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The Twelfth International Conference on Advances in Vehicular Systems, Technologies and
Applications (VEHICULAR 2023), held between March 13th and March 17th, 2023, continued a series of
events considering the state-of-the-art technologies for information dissemination in vehicle-to-vehicle
and vehicle-to-infrastructure and focusing on advances in vehicular systems, technologies and
applications.

Mobility brought new dimensions to communication and networking systems, making possible new
applications and services in vehicular systems. Wireless networking and communication between
vehicles and with the infrastructure have specific characteristics from other conventional wireless
networking systems and applications (rapidly changing topology, specific road direction of vehicle
movements, etc.). These led to specific constraints and optimizations techniques; for example, power
efficiency is not as important for vehicle communications as it is for traditional ad hoc networking.
Additionally, vehicle applications demand strict communications performance requirements that are not
present in conventional wireless networks. Services can range from time-critical safety services, traffic
management, to infotainment and local advertising services. They are introducing critical and subliminal
information. Subliminally delivered information, unobtrusive techniques for driver’s state detection, and
mitigation or regulation interfaces enlarge the spectrum of challenges in vehicular systems.

We take here the opportunity to warmly thank all the members of the VEHICULAR 2023 technical
program committee, as well as all the reviewers. The creation of such a high-quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to VEHICULAR 2023. We truly believe that, thanks
to all these efforts, the final conference program consisted of top-quality contributions. We also thank
the members of the VEHICULAR 2023 organizing committee for their help in handling the logistics of this
event.

We hope that VEHICULAR 2023 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of vehicular
systems, technologies and applications.
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Abstract—Sense Of Agency (SOA) has the potential to be a useful
indicator for the evaluation of the indirect manipulation of devices
in in-car systems. In this study, we examined whether intentional
binding, which is used as an implicit evaluation index of SOA, is
confirmed when engaging in a task in which a series of sequential
operations are required. Sixteen subjects were tested, and the
results showed that both direct and indirect manipulation of
devices indicated the same patterns of intentional binding as
in previous studies. However, no difference in the magnitude of
binding was detected between direct and indirect manipulation.

Keywords - Sense of agency; Intentional binding; Indirect
manipulation.

I. INTRODUCTION

A. Indirect manipulation

In recent years, automotive infotainment systems have
been developed to integrate advanced driver assistance and
entertainment functions in addition to vehicle-related informa-
tion. Consequently, Human Machine Interactions (HMIs) have
become highly complex [1].

In this context, recent in-car devices incorporate interfaces
that can be operated using touch, voice, and gestures. Early
in-car devices were operated by directly touching a physical
interface, consisting of combinations of knobs, buttons, and
switches. However, as devices became increasingly digitalized,
the target device was operated not by touching it directly, but
via an input device that mediated the operation. For example, a
navigation system installed on a dashboard could be operated
using a touch panel. In this paper, the former is called direct
operation, and the latter is called indirect operation.

In indirect manipulation, operations are performed by a
cursor and a pointer that are displayed on the operating device.
Such a cursor and pointer are considered extensions of the
user’s body (in this case, a finger), which Seinfeld et al. call
user representations [2]. In an indirect operation, the space that
the user touches for manipulation is called the input space (in
the above example, the touch panel), and the display screen
of the target device is called the output space (the navigation
system operation screen).

In indirect manipulation, two interfaces, the input space and
output space, arise. One of the drawbacks with the emergence

of these two interfaces is the lack of feeling of direct manip-
ulation. Lack of feeling causes problems in that, additional
cognitive resources must be allocated to manipulating the
device, and the user experience is degraded. It is important to
clarify how this sense of direct manipulation can be maintained
during the design and evaluation of increasingly complex in-
car systems.

B. Sense of Agency
An important concept related to the feeling of direct

manipulation is Sense Of Agency (SOA) [3]; SOA is the sense
that one is the subject who causes the result that appears, and
that one intentionally controls that result. In recent years, the
importance of SOA has been widely recognized in the field of
human-computer interaction [4].

For instance, in the field of VR (Virtual Reality), how
one perceives SOA for one’s own avatar in a VR space has
been intensively studied [5]. Avatars are considered to be one
form of user representation, as mentioned above. In indirect
manipulation in in-car device operation, the feeling of SOA in
the movements of a cursor or pointer displayed in the output
space is an essential requirement for improving the feeling of
direct manipulation.

There are two main types of SOA measurements: explicit
and implicit measurements [3][6]. The most common method
of explicit measurement is to directly and subjectively rate
the degree to which participants perceive SOA. This method
is widely used in many SOA studies because it is easy to
implement, and its usefulness has been confirmed. On the other
hand, it is pointed out that such subjective ratings are prone to
many cognitive biases, and its limitations have been discussed
[7].

C. Intentional Binding
In contrast, implicit measurement measures SOA using be-

havioral indicators that are not directly related to the subjective
sense of SOA. The most widely used method is the one using
Intentional Binding [8][9], a phenomenon in which the time
interval between intentional action and the sensory stimulus
caused by the action, which is fed back after a certain time
is perceived as short. It has been widely confirmed that SOA
is related to Intentional Binding, and a method of measuring

1Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL
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Intentional Binding using a temporal sensory evaluation device
called the Libet clock has been established and widely used in
SOA research.

On the other hand, measurements using the Libet clock
requires high visual attention to the clock displayed on the
screen. Therefore, there are significant limitations to its use,
such as interference with the context of the main task and
heavy measurement loads on participants. In recent years,
new methods for measuring Intentional Binding have been
developed.

Early experiments on Intentional Binding used button
pressing as an intentional action and audio feedback as the
result of that action. In recent years, various intentional actions
have been taken, such as input by finger movement in a hollow
space without a physical input device [10], and experiments
using auditory and tactile stimuli have also been conducted
for feedback [11][12]. Thus, examining the circumstances
under which Intentional Binding occurs is important in SOA
research.

D. The present study
As mentioned above, in-car devices have become increas-

ingly digitalized in recent years, and indirect manipulation
has become mainstream. In this context, a major issue is
ensuring the feeling of the direct manipulation of complex
in-car devices. Intentional binding is a valuable indicator for
evaluating the feeling of direct manipulation.

So far, Intentional Binding measurement has been ex-
amined using simple action-feedback pairs. However, when
attempting to apply this method to the development of devices
for in-car systems, it is necessary to measure Intentional
Binding in situations in which a series of sequential operations
is engaged. Therefore, in this study, we measure Intentional
Binding when engaging in such a task. We then answered the
following two research questions.

• Research Question 1:
Is Intentional Binding confirmed for each of direct
manipulation and indirect manipulation?

• Research Question 2:
Is there a difference in the degree of Intentional
Binding between direct and indirect manipulations?

Section 2 introduces the summary of the experiment, and
the measures of the results. Section 3 indicates the exper-
imental results. Section 4 summarizes the discussion and
conclusions.

II. EXPERIMENT

A. Participants
Sixteen participants, recruited from the general public, par-

ticipated in the experiment (8 males, 8 females, age: M=46.69,
SD = 16.62). All the participants were right-handed.

B. Task
Figure 1 shows a screenshot of the task in which the

participants engaged. Participants were asked to trace the
numbers from 1 to 3 displayed on the tablet in sequence, and
finally, to tap the last number 3. Upon tapping the number 3,
a beep sound was fed back approximately 250 ms later. The
Libet clock was displayed so that they reported the timing of
tapping and hearing the beep sound.

Figure 1. Screenshot of the task.

C. Experimental Design
The experimental design was a three-factors (Direct-

Indirect × Action-Outcome × Baseline-Operant) within-
participant factorial design.

1) Direct-Indirect Factor: In the Direct condition, partici-
pants directly manipulated the tablet (Figure 2 (a)). In the In-
direct condition, participants indirectly manipulated the target
tablet by tracing another tablet placed underneath the target
tablet (Figure 2 (b)). In the Indirect condition, participants
could not see their own hands as they manipulated.

Figure 2. Direct and Indirect conditions of experiment.

The same tablet was used as the input and display devices
in the Indirect condition, and the input from the input device
was output to the display device for presentation. Therefore,
the hardware performance under both conditions was identical,
including the time lag between the finger movements reflected
in the pointer displayed on the display tablet.

Figure 3 illustrates the settings controlled by the Action-
Outcome factor and the Baseline-Operant factor.

2) Action-Outcome Factor: In the Action conditions, the
participant’s perceived timing when the last 3 number was
tapped was measured using the Libet clock, while in the
Outcome conditions, the participant’s perceived timing when
the beep sounded was measured.

3) Baseline-Operant Factor: In the Baseline conditions,
no beep sounded in response to the participant’s action; or a
beep sounded without the participant’s action. In the Operant
conditions, a beep sounded approximately 250 ms seconds
after the participant’s action.

D. Procedure
The participants were informed about the overview of the

experiment, followed by a practice phase. They then moved on
to the main phase, which consisted of twelve trials for each
condition.

2Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL
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Figure 3. Action Binding, Outcome Binding, and total binding.

Half of the participants engaged in the task in the Direct
condition followed by the Indirect condition; the other half
engaged in the task in the Indirect condition followed by the
Direct condition.

For each of the direct and indirect condition blocks, the
Action-Outcome factor and the Baseline-Operant factor were
counterbalanced using the Latin square method.

E. SOA

For SOA measurement, participants answered the following
two questions after 12 trials under the following conditions
[13][14].

1) SOA for control: In the conditions in which the action
operation is performed, specifically the Baseline × Action,
Operant × Action, and Operant × Outcome conditions, par-
ticipants were asked, “How much did you feel you had control
over your pointing?” and responded on a seven-point scale
ranging from not at all to very strongly.

2) SOA for causality: In the conditions in which sound
feedback on the action was given, specifically the Operant
× Action and Operant × Outcome conditions, participants
responded on a seven-point scale to the question, “How much
did you feel that your button press caused the sound to beep?”

F. Action, Outcome, and Total Binding

Three types of binding are defined, as shown in Figure 3.

Generally, the perception of the timing of an action is
delayed in a situation where there is feedback (Operant ×
Action condition), as opposed to a situation where there is no
feedback (Baseline × Action condition). This delay is called
action binding.

Similarly, the perception of the timing of the sound is
brought forward when an action is performed (Operant ×
Outcome condition), as opposed to a situation in which there
is no action (Baseline × Outcome condition). The time carried
forward is called outcome binding.

The total of the action binding and the outcome binding is
the total binding.

III. RESULT

A. Performance
Figure 4 (a) shows the completion time, that is, the duration

from the start of the task through the time that the final number
3 was tapped. Figure 4 (b) shows the distance traveled by the
cursor on the tablet.

Figure 4. Completion time and distance traveled.

The completion time in the Direct condition was signifi-
cantly shorter than that in the Indirect condition (t(15) = 12.78,
p = .001), and the distance traveled in the Direct condition
was marginally significantly smaller than that in the Indirect
condition (t(15) = 1.82, p = .09).

B. SOA
Figure 5 (a) shows SOA for control and Figure 5 (b) shows

SOA for causality.

Figure 5. SOA for control and SOA for causality.

The SOA for control in the Direct condition was signifi-
cantly larger than in the Indirect condition (t(15) = 2.63, p =
.002), but the SOA for causality shows no significant difference
between the Direct and Indirect conditions (t(15) = 0.28, n.s.)

C. Binding
Figure 6 (a) shows the action, outcome, and total bindings

in the Direct condition, while Figure 6 (b) shows the three
bindings in the Indirect condition.

The expected effects in all three bindings were confirmed
under both the Direct and Indirect conditions.

D. Comparison of Binding
Figure 7 (a) shows a comparison of the action bindings

in the Direct and Indirect conditions, Figure 7 (b) shows a
comparison of the outcome bindings, and Figure 7 (c) shows
a comparison of the total bindings.

No significant differences were detected between the Direct
and Indirect conditions in action binding, outcome binding, or
total binding (t(15) = 0.21, n.s. for action binding, t(15) = 0.20,
n.s. for outcome binding, t(15) = 0.15, n.s. for total binding).

3Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL

VEHICULAR 2023 : The Twelfth International Conference on Advances in Vehicular Systems, Technologies and Applications

                            12 / 62



Figure 6. Action, outcome, and total bindings

Figure 7. Comparison of action, outcome, and total bindings in the Direct
and Indirect conditions.

IV. DISCUSSION AND CONCLUSIONS

Intentional binding was measured by using a serial manipu-
lation task. Two situations were set up: one in which the tablet
was manipulated directly and the other in which the tablet
was manipulated indirectly, using another input device. Direct
manipulation showed a higher manipulation performance than
indirect manipulation.

The experiment results show that expected binding was

detected for both direct and indirect manipulation situations.
However, there was no difference in the magnitude of the
bindings between the two situations.

Regarding the subjective evaluation of SOA, direct ma-
nipulation exceeded indirect manipulation in terms of the
evaluation of the sense of control. However, there was no
difference in causal perception between the two situations.
This suggests that the magnitude of bindings may be related
to causal perception rather than the perception of the sense
of control. We investigate this point using an experimental
paradigm that allows us to control for causal perception, such
as delaying the feedback of the action [15][16].
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Abstract—Virtual sensing has attracted the interest of car
makers and automotive service providers, owing to its cost-
effective advantages, capacity to extract valuable insights from
car data and its significance in enhancing the reliability of
Advanced Driving Assistance Systems (ADAS). For instance,
accurate virtual sensing of tire forces and torques can help adapt
and improve the control strategies embedded in the vehicle’s
active safety systems. This paper deals with tire Self-Aligning
Torque (SAT) estimation, an inherent parameter for identifying
the limits of the vehicle at an early stage to prevent skidding.
We present a data-driven approach to estimate the right and left
front SATs, using a Neural Network (NN) model. The estimator
takes directly existing in-vehicle signals and does not rely on
expensive and unpractical sensors, which makes it cost-efficient
and fast. Simulation results based on a high-fidelity vehicle model
show a good performance of the chosen NN to estimate the SATs
while considering the combined slip and road friction change.

Index Terms—Tire Self-Aligning Torque, Estimation, Neural
Network, Simulation.

I. INTRODUCTION

To improve vehicle handling and ensure passenger safety,
current research trends of Advanced Driving Assistance Sys-
tems (ADAS) and Automated Driving (AD) are focusing on
monitoring the vehicle states, computing the road friction
conditions, and adapting the control outputs according to the
identified situation. Since the physical interaction between the
car and the road occurs through the tire, estimating the forces
and the moments applied at the contact surface of the tire in
real-time is essential for developing advanced, performance-
oriented, and safe driving assistance or automated driving sys-
tems [1]–[3]. For active safety systems, real-time identification
of the maximum grip µ on the road is a critical task. Estimating
the tire self-aligning torque (SAT), i.e the torque that a tire
creates as it rolls along its vertical axis, allows to detect when
the vehicle reaches its maximal lateral and longitudinal force
capacity before the skid: it peaks at a lower slip angle than
that corresponding to the maximum of the lateral forces (FY)
(Figure 1). However, only a few contributions are harnessing
this physical characteristic of the SAT. Current SAT estimation
can be classified into two categories: the estimation based on
an analytical model and the model-less estimation. Estimations
based on analytical models use a physical or empirical tire
model to infer the SAT. On the other hand, the model-less

approach does not need an explicit tire model to build the
virtual sensor.

The present study belongs to the second category and
proposes using a Neural Network (NN) model to directly and
cost-effectively estimate SAT with the aid of already existing
sensors, along with left and right suspension deflection sen-
sors. The latter has gained popularity in various applications
such as vertical parameter estimation [4], [5], and skyhook
control due to its cost-effective nature.

The structure of this paper is as follows: in Section II, we
review existing methods for estimating the SAT and evaluate
their performance. In Section III, we introduce the NN-based
approach that we use for SAT estimation. Section IV presents
the results of our simulations and provides an interpretation
of the NN model. In Section V, we discuss the potential
applications of SAT estimation. Finally, in Section VI, we
outline future work to enhance the robustness of our observer
and validate it on real data, before concluding with a summary
of our findings.

II. RELATED WORK

Concerning the analytical model approach, Lenzo et al.
[6] successfully estimate the SAT from a Brush tire model.
First, their method uses the TRICK tool (Tyre/Road Interaction

Fig. 1. SAT and Lateral force (FY) vs slip angle at different friction
coefficients µ; (SAT: solid line , FY: dashed line).
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Characterization & Knowledge) [7] to estimate the lateral
forces. Then, the parameters of the Brush model are optimized
to fit the estimation and are used to compute the SAT. The
effectiveness of this approach depends on the accuracy and
convergence speed of the TRICK tool.

Model-less estimation is mainly a data-driven method based
on dedicated sensors such as force transducers, tie rod forces
sensors [8] or sensors mounted on the kingpins [9]. Pasterkamp
and Pacjeka [9] present a 3-layer NN fed by the steering
wheel angle, the suspension inclination angle, the forces on
the kingpins and the force in the steering link to estimate
the forces and the SAT. Despite accurate results, the training
and validation test cases were not extensive. In addition to
that, sensors used to map the non-linearities are not commonly
mounted on commercial vehicles. Luque et al. [8] employed a
2-layer NN (NN) to estimate the front right and left SATs in
their study. The input to the NN consisted of tire longitudinal
and lateral forces inferred from a Random Walk Extended
Kalman Filter (RW-EKF), along with front axle vertical forces,
steering wheel angle, and steering tie-rod forces measured by
extensiometric sensors. However, one major drawback of this
approach is that the error in the estimated forces from the
RW-EKF, due to non-Gaussian noise, can be propagated to
the outputs of the NN, resulting in decreased accuracy of SAT
estimation.

III. SELF-ALIGNING TORQUE ESTIMATION

A. Data Acquisition and Context of Study

In our case, we use a high-fidelity vehicle model from
AMESIM software, equipped with Electric Power Assisted
Steering (EPAS) system and two suspension deflection sensors
mounted on the front right and left.

To extract sufficient and reliable data and to map our entries
to different regions of the SAT, the simulation was done on
different open loop handling maneuvers, as depicted in Table
I.

TABLE I
OPEN LOOP MANOEUVERS DONE IN SIMULATION.

ISO Maneuver Longitudinal
velocity range
(Km/h)

Free steer 20 – 80
Steering pulse 20 – 80
Double lane change 40 – 120
Circular maneuver 40 – 80
One transient 40 – 80
Random swept sine steer 40 – 80
Braking in a turn 40 – 120
Fishhook 40 – 80
Sine with dwell 40 – 120
Steady brake/acceleration command 40 – 120

It is worth mentioning that the maneuvers were simulated
with high repeatability on dry asphalt and other grip sur-
faces ranging between 0.7 (wet) to 0.2 (ice). Moreover, this
evaluation did not consider active safety systems such as the

Anti-lock Braking System (ABS) or the Electronic Stability
Program (ESP).

We consider some measurable inputs related to the steering
system [10] and other vehicle dynamic-related signals: The
first part consists of choosing the steering wheel angle, the
steering torque, and the assist torque according to the equation
(1) of a second order steering system model. These measure-
ments are available if the car has EPAS.

Jeff δ̈ + beff δ̇ = τSAT + τSW + τassist − τf (1)

where Jeff is the effective moment of inertia, beff is the
effective damping of the steering system at the road wheels,
and δ is the steering wheel angle. τSAT, τSW, τassist, and τf
represent the Self-Aligning Torque (SAT), the steering wheel
torque, the assist torque, and the frictional torque at the road
wheel, respectively.

The SAT observed from the previous equation is different
from the real one. The main reason is the complexity of the
tire behavior [9] due to the variation of the load, the couplings
between longitudinal and lateral slips, and the non-linearities
due to suspensions. To take this into account, additional
measurable signals are considered such as the longitudinal
and lateral accelerations, the longitudinal velocity, the yaw
rate, the wheels speed, the wheel torque, and the compres-
sion/decompression of front right and front left suspensions.
In total, 12 inputs are used to train the neural network to
estimate the front right and the front left SATs. Specifications
of the input and output data are listed in Table II.

TABLE II
INPUT & OUTPUT DATA.

Inputs
Longitudinal acceleration Ax (ms−2)

Lateral acceleration Ay (ms−2)

Longitudinal velocity Vx (ms−1)

Yaw rate ψ̇z (rads−1)

Steering angle αsteering (rad)

Steering torque τsteering (Nm) from EPAS

Assist torque τassist (Nm) from EPAS

Motor torque τmotor (Nm)

Compression/Decompre- cosladleft (m) from front left sensor

ssion of the suspensions cosladright (m) from front right sensor

Wheel speed ωleft (rads−1) from front left sensor

ωright (rads−1) from front right sensor

Outputs
Self-Aligning torque τ lSAT (Nm) front left

τrSAT (Nm) front right

From the previous remarks and due to the variation of the
pressure distribution in the tire, the use of a physical tire
model such as the Brush model is disregarded. Thus, we
choose to label our data using the Pacjeka tire model or the
Magic Formula [11]. This semi-empirical model fits best the
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measured data and takes into account the couplings between
longitudinal and lateral slips. The details of SAT formula from
Pacjeka 97 tire model can be found in [11].

