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VALID 2016

Forward

The Eighth International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2016), held on August 21 - 25, 2016 in Rome, Italy, continued a series of events focusing on
designing robust components and systems with testability for various features of behavior and
interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large scale
systems provide less visibility for vulnerability discovery and resolution, and make testing tedious,
sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target covered
aspects related to debugging and defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
presenting novel result and future research in all aspects of robust design methodologies, vulnerability
discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2016 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to VALID 2016. We truly believe
that thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2016 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the VALID 2016 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation. We also hope Rome provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful historic city.
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Abstract—Hand in hand with the design of the new core goes
the need for thorough testing, which is highly automated. Tools
for hardware/software codesign allow very fast design of the new
core and generation of the complete tool-chain. The tool-chain
that is used for the programming of the newly developed core and
also descriptions of the core in various languages are generated
automatically and it is the role of automatic testing to ensure
that there is no regression. As the pace of the development is
high also the techniques for the testing must be able to cover
the testing in very short period of time. In this article, we will
introduce the generator of jobs for the continuous integration
server Jenkins. Through the job generation we reach the higher
level of automation of the whole process of the core development
and also speed up the process of testing.

Keywords–Compiler testing; Continuous integration; Hard-
ware/Software codesign; Test generation.

I. INTRODUCTION

Each software product must be tested. In the article, we will
address the testing of tools for hardware/software codesign [1].
Hardware/software codesign deals with the design of the new
Application Specific Instruction-set Processors (ASIPs). Such
kind of systems can be found in wide variety of devices such
as network routers or printers.

The production of ASIPs is growing as the need for the
small and low power cores that can be used for specific
purposes is still bigger. For example Texas Instruments re-
leased 4 new cores in the last 6 months [2]. Hence, this area
is extremely important. The development of today’s ASIPs
must be done in a very short period of time. To do so, it
is common to use the tools for hardware/software codesign.
Some Architecture Description Language (ADL) is usually
in the core of such systems [3]. The development is done
in a modern Integrated Development Environment (IDE) that
allows the designer to generate all the necessary tools, such
as compiler, assembler and simulator. In the same environment
the user is able to perform any step needed for the development
of the core, such as simulation or profiling.

Such kind of development environment shortens the de-
velopment time significantly [4]. However, each piece of soft-
ware contains errors, and environments for hardware/software
codesign are not an exception. Some of the tools are more
error prone than others. From our point of view, the Software
Development Kit (SDK), and especially the compiler, are

the most critical parts. Because in case we have error in
the compiler, the compiled program does not have to work
properly. If the compiler does not work correctly, it is crucial
to discover the error in the shortest possible time. For this
purpose we use a continuous integration server to run testing
jobs.

The continuous integration server will be used for exe-
cution of jobs that will be automatically generated. We will
introduce the generator of the jobs that will bring the higher
level of automation and also speed up the process of testing.

The paper is structured as follows: Section II, gives the
short overview of the Lissom project. In Section III, we explain
the continuous integration process. Section IV discuss the
related work. In Sections V and VI, we explain the generator
of the testing jobs and achieved results. Finally, in Section VII,
we present the conclusions.

II. LISSOM PROJECT

In this section, we will describe the Lissom research project
[5], which creates background for the testing methods that are
described in this article. The Lissom project started in 2004
and is located at the Brno University of Technology, Faculty
of Information Technology, Czech Republic.

The Lissom project has two main areas of interest. The
first one is the development of the Architecture Description
Language (ADL) called CodAL, which serves for the ASIP
description. The description of the language can be found in
detail here [6].

The second scope of the project is the generation of the
full tool-chain from the description in the ADL CodAL. The
generated tool-chain contains a C compiler, assembler, linker,
disassembler, two types of simulators (instruction and cycle
accurate), the debugger and few more tools. As the language
is designed for description of the ASIPs, the scale of processors
that can be described, without making any modifications to the
language, is large.

However, there are also other ways how to utilise such
language. One of them is to use the language for description of
architectures that already exist. Hence, it is possible to model
in the CodAL language architectures such as MIPS [7], ARM
[8], RISC-V [9] and many others. The generated tool-chain or
just separate tools can be used as a replacement of existing
tools in case they are not in good shape. This gives large
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possibilities in case the core is upgraded and new tool-chain
is needed. For certain cores also, some of the tools might be
missing and by designing the given architecture in ADL the
missing tool can be easily generated.

All the tools are generated from the description in the
CodAL language. In the beginning, the model in the CodAL
language is validated and compiled. The result of the compila-
tion is the XML representation of the model. The XML format
was chosen intentionally as there are other tools that use this
form and there is also large number of generators and parsers
working over XML.

Once the XML is created there are two tools working
over it. The first tool is the tool-chain generator, also called
toolsgen. The second one is the semantics extractor or semextr.

The tool-chain generator produces tools, such as simulator,
assembler, debugger and many others. The tools that are
generated by the tool-chain generator consist of two types of
files. Both types of files are compiled and linked together.

1) Files that are platform independent are the same for
all architectures. Into this category falls user inter-
faces with parsers of the command line arguments,
or in case of profiler the generation of the graphical
output.

2) Automatically generated files that contain the plat-
form dependent information. Into this category be-
long the instruction decoders in the simulators or
assembler printer in the C compiler.

The second tool is the semantics extractor. The execution
of the extractor is the prerequisite for the compiler generation.
Moreover, there are other tools that use the outputs of the
semantics extractor, such as Quick EMUlator (QEMU) or
documentation generator and also decompiler that is described
in the thesis [10].

The main role of the semantics extractor is to extract
the assembler syntax, binary encoding and semantics of each
instruction described in the model.

The development of the new core in the Electronic Design
Automation (EDA) tool [11] can be done very swiftly. The
experienced designer can create an instruction accurate model
of a core in a few hours. Modification of a core can be created
even faster. It is very simple to add some instructions and/or
create larger register field for example. This process can give
birth to the versions of the processors that can be optimized
for speed, size of the code or power consumption.

All such variants of the core should be tested, so there is a
need for simple generation of the testing infrastructure. Hence
we need a generator of the jobs, that will perform the testing.
We need to speed up the whole process and reduce the amount
of manual work.

III. CONTINUOUS INTEGRATION

In this section we will describe the Continuous Integration
(CI) and introduce the job format, which we will use in the
further sections.

The main idea of continuous integration [12] is to avoid
the integration problems in the later stages of the development.
The developers are encouraged to merge with the main devel-
opment line several times a day and execute the tests over the

merged line. By this approach they are encouraged to keep an
eye on the integration continually.

The technique was mentioned for the first time by Grady
Booch [13], and was called Booch method. Later it was
adopted by extreme programmers and resulted in performing
an integration in once or more times a day.

Today, the continuous integration servers are used in every
larger company. The most widespread CI server is called
Jenkins [14]. Jenkins is an open source automation server that
can provide not only continuous integration but also continuous
deployment. It uses the system of plugins to enhance the
basic functionality. Nowadays, there are plugins available all
the Version Control Systems (VCS) as well as plugins for
visualisation of pipelines etc.

The basic block of the Jenkins server is called a job. The
main action for every job is the execution. The job has the
data that are typically taken from the VCS and action that is
usually execution of some script.

