
VALID 2019

The Eleventh International Conference on Advances in System Testing and

Validation Lifecycle

ISBN: 978-1-61208-755-9

November 24 - 28, 2019

Valencia, Spain

VALID 2019 Editors

Jos van Rooyen, Identify - Software Quality Services, the Netherlands

Samuele Buro, University of Verona, Italy

Marco Campion, University of Verona, Italy

Michele Pasqua, University of Verona, Italy

 1 / 69

VALID 2019

Forward

The Eleventh International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2019), held on November 24 - 28, 2019- Valencia, Spain, continued a series of events focusing on
designing robust components and systems with testability for various features of behavior and
interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large scale
systems provide less visibility for vulnerability discovery and resolution, and make testing tedious,
sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target covered
aspects related to debugging and defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
presenting novel result and future research in all aspects of robust design methodologies, vulnerability
discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2019 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to VALID 2019. We truly believe
that thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2019 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the VALID 2019 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation. We also hope Valencia provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city.

VALID 2019 Steering Committee

Andrea Baruzzo, IDS Interaction Design Solutions, Italy
Tadashi Dohi, Hiroshima University, Japan

 2 / 69

Roy Oberhauser, Aalen University, Germany
Patrick Girard, LIRMM / CNRS, France
Stefan Wagner, University of Stuttgart, Germany
Hiroyuki Sato, University of Tokyo, Japan
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Hironori Washizaki, Waseda University, Japan

VALID 2019 Industry/Research Advisory Committee

Xinli Gu, Huawei, USA
Sigrid Eldh, Ericsson AB, Sweden
Jos van Rooyen, Identify - Software Quality Services, the Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Philipp Helle, Airbus Group Innovations, Germany

VALID Publicity Chair

Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France

Lorena Parra, Universitat Politecnica de Valencia, Spain

 3 / 69

VALID 2019

Committee

VALID Steering Committee
Andrea Baruzzo, IDS Interaction Design Solutions, Italy
Tadashi Dohi, Hiroshima University, Japan
Roy Oberhauser, Aalen University, Germany
Patrick Girard, LIRMM / CNRS, France
Stefan Wagner, University of Stuttgart, Germany
Hiroyuki Sato, University of Tokyo, Japan
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Hironori Washizaki, Waseda University, Japan

VALID Industry/Research Advisory Committee
Xinli Gu, Huawei, USA
Sigrid Eldh, Ericsson AB, Sweden
Jos van Rooyen, Identify - Software Quality Services, the Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Philipp Helle, Airbus Group Innovations, Germany

VALID Publicity Chair
Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France
Lorena Parra, Universitat Politecnica de Valencia, Spain

VALID 2019 Technical Program Committee

Wasif Afzal, Mälardalen University, Sweden
Jitendra Aggarwal, Arm, India
Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France
Amir Alimohammad, San Diego State University, USA
María Alpuente, Technical University of Valencia (UPV), Spain
Moussa Amrani, Namur Digital Institute, Belgium
Aitor Arrieta, University of Mondragon, Spain
Sebastien Bardin, CEA LIST | Paris Saclay, France
Kamel Barkaoui, Conservatoire National des Arts et Metiers, France
Cesare Bartolini, ISTI - CNR, Pisa, Italy
Andrea Baruzzo, IDS Interaction Design Solutions, Italy
Saddek Bensalem, Université Grenoble Alpes/Verimag, France
Ateet Bhalla, Independent Consultant, India
Bruno Blaskovic, University of Zagreb, Croatia
Sergiy Bogomolov, Australian National University, Australia
Mohamed Boussaa, University of Rennes 1 | INRIA, France
Laura Brandán Briones, Universidad Nacional de Córdoba, Argentina
Mark Burgin, University of California Los Angeles (UCLA), USA

 4 / 69

Samuele Buro, University of Verona, Italy
Vinicius Cardoso Garcia, Universidade Federal de Pernambuco, Brazil
Laura Carnevali, University of Florence, Italy
Adnan Causevic, Mälardalen University, Sweden
Federico Ciccozzi, Mälardalen University, Sweden
Bruce Cockburn, University of Alberta, Canada
Hichem Debbi, University of Mohamed Boudiaf-M'sila, Algeria
Gulsen Demiroz, Sabanci University, Istanbul, Turkey
Stefano Di Carlo, Politecnico di Torino, Italy
Dario Di Nucci, Vrije Universiteit Brussel, Belgium
Daniel Dietsch, University of Freiburg, Germany
Luigi Dilillo, LIRMM (Laboratoire de Informatique Robotique et Microélectronique de Montpellier),
France
Tadashi Dohi, Hiroshima University, Japan
Dimitris Dranidis, CITY College | International Faculty of the University of Sheffield, Greece
Rolf Drechsler, University of Bremen/DFKI, Germany
Lydie du Bousquet, Université Grenoble-Alpes (UGA), France
Sigrid Eldh, Ericsson AB, Sweden
Marie Farrell, University of Liverpool, UK
Hermann Felbinger, Graz University of Technology / AVL List GmbH, Austria
Jicheng Fu, University of Central Oklahoma, USA
Gregory Gay, University of South Carolina, USA
Patrick Girard, LIRMM / CNRS, France
Xinli Gu, Huawei, USA
Bidyut Gupta, Southern Illinois University, Carbondale, USA
Kazumi Hatayama, Gunma University, Japan
Philipp Helle, Airbus Group Innovations, Germany
Lom Messan Hillah, Université Paris Nanterre / Sorbonne Université / CNRS - Laboratoire d'Informatique
de Paris 6 - LIP6, France
Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Hassan Ibrahim, Université Paris Sud, Université Paris Saclay, France
Daisuke Ishii, University of Fukui, Japan
Bo Jiang, Beihang University, Beijing, China
David Kaeli, Northeastern University, Boston , USA
Ahmed Kamel, Offutt School of Business | Concordia College, USA
Marouane Kessentini, University of Michigan - Dearborn, USA
Narges Khakpour, Linnaeus University, Sweden
Takashi Kitamura, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Moez Krichen, Al-Baha University, Saudi Arabia / University of Sfax, Tunisia
Herbert Kuchen, University of Münster, Germany
Maurizio Leotta, University of Genova, Italy
Bruno Lima, University of Porto / INESC TEC, Portugal
Chu-Ti Lin, National Chiayi University, Taiwan
Francesca Lonetti, ISTI-CNR, Italy
Lei Ma, Harbin Institute of Technology, China
Libero Maesano, Simple Engineering, France
Hans Manhaeve, Ridgetop Europe nv. / Ridgetop Group inc., Belgium
Eda Marchetti, CNR-ISTI, Pisa, Italy

 5 / 69

Abel Marrero, Bombardier Transportation Signal Germany GmbH, Germany
Mieke Massink, CNR-ISTI, Pisa, Italy
Rivalino Matias Jr., Federal University of Uberlandia, Brazil
Amin Milani Fard, Simon Fraser University, Vancouver, Canada
Andreas Morgenstern, Fraunhofer Institute for Software Engineering (IESE), Germany
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Yassine Ouhammou, LIAS/ISAE-ENSMA, France
Lorena Parra, Universitat Politecnica de Valencia, Spain
Giovanni Pau, Sorbonne Universitè, Paris, France
Adriano Peron, University of Naples "Federico II", Italy
Roberto Pietrantuono, Università di Napoli Federico II, Italy
Pasqualina Potena, RISE SICS Västerås, Sweden
Paolo Prinetto, Politecnico di Torino, Italy
Claudia Raibulet, University of Milano-Bicocca, Italy
Oliviero Riganelli, University of Milano Bicocca, Italy
Mehrdad Saadatmand, RISE SICS Västerås, Sweden
Giedre Sabaliauskaite, iTrust Centre for Research in Cyber Security | Singapore University of Technology
and Design, Singapore
Hiroyuki Sato, University of Tokyo, Japan
Josep Silva Galiana, Technical University of Valencia, Spain
Marjan Sirjani, Mälardalen University, Sweden / Reykjavik University, Iceland
Maria Spichkova, RMIT University, Australia
Andrea Stocco, University of British Columbia - Vancouver, Canada
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Salvador Tamarit, Universitat Politècnica de València, Spain
Bedir Tekinerdogan, Wageningen University, The Netherlands
Spyros Tragoudas, Southern Illinois University, USA
Jos van Rooyen, Identify - Software Quality Services, the Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Enrico Vicario, University of Florence, Italy
Arnaud Virazel, Université de Montpellier / LIRMM, France
Stefan Wagner, University of Stuttgart, Germany
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
John Wiegley, BAE Systems, UK
Kristian Wiklund, Ericsson AB, Sweden
Robert Wille, Johannes Kepler University Linz, Austria
Cemal Yilmaz, Sabanci University, Istanbul, Turkey
Haibo Yu, Shanghai Jiao Tong University, China
Pavol Zavarsky, Concordia University of Edmonton, Alberta, Canada

 6 / 69

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 69

Table of Contents

Towards an Operational Semantics for Solidity
Marco Crosara, Gabriele Centurino, and Vincenzo Arceri

1

Learning Metamorphic Rules from Widening Control Flow Graphs
Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

7

Chameleon: The Gist of Dynamic Programming Languages
Samuele Buro, Michele Pasqua, and Isabella Mastroeni

13

A Taint Analyzer for COBOL Programs
Alberto Lovato, Roberto Giacobazzi, and Isabella Mastroeni

18

How to Overcome Test Smells in an Automation Environment
Mesut Durukal

24

Applying Passive Testing to an Industrial Internet of Things Plant
Marco Grochowski, Stefan Kowalewski, Melanie Buchsbaum, and Christian Brecher

31

Low-Code Solution for IoT Testing
Hugo Cunha, Joao Pascoal Faria, and Bruno Lima

38

How to Adapt Machine Learning into Software Testing
Mesut Durukal

44

Sandiff: Semantic File Comparator for Continuous Testing of Android Builds
Carlos Eduardo De Souza Aguiar, Jose Ivan Bezerra VIlarouca Filho, Agnaldo Oliveira Penha Junior, Rodrigo
Jose Borba Fernandes, and Cicero Augusto De Lara Pahins

51

Refinement Maps for Insulin Pump Control Software Safety Verification
Eman Al-Qtiemat, Sudarshan Srinivasan, Zeyad Al-Odat, and Sana Shuja

56

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 69

Towards an Operational Semantics for Solidity

Marco Crosara

Dept. of Computer Science
University of Verona, Italy

Email: marco.crosara@studenti.univr.it

Gabriele Centurino

Dept. of Computer Science
University of Verona, Italy

Email: gabriele.centurino@studenti.univr.it

Vincenzo Arceri

Dept. of Computer Science
University of Verona, Italy

Email: vincenzo.arceri@univr.it

Abstract—Solidity is a multi-paradigm programming language
used for writing smart contracts on the Ethereum blockchain
and offers a wide range of features, such as Ethereum transfers
between contracts or wallets of normal users. Its specification is
not formally defined, the behaviours of Solidity constructs are
informally provided by its documentation, leading to misunder-
standings and buggy code. Without a formal semantics, reasoning
about programs becomes extremely hard, if not impossible. In
this paper, we provide a first-step towards a formal operational
semantics for Solidity, defining a memory model for the language,
able to capture its main features.

Keywords–Programming Languages; Solidity; Semantics.

I. INTRODUCTION

We intend to define a complete semantics of a core of
Solidity [1], but this is not a simple task. In order to reach this
goal, we have to deal with an unusual actor: the blockchain
[2]. Due to its presence, providing a formal semantics for
Solidity [3] could result challenging for two reasons. The
first one is relative to the frequently updating language, since
Solidity continuously changes the constructs and mechanics of
operations [4]. For this reason, in this work, we have chosen
a specific version of the compiler: 0.5.10. The second one
is that we have to deal with the Storage of the blockchain,
that is separated from the memory of the Ethereum Virtual
Machine (EVM). In this paper, we provide a first step toward
a formal semantics of Solidity, modelling the memory and
the interaction that happens between a smart contract and
the blockchain. In the next section, we describe the Solidity
language, the domains and the memory model used. In Section
III we present its concrete semantics for some basic constructs
and in Section IV we extend the semantics to contracts and
functions. Finally, we provide some ideas for future related
works.

II. SOLIDITY

Solidity is the most popular language to write smart con-
tracts on the Ethereum blockchain. Intuitively, a smart contract
is a computer program designed to execute some actions when
some condition is verified [2]. Solidity has been designed to
offer a simple way to develop a smart contract and for this
reason, it is strongly inspired by JavaScript. Unlike JavaScript,
it is object-oriented and statically typed. When we deploy
a contract on the blockchain, the Solidity code has to be
executed by the EVM. Inside this environment, we have a set
of instructions called opcodes that are encoded in byte code
in order to have a more efficient store. Each opcode has a
cost of execution, this is needed to prevent the execution of
infinite loops or similar and to reward the miners who validate

the transactions. This cost is expressed in unit of Gas and the
price per unit is expressed in GWei, a fraction of an Ethereum
token. 1 Ethereum (ETH) corresponds to 1 × 1018 Wei, that
are 1× 109 GWei. For the sake of simplicity, we assume that
any operation inside the blockchain has been equipped with
enough gas to correctly end its execution. In our work, we
chose not to handle transactions in memory, studying only the
interaction that they have with the blockchain.

A. Memory and Storage
Solidity provides three types of memory, namely Stack,

used to hold local variables of primitive type (uint256, bool,
etc.), Storage is a persistent memory and is a key-value
store where keys and values are both 32 bytes, storing, for
instance, state variables. Finally, Memory is a byte-array that
contains data until the execution of the function, used to save,
for example, function arguments. In this paper, we do not
distinguish between Stack and Memory. According to the real
model described, the evaluation of expressions and statements
in our work is made considering the tuple σ = 〈Nρ, ρ, C,A〉.
We can split this tuple in two halves, namely Memory and
Storage. The first one refers to the EVM Memory and the
second one to the blockchain. Nρ e ρ are respectively the
Namespace and the link between address and values. Instead
A stands for Accounts and contains the balances of contract
address and normal user address. C stands for Contracts and
contains, for any contract, the corresponding Storage and all
the functions with the corresponding signature. Formally, we
define the State σ, as follows.

– Nρ ∈ Memory is a function s.t. Nρ : ID → MLOC

contract Bank {
uint money = 0;
constructor () public payable {
money = msg.value;

}
function sendEther () public payable {
money += msg.value;
if(money > 300000000000000000){//0.3 ETH
msg.sender.transfer(money);
money = 0;

}
}
function () external payable {}

}

Figure 1. Example of a simple contract written in Solidity.

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 9 / 69

Solidity ::= (Contract)*
Contract ::= contract id { (St)* }

St ::= Method | StateDef
StateDef ::= Type id ;

| Type id = Exp ;

Type ::= uint | bool | address | address payable

Method ::= function id((Type id,)*) (Qualifier)*
{(Stmt)*}

| function()external payable { (Stmt)* }
| constructor((Type id,)*) public |

internal { (Stmt)* }

Qualifier ::= public | internal | external
| private | returns(Type id)

BinOp ::= + | - | * | / | % | && | || | == | !=
| > | < | >= | <=

UnOp ::= - | !

Stmt ::= ε
| Type id (= Exp)? ;
| if(Exp)Stmt (else Stmt)?
| while(Exp) Stmt
| { (Stmt)* }
| return (Exp)? ;
| Exp ;

Exp ::= Literal
| id((Exp ,)*)
| id.transfer(Exp)
| Exp BinOp Exp
| UnOp Exp
| id = Exp
| id

Literal ::= n ∈ UINT | b ∈ BOOL | a ∈ ADDR | ã ∈
ADDRP

Figure 2. Syntax of Solidity core.

– ρ ∈ Memory is a function s.t. ρ : MLOC → V with
V = UINT ∪ BOOL ∪ ADDR ∪ ADDRP

– A ∈ Storage is a function s.t. A : ADDR → UINT

– C ∈ Storage is a function s.t. C : ADDR → 〈λ,Nµ, µ〉
Where λ = 〈P, I, E,R〉, Nµ : ID → SLOC and µ :
SLOC → V

λ contains contracts functions that are divided by access
level: Public, Internal, External, PRivate 〈P, I, E,R〉, each
element in λ is also a function 〈ID,ForParams〉 → BODY and
ForParams is a list of 〈Type, ID〉 but for simplicity, sometimes
we will refer to it with a string of the type (Type id,)∗. BODY
is a string with a sequence of statements: (Stmt)∗. The qualifier
of a function can be [4]:

– public: Public functions are part of the contract
interface and can be either called internally or via
messages.

– internal: Those functions and state variables can
only be accessed internally (i.e., from within the
current contract or contracts deriving from it), without
using this.

– external: External functions are part of the contract
interface, which means they can be called from other
contracts and via transactions. An external function f
cannot be called internally.

– private: Private functions and state variables are
only visible for the contract they are defined in and
not in derived contracts.

In this paper, we suppose that in each moment we have
another namespace Nσ , which determines the last declaration
of a variable, between Memory and Storage. Formally, it is
always Nσ = (σ.C(ċ).Nµ)[Nρ] where ċ is the current contract
address.

B. Domains
The followings are the Solidity domains considered for this

paper:

– n ∈ UINT = { 0, 1, 2, ..., 2256 − 1}: the domain of
Unsigned Integers, corresponding to the uint256 type

in the Solidity language. We define two numbers, Ñ =
2256 and N̂ = 2256 − 1, where N̂ is the max value
that can be assigned.

– a ∈ ADDR is the domain of Addresses. The addresses
are used as unique identifier inside the blockchain:
every contract, every user and every transaction
has one. In Solidity the address type holds a 20
byte value (size of an Ethereum address), e.g.,
‘0xbb9bc244d798123fde783fcc1c72d3bb8c189413’.
The same address could be also declared as Address
Payable, this is necessary to allow transfers of ETH
on it, as we will explain later. The domain of payable
address is ADDRP and with ã we denote an element
of it.

– b ∈ BOOL = {true, false}: the domain of Booleans.

– x ∈ ID is the domain of Identifiers. In Solidity, an
identifier is a string with the pattern [a-zA-Z_$][a-zA-
Z_$0-9]*. An ID element could be a variable name, a
contract name or a function name.

– LOC: the domain of Locations. We can have two types
of locations, namely Memory Locations (MLOC) and
Storage Locations (SLOC). Hence we have LOC =
MLOC ∪ SLOC s.t. MLOC ∩ SLOC = ∅.

In our work, we denote by type(σ, x) ∈ {uint, bool,
address, address payable} the type x in σ, e.g.,
type(〈{x→ l}, {l→ 5}, C,A〉, x) = uint. We abuse notation
denoting type(σ, l), l ∈ LOC, the type of a location.

Address and Address Payable: In our core, there are two
ways to declare addresses and the difference is the keyword
payable. A payable address can be the receiver of some ETH
sent using a transfer or a send function in a smart contract.
Trying transfer money to a non-payable address would result
in a compiler error. Therefore, for example the transfer
function could not be invoked on a non-payable address. In
sight of this, we can state that the keyword payable is only
used in order to force the developer to wisely choose which
address should be able to receive ether or not. In our semantics,
the meta-variables of address can be interchangeable with the
one of address payable.

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 10 / 69

L n Mσ def
= n, n ∈ UINT

L b Mσ def
= b, b ∈ BOOL

L a Mσ def
= a, a ∈ ADDR

L ã Mσ def
= ã, ã ∈ ADDRP

L e1 + e2 Mσ
def
= (n1 +Num n2)%Ñ

L e1 − e2 Mσ
def
= (n1 −Num n2)%Ñ

L e1 ∗ e2 Mσ
def
= (n1 ·Num n2)%Ñ

L e1 / e2 Mσ
def
= (n1 /Num n2)%Ñ with n2 6= 0

L e1 % e2 Mσ
def
= (n1 % n2)%Ñ

L−e1 Mσ
def
= L 0− e1 Mσ

L e1 Mσ
def
= n1, L e2 Mσ

def
= n2

function checkPlusMin() public
↪→ returns (uint n5, uint n6, uint
↪→ n7) {
uint n1 = 2**256 - 1;
uint n2 = 1;
uint n3 = 2**255 + 333333;
uint n4 = 2**255 + 4444444;
return (n1 + n2, n3 + n4, 0 - n2);

}

> checkPlusMin()�(0,4777777,2**256-1)

Figure 3. (a) Identity (b) Arithmetic expressions (c) Example of overflow.

C. Environment access and Memory updating
In our semantics, when we need to access a tuple, for

the sake of readability, we use the dots notation. For ex-
ample, if σ = 〈Nρ, ρ, C,A〉 we write σ.C to access C
of σ. Note that, in some cases we will refer directly to
Nρ, ρ, C,A, λ,Nµ, µ respectively instead of each ones with
σ prefixed: σ.Nρ, σ.ρ, σ.C...

Updating of a single value in Memory:

ρ ∈ Memory, l ∈ MLOC,

k ∈ V = UINT ∪ BOOL ∪ ADDR ∪ ADDRP

ρ[l← k] = ρ′ ∈ Memory
⇐⇒

ρ′(l) = k and ∀l′ ∈ MLOC . l′ 6= l . ρ′(l′) = ρ(l′)

Updating of a Memory with another Memory:

ρ, ρ′ ∈ Memory, l ∈ MLOC, k ∈ V
Loc(ρ) = {l | (l 7→ k) ∈ ρ}
ρ[ρ′] = ρ′′ ∈ Memory

⇐⇒

∀l ∈ Loc(ρ) ∪ Loc(ρ′) . ρ′′(l) =
{
ρ′(l) l ∈ Loc(ρ′)
ρ(l) otherwise

Similarly, we can define Memory namespace update with
single value (Nρ[x← l]) and update between Memory names-
paces (Nρ[N ′ρ]). The same is also true for Nµ, µ, C,A update.

III. CONCRETE SEMANTICS OF SOLIDITY

In this section, we define our core (Figure 2) and we
provide a formal semantics for it [5]. We focus the attention on
the standard constructs of programming languages, the more
blockchain related constructs will be treated in Section IV.
There will be also some examples that we will use to motivate

the results. The semantics is captured by the function L · M that
we will define in the next sections.

A. Expressions Semantics
We denote the domain of expressions by e ∈ Exp. In

this section, we define the main semantics expressions of our
Solidity core. The semantics of expressions is captured by
the function L · M : Exp × State → V × State, that evaluates
an expression in a State and returns a final value, with the
previous State modified by the evaluation. For convenience
when the State σ does not change the evaluation, it returns
only V. As we have already mentioned before, in our core we
consider four primitive types: bool, address (payable and not),
and uint. Each type has been defined as a domain of its values:
UINT, BOOL, ADDR and ADDRP. According to this, we have
four identity rules (Figure 3a). We also have other rules that
refer to unary and binary operators. In Solidity, like in every
other programming languages, we have many of them but we
selected only the ones that have been defined in the syntax.
Any numeric operator (Figure 3b) has a correspondent in the
concrete. The rules consider the numeric overflow, indeed in
UINT we can represent, like previously stated, the max value
N̂ and we will have an overflow using the next integer (Ñ),
this one is used by the rules through the modulo operator. A
Solidity UINT overflow example is shown in Figure 3c.

The rules regarding And, Or and Negation for the binary
operators (Figure 4a) are trivial. It is interesting to talk about
Equality and Inequality operators among the different types.
In these rules, we have the operator � ∈ {==,!=} and the
operator � that is the numeric counterpart of the first one.
For example, if == is the syntactic notation, =Num is the
corresponding numeric operator. Each rule checks that the
type of e1 is the same of e2 and returns a boolean value.
An exception is the type ADDRP that is equal to ADDR for
the reason previously specified. The next rule is similar to

L e1 && e2 Mσ
def
=

{
false L e1 Mσ

def
= false

L e2 Mσ L e1 Mσ
def
= true

L e1 || e2 Mσ
def
=

{
true L e1 Mσ

def
= true

L e2 Mσ L e1 Mσ
def
= false

L !e Mσ def
=

{
true L e Mσ def

= false

false L e Mσ def
= true

L e1 � e2 Mσ
def
=



n1 �Num n2 L e1 Mσ
def
= n1 ∧ L e2 Mσ

def
= n2

b1 �Bool b2 L e1 Mσ
def
= b1 ∧ L e2 Mσ

def
= b2

a1 �Adr a2 L e1 Mσ
def
= a1 ∧ L e2 Mσ

def
= a2

ã1 �Adr ã2 L e1 Mσ
def
= ã1 ∧ L e2 Mσ

def
= ã2

a1 �Adr ã2 L e1 Mσ
def
= a1 ∧ L e2 Mσ

def
= ã2

L e1 ♦ e2 Mσ
def
= (n1 ♦· Num n2) ∈ {true, false}

Figure 4. (a) Boolean expression semantics (b) Relational expression semantics.

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 11 / 69

the previous, but the operator ♦ ∈ {>,<,>=, <=} with
the counterpart ♦· is only defined for numerical expressions.
Afterwards, we will define other two rules regarding the
semantics expressions.

1) Assignment: In this rule and the following ones, we
suppose that ċ is the current contract address and that σ =
〈Nρ, ρ, C,A〉.

L x = e Mσ def
=

{
〈g, σ′〉 with g def

= L e Mσ Nσ(x) ∈ MLOC

〈g, σ′′〉 with g def
= L e Mσ Nσ(x) ∈ SLOC

σ′ = 〈Nρ, ρ[Nρ(x)← g], C,A〉
σ′′ = 〈Nρ, ρ, C[ċ← 〈λ,Nµ, µ′′〉], A〉

with µ′′ = µ[Nµ(x)← g]

if Nσ(x) 6= ⊥

The assignment in Solidity depends on the variable x which
we are referring to. If Nσ(x) ∈ MLOC it means that the
variable has been defined into the EVM Memory (potentially
could exist an x inside the Store). In this case, priority is
given to the local variable and we only modified ρ based on
the address contained in Nρ. Otherwise, if Nσ(x) ∈ SLOC it
means that it does not exist a local variable with that identifier.
However, for the precondition rule Nσ(x) 6= ⊥, there is
always a global variable x, thus we modify µ associating the
evaluation result of e to the Storage address of x.

2) Lookup:

L x Mσ def
=

{
ρ(Nρ(x)) Nσ(x) ∈ MLOC

C(ċ).µ(C(ċ).Nµ(x)) Nσ(x) ∈ SLOC

if Nσ(x) 6= ⊥

Like the previous rule, when in the code a variable x is
used, the returned value is determined with reference to the
location where the last declaration happened. According to
this, the value of x in the Memory ρ or in the Storage µ
is returned.

B. Statements Semantics
In this section, we define the formal semantics of State-

ments. Let denote by s ∈ Stmt the sets of statements. With
a slight abuse of notation, we denote the statement semantics
evaluation with L · M : Stmt × State → State, that evaluates a
statement in a State σ and returns the State modified by the
evaluation.

1) Skip:

L ε Mσ def
= σ where ε is the empty statement

2) Lacal Variable Declaration:

L uint x = e1; Mσ
def
= 〈Nρ[x← l], ρ[l← L e1 Mσ], C,A〉

with L e1 Mσ ∈ UINT

l ∈ MLOC fresh and Nρ(x) = ⊥

The first semantics rule in this section is the empty state-
ment, the following are regarding the variables declaration.
The declaration of local and state variables is syntactically
the same, so the correct rule is chosen accordingly to the
position of statement. We distinguish if the declaration is
inside the body of a function or directly inside the contract.

The declaration of a local variable, differently from the only
assignment, also modifies Nρ. Therefore, a new location is
added and the evaluated expression will be saved on it.

3) State Variable Declaration:

L uint x = e1; Mσ
def
= σ′ = 〈Nρ, ρ, C ′, A〉

with C ′ = (C[ċ.Nµ(x)← l])[ċ.µ(l)← L e1 Mσ]
with L e1 Mσ ∈ UINT, l ∈ SLOC fresh

if Nµ(x) = ⊥

The declaration of state variable is similar but in this case
Nµ and µ are modified. In each case, there is a precondition:
a variable with the same name must not be already declared.
The rules for the other primitives types, which differ from uint
are easily deducible for similarity.

4) Declaration without initialisation:

L uint x; Mσ def
= L uint x = 0; Mσ

L bool y; Mσ def
= L bool y = false; Mσ

L address z; Mσ def
= L address z = 0x040; Mσ

Rules used for the declaration without initialisation can
be defined as rewriting of the same rules with assignment.
The value assigned to the variable is the default value of each
primitive types. Other semantics rules related to constructs in
our core in Figure 5a, are the one for if (rewrite of if else)
and for while, where the single iteration is based on the
rewrite of if else. Then, we have the semantics of block:
after evaluating the statement inside the braces, the Memory
of such evaluation is returned, preserving however the initial
namespace Nρ. This happens because the declaration made
inside a block must not be considered as valid outside of it.
Examples are presented in Figure 5b and Figure 5c. Finally,
for the sequence of statements let’s proceed evaluating the first
statement. On the state returned we evaluate the next statement.

IV. CONCRETE SEMANTICS OF CONTRACTS

In this section, we provide the operational semantics for
contracts and functions. A Solidity file has sol extension, it
could contain some contracts, which are denoted by c. A file
can be considered as a sequence of contracts C. We denote by
st a structure type and by St a sequence of structure type. A
st could be a state variable or a function. In addition ω is used
to denote the constructor of the contract.

1) First:

L c1C Mσ
def
= L C Mσ′′ with σ′′ = 〈Nρ, ρ, C ′, A′〉

and σ′ = L c1 Mσ
def
= 〈N ′ρ, ρ′, C ′, A′〉

with Nρ, ρ empty

To evaluate a Solidity file we have to execute the se-
quence of contracts which it contains. We evaluate every
contract on the state returned from the execution of the
previous one, replacing however N ′ρ and ρ′ with a new
empty Memory Nρ, ρ. Indeed the Memory of the EVM is
not preserved from the execution of a contract to an another.
Let’s make a consideration now: C(ċ).λ.P and C(ċ).λ.E
are visible to all other contracts, but to call a method of
another contract it is necessary to create an instance of it, e.g.,
MyContract mc = new MyContract(); and that does not

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 12 / 69

L if(e) s else s′ Mσ def
=

{
L s Mσ L e Mσ def

= true

L s′ Mσ L e Mσ def
= false

L if(e) s Mσ def
= L if(e) s else ε Mσ

L while(e) s Mσ def
= L if(e){s while(e) s} else ε Mσ

L {s} Mσ def
= 〈Nρ, ρ′, C ′, A′〉 with L s Mσ def

= 〈N ′ρ, ρ′, C ′, A′〉

L s s′ Mσ def
= L s′ M(L s Mσ)

function checkBlock()
↪→ public returns (
↪→ uint vx, uint vy) {
uint x = 0;
uint y = 0;
{ uint z = 0;

x = x + 1;
{ uint w = 0;

y = y + 1;
}

}
return (x, y);

}

> checkBlock()�(1, 1)

function checkBlock2()
↪→ public {
uint x = 0;
uint y = 0;
{ uint z = 0;

{ uint w = 0; }
w = w + 1; // <<

}
}

> Compile error: Undeclared id.

Figure 5. (a) IfElse, If, While, Block and Sequence of Stmt (b) Example of block: scoping of variables (c) Example of block: undeclared identifier.

exist in our core. Furthermore C(ċ).λ.I is directly visible to
the contracts that derive from it, but to allow inheritance in
Solidity we need the is construct that is not inside our core.

2) Contract:

L contract cname {St} Mσ def
=

{
σ′′ ω ∈ St
L c′ Mσ ω /∈ St

c′ = contract cname {constructor() public{} St}

σ′′
def
=

{
L C ′.λ.P (constructor, ∗) Mσ′ C ′.λ.P (con..., ∗) 6= ⊥
L C ′.λ.I(constructor, ∗) Mσ′ C ′.λ.I(con..., ∗) 6= ⊥

with σ′ = L St Mσ def
= 〈Nρ, ρ, C ′, A′〉

The evaluation of a contract if there is not any constructor,
add, firstly, the default constructor. Afterwards, all the structure
types contained are evaluated. After that, C(ċ) is populated
with functions and state variables of the contract. The final step
is to execute the constructor code and return the evaluation of
it.

3) Function Declaration: For simplicity, we suppose that
functions with a return statement at the end of body, have the
respective returns(Exp) qualifier in the function definition.

L function fname (FP) public {BODY} Mσ def
= σ′

L function fname (FP) public returns (rp) {BODY} Mσ def
= σ′

σ′ = 〈Nρ, ρ, C ′, A〉 with C ′ = C[ċ.λ.P.〈fname, FP 〉 ← BODY]

if
C(ċ).λ.P (〈fname, FP 〉) = ⊥, C(ċ).λ.I(〈fname, FP 〉) = ⊥,
C(ċ).λ.E(〈fname, FP 〉) = ⊥, C(ċ).λ.R(〈fname, FP 〉) = ⊥

The evaluation of a function declaration is the addition of
the same to C(ċ).λ. For internal and private qualifiers the rule
is equivalent, with the modification of I , E and R respectively
instead of P .