In the first step, the correlation between all variables is
performed to assess the dependency between the inputs and
the outputs, as shown in Figure 2. The assist torque has the
highest correlation value since it is linearly related to the SAT,
as described in the steering system model equation (1). In
addition, we also notice a medium dependency on suspension
deflection sensors, highlighting the relation between the load
variation and the SAT.

The data were sampled at 20 Hz, giving us an input matrix
of (45000x12) and an output matrix of (45000x2).

The next part of this section will focus on the choice of the
network model, the tuning of its parameters, and the definition
of the performance metrics for evaluation.

B. Proposed Model

A static feedforward neural network or Multi-Layer Per-
ceptron (MLP) is considered in this study. The goal is to
use the MLP as a non-linear function approximator to map
the entries to the SAT. In general, an MLP is composed of
one input layer, one or more layers called hidden layers, and
one output layer. The inputs of each layer are combined in a
weighted sum and subjected to an activation function. Then,
the result of this combination is propagated to the next layers.
A backpropagation learning mechanism allows finally to adjust
weights with the goal of minimizing the cost function.

The design of the NN model and the tuning of the hyper-
parameters was done in an iterative manner using the Grid
Search library in Python. This tool enables us to find the
optimal hyperparameters by evaluating different combinations
of values based on a defined performance metric. To assess
the score of our predictor, we choose to use the R-squared
metric defined as:

R2 = 1−
∑n

i=1(yi − ŷi)∑n
i=1(yi − ȳ)

(2)

where n is the total number of measurements, yi is the true
measured value, ŷi is the predicted value and ȳ is the average
of all measures. The best possible score for R2 is 1.

The optimal model has 2 hidden layers with 32 and 12
neurons, respectively. We use the hyperbolic tangent activation
function for non-linear mapping and the Adam optimization
[12] for training. Table III summarizes the set of the chosen
hyperparameters and the estimation structure is presented in
Figure 3.

TABLE III
OPTIMAL PARAMETERS FOR THE MLP.

Parameter Optimal
Hidden dimensions [32,12]
Learning rate Adaptive
Optimizer ADAM
Activation function Hyperbolic tangent
Data pre-processing Robust Scaler

IV. SAT ESTIMATION RESULTS

A. Simulation results

To test the performance of our model, the recorded data
were randomly split into 70% for training and 30% for testing.
The optimal NN model yields an R-squared score of 0.986
for the first and 0.982 for the second. The Mean Absolute
Error (MAE), which is less sensitive to the outliers caused
by software compilation errors, is found to be 2.4 (Nm) in
training and 2.59 (Nm) in the test phase.

To appraise the extrapolation ability of our NN model, we
run the same vehicle model on the Magny-Cours race track.
This sort of track is available on Simcenter AMESIM and is
generally used to simulate severe maneuvers. The reference
trajectory, the longitudinal velocity, and the steering wheel
angle of the simulation are depicted in Figure 4.

The car does two rounds, the first one on a dry surface
(µ=1) and the second on wet asphalt (µ=0.7). The results of
estimation on dry asphalt presented in Figure 5 show that our
NN model predicts accurately the front wheels SATs with an
MAE of 3.1 (Nm). The blue line represents the true value and
the red one is the NN estimation. On the wet road though,
the MAE increases to 8.1 (Nm) and the NN does poorly to
extrapolate the peak of the SAT. The results of this second case
are plotted in Figure 6. Table IV summarizes all simulations’
values of MAE and R-squared.

TABLE IV
SUMMARY OF SIMULATION RESULTS.

Simulation test R2 score MAE (Nm)

Training phase 0.986 2.4

Test phase 0.982 2.59

Magny-Cours dry asphalt 0.971 3.1

Magny-Cours wet asphalt 0.931 8.1

One last thing to highlight is the good accuracy of our NN
model to estimate the total aligning moment of the front axle
i.e. the sum of the front right and front left SATs, as shown
in Figure 7.

This observation proves that our NN model would be accu-
rate to target mainly the front axle maximum grip estimation.
However, it will do less to predict a µ-split case for example.

B. Interpretation of the model

To boost our model transparency, we will provide its in-
terpretation based on SHapley Additive exPlanations (SHAP)
[13]. SHAP was introduced as a unified framework for inter-
preting predictions. It is a game theoretic approach that assigns
each feature an importance value. Two types of explanations
are accessible via SHAP: A global one where the SHAP
values show how much each predictor contributes to the target
variables. And, a local one dedicated to a specific observation.

In this paper, we will provide only global interpretability
based on the test set data. Figure 8 is a bar plot that lists the
most influencing features in descending order and the average
impact on the SAT magnitude is shown on the x-axis. On the
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Fig. 2. Correlation matrix of input and output data.

Fig. 3. SAT estimation structure, adapted from [8].

other hand, the dependence plot depicted in Figure 9 explains
the marginal effect between the top 3 features and the front left
SAT. From the latter, we observe a negative linear relationship
between the assist torque and the front left SAT. While for
lateral acceleration and the steering wheel angle, the effect on
the SAT is non-linear.

V. DISCUSSIONS

A. SAT dependency on inflation pressure

Tire inflation pressure has an influence on the quasi-static
generated forces and moments, most importantly, the SAT.

From a physical perspective, the SAT is generated because of
the distance between the contact patch center and the point of
lateral force application, this distance is called the pneumatic
trail and it is linearly dependent on the contact patch.

An investigation on the effect of pressure change on SAT
was carried out using an extended version of the Pacjeka tire
model in AMESIM environment. This model called SWIFT-
Tyre has been developed at Delft University of Technology
and TNO Automotive [14] and includes the most recent
developments such as inflation pressure effects. We observe
from Figure 10 that the amplitude of SAT decreases when
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Fig. 4. Reference trajectory (top), steering wheel angle (middle), and velocity
profile (bottom) for Magny Cours Track.

Fig. 5. Estimation results of SAT on dry asphalt; Blue (True) and Red
(Estimated with NN).

inflation pressure increases. This is logical because higher
pressure reduces the contact length, thus the pneumatic trail
decreases and eventually also the SAT. This leads us to
consider in a future study the tire’s inflation pressure acquired
from Tyre Pressure Monitoring Systems (TPMS) as an input
of our NN model to enhance the performance and robustness
of our estimator. Or in a simpler way, consider a corrective
term that will compensate for the effect of the pressure.

B. Applications of SAT estimation

What motivates most the SAT estimation is the early
detection of tire friction coefficient. Unlike other traditional
approaches that reach a good estimate near the critical region
of the tire, the SAT is viable for limits detection at low

Fig. 6. Estimation results of SAT on wet asphalt; Blue (True) and Red
(Estimated with NN).

Fig. 7. Estimation of front axle total aligning moment on wet asphalt; Blue
(True) and Red (Estimated with NN).

excitation levels. Owing to this, the knowledge of friction
conditions is prior to the intervention of advanced active safety
systems.

The knowledge of SAT can also improve the lateral control
[15] and particularly the Steering Wheel Angle (SWA) control
in EPAS systems [16]. While it is considered a disturbance
to be overcome in most controllers, a precise estimation can
prevent generating inefficient control gains and cancel its
effects in some situations. Moreover, it can be useful to return
to the center position of the SWA after a change in direction.

To wrap up, real-time estimation of SAT is inherent to
guarantee safety by providing the available grip at an early
stage and also enhancing the performance of some lateral
controllers.
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Fig. 8. Feature Importance based on SHAP.

Fig. 9. Dependency plot of the top 3 features.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented and outlined a real-time data-
driven approach for SAT estimation. This quantity is inherent
for friction coefficient prediction at low excitation levels and
for enhancing some lateral controllers’ performance e.g (SWA
control).

The proposed neural network model and the methodology
followed distinguish themselves from the previously reported
methods in terms of the following features: 1) The NN is
fed directly by in-vehicle sensor signals and does not rely
on estimated inputs nor uncommon expensive sensors. 2) It
is trained and tested on a wide range of maneuvers with
different road surfaces to improve its extrapolation ability. 3)
Labeling the data uses a semi-empirical tire model (Pacjeka
tire) that considers combined lateral and longitudinal dynamics
and can fit the measured SAT on a real test drive. 4) A global
interpretation based on SHAP values is provided. It gives us
the most important features and the nature of their relationship
with the estimated SAT. We investigated also the effect of
inflation pressure on SAT by using an extended version of the
same tire model, and we deduced that for more robustness and
precision, the pressure acquired from TPMS can be considered
as an additional input in our model.

The graphs and regression metrics show a good performance
of our NN model to estimate the front right and front left
SATs, especially for tests on dry asphalt. As the error increases
for the wet road test, enriching the dataset with repeatable
maneuvers on other grip surfaces may resolve this problem.

Future work will be oriented towards generating larger data
sets in different friction coefficients and considering the infla-

Fig. 10. Inflation pressure effect on SAT for a triangle-shape steer command.

tion pressure as an input, in order to refine the generalization
of our estimator. Besides, this estimator will be used for
friction estimation in a subsequent paper. Finally, a real test
drive is planned with GROUPE RENAULT for validation and
evaluation.
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Abstract—Advanced Driver Assistance Systems (ADAS) are
becoming an integral part of modern road vehicles. Their
deployment is demonstrating their contribution to safety and
efficiency. However, as the interaction between ADAS and the
driver increases, other issues are emerging that affect their
performance. The driving task is influenced by a range of
factors, including the driver’s preferences and behavior that
is conditioned by the operating environment comprising the
road conditions, environmental conditions, and complex social
interactions with other road users and pedestrians, etc. Driving
differs also between and within cultures. In this paper, we
review the current approaches in the literature that demonstrate
an adaptation to the driver behavior but also the work on social
interactions on the road. We then discuss issues that remain
open and need to be confronted when designing a cross-cultural
intelligent vehicle.

Index Terms—intelligent vehicles, culture, context-based sys-
tem, safety, personalized ADAS, social robotics.

I. INTRODUCTION

Vehicles and driving are intimately connected to our in-
dividual and collective sense of self - who we are, what we
believe in, what are our values, and what we aspire to achieve,
as well as how we interact with others [1]. Currently, there is
a rapid deployment of Advanced Driver Assistance Systems
(ADAS) in the new generation of road vehicles as a means to
enhance safety, riding comfort, and energy consumption. Their
deployment is contributing to improvements in these areas,
with modern legislation and vehicle qualification evaluations
such as the EuroNcap [2]. However, the interaction between
ADAS systems and drivers is becoming very symbiotic, which
raises several issues.

Intelligent vehicles are mainly developed based on data
collected, developments and field trials, and research con-

ducted in North America, certain countries in Asia and Europe,
where driving conditions, safety, etc. are very different from
what occurs elsewhere [3]. It is to be noted that in low- and
middle-income countries a growing phenomenon is occurring,
road accidents are reaching almost epidemic proportions, and
road safety has became a major concern. The World Health
Organization [4] reported that with an average rate of 27.5
deaths per 100,000 population, the risk of a road traffic death
is more than three times higher in low-income countries than in
high-income countries, where the average rate is 8.3 deaths per
100,000 population, see Fig. 2. Furthermore, these countries
have also witnessed a major increase in the number of road
vehicles. In these countries, the road infrastructure, traffic
conditions, driver training, and respect to the traffic code are
substantially different [5].

The conditions and road networks where ADAS func-
tions are deployed differ very much. Recently, research has
increasingly focused on reducing bias in the development
of intelligent vehicles by addressing the intricacies raised
by cultural and social differences [3], [6]. In a developing
country such as India, Fig. 1, in order to respond to common
challenges on the road, traffic conditions, local regulations, and
unwitting rules are rapidly emerging. For example, in heavy
traffic, respect to the rule that should keep all cars within
the boundaries of lane markings disappears, that is more cars
than the number of lanes will fit across standard roads. Unlike
countries within the European Union, there will be more non-
verbal cues and verbal communication to create awareness and
for drivers to find a consensus related to safety and efficiency.
Another example would be crossing outside crosswalks that is
a common behavior of vulnerable road users; this is contrary
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Fig. 1. Sample of traffic conditions in India [8]–[10].

to what occurs in most Nordic countries [7]–[10].

The differences in road networks and operating conditions
are more notable when deploying the Society of Automotive
Engineers (SAE) Level 4 vehicles (e.g., robot-taxis); that is,
the machine should understand its situation before making
any decision; however, situations will vary from country to
country, from rural land to dense urban areas, even within
the same country. Most field trials of robot-taxis have been
so far confined to limited areas, and scaling up has proved
more difficult than expected. Therefore, the manner of how
all road users will behave is a major constraint to full-scale
deployment.

Intelligent vehicles comprising ADAS functions or different
levels of automation will not achieve their promise if drivers
and the environment rounding do not accept and use them in
a sustainable manner [11].

Designing a cross-cultural intelligent vehicle is one of the
challenging problems faced by researchers in the automotive
sector but not yet seriously addressed. Through this paper, we
tackle the following questions:

• What do we mean by a culture with respect to driving?
What are the main cultural differences in driving behav-
iors?

• What do we mean by a cross-cultural adaptive intelligent
vehicle? What are the cues to pay attention to on the
road?

The remainder of this paper is organized as follows. In
the following section, Section II, we define culture, introduce
its dimensions in the context of driving, and we emphasize
the bias in the development of intelligent vehicles to date.
Following that, in Section III, we discuss personalization in
Advanced Driver Assistance Systems and drivers models in the
literature. In Section IV, we will review the state of the art in
social intelligent vehicles and discuss where attention is turned
to on the road. Section V discusses what a context-based
intelligent vehicle would consider and highlights challenges
and open issues in the design of such a system. Conclusion
and future work are drawn in the last Section VI.

Fig. 2. Rates of road traffic death per 100,000 population between 2013 and
2016 by the World Health Organization regions [4].

II. CULTURE’S IMPACT ON DRIVING TASK AND ROAD
TRAFFIC

The driving task is not only what is measured objectively
on a road, nor only the professional conceptualization of the
traffic system. It is also the “world view” that lay people have
of the traffic system [12].

It is in the human being as a mirror of one’s personality,
one’s expectations and risk assessment, also one’s culture. In
this context, How could intelligent vehicles gain their place in
society and be accepted by the driver? The intelligent vehicle
is involved in more than just trajectory optimization, obstacle
avoidance, and driver cognition testing. To become a part
of the surroundings and to incorporate the driving culture, it
needs also to be merged with the driver and represent him/her.

Before diving into the role of culture in the driving task
and why it is primordial to include the context in the design
of intelligent vehicles, we first define the concept of culture.

In “What is Culture?” by Edgar Schein [13], culture is
defined as a pattern of shared assumptions (knowledge and
values) that have served a group well in the past, that is
learned to new members and that can be adapted to external
circumstances. Culture is essentially a social indoctrination
rule that people learn as they try to fit into a particular group.

Culture can also be defined through its characteristics. It has
collective representations - vocabularies, symbols, and codes
[14], [15]. More often on some roads and less on others,
drivers, to find a consensus, tend to communicate verbally
their decisions and understand common non-verbal cues, while
in Europe for example, we notice a certain individualism as
rules are respected and traffic is structured. The work in [16]
and [17] explicitly addresses the need for an external HMI for
autonomous vehicles to communicate with other vehicles and
pedestrians. Culture has social norms and values. All these
elements structure the thinking and acting of the individuals
within the same group to respond to the survival challenges of
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their environment by learning through reward and punishment,
by conforming to social norms, laws, and regulations, by
accepting persuasive messages, anticipating others’ behavior,
and compensating for the errors of other traffic participants.

As illustrated in Section III and concluded in [1], the
ADAS systems can compensate for the perceptual constraints
that affect driver performance when responding to roadway
demands, but less when overriding a driver’s attitudes, goals,
and priorities. Driver behavior, then, may ultimately have the
most influence on traffic safety. Research on driver behavior
has focused almost entirely on individual differences (e.g.,
cautious, aggressive), distraction, or cognitive level as contrib-
utors to unsafe driving behavior. However, in [18], the authors
investigate the relationship between the three factors of the
Driver Behavior Questionnaire (DBQ) (errors, aggressive vio-
lations, ordinary violations) reflecting culture differences and
the difference in the rate of fatalities in six countries (Finland,
Great Britain, Greece, Iran, The Netherlands, and Turkey).
Findings demonstrated that the addition of driving styles,
especially aggressive violations and errors not only improved
the models for predicting the number of traffic accidents but
also mediated the relationship between culture/country and
accidents. The results show that 84.6% of traffic accidents are
caused by vehicle violations, which is the crucial factor within
all traffic accidents [15]. In the road safety annual report in
2019 [19], it is emphasized that traffic-related mortality rates
differ widely between countries, e.g., the risk of being killed in
a road crash is six times higher in Argentina than in Norway.
Although traffic car accidents are a major problem everywhere,
significant differences between countries are encountered. The
results emphasize the critical role that culture plays in driving
safety. The authors in [20] discuss road accidents related to the
interactions among drivers instead of single attitudes. A recent
review [21] discusses the factors influencing driving behavior
and the causes of road accidents.

Moreover, culture provides the subtext to driver behavior by
shaping the beliefs, values, and ideas that people bring to the
driver’s seat. It highlights the influence of societal expectations
and practices among drivers from the same culture. For
example, “honking” clearly reflects aggression in Scandinavia,
whereas in Southern Europe and Iran, drivers use their horn
frequently to give various messages, such as thanking other
drivers. Furthermore, in Turkey, the speed of traffic flow on
many roads is much higher than the speed limit. Consequently,
drivers do not see their speeding as a serious offense as the
Western Europeans might do. Thus, it is important to consider
that traffic culture or context determines the criteria but also
both formal and informal rules for acceptable driving style, and
thus, develop nation-specific items for reflecting informal rules
that reflect the cultural behavior in each country/environment
[18]. Understanding the context is what will give the intelligent
vehicle fluidity, motion involved in social exchanges, the
socio-acceptance and it is what is going to increase the driving
safety by anticipating other drivers behavior and making up
for errors made by other traffic participants.

Transferring the ADAS technology as designed by auto-

motive manufacturers from one culture to another can be
problematic. In [22] and [23], research was conducted to
indicate different cultural areas that need to be focused on
when developing ADAS for China. One of the major problems
in China is the complex traffic environment with congestion,
motorized three-wheeled vehicles, and poor lane markings.
It has been reported that ADAS such as Forward or Lateral
Collision Warnings or Adaptive Cruise Control can be just
annoying in such crowded environments where people obey
authority norms less than social ones. Consequently, an ADAS
that is of great value to the drivers of one country may be of
less value than to those in another if not adapted.

The intelligent vehicles are integrated into hybrid roads
where drivers tend to possess a model of their environment,
allowing them to predict the intentions of road and non-road
users, and thus, their safe driving is predetermined based on
meeting the expectations of others. The intelligent vehicle
should possess this set of knowledge, skills, and competencies
to recognize, understand, and adapt to social and cultural
differences.

III. PERSONALIZED DRIVING ASSISTANCE SYSTEMS:
STATE OF THE ART

Due to the greater market penetration, the field of advanced
driver assistance systems has grown to include aid functions
that are increasingly complex but designed for the average
driver or all drivers [24]. To assure the best user experience
throughout such a wide range of use conditions and usage
patterns, personalization techniques have been created. Person-
alized ADAS are developed by learning driver models from
the observation of driver behavior and then parameterize the
vehicle controllers to meet the personal driving style. In this
section, we review recent work on the driver models and the
personalized ADAS.

A. Driver modelling

Since their pioneering theoretical study of Automobile-
driving, human driving behavior, by Gibson and Crooks in
1938, scholars have contributed to driver behavior mimic and
driver psychology modeling [25].

The models proposed went from simplistic mathematical
models to represent the correlation between the state metrics
of the host vehicle (acceleration, relative speed, distance head-
way, etc.) [26]–[28] to more sophisticated models reflecting
the internal mechanisms of the decision making that drivers
must hold in their minds. The authors in [29] model the driver
behavior in the ACT-R cognitive architecture. In [30], J.A.
Michon discusses the driver behavior model types; behavioral
(Mechanistic, adaptive-control, etc.) and psychological (mo-
tivational, cognitive, etc.). The authors of [31] review two
hundreds models on driver behavior modeling.

Each driver is individually influenced by the social envi-
ronment consisting of other road users, general social norms,
traffic-related rules of conduct, and their representations [32].
The models proposed in the literature either suggest that a
group of similar characteristics, or stereotypes, exist about a
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set of users [33], [34] or they are tailored to meet personal
driving styles. However, driving style is supposed to vary
in the degree to which it is shaped by both intrinsic (e.g.,
age, sex, experience, cognitive biases, and emotions [35]) and
extrinsic (e.g., social context) factors [18], which are rarely
considered. In the same sense, driver behavior modeling as
proposed in the literature lacks a connection between models
of individual driver behavior and the (presumably) resultant
population behavior as reflected in traffic characteristics, in-
formal rules conducted, or the accidentology level in the
environment, which greatly influence the driving skills, the
other main component of human factors in driving [36], [37].
[38] models the driver behavior along with demonstrating how
the contextual information affects its performance.