The jobs are stored at the Master server. Master server is
the computer that keeps the installation of the Jenkins and all
the jobs are kept here. In case of the single master installation.
The job is represented by a file in the XML format that is
stored in the given folder on the Master server. The format in
the markup language is in our case a great advantage as there
is a lot of generators of the XML and also there are other tools
that can work with the description.

A. Jenkins job format
Jenkins supports several types of jobs. The basic ones are

the freestyle project and the multiconfiguration project. The
main difference between the two is the fact that multiconfigu-
ration project can be executed on multiple machines. There are
also special types of jobs that are tied to the various plugins.
There is a maven job, external job or various views.

Below we listed the basic description of the multiconfigu-
ration job, as it is the job, which we are the most interested
in. Though we need to work with the other job types as well,
the configuration of the basic kind of job will be suffictient
for demonstration purposes now.

<?xml vers ion= ’ 1.0 ’ encoding= ’UTF−8 ’?>
<matr ix−p r o j e c t p lug in = ” matr ix−project@1 .4

”>
<ac t ions />
<desc r i p t i on ></ desc r i p t i on>
<keepDependencies>f a l se </

keepDependencies>
<proper t i es>

<com. sonyer icsson . r e b u i l d .
Rebu i ldSet t ings

p lug in = ” rebuild@1 .22 ”>
<autoRebui ld>f a l se </ autoRebui ld>

</com. sonyer icsson . r e b u i l d .
Rebu i ldSet t ings>

<hudson . model .
Paramete rsDef in i t i onProper ty />

</ p roper t i es>
<scm class= ” hudson . scm . NullSCM ” />
<canRoam>t rue </canRoam>
<disabled>f a l se </ d isabled>
<blockBuildWhenDownstreamBuilding>f a l s e

2Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

                            11 / 35



</blockBuildWhenDownstreamBuilding>
<blockBuildWhenUpstreamBuilding>f a l s e
</ blockBuildWhenUpstreamBuilding>
< t r i g g e r s />
<concur ren tBu i ld>f a l se </ concur ren tBu i ld>
<axes>

<hudson . mat r i x . LabelAxis>
<name>l abe l </name>
<values>

<s t r i n g >CentOS−6.5−32</ s t r i n g >
</ values>

</hudson . mat r i x . LabelAxis>
</axes>
<bu i l de rs>

<hudson . tasks . Shel l>
<command>echo \$ (pwd) </command>

</hudson . tasks . Shel l>
</ bu i l de rs>
<pub l i she rs />
<bui ldWrappers />
<execut ionSt ra tegy c lass= ” hudson . mat r i x .

De fau l tMa t r i xExecu t ionSt ra tegy Imp l ”>
<runSequent ia l l y>f a l se </

runSequent ia l l y>
</ execut ionSt ra tegy>

</ matr ix−pro jec t>

On the second line, we can see that it is the matrix project,
which means that it can deploy multiple axis, and one of them
is the configuration of the nodes. For simplicity the job does
not download any data from the VCS. Another important tag
is the one called axes. This tells us that this job is built only
on one node called CentOS-6.5-32. It is important to note that
this job does not have parameters. If it had, the parameters
would be visible in the top of the configuration.

There are also sections builders and publishers. Section
builders says that there is the shell script executed, and only
command it runs it the echo $(pwd). The job has no results,
hence, the part publishers is empty. The execution strategy is
default. It is important to know, how the configuration of the
job looks like as we will work with the representation in the
later sections.

IV. RELATED WORK

Let us have a look at the current development at the field of
the job generation. We can distinguish two types of solutions.
The are tools in Jenkins that were designed for this purpose and
then there are several works that try to deal with the problem
of job generation outside of the Jenkins environment.

First we will have a look at the solutions inside the
Jenkins. One of them is the template plugin [15]. Via the
template project plugin the user can set up an template project
containing the settings the user want to share. Is is possible
to set for example the VCS repositories that are common
for the jobs or the script that should be executed and so
on. Then it is possible to create inside the Jenkins another
project from the created template. So the generation has to
be performed manually by using the template several times.
Hence, the possibilities of the automation are limited.

Other possibility provided by Jenkins server itself is the job
generator plugin [16]. This plugin is based on template, which

is the job itself and the parameters, which can be global or
local. This plugin is very powerful in combination with other
plugins such as plugin for conditional resolution. However, it
has limitations in form of what types of jobs can be generated
and it can not use time triggers. Moreover, it is very difficult to
generate more complex jobs. The hierarchy and conditions can
become very complex and the whole process is error prone.
We also did not find a way how to set the desired nodes in
the multiconfiguration project.

Now we will mention several approaches that try to deal
with job generation outside the Jenkins environment. The
interesting ideas are proposed in the article at Jenkins User
Conference [17]. The article deals with the automation of
testing in the area of robotics. The author uses combination of
various Jenkins plugins for packaging and static analysis. Nev-
ertheless, the process of build and testing is very complicated
and hardly maintainable. The author proposes use of Domain
Specific Language (DSL) for specification of the informations
and then generation of the Jenkins jobs. It seems that the author
just uses Jenkins for the build. However, the system seems to
be slow and has problems with synchronisation of the jobs.
Also there are problems with the graphical side of the solution.

Some interesting ideas connected with the job generation
are in the Shaw article [18]. The article also introduces the
possibility of job generation from the templates and use of the
Jenkins command line interface. Nevertheless, the article does
not provide any examples of the templates or scheme how the
system works.

Above we have mentioned several possibilities in the area
of job generation. None of the approaches that were mentioned
suits our needs. In our project we need to generate all kinds
of jobs, as it is crucial to test the various aspects of the newly
developed core. This includes the tests of various features
that can be tied to very specific kinds of jobs. The approach
mentioned in [17] seems to be interesting. For our use it
appears to be too cumbersome. The lightweight solution with
the command line interface would suit our needs better.

V. JOB GENERATION

The main task that we need to address is the generation
of the various jobs, which will ensure the complex testing of
the core. As we plan to use the whole system also from the
command line, we wanted to avoid the graphical interface,
at least in the first version of the project. We may add the
graphical interface in the later versions, but we need to keep the
command line interface, as we would like to use the solution
from the command line. This is also one of the reasons, why
we can not use the plugins provided by Jenkins. They have
very poor documentation and are primary focused for usage
via the web interface.

The basic scheme of our system is illustrated in Figure
1. We can see that the whole system consists of just a few
steps. The first part of the system is the sniffer. It works over
the git repository in our case. Once the generation is triggered
the job generator uses the templates to generate corresponding
jobs. We will now give more detailed description of the
aforementioned parts.

A. Sniffer
We called this part of the generation process a sniffer as

it sniffs in the git repository for a new branches. The main
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Figure 1. Scheme of the system.

role of the sniffer is to detect the creation of the new branch
in given git repository and trigger the generation. The whole
system is designed in a way that the sniffer can be replaced
by a different component. In the future, we would like to add
the support for other VCS. It also does not have to be present
at all and can be completely removed. The generator can be
started by a different tool, if it is compatible with the defined
interface.

Though currently the role of the sniffer is to notify that the
new branch has been created and deliver this information to
the job generator. The sniffer has no further intelligence and
the whole system is designed in a way that all the decisions
should be made in the generator itself. In the latest version
the sniffer has the shape of the unix script that is executed
repeatedly by the operation system.