4) Constructor Declaration: A constructor is optional.
Only one constructor for each contract can be defined, which
means that overloading is not supported. In the code, no
function with name ‘constructor’ can be defined. Constructor
functions can be either public or internal. If there is no con-
structor, the contract will assume the default empty constructor.

L constructor (FP) public {BODY} Mσ def
=

L function constructor (FP) public {BODY} Mσ
with σ.C(ċ).λ.P (constructor, ∗) = ⊥
and σ.C(ċ).λ.I(constructor, ∗) = ⊥

The constructor evaluation can be treated as a rewrite
of a normal function declaration, with identifier the word
‘constructor’. We use this trick because the Solidity syntax
does not allow naming a function ‘constructor’. The rule is
the same for internal qualifier.

5) Fallback Function Declaration: A fallback function is
a particular function that can be inside a contract. It has two
mandatory characteristics: it has to be anonymous and does
not have any arguments. It is executed whenever a function
identifier does not match the available functions or if the
contract receives plain Ether without any other data associated
with the transaction. For this reason, it is good practice to
make it payable, so that it can receive ETH sent erroneously.
Consequently, in our core, we choose that the fallback function
is always payable. The fallback function has only 2300 units
of gas, leaving not much capacity to perform operations except
basic logging.

L function () external payable {BODY} Mσ def
=

L function ε (∅) external {BODY} Mσ
with σ.C(ċ).λ.E(ε,∅) = ⊥

The idea of the fallback function semantics is the same as
the constructor one. The rule is given as rewrite of function
declaration with ε, namely the empty string, as name.

6) Return:

L return; Mσ def
= σ′ = 〈Nρ[return← l], ρ[l← ε], C,A〉

L return e; Mσ def
= σ′ = 〈Nρ[return← l], ρ[l← L e Mσ], C,A〉

The return statement is the last Stmt of function. It returns
directly a value or an expression that must be evaluated. To
transfer the return value to the caller, we save it in the Memory
with the identifier ‘return’. The function call knows that, once
the evaluation of the function is completed, the return value is
stored in N ′ρ(ρ

′(return)).

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 13 / 69

7) Function Call:

L fname(e1...en) Mσ
def
= L BODY Mσ′ = 〈N ′ρ(ρ′(return)), σ′′〉

where σ′ = 〈N ′ρ, ρ′, C,A〉 s.t. N ′ρ = {(fpi ← li) | ∀i ∈ [1, n]},
ρ′ = {(li ← L ei Mσi−1) | ∀i ∈ [1, n], σ0 = σ}
li ∈ MLOC fresh and σ′′ = 〈Nρ, ρ, C ′, A′〉

BODY =


Pbody = C(ċ).λ.P (fname,∀i | ti) Pbody 6= ⊥
Ibody = C(ċ).λ.I(fname,∀i | ti) Ibody 6= ⊥
Ebody = C(ċ).λ.E(fname,∀i | ti) Ebody 6= ⊥
Rbody = C(ċ).λ.R(fname,∀i | ti) Rbody 6= ⊥

where ti = type(L ei Mσi−1)

The semantics of a function call corresponds to the exe-
cution result of the function body. In particular, the function
body must be executed in a state taking into account of
the parameters passed to the function call, memory σ′. Then
C, A are unattached from σ while N ′ρ and ρ′ contains all
the associations between actual and formal parameters. The
return instruction saves, as previously said, the final value in
N ′ρ(ρ

′(return)). This one is returned to the caller with the
Storage modified by the last evaluation and the Memory that
the caller had before the call.

8) Transfer: We have chosen to implement the transfer
function. This is not the only way that exists to transfer
ETH between addresses, but is the most secure. In fact, there
are also the call function, that is now deprecated, and the
send function that can be still used but, contrary to the
transfer function, when it fails, it simply returns false and
does not propagate the exception. This behaviour can lead to
unwanted errors and vulnerabilities [6]. Regarding the way we
implemented the transfer function, we choose not to handle
the exceptions. We studied three possible results of transfers:

– A transfer is done between two contracts with a correct
amount of ETH and no fallback function is invoked.

– A transfer is done between two contracts with a correct
amount of ETH and a fallback function is invoked.

– A transfer is done between two contracts with an
incorrect amount of ETH and this lead to an error.

L ã.transfer(n) Mσ def
= σ′

σ′ =



〈Nρ, ρ, C, (A[ċ← A(ċ)− n])[ã← A(ã) + n]〉 1st case

〈Nρ, ρ, C ′, A′〉
def
= L C(ã).λ.E(ε,∅) Mσ′′

| σ′′ = 〈Nρ, ρ, C,A′〉 2nd case
|A′ = (A[ċ← A(ċ)− n])[ã← A(ã) + n]

exception 3rd case

1st case : A(ċ) ≥ n ∧ (C(ã) = ⊥∨
(C(ã) 6= ⊥ ∧ C(ã).λ.E(ε,∅) = ⊥))

2nd case : A(ċ) ≥ n ∧ C(ã) 6= ⊥ ∧ C(ã).λ.E(ε,∅) 6= ⊥
3rd case : A(ċ) < n

The three cases are described before. In the first and second
case, we transfer the amount of ETH from ċ to ã, but in

the second case the recipient is also a contract, therefore
the returned Memory depends on the execution of ã fallback
function. In Figure 1 we propose a simple example of a
contract that receives Ether and returns the full amount through
the invocation of function sendEther when the contract
balance is at least 0.3 ETH. The contract mentions the msg
field that we have not covered in this core. It contains useful
information of the transaction, e.g., the sender and, for ETH
transfers, the amount sent.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have introduced a Solidity core and a
formal semantics for it. This required us to introduce a first
concept of an abstract memory model, that is able to run
the code on the EVM. This model is also able to represent
blockchain and its complex structure and behaviour. In order
to extend our work, the next step is to create a more complete
and meaningful core by adding the missing constructs. In this
way, we will be able to provide a better representation of the
contracts on the blockchain. At this stage, our core is enough
to give a first idea and can provide the semantics of only basic
contracts. As a future work, we plan to build a static analyzer,
based on abstract interpretation [7], for the smart contracts
written in Solidity.

REFERENCES

[1] K. Bhargavan et al., “Formal verification of smart con-
tracts: Short paper,” in Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for
Security, PLAS@CCS 2016, Vienna, Austria, October
24, 2016, T. C. Murray and D. Stefan, Eds. ACM,
2016, pp. 91–96, URL: https://doi.org/10.1145/2993600.
2993611 [accessed: 2019-10-22].

[2] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview
of smart contract and use cases in blockchain technology,”
in 2018 9th International Conference on Computing, Com-
munication and Networking Technologies (ICCCNT), July
2018, pp. 1–4.

[3] J. Zakrzewski, “Towards verification of ethereum smart
contracts: A formalization of core of solidity,” in Verified
Software. Theories, Tools, and Experiments - 10th Inter-
national Conference, VSTTE 2018, Oxford, UK, July 18-
19, 2018, Revised Selected Papers, ser. Lecture Notes in
Computer Science, R. Piskac and P. Rümmer, Eds., vol.
11294. Springer, 2018, pp. 229–247.

[4] “Ethereum - Solidity documentation,” 2019, URL: https://
solidity.readthedocs.io/en/v0.5.10 [accessed: 2019-10-22].

[5] J. Jiao et al., “Executable operational semantics of solid-
ity,” CoRR, vol. abs/1804.01295, 2018, URL: http://arxiv.
org/abs/1804.01295 [accessed: 2019-10-22].

[6] “King of the Ether Throne - Post-Mortem Investigation,”
2016, URL: https://www.kingoftheether.com/postmortem.
html [accessed: 2019-10-22].

[7] P. Cousot and R. Cousot, “Automatic synthesis of optimal
invariant assertions: Mathematical foundations,” SIGART
Newsletter, vol. 64, 1977, pp. 1–12.

[8] S. Sahoo, A. M. Fajge, R. Halder, and A. Cortesi, “A
hierarchical and abstraction-based blockchain model,” Ap-
plied Sciences, vol. 9, no. 11, Jun. 2019, p. 2343, URL:
http://dx.doi.org/10.3390/app9112343 [accessed: 2019-10-
22].

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 14 / 69

Learning Metamorphic Rules from Widening Control Flow Graphs

Marco Campion

Dipartimento di Informatica
University of Verona

Verona, Italy
email:marco.campion@univr.it

Mila Dalla Preda

Dipartimento di Informatica
University of Verona

Verona, Italy
email:mila.dallapreda@univr.it

Roberto Giacobazzi

Dipartimento di Informatica
University of Verona

Verona, Italy
email:roberto.giacobazzi@univr.it

Abstract—Metamorphic malware are self-modifying programs
which apply semantic preserving transformation rules to their
own code in order to foil detection systems based on signature
matching. Thus, a metamorphic malware is a malware equipped
with a metamorphic engine that takes the malware, or parts of it,
as input and morphs it at runtime to a syntactically different but
semantically equivalent variant. Examples of code transformation
rules used by the metamorphic engine are: dead code insertion,
registers swap and substitution of small sequences of instructions
with semantically equivalent ones. With the term metamorphic
signature, we refer to an abstract program representation that
ideally captures all the possible code variants that might be
generated during the execution of a metamorphic program. In
this paper, we consider the problem of automatically extracting
metamorphic signatures from the analysis of metamorphic mal-
ware variants. For this purpose, we developed MetaWDN, a tool
which takes as input a collection of simplified metamorphic code
variants and extracts their control flow graphs. MetaWDN uses
these graphs to build an approximated automaton, which over-
approximates the considered code variants. Learning techniques
are then applied in order to extract the code transformation rules
used by the metamorphic engine to generate the considered code
variants.

Keywords—Static binary analysis; Metamorphic malware detec-
tion; Program semantics; Widening automata; Learning grammars.

I. INTRODUCTION

Detecting and neutralizing computer malware, such as
worms, viruses, trojans, and spyware is a major challenge
in modern computer security, involving both sophisticated
intrusion detection strategies and advanced code manipulation
tools and methods. Traditional misuse malware detectors (also
known as signature-based detectors) are typically syntactic
in nature: they use pattern matching to compare the byte
sequence comprising the body of the malware against a
signature database [1]. Malware writers have responded by
using a variety of techniques in order to avoid detection:
encryption, oligomorphism with mutational decryption pat-
terns, and polymorphism with different encryption methods
for generating an endless sequence of decryption patterns are
typical strategies for achieving malware diversification.

Metamorphism emerged in the last decade as an effective
alternative strategy to foil misuse malware detectors. Metamor-
phic malware are self-modifying programs which iteratively
apply code transformation rules that preserve the semantics

of programs. These code transformations change the syntax
of code in order to foil detection systems based on signature
matching. These programs are equipped with a metamorphic
engine that usually represents the 90% of the whole program
code. This engine takes as input the malware and its own
code and it produces at run time a syntactically different but
semantically equivalent program. We call metamorphic variant
the program variants generated by the metamorphic engine.
At the assembly level these semantic preserving transforma-
tion include: semantic-nop/junk insertion, code permutation,
register swap and substitution of equivalent sequences of
instructions [2] (see Figure 1).

Figure 1. Examples of semantic preserving rules transformation.

The large amount of possible metamorphic variants makes
it impractical to maintain a signature set that is large enough
to cover most or all of these variants, thus making standard
signature-based detection ineffective. Heuristic techniques, on
the other side, may be prone to false positives or false
negatives. The key to identify these type of malicious pro-
grams consists in considering semantic program features and
not purely syntactic program features, thus capturing code
mutations while preserving the semantic intent [6]. For this
reason, we would like to capture those semantic aspects that
allow us to detect all the possible variants that can be generated
by the metamorphic engine. We use the term metamorphic
signature to refer to an abstract program representation that
ideally captures all the possible code variants that might be
generated during the execution of a metamorphic program. A
metamorphic signature is therefore any (possibly decidable)
approximation of the properties of code evolution.

The goal of this work is to statically extract a so called
metamorphic signature, i.e., a signature of the metamorphic
engine itself. In this setting, a metamorphic signature consists

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 15 / 69

of a set of rewriting rules that the malware can use to change
its code. These rules are represented as a pure context-free
grammar in which each instruction is a terminal symbol and
can be transformed into equivalent instructions following a
production of the grammar. For this purpose, we built a tool,
called MetaWDN, that takes as input simplified versions of
the metamorphic code variants, embeds them in an over-
approximating control flow graph (widening) and finally, it
tries to learn from the control flow graph the rewriting rules
used to generate each variant. The general structure of the tool
is represented in Figure 2.

Figure 2. Capturing the metamorphic signature.

In order to test the quality of the output on portions
of code that are actual metamorphic variants of the same
program, we have implemented a metamorphic engine. Our
metamorphic engine takes as inputs a program written in an
intermediate language very similar to the x86 assembly and
it randomly chooses the rewriting rules to apply in order to
generate the metamorphic variants. The metamorphic rules
implemented are a subset of ones used by the metamorphic
malware MetaPHOR [14]. The metamorphic engine allows
us to quickly generate numerous test sets, input them to the
tool and check the quality of the results by comparing the
rules inferred with those actually applied by the metamorphic
engine.

The rest of this paper is organized as follows: in Section II
we discuss some related work, Section III explains how the
tool can be executed and how it works, in Section IV we
present some results and consideration applied to one example
and finally the paper ends with conclusion and future work in
Section V.

II. RELATED WORK

In [3] the authors propose a malware detector scheme
based on the detection of suspicious system call sequences.
In particular, they consider only a reduction (subgraph) of
the control flow graph of the program, which contains only
the nodes that represent certain system calls and finally, they
check if this subgraph has some known malicious system call
sequences.

In [8] the authors describe a system of malware detection
based on containment and unification of languages. The ma-
licious code and the possible infected program are modeled
as an automaton with unresolved symbols and placeholders
for registers dealing with certain types of obfuscation. In this
configuration, a program exhibits malicious behavior if the

intersection between the malware’s automaton language and
the one of the program is not empty.

In [4] the authors specify malicious behavior through a
Linear Temporal Logic (LTL) formula and then use the SPIN
model checker to check if this property is satisfied by the
control flow graph of a suspicious program.

In [5] the authors introduce a new Computation Tree Predi-
cate Logic (CTPL) temporal logic, which is an extension of the
logic CTL, which takes into account the quantification of the
registers, allowing a natural presentation of malicious patterns.

In [9] they describe a malicious behavior model through a
template, that is a generalization of the malicious code that
expresses the malicious intent excluding the details of the im-
plementation. The idea is that the template does not distinguish
between irrelevant variants of the same malware obtained
through obfuscation processes. For example, a template will
use symbolic variables / constants to handle the renaming of
variables and registers, and will be related to the malware
control flow graph in order to handle code reordering. Finally,
they propose an algorithm that checks if a program presents the
behavior as a template, using a process of unification between
the variables / constants of the program and the symbolic
variables / constants of the malware.

In [7] Dalla Preda et al. consider the problem of automat-
ically extracting metamorphic signatures from metamorphic
code. They introduced a semantic for self-modifying code,
called phase semantics, and prove its correctness by proving
that it is an abstract interpretation of standard trace semantics.
Phase semantics precisely models the metamorphic behavior of
the code, providing a set of program traces which correspond
to the possible evolution of the metamorphic code during ex-
ecution. They therefore demonstrate that metamorphic signa-
tures can be automatically extracted by abstract interpretation
of phase semantics. In particular, they introduce the notion
of regular metamorphism, in which the invariants of phase
semantics can be modeled as a Finite State Automata (FSA)
representing the code structure of all possible metamorphic
changes of a metamorphic code.

In [10], the authors propose to model the behavior of a
metamorphic engine of a malicious program, with rewriting
systems also called term-rewriting systems and to formalize
the problem of constructing a normalizer for rewrite systems
(called NCP) that is able to reduce to the same normal
form, variants of malware generated by the same metamorphic
engine. From this problem, they propose a possible solution
by building a normalizer on a set of rules that maintain
three properties: termination, confluence and preservation of
equivalence.

All these approaches provide a model of the metamorphic
behavior that is based on the knowledge of the metamorphic
transformations, i.e., obfuscations, that malware typically use.
By knowing how the code mutates, it is possible to specify
suitable (semantics-based) equivalence relations which trace
code evolution and detect malware. This knowledge is typi-
cally the result of a time and cost consuming tracking analysis,
based on emulation and heuristics, which requires intensive

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 16 / 69

human interaction in order to achieve an abstract specification
of code features that are common to the malware variants
obtained through various obfuscations and mutations.

In this paper, we aim at defining an automatic technique for
the extraction of a metamorphic signature that does not need
any a priori knowledge of the code transformation rules used
by the metamorphic engine.

III. MetaWDN TOOL

MetaWDN is a program written in Python 3 language that
allows us to automatically generate a set of variants starting
from a given input program. Next, MetaWDN compacts them
all together through the widening operator and then it tries
to automatically derive the rewriting rules used to generate
them. Depending on the execution parameters, the tool can be
executed in one of the following ways (Figure 3):

- execution of the metamorphic engine to generate a de-
sired number of variants starting from a set of instructions
(which will be the starting program) written on an input
text file (1©);

- computing the widening between a set of variants given as
inputs in order to build an unique abstract representation
of the considered metamorphic variants (2©);

- inferring the rewriting rules from the program represen-
tation obtained through the widening process (2© → 3©);

- finally, you can run all the operation above (1© → 2© →
3©).

Figure 3. Phase of execution of MetaWDN.

The tool takes as input programs written in an inter-
mediate language very similar to the language used by
MetaPHOR [14], both with the aim of simplifying and ab-
stracting the x86 assembly language. Therefore, the input
is an extremely simplified version compared to the code
that can be found in any executable. You can use the
classic instructions of the x86 assembly code with Intel
syntax like: data manipulation (mov, push, pop, lea),
mathematical expressions (add, sub, and, xor, or),
jumps (je, jne, jl, jle, jg, jge, jmp, call),
etc. There are three kinds of operands: registers (eax, ebx,
ecx, edx, esp, ebp, esi, edi), immediate values
and memory values (decimal number or register between
square brackets, for example [77382]). For jump instruc-
tions, the memory value to which the instruction can jump
corresponds to the line number where the target instruction
is located (the first line starts from zero). Analogously, for
function calls we have that in the instruction call the value

of the operand corresponds to the line number of the first
statement of the function. Each function (including function
main) must end with the instruction ret.

A. The Metamorphic Engine

The tool can be executed as a metamorphic engine: it
takes as input a text file containing a program written in
the x86 intermediate language and the number of variants
to be generated. The implemented rewriting rules are instruc-
tions transformation that preserve the semantics, e.g., mov
→ push, pop which expands the instruction mov in two
instructions push and pop. A rewriting rule could be applied
either in expansion (following the rule from left to right) or in
reduction (right to left). After reading the file, the metamorphic
engine randomly selects: the rewriting rule to apply, the line of
the program where to apply the rule, and whether to apply the
rule as expansion or reduction. If it is not possible to apply
the rewriting rule to the selected instruction, the following
instruction is considered and if it is not possible to apply the
rule to the whole file then another rewriting rule is selected
randomly. The implemented rewriting rules are a subset of the
rules used by the MetaPHOR metamorphic engine [14].

B. Widening Control Flow Graphs

Each metamorphic variant is represented as a Control Flow
Graph (CFG). Each node of the CFG contains one instruction
that is abstracted according to an abstraction function that
removes details usually modified by the metamorphic trans-
formations. In particular, MetaWDN abstracts instructions by
eliminating the operands, so, e.g., the instruction mov eax,
4 is abstracted in mov. In the CFG representation of programs
the vertices contain the instructions to be executed, and the
edges represent possible control flow. For our purposes, it is
convenient to consider a dual representation where vertices
correspond to program locations and abstract instructions label
edges. The resulting representation is isomorphic to FSA
over an alphabet of instructions [13]. For this reason we use
the terms CFG and automaton interchangeably. In order to
compact the CFG of the metamorphic variants into an unique
representation we use a widening operator. This allows us
to obtain an unique representation that contains all the seen
metamorphic varinats but that also generalizes the considered
mutations. Given the equivalence between CFG and FSA, we
can use the widening operator for FSA defined in [13]. To this
end, we have to to compute the language of each node of the
CFG. According to [13], we define the language of length N
of a node of a CFG as the set of all the strings of length less
or equal than N that are reachable from the considered node.

Example III.1. Consider the following program P, where the
numbers on the left correspond to line numbers:

0: mov eax, 1 4: jmp 1
1: cmp eax, 1000 5: ret
2: jge 5 6: add eax, 1
3: call 6 7: ret

the CFG is represented in Figure 4. The alphabet of the

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 17 / 69

Figure 4. CFG of Example III.1.

CFG of P is {mov,cmp,jge,call,jmp,add,ret}, and
the language of length 2 recognized by the nodes is:

lang(0) = {(mov),(mov,cmp)}
lang(1) = {(cmp),(cmp,jge)}
lang(2) = {(jge),(jge,call),(jge,ret)}
lang(3) = {(call),(call,add)}
lang(4) = {(add),(add,ret)}
lang(5) = {(ret),(ret,jmp)}
lang(6) = {(jmp),(jmp,cmp)}
lang(7) = {(ret)}

Consider a set of code variants V1V2 . . .Vn generated from
the initial program P. The widening operator

`
is defined as:

W0 = α(P) Wi+1 =Wi

h

k

(Wi ∪ α(Vi))

where Wi with i > 0 is the widening CFG at step i (the
initial widening W0 is the CFG of the program itself), α
is the abstraction function that eliminates the operands of
instructions, and k is the length of the language of nodes.
Briefly, the widening operator merges all the nodes with the
same language of length k.

C. Learning Rewriting Rules

The section of the tool that infers the transformation rules
is called learner. The learning algorithm implemented in
MetaWDN is a simplified version of the algorithm proposed
in [16] for learning pure grammars from a set of words. The
general problem of inferring rewriting rules from a set of
positive examples, i.e., from a positive set, can be transformed
into the general problem of inferring a grammar starting from
a set of strings belonging to a language. In particular, we
try to infer a grammar that is able to generate at least all
the strings given as input to the algorithm and belonging to
the language to be studied. In our case, the language to be
learned includes all the possible variants generated by the
unknown metamorphic engine, while the grammar we want
to infer corresponds to the set of rewriting rules used by
the metamorphic engine to generate the metamorphic variants
given in input to the positive set. Pure grammars [11] have
been chosen as a formal representation for the rewriting rules,
because they do not present terminal symbols but all the
symbols are considered as non-terminals. In fact, the meta-
morphic transformation rules are all instructions of the same
type, that is, they can be transformed into other instructions

by applying the correct production. More in details, since the
general problem of learning pure grammars from a positive set
is undecidable [12], we move to the formalism of k-uniform
pure context-free grammars [11] where, each production has
the left part with one letter of the alphabet while the right part
has at most k symbols of the alphabet. All these restrictions,
of course, will lead to a loss of precision in the rules inferred
by the tool as it will only be possible to infer productions of
the form {x→ y | |x| = 1, |y| 6 k}. In our learning algorithm,
the constant k is always set to 2 since the rewriting rules
implemented in the tool have the right part of length 2. The
learning algorithm takes a CFG as input and operates in three
phases:

1. it builds the positive set;
2. it learns the rewriting rules;
3. finally, it eliminates the spurious inferred rules.

The positive set consists of a set of code variants where all the
instructions are abstracted (no operands). This set is built in the
widening phase and will be the input for inferring the rewriting
rules. The length min of the smallest variant is calculated, i.e.,
the variant with the fewest instructions. Then, all the paths of
length min of the graph that go from a root node (the first
instruction of a variant, those drawn with the double circle) to
the final node (the ret instruction) are visited. For each path
found, the set of instructions related to the visited nodes are
inserted in the positive set. During this process every time that
we visit an edge we mark it. When the path of length min
has been found, if all the edges are marked then the search is
interrupted without visiting other paths. Otherwise the variable
min is incremented.

Given a couple of code variants (Vi,Vj) with |Vi| < |Vj|,
the idea of the learning algorithm is to add a production rule r
of the form Vi

r→ Vj. The rewriting rule r is inferred through
simplification rules between the two variants (Vi,Vj). There
are three kinds of simplification rules:

- top simplification: compare the first instruction of Vi and
Vj and delete them if they are the same. This process
continues until two different instructions are encountered:
in this case, if |Vi| > 1 then the comparison restarts from
the last instruction of Vi and Vj, otherwise (|Vi| = 1) the
rule is added to the set of inferred rules;

- bottom simplification: it is similar to the previous one,
but starts from the last instruction;

- top and bottom simplification: compare the first instruc-
tion of Vi and Vj and, if they are equal, it deletes them
and starts again but from the bottom instruction of Vi

and Vj.

The algorithm applies the top simplification repeatedly until a
rule is added to the set of inferred rules and then it starts back
with bottom simplification and finally, with top and bottom
simplification.

Example III.2. Let us consider the following simple code
variants: xor,mov,push and xor,push,pop,push. After

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 18 / 69

applying two times the top simplification we get

xor,mov,push→ xor,push,pop,push

Since the left part is of length 1 then the rule mov→ push,pop
is added to the set of inferred rules. With the other two kinds
of simplification we get the same rewriting rule.

After the simplification phase, the algorithm has produced
a set of rewriting rules of the form: {x→ y | |x| = 1, |y| 6 k}.
However, most of these rules are superfluous since they can be
generated by other rules of the set. The elimination algorithm
tries to reduce the right part of each rewriting rule by applying
all rewriting rules inferred in the reduction form (from right
to left). If at the end of this procedure, the rule is reduced to
another rule already in the inferred set, then that rule can be
eliminated.

Example III.3. Let us suppose that there are two rewriting
rules inferred by the learning algorithm:

1) mov→ mov,mov

2) mov→ push,pop

Now suppose that the following rewriting rule is produced:
mov→ push,pop,mov,mov. This rule is spurious since:

push,pop,mov,mov
1)⇒ push,pop,mov

2)⇒ mov,mov

IV. CASE STUDIES

In the following section, we present some results and
considerations applied to a program of 21 instructions:

0: mov [ebp], [esp] 11: mov eax, ebx
1: sub ebp, 4 12: push eax
2: push 100 13: pop [440303]
3: pop ecx 14: pop [443905]
4: cmp eax, exc 15: xor eax, 0
5: xor eax, 0 16: xor eax, eax
6: test eax, eax 17: nop
7: mov eax, 4 18: test eax, 0
8: sub eax, 1 19: xor eax, 0
9: cmp eax, ebx 20: ret
10: nop

We have used MetaWDN to generate 50 variants of this
program. Next we have randomly selected a subset of 25 code
variants that are obtained by applying all the rewriting rules
implemented in MetaWDN. This subset is provided as input
to the widening process (with language length sets to 2) and
next to the learning process. The final graph of the widening
is shown in the Figure 5. The rewriting rules inferred by the
tool is the empty set. This looks like a mistake, however, by
looking more carefully at the possible paths of the graph we
observe that all paths from any root node to the ret node,
starting from the minimum length (the smallest variant in
terms of instructions), are already visited. For this reason,
the set of positive examples contains all code variants of
the same length and therefore it is not possible to infer any
rewriting rule. This result is caused by the numerous spurious
variants inserted by the widening process that agglomerates
the nodes with the same language of length 2. In fact, due to

Figure 5. Graph obtained by the widening operator with length sets to 2.

the numerous cycles, i.e., regularities inserted by the widening,
a path from the root to the end node of length less than any
true variant is ”increased” until reaching the minimum length
(in this example equal to 20) thus creating a spurious variant.

If we increase the level of precision of the widening by
setting the parameter of the language length to 3, we obtain the
graph in Figure 6 with the following rewriting rules inferred:

cmp -> [’cmp’, ’mov’] mov -> [’push’, ’mov’]
mov -> [’push’, ’pop’] mov -> [’mov’, ’push’]
mov -> [’pop’, ’mov’] nop -> [’pop’, ’push’]
nop -> [’pop’, ’mov’] nop -> [’nop’, ’mov’]
pop -> [’pop’, ’push’] pop -> [’pop’, ’mov’]
pop -> [’mov’, ’pop’] pop -> [’nop’, ’mov’]
push -> [’mov’, ’push’] sub -> [’mov’, ’sub’]
test -> [’test’, ’mov’] xor -> [’mov’, ’xor’]

Figure 6. Graph obtained by the widening operator with length sets to 3.

Clearly, by increasing the length of the widening language
we obtain a graph with more nodes but more precise. In fact,
in this case it is possible to infer the rewriting rules even if

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 19 / 69

there are numerous spurious rules still due to the presence of
spurious paths induced by the widening.

If we increase the level of precision of the widening, setting
the length of the language to 4 we obtain the following
rewriting rules inferred:

cmp -> [’cmp’, ’mov’] cmp -> [’mov’, ’cmp’]
mov -> [’push’, ’pop’] mov -> [’mov’, ’mov’]
nop -> [’nop’, ’mov’] nop -> [’pop’, ’push’]
pop -> [’pop’, ’mov’] pop -> [’mov’, ’pop’]
push -> [’mov’, ’push’] sub -> [’mov’, ’sub’]
test -> [’test’, ’mov’] xor -> [’mov’, ’xor’]

Thanks to the greater precision of the widening, this time
the inferred rules are more precise and they represent an
acceptable result. Moreover, with a language length equal to
5 the same rules are still obtained.

V. CONCLUSION AND FUTURE WORK

In this work we tried to capture the behavior of the meta-
morphic engine itself, namely we tried to find a set of rules that
allow us to predict possible mutations of code variants starting
from a set of examples. To this end, we presented the tool
MetaWDN that has three main functions: metamorphic engine,
widening of code variants and learning of rewriting rules.
Thanks to the metamorphic engine, it is possible to quickly
generate numerous variants in an intermediate language similar
to x86. These variants are created by randomly applying
rewriting rules implemented in the tool. The goal is to capture,
starting from a subset of these code variants, the rewriting rules
used by the metamorphic engine to generate them. Starting
from the set of code variants, MetaWDN uses a widening
operator to generate a graph that approximates all the variants
of the set. Rewriting rules are then represented as productions
of a k-uniform pure context-free grammar. From the learning
algorithm and the elimination of superfluous rewriting rules
algorithm, it is possible to obtain a set of rules that describes,
in an approximate way, the possible evolution of code variants.
The experimental results show us how the choice of the
language length parameter of the widening operator affects the
precision of the learned rules. The lower the value is, the more
the nodes will be joined together because they will be more
likely to present the same language. In this case the presence
of spurious paths will be higher therefore there will be less
precision in the results inferred by the learner. On the contrary,
the higher the length of the language is and the greater is the
precision of the graph. This means that the widening graph
presents fewer spurious paths and therefore it allows us to
infer more precise rewriting rules. Of course, the increase
in precision comes at a cost in terms of time execution and
memory consumption.

As a priority of future work, we will try to apply this tool to
a set of real malware variants. In this work only one level of
abstraction on the instructions has been considered, that is, the
one that does not consider the operands. It would be interesting
to consider different abstractions, assigning, for example, to
the operands symbolic values such as those of [15]. Finally,
an implementation of new rewriting rules in the tool and a
new learner should be considered as a future work. The new

learner needs to be able to learn, in an approximate way, more
complex rewriting rules in order to catch more sophisticated
metamorphic engine.

ACKNOWLEDGMENT

This paper has been supported by the grant PRIN2017
(code: 201784YSZ5) by MIUR Italy.

REFERENCES

[1] P. Szr, ”The Art of Computer Virus Research and Defense”, Addison-
Wesley Professional, Boston, MA, USA, 2005.

[2] D. Bruschi, L. Martignoni, and M. Monga, ”Code normalization for
self-mutating malware”, IEEE Security and Privacy, vol. 5, no. 2, pp.
4654, 2007.

[3] J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and
N. Tawbi, ”Static detection of malicious code in executable programs”,
Symposium on Requirements Engineering for Information Security, vo.
2001, no. 79, pp. 184-189, 2001.

[4] P. Singh, and A. Lakhotia, ”Static verification of worm and virus
behaviour in binary executables using model checking”, IEEE Systems,
Man and Cybernetics Society Information Assurance Workshop, pp.
298-300, 2003.

[5] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, ”Detecting ma-
licious code by model checking”, International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pp. 174-187,
2005.

[6] M. Dalla Preda, ”The grand challenge in metamorphic analysis”, Inter-
national Conference on Information Systems, Technology and Manage-
ment, vol. 285, pp. 439-444, 2012.

