the whole bandwidth between reality and virtuality, including
augmented reality and augmented virtuality.
The displays for mixed reality evolved enormously in last
decades. The technology ranges from smartphones over head-
mounted displays to transparent displays on the front panel
or windscreen of vehicles. Ronald Azuma [16] describes
the future presentation techniques depending on the devices
selected for presentation. Which aspect of mixed reality is
presented, depends on device and the built-in display. Virtual
reality glasses are mostly capable to hide or cover the real
and present new virtual environment. Glasses for augmented
reality (optical see-through), such as Magic Leap or HoloLens
from Microsoft provide the possibility to present the whole
bandwidth of mixed reality not isolating the user from the
reality at the same time.
Most of the previous work for visualization of big data
with augmented or virtual reality was made in the area of
complexity reduction, design optimization or improvement of
interaction possibilities [17]. For the reduction of complexity,
filtering, aggregation or dimension reduction techniques can
be used to reduce the amount of presented data. Design
techniques aim to optimize the data presentation depending
on user requirements.
In this regard, the authors of [18] pursued the approach of
adapting and mapping the filtered data based on a user’s view-
ing direction. The investigation revealed a potential solution
for the visualization of big data by combining complexity
reduction and optimization within the visualization.
Markus Tatzgern [19] developed a technique to eliminate am-
biguity when mapping comments to two-dimensional objects.

Instead of two-dimensional objects, three-dimensional objects
are used that are recognized by a camera and annotated with
comments in augmented and virtual reality.
James A.Walsh and Bruce H. Thomas [20] developed a
portable AR system for the visualization of real-time data from
various sensor data. Their approach allows the visualization of
large amounts of data, but it does not support multidimensional
analyses.

III. VISUAL ANALYTICS FOR BIG DATA

Humans use their cognitive perception and visual intelli-
gence to generate meaning from data from their surroundings
[21]. Various visualization methods are available for this
purpose, for example in the form of diagrams. Interactive
technologies not only make it possible to visualize data, but at
the same time, for example, enlarge or reduce selected areas, or
perform other manipulations. This means that Visual Analytics
is not a specific tool, but an agile process in which the focus
is not only on technology but more on human interaction [22].
The Institute for Visual Analytics in Vancouver [51] explains
that the process starts with humans, who first have to learn to
understand the context and the data. Only after the data has
been cleaned and pre-processed, the visualized presentation of
the data can be used to derive information and get insights.
At the same time, the understanding of the context increases,
which means that Visual Analytics cannot be defined as a
sequential, but as an iterative process.

A. Challenges

Big data is often described by the three original Vs: volume,
velocity and variety. In the meantime, new V-terms have been
added, so that there exist now up to 10 Vs, see [23] and [24].
Often, however, it is only veracity and value that are added,
depending on the purpose and the nature of the data.
With the better ability to handle large amounts of data, on the
technical and human side, big data is getting constantly bigger
and the requirements are more and more increasing [25].
The challenges for the tools are constantly renewed by the
constant digitization of the world, as new types of data and
larger amounts are added. It is already possible to prepare data
to a certain level (semi)-automatically. Many of these tools are
already adapted for big data to ensure better analysis support
[26].
Even if these tools can now cope with high-dimensional data
sets, if the data also contains spatial and temporal dimensions,
the preparation becomes much more complicated again. These
dimensions have the property that in many cases they duplicate
the data records for every point in time and space. The number
of records increases by several dimensions. The complexity
of the data grows accordingly and increases the effort to find
suitable visualizations and to display all relevant dimensions.
This often lead to ”clutter” and to visualizations with too much
information at the same time, which leads to a higher cognitive
load for the user and thus to poorer results.
Comparing and recognizing trends and patterns in big data
becomes then a problem [27]. This makes interactions, e.g.
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selection and zoom, a necessity to be able to view the different
facets of big data and to be able to choose the visualized
dimensions dynamically [23].

B. Opportunities

Visualizations that show as much information as possible at
once mostly have a problem with data that is both spatial and
temporal, because these dimensions are difficult to dispense
with. This limits the flexibility to select parameters of the
visualization. Mixed reality is a possibility to address these
issues. It is particularly helpful when displaying spatial data.
At MIT e.g., tweets were displayed on the campus in a scanned
campus environment [28].
The ability to realize more complex animations is also a plus.
A perfect example of this is the Reddit Place [29]. A total of
16.5 million pixels were edited on a white 1000 x 1000 pixel
canvas in 72 hours (Fig. 2), whereby every Reddit user could
make a change every 5 minutes [30]. It would be difficult to
place all possible information from the experiment in static
images. Elements would also be lost on the desktops in 2D or
3D, since interactions are more complicated and 3D elements
cannot be perceived in details. The individual information
can only be presented and understood through meaningful
interaction.
Greg Bahm created a visualization for VR [31] that shows
some of the potential very well. It contains a mixture of
animation, spatial representation, diverse interaction and suit-
able visualization of useful parameters. Class relationships can
also be recognized well in VR models [32], since another
dimension is available for distribution and 3D interactions are
possible. The visualization can thus be viewed from all sides.
Thus, VR brings new possibilities, but also challenges,
whereby the visualizations have to be reconsidered for the
proper presentations [33].

Fig. 2. Reddit Place visualization [31].