B. Templates
The second input into the job generator are the templates.

We have various kinds of templates as we need to test various
parts of the newly developed core. The main areas that has to
be covered by test job generation are:

• compiler testing,
• functional verification,
• assembler testing,
• tools generation.

Please note that these are just the areas that needs to be
covered, not the jobs. Under each domain there is a variety of
jobs that are generated and later on executed. There is usually
just one template per domain, just in case of the functional
verification we need to have several templates, as this area is
very vast and we were not able to stick to just one template.

As far as the templates itself are concerned, they are very
simple and do not keep any intelligence. The intelligence, for
example the name of the node, where the job will run is kept in
the generator. The templates are in the XML format and are
similar to the example in Section III. Consider for example
that we want to generate the name of the node, where our job
will be executed. The corresponding part in the template will
have the following form:

<s t r i n g >@NODE NAME@</ s t r i n g >

C. Job generator
Now, when we described the inputs of the generator we

will move to the generator itself. The job generator consists
of several parts that are pictured in Figure 2.

Figure 2. Scheme of the generator

We decided to implement the generator in Python language
because it allows very fast development and the code is very
easy to read and modifications are simple.

One of the first steps of the generation is the template se-
lection. This part of the generator works over the configuration
file that is present at the specific directory in the model branch
that should be tested. We have proposed a simple format
of the configuration file, which specifies the tested features.
The other possibility we have is to automatically detect what
features should be tested but we have chosen the configuration
file, because some of the features can not be automatically
detected. From the specification file we are able to determine
what templates should be used. The specification file has two
major tasks:

• define features that should be tested,
• specify parameters for the generators.

However, the automatic detection of the features that
should be tested was not completely abandoned. The detection
is present, but plays only the supplementary part.

Once the phase of the templates selection is finished
we need to generate the CMake files that will fill into the
templates the desired information. The generated CMake files
are template specific as each template has different fields.
Currently we generate one CMake file per template and we
do so in the separate directories.

From the two above mentioned inputs, we can generate the
job. The job generation is in fact just insertion of the data into
the templates. We decided to do this via CMake, because it
is one of the cleanest ways to do so. The most frequent facts
that are generated are the following:

• branch used for testing,
• node, where the job is executed,
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• bash script and the parameters,
• job name and view, where the job is placed.

The above mentioned information can be determined in the
following way. The branch is one of the input parameters. It
is delivered by the sniffer, but can be also delivered different
way, it can be for example specified by the user.

The script that is executed could be the part of the template,
however, this would increase the number of the templates
significantly. Hence, we try to determine the name of the
script. This could be done based on the information from the
configuration. Some of the scripts may have variable number of
parameters, but this we are able to determine from the directory
structure of the model. Here we can see the supplementary part
of the automatic detection.

The job name and view, where the job should be places,
are also determined from the configuration file and repository
name. We also plan in the future to use directory plugin in our
installation, however, this should not be a problematic step.

The most complicated task is the selection of the correct
node, where the job should be executed. There are certain jobs
that can be executed only on the specific set of nodes. Typically
this is true for the jobs that perform tests of the functional
verification or tests of the synthesis. We have a special groups
of nodes and special templates with the predefined sets of
nodes. Nevertheless, for the majority of jobs we do not have
to solve such issues. We keep a simple table of nodes, which
is divided into the sections, which define what nodes are used
for specific jobs. We choose the jobs with the smallest number
of assigned jobs and optionally we modify the assigned value
by hand.

There are also other information that can be filled into
the template. But the four above mentioned are the most
common ones. We have the predefined default values for all
the parameters that would suit the most cases.

Very often we generate the parameters into the templates.
They are stored in the parameters section and later this

parameters are used in the builders section. However, there
are also parameters that are node dependent, or are defined
globally in the Jenkins.

Very often the generated job needs to use the artifacts from
the other jobs. Nevertheless, we try to keep the generator as
lightweight as possible and do not want modify other jobs. The
compatibility in this case is assured by the wildcards, and the
name of the new job must fit into the wildcard. For example if
the job is named Test-compiler-xxx the wildcard can be Test-
compiler-*.

Once we have generated the jobs that are needed for the
testing of the newly developed branch, we have to upload these
jobs to the CI server. For this purpose we use the Jenkins
command line interface that performs the job upload and also
registers the job.

VI. RESULTS

With the current implementation of the simple job gen-
erator we have performed several tests. We have tried to
generate the set of tests that are typical for our project. The
tests are divided into two sets. The basic set consists of tests
that test compiler and assembler and full set adds also tests
for functional verification. The templates that are needed for

generation of such tests were added into the template set. The
basic set consists of three jobs and full set consists of 12 jobs.
We have set the polling time to 6 minutes, so every 6 minutes
is the VCS server polled for the new branches.

The times needed for the generation are summarised in the
following table. We have performed 10 different runs: five for
basic set of tests and five for the full set of tests. The last run
was triggered manually.

TABLE I. COMPARISON OF GENERATION TIMES.

Run Basic set Full set
1 124s 516s
2 248s 524s
3 194s 212s
4 150s 317s
5 91s 412s
Manual run 42s 178s

We can see in the Table I that the generation of the three
jobs takes 42 seconds, which gives exactly 14 seconds per job.
When we try to generate the full set of 12 jobs, it takes 178
seconds. That is approximately 15 seconds per job. All of the
jobs we generate are multiconfiguration jobs. The generation
times vary for the basic set from 91 to 248 seconds. That is
perfectly accurate, as the delay caused by the front end is up
to 360 seconds. The generation of the full set is also affected
by the front end and should be from 178 seconds up to 538
seconds. Our measurements confirm that.

We have also tried to create the jobs manually. The group
that created the jobs consisted of two persons. We tried to
create the basic set of testing jobs, and then the full set of jobs.
The basic set of tests include the generation of three jobs and
covers the compiler and assembler. The full set of jobs contains
also jobs for verification. Together this set contains 12 jobs.
Hence, the sets are the same as in the previous measurement.

TABLE II. COMPARISON OF CREATION TIMES.

Method Basic set Full set
Lissom Generator 182s 499s
Manual creation 486s 2197s

In the Table II we can see that the manual creation of
the jobs was very slow in comparison with the generator.
Especially in case we have to create the set of 12 jobs the
task was very time consuming.

The last comparison we made was with the Jenkins job
generator plugin. We used the Jenkins server in version 1.656
and the plugin was in the version 1.22. The Jenkins server was
running on the server with the 4 cores Intel i5 and has 8 GB
of the memory. The same set of jobs as above was generated.

TABLE III. COMPARISON OF CREATION TIMES.

Method Basic set Full set
Lissom Generator 103s 361s
Jenkins generator plugin 148s 839s

The results are gathered in the Table III. It is clear, that
Lissom generator was fastest in both tested cases. However,
in case of generation of just three jobs, the times were
comparable. And in case of maximal 360 seconds delay, the
Jenkins job generator can be even faster. Nevertheless, in case
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of generation of the big set the generator had clear advantage
even in case of maximal delay caused by the front end.
Moreover when compared to the times without delay, the speed
of Lissom job generator can not be matched.

Other advantage of the job generator is the fact that it is
very lightweight and can be used for any kind of jobs. This
largely depends on the templates that will be created.

VII. CONCLUSION

In this paper, we sketched the simple generator of the
Jenkins jobs that would suite our needs in the Lissom project.
We need the generator that can be started by various ways is
lightweight and can generate all kinds of jobs. This was one
of the basic requirements that was not met by any plugin that
is currently available for Jenkins. We also wanted the tool to
be at least partly independent of Jenkins as it is not rare that
the plugins do not cooperate well.