[7] M. Dalla Preda, R. Giacobazzi, and S. Debray, ”Unveiling meta-
morphism by abstract interpretation of code properties”, Theoretical
Computer Science, vo. 577, pp. 74-97, 2015.

[8] M. Christodorescu and S. Jha, ”Static analysis of executables to detect
malicious patterns”, Symposium on USENIX Security, 2003.

[9] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
”Semantics-aware malware detection”, IEEE Symposium on Security
and Privacy, pp. 32-46, 2005.

[10] A. Walestein, R. Mathur, M. R. Chouchane, and A. Lakhotia, ”Construct-
ing malware normalizers using term rewriting”, Journal in Computer
Virology, vo. 4, no. 4, pp. 307-322, 2008.

[11] H. A. Maurer, A. Salornaa, and D. Wood, ”Pure grammars”, Inform.
Control, vo. 44, pp. 47-72, 1980.

[12] T. Koshiba, E. Mkinen, and Y. Takada, ”Inferring pure context-free
languages from positive data”, Journal in Acta Cybernetica, vo. 14, no.
3, pp. 469-477, 2000.

[13] V. D’Silva, ”Widening for automata”, Diploma thesis, Institut Fur
Informatick, Universitat Zurich, 2006.

[14] P. Beaucamps, ”Advanced Metamorphic Techniques in Computer
Viruses”, International Conference on Computer, Electrical, Systems
Science, and Engineering, 2007.

[15] A. Lakhotia, M. Dalla Preda, and R. Giacobazzi, ”Fast location of similar
code fragments using semantic Juice”, In PPREW@ POPL, 2013.

[16] C. Higuera, ”Grammatical inference: learning automata and grammars”,
Cambridge University Press, 2010.

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 20 / 69

Chameleon: The Gist of Dynamic Programming Languages

Samuele Buro

Dept. of Computer Science
University of Verona

Email: samuele.buro@univr.it

Michele Pasqua

Dept. of Computer Science
University of Verona

Email: michele.pasqua@univr.it

Isabella Mastroeni

Dept. of Computer Science
University of Verona

Email: isabella.mastroeni@univr.it

Abstract—Dynamic programming languages, such as JavaScript
and PHP, are widespread and heavily used. They provide very
useful “dynamic” features, like run-time type inference, dynamic
method calls, and built-in dynamic data structures. This makes
it hard to build static analyzers, for automatic errors discovery.
Yet, exploiting harmful behaviors in such programs, especially
in web applications, can have significant impacts. In this paper,
we present Chameleon, a core programming language summa-
rizing the main features of the dynamic programming paradigm.
Chameleon can be useful in defining, testing and comparing static
analyses, aiming at preventing bugs and errors in programs
written in dynamic programming languages. With Chameleon,
static analysis experts could define and test control mechanisms
without the burden to take in consideration the technical details
characterizing a specific real-world programming language.

Keywords–Programming language design; Dynamic program-
ming languages; Program static analysis.

I. INTRODUCTION

In the last years, dynamic programming languages, such as
JavaScript or PHP, exponentially enhanced their popularity and
nowadays are deeply used in a very wide range of applications.
For instance, JavaScript is the de facto standard for client-side
web programming, while, on the server-side, PHP, Python, and
Ruby are the most common used languages. This success is
mainly due to the several features that such languages provide
to developers, making the writing of programs easier and faster.

Although there is no black and white distinction between
static and dynamic programming languages, the latter basi-
cally follows two main paradigms: The first, justifying also
the adjective dynamic, is the lack of a static type system.
Dynamic programming languages still have types, but they are
checked at run-time, rather than compile-time. The absence of
strict static checks promotes the second aspect of dynamic
languages, namely a greater flexibility at run-time. The basic
idea is that operations which may be statically forbidden or not
expressible in other languages should be allowed and given
some semantics, and the program execution should continue
whenever possible.

The benefit of these design choices is that programmers
have a high flexibility in writing code. The downside is that
errors occur at run-time and little or no information is available
for developer tools to prevent these errors statically. A static
analyzer is a tool which abstractly executes the program,
i.e., approximates all its possible behaviors. The computed
approximation is then used to detect bugs or to provide useful
information to developer tools. Examples of static analysis
comprise data-flow analysis [1], invariants analysis [2] and
model-checking [3].

Due to the dynamic nature of these languages, it is, indeed,
very hard for static analysis experts to develop such control
mechanisms. In addition to the aforementioned issues, there is
the heterogeneity problem: it is not necessarily the case that
an analysis designed for a programming language works also
for the others.

Many authors [4]–[6] define their own toy language, in
order to present the analysis they are introducing or improving.
This is surely a burden for authors and, more importantly, it
does not allow comparisons between similar static analyses,
since the underling language is different.

To overcome these issues, we propose a core programming
language, called Chameleon (also typesetted as hameleon),
summarizing the main features of dynamic programming lan-
guages. It abstracts the implementation details characterizing
each language, allowing to focus on the analysis of the
dynamic features only. Indeed, building static analyzers for
real programming languages is a very complex and time-
consuming engineering task. Having a simple language, yet
sufficiently expressive to model the main dynamic features,
allows to define new static analyses faster and easier.

Furthermore, Chameleon could be used as a common
ground for the definition and comparison, of static analysis
techniques, aiming at reasoning about programs written in
dynamic programming languages, without being restricted to
a particular language. Ideally, when an analysis has been
sufficiently tested on Chameleon, then it could be ported to the
target real-world programming language with just engineering
efforts and without losing theoretical solidity.

Outline: In Section II we describe the Chameleon lan-
guage, first its syntax (Subsection II-A) and then its semantics
(Subsection II-B). Finally, we draw conclusions, in Section III.

II. THE HAMELEON LANGUAGE

Chameleon is a programming language designed specifi-
cally to ease the definition of static analyses, with the focus
on dynamic features of programming languages. Its core
consists in a classic imperative language with assignments,
conditionals and iterative constructs. This latter is extended
with functions/procedures and with non-determinism. Non-
determinism is modeled by means of an input construct,
allowing programs to receive input values during execution.
Chameleon is equipped with standard basic values (booleans,
integers, rationals and strings), as well as inductive data-
structures, such as finite lists of values and finite dictionaries
(i.e., identifier-value associations).

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 21 / 69

〈prog〉 ::= 〈fundef〉; 〈com〉
〈fundef 〉 ::= function 〈id〉 (〈exp〉,) { 〈com〉 }
〈com〉 ::=

| skip
| 〈id〉 := 〈exp〉
| 〈id〉 [〈exp〉] := 〈exp〉
| if 〈exp〉 then { 〈com〉 } else { 〈com〉 }
| while 〈exp〉 do { 〈com〉 }
| 〈com〉 ; 〈com〉
| return 〈exp〉
| 〈exp〉
〈exp〉 ::=

| (〈exp〉)
| 〈value〉
| 〈id〉
| 〈id〉 (〈value〉,)

| 〈exp〉 [〈exp〉]
| (〈type〉) 〈exp〉
| eval 〈exp〉
| input()
| size (〈exp〉)
| concat (〈exp〉 , 〈exp〉)
| charat (〈exp〉 , 〈exp〉)
| substr (〈exp〉 , 〈exp〉 , 〈exp〉)
| not 〈exp〉
| - (〈exp〉)
| 〈exp〉 〈bop〉 〈exp〉
〈bop〉 ::= * | / | + | - | <= | >= | < | > | == | not | and | or
〈type〉 ::= bool | int | rat | str

| []
| [〈type〉,]

| [〈id : type〉,]

〈value〉 ::=
| ⊥
| b ∈ B
| i ∈ Z
| q ∈ Q
| s ∈ S
| 〈collection〉
〈collection〉 ::= [] | [〈exp〉,] | [〈id : exp〉,]

〈id〉 ::= x ∈ X

Figure 1. The syntax of Chameleon

Concerning properly dynamic features, Chameleon is not
statically typed and it applies type coercion when needed. The
language has a (limited) reflection mechanism, implemented
with an eval construct. Finally, Chameleon expressions can
have side-effects.

A. Syntax
The syntax of Chameleon is specified by the context-

free grammar depicted in Figure 1. A program P ∈ 〈prog〉
is a list of function definitions ḟ ∈ 〈fundef〉; followed by
a command c ∈ 〈com〉, which in turn can be a standard
statement of an imperative language (like, in order, the do-
nothing command, the assignment of a variable, a list element,
or a field, the conditional statement, the conditional loop, and

the composition), a return statement (which can be used either
to leave the execution of a function with a value or to terminate
the program when employed outside of functions body), or an
expression e ∈ 〈exp〉.

An expression e in Chameleon is inductively defined by
the syntactic category 〈exp〉. Its smallest building block are
identifiers x ∈ 〈id〉 = X = { a, b, . . . , z }∗, and simple
values which consist of the undefined value ⊥, the booleans
b ∈ B = { true, false }, the integers i ∈ Z, the floats
q ∈ Q, the strings s ∈ S (a string of the language is a
sequence of characters over the alphanumeric alphabet en-
closed by double quotes, e.g., , “foo”, “bar”, etc., and we
assume the Java-like syntax for characters escaping), and the
empty list []. Compound expressions are built inductively: If
e is an expression, then (e) is a parenthesized expression; If
e0, . . . , en and x0, . . . , xn are a sequence of expressions and
a sequence of identifiers, respectively, then [e0, . . . ,en] is a
non-empty list and [x0 : e0, . . . ,xn : en] is a dictionary; If
f ∈ X is a function name, then f(e0, . . . ,en) is a function
call with actual parameters e0, . . . , en ∈ 〈exp〉, whereas f() is
a function call with no arguments; If c ∈ 〈collection〉 is a list
or a dictionary (i.e., a collection), then c[e] is the access of an
element in c, namely, a list access or a field access depending
on the nature of c; If t is a type, then (t) e is a cast to the type
t. The rest of the rules of the grammar are self-explanatory
and their purpose can be easily recovered by the semantic
rules given in the next section. Briefly, they include the eval
statement, the input() function, and several operators for the
most common operations between values (the precedence rules
for the binary operators in 〈bop〉 are the standard ones, and
the associativity is always left to right).

In the following, we refer to the set of all terms T defined
as the union of the sets of terms generated by each syntactic
category of the Chameleon grammar.

B. Semantics
In this section, we formally describe the operational seman-

tics of Chameleon. We start by defining the concepts of ground
values, types, and state during an arbitrary step of computation,
then we provide a small-step operational semantics.

1) Ground Values and Types: Let V be the set of ground
values (with metavariable v) inductively defined as the smallest
set such that {⊥} ∪ B ∪ Z ∪ Q ∪ S ∪ { [] } ⊆ V, and if
v0, . . . , vn ∈ V and x0, . . . , xn ∈ X, then [v0, . . . ,vn] and
[x0 : v0, . . . ,xn : vn] belong to V. Moreover, we define the
set C = L∪D of ground collections, where L = { l ∈ V | l =
[v0, . . . ,vn] } ∪ { [] } of ground lists and the set D = { d ∈
V | d = [x0 : v0, . . . ,xn : vn] } of ground dictionaries.

The type of a value is inductively defined by the function
τ : V → 〈type〉⊥ as follows (see the previous section for
the meaning of the metavariables employed in the definition):
τ(⊥) = ⊥, τ(b) = bool, τ(i) = int, τ(f) = rat, and
τ(s) = str. Moreover, if l = [v1, . . . ,vn] is a (potentially
empty) ground list, then τ(l) = [τ(v1), . . . ,τ(vn)] is the type
of l, and if d = [x0 : v0, . . . ,xn : vn] is a ground dictionary,
then τ(d) = [x0 : τ(v0), . . . ,xn : τ(vn)] is the type of d. If
t, t′ ∈ τ(D), we define the equivalence relation t ∼ t′ if and
only if t′ is a permutation of t.

In the following, we refer to ⊥, bool, int, rat, and str as
simple types, and to the other as compound types. Moreover, if

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 22 / 69

t = [t0, . . . ,tn] or t = [x0 : t0, . . . ,xn : tn] is a compound
type, we define the length of t as |t| = n+1, and if t = [] then
|t| = 0. Finally, we define the partial order relation 4 between
types: ⊥ 4 t 4 t for each type t, and bool 4 int 4 rat 4 str;
if t = [t1, . . . ,tn] and t′ = [t′0, . . . ,t

′
n], then t 4 t′ if and

only if ti 4 t′i for each i = 0 . . . n; If t = [x0 : t0, . . . ,xn : tn]
and t′ = [x0 : t

′
0, . . . ,xn : t

′
n], then t 4 t′ if and only if

ti 4 t′i for each i = 0 . . . n or there are t̂ and t̂′ such that
t ∼ t̂ 4 t̂′ ∼ t′.

2) State: Let Σ = X→ V be the set of environments, and
let P = X →

(⋃
n∈N Xn × 〈com〉

)
⊥ be the set of function

definitions maps. The state of the language during an arbitrary
step of computation is an element of the set Π = Σ+×Σ×P.
Given π = (σ̇, γ, ρ) ∈ Π, where σ̇ = σ0 . . . σn, the second
component γ denotes the global state (i.e., the variables
accessible throughout the program, unless shadowed by local
ones), and σ̇ is a non-empty list of local states. Intuitively,
the list σ̇ of local states shall be used to handle the scope
of variables during a chain of function calls: Every time a
function is called, a new component σ ∈ Σ is appended to
σ̇, and new bindings between formal and actual parameters
are created in σ. Conversely, every time a return statement
is reached, the last component σn of σ̇ is dropped, and the
previous bindings are automatically restored. Moreover, the
third component ρ in π serves to keep track of all the functions
declared by a program. For instance, the following function

function factorial(n) {
if (n < 2) then { return 1 };
return n * factorial(n - 1)

}

is stored in ρ as ρ(factorial) = (n, c), where c is the body of
the function.

In order to handle the state in the small-step rules of the
language, we define some compact notations that will be used
throughout the paper: We write σ = {x1 7→ v1, . . . , xn 7→
vn } to define the environment σ ∈ X→ V such that σ(x) = vi
if x = xi for some i = 1 . . . n and σ(x) = ⊥ otherwise. Note
that, unlike dictionaries, environments can be infinite objects as
well as completely undefined (i.e., when n = 0 and therefore
σ = { }, then σ(x) = ⊥ for all identifiers x). Moreover, if
σ ∈ Σ, we denote the update of the variable x in σ with a
value v as the new environment σ[x 7→v] defined as

σ[x 7→v](y) =

{
v if y = x

σ(y) otherwise

and we naturally extend the notation to an arbitrary number
of variables, i.e., σ[x0 7→v0, . . . , xn 7→vn] = (· · · (σ[x0 7→
v0]) · · ·)[xn 7→vn]. We also extend this notation to a function
definition map ρ.

Finally, given a state π = (σ̇, γ, ρ) where σ̇ = σ0 . . . σn,
the appending of a new environment σ to σ̇ is defined by
π◃σ = (σ̇◃σ, γ, ρ) = (σ0 . . . σnσ, γ, ρ), whereas the dropping
of the last component of σ̇ is denoted by π� = (σ̇�, γ, ρ) =
(σ0 . . . σn−1, γ, ρ) if n > 0. The access to the value of a
variable x in π is defined by

π(x) =

{
σn(x) if σn(x) 6= ⊥
γ(x) otherwise

This last definition actually formalizes the shadowing of global
variables by local ones.

3) Operational Semantics: Given the above definitions, we
provide the small-step operational semantics à la Plotkin [7].
In particular, we define the binary relation → over the set
Π×T accordingly to the inference rules provided in the next
sections. Because of space limitations, we do not describe the
semantics of the standard operations of the language (for which
we redirect the reader to [8]), but we only focus on the key
features of Chameleon.

Semantics of Function Calls: In order to compute the
resulting value of an arbitrary function call f(e1, . . . , en) in
a computational state π = (σ̇, γ, ρ), Chameleon implements a
call-by-value strategy: Firstly, all actual parameters e0, . . . , en
are evaluated to a ground value (rule FUNCALL). Then, if the
function f is undefined in ρ, the undefined value is returned
(rule FUNCALL-B1), otherwise a new environment in which the
bindings between actual and formal parameters are defined
is appended to σ̇, and the computation continues from the
function body (rules FUNCALL-B2 and FUNCALL-B3).

Semantics of Type Casting: The explicit type conversion
(t) e allows programmers to change the value of the expres-
sion e from its original type to the new type t. For each type
t, we define a conversion function ↪→t that implements the
type cast policy. More precisely, ↪→t : V → Vt moves values
from V to Vt = { v ∈ V | τ(v) = t }, accordingly to the
type of the input value, namely ↪→t (v) =↪→t,τ(v) (v) where
↪→t,τ(v) : Vt → Vτ(v). Given two types t and t′, the definition
of these functions is the standard conversion if t and t′ are
simple types, the identity function if t = t′, and otherwise
↪→t,t′ (v) is inductively defined as follows:

↪→t,t′ (v) = ⊥ if t or t′ is a simple type
↪→t,t′ (v) = ⊥ if t, t′ /∈ τ(L) or t, t′ /∈ τ(D)

↪→t,t′ (v) = ⊥ if |t| 6= |t′|
↪→t,t′ ([v1, . . . ,vn]) = [↪→t′1

(v1), . . . , ↪→t′n
(vn)]

if t′ = [t′0, . . . ,t
′
n]

↪→t,t′ ([x0 : v0, . . . ,xn : vn]) =

[x0 : ↪→t′0
(v1), . . . ,xn : ↪→t′n

(vn)]

if t′ ∼ [x0 : t
′
0, . . . ,xn : t

′
n]

For instance, concerning simple types, if v = “b4r” then
↪→str,int (v) = 4, or if v = 0, then ↪→int,bool (v) = false, or if
v = 3.5, then ↪→int,str (v) = “3.5”, etc. Given these premises,
the rules CAST and CAST-B are now self-explanatory.

Reflection and Non-Determinism: The eval e statement
enables the runtime execution of Chameleon code dynamically
crafted by programs. Rule EVAL evaluates the expression e
until a value v is obtained. If v = “P ” is a string representing
a valid Chameleon program, then P̂ (namely, the unescaped
version of P) is executed in the state π (thus, allowing side
effects, see EVAL-B1). Otherwise, if v is not the representation
of a valid program, ⊥ is returned (EVAL-B2).

On the other hand, the input() expression allows un-
bounded non-determinism [9]. The implementation of the
input() statement requires the user to supply an input (i.e.,
a string) before continuing the computation. From the trace
semantics point of view, any s ∈ S is a possible outcome of
these statement, as modeled by the rule INPUT.

Operations and Type Coercion: Chameleon employs a neat
type coercion system in order to let values to transparently

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 23 / 69

〈π, e〉 → 〈π′, e′〉
PAREXP

〈π, (e)〉 → 〈π′, (e′)〉
−

PAREXP-B
〈π, (v)〉 → 〈π, v〉

−
ID
〈π, x〉 → 〈π, π(x)〉

〈π, ei+1〉 → 〈π′, e′i+1〉
FUNCALL

〈π, f(v1, . . . , vi, ei+1, . . . , en)〉 → 〈π′, f(v1, . . . , vi, e′i+1, . . . , en)〉

−
FUNCALL-B1 ρ(f) = ⊥

〈π, f(v1, . . . , vn)〉 → 〈π,⊥〉

−
FUNCALL-B2 ρ(f) = ((x1, . . . , xm), c) ∧ n ≥ m

〈π, f(v1, . . . , vn)〉 → 〈π ◃ {x1 7→v1, . . . , xm 7→vm }, c〉

−
FUNCALL-B3 ρ(f) = ((x1, . . . , xm), c) ∧ n < m

〈π, f(v1, . . . , vn)〉 → 〈π ◃ {x1 7→v1, . . . , xn 7→vn }, c〉

〈π, e〉 → 〈π′, e′〉
CAST

〈π, (t) e〉 → 〈π′, (t) e′〉
−

CAST-B
〈π, (t) v〉 → 〈π, ↪→t (v)〉

〈π, e〉 → 〈π′, e′〉
EVAL

〈π, eval e〉 → 〈π′, eval e′〉

−
EVAL-B1 ∃P̂ ∈ 〈prog〉 . v = “P ”

〈π, eval v〉 → 〈π, P̂ 〉

−
EVAL-B2 @P̂ ∈ 〈prog〉 . v = “P ”

〈π, eval v〉 → 〈π,⊥〉

−
INPUT ∀s ∈ S

〈π, input()〉 → 〈π, s〉

Figure 2. Small-step semantics of Chameleon expressions.

flow from one type to another when needed. Suppose that
⊗ ∈ 〈bop〉 is defined for integers and rationals and let us
denote by ⊗int : V2

int → Vint and ⊗rat : V2
rat → Vrat the typed

versions of ⊗. Consider the expression v⊗v′ for two arbitrary
ground values: The goal is to get a value v′′ = v ⊗ v′ in
a way that depends only on the set of types on which ⊗ is
defined. For instance, if ⊗ = *, we want to provide a meaning
to expressions like (true * “a”), (5 * false), etc. Note that
computing v′′ is not a trivial task, especially when seeking a
general method.

The strategy implemented in the Chameleon interpreter is
based on the previously defined partial order 4 on types. The
algorithm for the computation of v′′ is described as follows:

1) We compute the set of types on which ⊗ is defined,
namely dom(⊗) = {⊥}∪{ int, rat }∪τ(L)∪τ(D).
By this definition, every operator is defined on the
undefined type in a vacuous manner, and inductively
on compound types. More precisely, this means that
⊥⊗ v = v⊗⊥ = ⊥, and if v0, v′0 . . . , vn, v

′
n is a se-

quence of values, then [v0, . . . ,vn]⊗[v′0, . . . ,v′n] =
[v0 ⊗ v′0, . . . ,vn ⊗ v′n] and similarly for dictionary
values;

2) We refine dom(⊗) in order to get all the types
greater than τ(v) or τ(v′), namely dom�(⊗) = { t ∈

dom(⊗) | t ≥ τ(v) ∨ t ≥ τ(v′) }, and the types
lower than τ(v) or τ(v′), namely dom�(⊗) = { t ∈
dom(⊗) | t ≤ τ(v) ∨ t ≤ τ(v′) };

3) We compute the least upper bound between (i)
the greatest lower bound of dom�(⊗) and (ii)
the least upper bound of dom�(⊗), namely t =∨
{∧dom�(⊗),∨dom�(⊗) };

4) The result of the computation is defined as v′′ =
v ⊗t v′.

The rules for computing the result of a binary operation are
now trivial. Firstly, we evaluate left-to-right the expressions in
the operation until values are obtained:

〈π, e1〉 → 〈π′, e′1〉
EXP-L

〈π, e1 ⊗ e2〉 → 〈π′, e′1 ⊗ e2〉
〈π, e2〉 → 〈π′, e′2〉

EXP-R
〈π, v ⊗ e2〉 → 〈π′, v ⊗ e′2〉

Then, we compute the result applying the algorithm described
above:

−
EXP-B

〈π, v ⊗ v′〉 → 〈π′, v′′〉

where v′′ = v ⊗t v′ and t =
∨
{∧dom�(⊗),∨ dom�(⊗) }.

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 24 / 69

Commands and Return Statement: Since most of
Chameleon commands are common to the majority of the
imperative languages, we only discuss here the rule of the
return statement, and we redirect the reader to [8] for a detailed
explanation of the other commands.

When a return e statement is met, the expression e is
evaluated in order to obtain a value v:

〈π, e〉 → 〈π′, e′〉
RET

〈π, return e〉 → 〈π′, return e′〉

Then, the following rule returns the value v and restores
the bindings existing previously of the function call:

−
RET-B

〈π, return v〉 → 〈π�, v〉

III. CONCLUSION

In this paper, we have presented Chameleon, a minimal
language capturing the main features of dynamic programming
languages. In particular, it is an imperative non-deterministic
language with functions/procedures and built-in inductive data-
structures, such as finite lists and finite dictionaries. Concern-
ing the dynamic features, Chameleon is not statically typed,
with a mechanism for type coercion. It supports (limited)
reflection, implemented by means of an eval-like construct,
and expressions can have side-effects.

The aim of Chameleon is to provide a common ground
for static analyses developers, in order to easily define and
test their control mechanisms. To build an analyzer for a real-
world programming language is a complex engineering task.
Chameleon abstracts all the technical details characterizing
each language, allowing developers to focus on the analysis
of dynamic features only and, hence, to define new analyses
in a faster and simpler way. Furthermore, comparing similar
control mechanisms, but built for different languages, is tricky.
With Chameleon, is it possible to solve also this issue, since
the analyses share the same underling language.

As a final remark, the interested reader can find
the implementation of Chameleon at the following link:
https://github.com/samueleburo93/chameleon.

REFERENCES
[1] G. A. Kildall, “A unified approach to global program optimization,” in

Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL ’73, 1973, pp. 194–
206.

[2] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL ’77, 1977, pp. 238–
252.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Program. Lang. Syst., vol. 8, 1986, pp. 244–263.

[4] V. Arceri and S. Maffeis, “Abstract domains for type juggling,” Electr.
Notes Theor. Comput. Sci., vol. 331, 2017, pp. 41–55.

[5] S. Buro and I. Mastroeni, “Abstract code injection - A semantic ap-
proach based on abstract non-interference,” in Proceedings of the 19th
International Conference on Verification, Model Checking, and Abstract
Interpretation, ser. VMCAI ’18, 2018, pp. 116–137.

[6] I. Mastroeni and M. Pasqua, “Statically analyzing information flows: An
abstract interpretation-based hyperanalysis for non-interference,” in Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
ser. SAC ’19, 2019, pp. 2215–2223.

[7] G. D. Plotkin, “A structural approach to operational semantics,” Journal
of Logic and Algebraic Programming, vol. 60-61, 2004, pp. 17–139.
[Online]. Available: http://dx.doi.org/10.1016/j.jlap.2004.05.001

[8] M. Hennessy, The Semantics of Programming Languages: An Elemen-
tary Introduction Using Structural Operational Semantics. New York,
NY, USA: John Wiley & Sons, Inc., 1990.

[9] G. D. Plotkin, “A powerdomain for countable non-determinism,” in Pro-
ceedings of the 9th International Colloquium on Automata, Languages
and Programming, 1982, pp. 418–428.

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 25 / 69

A Taint Analyzer for COBOL Programs

Alberto Lovato

University of Verona
Verona, Italy

Email: alberto.lovato@univr.it

Roberto Giacobazzi

University of Verona
Verona, Italy

Email: roberto.giacobazzi@univr.it

Isabella Mastroeni

University of Verona
Verona, Italy

Email: isabella.mastroeni@univr.it

Abstract—The potential damage injection attacks or information
leakage can inflict to an organization is huge. It is therefore
important to recognize vulnerabilities in software that can make
these attacks possible. We are implementing a static analysis
that tracks propagation of tainted values through a COBOL-
85 program. This analysis is part of an already developed
static analyzer performing many syntactic checks and a semantic
interval analysis. It can be used to find untrusted values ending
in dangerous places, for example executed as database queries,
or to verify that sensitive information coming from a database is
not displayed to the user.

Keywords–Taint analysis; Injection attacks; Information leak-
age; COBOL.

I. INTRODUCTION

COBOL is a programming language for business use.
It was designed in 1959, and is still employed in many
organizations. The existing codebase is huge, and experienced
COBOL programmers are aiming for retirement. Many or-
ganizations have migration plans, but a substantial part of
COBOL code is not going to be dismantled in the foreseeable
future. Being used for security critical tasks, e.g., transactions
between bank accounts, it is important to verify that COBOL
programs have as few vulnerabilities as possible. COBOL-
85 programs are structured into divisions. In particular, the
data division contains variable declarations, and the procedure
division contains executable code. It is imperative, structured
code, with no object-orientation.

This paper describes a prototype of a static analyzer for
tracking of values that we consider tainted—e.g., coming
from the user (untrusted), or from a database (sensitive)—
in COBOL-85 code. This is done by first translating the
program into an internal, simpler language, only considering
modification of strings, and then by defining a transfer function
propagating tainted values. The transfer function is applied by
an interpreter to each statement of the intermediate program,
to update the set of tainted variables at that program point.

Injections are the top vulnerabilities found in web applica-
tions [1], and although COBOL is generally not used in front
end development, it can still be used in the back end part of the
application. It is therefore desirable to be able to find injection
vulnerabilities in COBOL code.

Injection detection in other languages is well studied,
for example for the Java language [2], [3], JavaScript [4],
Android [5], scripting languages, e.g., Python [6], and even
web frameworks [7]. However, to our knowledge, taint analysis
in COBOL is not considered in the academic community.

The paper is structured as follows. Section II describes the
ARCTIC analyzer, that contains the code for the taint analysis
that is explained in the paper. In Section III, the analysis is
described in detail. In Section IV, the analysis of a small
COBOL program is executed. Section V concludes the paper.

II. THE ARCTIC ANALYZER

The analysis code is part of ARCTIC, a general static
analyzer for COBOL-85 programs.

ARCTIC currently performs a lot of syntactic analyses,
along with a semantic analysis for the computation of variable
intervals. More precise numerical analyses are in development.
Interval analysis also is executed on a simpler internal lan-
guage, this time only considering modification to numerical
variables.

ARCTIC is written in Java, has command-line and remote
interfaces, and can be run by a SonarQube [8] plug-in. Sonar-
Qube is a platform used in many organizations to run analyzers
and tools for code quality management of software projects.
A scanner module is responsible for running analyses on code
and sending the result to the server module. A user can then
connect to the server with a browser to look at nicely formatted
statistics and issues. The SonarQube plug-in of ARCTIC sends
analysis rules selected by the SonarQube user and the paths
of files of the project to the ARCTIC server, which analyzes
them and sends issues back to the plug-in.

The interaction between ARCTIC and SonarQube is shown
in Figure 1.

Figure 1. Interaction between the ARCTIC server and the SonarQube
plug-in.

Issues are then available to be displayed in the SonarQube
web interface. In Figure 2, there is an example result of taint

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 26 / 69

analysis performed by ARCTIC, as seen by a user connecting
to the SonarQube server with a browser. Issues are shown
below the line to which they belong, after the user clicks on
issue markers on the left. In this example, the analysis output is
a set of variables that are tainted before reaching every program
point, and so are the issues.

Figure 2. Taint analysis output displayed in the SonarQube web interface.

SonarQube rules represent some kinds of condition that
users want to check. Rules may be activated in user defined
quality profiles. Figure 3 is a screenshot of some rules defined
in the ARCTIC SonarQube plug-in.

SonarQube itself contains a module for analysis of COBOL
programs [9] in its Enterprise Edition, but at present it does
not perform taint nor interval analysis.

ARCTIC uses a parser for COBOL-85 code that is a fork of
proleap-cobol-parser [10], supporting ANSI 85, IBM OS/VS
and MicroFocus dialects. The Abstract Syntax Tree (AST)
produced by the parser contains representations of COBOL
components, such as divisions, statements and declarations in
a hierarchical way. Nodes of the AST can be accessed by
using the visitor pattern, that allows client programmers to act
on elements of a certain type by simply overriding a method in
a class. Syntactic checks can be performed right after parsing,
to detect situations like obsolete or insecure statements, bad
coding practices, and type errors. Some other analyses verify
the correctness of SQL code embedded into COBOL programs.
This SQL code is extracted by the COBOL parser from EXEC
SQL statements, and then parsed and analyzed with the aid of
an external library, JSqlParser [11].

III. TAINT ANALYSIS

The analyzer works by interpreting the code, in order to
compute a representation of the state where, at each program

point, it is clear which variables are tainted. It considers a ver-
sion of the program containing only relevant information, such
as data about text variables and statements manipulating or
using them. This simplifies the analysis a lot, as COBOL code
is very verbose, and many statements are redundant for the
analysis. The translation process is explained in Section III-A.
The state in our case is simply the set of tainted variables at
each program point. The interpreter executes each statement
of the intermediate language by giving to it as input state the
output state of the previous one, as shown in Figure 4.

The initial state is in general empty, as no variable is tainted
at start. However, procedure divisions in COBOL may have
parameters, since they can be called as subprograms by other
programs. We do not analyze flows between programs yet, but
the user can specify a flag, in order to consider parameters of
procedure divisions as tainted. For each statement, the analysis
tracks the current tainted variables, and if they flow into a sink,
an issue is reported. An example is shown in Table I.

TABLE I. EXAMPLE PROGRAM ANALYSIS.

State before Statement
∅ DISPLAY x
∅ ACCEPT x

{x} STRING ’Input: ’ x DELIMITED BY SPACE INTO y
{x, y} . . .
{x, y} sink(y)← report issue

Here, the second statement adds the variable x to the
set, since its content is coming from the user. The following
statement transfers taintedness to variable y. Lastly, the tainted
value reaches a sink, and the analyzer reports an issue.