C. Spatial Presentation

Stereoscopy as a part of virtual and mixed reality allows to
visualize three-dimensional data without dimension reduction.
3D displays usually use the binocular parallax cue (disparity)
to create an impression of depth. The representation of depth
is in this case a simulation of the depth perception process
through our visual system.
There are various display technologies available on the market
or developed in different scientific projects. A good overview

is given in [36] and [37]. Available display technologies can
be divided in stereoscopic and auto-stereoscopic displays.
Stereoscopic displays require special glasses to separate the
views for the left and right eye. The auto-stereoscopic displays
perform the view separation on their own and can be used
without glasses. Most often, the separation is done by a special
lens system (Alioscopy, Dimenco) or through parallax barrier
(Nintendo 3DS). The multiview auto-stereoscopic displays are
able to present simultaneously multiple views, thus increasing
the freedom of movement and creating more voluminous effect
that greatly improves the 3D experience. E.g., headtracked
auto- stereoscopic displays are multiview displays combined
with a head tracking technology. Based on head position, the
observer is presented with a different point of view allowing
great freedom of movement, e.g., Fraunhofer HHI’s Free2C
display technology [38].
The spatial cognition works better this way and spatial re-
lationships are easier to recognize [39]. Richardson et al
[40] showed in 1999 an example using maps and virtual
environment (VE). Relationships, such as distances, can be
better estimated in VE. However, maps also have advantages,
e.g., with more precise estimations over several floors.
Virtual reality enhances visual representations by adding an
extra dimension. Nevertheless, the third dimension is not a
universal remedy, since it only adds another feature to the
representation [41].
However, the advantage is visible in the Reddit Place visu-
alization (Fig. 2). Using the third dimension for selectable
parameters, e.g., a heatmap about the number of changes,
lifetime, or color changes over time, attention is drawn to the
points of interest.
The stereoscopic representation contributes also to a signifi-
cantly better perception. Another example is visualization of
insect trajectories, see Figure 5 [35]. The time axis for move-
ment paths of insects serves here as an additional dimension.
This allows an easy visual perception of pauses and speeds.
One of the early approaches [34] shows the usage of a three-
dimensional Treemap for visualization of the Unix file system
(Fig. 3). Due to transparency of the individual cubes and their
hierarchy, it is possible to get a simple overview of the system
structure.

Fig. 3. Visualization of the Unix File System [34].
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An important aspect here is whether the visualization is
helpful and simplifies the work, at the same time meeting
requirements varying from case to case. In [28] the developed
visualization was helpful in order to be able to get an overview
of the geographic location and averaging tweets on the MIT
campus (Fig. 4).
The authors of [42] compare two- and three-dimensional visu-
alizations. They support the statement that the increased load
generated with mixed reality is justifiable due to perception
simplicity and comprehensibility of data representation.

Fig. 4. Visualization of tweets on the MIT campus [28].

D. Interaction in Higher Dimensions

Interactions within visualizations of big data are essentially
important for understanding of highly dimensional and dy-
namic data. Mixed reality technologies support a variety of in-
teractions with the represented data. Simulations or animations
can be seen in the same context [43]. Scaling and zooming
are some of the simple examples of interactions with data.
Mixed reality allows to perform also natural interaction with
the visualization using gestures and making it possible to walk
around the data [44]. The authors of [45] describe 5 patterns
for possible interaction with mixed reality visualizations:

• Selection
• Manipulation
• Viewpoint control
• Indirect control
• Compound.

All of the options described are useful when considering
data. Many interactions are, however, computationally expen-
sive and can affect the effectiveness of the visualizations. Users
should consider very carefully, which interactions can be most
useful in a specific use case.
The visualization of insect trajectories (Fig. 5) supports the
possibility of visual queries among other interactions with the
visualization.
Interactions and manipulation of data in the analytical process
is characteristical for the Human in the Loop approach. The
main concept is the continuous support of machine processing
by human feedback. In the context of visual analytics, this
concept occurs in terms of providing continuous feedback and
correcting algorithmic approaches within the analysis.

Fig. 5. Visualization of insect trajectories with visual queries [35].

IV. DISCUSSION AND CONCLUSION

In this paper we present an overview of mixed reality
approaches and examples and explain how they can be used
for further analytical processing.
The provided overview and the presented examples show that
mixed reality offers additional value for data visualizations.
We found out that the main advantage is better perception of
data, due to stereoscopic representation. Spatial relationships
can also be better understood in such visualizations.
After mastering the challenges, there are several options for
using mixed reality (as well augmented and virtual).
The form of visualization of big data can be optimized in such
a way that multidimensional data can be presented in a more
understandable way [46].
One of the examples is the Google Earth VR application,
which enables a user to travel in virtual space to any place
on Earth. In addition to the locations, a user recognizes
distances and height differences and experiences them in a
more memorable way than with a two-dimensional display
[47].
Furthermore, the combination of big data with augmented
reality in the form of assistants for navigation can simplify our
everyday life in the future. For example, current data can be
extracted from official sources as well as from social networks
in order to derive load factors for roads or public transport or
to make predictions in order to show the fastest route via an
AR / VR interface [48].
Another important example of visualizing big data with mixed
reality is to display data for applications in medicine. For
example, the virtualized structures could be displayed in real
time during an operation thus supporting the surgeons [49].
The combination of the mentioned technologies results also
in new learning methods, which lead to a higher mental
performance [50], as well as a more efficient adaptation of
the cognitive load.
Our work can serve to better understand the reality-virtuality
continuum and helps professionals to choose an appropriate
approach to solve their specific big data analytical visualiza-
tion challenge.
Although, we did our research based on a big amount of
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scientific and practical approaches, the speed with which
the technologies in this field are developing is enormous.
To describe all possible relevant approaches in detail, this
publication would not be sufficient by far. In our future work
we intend to compare some of the newer approaches more
detailed and present our results to the scientific community.
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