B. Personalized ADAS

In this part, we are interested in defining the personalization
of the ADAS as studied in the literature, revealing the key
human/environment features considered in this personalization
and presenting the process behind including those features
in the loop. We have considered functions representing the
three types of driver efforts: strategic (route planning), tactical
(Adaptive Cruise Control [46], [47] – Lane Change Assis-
tance), and operational (Forward Collision Warning) in the aim
of identifying which features are relevant to each type/function
and coming across models that have an eye in and out of the
vehicle. A recent survey [48] and a review of personalization in
ADAS and autonomous vehicles [49] concentrate on methods
that combine individual driver models and controllers for
designing personalized ADAS.

Table I summarizes some of the papers reviewed. In the per-
sonalization of the ADAS, we can distinguish between group-
based and individual-based approaches to personalization. In
the former case, drivers are assigned to one of a small number
of representative driving styles (e.g., aggressive, cautious, etc.).
In the latter case, the ADAS strategy tries to best reproduce
the driving style of an individual driver [50]. In the table,
we make also the point on the driver’s characteristics relevant
for the function, the environmental dynamic information, etc.
We also refer to the methods used for Driver/context behavior
recognition and the models used for Adapting. Finally, the
personalization as demonstrated today, lacks a continuous
learning of the human preferences or proposes that on demand
with a recalibration of the process of personalization, we
distinguish between the two approaches in the table.

We have presented some ADAS functions referring to self-
driving capabilities (Adaptive Cruise Control), maneuver assis-
tance (Lane Change Assistance), and monitoring capabilities
(Lane Keeping Assistance) to show how they share some
common features and differ on others to approach the driver
modeling.

The use of neural networks or fuzzy logic (with capabilities
of approximation, generalization, and self-learning) is suitable
for modeling driver behavior with nonlinear characteristics.
The research showed that artificial intelligence could offer
some potential advantages in driver behavior analysis and

modeling. However, the current studies present some limita-
tions listed below:

• The driving style and the driver behavior are studied
mostly from the control viewpoint, e,g., mimicking the
acceleration/deceleration profiles [41]. Although, this op-
eration is the result of different traffic situations, intra-
individual differences, etc.

• Current customized personalized systems are mainly im-
plemented through manually adjusting warning trigger
thresholds for example, which would be less feasible for
overall drivers as a certain domain expertise is required
to set personal thresholds accurately and it becomes a
tedious task as the number of ADAS is continuously
increasing.

• Personalization techniques exploit individual drivers’ data
to build personalized models. Such an approach could
learn personal behaviors but requires impractical large-
scale individual data collection or the data are mostly
based on simulation and not close to reality.

• We did not come across papers studying different func-
tions under the same framework and this is problematic
as the ADAS functions are increasingly added.

• The personalization of the ADAS to meet the driver’s
preferences and to mimic his behavior is bottom-up and
when it is top-down, it is not validated.

• Artificial intelligence has proven its potential in modeling
driver behavior. However, it presents some disadvantages
when coming to the model stability, the computational
load required and the complexity of it.

• Two approaches exist for the trajectory modeling:
stochastic (Hidden Markov Models, Neural Networks,
Fuzzy logic, etc.) and kinematic [42]. the stochastic
modeling has proven its capability to approach different
driver behaviors, it is flexible and accurate but lacks the
physical meaning contrary to the kinematic modeling.

Despite the aforementioned efforts, it is missing the inclu-
sion of the driver skills which are related to the environment
from which he gains experience and constructs this toolkit to
respond to the road needs. The objective of a driver model
is to represent the process by which a driver transforms some
perceived information about the driving situation into an action
on the vehicle’s actuators (steering wheel, pedals). We believe
that regenerating this behavior is not mimicking the brake
and acceleration profiles but understanding the why of these
maneuvers as the driving task is about the driver’s behavior
toward a certain situation.

IV. SOCIAL AUTONOMOUS VEHICLES

Research on social robotics and in particular social au-
tonomous vehicles is demonstrating the importance that play
the social and the cultural dimensions when it comes to
situation understanding [51], decision-making, and motion
planning [52]. [53], [54] reveal the gaps in the development
of autonomous vehicles navigating in uncertain environments
and the lack of sufficiently detailed understanding of how
humans interact in such conditions and how that understanding
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TABLE I
REVIEW OF PERSONALIZED ADVANCED DRIVER ASSISTANCE SYSTEMS.

Function Approach Driver/context in the loop Model-used Driver/Context behavior
recognition

Methods for adapt-
ing

The learning
rate

Reference

Adaptive
cruise control

Group-based
average, maximum and minimum of relative speed,
time headway and jerk learning-

based
Self-organizing feature map
neural network with K-
means then PNN classifier

MPC as an upper-
level Controller, and
feedforward and PID
for lower-level con-
troller

On demand [39]

Adaptive
cruise control

Individual-based

Demographics: Age, sex, income level, educational level - loca-
tion of the vehicle: distance to the lead vehicle, vehicle speed,
longitudinal acceleration, road density, road type, weather -
driver’s behavior

learning-
based

Regression model – deci-
sion tree model

- - [40]

Adaptive
cruise control

Individual-based

Motion states of the leading vehicle and the host vehicle (vehicle
speed, acceleration, accelerator pedal/throttle depression, brake
pressure, relative distance/speed to lead vehicle, and Global
Positioning System information)

Model-based Self-learning algorithm
based on RLS to identify
the model parameters

a linear driver be-
havior model with a
lower PID controller

Continuous
learning

[41]

Lane change
assistance

Individual-based

Max/average absolute value of steering-wheel angle, average
steering-wheel angular velocity, standard deviation of steering-
wheel angle, max/average absolute value of lateral acceleration,
maximum absolute value of slip angle, maximum absolute value
of yaw angle, maximum value of yaw rate, average value of yaw
rate, and standard deviation of yaw rate

Rule-based
and learning-
based

Fuzzy c-means algorithm
for classification then back-
propagation (BP) neural
network optimized by a
particle swarm optimization
(PSO) algorithm

a sinusoidal lane-
change model

Continuous
learning

[42]

Forward Col-
lision Warn-
ing

Individual-based Time headway, Time to collision, longitudinal speed of ego
vehicle

Model-based recursive least squares
method for warning
threshold

Adaptive algorithm Continuous
learning

[43]

Forward Col-
lision Warn-
ing

Individual-based
Gas pedal position, range with neighboring vehicles, turn signal,
yaw rate, longitudinal acceleration, velocity. . . learning-

based
Neural network – Support
Vector Machine

Adaptive algorithm Continuous
learning

[44]

Route
planning

Group-based
The vehicle’s absolute motion, the vehicle’s relative motion to
surrounding vehicles and/or objects, Distance, Time, accelera-
tion profile. . .

Model-based HMM models – classifiers –
fuzzy-based classifier - . . .

Continuous
learning

[45]

might be quantified in computer models. Considering the
lane change maneuver, scholars are formulating the problem
as a non-cooperative game [55] when considering the social
behaviors and the intentions of the surrounding vehicles [56],
[57] while in [58], the authors are imitating the stimulus-
based selective attention mechanism of human vision systems
to recognize the lane changing intention of the surrounding
vehicles. Based on a higher level of cognition, human drivers
have this capability to pay attention to relevant information on
the road related to their actual maneuvers, the authors in [59]
review the modeling of where and when the drivers look on
the road. Additionally, human drivers consider the stochastic
variability in their interaction with vehicles/pedestrians, [60]
is addressing this problematic at uncontrolled crosswalks.
Learning to drive has emerged as an efficient alternative to
hand-crafted rules, especially when considering interactive
behaviors [61]–[66]. To tackle the social, ethnographic, and
legal dilemmas in the urban environment, [67] offers insights
into a new automated driving strategy by introducing a general
learning-based framework based on maximum entropy inverse

reinforcement learning and the Gaussian process. In [68], the
authors introduced the learning by watching others framework
enabling the vehicle to learn new skills in a new situation
or geographic location, which finds its inspiration in the
driver capabilities to fit in new environments and cultures
by watching demonstrations from other drivers. To fit into an
environment and to gain this social invisibility [69], drivers are
learning from countless experiences by possessing this device
of permanent memory, inferring, and experiential updating
in addition to their event-related mechanism. The authors of
[70] are discussing how to implement a cognitive computing
framework for autonomous driving with selective attention
and event-driven mechanism. A direct measure of performance
for autonomous vehicles is their level of similarity to human
drivers, and emulating human driver behavior just adds more
challenges to countless ones.

V. DISCUSSION

In order for an intelligent vehicle to gain in intelligence,
performance, robustness, and acceptability, we posit that it
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should take a culturally and socially cognizant path. We define
cultural awareness as the capacity to infer such favorable
actions based on knowledge about the driver and others’
intent and behavior, of understanding road and non-road users’
interactions and complying with mutually-accepted rules but
also compensating for the uncertainties and non-stationarities,
thus, formulating their social insights.

A generalized framework of an intelligent vehicle having
an eye in and out could be a step up. It should consider the
following features, which we regroup in three sub-contexts:

1) The vehicle with automation
2) Interaction with the operating environment: all the ele-

ments constituting the operating environment are linked,
see Fig. 3. People from the same culture develop dis-
tinct patterns of emotions, norms (informal rules, local
perception of the law, etc.), and behaviors to deal with
the survival challenges of their common environment
(infrastructure, environmental conditions, etc.) figuring
out a structure in the unstructured environment. The
system should be able to reason about these behaviors,
predict the intentions of traffic participants, and com-
pensate for their errors, thus increasing safety and socio-
acceptability.

3) Interaction with the driver: the personalization in the
sense”to suit the automated task to the preferences and
needs of the driver,” we believe that it should consider
the driver behavior that is understood as the intentional
actions issued from the driver’s inner mental thought and
unintentional characteristics [71], but while answering
the in which situation question. The driving task for an
intelligent vehicle still needs the driver to remain active
and engaged to take back the control [72], considering
that the driver cognitive level is primordial for the
system.

To achieve such a cross-cultural intelligent system, we are
now facing the challenge of defining the value of society
across different scenarios and translating the set of ethical rules
into a language that the vehicle can understand independently
from any human intervention. We need then to propose a
cognitive architecture capable of being socially and culturally
aware and in the sense of being able to abstract the situa-
tional information on the road, to retrieve what is relevant
for its application. The framework should emulate the way
expert drivers understand human interactions on the road and
comply with mutually-accepted rules learned from countless
experiences, we can do so by enabling the intelligent vehicle
to memorize, reason, experiential update its knowledge, and
extend the generalized knowledge learned to new scenes
that were previously unknown and gain in adaptability and
dynamic reconfiguration to face the environment changes and
different Human/vehicles interactions [73]. We recognize that
the challenges are enormous, adding to what was mentioned,
the simplicity of most car simulators, especially the lack of
realism when addressing the social and cultural aspects.

Fig. 3. Driver-vehicle-environmement in the loop.

VI. CONCLUSION AND FUTURE WORK

In this paper, we highlight the importance of considering
seriously one of the most challenging problems facing the
intelligent vehicle today, which is the cross-culture adaptabil-
ity. We have taken a first step towards that by defining the
culture with regards to driving and emphasizing the bias in the
development of intelligent vehicles to date. We have provided
a review of the current state of the art for personalization
in advanced driver assistance systems and social autonomous
driving. Our concern was the driver models used for per-
sonalization. The main objective of ADAS customization is
to increase the system usability and, as a result, the driver
acceptance. This is particularly crucial in applications safety-
related such as Forward Collision Warning, where alarms and
their timing should be tailored to the needs and skills of the
driver to prevent the system underuse. The state of the art
for social autonomous vehicles was then reviewed, including
some studies that analyze interactions with other road and non-
road users as well as anthropological and legal dilemmas in an
urban environment. Finally, we discuss what a cross-culture
adaptive intelligent vehicle could be considered. It should
possess a model of its environment, allowing is to predict the
intentions of road and non-road users, and thus, its safe driving
is predetermined based on meeting the expectations of others.
The intelligent vehicle should possess this set of knowledge,
skills, and competencies to recognize, understand, and adapt to
social and cultural differences. The challenges are enormous;
defining the value of society across different scenarios and
proposing a cognitive-based architecture for the system would
be our next step.
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Abstract—In this paper, we propose and implement a novel 

method for 3D object detection in autonomous driving by 

applying federated mechanism to a monocular camera-based 

network. Our approach has several advantages over traditional 

3D object detection methods that rely on LiDAR or other 

sensors, as it is more cost-effective and can be more easily 

integrated into existing autonomous driving systems. We use a 

federated learning framework, which allows us to train the 

model on a large amount of data covering a variety of scenarios 

without having to share the raw data with a central server. This 

allows us to reduce transmission bandwidth requirements and 

preserve the privacy of the data contributors, while still 

achieving high accuracy in 3D object detection. In our 

experiments, we evaluate our method on a variety of challenging 

real-world driving scenarios and show that it is able to 

accurately detect objects in 3D from a monocular camera view. 

Our results demonstrate the effectiveness of our approach and 

show its potential for use in autonomous driving systems. 

Keywords-monocular, 3D object detection, federated learning, 

autonomous driving. 

I.  INTRODUCTION  

Safety remains the primary concern when people talk 
about autonomous driving. Autonomous vehicles are 
empowered by various Deep Learning (DL) models (i.e., 
perception, tracking, prediction, etc.), but these models are 
trained with either simulated data or controlled driving 
scenarios, with most autonomous vehicles still being tested in 
enclosed facility environments. It is, therefore, difficult to 
evaluate how they will perform in real-world driving 
scenarios, especially when the controlled environment is 
coupled with numerous unpredictable corners, emergencies, 
and occlusions. Human drivers gain experience over time, 
first watching the parents or others driving, then through 
driving schools and, finally, driving and improving their skills 
every year. Autonomous vehicles should do the same. Besides 
training deep learning models that enable autonomous driving 
in labs, autonomous vehicles should continuously learn from 
different driving scenarios of their own or others experience. 
Federated Learning (FL) is a promising approach that may 
address this problem. Instead of having autonomous vehicles 
to upload their perception data to the cloud to perform 
centralized training, as shown in Figure 1(a), FL allows 
autonomous vehicles to first train their local models with local 
collected data and share with each other their own experience 
through their DL models instead of sharing collected data, as 

shown in Figure 1(b). Recent works investigate if autonomous 
driving could benefit from FL. Some of them [1][2] are 
designing system architectures to ensure the efficiency of 
when and which vehicles should participate in the federation 
process. Other approaches are trying to address the problem 
that data collected locally are non-Independent and Identically 
Distributed (non-IID) [3][4]. Although existing methods 
demonstrate that FL could improve the accuracy in object 
detection, they have only been evaluated with 2D object 
detection [5] or 3D object detection using LiDAR [6]. 
However, it is not sufficient to use these two types of sensor 
data when evaluating methods for autonomous driving. More 
specifically, 2D object detection cannot output depth 
information or is hard to predict the distance of target objects, 
while LiDAR is expensive and is not commonly supported by 
autonomous vehicles, with the industry recently following a 
vision-based trend for autonomous driving [7][8]. In this 
paper, we investigate and verify that the performance of 3D 
object detection could benefit from leveraging federated 
learning with 3D image data collected by monocular cameras.  

 
(a) Centralized Monocular Approach 

 
(b) Federated Monocular Approach 

Figure 1.  (a) Centralized approach which upload the local images 
from all vehicles to the central server, then train and release the global 

model, (b) Federated approach, in which each vehicle trains their own 

model with the local data, then the local models will be uploaded, 

aggreated and released. 

Collected Data

Model Training

Local Data Local Data Local Data

Model Aggregation

Local Data Local Model Local Data Local Model Local Data Local Model
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The rest of the paper is organized as follows. Section II 
gives an overview of related work, while Section III presents 
our proposed approach. In Section IV, we evaluate and 
analyze the results. Section V concludes the paper. 

II. OVERVIEW OF RELATED WORK 

A. 3D Object Detection in Autonomous Driving 

Object detection is a popular research topic in autonomous 
driving. Different approaches are proposed leveraging 
different kinds of sensors. For example, in [9] the RGB image 
captured by camera and point cloud obtained by LiDAR are 
fused together for 3D object detection. Evaluation results 
show that the detection accuracy increases since data from 
different modalities provide complimentary features (i.e., 
images provide semantic information while point cloud 
provides depth information to construct 3D surroundings). In 
[10], data obtained from LiDAR are used for 3D object 
detection. This approach considers long-range interactions 
among detection candidates. In [11], RGB-D images captured 
by monocular camera are used for 3D object detection. This 
vision-based approach is simpler, cost-efficient, and more 
practical compared to multi-modality-based approaches.  

B. Federated Learning in Autonomous Driving 

Federated learning is a machine learning approach that 
allows multiple participants to train a shared model without 
sharing their raw data. This is particularly useful in the context 
of autonomous driving, where data from individual vehicles 
may be sensitive or proprietary. With federated learning, each 
vehicle can train a local model on its own data, and then share 
the model updates with a central server. The server can then 
aggregate the updates and use them to improve a shared global 
model, without ever having access to the raw data. This 
approach has several potential benefits for autonomous 
driving. For example, it allows vehicles to learn from each 
other without sharing sensitive data, and can enable the 

development of more robust and accurate models by 
leveraging data from a larger and more diverse set of vehicles 
[1]-[6]. Additionally, federated learning can enable real-time 
updates to the global model, allowing vehicles to quickly 
adapt to changing conditions and improve their performance 
over time. Overall, federated learning has the potential to play 
a significant role in the development of autonomous driving 
systems. 

III. OUR PROPOSED METHOD 

In this paper, we propose a federated monocular 3D object 
detection approach for autonomous driving. The overall 
architecture of our method is illustrated in Figure 2. The left 
part of the figure shows the distributed federated learning 
mechanism, while the right part shows the local monocular 
model on each vehicle, which is trained to make predictions 
for 3D object detection. 

A. Federated Learning-based Collaboration 

The federated learning mechanism adopted in our 
approach includes the following 3 steps. 1) First, each vehicle 
trains a local monocular model on its own. This allows it to 
learn from its own data without sharing it with other vehicles 
or a central server. 2) After training the local models, each 
vehicle shares the model updates (e.g., weights, biases) with 
the central server. The server can then aggregate all these 
updates and use them to improve the global model. 3) Once 
the global model has been updated, the central server 
distributes the updated model to all the vehicles. Each vehicle 
can then use the updated global model to improve its own 
local model and continue the training process. This 3-step 
process can be repeated as necessary to continue improving 
the performance of the global model and enable vehicles to 
learn from each other. Over time, the global model should 
become more accurate and robust, allowing vehicles to make 
better decisions and improve their individual performance in 
real world conditions. Note that, during the federated training 

 

Figure 2.  Overall architecture of the federated monocular 3D object detection approach. 
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process, the images captured on each vehicle are not sent to 
the central server, keeping possible sensitive information on 
the local vehicle, thus eliminating privacy concern issues. 

B. Local Monocular 3D Object Detection Model 

We employ a fully convolutional one-stage monocular 3D 
object detection model for detecting objects in 3D from a 
single camera view [11]. This is an object detection approach 
that uses a Convolutional Neural Network (CNN) to predict 
the 3D bounding boxes and class probabilities of objects in an 
image. 

One key advantage of this approach is that it is fully 
convolutional, meaning that the CNN can operate on input 
images of any size, and produce output predictions for each 
pixel in the image. This allows the model to be used on images 
of varying resolutions, without the need for manual resizing 
or cropping. Additionally, this approach is a one-stage 
method, meaning that it uses a single neural network to make 
all of its predictions. This makes the model more efficient and 
faster to run, as it does not require multiple stages of 
processing or separate networks for different tasks. 

In the local monocular 3D object detection model, the 
ResNet101 [12] is employed as the feature extractor and the 
Feature Pyramid Network (FPN) [13] as the neck. The 
ResNet101 network is a well-known and widely used 
architecture for image classification and object detection 
tasks. It is a deep CNN that is composed of multiple 
convolutional layers, residual blocks, and pooling layers, and 
is designed to be highly efficient and accurate. By using 
ResNet101 as the feature extractor in our model, we can take 
advantage of its proven performance and efficiency, and 
extract high-quality features from the input images. The FPN 
is a network architecture that is commonly used in object 
detection tasks to improve the model's ability to detect objects 
at different scales. It is composed of a pyramid of feature 
maps, with each level of the pyramid representing features at 
a different scale. By using FPN as the neck in our model, we 
can improve the model's ability to detect objects such as 
pedestrians and cars at different distances from the camera. 