A. Translation
If we are interested in detecting injection of untrusted data,

for example in a database query, we have to look for text
variables, as numerical variables cannot be used to perform an
injection attack.

ACCEPT. The means by which a user could directly insert a
value into a COBOL-85 standard program is the ACCEPT
statement, that reads input from the console, and is as such
considered a source of untrusted data. It is translated into
ACCEPT x, where x is the variable receiving the data,
unless the statement accepts data from the system date;
in that case it is translated into SKIP, since the date is
not an untrusted input.

STRING. The STRING statement concatenates several strings
into one. It is translated into the intermediate statement
STRING x1, . . . , xn INTO y.

MOVE. The MOVE statement moves the value of a variable
into another variable. It is translated into MOVE x TO y.

Paragraphs. COBOL code is organized in paragraphs, la-
beled blocks of code. Procedure calls are implemented
in COBOL by using the PERFORM statement, followed
by the names of the blocks to execute, which form the
body of the procedure. Considering for example a code
subdivided in three paragraphs like this

PAR1.
ACCEPT name
DISPLAY name.
...

PAR2.

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 27 / 69

Figure 3. ARCTIC rule list in the SonarQube plug-in

Figure 4. Execution of the program by the interpreter.

...
PAR3.

...

a single block would be called with PERFORM PAR1,
whereas a sequence of blocks would be called with
something like PERFORM PAR1 THRU PAR3. Proce-
dure calling statements like those above are translated into

EXECUTEBLOCKS first [last]. PERFORM can also de-
scribe loops, with the clause UNTIL, that repeats the body
of the statement until a certain condition becomes true,
or with the clause TIMES, that repeats the body of the
statement a specified number of times. Taintedness does
not change in loops, so these statements are translated
like any other kind of PERFORM.

Injection. We are also interested in statements that may
cause the unintended execution of code. For SQL in-
jection, the statement EXEC SQL PREPARE STMT
FROM :DYNSTMT END-EXEC executes a possibly dy-
namically created query stored in DYNSTMT. It is trans-
lated into EXECSQLPREPARE DYNSTMT. These state-
ments, where flow of tainted information can cause un-
intended interaction with other parts of the system, are
called sinks. We also denote the previous statement by
sink(DYNSTMT).

Control flow statements. IF statements execute a branch
or another according to the valuation of a condition.
The corresponding intermediate statement is IF condition
THEN B1 ELSE B2, where B1 and B2 are blocks of
intermediate statements.

Other statements. Statements that do not deal with string ma-
nipulation are translated into the intermediate statement
SKIP, that is ignored by the analysis.

Intermediate statements store information about the orig-

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 28 / 69

inal COBOL statement, such as the line number, in order to
map issues back to the original position in the source code.
They also store the state before their execution, so that it is
readily available to be displayed at the right program point.

B. Transfer Function

Let T be the set of all sets of tainted variables. We define a
transfer function f : T → T that specifies which variables are
tainted after the execution of each statement, given the input
state T ∈ T. The interpreter implements this transfer function
in the execute method of the class corresponding to each
statement type, to produce a set of tainted variables for every
program point.

ACCEPT x. This statement gets an input string directly from
the user. This is a potential source of untrusted data, and
so we mark the receiving variable as tainted.

fACCEPT (T) = T ∪ {x} (1)

STRING x1, . . . , xn INTO y. String values are concatenated
with the STRING statement, that as such transfers the
taintedness properties from source variables to the receiv-
ing variable. If at least one of the variables containing
the strings that are being concatenated is tainted, then we
mark the receiving variable as tainted.

(2)
fSTRING(T)

=

{
T ∪ {y} if ∃x ∈ {x1, . . . , xn}.x ∈ T
T otherwise

MOVE x TO y. MOVE makes the receiving variable tainted
if and only if the source variable is tainted.

fMOVE(T) =

{
T ∪ {y} if x ∈ T
T otherwise (3)

Paragraphs. Each paragraph is a list of statements, e.g.,
P1 = S1 . . . Sn; the transfer function of a paragraph is the
composition of the transfer functions of the statements.

fP1(T) = fSn
(. . . (fS1

(T)) . . .) (4)

EXECUTEBLOCKS first [last]. For every COBOL pro-
gram, we build a list of blocks corresponding to its
paragraphs, for example P1, P2, P3. When we then
execute a block with the intermediate statement EXE-
CUTEBLOCKS P1, its transfer function is that of the
executed block.

fEB(T) = fP1(T) (5)

The transfer function of the execution of several blocks,
e.g., EXECUTEBLOCKS P1 P3, is the composition of
the functions of the executed blocks.

fEB(T) = fP3(fP2(fP1(T))) (6)

IF condition THEN B1 ELSE B2. We conservatively keep
taintedness information of both branches of a conditional
statement, and so the transfer function is the union of the
two functions.

fIF (T) = fB1
(T) ∪ fB2

(T) (7)

SKIP. This statement does nothing regarding the modification
of taintedness of variables, and so its transfer function is
the identity function.

fSKIP (T) = T (8)

Sinks do not modify taintedness, and thus they have an identity
transfer function. Table II sums up translation and transfer
function result for every intermediate statement.

C. Implementation
Figure 5 shows the transformation of a COBOL program.

Variables containing text are extracted in a list, whereas
COBOL statements are translated into intermediate language.
A list of the paragraphs found in the program is kept in mem-
ory to allow the interpreter to execute EXECUTEBLOCKS
statements.

Figure 6 outlines the execution of the intermediate pro-
gram. The interpreter executes the transfer function of every
statement, and the produced state is retained in the executed
program, associated to the next statement.

IV. EXAMPLE

In this section, we reconsider the example of Figure 2, and
show how it is transformed and executed.

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. example.
3 DATA DIVISION.
4 WORKING-STORAGE SECTION.
5 01 name PIC X(20).
6 01 query PIC X(50).
7 01 complete-query PIC

X(70).
8 PROCEDURE DIVISION.
9 PAR1.

10 IF name <> 0
11 DISPLAY ’non zero’
12 ELSE
13 ACCEPT name
14 STRING query DELIMITED BY

SIZE
15 name DELIMITED BY

SPACE
16 INTO complete-query
17 DISPLAY complete-query
18 END-IF
19 PAR2.
20 EXEC SQL PREPARE STMT FROM

:complete-query END-EXEC.

Three alphanumerical variables are declared at lines 5-7,
so the variable list name, query, complete-query is
produced by the VariableExtractor. The paragraph list
PAR1, PAR2 is saved in the intermediate program. The IF
statement at lines 10-18 is translated as

IF condition
SKIP

ELSE
ACCEPT name
STRING query, name INTO complete-query
SKIP

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 29 / 69

TABLE II. TRANSFER FUNCTION f .

COBOL Intermediate f(T)

ACCEPT <identifier> ACCEPT x T ∪ {x}

STRING ... INTO ... STRING x1, . . . , xn INTO y

{
T ∪ {y} if ∃x ∈ {x1, . . . , xn}.x ∈ T
T otherwise

MOVE ... TO ... MOVE x TO y

{
T ∪ {y} if x ∈ T
T otherwise

P1. <statements> P1 = S1 . . . Sn fSn (. . . (fS1
(T)) . . .)

PERFORM P1 EXECUTEBLOCKS P1 fP1(T)

PERFORM P1 THRU P3 EXECUTEBLOCKS P1 P3 fP3(fP2(fP1(T)))

control flow IF condition THEN B1 ELSE B2 fB1
(T) ∪ fB2

(T)

sinks e.g., EXECSQLPREPARE source T

other statements SKIP T

...
01 name PIC X(20)
01 age PIC 999
...

...
ACCEPT name
ACCEPT date FROM DATE YYYYMMDD
...
PAR1.
 DISPLAY name
 ...
PAR2.
 ...
...

Variable

Extractor

Translator

"name",...

...
ACCEPT name
SKIP
...
PAR1.
 SKIP
 ...
PAR2.
 ...
...

COBOL Program Intermediate Program

PAR1

PAR2

Paragraph List

Figure 5. Transformation of a COBOL program into the intermediate representation.

Interpreter
...
ACCEPT name
STRING name, bd INTO id
SKIP
...

Intermediate Program Executed Program

...
{}
{name}
{name, id}
...

...
ACCEPT name
STRING name, bd INTO id
SKIP
...

Figure 6. Execution of the intermediate program by the interpreter.

whereas the statement at line 20 is translated as

EXECSQLPREPARE complete-query

Then, each statement is executed by applying the logic
defined in Section III-B. For example, the transfer function of
the IF statement is defined as
fIF (T) = fSKIP (T) ∪ fSKIP (fSTRING(fACCEPT (T)))

(8)
= T ∪ fSTRING(fACCEPT (T))
(1)
= T ∪ fSTRING(T ∪ {name})
(2)
= T ∪ T ∪ {name,complete-query})
= T ∪ {name,complete-query}

Before executing the IF statement, the set T is empty,

since none of the declared variables are tainted at that point.
The final set is thus {name, complete-query}.

V. CONCLUSION

The prototype we developed is able to track propagation of
tainted values in COBOL-85 programs. We are not aware of
any other taint analyzer for COBOL code. At the moment, the
analyzer only checks for SQL-injection, but, as future work,
we could also consider other kinds of injection, or the other
way round, the leaking of sensitive values. Information from
a database, e.g., a credit card number, may be displayed to
the user if a variable containing it is used as argument of
the COBOL statement DISPLAY. This kind of analysis would
require considering DISPLAY statements and analogous ones
(e.g., GUI output statements) as sinks, while sources of tainted

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 30 / 69

information would be statements reading from the database
into host variables. Also, other versions of COBOL may allow
users to inject values via other means, e.g., a graphical user
interface, and not only via the ACCEPT statement, so we may
extend the analysis to include this possibility.

REFERENCES
[1] “Owasp Top 10 Project,” 2019, URL:

https://www.owasp.org/index.php/Category:OWASP˙Top˙Ten˙Project
[retrieved: 2019-10-27].

[2] F. Spoto, E. Burato, M. D. Ernst, P. Ferrara, A. Lovato, D. Macedonio,
and C. Spiridon, “Static Identification of Injection Attacks in Java,”
ACM Trans. Program. Lang. Syst., vol. 41, no. 3, 2019, pp. 18:1–18:58.

[3] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “TAJ:
effective taint analysis of web applications,” in Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, 2009,
pp. 87–97.

[4] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg,
“Saving the World Wide Web from Vulnerable JavaScript,” in Proceed-
ings of the 2011 International Symposium on Software Testing and
Analysis, ser. ISSTA ’11. New York, NY, USA: ACM, 2011, pp.
177–187.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269.

[6] S. Liang and M. Might, “Hash-flow Taint Analysis of Higher-order
Programs,” in Proceedings of the 7th Workshop on Programming
Languages and Analysis for Security, ser. PLAS ’12. New York, NY,
USA: ACM, 2012, pp. 8:1–8:12.

[7] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg,
“F4F: Taint Analysis of Framework-based Web Applications,” in Pro-
ceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’11.
New York, NY, USA: ACM, 2011, pp. 1053–1068.

[8] “SonarQube platform,” 2019, URL: https://www.sonarqube.org [re-
trieved: 2019-10-27].

[9] “SonarCOBOL,” 2019, URL: https://www.sonarsource.com/products/
codeanalyzers/sonarcobol.html [retrieved: 2019-10-27].

[10] “Proleap Cobol Parser,” 2019, URL: https://github.com/uwol/proleap-
cobol-parser [retrieved: 2019-10-27].

[11] “Java SQL Parser,” 2019, URL: https://github.com/JSQLParser/JSqlParser
[retrieved: 2019-10-27].

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 31 / 69

How to Overcome Test Smells in an Automation Environment

Mesut Durukal

IOT Division

Siemens AS

Istanbul, Turkey

e-mail: mesut.durukal@siemens.com

Abstract—This paper presents the most common test smells

and their prevention methods in a test automation framework.

In this scope, the necessity for test automation is discussed and

the most probable test smells in a test automation framework

are discussed. Possible solution methods to handle test smells

are presented and their advantages are evaluated as per the

obtained results. Presented methods are also applied in the test

activities of a big project, which is a cloud-based open IoT

operating system and consists of microservices.

Keywords-cloud services; asynchronous microservices; test

automation; test smells; robustness.

I. INTRODUCTION

It is a well-known fact that neglecting testing activities in
projects can cause major cost impacts in the later stages of
the product life cycle. To illustrate the prominence of testing,
the leaning tower of Pisa is a stunning example for costs of
fix after release. The project lasted for 10 years and its total
cost was over €30 million [1]. Another example to support
this is the annual cost of manual maintenance and evolution
of test scripts in Accenture, which was estimated to be
between $50-$120 million [2].

All levels of testing activities have to be incorporated
into projects on time to avoid such situations. For the
products/systems in which multiple units/subsystems are
integrated, each unit or subsystem is tested individually.
Nevertheless, the integrated product/system must still be
verified, which indicates the necessity of end-to-end testing.
The quality of the product is fully ensured by testing at all
levels [3].

Once the importance of testing is accepted, the next
concern would possibly be the testing approach. Necessity
for test automation arises due to several reasons. Even
though the demands are growing in projects since more
requirements and features are added day by day, timelines
tend to get shorter, and this increases the pressure on every
stakeholder. Each activity in a project has to be managed
more efficiently in terms of time and effort for this reason.
Additionally, in a continuous integration and delivery
environment, bugs possibly exist in each deployment, and
hence the need of continuous testing is evident.

Continuous testing activities would be much more
difficult to manage without test automation. Tests are
automated and scheduled executions are planned and
triggered automatically over pipelines to reduce manual
effort and testing duration.

Although there is no doubt about the need of test
automation, it has several challenges. One of the most
encountered difficulty is the inconsistent results, especially
in the asynchronous services. Therefore, robustness is very
crucial for testers to avoid additional analysis effort. Test
smell is the main cause of lack of robustness in test results.
Proposed solutions in this paper provide an insight to cope
with test smells and ensure robustness.

To sum up, testing is a must for quality of our products
and hence the prevention of unexpected costs. Thanks to test
automation, it is possible to perform testing activities,
continuously. On the other hand, automation has some
challenges since there is a risk for smells in test code. Test
smells cause extra effort and cost. Main objectives of this
paper are:

• To present the most common smells,

• To present a set of mitigating actions for those
smells within the scope of automated testing,

• To provide empirical information supporting actions.
For this purpose, system under test is presented in

Section II and Section III describes test smells. Section IV
explains the solutions, where the results are discussed in
Section V. Finally, summary of the work is addressed in
Section VI.

II. SYSTEM UNDER TEST

The system under test has been developed by more than
600 people in 10 countries. A new version is released every
two weeks. Acceptance tests are performed for each release
and regression tests are performed after every deployment,
which is approximately every 4 hours.

The architecture is built on microservices approach,
which makes use of a granular structure. In this way, services
collaborate and build the whole product. A representation of
microservices architecture is shown in Figure 1.

Figure 1. A sample representation of microservices [4].

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 32 / 69

Despite all the advantages [5], there are drawbacks as
well, especially for asynchronous systems. In those systems,
user requests are responded by the relevant unit without
waiting for the response of the successive units. For each
request, a transaction is created, which leads additional
requests to other microservices. Even if the first steps of the
transaction succeed, a failure in the following steps is
possible. Unpredictable failures and processing time are
underlying causes for test smells in such architectures.

III. TEST SMELLS

Test smells are observed during the test cycles and the
solutions are applied on a cloud-based open IoT operating
system in this study. Testing activities are performed from
unit level to end-to-end level.

Counter-actions against automation difficulties for test
improvement are explained in Section IV. Before that, test
smells are defined formally in this section in order to
construct a framework for the proposals. Test smells are
defined as indicators, observed during testing cycles, for
potential problems [6]. In other words, they are regarded as
signals for the poorly designed tests [7].

A good starting point to emphasize the importance of test
smells is to explain their consequences if they are not fixed.
Table I shows all possible test results, where the highlighted
cells are two problematic groups. When a test does not catch
a failure, this corresponds to the Silent Horror [8]. On the
other hand, the situation, where a test result shows a failure
even though the feature under test is developed as expected,
indicates a False Alarm.

TABLE I. TEST RESULTS CLASSIFICATION [3]

Correct Result

Pass Fail

Execution

Result

Pass No Problem Silent Horror

Fail False Alarm Real Bugs

Silent Horrors cause extra costs in later stages of product

life cycle, since the cost of fixing a bug after the release of
the product considerably increases. According to [9], in such
a situation the cost of bug fixing is nine times higher. That’s
to say, a test smell, which is a potential cause for such a
problematic result, means additional cost in the product
budget.

Similarly, false alarms cause extra costs as well, since the
reported false alarms require an evaluation. To illustrate how
crucial they can be, crash of Helios Airways Flight 522 in
August 2005 can be examined. It is the most fatal flight
accident to date in which 121 passengers and crew were
killed when a Boeing 737-31S crashed into a mountain in the
north of Athens [10]. After the accident investigation, it was
concluded that the pilots neglected the cockpit pressure
failure alarms due to lots of false alarms. The existence of
lots of false alarms can cause an overlook of real problems or
bugs as in Helios case. The system cannot be designed by
suppressing some of the negative results, since it would be
too risky. Therefore, the only way to minimize the number of
residual bugs is to reduce the number of false alarms.

The effect of misleading test results is clear. More than a
hundred of root causes for these problems, namely test
smells, are defined [11]. In this study, the most common
smells in the automation framework are detected. For this
purpose, interviews were conducted with the test automation
engineers in the organization and maintenance tickets on test
management tool were investigated. Most of the assignments
were related to the refactoring of a test code which had
instable results. Some bugs, which were collected from end
users, imply that some scenarios are not covered by test
cases. Beyond these examples, prominent cases are
summarized in Table II.

TABLE II. MOSTLY FACED TEST SMELLS IN THIS STUDY

Test Smells Description

Duplication Code Duplication.

Instability & Unreliability Tests once pass and once fail under same
conditions.

Distortive Smells Tests with Wrong Results.

Complexity Tests, which are not easy to understand or

maintain.

Limited Scope Tests with insufficient scope.

A. Duplication

Code duplication increases maintenance effort and time.

B. Instable and Unreliable Tests

1) Flaky Test [11]: Flaky tests sometimes pass and

sometimes fail without any change in the system or

circumstances [11]. Google statistics [12] provide a clue to

guess how much trouble flaky tests introduce to projects:

• 1.5% of all test runs report a "flaky" result.

• Almost 16% of tests have some level of flakiness.

• 84% of the transitions observed from pass to fail
involve a flaky test.

2) Suite Dependency: Suite dependency arises when a

group of tests pass when they are run independently but fail

when more testers run them simultaneously or in a wrong

order.

3) Fragile Test: Failure of a test depending on a change

of a parameter addresses a fragile test. For instance, test

crash due to a test data change implies a data sensitive test.

C. Distortive Smells

Distortive smells hide the real results and lead to false
alarms or silent horrors. For example, an assertion error can
create a pass result even if the expected outcome is not
obtained.

D. Complexity

1) Eager Test [10] is mainly described in literature as a

test which tries to verify lots of features of the same object

in a single run. In this case, granularity and traceability are

lost, and understandability of tests reduces.

2) Slow tests: The architecture may result in slow or

long run time of tests if it is not well-organized.

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 33 / 69

3) Anti-patterns are the code blocks for which the best

practices and standarts are not applied. They may stem from

dead fields, bad naming or external resources.

E. Limited Scope

Testing the functionality in a limited scope, e.g., testing
only the positive paths, hides the bugs lying under other
patterns. Users are warned by messages when there is a
misuse. Therefore, testing the functionality for the negative
paths are as important as the testing of positive paths.

Another risky situation is related to security. For
authentication and authorization functionalities, the positive
scenarios test whether the defined users can login to system.
However, in this case, the test of the negative scenarios is
more important for the prevention of malicious attacks.

Finally, in terms of scope, test data holds a great
importance for the coverage. Testers are suggested to use
smartly chosen numbers instead of magic numbers.

IV. SOLUTIONS AND RESULTS

With the recognition of the most challenging problems,
the strategy to overcome these problems is to determine root
causes and to develop solutions against them. This is
summarized in Table III.

TABLE III. COUNTER-ACTIONS AGAINST TEST SMELLS

Smell Root Cause Solution

Duplication Same code in lots of classes Helper Classes

Flaky Results

Async waits
Polling

Mechanisms

They are overlooked and not

cured.
Test History

Suite

Dependency

Tests are not grouped smartly.
Suites &

Annotations

Executions are dependent. Clean Up

Fragile Tests

Poor code/architecture

Manual Static
Code Analysis Distorted

Results

Complexity
Static Code

Analysis Tools

Limited Scope

Limited Execution Environment
Additional
Executions

Limited Test Data
Test Data

Improvement

The solutions proposed in Table III are developed to get

rid of test smells and hence to reduce maintenance effort.
Improving test designs and solutions to test smell is as

important as determining test smells. In this section,
solutions used in our study are presented in detail.

A. Helper Classes

The majority of the test steps are reused in several test
scenarios. This introduces the obligation to apply the same
fix on at several different points. This is one of the reasons
why variations between test classes exist. As test automation
framework evolves and number of tests increases, it becomes
harder to update the existing code.

Regarding the size of the project, it becomes inevitable to
implement and use helper classes after a certain point.

Instead of using duplicated code, several test classes call
helper methods. Figure 2 shows only a part of the list of tests
which use a method from a helper class. For illustration,
when a transaction time is updated to 10 seconds, tests as per
with 5 seconds will fail. With the use of a helper method, it
is sufficient to make this update at a single point only.
Otherwise, all classes, which include the wait time, should
have been scanned to be updated.

Figure 2. Lots of tests doing the same operation over helper classes.

 Additionally, helpers improve the understandability of
the code as well, as shown in Figure 3.

Figure 3. Change in understandability of the code with Helper Classes.

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 34 / 69

B. Polling Mechanisms

Flaky results are often produced by the methods which
do not wait for the result of a call properly. According to a
research [12], possible causes of flaky results are collected in
Table IV with their frequency.

TABLE IV. POSSIBLE REASONS FOR FLAKY RESULTS

Async Wait 27,08%

IO 22,45%

Concurrency 16,97%

Test Order Dependency 12,42%

Network 9,59%

Time 3,14%

Randomness 2,93%

Resource Leak 2,50%

Floating Point Operation 1,73%

Unordered Collections 1,18%

As suggested in [13], instead of reporting a failure after a

single execution, at least the results from three executions are
compared to decide whether it is a failure or success. Toward
this aim, adaptive retry algorithms are integrated into code.

Test executions are observed before and after applying
retry mechanisms to understand their effect. Figure 4 shows
the results of 23 consecutive executions. The code without
retry failed 6 times, and the code with retry failed only once.

Figure 4. Test results before and after applying retry mechanisms [3].

Figure 5 shows a scenario to illustrate retry mechanisms.

Figure 5. Successful response after 3rd request.

A deletion scenario is studied to figure out the working
principle of retry mechanisms. In this scenario, “myservice”
responds requests coming from end-user and communicates
to entity service to save and delete objects. After the receipt
of a creation request, the call is responded and the operation
is queued. However, if the object is tried to be deleted before
the creation finishes, the request is refused since the object
cannot be found. This does not address a bug because
deletion works when the object exists. In this case, whenever
a negative response is returned from the server, the request is
retried after a polling duration until the maximum timeout is
reached. If the request was not retried, test would fail.

Additionally, polling mechanisms replace static waits.
For instance, when an operation is expected to be fulfilled in
2 minutes, even though waiting up to 2-minute-wait is
accepted, polling for the result with a certain frequency
prevents longer waits after the process is completed.

C. Test History

Against instabilities, scheduled jobs are created over
pipelines. Execution of tests multiple times enables us to
observe sporadic issues. After each execution, results are
automatically reported and instabilities are filtered out at the
end. Hence, the risk of overlooking a failure is minimized. A
sample representation is shown in Figure 6 [14].

Figure 6. Test Result Trend across executions [14].

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 35 / 69

D. Test Suites and Annotations

Tests are labeled with annotations to group similar
scenarios to execute together. Thus, the whole suite is
divided into subsets and by parallel executions durations of
the regression testing are decreased. Besides, tests which
block each other can be managed in this way to handle suite
dependencies. A sample annotation is:

@Test(groups = { TestGroups.ENTITY, TestGroups.DELETE,

TestGroups.UI }, enabled = true)

E. Clean Up

Cleaning the created objects after each test execution is
of great prominence since otherwise, they result in conflicts
in the following executions. Thanks to clean ups integrated
in the automation framework, conflicts are not only hindered
but also the load on testing environments are also reduced.

F. Reviews

1) Test Definition Review: Test definitions are reviewed

by a separate team after their creations. In this way, on one

hand, coverage concerns are fulfilled and on the other hand,

Eager tests are rearranged.

2) Test Code Review: According to a list of code review

standards, test code is reviewed in many aspects by different

people, thus the weaknesses in the code are minimized, and

quality is enhanced.

a) Cross check: Review of the test design by a second

eye reveals smells since a fresh look provides an extra point

of view. Fragile codes, false alarm and silent horror cases,

scope overlaps, structural smells are treated in this way.

b) Best practices: Removing unnecessary code blocks

is observed as one of the most fundamental factors which

slow down test executions. A login operation, which is

performed over user interface, is a relatively slow operation.

Similarly, final modifiers and some other parametric usages

affect the memory consumption and execution performance.

As a best practice, naming conventions are set to prevent

bad naming and obscure tests.

G. Tools Usage

Code quality tools detect smells and advice for the
solutions. SonarQube is used in this study to scan test code
and to improve quality. Lots of vulnerabilities, such as
fragile and long tests, duplicated codes and structural smells,
are revealed and fixed by means of these scans. Figure 7
shows that SonarQube warns about magic numbers.

Figure 7. Warnings of SonarQube.

H. Additional Executions

Apart from regression suites and functionality checks,
some additional exploratory and compatibility testing are
performed to increase test coverage. Some other smells, like
Testing Happy Path Only, can be reduced with Exploratory
testing. In a sprint, distribution of found bugs over one
service is illustrated in Figure 8.

Figure 8. Distribution of found bugs over one service [3].

Therefore, testing different scenarios helps finding
hidden bugs. However, there is another limitation beyond
scope, which is execution platform. Regardless of the
context, running a test only on a single platform limits
observation. For instance, verification of user interface
functions on a single browser may lead to miss out some
bugs appearing on other browsers. To eliminate these risks,
cross browser testing is integrated into testing processes with
Selenium Grid [15], as shown in Figure 9.

Figure 9. Selenium Grid [15].

In other respects, for hardware tests, a limited number of
real devices are available. Thus, a machine manager server is
developed in order to increase execution platforms. Upon
request, the server prepares a virtual environment for the
execution.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 36 / 69

I. Test Data Generation

Instead of using static numbers in test data, test data
covering different values and corner cases is generated. A
piece of code to generate a wide range of data is developed
in the framework. Some of the insufficient coverage of scope
is resolved with this approach. Figure 10 shows a list of
generated test data.

Figure 10. Combinations of test input data.

It should also be noted that spending more effort than
needed would be another reason for inefficiency. Several
parameters with multiple possible values introduce
thousands of test cases. Employing systematic test design
methods reduces the number of test cases to a reasonable
level. Figure 11 illustrates methods which are used such as
Equivalence Class Partitioning [16] and Boundary Value
Analysis [16] to determine test input and cover all use cases.

Figure 11. Equivalence Classes and Boundary Conditions.

One of the most stunning examples of test input
insufficiency in this study is experienced in the verification
of data upload feature. The feature under test works well
with integer values whereas the data is lost for whenever
double values used. Moreover, user interface crashed when

string values were sent. Full functionality is ensured after a
careful investigation of test results generated with the use of
all possible data types and boundaries.

V. DISCUSSION: CONTRIBUTION AND BENEFITS

In this section, the advantages of explained approaches
are presented. However, the risks of implementing counter-
actions are also worth being discussed. Implementation of a
new mechanism requires some time. Since continuous
testing already consumes all resources, reserving extra time
for new implementation is not easy. Moreover, regardless of
available resources, the effect of the applications is not fully
known. For example, refactoring has a risk of code breakage.

Accepting some risks, solutions are implemented to
overcome test smells. Several advantages are observed as
explained in detailed in Section V. They can be analyzed in
the project management triangle of cost, time and scope.

In terms of cost, after the implementation of proposed
solutions, effort on maintenance is considerably reduced.
Flaky results are reduced and necessity for analysis is
decreased. Figure 12 shows how polling mechanisms
reduced flaky results.

Figure 12. False Alarms Equivalence Classes and Boundary Conditions.

In addition, lines of code are reduced and refactoring
effort on those is minimized. Figure 2 gives a snapshot of
reuse of simplified and optimized code. One of the most
common methods, which is used for an entity creation, is
called from various tests 160 times. This means number of
lines in code is decreased from 160*N to 160+N.

As far as time is concerned, time is saved in terms of
implementation, execution and analysis durations.
Improvements lead to rapid automation and adaptation,
which in turn is very important since regression testing is
needed any time in continuous deployment processes. From
the product backlog, it is observed that time spent on
implementation of a new test and on analysis to understand
the root cause of a failure is reduced thanks to improved
debugging and logging structures. In one sprint, 4 out of 16
(25%) tasks were related to refactoring issues such as
addition or correction of test steps before application of
solutions. Refactoring tasks are not needed any more with
the implementation of solutions.

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 37 / 69

Another advantage of improved scope coverage, bugs are
detected in earlier stages of product development and hence
the reduced costs.

VI. CONCLUSION AND FUTURE WORK

Coping with test smells is a preferential challenge in
software lifecycle processes. Minimization of smells has
great benefits in terms of cost, time and quality.

In this paper, the necessity for testing and test automation
is briefly discussed. The system under test is described. Test
smell types are categorized and relative preventive actions
are presented. A list of actions taken against test smells is as
follows:

• Helper Classes

• Polling Mechanisms

• Test History

• Test Suites & Annotations

• Clean Up

• Static Code Analysis

• Usage of Tools

• Additional Executions

• Test Data Improvement

Eliminating test smells saves a lot in terms of
maintenance costs and time pressure. Suggested approaches
can be adapted by any organization with a customization
according to their work to achieve cost reduction.

As a future work, statistical data will be collected over
execution results. Especially, for flaky cases, success/fail
ratio and execution duration statistics will be used for further
improvements. Moreover, integration of the collected data to
artificial intelligence applications on automation framework
is on future agenda.

ACKNOWLEDGMENT

I am very grateful to Ms. Berrin Anil Tasdoken who has
reviewed the paper and guided me for the improvements.

REFERENCES

[1] HOW was the Leaning Tower of Pisa stabilized? [Online]
Available from: https://leaningtowerpisa.com/facts/how/how-
pisa-leaning-tower-was-stabilized/ 2019.11.05

[2] M. Grechanik, Q. Xie, and C. Fu, ʺMaintaining and evolving
GUI-directed test scripts,ʺ Proceedings of the 31st
International Conference on Software Engineering, 2009, pp.
408-418.

[3] M. Durukal, ʺHow to Ensure Testing Robustness in
Microservice Architectures and Cope with Test Smells.ʺ
International Journal of Scientific Research in Computer
Science, Engineering and Information Technology. pp. 167-
175, 2019, doi: 10.32628/CSEIT195425.

[4] Microservice Monitoring. [Online] Available from:
https://www.appdynamics.com/solutions/microservices/
2019.11.05

[5] M. Amaral, et al. "Performance Evaluation of Microservices
Architectures Using Containers," 2015 IEEE 14th
International Symposium on Network Computing and
Applications, Cambridge, MA, 2015, pp. 27-34, doi:
10.1109/NCA.2015.49.

[6] G. Bavota, et al. "Are test smells really harmful? An empirical
study," Empirical Software Engineering, 2015, 20: pp. 1052-
1094, doi: 10.1007/s10664-014-9313-0.

[7] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D.
Binkley, "An empirical analysis of the distribution of unit test
smells and their impact on software maintenance," 2012 28th
IEEE International Conference on Software Maintenance
(ICSM), Trento, 2012, pp. 56-65, doi:
10.1109/ICSM.2012.6405253.

[8] A. Vahabzadeh, A. M. Fard, and A. Mesbah, "An empirical
study of bugs in test code," 2015 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), Bremen, 2015, pp. 101-110, doi:
10.1109/ICSM.2015.7332456

[9] What is the cost of a bug? [Online] Available from:
https://azevedorafaela.com/2018/04/27/what-is-the-cost-of-a-
bug/ 2019.11.05

[10] Analysis shows pilots often ignore Boeing 737 cockpit alarm
[Online] Available from:
https://www.travelweekly.com/Travel-News/Airline-
News/Analysis-shows-pilots-often-ignore-Boeing-737-
cockpit-alarm/ 2019.11.05

[11] V. Garousi and B. Küçük, "Smells in software test code: A
survey of knowledge in industry and academia." Journal of
Systems and Software, 2018, 138, pp. 52-81, doi:
10.1016/j.jss.2017.12.013.