The current implementation of our generator is dependent
just on the internal representation of the job. This is not a
problem, as it is very simple to deploy new templates. At
the same time, the internal job representation is not likely to
change as it would imply the changes in all plugins currently
used by Jenkins.

We also put the generator under the tests and the gathered
results are very positive. As far as the speed of the generator is
concerned it can not be matched by any tool that is currently
available. In the future we would like to add to the generator
also other functionality such as work with the directory plugin
and also ability to register the jobs for artifact download.

We created a tool that helps us to generate new sets of test
every time the new core is developed. It gives us the higher
level of test automation.
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Abstract—In the general framework of safety analysis, diagnos-
ability of a system, i.e., the guarantee to surely identify any fault
in a finite delay after its occurrence, based on the available
observations, is a key property to be verified at design stage.
Diagnosability analysis of discrete event systems received a lot
of attentions in the past twenty years, firstly in the centralized,
then in the distributed case. In particular, a satisfiability-based
approach was proposed in 2007 in the centralized case. We extend
in this work this approach to cover also distributed discrete
event systems, by handling both observable and unobservable
synchronous communication events at the same time. Then, we
adapt the method to analyze, in both centralized and distributed
cases, fault predictability, a stronger property than diagnosability,
which guarantees that any fault can be correctly predicted before
its occurrence, based on observations. We provide experimental
results for both diagnosability and predictability.

Keywords–Discrete Event Systems; Distributed Systems; Diag-
nosability; Predictability; Satisfiability.

I. INTRODUCTION

Nowadays, there is an increasing interest to ensure from
the design stage of a system that partial observations given
by the sensors will allow a precise diagnosis of potential
faults that could occur in that system, once built. This will
actually save high costs of adding new sensors for this task
during the operating mode of the system. This raises the
problem of diagnosability and of predictability which are
essential properties to verify while designing the system model.
Once this verification has been done (possibly thanks to a
modification of the system model), both the system and its
diagnoser or predictor (which can be automatically derived
from diagnosability or predictability analysis) can be built with
a guarantee of correctness and precision of the diagnosis, at
least for those faults anticipated at design stage. Diagnosability
is a property that determines the possibility to distinguish any
possible behavior in the system with a given fault from any
other behavior without this fault. A fault is diagnosable if it
can be surely identified from the partial observation available
in a finite delay after its occurrence. A system is diagnosable
if every possible fault in it is diagnosable. Predictability is
similarly an important system property, stronger than diagnos-
ability, that determines at design stage whether a considered
fault can be correctly predicted before its occurrence, based
on available observations. If a fault is predictable, the fault
management system can be designed to warn the operator, to
halt the system or to take preventive measures.

The main difficulty in diagnosability and predictability
checking is related to the states number explosion. Methods
to cope with this problem and scale the studied system size in
the case of discrete event systems (DES) resort to adopting a
succinct representation of the system or a distributed modeling
and to use powerful checking tool. For these reasons, we ex-
tend in this work to distributed discrete event systems (DDES)
the succinct representation and the use of a satisfiability
(SAT) solver introduced in [1] for centralized DES. Then, we
adapt the SAT-based method to predictability analysis, in both
centralized and distributed cases.

The paper is structured as follows. We first present related
works in section II. In section III, we introduce the system
transition models for DES and recall the traditional definition
of diagnosability in those models and the state of the art of
encoding it as a satisfiability problem in propositional logic.
Then, in section IV, we present our first contribution, an
extension of this SAT-based diagnosability analysis to DDES
with observable and unobservable synchronous communication
events in the same model, and give experimental results of
this extension. Then, in section V, after having recalled the
usual definition of predictability in DES, follows our second
contribution, the encoding of this property as a satisfiability
problem for both DES and DDES, and presentation of experi-
mental results. Finally, in section VI, we conclude and outline
our perspectives for future work.

II. SELECTION OF RELATED WORKS

The first introduction to the notion of diagnosability was
by [2], who gave its formal definition (see Def. 2 in section
III) and studied it for labeled transition systems (LTS) by
constructing a deterministic diagnoser to test it. However,
this approach is exponential in the number of states of the
system, which makes it impractical. In order to overcome this
limitation, [3] introduced the twin plant approach, a structure
built by synchronizing on their observable events two identical
instances of a nondeterministic fault diagnoser. Then a so-
called critical path is searched in this structure, i.e., a path
with an observed cycle made up of ambiguous states, i.e., states
that are pairs of original states, one reached by going through a
fault and the other not. Fault diagnosability is thus equivalent
to the absence of such a critical path. This approach turns
the diagnosability problem in a search for a path with a cycle
in a finite automaton, and this reduces its complexity to be
polynomial of degree 4 in the number of states. The works by

7Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

                            16 / 35



[4] and [5] generalize simple faults modeled as distinguished
events to supervision patterns, given as arbitrary suffix-closed
rational languages of events.

The first work that addressed diagnosability analysis in
DDES was [6], who introduced an incremental diagnosability
test that avoids to build the twin plant for the whole system if
not needed. Thus, one starts by building a local twin plant for
the faulty component to test the existence of a local critical
path. If such a path exists one builds the local twin checkers
of the neighboring components (structure similar to local twin
plant, except that there is no fault information in it) and one
tries to solve the ambiguity resulting from the local critical
path by exploiting the observable events in the neighboring
components. This is done by synchronizing on their communi-
cation events the local twin plant with the local twin checker of
one neighboring component. The process is repeated until the
diagnosability is answered, so only in the worst case has the
whole system to be visited. The work by [7] has optimized this
construction by exploiting the different identifiers given to the
communication events at the observation synchronization level
(depending on which instance, left or right, they belong to) to
assign them directly to the two behaviors studied. This helped
in deleting the redundant information, then in abstracting the
amount of information to be transferred later to next steps
if the diagnosability was not answered. The generalization to
supervision patterns in DDES was introduced by [8].

After the reduction of the diagnosability problem to a path
finding problem by [3], it became transferable to a satisfiability
problem as for planning problems [9]. This was done by [1]
which formulated the diagnosability problem (in its twin plant
version) into a SAT problem, assuming a centralized DES with
simple fault events, modeled as a succinct labeled transition
system (SLTS). We provide in subsection III-B a summary of
this approach, on which our work is based. Our prior work [10]
focused on using incremental SAT for diagnosability analysis
in DDES.

Works on the predictability property for DES are fewer and
more recent. A deterministic diagnoser approach was proposed
by [11], with exponential complexity in the number of system
states, and later a polynomial method by [12], that checks
predictability directly on a twin plant. But the whole twin
plant is built, which we avoid here by forcing the search
after the fault occurrence in the correct sequence only (see
subsection V-B). The generalization to supervision patterns
was introduced by [13] and to DDES by [14] and [15].

III. SAT-BASED DIAGNOSABILITY ANALYSIS OF
CENTRALIZED SYSTEMS

We recall the definitions of DES models we use, of the
diagnosability property and of its SAT-based analysis.