The FPN neck is followed by a shared head, shown in 
Figure 3. Using a shared head to output the class of objects 
and 3D bounding boxes in a fully convolutional one-stage 

monocular 3D object detection model can have several 
benefits. First, a shared head allows the model to make 
predictions for both the class of objects and the 3D bounding 
box in a single pass, which can make the model more efficient 
and faster to run. This is particularly useful in real-time 
applications such as autonomous driving, where it is important 
to make predictions quickly and accurately. Second, a shared 
head can improve the model's overall performance, as it 
allows the CNN to learn features that are relevant for both 
tasks simultaneously. This not only can lead to more accurate 
predictions but also to better generalization to new data. 
Finally, a shared head can simplify the model's architecture, 
making it easier to train and optimize. This can save time and 
resources, and can make the model more portable and easier 
to integrate into different applications. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

We used the nuScenes dataset to evaluate the performance 
of our federated monocular 3D object detection method. The 
nuScenes dataset is a large-scale dataset of annotated images 
and point clouds captured in real-world driving scenarios [14]. 
It contains a rich variety of data, including different 
environments, weather conditions, and vehicle types, making 
it an ideal testbed for evaluating our method. To perform our 
evaluation, we split the nuScenes dataset into 10 parts, each 
representing data from a different vehicle.  

We then train our local monocular models on each of these 
vehicle datasets (10% of the whole dataset), both with and 
without federated learning. This allows us to compare the 
performance of our method with and without federated 
learning. We train all the models for 12 epochs at a batch size 
of 4 on a NVIDIA Tesla V100L graphic card. The learning 
rate is set to 5e-3 and is halved in both the 8th and 11th epoch. 
For our approach, the trained model weights from the 10 
vehicles are aggregated in an average manner in every epoch. 

After training our federated monocular 3D object 
detection model, we use the mean Average Precision (mAP) 
and NuScenes Detection Score (NDS) metrics to evaluate its 
performance. These metrics are commonly used to evaluate 
object detection algorithms, and allow us to compare our 
method to other state-of-the-art approaches. The mAP metric 
measures the average precision of the model across all classes 
and all thresholds. It is calculated by averaging the precision 
of the model at different recall levels, and is a useful metric 
for comparing the overall performance of different object 
detection models. The NDS metric is specific to the nuScenes 
dataset, and measures the overall performance of the model in 
terms of both precision and recall. It is calculated as the 
harmonic mean of the average precision and average recall of 
the model, and is a useful metric for evaluating object 
detection models on the nuScenes dataset. 

Figure 4 (a) shows the performance comparison of our 
method with and without federated learning on the nuScenes 
dataset in NDS against epochs, while Figure 4 (b) shows the 
same comparison in mAP vs epochs. We observe that the NDS 
of our method is significantly higher when using federated 
learning, reaching 41.18%. This demonstrates that our method 
is able to improve both the precision and recall of its 
predictions, resulting in more complete and accurate 

 

Figure 3.  Illustration of the shared head in the local monocular 3D 

object detection model. 
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detections of objects in the scene. Similarly, we observe that 
mAP of our method is 70% higher when using federated 
learning, indicating that our method is able to make more 
accurate predictions when using data from multiple vehicles, 
as opposed to training only on local data from a single vehicle. 
The performance is summarized in Table I. 

Overall, our evaluation results show that the adopted 
federated learning mechanism is able to significantly improve 
the prediction performance of our federated monocular 3D 
object detection approach, leading to higher mAP and NDS 
scores compared to training only with local data. This 
demonstrates the effectiveness of our method and its potential 
for use in autonomous driving systems.  

V. CONCLUSION 

In conclusion, this paper has presented a novel method for 
3D object detection in autonomous driving using only a 
monocular camera. Our approach uses federated learning to 

train a deep neural network that is able to detect objects in 3D 
from a single camera view, and has several advantages over 
traditional methods that rely on LiDAR or other sensors. We 
have evaluated our method on a variety of challenging real-
world driving scenarios and showed that it is able to accurately 
detect objects in 3D from a monocular camera view. These 
results demonstrate the effectiveness of our approach and 
suggest its potential for use in autonomous driving systems. 
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Figure 4.  The validation results comparison at each training epoch on 
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TABLE I.  COMPARISON OF NDS AND MAP METRICS BETWEEN 

THE BASELINE AND OUR PROPOSED FEDERATED APPROACH 

Method Backbone Data Ratio NDS mAP 

Baseline ResNet101 10% 0.187 0.110 

Ours ResNet101 10% 
0.264 

(+41.18%) 

0.187 

(+70%) 
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Abstract—Automated Driving Systems (ADS) need to be vali-
dated in a wide range of conditions to ensure the safety of their
operation. It is impossible to validate everything in a real environ-
ment, and simulation is the only viable alternative to cover testing
under all needed conditions. We present the architecture of a
simulation environment based on the CARLA simulator, aimed
at validating the Automated Lane-Keeping System (ALKS), the
first ADS with available legislation for its approval. We propose
to simplify the development and deployment of such a complex
software simulation environment through the use of the Nix
package manager. We also propose how the example scenarios
distributed with CARLA can be extended to make them suitable
for validation of ALKS.

Index Terms—Automated Driving System; CARLA simulator;
Robot Operating System; Automated Lane-Keeping System.

I. INTRODUCTION

The development of Automated Driving Systems (ADS)
requires a lot of validation and testing activities to ensure safe
operation. Automated Lane Keeping System (ALKS) is the
first ADS for which there is a legal document specifying the
requirements for its approval: United Nations (UN) Regulation
No. 157 [1]. Compared to similar regulations issued in the
past, this document contains only general requirements without
specific detailed instructions on what and how to test. It is up
to the approving organization to develop precise procedures
that will enable it to assess the safety of the ALKS imple-
mentation.

To this end, many approval bodies are preparing proce-
dures and technical equipment for the approval process, and
similarly, car makers are working on their internal validation
and testing procedures. This work is a first step toward the
same goal, but on a smaller scale. As an academic institution,
we are developing an ALKS-like function to drive a real car
under a set of limiting conditions. In particular, we limit the
functionality to a subset of weather conditions and omit some
required functionality like detection of approaching emergency
vehicles. At the same time as the ALKS function, we are
developing a simulation environment allowing to test out
the ALKS implementation in a virtual environment before
deploying it in the real vehicle. The goal is to close the
loop between development and validation, gain experience,
and provide feedback to other organizations working with real
ALKS implementations.

In this paper, we outline the architecture of our initial sim-
ulation environment, which is based on open-source software,
namely the CARLA simulator. Since the software environment
for simulation and validation integrates software components
from different sources, version conflicts between different
components often occur. We propose to solve these integration
problems using the Nix package manager. We publish our
initial implementation for use by others. Additionally, we
analyze which ALKS validation scenarios, as required by
current legislation, can be reused from CARLA and related
tools and how they need to be extended for ALKS validation.

This paper is structured as follows. We review related work
in Section II. Then, in Section III we describe the architecture
of our simulation environment followed by the analysis of
simulation scenarios in Section IV. We conclude in Section V.

II. RELATED WORK

Based on the definitions and taxonomy from SAE Inter-
national [2], this paper targets verification of ALKS, in the
scenario-based simulation environment.

Requirements for the ALKS are given by UN Regulation
No. 157 [1] (regulation in short). The regulation introduces
the required behavior of the ALKS (Dynamic Driving Task –
DDT) within predefined conditions (Operational Design Do-
main – ODD). However, the regulation lacks exact parameters
for the test scenarios.

To overcome the problem of missing parameters, Tenbrock
et al. [3] present a methodology for finding relevant scenarios
in real-world data and extracting the scenarios parameters.
They apply their methodology to the highD dataset [4] extract-
ing more than 340 scenarios into OpenSCENARIO format to
be later used in CARLA or esmini simulators. They named
the extracted dataset ConScenD.

In this work, we use CARLA [5] – an open-source simulator
for driving automation systems testing – along with the
ScenarioRunner [6] to execute the scenarios. The CARLA
simulator already includes basic scenarios like lane-keeping,
vehicle following, or cut-in and cut-out situations. We aim
at extending these scenarios to cover all parameters from the
regulation.

Riedmaier et al. [7] present a state of the art survey on
scenario-based approaches to safety assessments of driving
automation systems. They discuss two approaches for scenario
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Fig. 1. Interfacing of Automated Driving System into simulated and real environments.

generation: knowledge-based scenario generation and data-
driven scenario extraction. By this distinction, basic scenarios
included in CARLA area knowledge-based, and ConScenD
scenarios are data-driven. The authors also discuss the differ-
ence between testing- and falsification-based scenario selec-
tion. The former approach aims at a subset of scenarios and
generalize the results. The latter aims at finding a violation
of the safety requirements. Furthermore, the authors identify
formal verification as an alternative to scenario-based testing.
They propose formal verification for the planning module and
the scenario-based testing for the whole system.

Weissensteiner et al. [8] introduce a simulation framework
for scenario-based virtual validation of ALKS with its neces-
sary subsystems, including the interfaces between these sub-
systems. They test the simulation framework on ALKS in two
Operational Design Domains using AVL Model.CONNECT,
CarMaker, and CARLA.

III. SIMULATION ENVIRONMENT

In this section, we describe the architecture of our simula-
tion environment (Figure 1a). It is based on an open source
simulator CARLA [5] and the goal is to test the unmodified
implementation of ALKS software developed for a real vehicle
(Figure 1b).

A. Architecture

The simulation environment depicted in Figure 1a uses
the CARLA simulator as the main simulation engine and its
module ScenarioRunner. ScenarioRunner is a CARLA client
application written in Python and we use it to initialize the
scenario and to control the vehicles (other than the ego vehicle)
in the scenario.

We develop the ALKS in the Robot Operating System
(ROS) [9] so we also use CARLA ROS bridge [10] as an
interface between ROS and CARLA. CARLA ROS bridge is
a ROS package providing the so called ROS node that acts as
a CARLA client and translates data from CARLA to ROS and
vice versa. In the ROS terminology, it acts as a ROS publisher
for data from CARLA and as a ROS subscriber for data that
go in the other direction. CARLA ROS bridge is accompanied
by related ROS packages as CARLA Ackermann control and
CARLA spawn objects. CARLA Ackermann control allows
controlling the ego vehicle in the simulation via well known
AckermannDrive ROS messages. CARLA spawn objects is
used to manage vehicles simulated in CARLA from ROS.
Particularly, we use it to spawn the ego vehicle.

The CARLA ROS bridge publishes data from simulated
sensors in CARLA-specific messages. To use them with the
ALKS implementation for the test vehicle, we convert them
to the format expected by the implementation. This is imple-
mented in the Sensors translator ROS node. Similarly, the
messages in the other direction are converted from vehicle-
specific to CARLA-specific format by the Actuation translator
ROS node.

The Automated Driving System node in Figure 1a imple-
ments the Automated Lane-Keeping System (ALKS). It is a
collection of multiple cooperating ROS nodes with specific
purposes such as perception, maneuver decision, trajectory
planning, and trajectory execution. The internal architecture
of the Automated Driving System block is out of the scope of
this paper.
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Fig. 2. Sequence diagram of running scenarios in the simulation
environment.

B. Execution

To execute the simulations, we run the individual compo-
nents as shown in the sequence diagram in Figure 2. Currently,
we run them manually. Automation is planned for the future.

First, we start the ScenarioRunner with arguments telling
it how to connect to the CARLA simulator, which scenario
to load, and that the ScenarioRunner should not control the
ego vehicle. After the ScenarioRunner prepares the scenario
and waits for the ego vehicle, we start all ROS nodes from
Figure 1a via a ROS launch file. This step includes spawing
the ego vehicle itself. After all required ROS nodes are running
and the ego vehicle is spawned, the simulation starts automat-
ically. Individual simulation time-steps are triggered by the
ScenarioRunner. ScenarioRunner also controls the movement
of simulation vehicles except the ego vehicle, which is con-
trolled by the ALKS ROS node, as shown in Figure 1a. When
end conditions of the scenario are satisfied, the simulation
ends, and the ScenarioRunner finishes. Then, we manually stop
the remaining ROS nodes.

C. Reproducible development environment

The testing environment presented above allows to simulate
selected scenarios for ALKS validation. However, setting up
the environment on one’s computer requires significant effort.
For Linux, which we target for our development, CARLA is
officially supported only on Ubuntu 18.04. Using it with newer
Ubuntu versions works with a few undocumented tweaks.
Using it with non-Ubuntu distribution is more difficult. For
advanced use of CARLA, such as adding new maps or vehicle
models, building CARLA from source is required. This is even
more complex, as it needs installing packages from unofficial
sources, easily leading to broken systems. At least, this is our
experience with students trying to build CARLA themselves.
Building CARLA from its source code requires about 130 GB
of disk space and hours of compilation time. Any error during
the build process multiplies the needed time.

Some of the problems related to building and installing
CARLA can be mitigated by using Docker and pre-built
CARLA images. However, using Docker brings other chal-
lenges that need to be overcome such as making the GPU
(Graphics Processing Unit) available inside the Docker con-
tainers.

While the above mentioned problems can be resolved with
some effort, we argue that the effort is better spent elsewhere
than repeatedly trying to reproduce commands from CARLA
documentation. Therefore, we propose to use the Nix package
manager [11] to manage the software stack for ADS testing
and validation. Nix revolutionizes the software building and
deployment process by providing strictly controlled envi-
ronment for software builds, which makes it easy to build
complex software stacks reproducibly, i.e., results are bit-by-
bit equivalent, in a way that works the same on any Linux
distribution. This is achieved by the following features of
Nix: (1) Every build command can access only explicitly
specified dependencies, the rest of the system is “invisible”
to it and (2) any piece of software, called store object in Nix
terminology, is identified by a hash of all inputs (dependencies)
and the commands used to build it. Going into details is out of
scope of this paper, but an interested reader can refer to [12],
which describes similar problems that we experienced with
CARLA, explains how Nix helps to solve them, and why is the
Nix solution better than using Docker. The main problem of
building CARLA “the Nix way” is the fact that CARLA, and
the Unreal Engine, which CARLA is based on, try to achieve
reproducible build by its own imperfect way, i.e., by using a
custom build system and by downloading prebuilt versions of
some, but not all dependencies.

The result of our work-in-progress effort is available in
a GitHub repository [13]. Currently, it provides two main
functionalities:

• An environment for building CARLA from source. Such
an environment contains all the needed dependencies like
libraries and compilers in correct versions.

• CARLA client libraries and Python bindings packaged
as Nix expressions, allowing their compilation and use
on any Linux distribution. This can be used to develop
CARLA clients even if binary CARLA packages are
unavailable, for example due to the fact that your dis-
tribution provides only newer Python versions than those
required by CARLA binary packages.

The instructions for how to use the repository are provided in
its README file.

IV. VALIDATION SCENARIOS

The UN Regulation No. 157 [1] defines in Annex 5 so called
test scenarios, which should be used to validate ALKS imple-
mentations. We are interested in simulating those scenarios
during ALKS development before testing them in real world.

The ScenarioRunner for CARLA comes with several ex-
ample scenarios. Here, we analyze which of those example
scenarios can be used for validation of ALKS and how they
need to be modified or extended for ALKS testing. The
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TABLE I. ALKS TEST SCENARIOS AND HOW THEY MAP TO CARLA SCENARIORUNNER EXAMPLES.

ALKS Test Scenario Similar ScenarioRunner Examples Extensions Notes
1. Lane Keeping FollowLeadingVehicle{5,7} § 1 to 5 § 10
2. Avoiding a collision with a road user or object blocking the lane StationaryObjectCrossing5, DynamicObjectCrossing5 § 3 and 6
3. Following a lead vehicle FollowLeadingVehicle{5,7} § 1 to 5
4. Lane change of another vehicle into lane CutInFrom left Lane, CutInFrom right Lane § 7
5. Stationary obstacles after lane change of the lead vehicle ChangeLane1 § 3 and 6
6. Field of View test N/A § 8 § 11
7. Lane changing OtherLeadingVehicle{1,2,4,5,6} § 9 § 12
8. Avoiding emergency manoeuvre before a passable object in the lane FollowLeadingVehicle{5,7} § 1
(§1) Use different vehicle types of other vehicles, i.e., leading, cutting-in, in the scenario. Namely use: passenger car, powered two-wheeler (PTW), and
other vehicle. (§2) Test for different the lead vehicle speeds of (constant, realistic speed profile, braking) and different steering (still, swerving, different
lateral positions in lane). (§3) Test different roads segments (straight, various curvatures). (§4) Make scenario timeout longer (5 minutes) and update end
conditions. (§5) Extend these scenarios with another vehicle driving close but in an adjacent lane. (§6) Test multiple stationary objects (passenger car,
PTW, pedestrian, partially or fully blocked lane, multiple obstacles). (§7) Parameterize scenario with different Times to Collision (TTC), distances, and
relative velocities to test scenarios where collision can be avoided as well as scenarios where collision is unavoidable. This includes different longitudinal
speed (constant, accelerating, decelerating) and different lateral velocity (constant, accelerating, decelerating) of cutting-in vehicle. Examples of simulations
when ALKS should avoid the collision for cut-in, cut-out, and deceleration scenarios are depicted in Appendix 1 of Annex 5 of the UN Regulation No.
157 [1]. (§8) New test scenarios will need to be created. These should contain stationary objects (pedestrian, PTW) on the outer edge of adjacent lanes
and within the ego lane and PTW approaching from different directions to the ego vehicle.
(§9) Test different situations when Lane Change Maneuver (LCM) is either possible or impossible due to other vehicles (passenger car, PTW) approaching
from different sides of the ego vehicle. (§10) To test the functionality of cruise control without a leading vehicle, we need to create a new scenario because
the ScenarioRunner cruise control examples are not positioned on the highway. (§11) These tests target real vehicle sensors. In simulations, properties
of simulated sensors can be configured to be arbitrarily good or bad. (§12) Only for ALKS implementations capable of lane change procedure (LCP).

results are summarized in Table I, where each line represents
one ALKS test scenario and which of the ScenarioRunner
examples are most suitable for simulating it (if any). Each
ScenarioRunner example has a name, e.g., FollowLeadingVe-
hicle and can be parameterized by several parameters. The
particular set of parameters is identified by the number after
the scenario name; the values of the parameters are specified
in the XML file of the example. If multiple parameter sets are
suitable, we denote it with their numbers in curly braces, e.g.,
FollowLeadingVehicle{5,7}.

In addition to ALKS test scenarios from the UN Regulation
157, many other scenarios will need to be created to test full
functionality of the ALKS implementation. These include, e.g.,
scenarios for testing the implementation of the minimum risk
maneuver, which should stops the vehicle in a safe way if the
driver is not responding to the request to take over vehicle
control.

V. CONCLUSION

In this paper, we present an initial version of the simulation
environment to validate an implementation of the Automated
Lane-Keeping System developed for a real vehicle using the
Robot Operating System. The simulation environment is based
on the CARLA simulator.

Building the CARLA simulator from source code to add
custom vehicles or sensors is a time-consuming task. To avoid
this effort, we propose to use the Nix package manager and
publicly share the repository with our ongoing work.

Furthermore, we analyzed which CARLA example scenar-
ios are suitable for implementing tests specified in Annex 5
of UN Regulation No. 157 [1].

The goal of our future work is to complete Nix packaging
of the CARLA simulator with related tools and develop ALKS
validation scenarios in it. The result should be an easy-to-use
simulation environment in which it is possible to automatically

test the Automated Lane-Keeping System provided as a Robot
Operating System packages.
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Abstract—The new advances in Vehicular Systems and Tech-
nologies have resulted in a sheer increase in the number of
connected vehicles. These connected vehicles use IoT technologies
to communicate operational signals with the OEMs, such as the
vehicle’s speed, torque, temperature, load, RPM, etc. These sig-
nals have provided an unprecedented opportunity to adaptively
monitor the status of each piece of the vehicle’s equipment and
discover any possible risk of failure before it happens. This
emerging field of study is called predictive maintenance (also
known as condition-based maintenance) and has recently received
much attention. In this paper, we apply Integrated Gradients
(IG), an XAI method until now primarily used on image data,
on datasets containing tabular and time-series data in the domain
of predictive maintenance of trucks’ turbochargers. We evaluate
how the results of IG differ, in these new settings, for various
types of models. In particular, we investigate how the change
of baseline can affect the outcome. Experimental results verify
that IG can be applied successfully to both sequenced and
non-sequenced data. Contrary to the opinion common in the
literature, the gradient baseline does not affect the results of IG
significantly, especially on models such as RNN, Long Short Term
Memory (LSTM), and GRU, where the data contains time series;
the effect is more visible for models like MLP with non-sequenced
data. To confirm these findings, and to understand them deeper,
we have also applied IG to SVM models, which gave the results
that the choice of gradient baseline has a significant impact on
the performance of SVM.

Index Terms—Explainable AI (XAI), Predictive Maintenance,
Integrated Gradients, Machine Learning.

I. INTRODUCTION

With the increase in popularity of artificial intelligence,
several challenges have been brought to light, for example, the
lack of transparency, debugging difficulty, lack of control, and
biased outcomes that may not represent the real world with its
principles and norms [1]. Even though AI is a powerful tool for
predictions, it does lack transparency. A significant reason for

this is the black-box structure that comes with deep learning
methods such as Deep Neural Networks (DNNs), where their
hidden layers are hard to visualize for human understanding.
In contrast to DNNs and other similarly complex AI models,
there are several simpler approaches that are more interpretable
and easier to visualize, for example, decision trees; however,
they often have limited accuracy [2]. The trade-off between
explainability and accuracy can therefore be a challenge.