[12] F. Palomba and A. Zaidman, "Does Refactoring of Test
Smells Induce Fixing Flaky Tests?," 2017 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), Shanghai, 2017, pp. 1-12.
doi: 10.1109/ICSME.2017.12

[13] Flaky Tests at Google and How We Mitigate Them. [Online]
Available from: https://testing.googleblog.com/2016/05/flaky-
tests-at-google-and-how-we.html/ 2019.11.05

[14] JUnit Plugin [Online] Available from:
https://wiki.jenkins.io/display/JENKINS/JUnit+Plugin/
2019.11.05

[15] Setting up a Selenium Grid for distributed Selenium testing
[Online] Available from:
https://www.edureka.co/blog/selenium-grid-tutorial/
2019.11.05

[16] A. Bhat and S. M. K. Quadri, "Equivalence class partitioning
and boundary value analysis-A review." 2015 2nd
International Conference on Computing for Sustainable
Global Development (INDIACom). IEEE, 2015.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 38 / 69

Applying Passive Testing to an Industrial Internet of Things Plant

Marco Grochowski and Stefan Kowalewski
Embedded Software

RWTH Aachen University
Aachen, Germany

Email: {grochowski|kowalewski}@embedded.rwth-aachen.de

Melanie Buchsbaum and Christian Brecher
Laboratory for Machine Tools and Production Engineering

RWTH Aachen University
Aachen, Germany

Email: {m.buchsbaum|c.brecher}@wzl.rwth-aachen.de

Abstract—Safety and robustness play a crucial role in the context
of the Industrial Internet of Things as autonomous and emergent
behavior increase the complexity of Cyber-Physical Production
Systems. Given the intractability of exhaustively verifying dis-
tributed production systems after modifications, testing and run-
time monitoring seem to be two promising methods used to verify
correctness in the digitally networked factory. Passive testing
and external runtime monitoring are efficient and lightweight
techniques that bridge the gap between testing and verification.
This paper presents a framework for on-the-fly simulation of
a specification relying on the Amazon Web Services Internet
of Things architecture and the use of the digital shadow. The
feasibility of the proposed architecture is evaluated using an
industrial case study.

Keywords–Passive testing, Industrial Internet of Things, Indus-
trial Cyber-Physical Systems

I. INTRODUCTION

The growing demands for individual products and shorter
product cycles caused a paradigm shift in manufacturing. The
Industrial Internet of Things (IIoT) comes with many advance-
ments, but also many challenges. While the technologies in use
are well understood, the problem lies in translating applicable
science and technology into engineering practice to meet future
production needs [1]. The Internet of Production (IoP) [2]
opens new possibilities for the interaction between different
production systems by providing semantically adequate and
context-aware data from development, production, and usage
in real-time, on an adequate level of granularity. This is a
blessing and a curse at the same time as insights gained from
the emitted data during production are turned into data that
controls the process. Consequently, this yields flexible value
chains that are subject to a high degree of reconfigurability
and experience an increasing complexity to meet their flexible
demands. Beyond that, the data-driven IoP infrastructure, the
highly iterative development, and agile manufacturing blur the
distinction between design time and runtime, resulting in a
lack of formal specifications in functionality, contexts, and
constraints as the system is exposed to continuous changes
in the environment, which take their tolls on the functional
safety and reliability of software. Its validation must go beyond
traditional validation using static methods, considering that not
all scenarios are predictable during design time, due to the
autonomous and emergent behavior.

Testing and runtime monitoring pose two potential ap-
proaches to tackle the emerging challenges for verifying the
correctness in the digitally networked factory [3]. Based on this
premise, this paper combines a specification-based, passive,
black-box testing approach paired with runtime monitoring.

A. Approach

The techniques proposed in this paper are applied after
the deployment of the system. Figure 1 shows the perception
of the IoP and the shift of continuous quality assurance and
testing to the operational phase. The systems require either the
ability to test themselves while in operation or the existence
of a monitoring component that is operated in parallel.
Currently, it is not possible to actively test the system during
the operational phase as the components are interwoven,
and each stimulus may trigger a response which cannot be
intercepted. This leads to unwanted side effects and may
disturb further process steps of the System Under Test (SUT).
Furthermore, the system’s functionality can not be interrupted
arbitrarily during the operational phase (disregarding emer-
gency stop), rendering a reset after each test case execution
as infeasible. Because the system is heavily based on the ex-
change of asynchronous messages, non-deterministic behavior
caused by, for instance, latency can complicate active testing
and hinder the repeatability. The continuous monitoring and
model-based passive testing of safety-critical properties during
the operational phase may alleviate the risk of using the system
in safety-relevant environments.

Nevertheless, the test cases generated with model-based
testing [4] during earlier stages of development can be reused
during the operational phase. The formal model from which
test cases were derived can be used for passive testing,
assuming that the specification used for generation is limited
to the input and output behavior of the system.

As passive testing is a black-box testing approach, it relies
on meaningful information exchanged between the industrial
assets to claim properties about the internal behavior of the
black-box. The passive tester runs on an external device, which
listens to the communication to extract the relevant messages
and therefore does not introduce any disturbances, slowing
down the execution speed or interfering with the normal
behavior of the system. Its purpose is to passively analyze
the input and output behavior of the SUT to detect faults, and
it is not intended for intervention.

The runtime monitor acts as a fail-safe, which triggers a
safety response upon transitioning into an unsafe region to
reduce the impact of the harm. External runtime monitoring is
a good fit for closing the gap between testing and verification.
It is a lightweight and scalable verification technique that does
not necessarily rely on a specification per se but on individual
requirements. The requirements and software components can
evolve without repercussions on the external runtime monitor,
and the physical separation, as with passive testing, guarantees
no restrictions in the functionality of the monitored component.

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 39 / 69

Development
and Testing

Commissioning
and Testing

Operational
Phase

Production

and

Quality Assurance

M
ai

nt
en

an
ce

an
d

U
sa

ge

Reconfigura
tio

ns

Figure 1. QA and Testing as perceived in the IoP following [3]

B. Contribution and Outline
The contribution of this paper is to evaluate the feasibility

of a hybrid black-box testing approach for software quality
assurance of an industrial case study in which the execution
traces are observed, and the specification is assessed on-the-fly.

The remainder of this paper is structured as follows.
Section II gives an overview of a related approach and delimits
the contributions of this paper. Section III covers the prelim-
inaries and introduces common definitions related to passive
testing. Section IV introduces the architecture of the proposed
system, shows how the system’s behavior is supervised to give
insights into the internal states and explains the interplay of
the runtime monitor and the passive tester. Section V shows
the application of the developed system using an industrial
case study. Section VI draws a conclusion and presents future
work.

II. RELATED WORK

The contribution is heavily inspired by the work of Salva
and Cao [5], yet it differs in many aspects. In their work, a
combination of runtime verification and ioco passive testing is
proposed. Instead of using a classical proxy or middleware to
collect traces, they define a non-conformance relation using a
formal model based on transition systems for testing a SUT and
its specification with a so-called proxy-monitor. The proxy-
monitor represents an intermediary between the environment
and the SUT, which propagates the messages sent between
those two entities, whereas the test monitor in this contribution
only passively analyzes the traces. Given a specification mod-
eled as an input-output Symbolic Transition System (ioSTS),
Salva and Cao generate a proxy-monitor to check whether an
implementation is ioco-conforming to its specification against
a set of safety properties while analyzing the messages using
the proxy-tester to detect failures. This contribution, as op-
posed to the work of Salva and Cao [5], abandons the idea of
synthesizing one monitor from the specification and the safety
requirement and instead keeps them separate - the focus is put
on the specification in this contribution. This allows the spec-
ification and safety requirements to evolve and change during
the operational phase without requiring a new synthesis of the
monitor. For more information regarding the safeguarding of
safety requirements during runtime and a brief overview on
the related literature, the runtime monitoring algorithm based
on requirements written in temporal logic is proposed in [6] by
the authors. Further this contribution focuses on the application
in an industrial context, whereas Salva and Cao applied their
methodologies to the web service compositions deployed in

Platform as a Service (PaaS) environments. Especially due to
the high flexibility in the IIoT and the implications for the
Cyber-Physical Production Systems (CPPS) this property is
desired. Last but not least, the ioSTS model representing the
functional behavior of the program is used to generate a mon-
itor to check whether an implementation is ioco-conforming
and meets safety properties in the work of Salva and Cao
but this contribution directly executes the underlying model
with the data from the observations. This leads to the work of
Frantzen et al. [7] in which the state space explosion problem is
avoided by lifting a test theory for Labeled Transition Systems
(LTS) to their symbolic counterpart, where the data is treated
symbolically. Instead of generating infinitely branching test
cases offline as described in [7], the modeled specification in
this contribution is unfolded on-the-fly, resulting in an efficient
treatment of the possible infinite branching behavior.

Weiglhofer et al. [8] also build upon the ioco conformance
relation and presented an approach for the selection of test
cases using fault-based conformance testing. By mutating the
specification syntactically, a fault is modeled at specification
level such that the generated test cases fail if an implementation
conforms to a faulty specification [8]. In this contribution de-
viating behavior from the specification is considered as faulty
behavior and therefore sink states are introduced explicitly. It
has yet to be shown, if the approach by Weiglhofer et al. [8] is
a possible alternative to the ideas presented in this contribution
regarding the test case selection outlined in the future work. Hi-
erons et al. [9] proposed an algorithm for the construction of a
monitor, which is able to handle asynchronous communication
between the SUT and the monitor under certain conditions.
Instead of operating on the constructed finite automaton the
observed trace is used. The asynchronicity is of no concern
for the passive testing in this contribution as the data is
timestamped and utilized with regards to the event and not
the processing time. This allows for more flexibility as delays
in the communication are disregarded in the generation of the
monitor.

Lima and Faria [10] provide an approach and an archi-
tecture that puts the testing of distributed and heterogeneous
systems into a larger context. Of particular interest is the
hybrid test monitoring approach, which was adopted from
Hierons [11]. Hierons showed that multiple independent dis-
tributed testers that interact synchronously and a centralized
tester that interacts asynchronously with the SUT are incom-
parable and result in different traces and faults [11]. Currently
the techniques in this contribution were applied schematically
to one specific processing station. Within this process station
the communication was asynchronous and distributed, however
the behavior was sequential and hence it was opted for a single
tester that interacts synchronously with all the components in
the SUT using the event time [11]. When scaling the use case,
an approach similar to the one proposed by Lima and Faria [10]
shall be considered. Hierons [11] mentions that it is possible
to change the hybrid framework by making one of the local
testers also act as the centralized tester. Lima and Faria [10]
picked up this idea using a set of Local Test Driving and
Monitoring (LTDM) components and a Test Communication
Manager (TCM). The evaluation of this architecture is subject
to future work of Lima and Faria, however, a similar approach
shall be pursued for future work of this contribution.

In the next section, a partial introduction to the theory

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 40 / 69

behind passive testing is given.

III. THEORETICAL BACKGROUND

As transition systems are a well-known formalism to model
reactive systems, they are considered as a formal representation
for the specification. However, the choice of the semantic
model can vary as shown in [12]. A transition system TS
[13] is a tuple (S ,Act ,→, I ,AP ,L), where

• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act × S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S → 2AP .

The semantic model as-is currently abstracts from the inter-
actions with the environment. An explicit distinction between
actions initiated by the environment and actions initiated by
the system is made to account for the asymmetric communi-
cation between the system and the environment, following the
definition of Tretmans [4]. For modeling the input and output
behavior of a transition system, the set of observable actions
Act is partitioned into two disjoint sets, an input set ActI ,
which denotes the set of actions initiated by the environment,
and an output set ActO, which denotes the set of actions
initiated by the system itself, where Act = ActI ∪ ActO and
ActI ∩ ActO = ∅. Internal actions, which are unobservable,
are all commonly denoted with τ , where τ /∈ Act, as fairness
is not explicitly considered. Since the components are part
of a distributed control system, which uses the network to
interact through asymmetric communication, states which have
no outgoing output transition are forced to wait for an input
from the outside. Therefore it is possible that even though
the SUT is composed of determinstic components, the outputs
interleave non-determinstically. In addition to the latency of
the communication, the aforementioned leads to delays in the
occurrence of observations. For formalizing the property of
a state in which no output actions are enabled, a special
symbol δ, where δ /∈ Act ∪ {τ}, which is called quiescence
is introduced. A state s ∈ S of a transition system TS is
quiescent, if and only if no transition with an output action
from s exists, that is, ∀a ∈ ActO :

{
s′ ∈ S | s a−→ s′

}
= ∅.

Quiescence is made explicit by introducing self loops with
the symbol δ for all states s ∈ S, which do not have an
outgoing transition enabled for output actions. It is often
useful to consider transition systems where the observable
behavior is determinstic. This means that the transition systems
have at most one outgoing transition labeled with an action
a ∈ Act per state and hence only one initial state. The
determinized transition system, which may serve as a canonical
representation, is referred to as the suspension automaton [4].

In order to formally describe the possible behavior of a
transition system, the notion of execution fragments is defined.
Let TS = (S ,Act ,→, I ,AP ,L) be a transition system. A
finite execution fragment ρ of TS is an alternating sequence
of states and actions ending with a state ρ = s0a1s1a2 . . . ansn
such that si

ai+1−−−→ si+1 for all 0 ≤ i < n, where n ≥ 0.
The introduction of the execution fragment gives rise to the

formalization of the passive tester. A passive tester is modeled

as a program graph and is derived from the suspension
automaton. In contrast to the proxy-testers from [5], which use
symbolic transition systems [14], a slightly deviating definition
for modelling the specification is used. A program graph
PG [13] is a tuple (Loc,Act ,Effect ,→,Loc0, g0), where

• Loc is a set of locations and Act is a set of actions,
• Effect : Act × Eval(Var)→ Eval(Var) is the effect

function,
• →⊆ Loc×Cond(Var)×Act×Loc is the conditional

transition relation,
• Loc0 ⊆ Loc is a set of initial locations,
• g0 ∈ Cond(Var) is the initial condition.

In order to extract the execution fragments of the program
graph, it is assumed to behave like a transition system. Hence,
the transition semantics of a program graph TS (PG) over the
set Var are given by the tuple (S ,Act ,→, I ,AP ,L)

• S = Loc × Eval(Var)

• →⊆ S ×Act × S

`
g : a−−→ `′ ∧ η |= g

〈`, η〉 a−→ 〈`′,Effect(a, η)〉
(1)

• I = {〈`, η〉 | ` ∈ Loc0, η |= g0}
• AP = Loc ∪ Cond(Var)

• L(〈`, η〉) = {`} ∪ {g ∈ Cond(Var) | η |= g}.
To allow the system to make progress autonomously on the
actions that it initiates, a formalism is needed in which the
environment never refuses the outputs and the system never
refuses the inputs by the system’s environment. Therefore, the
program graph is augmented with a sink state ⊥, which can
be reached from all locations ` ∈ Loc by taking a transition
with a non-enabled input action

∀a ∈ ActI : ` 6
g : a−−→

`
g : a−−→ ⊥

. (2)

Once in the sink state ⊥, any behavior is possible. This ensures
that the program graph is always capable of accepting an action
from the environment.

This concludes the introduction of the preliminaries behind
passive testing. For details and further information, the reader
is referred to the work of Salva and Cao [5] and Frantzen et
al. [14].

IV. ADAPTATION TO INDUSTRIAL INTERNET OF THINGS

Figure 2 gives a high-level overview of the architecture.
The adapter can be seen as a semi-formal interface for trans-
forming the messages passed between the adapter and the SUT
into a suitable representation for the test and runtime monitor.
In this contribution, the emphasis is put on the test monitor.
However, a brief overview of the runtime monitor is given in
the following.

The runtime monitor analyzes the execution traces provided
via the adapter and concludes a certain property about the
SUT. The property of interest is derived from the requirements,
which usually originate from the design time and are given
in natural language. Requirements describe, for instance, the
relationship between two occurring events in which the second
event must occur within a given time bound of the occurrence

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 41 / 69

SUTSpecification

Test
Monitor

Adapter

Requirements

Runtime
Monitor

complies with? satisfies?

Figure 2. Overview of the architecture.

of the first event. As we only have a black-box view of the
system, the possible monitorable requirements are limited to
the observable properties. For the use in runtime monitoring,
these requirements need to be transformed into formal logic,
for instance, using Metric Temporal Logic (MTL).

Even though the runtime monitor is able to reason about the
future time fragment of MTL, we limit ourselves only to the
past fragment, because we can’t set any fixed boundaries due to
the inaccuracies caused by the asynchronous communication.
The runtime monitor currently implements a rudimentary fail-
safe, which issues the SUT to halt, neglecting any additional
context information, in case of a violation. It was proposed
in [6], and the reader is asked to consult the reference for
details and further information.

During the execution of the SUT, the test and runtime
monitor run in parallel. The runtime monitor is responsible for
guaranteeing that the requirements are not violated, whereas
the test monitor gives insights into whether the implementation
deviates from the specification. The specification describes the
behavior of the SUT and is used to derive the program graph
for the test monitor, after determinization. The test monitor
starts the simulation from the initial state in the transition
system described by the program graph of the specification,
that is, an initial location ` ∈ Loc0 and an initial evaluation
η. If a new observation arrives, it is first preprocessed by
the corresponding adapter before being passed to the test
monitor. The test monitor receives either an input action with
its parameters or an output action with the related digital
shadow. The test monitor then proceeds with checking whether
the program graph is able to make a transition from the current
location `i to the next location `j with the received action
taking the guard and the current evaluation of the variables
into consideration. If the transition is possible, the test monitor
continues with the simulation. In case `j is the sink state ⊥,
the test monitor stops the current simulation and saves the
execution fragment up to and including `j for further analysis.
It then backtracks to the last location, in which the specification
and the SUT were conforming and continues the simulation
from there on while logging arbitrary behavior until the initial
location is reached again. This is justified by the fact that
in case a severe violation occurred, it was hopefully already
detected by the accompanying runtime monitor, which put the
system into a safe state. Since the execution of a production
line usually has a cyclical behavior, the test monitor and the
SUT are synchronized in their initial location by (re-)setting
the values of the variables. The execution fragment after the
backtracking up to the reset is also kept for further analysis.
If no observation arrives, the adapter passes a special symbol
to the test monitor which is interpreted as quiescence. For

practical reasons, a timeout for the observation of quiescence
is introduced, such that if in any location a given time bound is
exceeded, the program graph is transitioned into the sink state
⊥. The given time bound may vary from location to location,
taking into consideration the specified behavior. Currently, the
adapter checks if an observation arrived in the past second,
and if this is not the case, the special symbol is issued to the
test monitor.

As mentioned earlier, the execution fragments and their
simulation results are saved in order to guide the testing
process during maintenance or for regression testing. They can
be used to prioritize test cases by checking if the execution
fragment matches a predefined test case. If that is the case,
the test case should receive less importance during the testing
process in maintenance as other test cases, which occurred
less frequently with the same criticality. Furthermore, using the
execution fragments obtained after backtracking, it is possible
to investigate whether the test monitor was underspecified
for a specific sequence of in- and output observations. The
execution fragments that lead to the sink state ⊥ can be used
for debugging and aid the developer to validate the behavior
of the SUT after modifying the software by fixing a bug, for
instance.

In the next section, first, the case study is introduced.
Following that, it is explained how the specifications modeled
in a subset of UML and SysML are translated into a program
graph used for passive testing, and a brief evaluation of the
approach is given.

V. CASE STUDY

The presented approach is validated using an industrial
use case, which represents a part of the completion process
from a windshield production. It has three processing stations:
Cleaning (cleaning the windshield), Priming (application of a
primer), and Quality Assurance. The Cleaning subprocess was
used for evaluation, and it consists of a proximity sensor, a
pneumatic suction cup including a valve, a camera, and a robot
equipped with a cleaning tool. Each of these components, from
now on, referred to as industrial assets, has a task-specific
digital shadow. For further details, the reader is referred
to [15].

Proximity
Sensor Pneumatics Camera Robot

Asset
Driver

Asset
Driver

Asset
Driver

Asset
Driver

A
ss

et
L

ay
er

Edge
Cleaning Subprocess

Shadow Service

E
dg

e
L

ay
er

Cloud and
Databases

C
lo

ud
L

ay
er

MQTT MQTT MQTT MQTT

MQTT

Figure 3. Overview of the Cleaning subprocess.

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 42 / 69

A. Digital Shadow
Even though the term digital shadow is ubiquitous, the

notion of its concept still differs. The digital shadow comprises
task-specific data of the processes, which allows for the
reconstruction of the entire life-cycle of an industrial asset [16].

In this case study, Amazon Web Services was used to
implement the control of the completion process. The digital
shadow serves as a method of data aggregation and refinement
for the control of the Cleaning subprocess, as shown in
Figure 3 by the superordinate shadow service. Each industrial
asset uses a digital shadow for its virtual representation and
is controlled by an asset driver, which possesses a shadow
service that is responsible for the communication with the su-
perordinate shadow service of the entire Cleaning subprocess.
The industrial assets can communicate locally with each other
via the asset drivers using an edge device. All messages are
exchanged and transmitted through the use of the Message
Queuing Telemetry Transport (MQTT) protocol, as shown in
Figure 3.

B. MQTT
MQTT is a lightweight and asynchronous machine to

machine (M2M) protocol based on TCP/IP. It offers a 1-
to-n connection and three Quality of Service (QoS) levels.
Unlike request/response protocols such as HTTP, MQTT uses
a publish/subscribe pattern of topics via a message broker,
which reflect the hierarchical structures of the systems. Each
industrial asset was assigned a shadow/update topic, to which
updates of its digital shadow can be sent. Similarly, other
messages with additional information or describing certain
actions were defined in [16].

C. Modeling the Use Case
The behavior of the SUT is specified using state machines

in a subset of UML and SysML as depicted in Figures 4-7.
In the following, the workflow of the Cleaning subprocess is
described. The proximity sensor detects whether a windshield
has been inserted into or removed from the workpiece carrier.
This information is transferred to the asset driver via I2C
as a 24V signal if a windshield is in range of the sensor
or a 0V signal if not. The asset driver passes this change
via MQTT to the superordinate shadow service, as shown in
Figure 3. The superordinate shadow service then proceeds with
updating the digital shadow and issues a message, if the update
was successful, with the corresponding content of the updated
digital shadow via the respective shadow/update/accepted
topic. Figure 4 shows exemplarily the specification of the
Cleaning subprocess. The focus in the subsequent section is
put onto the control process after the proximity sensor has
detected a workpiece in the workpiece carrier. All subsequent
processes are triggered by the control logic of the Cleaning
subprocess. As soon as the digital shadow of the proximity
sensor indicates that a windshield has been placed in the work-
piece carrier, the shadow service of the Cleaning subprocess
sents a message to open the valve to the pneumatics asset
driver using the topic fpl/cleaner/cleaner pneumatics , as
illustrated in Figure 5. The asset driver of the pneumatics
responds to this message by opening the valve and confirms
the change afterward using its shadow service. As soon as
the shadow/update of the pneumatics is propagated in the
shadow service of the superordinated shadow service, the

stm [stateMachine] cleaner process [Internal behavior of Cleaner]

pneumatics:
cleaner pneumatics

$aws/things/cleaner core/
shadow/update/accepted

(step: turn pneumatics on) /

identification:
cleaner identification

robot:
cleaner robot

$aws/things/cleaner core/
shadow/update/

accepted
(step: identification)
[is loaded == true] /

$aws/things/cleaner core/
shadow/update/

accepted(step: robot)
[product id ==

”PG11106000008”] /

$aws/things/cleaner core/
shadow/update/accepted

(step: turn pneumatics off)
[robot.working state ==”finished”] /

$aws/
things/

cleaner core/
shadow/update/

accepted(step: finish)
[is loaded == false] /

Figure 4. State machine of the Cleaning subprocess.

stm [stateMachine] cleaner pneumatics [Internal behavior of Pneumatics]

closed

entry /
valve: ”closed”,
is loaded: false

open

entry /
valve: ”open”,
is loaded: true

fpl/cleaner/cleaner pneumatics
(valve: ”open”)

[valve == ”closed”] /
$aws/things/cleaner pneumatics/

shadow/update
(is loaded: true)

fpl/cleaner/
cleaner pneumatics

(valve: ”close”)
[valve == ”open”] /

$aws/things/cleaner pneumatics/shadow/update(is loaded: ”false”)

Figure 5. Sub-state machine cleaner pneumatics of the Cleaning subprocess.

control logic triggers the identification step (Figure 6) in which
a camera detects the product identifier of the windshield and
transfers it back to the control logic. Based on this information,
the superordinated shadow service sends a message to the asset
driver of the robot to start it (Figure 7). Once the robot has
finished and updated its digital shadow, a message is sent to
the pneumatic asset driver to close the valve. As soon as the
asset driver of the pneumatics received the message and closed
the valve, the digital shadow of the Cleaning subprocess is

stm [stateMachine] cleaner identification [Internal behavior of Identification]

free

entry/
working state: ”free”,

product id: ”null”

busy

entry/
working state: ”busy”,

product id: ”null”

finished

entry/
working state: ”finished”,

product id: ”PG11106000008”

fpl/cleaner/
cleaner identification(activity: ”start”)

[working state == ”free” ∧ product id == ”null”] /
$aws/things/cleaner identification/

shadow/update
(working state: ”busy”)

unobservable
internal action

[working state == ”busy”
∧ product id == ”null”] /

$aws/things/
cleaner identification/shadow/

update(working state: ”finished”,
product id: ”PG11106000008”)

fpl/cleaner/
cleaner identification

(activity: ”reset”)
[working state = ”finished”] /

$aws/things/cleaner identification/
shadow/update

(working state: ”free”, product id: ”null”)

Figure 6. Sub-state machine cleaner identification of the Cleaning
subprocess.

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 43 / 69

stm [stateMachine] cleaner robot [Internal behavior of Robot]

free

entry /
working state: ”free”,

product id: ”null”

busy

entry /
working state: ”busy”,

product id:
”PG11106000008”

finished

entry /
working state: ”finished”,

product id: ”PG11106000008”

fpl/cleaner/cleaner robot
(activity: ”start”, product id: ”PG11106000008”)
[working state == ”free” ∧ product id == ”null”] /

$aws/things/cleaner robot/
shadow/update

(working state: ”busy”,
product id: ”PG11106000008”)

unobservable
internal action

[working state == ”busy” ∧
product id == ”PG11106000008”] /
$aws/things/cleaner robot/shadow/
update(working state: ”finished”)

fpl/cleaner/cleaner robot
(activity: ”reset”)

[working state == ”finished”]/
$aws/things/cleaner robot/

shadow/update(working state: ”free”,
product id: ”null”)

Figure 7. Sub-state machine cleaner robot of the Cleaning subprocess.

updated to the finished state. Further, after the windshield has
been removed and the proximity sensor no longer registers the
windshield, the cell updates its state to free.

D. Transformation and Application
The transformation of the specification given in SysML

to the program graph used by the test monitor is currently
a manual task. The variables occurring in the digital shadow
are modeled as atomic propositions a ∈ AP , which serve as
invariants in the respective location. The topics of the MQTT
messages are mapped to the actions Act of the program graph
and are modeled as signals with their corresponding properties
in SysML. The shadow/update topics are always interpreted
as outputs of the SUT, and the shadow/update/accepted
messages as input actions. Furthermore, all fpl/cleaner mes-
sages are interpreted as input actions. Concretely, the transi-
tions are interpreted as follows: the trigger of a transition is
an input action in ActI , the guard is a guard in Cond(VAR),
and the effect is an output action in ActO. Before a guarded
transition is taken, the associated guard is evaluated using the
current evaluation of the variables in the source location of the
transition.

It is important to note that the signals should not be
modeled as in- and outputs at the same time. The message
fpl/cleaner/cleaner identification, for instance, should
not be modeled as an output from pneumatics to identifi-
cation in the Cleaning subprocess and as an input in the
state machine of cleaner identification from free to busy,
because that would not reflect the way the messages are
passed using AWS. The change of state must take place
beforehand, and this can be done, e.g., by the message
$aws/things/cleaner core/shadow/update/accepted.
The entry/ keyword of a state in the SysML state machine
implicitly models a shadow/update/accepted message. For
example, in Figure 5, the transition from closed to open
with the trigger fpl/cleaner/cleaner pneumatics has an
output action shadow/update as an effect, which triggers a
shadow/update/accepted message in the entry/ method of
the state busy and sets the values of the variables in VAR
implicitly on the evaluation derived from the digital shadow.

The experimental evaluation of the hybrid-approach was
done on a Raspberry Pi 3 Model B+, which was added as an

additional industrial asset beneath the Cleaning subprocess.
The industrial asset was subscribed to all occurring topics in
the specification using the adapter.

E. Results and Insights
The test monitor was able to detect deviations from the

specification from the behavior of the SUT at runtime. There
were no severe errors, only a few implementation inaccuracies.
For instance, cleaner identification was exposed to a faulty
shadow/update. The digital shadow was set to busy even
though cleaner identification was in the state finished, and
cleaner robot was started already. Furthermore, cleaner robot
immediately switches its state from free to finished. Conse-
quently, the state busy was never set in the shadow/update.
Last but not least, cleaner pneumatics receives an activity :
”start“ message but isn’t implemented with the free, busy or
finished concept in mind. The cleaner process updates its own
digital shadow using an internal function of AWS and hence
does not send any shadow/update messages. This restricts the
set of observable messages to the shadow/update/accepted
messages.

VI. CONCLUSION

It was shown that a specification-based, passive, black-
box testing approach paired with runtime monitoring is an
appropriate way for improving the quality assurance during
operation. While the model-based testing theory describes
how to derive test cases, it does not state how to prioritize
or select test cases. Therefore, the execution fragments can
be used to guide testing during maintenance by prioritizing
test cases, which were not observed during runtime or by
focusing on the test cases that failed during machine operation.
Another benefit of bookkeeping the execution fragments is
the possibility to recheck them against a variety of system
properties, which have not yet been considered. In the case
of machine modification and reconfigurations, the execution
fragments can be used in regression testing. Another possibility
for the test case selection poses the work of Weiglhofer et
al. [8], which uses a fault-based testing technique and can also
be applied to the use case from this contribution.

A. Outlook
Currently, the techniques were applied schematically to the

Cleaning subprocess. Future work shall extend the method-
ologies to the other subprocesses and also consider their dis-
tributed communication. Here, the approaches by Hierons [11]
and the concept of Lima and Faria [10] shall be examined.

The runtime monitor currently halts the execution of the
system by sending a stop message in case a violation is
detected. In some situations, this may lead to damage of the
product or the machine. Improved routines could be developed
by considering context information such that no harm is caused
to the product or machine.
Currently, it is not possible to apply a stimulus to the SUT
without affecting other industrial assets. It is expected that
testing in idle phases of the process increases reliability. Future
work shall enable testing during runtime.

If a deviation from the specified behavior is detected, but
the system remains in a state that is not violating, the model of
the specification might be underspecified. In this case, appro-
priate suggestions for updating the model of the specification

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 44 / 69

to improve the quality could be proposed. Furthermore, the
derivation of the test monitor from the specification modeled
in SysML is currently a manual task, and error-prone, which
shall be automated in future work. Last but not least, an
evaluation of how well this approach aids in regression testing
is pending.

ACKNOWLEDGMENT

The presented research is a work-in-progress in the Cluster
of Excellence (CoE) on ”Internet of Production” funded by
the German Research Foundation DFG. The CoE ”Internet of
Production” advocates the vision of enabling a new level of
cross-domain collaboration between several institutes at the
RWTH Aachen University by providing semantically adequate
and context-aware data from production, development and
usage in real-time, on an adequate level of granularity. The
authors would like to thank the German Research Foundation
DFG for the kind support within the Cluster of Excellence
”Internet of Production” (Project-ID: 390621612).