A. Preliminaries
Traditionally, since the seminal work [2], LTS are used as

a modeling formalism, where faults are simply modeled as
particular unobservable events. Following [1] we will use an
equivalent but more compact representation than LTS called
SLTS, that are expressed in terms of propositional variables,
allowing an easier translation to a SAT problem of the twin
plant method proposed by [3] for checking diagnosability. The
system states are represented by the valuations of a finite set
A of Boolean state variables where valuation changes reflect

the transitions between states according to the events. The set
of all literals issued from A is L = A ∪ {¬a|a ∈ A} and L
is the full propositional language over A that consists of all
formulas that can be formed from A and the connectives ∨, ∧,
¬, → and ↔. Each event is described by a set of pairs 〈φ, c〉
which represent its possible ways of occurrence by indicating
that the event can be associated with changes c ∈ 2L in states
that satisfy the condition φ ∈ L.

Definition 1. A succinct labeled transition system (SLTS)
is described by a tuple T = 〈A,Σo,Σu,Σf , δ, s0〉 where:

• A is a finite set of state variables,
• Σo is a finite set of observable correct events,
• Σu is a finite set of unobservable correct events,
• Σf is a finite set of unobservable faulty events,

• δ : Σ = Σo ∪Σu ∪Σf → 2L×2L

assigns to each event a set
of pairs 〈φ, c〉,
• s0 is the initial state (a valuation of A).

It is straightforward to show that any LTS with a set of states
X can be represented as an SLTS with dlog(|X|)e Boolean
variables and reciprocally that any SLTS can be mapped to an
LTS (see Definition 2.4 in [1]).

The formal definition of diagnosability of a fault f in
a centralized system modeled by an LTS or SLTS T was
proposed by [2] as follows.

Definition 2. Diagnosability. A fault f is diagnosable in a
system T if and only if (iff)

∃k ∈ N,∀sf ∈ L(T ),∀t ∈ L(T )/sf , |t| ≥ k ⇒
∀p ∈ L(T ), (P (p) = P (sf .t)⇒ f ∈ p).

In this formula, L(T ) denotes the prefix-closed language
of T whose words are called trajectories, sf any trajectory
ending by (a first occurrence of) the fault f , L(T )/s the post-
language of L(T ) after the trajectory s, i.e., {t ∈ Σ∗|s.t ∈
L(T )} and P the projection of a trajectory on its observable
events. The above definition states that for each trajectory sf
ending with fault f in T , for each t that is an extension of sf in
T with enough (depending only on f , not on its occurrences)
events, every trajectory p in T that is equivalent to sf .t in
terms of observation should contain in it f . As usual, it will
be assumed that L(T ) is live (i.e., for any state, there is at least
one transition issued from this state) and convergent (i.e., there
is no cycle made up only of unobservable events).

A system T is said to be diagnosable iff any fault f ∈ Σf
is diagnosable in T , which is equivalent to each fault being
separately diagnosable (i.e., the other faults being considered
as unobservable correct events). Thus, to avoid exponential
complexity in the number of faults during diagnosability analy-
sis, only one fault’s diagnosability is checked at a time, without
loss of generality. It will thus be assumed in the following
that there exists only one fault event f (Σf = {f}), without
restriction on the number of its occurrences. Diagnosability
checking has been proved in [3] to be polynomial in the
number |X| of states for LTS, so exponential in the number
|A| of state variables for SLTS (actually the problem is
NLOGSPACE-complete for LTS and PSPACE-complete for
SLTS [16]).
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B. SLTS Diagnosability as Satisfiability
An immediate rephrasing of definition 2 shows that T is

nondiagnosable iff it exists a pair of trajectories corresponding
to cycles (and thus to infinite paths), a faulty one and a correct
one, sharing the same observable events. This is equivalent to
the existence of an ambiguous cycle in the product of T by
itself, synchronized on observable events, which is called twin
plant structure introduced in [3]. A cycle is ambiguous iff
it is made up of pairs of states respectively reachable by a
faulty path and a correct path. This nondiagnosability test was
formulated in [1] as a satisfiability problem in propositional
logic and we recall below this encoding, where superscripts
t ∈ N refer to time points and (eto) and (êto) refer respectively
to the faulty and correct events occurrences sequences of a
pair of trajectories witnessing nondiagnosability. These two
sequences share the same observable events represented by (et)
and forming a cycle. The states are described by valuations of
(at) and (ât).

In order to represent the occurrence of the fault f and
differently from the original encoding in [1], which does
not exploit any relation between the fault occurrences at the
different time steps, we added the variables f t, whose truth
value is True iff f has occurred before t. This helped us
to propagate the fault information automatically and guide
the solver to search this specific information about the fault
occurrence which is essential to decide the diagnosability test
(it will be required also for our predictability encoding in SAT).
Each time step increase corresponds to triggering at least one
transition and so the extension by an event of at least one of
the two trajectories. T = 〈A,Σu,Σo,Σf , δ, s0〉 being an SLTS,
the propositional variables required for the encoding are:

• at and ât for all a ∈ A and 0 ≤ t ≤ n,
• eto for all e ∈ Σo ∪ Σu ∪ Σf , o ∈ δ(e) and 0 ≤ t ≤ n− 1,

• êto for all e ∈ Σo ∪ Σu, o ∈ δ(e) and 0 ≤ t ≤ n− 1,

• et for all e ∈ Σo and 0 ≤ t ≤ n− 1,

• f t for all 0 ≤ t ≤ n.
The following formulas express the constraints that must

be applied at each t or between t and t+ 1.

1) The event occurrence eto must be possible in the current
state: eto → φt for o = 〈φ, c〉 ∈ δ(e) (1)

and its effects must hold at the next time step:

eto →
∧
l∈c

lt+1 for o = 〈φ, c〉 ∈ δ(e) (2)

We have the same formulas with êto.
2) The present value (True or False) of a state variable

changes to a new value (False or True, respectively) only
if there is a reason for this change, i.e., because of an event
that has the new value in its effects (so, change without
reason is prohibited). Here is the change from True to
False (the change from False to True is defined similarly
by interchanging a and ¬a):

(at ∧ ¬at+1)→ (eti1oj1

∨ · · · ∨ etikojk

) (3)

where the ojl = 〈φjl , cjl〉 ∈ δ(eil) are all the occurrences
of events eil with ¬a ∈ cji .
We have the same formulas with ât and êtilojl

.

3) At most one occurrence of a given event can occur at a
time and the occurrences of two different events cannot be
simultaneous if they interfere (i.e., if they have two contra-
dicting effects or if the precondition of one contradicts the
effect of the other):

¬(eto ∧ eto′) ∀e ∈ Σ,∀{o, o′} ⊆ δ(e), o 6= o′ (4)

¬(eto ∧ e′to′) ∀{e, e′} ⊆ Σ, e 6= e′,∀o ∈ δ(e),

∀o′ ∈ δ(e′) such that o and o′ interfere (5)

We have the same formulas with êto.
4) The information about f occurrence is propagated by

expressing that f has occurred before t+ 1 (t ≤ n− 1) iff
it has occurred either before t or between t and t+ 1.

f t+1 ↔ f t ∨
∨

e∈Σf ,o∈δ(e)

eto (6)

5) The formulas that connect the two events sequences re-
quire that observable events take place in both sequences
whenever they take place (use of et):∨

o∈δ(e)

eto ↔ et and
∨

o∈δ(e)

êto ↔ et ∀e ∈ Σo (7)

6) To avoid trivial cycles (silent loops with no state change at
some step) we require that at every time point at least one
event takes place:∨

e∈Σo

et ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto (8)

The conjunction of all the above formulas for a given t is
denoted by T (t, t+ 1).