Because of AI’s lack of transparency, it can be challenging
to trust the important life-changing decisions the algorithms
may take. The AI algorithms and methods give us an answer,
but not a why or a how to that answer. It is hard to trust an
algorithm without knowing why and how it made a specific
decision. As a result of these challenges, the subject of Ex-
plainable Artificial Intelligence (XAI) has arisen. Even though
the interest in XAI has increased in the last few years, the term
XAI was first coined by Van Lent et al. in 2004 [3]. However,
the concept of explainability in machine learning has existed
since the 1970s according to [2]. Today, one of the goals of
XAI is for humans to understand and trust the reason behind
the decisions of an AI model while the model maintains a
high prediction accuracy. The theory behind XAI can usually
be simplified and divided into four main principles: to justify,
to control, to improve, and to discover [2]. This is also a goal
for this paper: to explain the reasoning behind the resulting
predictions in an understandable way.

There are already several techniques to use for XAI of
different kinds, for example, scope-related and/or model-
related. Scope-related techniques are divided into two cate-
gories: global and local interpretability. Global interpretability
is when the technique follows the whole reasoning leading to
all of the predictions of the chosen model and understanding its
logic. However, global interpretability can be hard to achieve
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in practice, mainly when it comes to machine learning (ML)
models with a large number of parameters. Local interpretabil-
ity is easier to implement in reality, considering its main
focus is on explaining a single prediction and not several.
Local interpretability is also the primary approach for the
explainability of predictions made by deep neural networks
(DNNs) [2].

This paper focuses on explainable AI for Predictive Main-
tenance (PdM). PdM is a condition-driven preventive method
and is used to improve the productivity of a machine by
regularly monitoring the parts of the machine to avoid a run-
to-failure approach or to maintain a healthy machine [4]–[6].

We have performed several experiments on a real-world
turbocharger system dataset provided by Volvo, which is used
to predict the remaining useful life. The data is a time-series
dataset containing over 400 sensor values and on average
20 timestamps sampled biweekly [7]. To be able to more
accurately evaluate the impact of the gradient baseline of
integrated gradients (IG) in predictive maintenance, we resort
to simulated data. This is due to the fact for the chosen
simulated data the feature importance is known to the research
community and accordingly easier to evaluate and justify. The
first simulated dataset is the Turbofan Engine Degradation
Simulation Data Set (CMAPS), which is run-to-failure data
that could be used to predict remaining useful life. The
dataset contains time as well as sensors reading, which makes
the dataset similar to the Volvo dataset [8]. The Tennessee
Eastman Process Simulation dataset (ETEPS-CP) is used for
the second simulated dataset. The dataset contains information
about chemical plants, where some features are measurements
while some are manipulated values. This dataset is used as a
comparison since it is known which features are measurements
and should have more impact on the predictions. The target
for the dataset is set to be a classification problem since it is
known that the chemical plant runs normally until a fault is
induced[ [9], [10]]. The dataset contains 54 sensor values and
when transformed into time series it contains approximately
38000 timestamps.

A significant difficulty in implementing Integrated Gradients
is determining the gradient baseline, which plays an important
part in the results. When using images as inputs, it is most
common to use a black or white image as a gradient baseline,
but the choice of the gradient baseline is not as clear for tabular
data. The gradient baseline for tabular data varies depending
on the dataset type, and there is not much research on finding
the optimal gradient baseline for these types of datasets. We,
therefore, want to find a systematic way of defining the optimal
gradient baseline for integrated gradients with tabular data as
input. The meaning of the word baseline in this report refers
to the baseline used in integrated gradients, which is explained
in more detail in Section III.

This paper explores the following:
1) How the baseline for integrated gradients can be chosen

for tabular data in predictive maintenance.
2) How the gradient baseline affects the outcome of differ-

ent models.

II. RELATED WORK

There are different types of machine learning algorithms
and explainable AI that have been used for predictive mainte-
nance. Some algorithms and work that have been adapted to
predictive maintenance are Bagged trees ensemble.

In the work done by [11], they have used bagged tree
ensemble, decision trees and normalized feature deviations to
get the model more interpretative. The result of their work
concluded that when using bagged trees ensemble, the decision
trees as an explanation got a higher quality but did not
generate a complete explanation on all test cases as proposed
to normalized feature deviations, which got a lower quality of
explanation but generated consistent explanations.

In addition to the work described above, the paper [12]
evaluates the previous work as well as added LIME to interpret
the result. In the paper, they used Random Under Sampling
(RUS) and boosted trees ensemble, which successfully and
correctly classifies all failures as a comparison where the
bagged trees ensemble did not.

Other machine learning algorithms used for predictive main-
tenance and anomaly detection are Principal Component Anal-
ysis (PCA), null-space, One-Class Support Vector Machines
(OC-SVM), Extreme Learning Machine (ELM), and 2 Dimen-
sional Convolutional-based Neural Network Autoencoder (2D-
CNN-AE), which are compared in [13]. The paper compares
the different approaches by using the F1-score, where the best
approaches are concluded to be the null space and 2D-CNN-
AE. Due to the capability of 2D-CNN-AE to detect even small
failures, it is outperforming the other methods.

To handle time-series data in prediction, a combination
of Convolutional Neural Network (CNN) and Long Short
Term Memory (LSTM) is proposed in paper [14]. The paper
predicts the remaining lifetime of aircraft engines by com-
paring Convolutional Neural Network (CNN), LSTM, and a
combination of the two algorithms, CLSTM, where the result
is that the combination of the two algorithms provides the
highest accuracy rate. Another work that handles both CNN
and LSTM together is a fault diagnostic system on mechanical
data from a gearbox [15]. The result of the algorithm proposed
is 97% accuracy, where the algorithm is able to detect which
fault is detected.

III. INTEGRATED GRADIENTS

Integrated Gradients (IG) is a technique for model in-
terpretability used to visualize the relationship between the
prediction of the model and the input features, often when
the input is an image. Similar to SHAP, IG is also inspired
by game theory, especially the Aumann-Shapley value, which
SHAP is based on [16]. Below, the way to compute IG is
shown as well as in eq. 1:

1) The first step is to identify the input and output. In this
study, the input is the sequential data whereas the last
layer of the model is the output.

2) To be able to identify features that are important to the
prediction of the neural network, the second step is to
choose a gradient baseline as an input.
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3) The third step is then to interpolate the chosen gradient
baseline for a number of steps. The number of steps
is a hyperparameter and represents the number of steps
needed for the given input in the gradient approximation,
where the recommended number is between 20-1000
steps,

4) After the gradient baseline has been interpolated they
are preprocessed, and then a forward pass is done.

5) Lastly, the gradients for the interpolated data points are
obtained and then by using the trapezoidal rule, the
gradients integral is approximated.

IGapprox
i (x) :== (xi−x

′

i)×
m∑

k=1

∂F (x
′
+ k

m × (x− x
′
))

∂xi
× 1

m

(1)
Where:

[xi] = Input Data
[x

′

i] = Gradient Baseline
[m] = Number of Steps in the Integral Approximation

There are several advantages of integral gradients. An
example is sensitivity, which means that it will give a non-
zero attribution every time there is a difference in one feature
between input and gradient baseline but also a difference in
predictions. Another example is the invariance of implementa-
tion, where two models’ feature attributions will be the same
if they both are functionally equivalent, without regard to the
network architecture [17].

IV. METHODOLOGY

A. Setup

Before the experiments are performed, the data needs to
be prepared, which is done differently among the data sets.
For the CMAPS dataset, standard scaling and hyperparameter
tuning are used. For the ETEPS-CP dataset, standard scaling
was used to preprocess the data. For the Volvo dataset, more
preparations need to be taken, where the first step is to handle
the NAN values by imputation with the mean values of each
column. It is important to note that Mean Imputation (MI)
can lead to biased estimates and predictions, especially if the
number of NAN values is significant. Before the imputation,
the dataset only contained approximately 2% of NAN values,
and therefore we decided that MI is a suitable type of
imputation in this dataset.

After MI, the columns containing objects or strings are
label-encoded so that the model used only has float or integer
as input values. Most of the ML models do not take strings
as inputs, which is why label encoding is needed.

Lastly, the data needs to be scaled and normalized when
employing deep learning models. For this, MinMaxScaler and
standardScaler from the scikit-learn library are used.

B. Machine Learning Methods

To be able to evaluate the XAI methods, as well as the
gradient baselines, we first need to implement reliable models.
The models used in the experiments are Recurrent Neural

Network (RNN), Long short-term memory (LSTM), Gated
Recurrent Unit (GRU), and Multilayer Perceptrons (MLP).
Support Vector-Machine (SVM) is also implemented to af-
firm the results we receive from the experiments on MLP,
which can be seen in section V. These regressor models are
evaluated using Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). For the classification models, the
measurements will be on accuracy as well as Area Under the
Receiver Operating Characteristic Curve (ROC AUC) where it
should present better than randomly choosing a class, which is
better than 0.5. The models perform better than the baseline,
which means that for the regression part, the mean absolute
error is smaller than the mean value for the test sets. For the
classification, the accuracy is above 50%, and the ROC AUC
is over 0.5.

C. Systematic Choice of Baseline

The choice of a gradient baseline has a large impact on
the result of Integrated Gradients, and it is therefore crucial to
have an appropriate gradient baseline. In figure 1 we provide a
systematic approach to the choice of gradient baseline, which
is explained in more detail in the following paragraphs.

Fig. 1: A systematic approach on how to select gradient baseline.

For the Volvo dataset and the simulated datasets, the gradi-
ent baselines used are a gradient baseline with the Initial State
(IS), the Mean Initial State (MIS), and the Initial State with
Gaussian Noise (ISN). For datasets without an initial state,
gradient baselines consisting of either only zeros or max values
can be used to resemble an image. Our approach of using a
gradient baseline with only zeros simulates a white image,
and a gradient baseline with the max value for all features
simulates a black image.

An aggregated version of integrated gradients has been used
to get an overall view of the attributions. The aggregated
model of integrated gradients is an iterative type of integrated
gradients, where all attributions for all data points are iterated.
The reason for using an aggregated integrated gradient is to
get an average of all feature importance.

For all datasets, the aggregated version of integrated gradi-
ents was iterated over all data points for the different gradient
baselines. The different baselines used are the initial state of
the data, the initial state with gaussian noise as well as the
mean value of all the states. The initial state is used as a
ground truth of the datasets, where the different variations of
the ground truth are used to explore the result when using
different gradient baselines.

Lastly, the results between the different gradient baselines
are plotted and compared, where the gradient baseline with
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the most logical results (in accordance with domain experts)
is the most favorable choice of baseline.

V. RESULTS

A. Gradient Baseline

The main experiment is to find the optimal gradient base-
lines for sequential and tabular datasets. We use the two
simulated benchmark datasets (ETEPS-CP and CMAPS) to
test gradient baselines similar to the ones used on the Volvo
dataset.

1) Simulated Data - CMAPS: Figure 2 shows the features
that appeared as the top three features with the most impor-
tance according to IG for all of the RNN models. In Figure
2, we can see that sensor 11 plays a significant role in the
prediction of all models, as it almost always is the third most
important feature. We can also see that sensor 4 is clearly an
important feature for all of the models, as it rather often placed
as the second most important feature according to IG.

Fig. 2: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the models LSTM, RNN, GRU on the CMAPS dataset, and
depend on the model.

Overall, all RNN models (RNN, LSTM, and GRU) seem
to give similar results when using integrated gradients, where
sensors 11, 4, 6, and 9 have the most significant impact on the
prediction. Looking at Figure 3 with the MLP model, we also
receive sensors 11 and 4 at the top. Sensors 6 and 9, however,
can only be seen towards the far right of the graph, occurring
under 5% as the top 3 features.

Looking at Figure 3, the results between the gradient
baselines of the MLP model also vary more than between the
RNN models. Here, we can see that the gradient baselines pay
a different amount of attention to a larger variety of sensors
than the RNN models do in Figure 2. We can also see this
in Figures 4, 5 and 6, where how large of an impact that the
different gradient baselines have on each model.

In the case of the CMAP dataset, it could be that the MLP
model is sensitive toward specific sensors, such as sensors 6
and 9 (as explained above). This sensitivity could lead to the
baselines playing a much more significant role in the results
of IG.

Another reason the results between the baselines differ
much more for the MLP model than for the RNN models

is that the baseline may not have as much significance when
using models specified toward sequenced data. We, therefore,
theorize that when using a model such as RNN where the data
is sequenced, the baseline does not affect the outcome of IG
to a large extent, as long as the baseline is a reasonable one
(for example, the initial state). For models where the input is
not sequenced, the gradient baseline affects the results of IG
more.

To endorse this theory, we applied IG to a Support Vector
Machine (SVM) model where the input is not sequenced. In
Figure 7, we can see that the baselines play a significant role
in the outcome of IG, similar to the results of MLP.

2) Simulated Data - ETEPS-CP: The results for the MLP
model can be seen in Figure 10. The initial state is almost
identical to the initial state with noise. However, the mean
of the initial states gives completely different results. The
similarities between the initial state and the initial state with
noise could be that adding noise to the baseline does not
change the baseline significantly or that these features are
highly correlated to the prediction. When comparing to Figure
10, it is seen that the initial state and initial state with noise is
similar, which also was seen in the table. Moreover, the mean
initial state pays attention to a broader number of features,
with a smaller number of features occurring more than others.
The conclusion to draw from the dataset with an MLP model is
that the initial state and initial state with noise perform better
since fewer features occur in the top for around 50% of all
data points.

In Figure 10, it is shown that the initial state and initial
state with noise pay attention to the same features while the
mean initial state pays attention to multiple features.As seen
in Figure 10, the gradient baseline MIS is not shown in the
figure. This is because the values from MIS are giving feature
values near zero for the MLP model. When looking at the
other gradient baselines, it is clear that there is no difference
between the values for the feature importance.

The results for the GRU model can be seen in Figure 13.
All three baselines are similar to each other in both placement
and occurrence.In Figure 13, the values for the top features
are similar for every gradient baseline. Compared to the MLP-
model, Figure 10, which has more features occurring at the
top, the GRU model gives fewer features with no difference
between baselines.

The results for the LSTM model can be seen in Figure
12. However, the different features do not appear in the same
placement or occurrence. In Figure 12, the values for the top
features is similar for every gradient baseline as for the GRU
model, Figure 13.

The results for the RNN model can be seen in Figure 11. As
seen in Figure 11, the different baselines are almost identical
to each other. Further looking into both GRU in Figure 13 and
LSTM in Figure 12, the same pattern reoccurs, where all the
different baselines give almost identical results for the same
model and baselines.

However, comparing the different time-series models seen
in Figure 8, the models pay attention to the same features but
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Fig. 3: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for MLP model, and depend on the baselines.

Fig. 4: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for RNN model, and depend on the baselines.

Fig. 5: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for LSTM model, and depend on the baselines.

Fig. 6: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for GRU model, and depend on the baselines.

Fig. 7: Feature occurrence for top three features with most importance
in percentage according to the results of IG. These results are for the
model SVM on the CMAP dataset, and depend on the models.

with different magnitudes.

Fig. 8: Feature occurrence for top three features with most importance
in percentage for IG. These results are for the models RNN, GRU
and LSTM on the ETEPS-CP dataset.

The result for IG on the sequential data is once again tested
as in V-A1, where similar results are presented regarding
sequential data. To see if the theory that the gradient baseline
affects the results of IG on non-sequential models more than
sequential models also applies to the ETEPS-CP dataset, we
apply SVM classification. The result of the SVM Classification

can be seen in Figure 12 which strengthens the belief that the
non-sequential model is more affected by the gradient baseline.

Fig. 9: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the SVM Classification model on the ETEPS-CP dataset, with
three different baselines.

In Figure 8, the feature occurrence from IG for LSTM,
GRU, and RNN models can be seen. From Figure 8, it is
shown how the different models give similar results to the IG.

The overall conclusion for the ETEPS-CP dataset is that the
choice of baselines does not seem to affect the explanation for
the time-series models. Moreover, when comparing the MLP
to time-series, the gradient baseline significantly impacts the
explanations.

3) Volvo Dataset: The results for the MLP model can be
seen in Figure 14.

In Figure 14 the occurrence of the features can be seen. As
with the simulated datasets, MLP pays attention to multiple
features depending on the gradient baseline. Looking into the
values in Figure 14, it can be seen that the initial state and
initial state with noise are similar. However, the mean initial
state pays attention to a broader number of features.

Evaluating Figure 14, shows that they both often occur and
have a large impact on the prediction. For the MLP model,
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Fig. 10: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for MLP model, and depend on the
baselines.

Fig. 11: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for RNN model, and depend on the
baselines.

Fig. 12: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for LSTM model, and depend on the
baselines.

Fig. 13: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for GRU model, and depend on the
baselines.

the initial state is similar to the initial state with noise, while
the mean initial state has a broader view of features.

The MLP-model, as seen in Figure 14, shows a broad
spectrum of features where only the mean initial state has
features that occur in the top three at more than 50% of the
dataset. Some similarities can be seen between the initial state
and the initial state with noise. However, the other datasets
are not identical, which could result from having a more
complex dataset. IG is also very sensitive to noise, leading
to the difference between the IG for different datasets.

When comparing the baselines for the RNN model, as seen
in Figure 15, the different baselines do not differ as much as
for the MLP. However, the different baselines do not seem
to have a huge impact on important features. By looking
into GRU, Figure 17 as well as LSTM, Figure 16 the same
patterns are occurring. For all time-series data there are not
any significant features that occur in the top three.

The overall conclusions that can be drawn from this are
how sensitive IG is towards the noise and that the baselines
do not significantly impact time-series data, which is shown
in sections V-A1 and V-A2. Some features occur in multiple
gradient baselines; however, no feature occurs in all three
different baselines for the MLP-model.

The results for the RNN model can be seen in Figure 15.
IG gradient baseline initial state and initial state with noise
are similar. In contrast, the mean initial state pays attention
to more features, which means that the theory of gradient
baseline can be applied when the dataset is robust and does
not have noise since IG is sensitive to noise.

The results for the GRU model can be seen in Figure 17.
Evaluating Figure 17, it can be seen that for all gradient

baselines the model pays attention to multiple features depend-

ing on the baseline. Since the data contains noise, the result
of the variance of the gradient baselines can be disregarded
for the outliers. However, when looking closer at the figures,
some of the features occur in all baselines which strengthen
the belief that the gradient baseline for sequenced data with a
small amount of noise result in similar conclusions.

The results for the LSTM model can be seen in Figure 16.
When looking at Figure 16, it can be seen that the data

contains noise due to some features appearing in the top ten
for only one gradient baseline.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we have dived deeper into the XAI method
integrated gradients to justify the predictive maintenance re-
sults for a dataset provided by Volvo. To our knowledge, IG is
a method commonly used for data of images and not the time-
series data that the Volvo dataset contains. The lack of work
done on time-series data for IG can be because the choice of
gradient baseline can be seen as complex. Therefore, we have
focused the paper on how to find a good baseline and how
the baseline affects the result depending on the deep learning
model and the type of data. We have also investigated other
types of XAI methods to either justify or compare the results
of our experiments.

We observed that integrated gradients are a good method to
interpret the behavior of deep learning models in predictive
maintenance, especially for time series data. However, we
still believe that the choice of gradient baseline continuous
to be seen as difficult. As stated before, we theorize that the
gradient baseline’s effect on the results of integrated gradients
decreases for RNN models with sequential data and increases
on models like MLP with non-sequential data. However,
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Fig. 14: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the Volvo dataset for MLP model, and depend on the baselines.

Fig. 15: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the Volvo dataset for RNN model, and depend on the baselines.

Fig. 16: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the Volvo dataset for LSTM model, and depend on the
baselines.

Fig. 17: Feature occurrence for top three features with the most 
importance in percentage according to the results of IG. These results 
are for the Volvo dataset for GRU model, and depend on the baselines.

integrated gradients are sensitive to noise, and therefore, the
results can vary depending on the dataset. Even a dataset with
noise can get a similar result as the theory depending on
the model. To strengthen this theory, we applied integrated
gradients with three different gradient baselines on SVR and
SVM models with non-sequential data, which gave similar
results as it did for the MLP model.

To answer the questions 1. ”How can the baseline for inte-
grated gradients be chosen for tabular data in predictive main-
tenance?” and 2. ”How does the baseline affect the outcome of
different models?”, we have applied IG on several datasets and
models, with different gradient baselines. However, since IG
is a local XAI method, we implemented an aggregated version
of the method to get a larger view of how the model makes
its predictions. This makes it easier to see how the features
impact the whole model, and not only one prediction, which
is very useful in predictive maintenance. We can see from the
experiments and conclusions that the gradient baseline has a
more significant impact on the results of IG on tabular and
non-sequential data on models such as MLP and SVM. In
contrast, the impact of the gradient baselines decreases for
sequential models such as RNN, LSTM, and GRU. These
results could imply that the IG method is more suited for
sequential data. Furthermore, we observe that applying IG to
a deep learning model provides knowledge on the importance
of the features differently depending on how robust the data
is when using data with time series. With noisy data, such as
the Volvo dataset, the IG has a more challenging time making
clear conclusions. This is not anything new, considering we
know that IG is sensitive to noise; however, it is now more
evident that this also applies to data with time series and not
only for images.