REFERENCES
[1] S. Jeschke, C. Brecher, H. Song, and D. B. Rawat, Eds., Industrial

Internet of Things - Cybermanufacturing Systems, ser. Springer Series
in Wireless Technology. Cham: Springer International Publishing,
2017. [Online]. Available: https://doi.org/10.1007/978-3-319-42559-7
[accessed: 2019-10-07]

[2] J. Pennekamp et al., “Towards an Infrastructure Enabling the Internet
of Production,” in Proceedings of the 2nd IEEE International
Conference on Industrial Cyber-Physical Systems (ICPS ’19), May
6-9, 2019, Taipei, TW. IEEE, 5 2019, pp. 31–37. [Online]. Avail-
able: https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-
pennekamp-iop-infrastructure.pdf [accessed: 2019-10-07]

[3] M. Weyrich and A. Zeller, “Testing industry 4.0 systems
- how networked systems and industry 4.0 change our
understanding of system testing and quality assurance,” 4. VDI-
Fachtagung mit Fachausstellung, Düsseldorf, Jan. 2016, oral
Presentation with Slides. [Online]. Available: https://www.ias.uni-
stuttgart.de/en/research/presentations/ [accessed: 2019-10-07]

[4] J. Tretmans, “Model based testing with labelled transition systems,” in
Formal Methods and Testing, An Outcome of the FORTEST Network,
Revised Selected Papers, ser. Lecture Notes in Computer Science,
R. M. Hierons, J. P. Bowen, and M. Harman, Eds., vol. 4949. Springer,
2008, pp. 1–38. [Online]. Available: https://doi.org/10.1007/978-3-540-
78917-8 1 [accessed: 2019-10-07]

[5] S. Salva and T. Cao, “Proxy-monitor: An integration of runtime
verification with passive conformance testing,” IJSI, vol. 2, no. 2, 2014,
pp. 20–42. [Online]. Available: https://doi.org/10.4018/ijsi.2014040102
[accessed: 2019-10-07]

[6] M. Grochowski, S. Kowalewski, M. Buchsbaum, and C. Brecher,
“Applying runtime monitoring to the industrial internet of
things,” 2019, to appear in IEEE Xplore. [Online]. Available:
https://tinyurl.com/etfa2019-preprint [accessed: 2019-10-07]

[7] L. Frantzen, J. Tretmans, and T. A. C. Willemse, “Test generation based
on symbolic specifications,” in Formal Approaches to Software Testing,
4th International Workshop, FATES 2004, Linz, Austria, September 21,
2004, Revised Selected Papers, ser. Lecture Notes in Computer Science,
J. Grabowski and B. Nielsen, Eds., vol. 3395. Springer, 2004, pp. 1–
15. [Online]. Available: https://doi.org/10.1007/978-3-540-31848-4 1
[accessed: 2019-10-07]

[8] M. Weiglhofer, B. K. Aichernig, and F. Wotawa, “Fault-
based conformance testing in practice,” Int. J. Software and
Informatics, vol. 3, no. 2-3, 2009, pp. 375–411. [Online]. Avail-
able: http://www.ist.tugraz.at/aichernig/publications/papers/ijsi2009.pdf
[accessed: 2019-10-07]

[9] R. M. Hierons, M. G. Merayo, and M. Núñez, “An extended
framework for passive asynchronous testing,” J. Log. Algebr. Meth.
Program., vol. 86, no. 1, 2017, pp. 408–424. [Online]. Available:
https://doi.org/10.1016/j.jlamp.2016.02.004 [accessed: 2019-10-07]

[10] B. Lima and J. P. Faria, “An approach for automated scenario-based
testing of distributed and heterogeneous systems,” in ICSOFT-EA
2015 - Proceedings of the 10th International Conference on Software
Engineering and Applications, Colmar, Alsace, France, 20-22 July,
2015., P. Lorenz and L. A. Maciaszek, Eds. SciTePress, 2015, pp. 241–
250. [Online]. Available: https://doi.org/10.5220/0005558602410250
[accessed: 2019-10-07]

[11] R. M. Hierons, “Combining centralised and distributed testing,”
ACM Trans. Softw. Eng. Methodol., vol. 24, no. 1, 2014, pp. 5:1–
5:29. [Online]. Available: https://doi.org/10.1145/2661296 [accessed:
2019-10-07]

[12] J. Peleska, “Industrial-strength model-based testing - state of the
art and current challenges,” in Proceedings Eighth Workshop on
Model-Based Testing, MBT 2013, Rome, Italy, 17th March 2013., ser.
EPTCS, A. K. Petrenko and H. Schlingloff, Eds., vol. 111, 2013,
pp. 3–28. [Online]. Available: https://doi.org/10.4204/EPTCS.111.1
[accessed: 2019-10-07]

[13] C. Baier and J. Katoen, Principles of model checking. MIT Press,
2008.

[14] L. Frantzen, J. Tretmans, and T. A. C. Willemse, “A symbolic
framework for model-based testing,” in Formal Approaches to Software
Testing and Runtime Verification, First Combined International
Workshops, FATES 2006 and RV 2006, Seattle, WA, USA, August
15-16, 2006, Revised Selected Papers, ser. Lecture Notes in
Computer Science, K. Havelund, M. Núñez, G. Rosu, and B. Wolff,
Eds., vol. 4262. Springer, 2006, pp. 40–54. [Online]. Available:
https://doi.org/10.1007/11940197 3 [accessed: 2019-10-07]

[15] C. Brecher, M. Buchsbaum, and S. Storms, “Control from the
cloud: Edge computing, services and digital shadow for automation
technologies*,” in 2019 International Conference on Robotics and
Automation (ICRA), May 2019, pp. 9327–9333. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8793488 [accessed: 2019-
10-07]

[16] C. Brecher, M. Obdenbusch, M. Buchsbaum, T. Buchner, and J. Waltl,
“Edge computing and digital shadow: Key technologies for the
automation of the future,” wt Werkstattstechnik online, vol. 108, no. 5,
2018, pp. 313–318. [Online]. Available: https://publications.rwth-
aachen.de/record/726028 [accessed: 2019-10-07]

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 45 / 69

Low-Code Solution for IoT Testing

Hugo Cunha

Faculty of Engineering,
University of Porto

Porto, Portugal
Email: up201404587@fe.up.pt

João Pascoal Faria

INESC TEC and
Faculty of Engineering,

University of Porto
Porto, Portugal

Email: jpf@fe.up.pt

Bruno Lima

INESC TEC and
Faculty of Engineering,

University of Porto
Porto, Portugal

Email: bruno.lima@fe.up.pt

Abstract—In recent years, there has been an increase in the use
of Internet of Things (IoT), mostly resulting from the increase
in the number of ever-smaller devices being commercialized by
different vendors with different purposes. These devices and the
ecosystem that they are part of typically are highly complex due
to their heterogeneous nature and are typically end-user focused.
As a result, testing such systems becomes a challenge, especially
when the system logic is configured by end users. To address
such challenge, a low-code approach was designed that allows
users with no programming, or testing knowledge, to test an IoT
scenario with a set of sensors and actuators. This approach has a
set of test patterns implemented out-of-the-box so the user simply
executes the test suggested by the tool and observes the results.
The work was validated in a case study involving a group of
users with and without technical knowledge. The results showed
that both groups managed to finish the tasks selected with ease.
The results obtained during the validation phase with end users
affirm that the approach eases the process of testing such systems.

Keywords–Visual Interface; IoT; Integration Testing.

I. INTRODUCTION

Over the last few years, there has been a growth in the
usage of Internet of Things (IoT) devices [1]. These small
devices have been “turning heads” in terms of robustness,
price and general usability [1]. From sensors with the intent of
measuring the temperature or humidity of a room to actuators,
capable of turning the TV on or adjusting the air conditioning,
these devices are taking a leap forward in both technology
and also complexity. With the addition of more features and
the increasing number of manufacturers providing low-cost
solutions which do not provide integration techniques, there
is a rising problem - guarantee the correct communication and
functioning when grouped together.

One of the areas that is on the rise, regarding IoT,
is eHealth, automotive and home automation, or domotics.
eHealth is a somewhat recent area that integrates informatics
and health in the same domain [2]. In other words, is the
possibility of creation of new services in the healthcare domain
using the internet. Automotive is also another domain to get
certain attention [3]. Lately, a large number of companies
are attempting to create autonomous vehicles. These vehicles
are expected to not only detect all kinds of road hazards
- pedestrians, road signs, traffic lights - but also be able
to communicate with the infrastructure. Home automation,
or domotics, is an example of an area which is having an
increased use in our lives [4] for simple home solutions where,

for example, smart sensors, connected to an air conditioning
are able to control the temperature of a room.

From the previously observed domains (eHealth and au-
tomotive), it is perceptible that errors derived from these
activities may cause serious damage to human lives [5]. It
is critical that such infrastructures and systems are tested to
guarantee its correct functioning. In the case of domotics, it
is not such a critical area since it does not deal with human
lives directly but, nevertheless if, for example, a door lock is
connected to a device that fails to operate it becomes a crucial
safety problem.

Another problem that we can point out is the fact that most
of the products for such scenarios are developed on different
platforms, in different programming languages and manufac-
tured by distinct companies [6]. Communication between such
devices may be very hard to establish because of such aspects.

Lastly, the process of testing such complex scenarios is
still a difficult task and not everybody can accomplish. In fact,
there are already a large number of tools that allow for testing
of such devices mentioned, although most of them are proven
to be out of the domain we are presenting and are unable
to be used by people with low expertise in the area. Most are
focused on large-scale systems and require either programming
or a high level of technical knowledge to operate.

The rest of the paper is organized as follows: Section II
presents the proposed solution; evaluation is described in
Section III; related work is presented in Section IV and
conclusions and future work are presented in Section V.

II. PROPOSED SOLUTION

In this section, we present our proposed solution to reduce
the expertise needed for a user to test IoT scenarios.

A. Architecture
The developed low-code solution for IoT testing comprises

two components: a visual interface (Izinto Frontend in Figure
1) for the configuration of IoT test scenarios, selection of
applicable test patterns and visualization of test results; and
a second one which is a pattern-based integration testing
framework for IoT (Izinto Backend), developed in a previous
work [7], responsible for test execution.

The Frontend is a Node.js [8] web application coupled to
a diagram design framework, JointJS [9]. The framework al-
lowed for the development of the blocks, links and interaction

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 46 / 69

Figure 1. General architecture of the work developed

between them, and the Node.js is responsible to handle server-
side events, such as the test execution and test results report.

In the Frontend, the user visually designs the application
scenario, its connections and parameters. After that, the tool
will suggest test patterns that can be executed and the user
chooses the ones desired. Following, the tool will convert
the designed scenario into a format the Izinto backend can
understand and start its execution. After the tests are executed,
the results are reported back on the visual interface so the user
can understand what was successful or unsuccessful.

The Izinto backend comprises two main modules: test logic
module and IoT components module. The test logic module
implements a set of test patterns using JUnit [10]. The IoT
module is responsible for the necessary communication with
the IoT devices during test execution. As to input data, prior to
the starting of the integration test, the Izinto backend interprets
a configuration file, in JSON, with the information needed for
the application of the test patterns. An excerpt of this file can
be observed in Figure 3.

In Figure 1, it is possible to observe the components and
flow of our solution.

B. Visual Definition of Test Scenario

In Figure 2 we can observe the user interface of our tool.
In this picture, it is possible to distinguish five main parts, or
areas, each regarding different functionalities or objectives. In
this section, we will focus on the toolbox (1) and workspace
(4).

On the left (1), there is the toolbox in which the user can
start creating blocks/elements. The blocks are abstractions for
physical sensors, actuators, applications and notifications. Each
block has a small form for the user to fill in and specify the
parameters of the abstraction it represents and also for the test
to be executed. In the middle (4), there is the workspace in
which the user is able to move, connect and edit the block’s
properties and test parameters. Figure 2 shows the blocks and

links for the running example, as well as a form with the
properties of the blocks.

For a better user experience, the tool allows for exporting
and importing already designed scenarios as JSON files (5).

C. Test Selection
After describing the application scenario, the user must in-

dicate which tests he/she wishes to execute. In the Test Pattern
Arena (2) in Figure 2, there are five test patterns available:
action, alert, periodic readings, user triggered readings and
actuator.

At this stage, the users select the test patterns to apply. The
tool will check which tests the user is able to run, through
an algorithm which was developed to suggest test patterns, in
regard to the designed scenario. The execution of the algorithm
is triggered when there is any change in the workspace and
will attempt to find flows that represent one of, or more than
one the five available patterns. Once it detects a test pattern
able to be executed, it will make it available to run. In the
running example, the suggested test pattern is action, since
there is a sensor connected to a logic box which is connected
to an actuator.

D. Test Execution
When the user presses the test execution button (5), the

tool generates a JSON file, similar to the one present in
Figure 3. For each test pattern, a different configuration file
is generated, although they are all ran at the same time. The
Izinto backend will execute the tests by communicating with
the devices within the system under testing (sensors, actuators,
etc).

E. Visualization of Test Results
Upon test completion, the Izinto backend will return a

report in the format of text. Such report will be interpreted by
the logic module of the web application and will demonstrate
to the user the errors that may have occurred. There are three
ways the results are displayed to the user. Firstly, the user
will have ”drawn” beside each pattern a red cross (in case
of failure) or a green checkmark (in case of success), in the
Test Pattern Area (2). Secondly, these same figures will be
displayed inside each sub-test (each test is divided into smaller
and more specific tests). Lastly, the elements of the workspace
will be painted green, red or grey in case of success, failure or
not tested, accordingly. In Figure 4 we can observe the results
of a test which had some failures, but also some successes.
In this case, it was executed an action test, which involves a
sensor, a logic box and an actuator. As observable, in case
of the sensor that performed readings correctly and within
delay and deviation set by the user and failures. In case of
the actuator, it did not change its internal state upon having
received an order to do so by the application, so it is painted
as red since it failed.

III. EVALUATION

With the objective of validating the work developed, it
was conducted a usability evaluation experiment involving
users with the objective of assessing the following research
questions:

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 47 / 69

Figure 2. Workspace for scenario definition and pattern test suggestion to be applied to each scenario. The image is already split into the most important parts.

Figure 3. Excerpt of a configuration file as input to Izinto Backend.

Figure 4. Example of a test result with some successes, but also some
failures.

• RQ1: Do users find it easy and pleasant to create
and execute automated tests for IoT systems using the
developed solution?

• RQ2: Regarding RQ1, are there differences between
users with a low and high technical background?

• RQ3: Are users able to quickly create and execute
automated tests for IoT systems using the developed
solution?

• RQ4: Regarding RQ3, are there differences between
users with a low and high technical background?

The metrics used to evaluate were the time per task and
the results obtained on a questionnaire made at the end of each
task and also at the end of the test. The choosing of participants
was split into two parts. In the first, it was selected participants
with lower programming and testing knowledge and, secondly,
it was gathered users with higher expertise on both areas.

The test was composed of the developed solution and the
system under test. The test was executed in a lab which simu-
lates a smart house presented in Figure 5. In this scenario, there
is a temperature and humidity sensor, connected to a Raspberry
Pi, and a smart socket connected to an air conditioning. Both
the socket and the Raspberry Pi are connected to the Wi-
Fi of the building. The Raspberry Pi is able to control the
temperature of the room and toggle the air conditioning on, or
off, as the temperature reaches unwanted values.

The case study involved the execution of five tasks. In the
first one, the users only had to import an already set up scenario
from the computer and run the available test. Secondly, the
user had to test the correct functioning of an actuator. Thirdly,
the user would test the correct functioning of the temperature
and humidity sensor by running a test of periodic readings.
Fourthly, the user would test the triggering of an action when
the values read by the sensor would reach certain values, set by

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 48 / 69

Figure 5. Application example of an IoT system.

the user. The last task had the purpose of testing the triggering
of an alert (by sending an e-mail) when the values read by the
sensor would reach certain values.

Aggregated in Table I is the data gathered from both the
questionnaires at the end of each task and the time per task.
The table is split into tasks, one to five, and inside each
one, it is possible to observe the scores of both easiness and
pleasantness to execute it. Such scores range from one to five,
being one very difficult / very unpleasant, and five very easy
/ very pleasant. On the rightmost column, are present the T-
Test values for the difference of the two means [11], regarding
each parameter. The differences are not statistically significant
(T-Test values greater than 0.05) except one (time to perform
the last task).

We can conclude that, based on the results obtained, the
visual interface was considered very easy and pleasant to use
by both groups of users, allowing to prove RQ1 and RQ2.
Also, it is important to point out that, although there is a
time difference between the two, that gap is not that big -
RQ4. Although, there is a certain time difference between both
groups, in general, the times are somewhat small for a task of
this nature - RQ3.

The users were also asked to give some feedback regarding
the tasks, or the general application. This data was gathered
and analysed and most of the suggestions pointed out were
implemented. There were also a couple suggestions that were
considered as future work.

IV. RELATED WORK

In this section, it will be made reference to existing
solutions for IoT regarding both development and testing. It
will be made reference to its IoT layer, its test level, test
environment, supported platforms, its scope and the presence
of a visual interface.

PlatformIO [12]. It is an open-source IDE for IoT de-
velopment. It supports multiple platforms and a unit testing
system. It works on the edge layer and its tests are run within
the physical devices. It is a commercial tool and does not
possess a visual interface for test configuration. Has support
for multiple platforms.

IoTIFY [13]. It is a cloud-based IoT performance testing
platform for very large-scale scenarios. IoTIFY works on the
Edge, Fog and Cloud layers of IoT and has support for unit,
integration and system testing. The test environment in IoTIFY
is only for simulated devices. The interface is called ”Virtual
IoT lab” and enables the user to simulate a virtual hardware
lab.

FIT IoT-LAB [14]. It is a very large-scale infrastructure
with the purpose of testing a large number of small wireless
sensors and other heterogeneous communication devices. It
supports layers of IoT Edge, Fog and Cloud and its main
purpose is the testing of scenarios and not for the development
of IoT solutions. It is both for academic and commercial use
and allows unit, integration and system testing. It does feature
a visual interface.

MAMMotH [15]. It is a large-scale IoT emulator for
mobile connected devices through GPRS. MAMMotH works
on all IoT layers and allows for integration and system testing.
The connection to the devices is emulated and both the
platforms supported and its license are two aspects that remain
unknown, although MAMMotH was developed in an academic
environment. There is no information regarding the existence
of a visual interface.

TOSSIM [16]. It is a wireless sensor network simulator.
It was built with the specific goal to simulate TinyOS devices.
It is a tool focused on testing, supporting integration one
and only support the Edge IoT layer. It was developed in an
academic environment and its license is open to be reused. It
uses simulated radio connected devices and its graphical user
interface (GUI) is optimized for such goal.

SimpleIoTSimulator [17]. It is an IoT Sensor/device
simulator that creates test environments with a large number
of sensors and gateways. It is a framework with a focus on the
integration testing of devices. It is limited to the Edge and Fog
IoT layers and there is no information regarding the existence
of a visual interface or its domain. It does not use physical
devices and there is no information regarding the supported
platforms. It is a commercial tool and its license is closed.

MBTAAS [18]. It is an approach that combines Model-
Based Testing techniques and service-oriented solutions in a
platform that allows IoT testing. Allows for testing across
the four levels - Unit, Integration, System and Acceptance
and it also features support for all IoT Layers. There is
no information regarding the number of supported platforms
and it is considered an academic tool. Unfortunately, there
is no information regarding its license. It features a visual
interface for the selection of tests and results visualization,
unfortunately, there is still some expertise required to operate
it.

SWE Simulator [19]. It is a tool developed with the intent
of representing multiple types and different number of sensors
and integrate it with a standard sensor database. It is very
much focused on testing of wireless sensor networks and only
supports Edge IoT layer. In terms of testing, it only supports
system testing and does not use physical devices but simulated
ones. It features a GUI but with the objective of monitoring
the small wireless sensors’ activity. SWE Simulator is a tool
developed in an academic environment.

MobIoTSim [20]. It is a mobile IoT simulator to help
investigators handle multiple devices and demonstrate IoT

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 49 / 69

TABLE I. GROUPED TASKS’ QUESTIONNAIRES DATA

Tasks Question Global Average Higher Skill AVG Lower Skill AVG T-Test

#1
Easiness 4,91 4,88 5,00 0,351
Pleasantness 4,73 4,63 5,00 0,197
Time 0:33 0:29 0:46 0,063

#2
Easiness 5,00 5,00 5,00 -
Pleasantness 4,82 4,75 5,00 0,17
Time 1:46 1:43 1:53 0,587

#3
Easiness 5,00 5,00 5,00 -
Pleasantness 4,82 4,88 4,67 0,605
Time 1:43 1:38 1:55 0,091

#4
Easiness 4,91 5,00 4,67 0,423
Pleasantness 4,73 4,75 4,67 0,837
Time 3:58 3:51 4:18 0,540

#5
Easiness 5,00 5,00 5,00 -
Pleasantness 4,91 4,88 5,00 0,351
Time 1:38 1:10 2:52 0,2e-3

applications using them. It is a testing framework that focuses
on the Fog and Cloud IoT layers and supports integration
testing. It was developed in an academic environment and its
license is open to reuse. There is no information regarding the
number of platforms it supports and the only available visual
interface is an Android application so that the tester has access
to the values being read by the sensors.

DPWSim [21]. It is a framework that helps developers to
implement and test IoT applications by simulating physical
devices. Although the team involves one investigator from
the commercial scope, it is considered an academic tool.
DPWSim works on the Fog and Cloud IoT layers and supports
integration testing. It only supports DPWS platforms. Features
a visual interface but, unfortunately, only provides managing
and simulation support for DPWS devices.

Atomiton IoT Simulator [22]. It is a testing framework
that simulates virtual sensors, actuators and devices with
unique behaviours, which communicate in unique patterns. It
supports all types of test levels and works on every IoT layer.
Its license is closed and it features a visual interface but for
virtualization of devices. It does not support any forum or
community for developers to settle their doubts.

Node-RED [23]. It is a browser-based visual editor that
allows a user to connect and wire together online services and
API’s. It makes use of flow-based editing that makes it visually
easy for an average user to create simple, or more advanced,
connections between the referred entities. It is not focused
on neither testing or developing of IoT solutions but instead
a visual interface to connect multiple and diverse services,
sensors, actuators, etc.

Easyedge [24]. It is an IoT solution using a low-code ap-
proach for the connection of multiple devices without the need
for programming. It also possesses a flow-based programming
visual interface that enables the user to design their scenario.
This platform allows for devices to communicate through the
most popular cloud services.

In fact, there are already a large number of tools that
provide support for all IoT layers but a few do not allow

for integration testing, which is a downside. One of the most
important factors we can point out is a large number of closed
license tools and the test environment being mostly simulated.
Most tools also lack the extensibility needed to work over
multiple platforms and most of them are platform-centred. The
most crucial point to be evaluated was the existence of a visual
interface for easier interaction. We could conclude that most
tools did not provide the necessary UI or it was not the most
suited for the domain required. Although some are focused
on very large-scale systems, there are solutions for smaller
and simpler environments. Also, another common issue with
such tools is the complexity associated with its use and being
mainly focused for experts with very high technical knowledge
in the area. There is currently a necessity for tools that allow
users from all levels of technical knowledge to test smaller
scenarios.

V. CONCLUSIONS AND FUTURE WORK

With the development of this work, it was attempted to
reduce the expertise needed for a user to test IoT scenarios.
Thereby, a person with no programming, or testing knowledge,
can easily test their systems in the most common patterns.
Also, we tried to reduce the time a person with higher
knowledge would take to test an IoT environment.

In this article, it is made reference to a visual interface with
the objective of filling in the existing gap in IoT solutions for
people with lower technical skill. Such interface took advan-
tage of an already developed pattern-based testing framework
developed on previous work. This interface allows the user to
simulate a real scenario, with a set of devices and applications,
and perform integration tests with the help of Izinto as an
integration testing framework. The visual interface also allows
for the visualisation of test results. With such interface, it
is aimed to reduce both the time needed for every user to
parameterize its test and allow for a larger number of users to
test IoT scenarios.

The work was validated with a case study, including
users with a distinct level of technical skill. The case study

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 50 / 69

proved that the solution developed was very good. By the data
gathered and present in Table I, it is perceptible that even
users with no knowledge could complete the tasks. Overall
the feedback collected from the users was very good regarding
both the easiness of testing an IoT scenario and not needing a
high knowledge to use it.

As future work, there are certain factors it is possible to
point out, mainly regarding the addition of functionalities to
the current work. There are two paths to follow, one with more
focus on the addition of functionalities in Izinto and another
one by adding more functionalities to the visual interface and
better user experience.

In terms of addition of features to Izinto, it is possible to
identify a set of new patterns to be added. As of now, Izinto
covers the test of features. There are more patterns that can,
for example, cover the connectivity, performance, scalability
of IoT systems. By covering a greater set of patterns, it
is possible to ensure better functioning of such distinct and
heterogeneous systems and ensure their integration. There is
also the possibility of creating a new set of test patterns for
the scope of IoT.

In terms of the visual interface for testing, there is the
possibility of creating a module for displaying the sensor
readings, or the actuator’s state in real time. By doing this,
the tester would feel in a more controlled scenario of test and
feel in greater contact with the actual values being used for
test purpose.

REFERENCES

[1] F. Fernandez and G. C. Pallis, “Opportunities and challenges of the
internet of things for healthcare: Systems engineering perspective,” in
Wireless Mobile Communication and Healthcare (Mobihealth), 2014
EAI 4th International Conference on. IEEE, 2014, pp. 263–266.

[2] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and
K. Mankodiya, “Towards fog-driven iot ehealth: Promises and chal-
lenges of iot in medicine and healthcare,” Future Generation Computer
Systems, vol. 78, 2018, pp. 659–676.

[3] X. Krasniqi and E. Hajrizi, “Use of iot technology to drive the auto-
motive industry from connected to full autonomous vehicles,” IFAC-
PapersOnLine, vol. 49, no. 29, 2016, pp. 269–274.

[4] A. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
“Home automation in the wild: challenges and opportunities,” in pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011, pp. 2115–2124.

[5] E. Bringmann and A. Krämer, “Model-based testing of automotive
systems,” in 2008 1st international conference on software testing,
verification, and validation. IEEE, 2008, pp. 485–493.

[6] B. Lima and J. P. Faria, “A survey on testing distributed and heteroge-
neous systems: The state of the practice,” in International Conference
on Software Technologies. Springer, 2016, pp. 88–107.

[7] P. M. Pontes, B. Lima, and J. P. Faria, “Izinto: a pattern-based iot
testing framework,” in Companion Proceedings for the ISSTA/ECOOP
2018 Workshops. ACM, 2018, pp. 125–131.

[8] Node.js, “Node.js,” https://nodejs.org/en/, accessed: 2019-05-19.
[9] JointJS, “Jointjs,” https://www.jointjs.com/, accessed: 2019-05-19.

[10] T. J. Team, “Junit,” https://junit.org/junit5/, accessed: 2019-01-23.
[11] B. L. Welch, “The significance of the difference between two means

when the population variances are unequal,” Biometrika, vol. 29, no.
3/4, 1938, pp. 350–362.

[12] P. Plus, “Platformio,” http://platformio.org/, accessed: 2019-01-20.
[13] T. GmbH, “Iotify,” https://iotify.io/, accessed: 2019-01-20.
[14] F. F. I. T. Facility, “Iot-lab,” https://www.iot-lab.info/, accessed: 2019-

01-21.

[15] V. Looga, Z. Ou, Y. Deng, and A. Yla-Jaaski, “Mammoth: A massive-
scale emulation platform for internet of things,” in Cloud Computing
and Intelligent Systems (CCIS), 2012 IEEE 2nd International Confer-
ence on, vol. 3. IEEE, 2012, pp. 1235–1239.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems.
ACM, 2003, pp. 126–137.

[17] SimpleSoft, “Simpleiotsimulator,” https://www.smplsft.com/, accessed:
2019-01-23.

[18] A. Ahmad, F. Bouquet, E. Fourneret, F. Le Gall, and B. Legeard,
“Model-based testing as a service for iot platforms,” in International
Symposium on Leveraging Applications of Formal Methods. Springer,
2016, pp. 727–742.

[19] P. Giménez, B. Molı́na, C. E. Palau, and M. Esteve, “Swe simulation
and testing for the iot,” in Systems, man, and cybernetics (SMC), 2013
IEEE international conference on. IEEE, 2013, pp. 356–361.

[20] T. Pflanzner, A. Kertész, B. Spinnewyn, and S. Latré, “Mobiotsim:
towards a mobile iot device simulator,” in 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (Fi-
CloudW). IEEE, 2016, pp. 21–27.

[21] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. Van Luong, M. Brut,
and P. Gatellier, “Dpwsim: A simulation toolkit for iot applications
using devices profile for web services,” in 2014 IEEE World Forum on
Internet of Things (WF-IoT). IEEE, 2014, pp. 544–547.

[22] Atomiton, “Atomiton,” http://www.atomiton.com/, accessed: 2019-02-
02.

[23] J. Foundation, “Node-red,” https://nodered.org/, accessed: 2019-01-23.
[24] Domatica, “easyedge,” https://www.easyedge.io/, accessed: 2019-01-20.

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 51 / 69

How to Adapt Machine Learning into Software Testing

Mesut Durukal

IOT Division

Siemens AS

Istanbul, Turkey

e-mail: mesut.durukal@siemens.com

Abstract—Software testing cycles have several difficulties, such

as coverage of a dense scope in a limited time, due to dynamic

product development approaches. Researchers try to use new

techniques to overcome these difficulties. This paper presents

the utilization of Machine Learning (ML) in software testing

stages with its effects and outcomes. Practical applications and

advantages are analyzed. The main goal is to make insights

about what can be done in different stages of software testing

by employing ML and discuss benefits and risks.

Keywords-artificial intelligence; machine learning; software

testing; test automation.

I. INTRODUCTION

Nowadays, software applications have very
comprehensive features and usages. Most of them interact
with other applications and connect to various platforms,
which results in a remarkably wide scope and complexity
[1].

Comprehensive and competitive features are required for
products to survive in the modern world. Products should
adapt to new functionalities and be compatible with
emerging technologies. On the other hand, they should
respond to rapid changes to be one of the firsts in the market
and not to be old fashioned.

Figure 1 depicts these challenges by illustrating
decreasing delivery time against increasing complexity.

Figure 1. Delivery time versus complexity of products [2].

New challenges in product development have reflections
in software testing as well. It is mandatory to take quick
actions against gaps introduced by complexity and fast
changes in testing cycles. In this manner, new approaches in

testing have been applied to overcome these raising
challenges. One of the most exciting candidates is the
application of machine-based intelligence into testing [3].
ML practices in testing promise for additional coverage and
saving on time thanks to their design capable of
understanding the system and finding the best patterns.
Machines work faster than human beings on analyzing big
data and deciding on the most optimum solution. Therefore,
faster, better and cheaper processes are expected to be
achieved by the usage of ML. Consequently, huge budget
will be allocated on adaptation of ML into software
lifecycles. Figure 2 exhibits the estimation for ML projects
budgets by 2025, which is $90BN.

Figure 2. ML Projected Revenue in $ Billion [4].

In this paper, possible ML practices on software testing
stages are investigated. Section II describes ML working
principles. Section III explains several applications and their
outcomes are analyzed in Section IV. Finally, summary of
the work is given in Section V.

II. BACKGROUND

To reduce manual effort, several automation processes
are integrated into software development projects. However,
human intervention is still needed for the following activities
[5]:

• acquiring the knowledge needed to test the system,

• defining testing goals,

• designing and specifying detailed test scenarios,

• writing the test automation scripts,

• executing scenarios that could not be automated,

• analyzing the results to determine threads.
Machines are mainly programmed to follow explicit

instructions whereas humans learn a lot through observation
and experience. ML is the key factor to fill the gap caused by

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 52 / 69

the difference between the learning processes of machines
and humans as much as possible and thereby to reduce
human intervention.

ML is defined by Arthur Samuel in 1959 as “the subfield
of computer science that gives computers the ability to learn
without being explicitly programmed” similar to human
beings. If the performance of a machine improves with
experiences, it means that it is learning [5].

ML algorithms run in two stages: training and execution.
First, machine learns the system, or in other words, it models
the system. This stage is called training. Then, the execution
is performed by the prediction of next steps according to
learnt experiences. In short, what was learned in the past is
applied to new data by machines. ML types can be classified
as Supervised, Unsupervised, Semi-Supervised and
Reinforcement Learning.

A. Supervised Learning

Supervised ML algorithms use labeled examples to learn
and then to predict future events. Starting from the analysis
of a known training dataset, the algorithm builds a model to
make predictions about the output values as shown in Figure
3.

Figure 3. Supervised learning [6].

B. Unsupervised Learning

Unsupervised ML algorithms are used when training
information is neither classified nor labeled. Under these
conditions, system builds a model from unlabeled data to
describe a hidden structure. The system is not expected to
estimate the right output, but it explores the data, draws
outcomes from datasets and finally describes hidden
structures from unlabeled data [1].

C. Semi-supervised Learning

Semi-supervised ML algorithms fall somewhere in
between supervised and unsupervised learning, since they
use both labeled and unlabeled data for training. Figure 4
illustrates a sample modeling.

Figure 4. Semi-supervised learning [6].