A formula for the initial state s0 is:

I0 = ¬f0 ∧
∧

a∈A,s0(a)=1

(a0 ∧ â0) ∧
∧

a∈A,s0(a)=0

(¬a0 ∧ ¬â0) (9)

At last, the following formula can be defined to encode
the fact that a pair of executions is found with the same
observable events and no fault in one execution but one fault
in the other (first line), which are infinite (in the form of a
cycle, necessarily non trivial by (8)) at step n (second line),
witnessing non diagnosability:

ΦTn = I0 ∧ T (0, 1) ∧ · · · ∧ T (n− 1, n) ∧ fn

∧
n−1∨
m=0

(
∧
a∈A

((an ↔ am) ∧ (ân ↔ âm)))

From this encoding in propositional logic, follows the result
(theorem 3.2 of [1]) that an SLTS T is not diagnosable iff
∃n ≥ 1,ΦTn is satisfiable. It is also equivalent to ΦT

22|A| being
satisfiable, as the twin plant states number is an obvious upper
bound for n, but often impractically high (see in the same
reference some ways to deal with this problem).

IV. SAT-BASED DIAGNOSABILITY ANALYSIS OF
DISTRIBUTED SYSTEMS

We extend from centralized to distributed systems the
satisfiability framework above for testing diagnosability and
we provide some experimental results.
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A. DDES Modeling
In order to model DDES with SLTS, we need to extend

these ones by adding communication events to each compo-
nent. So we introduce the following definition for a distributed
SLTS with k different components (sites):

Definition 3. A distributed succinct labeled transition sys-
tem (DSLTS) with k components is described by a tuple
T = 〈A,Σo,Σu,Σf ,Σc, δ, s0〉 where (subscript i refers to
component i):

• A is a union of disjoint finite sets (Ai)1≤i≤k of component
own state variables, A = ∪ki=1Ai,

• Σo is a union of disjoint finite sets of component own
observable correct events, Σo = ∪ki=1Σoi,

• Σu is a union of disjoint finite sets of component own
unobservable correct events, Σu = ∪ki=1Σui,

• Σf is a union of disjoint finite sets of component own
unobservable faulty events, Σf = ∪ki=1Σf i,

• Σc is a union of finite sets of (observable or unobservable)
correct communication events, Σc = ∪ki=1Σci, which are
the only events shared by at least two different components
(i.e., ∀i,∀c ∈ Σci,∃j 6= i, c ∈ Σcj),

• δ = (δi), where δi : Σi = Σoi∪Σui∪Σf i∪Σci → 2Li×2Li ,
assigns to each event a set of pairs 〈φ, c〉 in the propositional
language of the component where it occurs (so, for commu-
nication events, in each component separately where they
occur),

• s0 = (s0i) is the initial state (a valuation of each Ai).

Synchronous communication is assumed. More precisely, a
transition by a communication event c may occur in a compo-
nent iff a simultaneous transition by c occurs in all the other
components where c appears (has at least one occurrence).
The global model of the system is thus the product of the
models of the components, synchronized on communication
events. Notice that we allow in whole generality communi-
cation events to be, partially or totally, unobservable (which
is not allowed up to now in any model, to the best of our
knowledge), so one has in general to wait further observations
to know that some communication event occurred between
two or more components. On the other side, assuming these
communications to be faultless is not actually a limitation. If a
communication process or protocol may be faulty, it has to be
modeled as a proper component with its own correct and faulty
behaviors. In this sense, communications between components
are just a modeling concept, not subject to diagnosis. It will
be also assumed that the observable information is global, i.e.
centralized, allowing to keep definition 2 (as, when observ-
able information is only local to each component, distributed
diagnosability checking becomes undecidable [17]).

B. DSLTS Diagnosability as Satisfiability
Let T be a DSLTS made up of k components denoted by

indexes i, 1 ≤ i ≤ k. In order to express the diagnosability
analysis of T as a satisfiability problem, we have to extend the
formulas of the centralized case to deal with communication
events between components. Let Σc = Σco ∪ Σcu be the
communication events, with Σco = ∪ki=1Σcoi the observable
ones and Σcu = ∪ki=1Σcui the unobservable ones. The idea
is to treat each communication event as any other event in

each of its owners and, as it has been done with events et for
e ∈ Σo for synchronizing observable events occurrences in the
two executions, to introduce in the same way a global reference
variable for each communication event at each time step, in
charge of synchronizing any communication event occurrence
in any of its owners with occurrences of it in all its other
owners. We use one such reference variable for each trajectory,
et and êt, for unobservable events e ∈ Σcu, and only one
for both trajectories, et, for observable events e ∈ Σco as it
will also in addition play the role of synchronizing observable
events between trajectories exactly as the et for e ∈ Σo. So, we
add to the previous propositional variables the new following
ones:

• eto, êto for all e ∈ Σc, o ∈ δ(e) = ∪iδi(e) and 0 ≤ t ≤
n− 1,

• et for all e ∈ Σc, êt for all e ∈ Σcu and 0 ≤ t ≤ n− 1.

Formulas in T (t, t+ 1) are extended as follows.

1) Formulas (1), (2), (3) and (5) extend unchanged to eto and
êto ∀e ∈ Σc.

2) Formulas (4) extend to prevent two simultaneous occur-
rences of a given communication event in the same owner
component, i.e. apply ∀e ∈ Σc,∀i,∀{oi, o′i} ⊆ δi(e), oi 6=
o′i (the same with ê)

3) The new following formulas express the communication
process itself, i.e. the synchronization of the occurrences of
any communication event e in all its owners components
(S(e) being the set of indexes of the owners components
of e) and extend also formulas (7) to observable commu-
nication events:∨
oi∈δi(e)

etoi ↔ et and
∨

oi∈δi(e)

êtoi ↔ êt ∀e ∈ Σcu ∀i ∈ S(e)

∨
oi∈δi(e)

etoi ↔ et and
∨

oi∈δi(e)

êtoi ↔ et ∀e ∈ Σco ∀i ∈ S(e)

4) Finally, the clause (8) is adapted to take into account both
observable and unobservable communication events:∨
e∈Σo∪Σc

et ∨
∨

e∈Σcu

êt ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto

We have thus the result that a DSLTS T is not diagnosable
iff ∃n ≥ 1,ΦTn is satisfiable (proof analog to that in the
centralized case). It is also equivalent to ΦT

22
∑k

i=1
|Ai|

being
satisfiable.

C. Implementation and Experimental Testing
We have implemented the above extension in Java, our

experiments were run on 64-bit Windows 7 machine with
an Intel(R) Xeon(R) CPU @2.80GHz processor and 8 GB
of RAM. We used the well designed API of the SAT solver
Sat4j [18] as it fitted well our clause generator written in
Java. We have tested our tool on small examples with several
communication events with multiple occurrences, with global
communication (all components share the same event) or
partial communication (only some components share the same
event), as in Fig. 1, adapted from the running example in [6],
which is made up of three communicating components. The
results are in Table I, where the columns show the system
and the fault considered (4 cases separated by horizontal
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lines), the steps number n, the answer of the SAT solver,
the numbers of variables and of clauses and the runtime in ms.
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Figure 1. A DDES made up of 3 components C1, C2 and C3 from left to
right. ci,1≤i≤2 are unobservable communication events, Oi,0≤i≤5 are

observable events and fi,1≤i≤2 are faulty events.