We would have liked to discuss the results with domain
experts, which is something we will bring for future work. We

would also like to see a combination of integrated gradients
with another gradient-based method as a future work within
the area of XAI and predictive maintenance for time-series
data.
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Abstract— Finding available street parking spots is a cause of 

increased traffic in metropolitan cities.   To address this challenge, 

in this paper, we propose a unique real-time street parking 

detection scheme that utilizes visual information and object 

recognition to accurately detect empty street parking spots. We 

also introduce a comprehensive video dataset that is captured 

specifically for this task and is used for training our networks. 

Among several network options for localization, our tests on 

YOLOv7 achieved the highest accuracy and speed, making it an 

ideal choice for real-time street parking detection for human 

driven as well as autonomous vehicles. 

Keywords: street parking detection; deep learning, YOLOv7; 

real-time performance; object recognition. 

 

I. INTRODUCTION 

As cities continue to grow and urbanize, traffic congestion 
has become an increasingly common problem. In metropolitan 
cities, it is estimated that 30-50% of traffic congestion is caused 
by drivers searching for parking spots during peak hours [1][2]. 
This not only leads to waste of fuel and increased levels of 
pollution, but also to a significant reduction in productivity due 
to driving aimlessly multiple times around city blocks in search 
of a vacant parking spot [3]. To address this issue and to improve 
traffic management, an efficient and functional street parking 
detection system is needed to deploy the vision of smart cities. 
This system will direct drivers towards vacant parking spots 
around the block, therefore reducing unnecessary delays which 
worsen traffic conditions [4][5]. Previously, methods that rely 
on ultrasonic sensors were used to quantify the target area by 
using a virtual grid map and establishing a coordinate system for 
parking spot detection [6]. Other methods have utilized 
autonomous sensor nodes with Wireless Sensor Networks 
(WSNs) for monitoring parking occupancy in lots [7][8]. A 
previous study utilizes video surveillance camera data to detect 
parking spots using Support Vector Machines (SVM) and k-
nearest neighbors algorithms [9]. Although this method 
produced results with high accuracy, it is not practical for on-
street parking detection as it uses aerial views captured by video 
surveillance cameras which do not necessarily cover the city 
streets. Nowadays, many researchers are using computer vision 
techniques and deep learning methods to detect available 
parking spots. In [10], the authors use instance segmentation 
algorithms and convolutional neural networks to perform real 
time processing on data to determine if the parking spot is 
vacant.  These methods are also more scalable and robust than 
the traditional sensor-based systems, as they can work under 
different weather conditions, lighting conditions, and camera 
angles. However, there are still some challenges that need to be 

addressed, such as occlusions, different parking spot sizes and 
shapes, and variations in parking spot markings. 

This paper explores the use of the latest You Only Look 
Once (YOLO) network architecture, namely YOLOv7, for 
accurately detecting available street parking spaces. To achieve 
this, we have created a new and extensive video dataset of city 
street parking spaces and we have trained and fine-tuned the 
network on this dataset. We compare the performance of our 
network against the state-of-the-art approach presented in [11], 
which is based on YOLOv4.  Evaluation results show that our 
YOLOv7 outperforms YOLOv4 in terms of Mean Average 
Precision (mAP) at different threshold levels of overlap between 
the predicted bounding box and the ground-truth bounding box. 
More specifically, YOLOv7 reached a mAP of 89.9% at a 
threshold of 50% overlap, while YOLOv4 reached a mAP of 
83.3% at the same threshold. Additionally, YOLOv7 showed 
faster inference time and better generalization ability than 
YOLOv4. These results demonstrate the superiority of YOLOv7 
and pave the way for its use in real-time street parking detection 
for human driven as well as autonomous vehicles.  

The rest of this paper is organized as follows. Section II 
describes the methodology of our proposed method. Section III 
describes the results and evaluation. In Section IV, conclusion 
and future work are presented. The acknowledgement closes the 
article. 

II. OUR PROPOSED METHOD  

A. Dataset and labelling 

In this study, we used a dataset consisting of 55 videos 
captured by our team in the city of Vancouver, Canada. The 
dataset was carefully curated to include a diverse range of 
weather conditions (sunny, cloudy, rainy, snowy) and location 
scenarios. To prepare the dataset for training and evaluation, we 
utilized the Fast Forward Moving Picture Experts Group 
(ffmpeg) tool to extract frames from the videos, which were then 
labeled using the Computer Vision Annotation Tool (CVAT) 
software [12][13]. This allowed us to create a dataset that is 
representative of real-world scenarios and provides a robust 
evaluation of the performance of the object detection models. 

In our labeling technique, we decided to implement a single 
class, labeling only available parking spaces. We labeled 
parking spots that are within a distance of 5 meters from the car, 
and only focused on the right side of the street. This approach 
helps eliminate double counting parking spots and more 
accurately determining if the parking space is long enough to fit 
a car. In addition, using unlabeled data during training can 
introduce the model to learn features that are not related to 
vacant parking spots such as intersections, bus stops, yellow 
curbs, and non-vacant parking spots. These unlabeled frames 
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were included along with empty text files as there are no 
coordinates highlighted. We created a dataset that contains a 
total of 3381 frames of city street parking spaces. It is well 
established that a balanced dataset of labeled and empty (no-
label present) frames yields the best training results for object 
detection [14][15]. For this reason, the dataset was composed of 
1776 frames that were labeled as available parking spots and 
1605 frames that were left unlabeled (empty text files) to be used 
during the training process. This dataset was split in 85% for 
training and 15% for validation. Additionally, a different and 
unseen dataset consisting of 278 frames from the city of 
Vancouver was used for testing. The testing dataset is used to 
evaluate the performance of our proposed model. 

B. Our network 

We chose the YOLOv7 family architecture as the basis for 
our network. It is worth noting that YOLOv7 has made 
significant advancements to the previous YOLO models both on 
the architectural level and at the trainable bag-of-freebies level, 
which improves the accuracy of the model without increasing 
the cost of training. Overall, YOLOv7 has a more efficient 
architecture that reduces the number of parameters by 75%, thus 
requiring 36% less computation and achieving 1.5% higher 
Average Precision (AP) compared to the previous models [15]. 
Figure 1 compares YOLOv7 with other real-time object 
detectors. We observe that YOLOv7 achieves state-of-the-art 
performance with improved accuracy and lower complexity. 

YOLOv7, like the entire family of this architecture, uses data 
augmentation techniques to increase the size of the training 
dataset and improve the generalization of the model, which as a 
result avoids possible overfitting. However, since in our 
implementation we are mainly focused on the right side of the 
street when locating parking spots, some augmentation 
techniques like flipping and rotation are not applicable as they 
will produce erroneous images (i.e., parking on the left side or 
cars upside down) and for this reason they were disabled. 
Nonetheless, we implemented a modified version of the Mosaic 
data augmentation introduced by the inventors of YOLOv4, 
selectively combining four images to generate a new one, but 
making sure that we are not violating our requirement to have 
parking spots only on the right side [14]. This technique proved 
to help our YOLOv7 based network to learn more features and 

become robust to different lighting conditions, camera angles, 
and object scales. 

We decided to train two versions of the YOLOv7 family, the 
original YOLOv7 and the latest YOLOv7x. The main 
differences between the two is that YOLOv7 uses the method of 
stack scaling on the neck, which is a technique to increase the 
capacity of a model by adding more layers to it. In this case, this 
technique is applied to the “neck” of the model, which is a key 
component of the architecture that helps to extract features from 
the input image. By stacking more layers on the neck, the model 
is made more powerful and able to detect more complex objects.  

On the other hand, YOLOv7x in addition to the neck scaling 
scheme of YOLOv7 performs compound scaling on the neck, 
which increases the depth and width of the entire model 
simultaneously, as opposed to only increasing one or the other, 
leading to an improved performance.  

Anchor boxes are a key component of object detection 
algorithms, as they are used to predict the location and size of 
objects in an image. YOLOv7 uses an auto-anchor algorithm 
borrowed from YOLOv5, which adapts to the scale of the 
objects in an image by using a single anchor box that can adjust 
to different scales [15][17]. To this end, before the training 
process begins, the suitability of the provided anchors for the 
dataset is evaluated. If the fit is not optimal, new anchors are 
recalculated that are more suitable for the data. The model is 
then trained using these newly generated, more appropriate 
anchors.  

III. RESULTS AND EVALUATION  

We compared our suggested network with the state-of-the-
art method presented in [11]. In order to fairly evaluate the 
performance of the YOLOv4 network used in [11], we had to 
retrain it using our new and more comprehensive dataset.  

We had to address the limitation of YOLOv4 in generating 
anchor boxes by using k-means clustering. Since we are using a 
custom dataset, we generated anchor boxes based on the aspect 
ratio and scale of the objects in our dataset before starting the 
training process in YOLOv4. The new calculated anchor boxes 
were added manually in each of the yolo-layers while 
configuring our model. 

Regarding our proposed approach, we first trained our 
YOLOv7 and YOLOv7x networks using the computing clusters 
available by Compute Canada [18]. We started training 
YOLOv4, YOLOv7 and YOLOv7x with the pretrained weights 
of the darknet framework and the pretrained weights of 
YOLOv7 and YOLOv7x [14][15].  

Performance evaluation and accuracy of three models is 
done using the mean Average Precision (mAP) metric. Average 
precision is calculated by measuring the precision and recall of 
the model at different intersection-over-union (IoU) thresholds, 

 
 

Figure 1. Comparison of YOLOv7 with previous object detection 

networks [16]. 

 

 

 

 

TABLE I. VALIDATION RESULTS OF ALL THE MODELS 

Model mAP @ 0.5 

YOLOv4 82% 

YOLOv7 84% 

YOLOv7x 90% 
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which is the ratio of the area of overlap between the predicted 
bounding box and the ground-truth bounding box to the area of  
the union of the two boxes. In this paper, we compare the models 
at an IoU threshold of 0.5. Table I shows the performance of our 
trained models on the validation set. 

We observe that the YOLOv4 model scored a mean Average 
Precision of 82% for the validation set. On the other hand, both 
versions of YOLOv7 outperformed YOLOv4, achieving 
mAP@0.5 of 84% and 90%, respectively.  

We also observed that YOLOv7x achieved the best weights 
at (mean Average Precision) mAP@0.5 with levels of 90% - see 
Fig. 2 that shows the precision-recall curve.  

In order to evaluate the performance of our models against 
that of YOLOv4 for unseen test data, we tested all of them on 
278 previously unseen frames captured by our lab in the city of 
Vancouver. Table II shows results of detecting vacant parking 
spots. We observe that YOLOv7x achieves the best 
performance, reaching a mAP of 89% at a threshold of 50% 
overlap between the labeling bounding box and the predicted 
one. Overall, our models performed significantly well in all 
different areas of the road such as main street, crosswalks, and 
intersections. and other type of side entrances that could be 
confusing even for a human. Figure 2 below shows the 
precision-recall curve for the testing set of YOLOv7x.  

Figs. 3a and 3b show two representative examples of street 
parking detection performed by YOLOv4 and YOLOv7x 
respectively. It is obvious from Fig.3a that the YOLOv4 model 
was unable to detect parking spots in some instances where the 
car was driving on the same lane as the parking lane (no 
bounding box is present). However, Fig. 2b shows that the 
YOLOv7x model accurately detected the available parking 
spaces (purple bounding box). The Intersection of Union (IoU) 
score displayed above the bounding boxes represents the degree 
of overlap between the labeled bounding box and the one 
predicted by the model. As our goal is to detect street parking  

spaces, rather than the precision of the bounding box placement, 
we can infer that the model is highly effective at identifying 
available parking spaces in the given frame.   
     Fig. 4a shows an example where the YOLOv4 model detects 
a parking spot twice, unlike YOLOv7x (see Fig. 4b) where the 
model correctly detects the available parking spaces as one. 

 

IV. CONCLUSION  

In this paper, we proposed a new and innovative real-time 
street parking detection scheme that is based on the latest YOLO 
architecture, namely YOLOv7x. The network was trained on a 
new dataset mainly captured by our team and was designed to 
receive video input from a car mounted camera. We labeled 
parking spots that are within a distance of 5 meters from the car, 
and only focused on the right side of the street. This approach 
helps eliminate double counting parking spots and more 
accurately determining if the parking space is long enough to fit 
a car. Performance evaluations have shown that the YOLOv7x 
model outperforms the state-of-the-art YOLOv4 based approach 
in terms of both accuracy and detection. The performance of our 
model could be significantly improved by increasing the size 
and variety of our dataset. Future work will include new motion 
detection techniques that calculate how much a frame has shifted 
using global motion vectors to help analyze how many frames 
should be skipped after detecting a parking spot to find the next 
processing frame that has a parking spot. Additionally, we plan 
to add a separate network for detecting parking signs to provide 
a comprehensive solution that can be integrated into smart city 
infrastructures.  

 

TABLE II. TESTING RESULTS OF ALL THE MODELS 

Model Precision Recall mAP @ 0.5 

YOLOv4 0.84 0.81 83.3% 

YOLOv7 0.90 0.79 86.5% 

YOLOv7x 0.91 0.81 89.9% 

 

 

 

 
Figure 2. YOLOv7x Precision-Recall Curve. 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 3. a) YOLOv4 testing failed to identify some parking spots; b) 

YOLOv7x successfully detected parking spaces. 
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Figure 4. a) YOLOv4 detecting a parking spot more than once. b) 

YOLOv7x accurately detecting a single parking spot. 
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Abstract—To fully use the benefits of a hybrid energy storage 

system in an Electric Vehicle (EV), it requires an effective 

energy management system to control the energy flow. 

Knowledge of how energy consumption is generated in EVs is, 

therefore, important for the development of such a system. Since 

one of the biggest energy consumptions in modern EVs are 

generated by the auxiliary consumers, an auxiliary model needs 

to consider all relevant auxiliary consumers, including the 

heating/air-conditioning system and other switched, dynamic, 

comfort and continuous consumers. The vehicle interior is, 

therefore, modeled using a 1-zone air model and the auxiliary 

consumers (such as heating/air conditioning, power steering and 

others) are adjusted based on environmental conditions. The 

electric power steering’s energy demand is calculated 

dynamically during the journey. The energy consumption of the 

heating system matches literature data with deviation less than 

8%, while the consumption of other auxiliary consumers 

matches measured values with deviation of 2.8%. The focus is 

on the energy consumption of auxiliary consumers in EVs, 

which are a significant factor in the energy flows of the vehicle. 

The model accounts for factors, such as weather and driving 

behavior, that affect the use of auxiliary consumers and the 

resulting energy consumption.  

Keywords-Electric Vehicle (EV); Auxiliary Consumers; 

Heating, Ventilation, Air Conditioning (HVAC); Energy 

Consumption; Simulation Based; Weather. 

I.  INTRODUCTION 

The utilization of Hybrid Energy Storage Systems (HESS) 
in electric vehicles has been the subject of growing interest in 
recent years, as it offers a unique combination of the benefits 
of both lithium-ion batteries and supercapacitors. The 
integration of these two energy storage technologies results in 
a system that boasts both high energy density and high-power 
density. The effective management of energy flow between 
these two storage technologies requires the implementation of 
an intelligent Energy Management System (EMS) [12]. For 
the development and testing of such systems, it is necessary to 
model the energy flows in the vehicle as realistically as 
possible. Based on these models, the EMS can make a 
prediction of the expected range and suggest and/or take 
appropriate corrective steps if any action is required [12]. 
Alongside the powertrain, the auxiliary consumers are the 
second-largest energy consumers in an electric vehicle. 
Heating and air conditioning of the interior in particular 

consume a lot of energy [11]. Since electric vehicles have to 
operate with a limited energy capacity or comparatively long 
charging times, an accurate representation of the energy flows 
and the respective energy consumption is significant for 
model-based development approaches of management 
systems like the EMS presented in [12]. The use of auxiliary 
consumers in a vehicle depends on many different influencing 
factors. For example, the vehicle’s lights depend on the 
weather, the time of day, the season, and the route. The use of 
the radio and the heating/air conditioning system is in return 
dependent on the driver. So, the presented model has to 
simulate the usage of the auxiliary consumers and the 
resulting energy consumption realistically, while at the same 
time taking external influences such as weather and route 
conditions into account. 

 
Section 2 presents an investigation about the state of the 

art and gives an overview about modelling of auxiliary 
consumers in EVs. In Section 3, the individual models 
(vehicle cabin, Heating, Ventilation, Air Conditioning 
(HVAC) system, and other auxiliary consumers) are 
presented. Section 4 presents the individual validations of the 
used model in this project. Afterwards, Section 4 discusses 
and concludes the results of this work. 

II. STATE OF THE ART 

The paper of Basler [1], Baumgart [2], Konz et. al. [10], 
Kruppok [11] and Suchaneck [16] are studied to compare with 
the modeling approach of this investigation. The research 
focuses on modeling the HVAC system, as it is the main 
auxiliary consumer of an electric vehicle. Modelling the other 
auxiliary consumers via a constant power is sufficient since 
the transient behavior is not the focus, only their energy 
consumption. However, the additional consumers must be 
modeled dynamically based on ambient and route conditions 
for a realistic estimation of energy flows. Route-specific data 
is required and can be obtained from suitable sources or 
entered manually. 

This work's focus is on energy flow calculations and does 
not aim to calculate additional range reductions of an electric 
vehicle or model comfort behavior. Instead, it aims to 
realistically calculate energy consumption through a realistic 
integration of route and environmental parameters into the 
auxiliary consumer model.  
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III. MODEL ENVIRONMENT 

The model is generated in C-Code which is integrated into 
the simulation tool CarMaker. On one side through the 
interface, it is possible to set options and starting conditions 
for the model. On the other side, it is possible to return the 
calculated energy flows to the CarMaker environment for 
further processing [9]. While the transient behavior of the 
HVAC system determines the energy consumption 
significantly, the transient behavior of the other consumer 
(e.g., lightning, wipers) is not relevant for an accurate energy 
flow calculation. That’s why the model is split into the blocks 
of HVAC and other consumers. The other consumers can be 
modelled as consumers with constant power demand when 
turned on. 

A. Heat Flow Balance of the vehicle cabin 

The vehicle’s exterior surfaces are in heat exchange with 
the environment. Solar radiation passes directly through the 
glazed surfaces of the vehicle into the passenger compartment 

(�̇�𝑡𝑟𝑎𝑛𝑠) and the exterior surfaces of the body heat up. At low 
ambient temperatures, the heated body parts release their heat 

(�̇�𝑏𝑜𝑑𝑦 ). A heat flow is supplied by the HVAC module 

(�̇�𝐻𝑉 𝐴𝐶 ). Since the principle of mass conservation applies 
within the vehicle interior, the air mass flow supplied by the 
air-conditioning system must be able to escape again from the 
vehicle, as otherwise there would be an increase in pressure in 
the cabin, which is not the case (for real vehicles). The 

calculation of the dissipated heat flows �̇�𝑙𝑜𝑠𝑠 and the outgoing 
mass flow is shown in [7]. If the passenger compartment is 
considered as a holistic system, the following heat flow 
balance results: 

 

�̇�𝐻𝑉 𝐴𝐶 + �̇�𝑙𝑜𝑠𝑠 + �̇�𝑏𝑜𝑑𝑦 + �̇�𝑡𝑟𝑎𝑛𝑠 = 0 (1) 

 

The heat flow from the HVAC system �̇�𝐻𝑉 𝐴𝐶  can be 
calculated with the air mass flow �̇�𝑎𝑖𝑟 , the specific heat 
capacity 𝑐𝑝,𝑎𝑖𝑟 and the temperature difference ΔT. 

 

�̇�𝐻𝑉 𝐴𝐶 = �̇�𝑎𝑖𝑟 ∗ 𝑐𝑝,𝑎𝑖𝑟 ∗ ΔT (2) 

 
The other heat fluxes, like convection, radiation and heat 
conduction, are calculated as described in [19]. 

B. Influence of Solar Radiation 

The solar radiation entering the vehicle interior through 
the glazing heats up the interior of the vehicle, which 
additional heats up the air inside the vehicle cabin. As 
described in [14] it is possible to determine the sun’s position 
through the day depending on the rotation around the north 
axis. The angle between the sun and the north axis is called 
azimuth (𝛼𝑠𝑢𝑛). To calculate which masses and which exterior 
surfaces of the vehicle cabin are heated up by the sun, it is 
necessary to calculate the relative angle between the sun and 
the vehicle. Figure 1 shows the relative rotation between the 
sun and the vehicle. The angle between the vehicle and the sun 
Δα is the difference between 

 
Δα = α𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝛼𝑠𝑢𝑛 (3) 

 

 

Figure 1.  Relative rotation between a vehicle and the sun. 