D. Reinforcement Learning

Reinforcement ML algorithm is a learning method that
interacts with its environment by producing actions and
discovers errors or rewards. Simple reward feedback is
required for the machine to learn which action is the best,
which is known as the reinforcement signal. Figure 5
exhibits the execution of Reinforcement Learning.

Figure 5. Reinforcement Learning [7].

III. METHODOLOGY

Lots of applications are developed with ML algorithms in
various models, such as Artificial Neural Networks (ANN),
Support Vector Machines (SVM), k Means Clustering,
Random Forest (RF) and k Nearest Neighbors (kNN) as
shown in Figure 6.

Figure 6. Models to Develop ML algorithms for various applications.

Several applications are developed for software testing
purposes as well. As far as the adaptation of ML into
Software Testing Life Cycle (STLC) is concerned, the whole
process is handled in a structured manner in order to make it
easily trackable. STLC is managed in three major stages [8]
as shown in Figure 7:

• Definition

• Implementation

• Maintenance

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 53 / 69

Figure 7. Software Testing Stages [8].

ML is utilized in all of these stages. In Section IV,
application methodologies are investigated in detail. Table I
summarizes sample tools or models used in the stages.

TABLE I. ML APPLICATIONS IN TESTING

Stage Application Tool/Model

Definition Test Case Generation AIST [5]

Implementation Code Generation &
Completion

DeepCoder [9]

TabNine [10]

Execution Applitools [11]

Maintenance Refactoring DeepCode [12]

Prioritization ANN, GA models

Suite Generation Search-Based Models

Bug Handling

• Classification

• Addressing

• Scoring

Naïve Bayes, K-Means

clustering models

IV. APPLICATIONS

In this section, ML applications in software testing stages
are discussed.

A. Test Definition

In this stage, test scenarios are defined to cover all use
cases to ensure product quality. ML improves effectiveness
and reduces manual effort in the test definition stage in
different ways. One of them is letting the machine learn the
use cases of the system by observing actions and reactions.
In this way, the mandatory parameters and expected inputs
are learnt. Similarly, error messages in negative scenarios are
also observed. At the end of the learning phase, a model of
the system is created. Afterwards, test cases are generated to
verify expected results and behaviors according to the model.
A commercial example for this approach is Artificial
Intelligence (AI) for Software Testing Association (AISTA)
[5].

If the working principle is further investigated, it can be
understood that the machine observes the responses to
requests to model the data structure. Any of the algorithms

mentioned in Section III can be applied to generate the
model. Then, a set of parameter inference rules are defined to
generate the input data required by the test cases [13]. Figure
8 [14] visualizes the model generation.

Figure 8. ML based model generation [14].

Offutt et al. [15] followed the same approach to learn the
system. They illustrate the algorithm over a sample
eXtensible Markup Language (XML) response:

<books>
 <book>
 <ISBN>0-672-32374-5</ISBN>
 <price>59.99</price>
 <year>2002</year>
 </book>
 <book>
 <ISBN>0-781-44371-2</ISBN>
 <price>69.99</price>
 <year>2003</year>
 </book>
</books>

As the machine trains the behaviors of the system, it

learns the fields of entities and supported data types. For
instance, after training, the machine knows that a book has
properties “ISBN”, “price” and “year” in data types “string”,
“double” and “integer”. Finally, test cases are generated by
forming request according to this model with perturbated
data values. Data values are smartly selected (e.g., boundary
values). Table II [15] illustrates a sample set of cases. They
constructed 100 test cases, which found 14 faults out of 18,
implying that the success rate is 78%.

TABLE II. GENERATED TEST CASES BY MACHINE [15]

Original Value Perturbated Value Test Case

<price>59.99</
price>

263-1 Maximum Value

-263 Minimum Value

0 Zero

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 54 / 69

After the deployments of new features, changes on User
Interface (UI) are detected and images removed from the
application are noticed. Consequently, the machine starts to
learn about the application and relations between the
modules. New test cases are generated according to these
relations. In summary, whenever there are changes in the
system under test, additional test cases are created by means
of the approach explained.

It can be concluded that, ML improves the efficiency of
testing activities in terms of coverage, time, effort and cost.
Instead of analyzing the model and constructing test cases
manually, the machine performs these operations. Thus, risks
of manual work (e.g., skipping some cases) are minimized.

B. Implementation

In continuous testing environments, no one would refuse
an increase in test implementation and execution speed.
There are many ways to do this.

1) Code Generation & Completion
Coding is one of the biggest tasks in software lifecycles

including development and testing activities. Thus, ML is an
opportunity to improve or fasten the coding practices.

For robots, a way to write code is, first understanding the
problem and then applying the solution. When a problem is
defined with inputs and outputs, the needed operations are
predicted and the related codes are generated by the
machines. DeepCoder [9] follows the same approach. Here is
an example of input and output in a scenario, in which
negative numbers are filtered and listed in a reserve order
after multiplied with 4:

For the input:
[-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]

Expected output is:
[-12, -20, -32, -36, -68]

Figure 9 shows that DeepCoder predicts needed

operations after checking inputs and outputs:

Figure 9. Predicted possibilities of operations [9].

Recognition of patterns between input and output values is
achieved by passing them through hidden layers with an
ANN model. As a result, they reached a speedup of up to
467 times [9].

Beyond generating a code from scratch, another way to
improve the prcess is to automatically complete code. After
the patterns the most frequently used are learned, the
machines propose the subsequent codes during
implementation. As shown in Figure 10, Tabnine [10] is an
application, which facilitates test implementation.

Figure 10. An auto-completion application: Tabnine [10].

In short, ML not only reduces the effort and duration
spent on code implementation, but also suggests the most
frequently used patterns previously. In this way,
standardization is also improved.

2) Execution
In terms of execution, ML helps with:

• Exploratory Testing

• Usability & Efficiency Checks

• Execution Analysis
ML bots perform exploratory testing by clicking every

button on the application to test the functionalities. Adam
Carmi, co-founder of Applitools [11], states: “We want to
make sure that the UI itself looks right to the user and that
each UI element appears in the right color, shape, position,
and size.” ML algorithms are used in their tool Applitools to
perform usability and efficiency tests. The system is modeled
by the machine according to the defined use cases.
Parameters for difficult and easy paths are extracted, and
new designs are oriented by these trainings.

Furthermore, execution evaluation is performed by
analyzing execution data with ML algorithms. During test
executions, ML algorithms learn patterns and user tendencies
by collecting data, taking screenshots, downloading the
content of web pages and measuring loading times. Then,
properties of new features are estimated, and the deviations
are detected accordingly. For instance, if loading time of a
new page is longer than predicted, a warning is raised. Some
outlier detection algorithms are applied with Info Fuzzy
Network [16] for ML based test execution purposes.

Results show that algorithms can automatically produce a
set of nonredundant test cases covering the most common
functional relationships existing in software. A significant
saving is achieved from required human effort in this way,
which means that benefits of ML are not limited to time
only, but also cost and quality.

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 55 / 69

C. Maintenance

1) Refactoring
According to learnt patterns, some applications like

DeepCode [12] propose solutions against code smells. It
alerts about critical vulnerabilities needed to be solved in the
code. Figure 11 shows how the model of the API is
constructed with unsupervised learning algorithms. [17]

Figure 11. Learning of API Specifications in DeepCode [17].

Bugs are not allowed to go to production thanks to
findings. Thus, saving on time is achieved [17].

2) Prioritization
Infinite testing is impossible. With limited resources,

prioritization among the test cases has critical importance.
Priority is decided according to [18]:

• The probability to find an error,

• Uniqueness in terms of scope,

• Complexity or simplicity,

• Fitness for the regression activity.

For prioritization, test cases are evaluated according to the
learnings, which are collected from the labelled training sets.
Algorithms are developed with various approaches, such as
ANN [19] and Genetic algorithms [GA] [20]. Figure 12
shows how the most significant cases are selected with
ANN.

Figure 12. Test prioritization and reduction with ANN [19].

Thanks to prioritization, the number of tests cases to be
executed is significantly reduced and less time is consumed
on execution. Additionally, adaptation against immediate
changes is quickly ensured since regression suite can be
generated by ML algorithms.

3) Suite Generation

Whenever there is a change in the software, at least the
regression suite is executed. ML algorithms train the
relations between the test cases and the features and decide
the related test suite for the newly added feature.

It is possible to construct a group of tests, which are
similar, by observing the coverages of tests during their
executions [21]. The main idea of the analysis performed by
the machine is to understand which tests are contextually
close enough to each other to construct suites. After the
similarities between test case contexts are analyzed, they are
grouped by their coverage.

a) Branch Coverage: According to the number of hits

to a branch, the algorithm calculates the distances of

executions to the target branch and the relation between a

test and a branch is estimated.

b) Line Coverage: Distances are calculated with the

number of covered lines in the code after the execution of a

test.

c) Exception Coverage: Exception coverage is a kind

of reinforcement learning and aims to reach as much

exceptions as possible. Tests, which throw more exceptions,

are rewarded.

d) Method Coverage: Method coverage approach

applies the same algorithms over methods. Tests are

evaluated according to whether they call methods or not.

4) Bug Handling
Bugs are of great importance since they contain valuable

information about the product. According to bugs, useful
analysis can be done, such as:

• constructing bug classes in relation with features,

• learning relations between bug contexts and severity,

• learning relations between bug contexts and
assignees.

Bug classification provides hints about the weaknesses of
the product. For example, if bugs mostly heap together on a
feature, some actions can be taken accordingly. In such a
case, related tests are prioritized to investigate the feature
deeper.

Additionally, scoring of the bugs is very important since
they are handled according to their severities. Bugs with the
highest severity levels are fixed primarily, then the rest is
handled in order. If a critical bug is not scored correctly (e.g.,
with a low severity), it may be postponed since it is not
regarded as a priority. As a result, the regarding fix is not
done as soon as the bug identified, which leads to additional
costs.

Another point to mention is, for big teams, it is not easy to
know each assignee for all features. In such cases, the
assignee of a bug can be proposed by the machine according
to the previously addressed bugs. Correctly assigned bugs
are labeled, and the system is modeled by the machine. Then
addresses for next bugs are estimated.

Table III summarizes results from 3 different studies.

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 56 / 69

TABLE III. ACHIEVEMENTS ON BUG CLASSIFICATION BY ML

Study Assignment Scoring

1 [22] 50%

2 [23] 51.4% 72.5%

3 [24] 72%-98%

To sum up, ML algorithms contribute to bug handling
processes, substantially. In terms of quality and scope,
coverage is extended by means of the ML observations. If
the machines detect any other weakness after bugs’ analysis,
related test cases are determined and added. Additionally,
ML improves the management of bugs, since it helps with
correct triage and assignment.

V. RELATED WORK

In this section, an application is discussed on bug
severity estimation. For this application, bugs of MindSphere
[25] are used. MindSphere is the cloud-based IoT open
operating system from Siemens. In the project, bugs are
labeled with severity classes:

• Severity 1: Safety

• Severity 2: Critical

• Severity 3: Major

• Severity 4: Minor
Severity 1 is for the cases, which are related to human

life and safety issues. Currently, there is not a Severity 1 bug
in the project. For the other severity classes, severity
assignment to a bug is important in terms of prioritization.
Additionally, in the project, Severity 2 bugs are especially
tracked, since they are regarded as release blocker issues.
Therefore, decision for a bug whether it is Severity 2 or not,
affects the progress of the release.

For two different purposes, 889 customer bug entries are
collected from Jira. On this data, estimation of a bug severity
for 3 classes (Severity: 2,3,4) and decision on a bug whether
it is a release blocker or not (Severity 2 or not) are tested.
Figure 13 shows the distribution of severity of bugs.

Figure 13. Bug Counts per Severity.

Since the bugs are collected from a real-life project,
sample count is not very high. 5% of data is separated for
testing and training is performed with SVM on the rest.
Figure 14 exhibits the confusion matrix for 3 classes. The
accuracy is found to be 64% for this case.

Figure 14. Confusion Matrix for 3 classes.

For two classes (Severity 2 or not), accuracy is 77%.
Related confusion matrix can be seen in Figure 15.

Figure 15. Confusion Matrix for 2 classes.

Severity estimation is not an easy task for bugs. For the
same service, a bug can be both Severity 4 and Severity 2.
Similarly, the same failure, i.e., data upload failure, can
imply different severity levels depending on the conditions
or input parameters. Therefore, it is very likely to face
difficult decision cases. Considering these challenges, the
results can be evaluated as successful.

VI. DISCUSSION

ML is applicable in all stages of software testing cycles.
The usage of ML in testing activities has lots of advantages.
Test coverage is improved by automatic test generation by
machines. For the machine generated test cases, machines’
success rate in detecting faults is reported as 78%.

In addition, ML applications provide extra speed in all
stages of testing. Compared to humans, machines decide
much faster. At least for the rough estimations, AI results can
provide a quick feedback. As presented in Section IV, 467
times faster implementation is achieved.

Moreover, manual effort is obviously reduced. Instead of
manual tasks, the machines work for defining, executing and
maintaining tests. Outliers are detected by algorithms during

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 57 / 69

execution. In this way, the risk off missing bugs is
minimized and the cost is reduced with early fixes.

Advantages of ML applications in testing are
unneglectable, however, potential risks should not be
ignored. Performance, security, control and social risks can
be faced in failure cases. Error cases can result in misleading
actions, including security risks or fatal consequences [26].
Furthermore, if ML goes out of control, or is abused by
people, some ethical and social concerns can arise. In short,
it can be concluded that ML is a safe and beneficial tool only
when it is under control.

VII. CONCLUSION AND FUTURE WORK

Rapidly improving software world grows a great rivalry
and creates a pressure on stakeholders in terms of time, cost,
scope and quality. Besides development processes, these
challenges are faced also during the testing cycles. Thus, any
effort that can overcome these challenges is welcomed. In
this respect, ML is probably the most promising discipline to
improve testing by making better and faster decisions.

Even though it is assumed that ML can never fully
replace human beings, it is already surpassing humans in
several tasks, such as playing games and providing
recommendations. As far as these advances are concerned,
the goal is to make use of ML in testing as much as possible.

ML algorithms provide a remarkable benefit on testing
activities. It contributes with test coverage improvement,
manual effort reduction, better conclusion and addressing.

As a future work, it is aimed to develop an algorithm to
support bug assignment. Improving the algorithm for triage
is on future agenda and finally, comparison of results with
the studies in literature will be performed.

ACKNOWLEDGMENT

I am very grateful to Ms. Berrin Anil Tasdoken who has
reviewed the paper and guided me for the improvements.

REFERENCES

[1] M. Durukal, "Practical Applications of Artificial Intelligence
in Software Testing", International Journal of Scientific
Research in Computer Science, Engineering and Information
Technology (IJSRCSEIT), Volume 5 Issue 4, pp. 198-205,
July-August 2019, doi : 10.32628/CSEIT195434.

[2] W. Platz, "What’s beyond continuous testing? AI," SD Times,
2017.

[3] W. Murray, P. Karuppiah, and C. Stancombe," On the way to
smart, intelligent, and cognitive QA," World Quality Report
2017-18, 9th edition, 2017.

[4] "Which Industries Are Investing in Artificial Intelligence?,"
Splunk, Priceonomics Data Studio, 2018.

[5] T. King, "AI Driven Testing: A New Era of Test
Automation," Japan Symposium on Software Testing JaSST,
pp. 1-30, 2019.

[6] A. R. Shah, C. S. Oehmen, and B. Webb-Robertson, "SVM-
HUSTLE—an iterative semi-supervised machine learning
approach for pairwise protein remote homology detection,"
Bioinformatics, Volume 24, Issue 6, 15 March 2008, pp. 783–
790, doi: 10.1093/bioinformatics/btn028

[7] Reinforcement learning [Online] Available from:
https://en.wikipedia.org/wiki/Reinforcement_learning 2019.
11.05

[8] M. M. Lehman, "Programs, life cycles, and laws of software
evolution," in Proceedings of the IEEE, vol. 68, no. 9, pp.
1060-1076, Sept. 1980. doi: 10.1109/PROC.1980.11805

[9] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and D.
Tarlow, "DeepCoder: Learning to Write Programs,"
Proceedings of ICLR'17, March 2017

[10] Tabnine [Online] Available from: https://tabnine.com/
2019.11.05

[11] Applitools [Online] Available from: https://applitools.com/
2019. 11.05

[12] DeepCode [Online] Available from: https://www.deepcode.ai/
2019. 11.05

[13] H. Ed-douibi, J. L. Cánovas Izquierdo and J. Cabot,
"Automatic Generation of Test Cases for REST APIs: A
Specification-Based Approach," 2018 IEEE 22nd
International Enterprise Distributed Object Computing
Conference (EDOC), Stockholm, 2018, pp. 181-190. doi:
10.1109/EDOC.2018.00031

[14] K. Meinke and P. Nycander, "Learning-based testing of
distributed microservice architectures: Correctness and fault
injection," SEFM 2015 Collocated Workshops, pp. 3-10,
2015.

[15] J. Offutt and X. Wuzhi "Generating test cases for web
services using data perturbation." ACM SIGSOFT Software
Engineering Notes 29.5, pp. 1-10, 2004.

[16] M. Last and M. Freidman, "Black-Box Testing with Info-
Fuzzy Networks," World Scientific, City, 2004.

[17] J. Eberhardt, S. Steffen, V. Raychev and M. Vechev,
"Unsupervised learning of API aliasing specifications." In
Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 745-
759, 2019.

[18] P. Saraph, M. Last, and A. Kandell, "Test case generation and
reduction by automated input-output analysis," Institute of
Electrical and Electronics Engineers Inc., City, 2003.

[19] Dr. A. P. Nirmala, Md Shajahan, Somnath K, "Impact of
Artificial Intelligence in Software Testing," International
Journal of Scientific Research in Computer Science,
Engineering and Information Technology (IJSRCSEIT), ISSN
: 2456-3307, Volume 3, Issue 3, pp.1519-1526, 2018.

[20] S. Dhawan, K. S. Handa, and R. Kumar, "Optimization of
software testing using genetic algorithms," In Proceedings of
the 11th WSEAS international conference on Mathematical
and computational methods in science and engineering
(MACMESE'09), World Scientific and Engineering Academy
and Society (WSEAS), pp. 108-112, 2009.

[21] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri,
"Combining multiple coverage criteria in search-based unit
test generation," Springer International Publishing, Search-
Based Software Engineering, volume 9275 of Lecture Notes
in Computer Science, pp. 93–108, 2015.

[22] J. Anvik, L. Hiew and G. C. Murphy, "Who should fix this
bug?." In Proceedings of the 28th international conference on
Software engineering, pp. 361-370, 2006.

[23] V. Stagge, "Categorizing Software Defects using Machine
Learning." LU-CS-EX, 2018.

[24] Imran, "Predicting Bug Severity in Open-source Software
Systems Using Scalable Machine Learning Techniques." PhD
diss., Youngstown State University, 2016.

[25] MindSphere [Online] Available from: https://
https://siemens.mindsphere.io/en/ 2019.11.05

[26] S. Levin and J. C. Wong, "Self-driving Uber kills Arizona
woman in first fatal crash involving," The Guardian, March.
19, 2018.

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 58 / 69

Sandiff: Semantic File Comparator for Continuous Testing of Android Builds

Carlos E. S. Aguiar, Jose B. V. Filho, Agnaldo O. P. Junior,
Rodrigo J. B. Fernandes, Cı́cero A. L. Pahins

Sidia: Institute of Science and Technology
Manaus, Brazil

Emails: {c.eduardo, jose.vf, agnaldo.j, rodrigo.f, cicero.p}@samsung.com

Abstract—With ever-larger software development systems con-
suming more time to perform testing routines, it is necessary
to think about approaches that accelerate continuous testing of
those systems. This work aims to allow the correlation of semantic
modifications with specific test cases of complex suites, and based
on that correlation, skip time-consuming routines or mount lists of
priority routines (fail-fast) to improve the productivity of mobile
developers and time-sensitive project deliveries and validation. In
order to facilitate continuous testing of large projects, we propose
Sandiff, a tool that efficiently analyzes semantic modifications of
files that impacts domain-specific testing routines of the official
Android Test Suite. We validate our approach on a set of real-
world and commercially-available Android images of a large
company that comprises two major versions of the system.

Keywords–Testing; Validation; Continuous; Tool.

I. INTRODUCTION

As software projects get larger, continuous testing becomes
critical, but at the same time, difficult and time-consuming.
Consider a project with a million files and intermediate ar-
tifacts. It is essential that a test suite that offers continuous
testing functionalities performs without creating bottlenecks or
impacting project deliveries. However, effectively using contin-
uous integration can be a problem: tests are time-consuming to
execute, and by consequence, it is impractical to run complete
modules of testing on each build. In these scenarios, it is
common that teams lack time-sensitive feedback about their
code and compromise user experience.

The testing of large software projects is typically bounded
to robust test suites. Moreover, the quality of testing and
validation of ubiquitous software can directly impact people’s
life, a company’s perceived image, and the relation with its
clients. Companies inserted in the Global Software Develop-
ment (GSD) environment, i.e., with a vast amount of develop-
ers cooperating across different regions of the world, tend to
design a tedious process of testing and validation that becomes
highly time-consuming and impacts the productivity of devel-
opers. Moreover, continuous testing is a de facto standard in
the software industry. During the planning of large projects, it
is common to allocate some portion of the development period
to design testing routines. Test-Driven Development (TDD)
is a well-known process that promotes testing before feature
development. Typically, systematic software testing approaches
lead to compute and time-intensive tasks.

Sandiff is a tool that helps to reduce the time spent
on testing of large Android projects by enabling to skip
domain-specific routines based on the comparison of mean-
ingful data without affecting the functionality of the target
software. For instance, when comparing two Android Open
Source Project (AOSP) builds that were generated in different
moments, but with the same source code, build environment

Suite/Plan VTS/VTS
Suite/Build 9.0 R9 / 5512091
Host Info seltest-66 (Linux - 4.15.0-51-generic)
Start Time Tue Jun 25 16:17:23 AMT 2019
End Time Tue Jun 25 20:39:46 AMT 2019
Tests Passed 9486
Tests Failed 633
Modules Done 214
Modules Total 214
Security Patch 2019-06-01
Release (SDK) 9 (28)
ABIs arm64-v8a,armeabi-v7a,armeabi

Figure 1. Summary of the official Android Test Suite – Vendor Test
Suite (VTS) – of a commercially-available AOSP build.

and build instructions, the final result is different in byte level
(byte-to-byte), but can be semantically equivalent based on its
context (meaning). In this case, it is expected that these two
builds perform the same. However, the problem is proving it.
Our solution relies on how to compare and prove that two
AOSP builds are semantically equivalents. Another motivation
is the relevance of Sandiff to the continuous testing area,
where it can be used to reduce the time to execute the official
Android Test Suite (VTS). As our solution provides a list
of semantically equivalent files, it is possible to skip tests
that validate the behavior provided by these files. Consider
the example of Figure 1 in which the official Android Test
Suite was executed in a commercially-available build based
on AOSP. The execution of all modules exceeded 4 hours,
compromising developer performance and deliveries.

By comparison of meaningful data, we mean comparison
of sensitive regions of critical files within large software:
different from a byte-to-byte comparison, a semantic com-
parison can identify domain-related changes, i.e., it compares
sensitive code paths or key-value attributes that can be related
to the output of a large software. By large, we mean software
designed by a vast amount of developers that are inserted in
a distributed software development environment whereupon
automatic test suits are necessary.

In summary, we present the key research contributions of
Sandiff:

• (i) An approach to perform semantic comparison and
facilitate continuous testing of large software projects.

• (ii) An evaluation of the impact of using Sandiff in
real-world and commercially-available AOSP builds.

Our paper is organized as follows. In Section II, we
provide an overview of binary comparators and their impact

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 59 / 69

Figure 2. Sandiff verifies the semantic compatibility of two files or directories (list of files) and report their differences.

on continuous testing of large projects. In Section III, we
describe Sandiff and its main functionalities: (i) input detec-
tion, (ii) content recognition, and (iii) specialized semantic
comparison. In Section IV, we present the evaluation of Sandiff
in commercially-available builds based on AOSP and discuss
the impact of continuous testing of those builds. We conclude
the paper with avenues for future work in Section V.

II. RELATED WORK

To the best of our knowledge, few approaches in the liter-
ature propose comparison of files with different formats and
types. Most of the comparison tools focus on the comparison
based on diff (text or, at most, byte position). Araxis [1] is a
well-known commercial tool that performs three types of file
comparison: text files, image files, and binary files. For image
files, the comparison shows the pixels that have been modified.
For binary files, the comparison is performed by identifying
the differences in a byte level. Diff-based tools, such as Gnu
Diff Tools [2] diff and cmp, also performs file comparison
based on byte-to-byte analysis. The main difference between
diff and cmp is the output: while diff reports whether files
are different, cmp shows the offsets, line numbers and all
characters where compared files differs. VBinDiff [3] is another
diff-inspired tool that displays the files in hexadecimal and
ASCII, highlighting the difference between them. Sandiff also
supports byte-level comparison, but the semantic comparison
is the main focus of the tool in order to facilitate the testing
of large software projects since it allows to discard irrelevant
differences in the comparison.

Other approaches to the problem of file comparison, in
a semantic context, typically use the notion of change or edit
distance [4] [5]. Wang et. al. [4] proposed X-Diff, an algorithm
that analyses the structure of a XML file by applying standard
tree-to-tree correction techniques that focus on performance.
Pawlik et. al. [5] also propose a performance-focused algorithm
that is based on the edit distance between ordered labelled
nodes of a XML tree. Both approaches can be used by Sandiff
to improve its XML-based semantic comparator.

III. SANDIFF

Sandiff aims to perform comparison of meaningful data of
two artifacts (e.g., directories or files) and report a semantic
compatible list that indicates modifications that can impact
the output of domain-related on continuous testing setups of
large projects. In the context of software testing, syntactically
different (byte-to-byte) files can be semantically equivalent.
Once the characteristics of a context are defined, previously
related patterns to this context can define the compatibility

Configuration 1
ro.build.version.preview sdk=0
ro.build.version.codename=REL
ro.build.version.all codenames=REL
ro.build.version.release=8.0.0
ro.build.version.security patch=17-08-05

Configuration 2
ro.build.version.preview sdk=0
ro.build.version.codename=REL
ro.build.version.all codenames=REL
ro.build.version.security patch=17-08-05
ro.build.version.release=8.0.0

Figure 3. Example of AOSP configuration files.

between artifacts from different builds. By definition, two
artifacts are compatible when the artifact A can be replace
the artifact B without losing its functionality or changing
its behavior. As each file type has its own set of attributes
and characteristics, Sandiff employs specialized semantic com-
parators that are design to support nontrivial circumstances of
domain-specific tests. Consider the comparison of AOSP build
output directory and its files. Note that the building process
of AOSP in different periods of time can generate similar
outputs (but not byte-to-byte equivalent). Different byte-to-
byte artifacts are called syntactically dissimilar and typically
require validation and testing routines. However, on the context
where these files are used, the position of key-value pairs do
not impact testing neither software functionality. We define
these files as semantically compatible, once Sandiff is able to
identify them and suggest a list of tests to skip. Take Figure 3
as example. It shows a difference in the position of the last
two lines. When comparing them byte-to-byte, this results in
syntactically different files. However, on the execution context
where these files are used, this is irrelevant, and the alternate
position of lines does not change how the functionality works.
Thus, the files are semantically compatible.

Sandiff consists of three main functionalities: (i) input
detection, (ii) content recognition, and (iii) specialized se-
mantic comparison, as shown in Figure 2. During analysis of
directories and files, we can scan image files or archives that
require particular read operations. The first step of Sandiff
is to identify these files to abstract file systems operations
used to access the data. This task is performed by the Input
Recognizer. Then, the Content Recognizers and Comparators
are instantiated. In order to use the correct Comparator, Sandiff
implements recognizers that are responsible to detect supported
file types and indicate if a file should be ignored or not based
on a test context. Once Sandiff detects a valid file, it proceeds
to the semantic comparison. The Comparators are specialized
methods that take into consideration features and characteris-
tics that are able to change the semantic meaning of execution
or testing, ignoring irrelevant syntactically differences. Note
that the correct analysis of semantic differences is both file
type and context sensitive. Sandiff implements two operation

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 60 / 69

TABLE I. SUMMARY OF CONTENT RECOGNITION ANALYSIS FOR
EACH FILE.

Attribute Meaning
Tag Represents a file type
Action Action to be taken with the file. (COMPARE or IGNORE)
Reason In case of action IGNORE, the reason of ignore
Context Information about context that is used to define the ACTION

modes: (i) file and (ii) directory-oriented (walkables). In file-
oriented mode, the input is two valid comparable files, whereas
directory-oriented is the recursive execution of file-oriented
mode in parallel, using a mechanism called Orchestrator.
In the following sections, we describe the functionalities of
Sandiff in detail.

A. Content Recognition
To allow the correct selection of semantic comparators,

Sandiff performs the analysis of file contents by leveraging
internal structures and known patterns, i.e., artifact extension,
headers, type signatures, and internal rules of AOSP to then
summarize the results into (i) tag, (ii) action, (iii) reason, and
(iv) context attributes, as shown in Table I. Each attribute
helps the semantic comparators achieve maximum semantic
coverage. To measure the semantic coverage, we gathered the
percentage (amount of files) of file types inside vendor.img
and created a priority list to develop semantic comparators.
For instance, both ELF (32 and 64 bits) files represent about
60% of total files inside .img files, whereas symbolic link files
about 14% and XML files about 6%. This process enables us
to achieve about 90% of semantic coverage. As the comparison
is performed in a semantic mode, it is necessary to know the
context in which the artifact was used to enable the correlation
between files and test cases. Note that a file can impact one
or more tests in a different manner, e.g., performance, security
and fuzz tests. The remaining 10% of files are compared using
the byte-to-byte comparator.

Each recognizer returns a unique tag from a set of known
tags, or a tag with no content to indicate that the file could
not be recognized. Recognizers can also decide whether a
file should be ignored based on context by using the action
attribute and indicating a justification in the reason attribute.
Recognizers are evaluated sequentially. The first recognizer
runs and tries to tag the file: if the file cannot be tagged,
the next recognizer in the list is called, repeating this process
until a valid recognizer is found or, in the latter case, the file
is tagged to the default comparator (byte-to-byte). Table II
summarizes the list of AOSP-based recognizers supported by
Sandiff.

B. Semantic Comparators
Sandiff was designed to maximize semantic coverage of

the AOSP by supporting the most relevant intermediate files
used for packing artifacts into .img image files, i.e., the
bootable binaries used to perform factory reset and restore
original operational system of AOSP-based devices. To ensure
the approach assertiveness, for each semantic comparator, we
performed an exploratory data analysis over each file type and
use case to define patterns of the context’s characteristics.
The exploratory data analysis over each file type relies on

TABLE II. LIST OF AOSP-BASED RECOGNIZERS SUPPORTED BY
SANDIFF.

Recognizer Tags Action
IgnoredByContextRecognizer ignored by context Ingore
ContextFileRecognizer zip manifest Compare
MagicRecognizer elf, zip, xml, ttf, sepolicy, empty Compare
AudioEffectsRecognizer audio effects format Compare
SeappContextsRecognizerc seapp contexts Compare
PKCS7Recognizer pkcs7 Compare
PropRecognizer prop Compare
RegexLineRecognizer regex line Compare
SEContextRecognizer secontext Compare

ExtensionRecognizer
Based on file name.
e.g.: file.jpg ? ”jpg”

Compare

three steps: (i) file type study, (ii) where these files are
used, and (iii) how these files are used (knowledge of its
behavior). The result of this analysis was used to implement
each semantic comparator. The following subsections describe
the main comparators of Sandiff.

1) Checksum: Performs byte-to-byte (checksum) compari-
son and is the default comparator for binary files (e.g., bin,
tlbin, dat) and for cases where file type is not recognized
or unsupported. Sandiff employs the industry standard [6]
MD5 checksum algorithm, but also offers a set of alternative
algorithms that can be set manually by the user: SHA1,
SHA224, SHA256, SHA384, SHA512.

2) Audio Effects: AOSP represents audio effects and con-
figurations in .conf files that are similar to .xml:

(i) <name>{[sub-elements]}
(ii) <name> <value>

Audio files are analyzed by an ordered model detection
algorithm that represents each element (and its sub-elements)
as nodes in a tree that is alphabetically sorted.

3) Executable and Linking Format (ELF): ELF files are
common containers for binary files in Unix-base systems that
packs object code, shared libraries, and core dumps. This
comparator uses the definition of the ELF format (<elf.h>
library) to analyze (i) the files architecture (32 or 64-bit),
(ii) the object file type, (iii) the number of section entries in
header, (iv) the number of symbols on .symtab and .dynsym
sections, and (v) the mapping of segments to sections by
comparing program headers content. To correlate sections to
test cases, Sandiff detects semantic differences for AOSP
test-sensitive sections (e.g., .bss, .rodata, .symtab, .dynsym,
.text). When ELF files are Linux loadable kernel modules (.ko
extension, kernel object), the comparator checks if the module
signature is present to compare its size and values.