TABLE I. DIAGNOSABILITY RESULTS ON THE EXAMPLE OF FIG 1.

System Fault |Steps| SAT? |Variables| |Clauses| Time(ms)
C2 f2 4 No 112 561 6
C2 f2 5 No 138 699 11
C2 f2 6 Yes 164 837 15
C1, C2 f2 6 No 356 356 25
C1, C2 f2 32 No 1838 12751 94
C1, C2 f2 64 No 3662 25487 225
C1, C2 f2 128 No 7310 50959 112
C1, C2 f2 256 No 14606 101903 180
C1, C2 f2 512 No 29198 203791 1855
C1, C2 f2 1024 No 58382 407567 784
C1, C2 f2 4096 No 233486 1630223 23453
C2, C3 f2 6 No 252 1237 15
C2, C3 f2 32 No 1292 6541 46
C2, C3 f2 64 No 2572 13069 71
C2, C3 f2 128 No 5132 26125 61
C2, C3 f2 256 No 10252 52237 216
C2, C3 f2 512 No 20492 104461 143
C2, C3 f2 1024 No 40972 208909 381
C1, C2, C3 f1 8 No 586 3723 40
C1, C2, C3 f1 9 Yes 657 4186 45
C1, 10× C2, 10× C3 f1 9 Yes 3862 22907 342
C1, 20× C2, 20× C3 f1 9 Yes 7112 42087 592
C1, 50× C2, 50× C3 f1 9 Yes 16862 99627 3141
C1, 100× C2, 100× C3 f1 9 Yes 33372 196723 26930

Which means that f2 is not diagnosable in C2 alone while
it becomes diagnosable when synchronizing C2 with either C1
or C3. For proving these two last results, we have increased
the steps number, verifying that the answer remained UNSAT,
until reaching the theoretical upper bound 22

∑
i |Ai| (equal to

22(3+2) = 1024 for {C2, C3} and to 22(3+3) = 4096 for
{C1, C2}). While f1 is not diagnosable even after synchroniz-
ing all three components together. These 4 tests are mentioned
as a proof of concept. But actually, numbers of variables
and clauses are small in comparison to what SAT solvers
can handle (up to hundred thousands propositional variables
and millions of clauses). This is why we extended the last
case (non-diagnosability of f1) to bigger systems obtained by
duplicating (10, 20, 50 and 100 times) components C2 and C3,
keeping unchanged their communication events and renaming
their proper local events. This shows the efficiency of the
method (less than 27s for 201 components). Notice that here
the steps number remains unchanged as occurrences of non-

interfering events are processed simultaneously in the same
step, thanks to the succinct encoding in this representation.
The number of states in the last tested system is very large,
which proves the efficiency of this approach in detecting the
non-diagnosability of a system if the length of a potential
critical path stays short. The case where diagnosability analysis
requires checking very long potential critical paths is still im-
practical and needs a more abstract induction-proof approach.

V. PREDICTABILITY AS SATISFIABILITY

We recall the definition of the predictability property, adapt
the framework above to define SAT-based predictability anal-
ysis for both centralized and distributed systems and provide
experimental results.

A. Definition
The formal definition of predictability of a fault f in

a centralized system modeled by an LTS or SLTS T was
proposed by [11] as follows.

Definition 4. Predictability. A fault f is predictable in a
system T iff

∃k ∈ N, ∀sf ∈ L(T ), ∃η ∈ sf , ∀p ∈ L(T ), ∀p′ ∈ L(T )/p

(P (p) = P (η) ∧ f /∈ p ∧ |p′| ≥ k ⇒ f ∈ p′)

The above definition, where t denotes the set of strict
prefixes of t, states that a fault f is predictable iff for any
trajectory sf ending with a first occurrence of f , there exists
at least one strict prefix of sf , denoted by η (thus η does not
contain f ), such that for every correct trajectory p with the
same observations as η, all the long enough (depending only
on f ) continuations of p should contain f . In other words, the
non-predictability of f is equivalent to the existence of a finite
faulty sequence that ends with a first occurrence of f and of
an infinite (i.e. corresponding to a cycle) correct sequence that
is synchronized with the faulty sequence on observable events
before the occurrence of f . Predictability is thus stronger than
diagnosability (if f is predictable, then f is diagnosable).

B. SLTS Predictability as Satisfiability
Unlike diagnosability, predictability checking process has

two different phases, before and after the fault occurrence in
the faulty sequence: the synchronization on observable events
between the two sequences is required only up to this fault
occurrence and, after it, only the correct sequence has to be
extended and searched for the presence of a cycle in it. The
new or modified formulas expressing the constraints to be
applied at each time step t are as follows.

1) The synchronization of observable events between the two
sequences holds only up to the fault occurrence, i.e. (7) is
replaced by:

f t ∨ (
∨

o∈δ(e)

eto ↔ et) ∀e ∈ Σo

f t ∨ (
∨

o∈δ(e)

êto ↔ et) ∀e ∈ Σo
(10)

2) The formula (8), requiring that at every time point at least
one event takes place in either one or the other sequence,
remains valid up to the fault occurrence; after it, we require
that at least one event takes place in the correct sequence:
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f t ∨
∨
e∈Σo

et ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto

¬f t ∨
∨

e∈Σo∪Σu,o∈δ(e)

êto (11)

The conjunction of the formulas (1-6), (10) and (11) for a
given t is denoted by S(t, t+ 1).

The formula (9) for the initial state s0 is unchanged.
Finally, the formula to encode the non predictability prop-

erty is obtained as ΦTn , where the presence of a cycle at step
n is required only in the correct sequence:

ΨT
n = I0 ∧ S(0, 1) ∧ · · · ∧ S(n− 1, n) ∧ fn

∧
n−1∨
m=0

(
∧
a∈A

(ân ↔ âm))

It follows that an SLTS T is not predictable iff ∃n ≥ 1,ΨT
n

is satisfiable, which is also equivalent to ΨT
22|A| being satisfi-

able (proof analog to that for diagnosability).

C. DSLTS Predictability as Satisfiability
Let T be now a DSLTS. The extension of predictability

analysis to distributed systems adapts what we presented for
diagnosability analysis. As the synchronization of observable
events holds only before the fault occurrence, we will decouple
it from the synchronization of communication events. So,
the only change concerning the variables is that we use
now one reference variable for each sequence for observable
communication events, as for unobservable ones, i.e. we have:

• et, êt for all e ∈ Σc and 0 ≤ t ≤ n− 1.

Formulas in S(t, t + 1) are extended as those in T (t, t + 1)
were extended, except the following.

1) The synchronization of the occurrences of any commu-
nication event e in all its owner components in S(e) is
expressed in each sequence and in the same way for both
observable and unobservable events:∨
oi∈δi(e)

etoi ↔ et and
∨

oi∈δi(e)

êtoi ↔ êt ∀e ∈ Σc ∀i ∈ S(e)

while the synchronization of the occurrences of any observ-
able event in the two sequences before the fault occurrence,
expressed in the centralized case by formulas (10), is
extended to any observable communication event:

f t ∨ (et ↔ êt) ∀e ∈ Σco

2) The clauses (11) are extended to take into account commu-
nication events:

f t ∨
∨

e∈Σo∪Σc

et ∨
∨

e∈Σcu

êt ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto

¬f t ∨
∨
e∈Σc

êt ∨
∨

e∈Σo∪Σu,o∈δ(e)

êto

We have thus the result that a DSLTS T is not predictable
iff ∃n ≥ 1,ΨT

n is satisfiable, which is also equivalent to
ΨT

22
∑k

i=1
|Ai|

being satisfiable (proof analog to that for diag-
nosability).