From Δα can be derived which surface and which window 
is heated up by direct solar radiation. If Δα is equal to zero or 
180° the sun is directly in front or back of the vehicle and these 
are the only surfaces which are shined. If Δα is not equal to 
zero more than one reference surface is irradiated and 
depending on the value of Δα the shined surfaces are 
calculated in a look-up-table. The sun position is calculated as 
described in [14] and the solar intensity depending on date and 
time can be provided for different regions worldwide. For this 
paper, we will use Karlsruhe in Germany as an example, data 
provided by [4].  

C. Model of the vehicle cabin 

The vehicle interior is modelled as an air volume with a 
homogeneous air density and temperature distribution. The 
interior temperature depends on the incoming heat fluxes from 
the interior walls of the vehicle cabins and the incoming solar 
radiation. Furthermore, the interior temperature is increased, 
reduced or kept constant by the heating/air-conditioning 
system. The design of the vehicle interior model is based on 
the model by [11] but is adapted with regard to the model’s 
own requirements.  

 

 

Figure 2.  Design of the vehicle cabin model. Displayed are all modelled 

surfaces, masses and heat exchange mechanisms. 

Figure 2 shows the design of the vehicle cabin model and 
all heat exchanging processes that appear in the vehicle cabin. 
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The external surfaces of the vehicle are in heat exchange via 
radiation (red arrows) and forced convection (yellow arrows). 
There are three glass surfaces in the vehicle cabin: Front 
window, side windows and back window. Through the glass 
surfaces, solar radiation is emitted into the vehicle cabin 
(black arrows). All incoming and outgoing heat flows are 
balanced via the cabin air volume. The temperature of the 
cabin air volume can be calculated with [1][11]. 

 

ΔT = ∫
�̇�𝑎𝑖𝑟

𝑚 ⋅ 𝑐𝑝,𝑎𝑖𝑟
ⅆ𝑡

𝑡

0

 

 
(4) 

 
Using (4), it is possible to calculate the surface 

temperatures of the vehicle cabin. For the calculation of the 
heat exchange coefficient, the vehicle cabin is simplified as a 
cylinder [2] and calculation of the coefficient is done with the 
methods from [19]. The solar radiation hitting the inclined 
surfaces 𝐸𝑑𝑖𝑟,𝑡𝑜𝑟 can be calculated with the help of the direct 

horizontal solar radiation 𝐸𝑑𝑖𝑟,ℎ𝑜𝑟 from the data from [4], the 

torsion angle of the surface θ and the solar elevation γ𝑠𝑢𝑛 [14]: 
 

𝐸𝑑𝑖𝑟,𝑡𝑜𝑟 = 𝐸𝑑𝑖𝑟,ℎ𝑜𝑟 ∗
θ

γsun
 

(5) 

For a detailed calculation of θ see [14]. The diffuse solar 
radiation 𝐸𝑑𝑖𝑓 𝑓,𝑡𝑜𝑟  can be estimated with an isotropic 

approach using the horizontal diffuse radiation from the data 
𝐸𝑑𝑖𝑓 𝑓,ℎ𝑜𝑟 and the rotation angle of the surface γ𝑠𝑢𝑟 𝑓 . 

 
𝐸𝑑𝑖𝑓 𝑓,𝑡𝑜𝑟 = 𝐸𝑑𝑖𝑓 𝑓,ℎ𝑜𝑟 ∗ 0.5 ∗ (1 + 𝑐𝑜𝑠 γ𝑠𝑢𝑟 𝑓) (6) 

 
The calculation of a projected surface, as in [7], is 

dispensed with in favor of the model complexity. The fraction 
of radiation which enters the vehicle cabin through the glazed 
surfaces is determined by the transmission coefficient τ. The 
radiation entering the cabin is calculated as a product of the 
sum of the diffuse and direct radiation times τ and the surface 
area A. 

 
𝑄𝑡ℎ𝑟𝑜𝑢𝑔ℎ = (𝐸𝑑𝑖𝑓 𝑓,𝑡𝑜𝑟 + 𝐸𝑑𝑖𝑟,𝑡𝑜𝑟) ∗ τ ∗ 𝐴 (7) 

  
It is assumed that the passengers are sitting and remain 

calm which results in heat flow from the passengers of 58
𝑤

𝑚2 

[15]. Depending on the height and weight of the passenger the 
surface area of the passenger can be calculated with the 
Mosteller equation, which can be found in [18]. 

D. Controlling of the HVAC-System 

The HVAC system can be operated in three different 
operational modes. In the preset mode, it is possible to set the 
desired cabin temperature and the inlet mass flow. The 
maximum mass flow of the HVAC system is in this case 

9
𝑘𝑔

𝑚𝑖𝑛
. The Min/Max - Mode aims to heat/cool down the 

vehicle cabin as fast as possible. If the temperature difference 
between the set temperature and the actual temperature is 
smaller than 3 K, the HVAC power is reduced. The automatic 

mode is modelled using the comfort perception of an average 
passenger. The comfort perception is described in [3] and can 
be modelled with the equations of [2]. The comfort perception 
is depending on the environment temperature, see Figure 3. 
Independent from the operation mode, the inlet air 
temperature is controlled by a PI - Controller. A Proportional–
Integral–Derivative (PID)-controller has no significant 
advantage compared to a Proportional–Integral (PI)-controller 
because of the big thermal internal of the vehicle cabin [11]. 
A PI-controller is also used in the model of [13] to control the 
Air Conditioning (AC)-compressor. The power demand of the 
air conditioning is calculated using the Coefficient of Power 
(COP). The data comes from a comparable air conditioning 
system [10]. Using (8), the electric power demand P𝑒𝑙 can be 
calculated. 

 

𝐶𝑂𝑃 =
�̇�𝐻𝑉 𝐴𝐶

P𝑒𝑙
 (8) 

 
The electric power demand when heating is calculated via 

a characteristic map using the output of the controller as input. 
The electric power demand is calculated as the output variable 
of the characteristic map. The characteristic map is 
constructed heuristically with data from [11] where the same 
HVAC system is modelled.  

 

 

Figure 3.  Comfort temperature and mass flow perceived as pleasant in the 

vehicle interior as a function of the ambient temperature. Calculated with 

the equatiosn from [2]. 

E. Modelling the other auxiliary consumers 

Auxiliary consumers are divided into four categories: 
continuous (e.g., electronic control unit), comfort (e.g., radio 
and window heating), dynamic (electrical power steering), 
and switched consumers (can be switched by driver). Kruppok 
has published measured power values of the auxiliary 
consumers, which are used in this model, since the same 
electric vehicle is modelled [11].  

The low beam in this model is switched on and off 
automatically. A distinction is made between summer and 
winter. In winter, the low beam is switched on automatically 
between 5 p.m. and 9 a.m. In summer mode, the period is 
shortened to the time between 8 p.m. and 6 a.m. From 
visibility of less than 150 m, the low beam is also switched on. 
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If the low beam is switched off, the daytime running lights are 
switched on as required by the Road Traffic Act [17]. The 
indicators are turned on when the internal CarMaker variable 
Vehicle on Junction is set and the steering angle is greater than 
114.6°. The brake lights are turned on when the internal 
CarMaker Variable Brake is set. The wipers are used 
depending on the rain rate set before the simulation in 
CarMaker. The operation level is set automatically in the 
model. The Electric Power Steering (EPS) is modelled 
differently. Due to the highly dynamic power demand, the 
actual EPS power is calculated by a characteristic map.  

IV. VALIDATION 

The validation of the model includes, on the one hand, the 
validation of the heating/climate system and the associated 
thermal processes in the vehicle interior, and secondly the 
power requirements of the auxiliary consumers. Measurement 
data from the literature are used for validation. There are 
measurement studies of the temperature behavior of the 
vehicle cabin, which can be found in [6] and [11].  

A. Validation of the Vehicle Cabin Model 

The An essential component of the overall model with 
considerable influence on the temperature development in the 
interior is the vehicle cabin model. For the validation of the 
vehicle cabin model, the heating behavior of the interior is 
observed without air conditioning, without solar radiation and 
without wind. The measurement data used is taken from the 
work of Kruppok [11]. The test vehicle is pre-tempered to 
275.5 K for a sufficiently long time, so that it can be assumed 
that each component has the same temperature. Subsequently, 
the vehicle is transferred to an environment with an ambient 
temperature of 291 K and the heating behavior of the interior 
is measured. The temperature is measured at different places 
inside the vehicle cabin and is averaged for validation. The 
vehicle is stationary and there is no irradiation from the sun. 
The same is also simulated in the model. To describe how well 
the model reproduces the experimental data, the coefficient of 
determination R2 is shown in (9). A detailed derivation of the 
coefficient of determination can be found in [5]. 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

 

 

(9) 

The coefficient of determination lies between 0 ≤ 𝑅2 ≤
1 . A value of zero indicates that there is no correlation 
between the measured values and the model, whereas a value 
of 1 can only be achieved if the measured values also describe 
the model at the same time.  For the validation of the vehicle 
cabin model, the coefficient of determination between the 
heating curve of the model and the measured values is 
calculated. Optimal is a value close to one. By adjusting the 
heat transfer coefficients of the vehicle cabin model, a 
coefficient of determination of approx. 91.1% is achieved. 
Figure 4 shows that the heating of the interior is faster in the 
model than in the measurement, but the same final 
temperature is reached in both cases. For the determination of 
the energy demand of the air conditioner without taking 

comfort aspects, the interior model is considered to be 
sufficiently accurate. 

 

 

Figure 4.  Heating of interior without air condit. with pre-heated interior. 

B. Validation of the HVAC 

Investigations by Kruppok have shown that the required 
inflow temperature of the air flowing into the vehicle, cabin is 
not achieved immediately after the heating/air-conditioning 
system is switched on [11]. Due to the thermal inertia of the 
system, it takes approx. 1000s (about 17min) until a stationary 
final temperature is reached. The behavior of the inflow 
temperature can be approximated by a transfer element with a 
second-order delay (PT2 element). The result is a well-fitting 
temperature curve in the model compared to the measurement 
data, see Figure 5.  

 

 

Figure 5.  Heating of the interior without air conditioning with pre-heated 

interior. 

It is assumed that the same behavior occurs in the heating 
mode because the HVAC is operated as a heat pump when in 
heating mode. So, the same components are in operation. By 
validating the heating behavior of the vehicle cabin model, the 
entire HVAC system, but especially the controller setting can 
be validated. As a reference, a measurement in which the 
interior temperature is recorded with active heating. This is 
the same as the average temperature, determined in the model. 
The test vehicle is pre-conditioned to 266.2 K and the target 
temperature of the interior is 297.2 K. The measurement data 
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is published in [6]. In the preset mode, the temperature 
behaves like the real-world measurement. The heating system 

is operated with the maximum mass flow of 9
𝑘𝑔

𝑚𝑖𝑛
.  

A similar mass flow is also used for the measurement, due 
to the low ambient temperature and the preconditioning of the 
vehicle. In the real vehicle, there is a clear overshoot of the 
interior temperature. This is avoided in the model by 
controller setting. The target temperature is reached at the 
same time after approx. 800s. The steady-state final 
temperature of the simulation is a few tenths of a Kelvin 
higher than the setpoint temperature, but this deviation 
reduces in the further course of the simulation. In min/max 
mode, the setpoint temperature is reached much earlier, as 
desired. A stationary final state is already reached after 
approx. 400s. This is achieved by a maximum temperature of 
the incoming air and a maximum air mass flow. The validation 
of the heating-up behavior shows that the model can be used 
to simulate the real vehicle interior very well. Through the 
different operating modes, it is possible to simulate different 
scenarios. 

C. Validation of The Energy Consumption 

In his work, Gutenkunst carried out five test drives of 
Bruchsal - Karlsruhe - Bruchsal and measured the distance 
travelled and the energy consumption [8]. Those measured 
data is used as a reference for the results of the simulation. In 
the simulation environment, the model has calculated with the 
air conditioning switched off, in good visibility, without rain 
and during the day. During the simulation, the local speed 
limits along the route are adhered to exactly. Table I shows 
the results of the measurement runs and the simulation.  

TABLE I.  COMPARISON ENERGY CONSUMPTION. MEASUREMENT 

DATA ARE TAKEN FROM [8]. 

 
 

The normalized energy consumption in the simulation is 
approx. 5% higher than the average consumption of the 
measurement runs. This is due to the following reasons: The 
route length in the simulation already deviates 1.94% from the 
average real route length. The reason for this is the inaccuracy 
of GPS data, with which the route was created in CarMaker. 
Since the normalized consumption results from the total 
energy demand and the route, there are deviations. The pure 
energy demand is also higher in the simulation despite the 
shorter route. The reason for this is the unknown use of the 
auxiliary consumers and a possible velocity deviation during 
the measurement. Since the deviation in the simulation to the 
measurement is less than 3%, it can be assumed that the 
general calculation of the energy consumption is sufficiently 

accurate. The data from measurements two to four are done 
with normal traffic. Since the traffic is not modelled in the 
simulation the comparison between measurements two to four 
and the simulation are expected to be better. The comparison 
shows a deviation of only 0.33% for the comparison of total 
energy consumption. The normalized consumption is now 
only 1.4% higher than in the measurement. 

D. Validation 

The energy consumption of the HVAC system in the 
heating case is validated with the data from [11]. Since a 
similar HVAC model for the same reference, the vehicle is 
described in [11], the comparison is legitimate. The power 
demand in the heating case in the model of the present work 
is determined via a characteristic map. The map is developed 
heuristically. The input variable of the characteristic map is 
the output of the controller, which describes the extent to 
which the temperature of the incoming air must be increased 
by the heating system. The output variable is the electrical 
power in Watts. The energy consumption calculation is 
carried out in the time frame of the WLTP cycle. Figure 6 
shows the result of the validation with different ambient and 
target temperatures in the vehicle cabin. 

 

 

Figure 6.  Validation of the energy consumption in the heating case at 

different ambient temperatures in the WLTP cycle. Comparison data are 

taken from [11]. 

 The percentage values above the bars describe the relative 
deviation between the simulation and the data from [11]. The 
approximation of the power demand of the heating system via 
a map provides sufficiently accurate matches to the data from 
the literature. The relative deviation is in all cases smaller than 
7.25%. At low ambient temperatures, however, the energy 
consumption in the simulation is higher than in [11]. One 
possible reason for this is deviating heat transfer coefficients, 
which lead to increased heat loss from the vehicle cabin at low 
ambient temperatures. The heat transfer coefficients in [11] 
are not fully known.  

V. DISCUSSION AND CONCLUSION 

The validation shows a good result if the model is 
compared with data from the literature. The deviation is 
relatively small and is, therefore, acceptable for the objective 
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of this work. The model construction of the HVAC system is 
based on similar models, which can be found in literature, e.g., 
[1],[11] or [16]. The aim was to build a simpler model with at 
least nearly good simulation results as other, more complex 
models. This is achieved but only validated for the heating 
case. In addition, the calculation of the power demand of the 
heating system with a characteristic map is not very accurate 
although it works well in this case. A detailed measurement of 
real currents would bring more accurate information into the 
model. But overall, the investigation has shown, that the 
model results are quite accurate for the cases investigated. 
With more detailed data from the reference vehicle, especially 
for cooling cases and the explicit use of different auxiliary 
consumers the model can be updated to a more detailed model 
with a highly accurate energy consumption calculation. 

The auxiliary consumer model makes it possible to 
determine the energy consumption of all the auxiliary relevant 
in an electric vehicle. The model shows good agreement with 
measured data which can be found in the literature, despite its 
simplifications and assumptions and with considerably less 
modelling effort. The deviation of the energy consumption of 
the heating system to values from the literature is less than 8% 
and the consumption of the other auxiliary consumers deviates 
only 0.33% from the measured values. At the same time, the 
structure of the model makes it possible to link the model to 
the simulation tool CarMaker. Via the interface between the 
model and CarMaker, it is possible to connect other models, 
such as an EMS, to the auxiliary consumer model. This work 
has shown that even a less detailed model can produce 
similarly accurate results about the energy consumption of the 
auxiliary consumers than detailed models. 
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Abstract— Electronics are increasingly present in automobiles. 

This has led to a change and automotive parts suppliers are 

forced to integrate electronic components into their mechanical 

parts. As if this were not enough of a change, the transition to 

electronics brings with it other issues, such as cybersecurity. 

Vehicles are becoming increasingly technological and 

connected, and car manufacturers are already asking suppliers 

to ensure cybersecurity. For a traditional supplier, this is 

something new, and what they often ignore is that it affects not 

just the product, but the whole organization. Therefore, the 

purpose of this article is to shine a spotlight on cybersecurity 

and explain simply, but honestly, the new challenges they face. 

The automotive industry is a sector that has been able to 

reinvent itself throughout its history, and in these times of 

abrupt and accelerated change, it must do so again. 

Keywords - Automotive Engineering; Cybersecurity; 

Information Technologies; Connected Vehicle. 

I.  INTRODUCTION 

Automobiles have already become computers on wheels. 

90% of the technological innovation in vehicles is electronic  

[1], and the number of electronic elements in cars is 

predicted to continue to grow  [2]. Currently, electronics 

account for 30% of the total cost of a vehicle, and are 

expected to account for 50% by 2030 [3]. 

This is a major disruption. The trend towards the 

introduction of electronics, software and smart elements is a 

great opportunity for technology companies, from giants to 

start-ups, as it allows them to enter a new market [4][5]. On 

the other hand, it is a threat to traditional suppliers, so-called 

TIER 1 suppliers, who are forced to renew themselves [4] or 

be relegated to commodity manufacturers, products with 

very low cost and little added value. 

Many of these well-established suppliers are already 

aware of this situation and have begun to take steps to 

integrate electronics into their products [6]. They have some 

advantages over their new competitors in that they are 

experts in the design and manufacture of mechanical parts in 

a variety of materials, they have a good understanding of 

how the industry works, the timelines and processes for 

mass-producing parts and delivering them on time, and what 

is more, they have the prior confidence of the automobile 

manufacturers, also known as Original Equipment 

Manufacturers (OEMs). 

The integration of hardware (HW) and software (SW) in 

mechatronic components is not a trivial matter, as it requires 

knowledge of electronic design and SW development, 

which is precisely what these companies often lack [7]. In 

addition, there are a number of well-established regulations 

that must be complied with [8], as well as new ones that are 

emerging due to the prevailing needs, such as cybersecurity 

[9]. 

Automotive electronic systems are connected to 

different communication buses and share data with each 

other, they are not isolated [10][11]. This brings new 

challenges, as secure communication must be ensured and 

data must not be compromised [12]. But security goes much 

further; it starts in the corporation, goes through the design 

and development of the system, passes through 

manufacturing, and reaches the vehicle, where it must be 

robust so as not to endanger other elements, and 

invulnerable to the passage of time and new technologies. 

The purpose of this article is to show that security is a 

very broad issue, encompassing the whole organization and 

not just the system developers, and must be ensured 

throughout the vehicle´s lifetime. Section II explores the 

differences between safety and security, with particular 

emphasis on the role of ISO standards in improving both 

aspects of automotive systems. Section III delves deeper 

into the topic of cybersecurity, examining its impact on 

every stage of the automotive product lifecycle, from the 

office to the end of the vehicle's life. This section is divided 

into six subsections that examine specific areas of the 
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automotive ecosystem, identifying vulnerabilities and 

suggesting protective measures. In Section IV, the 

consequences of potential cybersecurity threats involving 

outdated vehicles is discussed, examining some 

vulnerabilities and highlighting the importance of 

collaboration between OEMs and suppliers. Finally, Section 

V presents the conclusions of the research and outlines 

potential areas for future work on the topic. 

II. SAFETY & SECURITY 

Safety and security are two distinct, but closely related 

concepts [13]. While safety focuses on preventing accidents, 

injuries or fatalities through the design and operation of the 

vehicle, security aims to protect the vehicle and its 

occupants from unauthorized access, theft, or malicious 

attack. It cannot be ignored that a security breach could also 

have an impact on the functional safety of the vehicle, 

putting occupants and other road users at risk. Several 

standards have emerged to address the growing concern for 

vehicle safety and security. One is ISO 26262, which came 

out in 2011. This is about functional safety. In a nutshell, 

the standard helps to classify the electronic system 

according to the severity, exposure, and repeatability of its 

risks, and urges to take different measures, depending on the 

category of the system, to make it safe. The standard applies 

to the entire project lifecycle and includes activities and 

deliverables for documentation and traceability. In 2018 the 

second version of this standard was released, and already 

anticipated the security issue, including common methods 

for functional safety and cybersecurity [14] to ensure the 

protection of vehicles from malicious attackers. This already 

hinted at the concern for cybersecurity, and the close 

relationship it has with functional safety despite being 

different areas. Both are collaborative elements that require 

comprehensive system engineering [11]. 

On the other hand, and more recently, ISO/SAE 21434, 

which deals with cybersecurity, appeared in 2021. 

Analyzing the standard, it resembles a compendium of best 

practices, because cybersecurity is not something generic; 

each protocol, each electronic system and each SW module 

may require a different approach. 