4) ListComparator: Compares files structured as list of
items, reporting (i) items that exists only in one of the com-
pared files, (ii) line displacements (lines in different positions),
and (iv) duplicated lines. To facilitate the correlation between
files and test cases, Sandiff implements specific semantic
comparators for Prop, Regex Line and SELinux files, as they
contain properties and settings that are specific to a particular
AOSP-based device or vendor.

a) Prop: Supports files with .prop extensions and
with <key> = <value> patterns. Prior to analysis, each

53Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 61 / 69

line of a .prop file is categorized in import, include or property,
as defined below:

(i) import: lines with format import <key>.
(ii) include: lines with format include <key>.

(iii) property: lines with format <key> = [<value>].

After categorization, each line is added to its respective list.
The comparator provides a list of properties to be discarded
(considered irrelevant) on the semantic comparison. A line can
be ignored if is empty or commented.

b) RegexLine: Performs the comparison of files in
which all lines match a user-defined regex pattern, e.g.,
’/system/.’ or ’.so’, offering the flexibility to perform
semantic comparison of unusual files.

c) SELinux: Security-Enhanced Linux, or SELinux, is a
mechanism that implements Mandatory Access Control (MAC)
in Linux kernel to control the permissions a subject context
has over a target object, representing an important security
feature for modern Linux-based systems. Sandiff supports
semantic comparison of SELinux specification files that are
relevant to security test cases of the VTS suite, i.e., Seapp
contexts, SELinux context, and SELinux Policy, summarizing
(i) components, (ii) type enforcement rules, (iii) RBAC rules,
(iv) MLS rules, (v) constraints, and (vi) labeling statements.

5) RC: The Android Init System is responsible for the
AOSP bootup sequence and is related to the bootloader, init
and init resources, components that are typically customized
for specific AOSP-based devices and vendors. The initializa-
tion of modern systems consists of several phases that can im-
pact a myriad number of test cases (e.g., kernel, performance,
fuzz, security). Sandiff supports the semantic comparison of
.rc files that contain instructions used by the init system:
actions, commands, services, options, and imports.

6) Symbolic Link: The semantic comparison of symbolic
links is an important feature of Sandiff that allows correlation
between test cases and absolute or relative paths that can
be differently stored across specific AOSP-based devices or
vendors, but result in the same output or execution. The
algorithm is defined as follows: first it checks if the file status
is a symbolic link, and if so, reads where it points to. With
this content it verifies if two compared symbolic links points
to same path. The library used to check the file status depends
on the input type and is abstracted by Input Recognizers. Take
the following instances as examples:

File System→ <sys/stat.h>

Image File→ <ext2/ext2fs.h>

ZIP→ <zip.h>

7) True Type Font: Sandiff uses the Freetype library [7]
to extract data from TrueType fonts, which are modeled in
terms of faces and tables properties. For each property field, the
comparator tags the semantically irrelevant sections to ignore
during semantic comparison. This is a crucial feature of Sandiff
since is common that vendors design different customizations
on top of the default AOSP user interface and experience.

8) XML: XML is the de facto standard format for web
publishing and data transportation, being used across all
modules of AOSP. To support the semantic comparison of
XML files, Sandiff uses the well-known Xerces library [8]

by parsing the Document Object Model (DOM), ensuring
robustness to complex hierarchies. The algorithm compares
nodes and checks if they have (i) different attributes length,
(ii) different values, (iii) attributes are only in one of the inputs,
and (iv) different child nodes (added or removed).

9) Zip and Zip Manifest: During the building process of
AOSP images, zip-based files may contain Java Archives (.jar),
Android Packages (.apk) or ZIP files itself (.zip). As these
files follows the ZIP structure, they are analyzed by the same
semantic comparator. Note that, due to the archive nature of
ZIP format, Sandiff covers different cases:

(i) In-place: there is no need to extract files.
(ii) Ignore metadata: ignore metadata that is related to

the ZIP specification, e.g., archive creation time and
archive modification time.

(iii) Recursive: files inside ZIP are individually processed
by Sandiff, so they can be handled by the proper
semantic comparator. The results are summarized to
represent the analysis of the zip archive.

Another important class of files of the AOSP building
process are the ZIP manifests. Manifest files can contain
properties that are time-dependent, impacting naive byte-to-
byte comparators. Sandiff supports the semantic comparison
of manifests by ignoring header keys entries (e.g., String:
”Created-By”, Regex: ”(.+)-Digest”) and files keys entries
(e.g., SEC-INF/buildinfo.xml).

10) PKCS7: Public Key Cryptography Standards, or
PKCS, are a group of public-key cryptography standards that
is used by AOSP to sign and encrypt messages under a Public
Key Infrastructure (PKI) structured as ASN.1 protocols. To
maximize semantic coverage, Sandiff ignores signatures and
compares only valid ASN.1 elements.

C. Orchestrator
The orchestrator mechanism is responsible to share the

resources of Sandiff among a variable number of competing
comparison jobs to accelerate the analysis of large software
projects. Consider the building process of AOSP. We noticed
that, for regular builds, around 384K intermediate files are
generated during compilation. In this scenario, running all
routines of the official Android Test Suite, known as Vendor
Test Suite (VTS), can represent a time consuming process that
impacts productivity of mobile developers. To mitigate that, the
orchestrator uses the well-known concept of workers and jobs
that are managed by a priority queue. A worker is a thread
that executes both recognition and comparison tasks over a
pair of files, consuming the top-ranked files in the queue. To
accelerate the analysis of large projects, Sandiff adopts the
notion of a fail greedy sorting metric, i.e., routines with higher
probability of failing are prioritized. The definition of failing
priority is context-sensitive, but usually tend to emphasize
critical and time-consuming routines. After the processing of
all files, the results are aggregated into a structured report
with the following semantic sections: (i) addition, (ii) removal,
(iii) syntactically equality, and (iv) semantic equality.

IV. EXPERIMENTS

In order to verify the comparison performance of San-
diff, we made experiments between different commercially-
available images of AOSP. The experiments consist on com-
paring the following image pairs:

54Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 62 / 69

TABLE III. OVERALL SUMMARY OF THE IMPACT OF USING SANDIFF IN REAL-WORLD COMMERCIALLY-AVAILABLE AOSP BUILDS.

Comparison
Add Remove Edit Type Edit Equal Error Ignored

Semantinc Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary
Experiment #1 0 0 0 0 11 12 0 0 2185 2185 0 19 0 0
Experiment #2 13 13 27 27 0 0 3 3 0 0 0 0 0 0
Experiment #3 23 23 18 18 527 606 0 0 1929 1805 0 45 0 0

* Add = file is present on the second input. Remove = file is present in the first input. Edit = file is present in both inputs, but the comparison returned differences. Type Edit = file
is present in both inputs, but there were changes in its metadata (e.g., permissions). Equal = file is present in both inputs, and the comparison returns an equal status. Error = file is
present in both inputs, but the comparison returns an error status. Ignored = file is present in both inputs, but is not semantically relevant, so it was ignored.

- Experiment #1: Comparing two revisions within same
AOSP version: 8.1.0 r64 x 8.1.0 r65.

- Experiment #2: Comparing last revision of AOSP Oreo with
initial release of AOSP Pie: 8.1.0 r65 x 9.0.0 r1.

- Experiment #3: Comparing last revision of AOSP Pie with
its initial release: 9.0.0 r1 x 9.0.0 r45.

These pairs were compared using both semantic (Sandiff)
and binary (checksum) comparison methods. To evaluate the
robustness of each method, we analyzed the files contained in
system.img, userdata.img and vendor.img images,
which are mounted in the EXT2 file system under a UNIX
system. Note that, differently from Sandiff, binary comparison
is not capable of reading empty files and symbolic link targets.
These files are listed as errors, as shown in Table III.

Based on the experiments of Table III, we can note that
Sandiff was able to analyze large software projects like the
AOSP. First, the semantic comparison was able to determine
the file type and to compare not only the file contents, but
it is metadata. In contrast, binary comparison was unable
to compare symbolic link’s targets and broken links failed.
Second, the semantic comparison was able to discard irrelevant
differences (e.g., the build time in build.prop) which are
not differences in terms of functionality. Note that, during
experiment #2, Sandiff is unable to perform a full analyses
between these trees because there were structural changes. For
instance, in AOSP Oreo, the /bin is a directory containing
many files, while in AOSP Pie, the /bin is now a symbolic
link to another path (that can be another image as well). As
a result, Sandiff detects this case as a Type Edit and does not
traverse /bin since it is only a directory in AOSP Oreo.

V. CONCLUSION

In this paper, we presented Sandiff, a semantic comparator
tool that is designed to facilitate continuous testing of large
software projects, specifically those related to AOSP. To the
best of our knowledge, Sandiff is the first to allow correlation
of test routines of the official Android Test Suite (VTS) with
semantic modifications in intermediate files of AOSP building
process. When used to skip time-consuming test cases or to
mount a list of priority tests (fail-fast), Sandiff can lead to
a higher productivity of mobile developers. We showed that
semantic comparison is more robust to analyze large projects
than binary comparison, since the former is unable to discard
irrelevant modifications to the output or execution of the target
software. As we refine the semantic comparators of Sandiff,
more AOSP specific rules will apply, and consequently, more
items can be classified as ”Equal” in Sandiff’s comparison
reports. In the context of making Sandiff domain agnostic,
another venue for future work is to explore machine learning
techniques to detect how tests are related to different types

of files and formats. We also plan to integrate Sandiff to the
official Android Test Suite (VTS) to validate our intermediate
results.

ACKNOWLEDGMENTS

We thank both Rafael Melo da Silva and Nick Diego
Yamane Pinto for their valuable help during the development
of the project. This work was supported by Sidia: Institute of
Science and Technology.

REFERENCES
[1] Araxis Ltd. Araxis: Software. [Online]. Available: https://www.araxis.

com/ [retrieved: October, 2019]
[2] Free Software Foundation, Inc. Diffutils. [Online]. Available: https:

//www.gnu.org/software/diffutils/ [retrieved: October, 2019]
[3] C. J. Madsen. Vbindiff - visual binary diff. [Online]. Available:

https://www.cjmweb.net/ [retrieved: October, 2019]
[4] Y. Wang, D. J. DeWitt, and J. Cai, “X-diff: an effective change detec-

tion algorithm for xml documents,” in Proceedings 19th International
Conference on Data Engineering, March 2003, pp. 519–530.

[5] M. Pawlik and N. Augsten, “Efficient computation of the tree edit
distance,” ACM Transactions on Database Systems, vol. 40, 2015, pp.
3:1–3:40.

[6] D. Rachmawati, J. T. Tarigan, and A. B. C. Ginting, “A comparative
study of message digest 5(MD5) and SHA256 algorithm,” Journal of
Physics: Conference Series, vol. 978, 2018, pp. 1–6.

[7] FreeType Project. Freetype. [Online]. Available: https://www.freetype.
org/freetype2/ [retrieved: October, 2019]

[8] Apache Software Foundation. C xml parser. [Online]. Available:
https://xerces.apache.org/xerces-c/ [retrieved: October, 2019]

55Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 63 / 69

Refinement Maps for Insulin Pump Control Software Safety Verification

Eman M. Al-qtiemat∗, Sudarshan K. Srinivasan∗, Zeyad A. Al-Odat∗, Sana Shuja†
∗Electrical and Computer Engineering, North Dakota State University,

Fargo, ND, USA
†Department of Electrical Engineering, COMSATS University,

Islamabad, Pakistan
Emails: ∗eman.alqtiemat@ndsu.edu, ∗sudarshan.srinivasan@ndsu.edu, ∗zeyad.alodat@ndsu.edu,

†SanaShuja@comsats.edu.pk

Abstract—Refinement-based verification is a formal verification
technique that has shown promise to be applicable for verification
of low-level real-time embedded object code. In refinement-
based verification, both the implementation (the artifact to be
verified) and the specification are modeled as transition systems,
which essentially capture the states of the system and transitions
between the states. A key step in the verification process is the
construction of a refinement map, which is a function that maps
implementation states onto specification states. Construction of
refinement maps is most often done manually and requires
key insights about how the implementation and specification
behave. In this paper, we develop refinement maps for various
safety properties concerning the software control operation of
insulin pumps. We then identify possible generic templates for
construction of refinement maps as a first step towards developing
a process to construct refinement maps in an automated fashion.

Keywords–Formal verification; safety-critical devices; Refine-
ment maps; Refinement-based verification.

I. INTRODUCTION

One of the key issues in designing safety-critical embed-
ded systems such as medical devices is software safety [1].
For example, infusion pumps (a medical device that delivers
medication such as pain medication, insulin, cancer drugs etc.,
in controlled doses to patients intravenously) has 54 class 1
recalls related to software issued by the US Food and Drug
Administration (FDA) [2]. Class 1 means that the use of the
medical device can cause serious adverse health consequences
or death.

Despite the fact that testing is the dominant verification
technique currently used in commercial design cycles [3],
testing can only show the presence of faults, but it never proves
their absence [4]. Alternate verification processes should be
applied to the software design in conjunction with testing to as-
sure system correctness and reliability. Formal verification can
address testing limitations by providing proofs of correctness
for software safety. Intel [5], Microsoft [6] and [7], and Airbus
[8] have successfully applied formal verification processes.

Refinement-based verification [9] is a formal verification
technique that has been demonstrated to be effective for veri-
fication of software correctness at the object code level [10].
To apply refinement-based verification, software requirements
should be expressed as a formal model. Previously, we have
proposed a novel approach to synthesize formal specifications
from natural language requirements [11], and in a later work,
we have also addressed timing requirements and specifica-
tions [12].

Our verification approach is based on the theory of Well-
Founded Equivalence Bisimulation (WEB) refinement [9]. In
the context of WEB refinement, both the implementation and
specification are treated as Transition Systems (TSs). If every
behavior of the implementation is matched by a behavior of the
specification and vice versa, then the implementation behaves
correctly as prescribed by the specification. However, this is
not easy to check in practice as the implementation TS and
specification TS can look very different. The specification
states obtained from the software requirements are marked
with atomic propositions (predicates that are true or false in
a given state). The implementation states are states of the
microcontroller that the object code program modifies. As
such, the microcontroller states includes registers, flags, and
memory. The various possible values that these components
can have during the execution of the object code program gives
rise to the many millions of states of the implementation. To
overcome this difference, WEB refinement uses the concept
of a refinement map, which is a function that provided an
implementation state, gives the corresponding specification
state. Historically, one of the reasons that refinement-based
verification is much less explored than other formal verification
paradigms such as model checking is that the construction
of refinement maps often requires deep understanding and
intuitions about the specification and implementation [13].
However, once a refinement map is constructed, the benefit is
that refinement-based verification is a very scalable approach
for dealing with low-level artifacts such as real-time object
code verification. This paper studies refinement maps corre-
sponding to formal specifications related to infusion pump
safety and proposes possible generic refinement map templates,
which is the first step toward automating the construction of
refinement maps.

The remainder of this paper is organized as follows.
Section II summarizes background information. Section III
details related work. Section IV describes the refinement maps
and refinement map templates. Conclusions and direction for
future work are noted in Section V.

II. BACKGROUND

This section explores the definition of transition systems,
the definition of refinement-based verification, and the synthe-
sis of formal specifications as key terms related to our work.

A. Transition Systems
As stated earlier, transition systems (TSs) are used to

model both specification and implementation in refinement-
based verification. TSs are defined below.

56Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 64 / 69

Definition 1: A TS M = 〈S,R,L〉 is a three tuple in
which S denotes the set of states, R ⊆ SXS is the transition
relation that provides the transition between states, and L is a
labeling function that describes what is visible at each state.

States are marked with Atomic Propositions (APs), which
are predicates that are true or false in each state. The labeling
function maps states to the APs that are true in every state.
An example TS is shown in Figure 1. Here S = {S1, S2, S3,
S4}, R = {(S1, S2), (S2, S4), (S4, S3), (S3, S4), (S3, S2),
(S1, S3)} and, L(S2) represents the atomic propositions that
are true for the S2 state.

S1

S3 S2

S4

Figure 1. An example of a transition system (TS).

B. Refinement-Based Verification
Our verification process is based on the theory of Well-

Founded Equivalence Bisimulation refinement. A detailed de-
scription of this theory can be found in [9]. Here, we give a
very high-level overview of the key concepts. As stated earlier,
WEB refinement provides a notion of correctness that can be
used to check an implementation TS against a specification
TS. One of the key features is that WEB refinement accounts
for stuttering, which is the phenomenon where multiple but
finite transitions of the implementation can match a single
transition of the specification. This is a very key feature
because the control code implements many functions and
only some of these functions maybe relevant to the safety
property being verified. Therefore, the code maybe doing a
number of things that do not relate to the property and will
therefore be stuttering a lot w.r.t. the specification. Another key
feature of WEB refinement is refinement maps, which is the
focus of this work. Refinement maps are functions that map
implementation states to specification states. There is a lot of
flexibility in how refinement maps can be defined. This allows
for low-level implementations to be verified against high-level
specifications.

Definition 2: (WEB Refinement): Let M = 〈S,R,L〉,
M ′ = 〈S′, R′, L′〉, and r: S → S’. M is a WEB refinement of
M ′ with respect to refinement map r, written M ≈ r M ′, if
there exists a relation, B, such that 〈 ∀ s ∈ S :: sB(r.s)〉 and
B is a WEB on the TS 〈 S] S’, R] R’, L 〉, where L.s =
L’(s) for s and S’ state and L.s = L’(r.s) otherwise.

C. Synthesis of Formal Specifications
Our approach for development and study of refinement

maps is based on the formal TS specifications. We have devel-
oped a previous approach to transform functional requirements
into formal specifications [11]. Since this work is closely tied
to the prior work, we briefly review it here. The transformation
procedure is as follows: The first step of computing the

TSs is to extract the APs from the requirements. We have
developed three Atomic Proposition Extraction Rules (APERs)
that work on the parse tree of the requirement obtained from
an English language parser called Enju. A high-level procedure
for specification transition system synthesis has been proposed
to compute the states and transitions using the resulting list of
APs under expert user supervision. Figure 2 summarizes the
main steps of the synthesizing procedure.

Natural

Language

Requirement/s

Parse Tree

Formal

specification

(TS)

APs List

Enju Parser

APERs

Formal Model

Synthesis Procedure

Figure 2. Formal Model synthesis procedure for Functional Requirements.

III. RELATED WORK

This section summarizes a few works on applying re-
finement processes to get more concrete specifications and
refinement-based verification. None of these works are applied
to insulin pump formal specifications as our work. To the best
of our knowledge, these are the most related state of art in this
area of study.

Klein et al. [14] introduced a new technique called State
Transition Diagrams (STD). It is a graphical specification
technique that provides refinement rules, each rule defines an
implementation relation on STD specification. The proposed
approach was applied to the feature interaction problem. The
refinement relation was utilized to add a feature or to define
the notion of conflicting features.

Rabiah et al. [15] developed a reliable autonomous robot
system by addressing A* path planning algorithm reliability
issue. A refinement process was used to capture more concrete
specifications by transforming High-Level specification into
equivalent executable program. Traditional mathematical con-
cepts were used to capture formal descriptions.Then, Z spec-
ification language was employed to transform mathematical
description to Z schemas to get formal specifications. Z formal
refinement theory was used to obtain the implementation
specification.

Spichkova [16] proposed a refinement-based verification
scheme for interactive real time systems. The proposed work
solves the mistakes that rise from the specification problems
by integrating the formal specifications with the verification
system. The proposed scheme translates the specifications to a
higher-order logic, and then uses the theorem prover (Isabelle)
to prove the specifications. Using the refinement-based verifi-
cation, this scheme validates the refinement relations between
two different systems. The proposed design was tested and
verified using a case study of electronic data transmission
gateway.

57Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 65 / 69

A new approach that focuses on the refinement verification
using state flow charts has been presented by Miyazawa et al.
[17]. They proposed a refinement strategy that supports the
sequential C implementations of the state flow charts. The
proposed design benefited from the architectural features of
model to allow a higher level of automation by retrieving the
data relation in a calculation style and rendering the data into
an automated system. The proposed design was tested and
verified using Matlab Simulink SDK. Through the provided
case study, the scheme was able to be scaled to different state
charts problems.

Cimatti et al. proposed a contract-refinement scheme for
embedded systems [18]. The contract-refinement provides
interactive composition reasoning, step-wise refinement, and
principled reuse refinements for components for the already
designed or independently designed components. The proposed
design addresses the problem of architectural decomposition of
embedded systems based on the principles of temporal logic to
generate a set of proof obligations. The testing and verification
of the Wheel Braking System (WBS) case study show that the
proposed design can detect the problems in the architectural
design of the WBS.

Bibighaus [19] employed the Doubly Labeled Transition
Systems (DLTS) to reason about possibilities security prop-
erties and refinement. This work was compared with three
different security frameworks when applied to large class
systems. The refinement framework in this work preserves and
guarantees the liveness of the model by verifying the timing
parameter of the model. The analysis results show that the
proposed design preserves the security properties to a series
of availability requirements.

IV. REFINEMENT MAPS AND REFINEMENT MAP
TEMPLATES

Figures 3-9 show the formal TS specification for 8 insulin
pump safety requirements and the refinement map we have
developed corresponding to each specification TS. The formal
TS specifications were developed as part of our previous work
in this area [11] [12]. As can be seen from the figures, each
TS consists of a set of states and the transitions between the
states. Also, each state is marked with the atomic propositions
that are true in the state.

Our strategy for constructing the refinement maps is as
follows. A specification state can be constructed from an
implementation state by determining the APs that are true in
the implementation state. If a specification has n APs, then we
construct one predicate function for each AP. The predicate
functions take the implementation state as input and output a
predicate value that indicates if the AP is true in that state
or not. Thus, the collection of such predicate functions is the
refinement map.

We next discuss the refinement map for the specification in
Figure 3. The safety specification from [20] is as follows: ”The
pump shall suspend all active basal delivery and stop any active
bolus during a pump prime or refill. It shall prohibit any insulin
administration during the priming process and resume the
suspended basal delivery, either a basal profile or a temporary
basal, after the prime or refill is successfully completed.” The
APs corresponding to this safety requirement are (1) BO: active
bolus delivery; (2) BA: active basal delivery; (3) P: priming
process; and (4) R: refill process. The refinement map however

has to account for what is happening in the implementation
code and relate that to the atomic propositions.

The predicate function for BO uses several variables from
the code including NB: Normal Bolus and EB: Extended Bolus
as there are more than one type of Bolus dose supported by the
system. So the AP BO should be true if there is a NB or an EB.
NB is only a flag that indicates that a normal bolus should be in
progress. The actual bolus itself will continue to occur as long
as a counter that keeps track of the bolus has not reached its
maximum value. Therefore, for example for a normal bolus,
we use a conjunction of NB and the condition that the NB
counter (NBc) is less than its possible maximum value (NBm).
We use a similar strategy for the extended bolus as well. This
refinement map template works for all processes similar to a
Bolus dosage delivery, such as basal dosage delivery, priming
process, and refill process. Therefore, we term this refinement
map template as ”process template.” For the basal dosage (BA
AP) a number of basal profiles (BPs) are possible that accounts
for BP1 thru BPn. TB stands for temporary basal. As can be
noted from Figures 4-9, the process template accounts for a
large number of predicate functions corresponding to APs.

The second refinement map template is a simple one called
the ”projection template,” which is used when the AP in the
specification TS corresponds directly to a variable in the code.
An example of the projection template can be found in Figure
4, where the User Reminder (UR) AP is mapped directly
from a flag variable in the code that corresponds to the user
reminder. A variation of this template is a boolean expression
of Boolean variables in the code. An example of such an AP
is the UIP AP in Figure 8.

The third refinement map template is called the ”value
change template,” which is used when the AP is true only
when a value has changed. An example use of this template
can be found in Figure 4 for the CDTC AP. CDTC corresponds
to the change in drug type and concentration and is true when
the drug type or concentration is changed. For the drug type
change, DT is the variable that corresponds to the drug type.
The question here is how to track that a value has changed. The
idea is to use history variables. HDT is a history variable that
corresponds to the history of the drug type, i.e., the value of
the drug type in the previous cycle. If HDT is not equal to DT
in a code state, then we know the drug type has changed. The
inequality of HDT and DT is used to construct the predicate
function. For all the safety requirements analyzed, these three
refinement map templates cover all the APs. Table 1 gives the
expansions for all the abbreviations used in Figures 3-9, so
that the corresponding refinement maps can be comprehended
by the reader.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed refinement maps corre-
sponding to the specification TSs of several infusion pump
safety requirements. This is a first step in automating the
construction of refinement maps. Our eventual goal is to
develop a process for the construction of refinement maps.
The refinement maps from this paper will be used as bench-
marks to study and develop generic refinement map templates.
Heuristics will be developed based on the output of the Enju
parser to select a refinement map template for each atomic
proposition. The development and testing of this process is
part of future work.

58Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 66 / 69

P

BO BA

R

• BO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• P = P ∧ (Pc < Pm)

• R = R ∧ (Rc < Rm)

• BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)]

Figure 3. A formal presentation of requirement 1.1.1 from [20] and the suggested refinement maps.

AI

RTV R

UR

CDTC

• AI = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

• CDTC = (DT 6= HDT) ∧ (CDTCc < CDTCm)

• UR = FLAG

• RTVR = (CRV 6= HRV) ∧ (RTV Rc < RTV Rm)

Figure 4. A formal presentation of requirement 1.1.3 from [20] and the suggested refinement maps.

IBO

INDV

SPM

SY NC

• IBO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• INDV = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

• SMP = [P ∧ (Pc < Pm)] ∨ [R ∧ (Rc < Rm)]

• SYNC = INCAL ∧ (INCALc < INCALm)

Figure 5. A formal presentation of requirement 1.8.2 and 1.8.5 from [20] and the suggested refinement maps.

NB

REQ

ALRT

DNY

• NB = NB ∧ (NBc < NBm)

• REQ = REQ-FLAG

• ALRT = ALRT-FLAG

• DNY = CALL-FUNCT

Figure 6. A formal presentation of requirement 1.3.5 from [20] and the suggested refinement maps.

SET UCNF CONC

• SET = CLRS ∨ [CHNS ∧ (CHNSc < CHNSm)] ∨ RESS

• UCNF = FLAG

• CONC = [SETT ∧ (SETTc < SETTm)] ∨ [CHNC ∧ (CHNCc <
CHNCm)]

Figure 7. A formal presentation of requirement 2.2.2 and 2.2.3 from [20] and the suggested refinement maps.

59Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 67 / 69

UIP WAR ACT

• UIP = BG ∨ TBG ∨ INCR ∨ CORF

• WAR = FLAG

• ACT = CNFI ∨ [CHNI ∧ (CHNIc < CHNIm)]

Figure 8. A formal presentation of requirement 3.2.5 from [20] followed by the suggested refinement maps.

ELR ELRF FWAR

• ELR = [EL ∧ (ELc < ELm)] ∨ [LR ∧ (LRc < LRm)]

• ELRF = ELF ∨ LRF

• FWAR = FLAG

Figure 9. A formal presentation of requirement 3.2.7 from [20] followed by the suggested refinement maps.

TABLE I. LIST OF ABBREVIATIONS

Abbreviation Meaning
AI Active Infusion

CDTC Change Drug Type and Concentration
DT Data Type

HDT Historical Data Type
UR User Reminder

RTVR Reservoir Time and Volume Recomputed
CRV Current Reservoir Volume
HRV Historical Reservoir Volume

REQ-FLAG Request Flag
CALL-FUNCT Call-Function for Calculation

INCAL Insulin Calculations
CLRS Clear Settings
CHNS Change Settings
RESS Reset Settings

BG Blood Glucose
TBG Targeted Blood Glucose
INCR Insulin to Carbohydrate ratio
CORF Correction Factor
CNFI Confirm Input
CHNI Change Input

EL Event Logging
LR Log Retrieving

ELRF Event Logging or Logging Retrieving Failure
ELF Event Logging Failure
LRF Logging Retrieving Failure

ACKNOWLEDGMENT

This publication was funded by a grant from the United
States Government and the generous support of the American
people through the United States Department of State and the
United States Agency for International Development (USAID)
under the Pakistan - U.S. Science & Technology Cooperation
Program. The contents do not necessarily reflect the views of
the United States Government.

REFERENCES

[1] B. Fei, W. S. Ng, S. Chauhan, and C. K. Kwoh, “The safety issues
of medical robotics,” Reliability Engineering & System Safety, vol. 73,
no. 2, 2001, pp. 183–192.

[2] FDA, “List of Device Recalls, U.S. Food and Drug Administration
(FDA),” 2018, last accessed: 2019-10-11. [Online]. Available:
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm

[3] S. Quadri and S. U. Farooq, “Software testing-goals, principles, and
limitations,” International Journal of Computer Applications, vol. 6,
no. 9, 2010, pp. 7–10.

[4] E. Miller and W. E. Howden, Tutorial, software testing & validation
techniques. IEEE Computer Society Press, 1981.

[5] R. Kaivola et al., “Replacing testing with formal verification in intel
coretm i7 processor execution engine validation,” in Computer Aided
Verification, 21st International Conference, CAV, Grenoble, France,
June 26 - July 2, 2009. Proceedings, pp. 414–429. [Online]. Available:
https://doi.org/10.1007/978-3-642-02658-4\ 32

[6] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and
static driver verifier: Technology transfer of formal methods inside
microsoft,” in Integrated Formal Methods, 4th International Conference,
IFM, Canterbury, UK, April 4-7, 2004, Proceedings, pp. 1–20. [Online].
Available: https://doi.org/10.1007/978-3-540-24756-2\ 1

[7] K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security. ACM, 2016, pp. 91–96.

[8] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of fluctuat on safety-critical avionics soft-
ware,” in International Workshop on Formal Methods for Industrial
Critical Systems. Springer, 2009, pp. 53–69.

[9] P. Manolios, “Mechanical verification of reactive systems,” PhD
thesis, University of Texas at Austin, August 2001, last accessed:
2019-10-04. [Online]. Available: http://www.ccs.neu.edu/home/pete/
research/phd-dissertation.html

[10] M. A. L. Dubasi, S. K. Srinivasan, and V. Wijayasekara, “Timed refine-
ment for verification of real-time object code programs,” in Working
Conference on Verified Software: Theories, Tools, and Experiments.
Springer, 2014, pp. 252–269.

[11] E. M. Al-qtiemat, S. K. Srinivasan, M. A. L. Dubasi, and S. Shuja,
“A methodology for synthesizing formal specification models from
requirements for refinement-based object code verification,” in The
Third International Conference on Cyber-Technologies and Cyber-
Systems. IARIA, 2018, pp. 94–101.

[12] E. M. Al-Qtiemat, S. K. Srinivasan, Z. A. Al-Odat, and S. Shuja, “Syn-
thesis of Formal Specifications From Requirements for Refinement-
based Real Time Object Code Verification,” International Journal on
Advances in Internet Technology, vol. 12, Aug 2019, pp. 95–107.

[13] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theoretical Computer Science, vol. 82, no. 2, 1991, pp. 253–284.

[14] C. Klein, C. Prehofer, and B. Rumpe, “Feature specification and refine-
ment with state transition diagrams,” arXiv preprint arXiv:1409.7232,
2014.

[15] E. Rabiah and B. Belkhouche, “Formal specification, refinement, and
implementation of path planning,” in 12th International Conference on
Innovations in Information Technology (IIT). IEEE, 2016, pp. 1–6.

[16] M. Spichkova, “Refinement-based verification of interactive real-time
systems,” Electronic Notes in Theoretical Computer Science, vol. 214,
2008, pp. 131–157.

60Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

 68 / 69

[17] A. Miyazawa and A. Cavalcanti, “Refinement-based verification
of sequential implementations of stateflow charts,” arXiv preprint
arXiv:1106.4094, 2011.

[18] A. Cimatti and S. Tonetta, “Contracts-refinement proof system for
component-based embedded systems,” Science of computer program-
ming, vol. 97, 2015, pp. 333–348.

[19] D. L. Bibighaus, “Applying doubly labeled transition systems to the
refinement paradox,” Naval Postgraduate School Monterey CA, Tech.
Rep., 2005.

[20] Y. Zhang, R. Jetley, P. L. Jones, and A. Ray, “Generic safety require-
ments for developing safe insulin pump software,” Journal of diabetes
science and technology, vol. 5, no. 6, 2011, pp. 1403–1419.

61Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Powered by TCPDF (www.tcpdf.org)

 69 / 69

http://www.tcpdf.org