Unlike other standards, such as ISO 16750, where the 

tests to be performed and the pass ranges are detailed, these 

are not defined. A study must be conducted to analyze the 

system, and tests to validate and verify the operation of the 

system must be previously defined, both for functional 

safety and cybersecurity. 

III. FOCUS ON CYBERSECURITY 

Security refers to protecting critical system assets from 

threats and mitigating their impact on the system [11]. 

These assets can be anything of value, either to the company 

or to the final product. If vulnerabilities exist, they can be 

exploited by malicious users or attackers. 

There has been a gradual process of digitization in 

companies [15]. For example, customer communications are 

often on-line, information generated is stored digitally in 

repositories and databases, and production control can be 

done remotely. At the same time, in-vehicle 

communications have evolved [16], users demand wireless 

connectivity for their devices and OEMs can remotely 

update their vehicles’ SW. All this makes it clear that 

cybersecurity must cover the entire lifecycle of an 

automotive component, from the concept phase to the end of 

the vehicles’ life. 

Although it may appear to be a topic that has already 

been addressed at the academic level, it has been observed 

that TIER 1s are unaware of the implications and costs to 

their business of implementing the concept of cybersecurity 

[17]. In some cases, lack of knowledge and prejudice lead 

them to believe that it is something trivial and easy to 

implement. In addition, it has been observed that some 

OEMs have the same lack of knowledge and ask for fuzzy 

requirements in their Request for Quotation (RFQ), which 

can be very vague cybersecurity specifications [18] or 

exaggeratedly high for the type of product. To illustrate how 

cybersecurity encompasses not only the product, but the 

entire organization, development processes, and the entire 

product lifecycle, the following is a breakdown of the areas 

in which security must be ensured in an automotive 

company. 

A. Cyb-Sec at the Office 

Cybersecurity is a culture. Employees must be educated 

on the subject and embrace the fact that security starts with 

them. In the automotive industry, sensitive customer data is 

at stake [19]. Competition is fierce, and OEMs try to 

differentiate themselves from each other in terms of design, 

quality, and innovation. Therefore, confidentiality must be 

ensured, and a secure working environment must be in 

place. 

It is not uncommon for companies in this sector to have 

access control at the entrance to their facilities. These 

systems allow access only to authorized personnel and keep 

a record of entry and exit times. 

In the office, the Information and Communication 

Technology (ICT) department must ensure the security of 

the network infrastructure. Part of their job is to implement 

preventive measures to avoid unauthorized access, 

modification, deletion and theft of resources and data, 

including industrial espionage [20]. These security measures 

may include authentication, access control, application 

security, firewalls, Virtual Private Networks (VPNs), 

behavioral analysis, Intrusion Detection and Prevention 

Systems (IDPS) and wireless security. 

The international standard ISO 27001 addresses this 

issue. It ensures the confidentiality and integrity of data and 

information, as well as of the systems that process them, 

allowing the organization to assess the risks and implement 

the necessary controls to mitigate or eliminate them. This 

may be combined with periodic internal audits. 
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There are some best practices that can help secure 

communications. 

• Network segmentation: This is an effective way to 
prevent potential intruder exploits from spreading to 
other parts of the internal network. It is possible to 
create different subnetworks; some typical examples 
are a subnetwork for employees and another one for 
visitors and external devices (such as personal 
laptops or smartphones) or subnetworks for different 
workgroups in the organization [21]. 

• Firewall:  It is a network security system that 
monitors and controls incoming and outgoing 
network traffic. It allows to establish a barrier 
between a trusted network and an untrusted network. 
By applying rules, a firewall can allow or deny 
incoming and outgoing traffic from different IP 
addresses, protocols and ports [21]. 

• Demilitarized Zone: Creating a demilitarized zone 
(DMZ) can also be a good idea. This is a subnetwork 
that lies between the public Internet and private 
networks. It allows the enterprise to access untrusted 
networks, while ensuring the security of its private 
Local Area Network (LAN). Services are exposed, 
but the middle layer protects sensitive data on the 
intranet with a firewall that filters traffic [22]. 

• Network devices protection: A primary way to 
improve network infrastructure security is to harden 
devices such as routers, access points, servers, etc. 
Measures can include restricting physical access and, 
in some cases, protecting them from threats such as 
fire or water. In the digital realm, secure user access 
should be ensured, strong administration passwords 
should be used, device configurations should be 
backed up and devices should be tested regularly. 

• Access to information: The organization must 
provide a secure way to store and access 
information. There are confidential projects that 
contain data that should not be accessible to all 
employees [20]. An information system based on 
user permissions could prevent read and write access 
to sensitive documentation. Similarly, the use of 
version control systems, such as Git or SVN, can 
increase productivity while maintaining 
confidentiality. 

• VPN: This is often the preferred solution to allow 
remote workers to establish a secure connection to 
the corporate network. It creates a secure tunnel 
between the remote worker’s computer and the 
corporate network [23]. It can be used both for 
accessing company resources remotely as well as for 
protection when using public connections, as the 
traffic is encrypted [24]. The main security problem 
is if an intruder gains access to the virtual network. 
The knowledge of authentication protocols helps to 
solve this problem. Today, it is even possible to 
introduce a double authentication factor by receiving 
a unique and temporary key on the mobile phone to 

verify the authenticity of the person who wants to 
connect, thus rejecting imposters. 

• Updated software: Keeping SW up to date is 
important. Developers work hard to maintain 
compatibility and fix bugs and security 
vulnerabilities. 

Despite the efforts of the ICT department to secure the 

work environment, this is pointless if employees are not 

aware of the importance of cybersecurity. There are actions 

that are solely up to them, such as using strong passwords 

and renewing them regularly, being suspicious of emails 

containing hyperlinks or suspicious files or managing 

documents with appropriate backups, among others. 

B. Cyb-Sec in the Development Phase 

Automakers are already starting to hold TIER 1 

suppliers accountable for cybersecurity. Although this is 

new, it will soon become a common requirement due to the 

integration of electronic systems in the car and connectivity. 

Therefore, HW, and SW engineers will have to develop the 

project with the concept of cybersecurity in mind. 

The way of ISO/SAE 21434's breaks down development 

is similar to the functional safety standard in that there is 

still a concept phase and a product development phase. It 

also adds a section on operations and maintenance during 

the post-development phase, indicating that there may be 

incidents, corrections, and updates. Unlike ISO 26262, the 

cybersecurity standard does not distinguish between HW 

and SW but is understood as a system. The following are 

some of the tasks that must be performed when developing a 

new product. 

1) Concept definition 

This part details the requirements for the concept phase. Its 

main objectives are: 

1. Define the item, the operational environment, and 

its interaction with other items: 

This is an initial activity in which a preliminary study 

and design of the architecture is carried out according 

to the description of the item, an analysis of the 

known interactions with other components and some 

assumptions about its operating environment. 

2. Specify cybersecurity goals and cybersecurity 

claims: 

Next, an analysis of the item is conducted. 

Cybersecurity engineers must perform a Threat 

Analysis and Risk Assessment (TARA). This consists 

of a matrix to identify potential threats and their likely 

attack vector, classify them according to their 

characteristics and their impact on security, 

operational, privacy and financial issues, and obtain 

an impact level. It also evaluates the knowledge 

required by the attacker to execute the identified 

attack. Ultimately, the aim of this document is to 

define cybersecurity goals to make a system robust 

and reliable against hackers and intruders. For those 

familiar with ISO 26262, this will remind them of the 
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Hazard Analysis and Risk Assessment (HARA) 

document. 

While a threat analysis focuses on how an attacker 

might exploit vulnerabilities to gain access to 

resources or sensitive data, threat modelling tries to 

identify potential threats to the item's ecosystem and 

its periphery, as well as any vulnerabilities that could 

be exploited by those threats. Performing this work is 

also encouraged. 

3. Specify cybersecurity requirements and allocate 

them to the item or to the operational 

environment: 

Based on the above activities and once the threats and 

cybersecurity goals have been identified, the next step 

is to establish requirements to meet those targets. That 

is, what measures will be taken to mitigate the risks 

and protect the asset against potential attacks. 

2) Product Development 

During this phase, the cybersecurity specifications must 

be defined. For this purpose, the HW and SW architectures 

of the system must also be described, although these may be 

modified to meet the security goals. 

At the HW level, details are needed such as the 

communication protocol that the component will use to 

connect to the vehicle or the role of the item. This is 

important because a point-to-point communication protocol 

does not have the same security measures as a multiplexed 

or wireless protocol. The same is true for the role; the 

measures change if the item is a master or a slave, as well as 

if it is only responding to requests or sending commands to 

other systems. 

There are also HW components, such as the Trusted 

Platform Module (TPM) that ensure the authenticity of the 

device or that the component's firmware has not been 

tampered with by a third party. This enables SW integrity 

reporting and cryptographic key creation and management. 

The applications are varied, but it is used to have a secure 

identification between the ECU and the component, as well 

as to identify against the deployment of updates to the 

system. For example, if an attacker modifies the firmware, 

the key will change, and the component will no longer be 

recognized by the vehicle as a trusted system. 

Implementing cybersecurity in SW can be done in 

several ways. e.g., SW design patterns such as modularity, 

abstraction or layering contribute to system robustness. 

Similarly, domain separation and process isolation are two 

measures that limit privilege escalation and access to certain 

data and resources, making it more difficult for an attacker 

to gain control of the system. Simplicity and minimization 

also play a critical role; the easier it is to use and 

communicate, the easier it is to detect vulnerabilities, and if 

the system has only the necessary features, without extras, it 

will be less vulnerable because fewer violations will go 

undetected. 

When the electronic design is mainly based on sensor 

integration, it is also necessary to ensure that the sensors can 

be calibrated and that the EEPROM can be locked so that it 

cannot be tampered with. The same applies to other 

procurement elements. 

3) Cybersecurity Validation 

This is the process that validates through testing the 

assumptions that were made in the previous stages [11]. 

These tests consist of emulating or simulating cyberattacks 

and testing the effectiveness of the security measures 

implemented, thus validating their functioning. 

To validate the design there are several types of tests. 

Some of them will be mentioned and briefly explained 

below. 

• Penetration test: Evaluates an application’s attack 
surface for potential SW weaknesses that, if left 
unaddressed, could lead to exploitable 
vulnerabilities. This could result in remote code 
exploitation or sensitive information exposure. The 
way is to take over the device or application. It is 
usually combined with a vulnerability scan of the 
perimeter, where the system is located. 

• Vulnerability scan: It is a SW that detects certain 
vulnerabilities in a device, such as well-known 
public vulnerabilities and configuration errors that 
pose a high risk of compromise within a network or 
system. For example: Remote Code Execution 
(RCE), Data Exposure, Denial of Service (DoS) 
vulnerabilities, etc. 

• Security scan: Checks for misconfiguration, such as 
unencrypted files, unpatched systems, inadequate 
firewall or use of weak cryptographic methods or 
suites. 

There is another type of analysis that requires knowledge 

of the communication protocol used by the device. In this 

way, it is necessary to check that the communication cannot 

be interrupted, that the identity of the device or sensor 

cannot be impersonated and that there is no repudiation by 

other systems. For certain applications, it must also be 

ensured that the data is protected against attacks (such as 

man-in-the-middle, eavesdropping or spoofing) or that data 

cannot be manipulated [11]. 

4) Product Maintenance 

Over time, new technologies and tools emerge, hackers 

acquire new knowledge and discover new vulnerabilities, 

and systems that were once secure can become susceptible 

to attacks.  

Connectivity has enabled cars with Over-The-Air (OTA) 

updates, which not only improve the performance and 

functionality of a vehicle already on the road, but also make 

it possible to fix bugs and security breaches on the fly. 

When a security vulnerability or bug is discovered in the 

SW, it should be fixed and securely, quickly, and seamlessly 

updated without the need to visit the vehicle maintenance 

shop or garage [11]. The supplier must now ensure that its 

part is secure and respond to any incidents. The upside is 

that, although they have an additional role in maintaining 

safety and security, in some cases they may be able to avoid 
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a recall, because there are issues that could be resolved 

remotely with a SW update to the component. 

Therefore, a secure online SW update is required for 

every ECU in the autonomous and connected vehicles [11]. 

C. Cyb-Sec at the Testing Department 

Automotive suppliers' typically have departments or 

laboratories dedicated to testing and measuring parts, 

whether they are prototypes, pre-series, or final products. 

Physical security measures are in place to protect know-how 

and intellectual property. In most cases, the site is protected 

by walls that prevent visibility from the outside, as well as 

having access control so that only certain people within the 

organization are allowed to enter. 

However, not all security is physical, but the know-how 

of the ICT department is also relevant here. Because of the 

information handled in these facilities, some security 

measures are taken into consideration. For example, the 

organization may provide operators with digital cameras, so 

that they do not use their connected smartphones to take 

pictures nor videos of the products or tests. This department 

may be under a different subnetwork to further control 

communications with the outside world [21]. When storing 

sensitive test and prototype information, it is essential to 

have a system for managing backups, which can be stored 

and encrypted. 

Protecting this information is important. An attacker 

could use it for a variety of purposes, such as industrial 

espionage, plagiarism, dissemination of results or 

defamation. On the other hand, backups are also important 

because in some cases there is information that may be 

requested by the OEM to solve problems or improve parts. 

D. Cyb-Sec at the Production Line 

The production line is the place where parts are 

manufactured and assembled in series to be shipped to the 

customer. Nowadays the lines are highly automated and 

quality control is performed on every part that is produced. 

In this case, cybersecurity must also be considered. In 

many projects, the electronics are engraved or finished on 

the line. The SW is loaded, the sensors are calibrated, the 

device is configured with some data and finally, the 

EEPROM is locked so that the electronics cannot be 

manipulated again by third parties. 

A security breach on the production line could affect 

manufacturing in several ways. For example, an attacker 

could remotely access the operation of the machines, 

obtaining data and parameters, changing settings, and even 

stopping manufacturing. It could cause devices to be 

programmed incorrectly, or to write off parts that should be 

rejects. 

This could impact business and customer relationships. 

For these reasons, the ICT department will need to control 

communication and access as it does in other areas of the 

organization. When data is recorded on devices, a 

subsequent check should be made to ensure that the 

recording is correct and, as a last step, the device should be 

locked so that it cannot be recorded again. 

Usually, a record is kept of the parts that come out and 

their characteristics. It is in the interest to protect this data 

and store it properly, with the desired encryption measures. 

E. Cyb-Sec in the Vehicle 

After the entire design and manufacturing process, the 

final product reaches the OEM, who installs it in the vehicle 

and sells it to the public. If the analysis has been carried out 

well, the system should be secure and not pose a risk to 

other elements of the vehicle. 

On the other hand, the OEM also has certain 

cybersecurity responsibilities, as it sends commands to 

different systems, has access ports to ECUs, such as OBD-

II, and in some cases can collect information about the 

performance and operation of its vehicles [11]. Some 

measures can be applied by the carmaker, such as secure 

boot process, IDPS or communication encryption. 

If vehicle usage data is collected, it must be anonymized, 

without driver information, and the transmission paths must 

be secure. Alfa Romeo is a pioneer in providing a complete 

history of car telemetry data, guaranteeing its authenticity 

thanks to Non-Fungible Token (NFT) technology and 

digital certificates. The first vehicle in using NFT and 

blockchain technology will reach the market in 2023. It will 

be able to record data on vehicle’s manufacture, mileage, 

electric battery cycles, overhauls, part changes, etc. This 

will provide complete and tamper-proof traceability over the 

vehicle's lifetime [25]. 

F. Beyond the Vehicle 

This subsection is intended to make the reader aware 

that safety goes beyond the digital and that poor design can 

compromise the integrity of the driver. 

Today's cars are equipped with Advanced Driver 

Assistance Systems (ADAS). Some of them are based on 

computer vision and include in-vehicle video cameras, 

proximity sensors, RADAR, and LIDAR technologies. 

These technologies are sometimes unobtrusive, but they 

are already being used in some vehicles to achieve a certain 

degree of semi-autonomous driving. It should be kept in 

mind that the environment in which the car moves, the real 

world, can also be hacked. 

There are methods an attacker can use to provide wrong 

information to the vehicle. McAfee Advanced Threat 

Research conducted research that revealed these risks. 

Manipulating road signs with small stickers caused the car 

to misinterpret them. Similarly, using a magnet to place 

numbers on speed signs, it was possible to mislead the 

vehicle about the maximum speed of the road [26], posing a 

serious threat to occupants and road users. Another hack is 

the phantom attack [27], which consists of projecting 

images onto the road surface. Cars could be tricked into 

recognizing fake pedestrians or signals, and even non-

existent lanes. 

51Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL

VEHICULAR 2023 : The Twelfth International Conference on Advances in Vehicular Systems, Technologies and Applications

                            60 / 62



IV. THE AGING OF THE CONNECTED VEHICLE: 

CYBERSECURITY CONCERNS 

In 2022, the average age of the European car fleet was 

around 12 years [28]. Looking back a decade ago, cars have 

changed significantly, especially in terms of connectivity. 

Although vehicles then already had a lot of electronics, it 

was nothing compared to all the systems that are included 

today, and they lacked wireless connectivity to the outside 

world. As a result, there were fewer potential entry points 

for cyber threats, which made them inherently more secure. 

If the mechanics of the purchased vehicle were good and 

maintenance was adequate, an old vehicle could be in 

service for many years, well beyond its average useful life. 

In such a case, the driver would have to forgo the new safety 

features that a new car could provide. 

More than 400 million connected vehicles are expected 

to be in use by 2025 [29], and each vehicle will produce 

25GB of data per hour [30]. Several factors, including the 

widespread adoption of smartphones and the availability of 

high-speed mobile data networks, have led to the emergence 

of the connected vehicle. Some modern cars offer online 

services such as OTA SW updates, real-time traffic 

information, and remote diagnostics. Users also demand 

connectivity to their smartphones, allowing them to make 

and receive calls in the car, interact with GPS systems, read 

instant messages, and communicate with the infotainment 

system via voice commands using a voice assistant. Users 

also want to receive notifications on their phones about the 

status of the vehicle, whether to remind them when the car 

needs to be refueled or recharged, or when the next service 

is due. These applications can also collect data on schedules, 

routes, driving habits and even the installed updates [31]. As 

for the car itself, in some cases it may record user 

information for configuration purposes, such as customized 

views on the dashboard or preset settings for the position of 

seats and mirrors. This has made vehicles more vulnerable 

to cyberattacks by providing more entry points for malicious 

actors to exploit [31]. In addition, the emphasis on adding 

new features and connected functions has sometimes come 

at the expense of security, as it has been considered a 

secondary concern. 

Electric Vehicles (EVs) also pose cybersecurity 

challenges, both in the car and in the power grid. For 

example, new home charging stations include features such 

as remote control of charging methods, which can be 

convenient but also make these devices more vulnerable 

[30]. In addition, Kaspersky cybersecurity researchers 

identified vulnerabilities in an EV charging station that 

could allow an attacker to damage the home power grid. The 

security threats ranged from stopping the vehicle charging 

process to setting the station to maximum current flow, 

which could lead to a fire [32]. 

As technology evolves, so does the risk of cyberattacks. 

With the rise of connected vehicles, the risk of cybersecurity 

threats is a growing concern. In the future, as today's 

modern, connected cars age, they may become more 

vulnerable. This is because the vehicles’ SW and security 

systems are likely to become outdated and will no longer 

receive updates or patches from the manufacturer. As a 

result, the car may be more susceptible to hacking and data 

breaches, which can jeopardize the privacy and safety of its 

occupants and other road users. In addition, the car's HW 

components may become less reliable and secure as they 

age, increasing the risk of malfunctions and physical threats 

to the car's systems. Suppliers and OEMs must work 

together to address this issue and commit to designing and 

manufacturing safe, secure, and reliable systems. 

V. CONCLUSIONS AND FUTURE WORK 

Cybersecurity is increasingly present in all areas. Every 

day, a lot of digital data is generated and spread through 

various channels. Sometimes this data contains sensitive 

information that needs to be protected. 

Automotive is not different. Cybersecurity has also 

reached this industry and is set to be a growing trend. There 

are currently a lot of electronic systems connected to the 

vehicle's ECUs. Different communication protocols coexist 

inside the car for every need, both wired and wireless. All 

these communications must be secure and so must the in-

vehicle devices. 

Connectivity has made it possible for smartphones to be 

linked to the vehicle. Similarly, the car carries other wireless 

communication systems, such as GPS, 4G/5G mobile 

communications (to receive OTA updates or make 

emergency calls) or radio signals (to detect the car key or 

transmit tire pressure). For the future, there is talk of Drive-

by-Wire, ADAS, autonomous driving and, with smart cities, 

Vehicle-to-Everything (V2X). This makes it necessary to 

secure the vehicle. 

The question that remains is what will happen to the 

connected vehicle in the future. As a current vehicle ages, 

security vulnerabilities may emerge. When they are 

identified, it should be the responsibility of the manufacturer 

or supplier to provide support and fix them with an update. 

This will be difficult in many cases, especially if these parts 

are no longer manufactured and support is withdrawn. The 

digitization of the automotive sector will bring with it 

numerous cybersecurity challenges. 
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