D. Experimental Results
We used the same example (Fig. 1) as for diagnosability

and studied the predictability of the faulty events f1 and
f2. Table II shows the results obtained. It is found that f2
is not predictable in C2 alone, which was expected as it is
not diagnosable in C2. We saw that it became diagnosable
in the system composed of C1 and C2 and we find that it
is actually even predictable in this system, by obtaining the
UNSAT answer up to the theoretical upper bound 4096. On
the contrary, although we saw it became also diagnosable in
the system composed of C2 and C3, we find that it remains
not predictable in this system. And here again, we extend this
test to bigger systems by duplicating component C3, with the
same steps number and very good efficiency. Concerning the
fault f1, it is found not predictable in the whole system made
up of the three components, which was expected as it has been
shown not diagnosable in this system.
TABLE II. PREDICTABILITY RESULTS ON THE EXAMPLE OF FIG 1.

System Fault |Steps| SAT? |Variables| |Clauses| Time (ms)
C2 f2 3 No 92 414 7
C2 f2 4 Yes 120 549 12
C1, C2 f2 1024 No 66574 404495 10109
C1, C2 f2 4096 No 266254 1617935 91299
C2, C3 f2 4 No 196 817 14
C2, C3 f2 5 No 242 1018 21
C2, C3 f2 6 Yes 288 1219 27
C1, C2, C3 f1 3 No 267 1399 29
C1, C2, C3 f1 4 Yes 350 1859 40
C2, 10× C3 f2 6 Yes 1408 5219 24
C2, 20× C3 f2 6 Yes 2528 9219 50
C2, 50× C3 f2 6 Yes 5888 21219 125
C2, 100× C3 f2 6 Yes 11488 41219 277

VI. CONCLUSION AND FUTURE WORKS

By extending the state of the art work for centralized
DES [1], we have expressed diagnosability analysis of DDES
as a satisfiability problem by building a propositional for-
mula whose satisfiability, witnessing non-diagnosability, can be
checked by SAT solvers. We allow both observable and unob-
servable synchronous communication events in our model. We
have then applied the same method to express predictability
analysis as a SAT problem, both for centralized DES and for
DDES. In each case, we have provided experimental results.

In order to conduct more experiments to check precisely
the scalability of the method and to compare it with other
approaches referenced above (for which no software is avail-
able and in general no experimental results are given), we have
implemented classical twin plant based algorithms and achieve
implementing an automatic benchmarks generator, tuned by
several parameters and whose diagnosability and predictability
will be known by construction. We have also designed and are
implementing the extension of this work from simple faulty
events to supervision patterns. All our programs will be made
available as open source. We also aim at investigating relations
between our work and the problem of opacity of discrete
event systems [19], in order to treat this problem with SAT-
based methods. Finally, relationships between satisfiability and
bounded or unbounded model checking methods to encode
and analyze fault diagnosability and predictability will be
studied. In particular, SAT-based model checking [20] allows
incremental solving, which significantly improves both the
capacity and the speed of solving. Research of invariants
by full-proof methods like temporal induction should avoid
unrolling to a theoretical bound, as it is the case here when
the system is not diagnosable.
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Abstract—Sophisticated Driver Assistance Systems (DASs) on
the way to highly automated driving require extensive testing
activities to verify the functionality and the safety of the developed
software. With each step towards autonomous driving, the au-
tomobile manufacturers are increasingly taking on responsibility
for driving maneuvers automatically performed by such systems
in unknown environmental situations. Whereas recent DASs use
the driver as fallback, in the future this fallback will be only
available after a legally prescribed period of time since the driver
might be distracted by other activities. To take account of this,
robustness testing becomes more and more important to ensure
a safe operation at different environments. This paper presents
a constraint based approach that applies automatic testing to
evaluate DASs. Thereby, the focus is set on the determination of
the expected responses that are the basis for the automatic evalu-
ation of the generated test scenarios. The introduced approach is
working on different levels of abstraction in combination with an
analysis of the observed behavior to classify individual situations
of the scenarios after the test execution. The approach enables
a full automation of the evaluation, which is the bottleneck of
current state-of-the-art scenario generators.

Keywords–Automotive Testing; Test Generation; Test Evalua-
tion; Test Automation.

I. INTRODUCTION

The decreasing development times and product cycles in
combination with technical advances already require a high
testing effort to ensure that the vehicle’s built-in DASs are
working correctly. It is expected that with each step in the di-
rection to highly automated driving, the testing effort increases
to cover the new functionality and to ensure a safe operation
of the vehicle.

While the first assistance systems, like the Electronic Sta-
bility Control (ESC) [1] or the Antilock Braking System (ABS)
[1], were intervening in critical situations, only the current
generation of DASs supports the driver during his entire
drive, but without taking on responsibility for the maneuvers
performed. Even during an intervention of a DAS, the driver
is still responsible for the vehicle and the possible damage.
On the way to highly automated driving, this responsibility
of the driver will be only given after a legally prescribed time
limit, because it is assumed that the driver is distracted by other
activities and can only handle the situation after a certain time.

Additionally for autonomous driving, it is not sufficient that
systems are working as expected in a defined environment, but
also in unknown situations. Each drive is different from the
previous one, e.g., in respect to the environmental conditions
like traffic or weather. An early and safe hand over to the driver
would be a technical solution. But especially in the premium
market, the customers do not tolerate a system, which is rarely

available. The automobile manufactures have thus to find a
balance between safety and availability.

The automatic test generation is an approach, which is
not intended to replace the already performed testing, but
rather extends them to cover a broad functional range of a
system by creating a large number of different test cases. In
most cases, the commercial off-the-shelf scenario generators
do not determine the test result and leave it to the tester to
define the expected behavior of the System Under Test (SUT),
which limits the degree of automation. To get around this, an
approach is presented to determine the expected response of
the SUT using constraints on different levels of abstraction.
An automatic analysis of the observed behavior supplements
the approach to classify individual situations of the scenarios
after the test execution.

The following section shows the related work. Section III
and Section IV of this paper give an overview about the
SUT and the automatic testing. In Section V, the approach
for an automatic evaluation of the generated test scenarios is
presented. Finally, Section VI shows a case study.

II. RELATED WORK

In [2], a framework is described to construct a generic
course of the road for a virtual driving scenario using a stochas-
tic approach. It combines Markov Chain and Markov Chain
Monte Carlo methods to test different input combinations.
By using this automation, there would be the possibility that
parameter sets, which were forgotten or erroneously ignored
during the manually test creation, are tested.

A test generator is presented in [3][4], which creates, exe-
cutes and evaluates test scenarios automatically. The algorithm
behind the generator tries on the one hand to maximize the
coverage of the reached system states by changing the input
of the SUT during the test execution. On the other hand,
it searches for system states that do not fulfill the given
evaluation criteria. It is left to the test engineer to configure
the test generator in such a way that no invalid test scenario is
created and the evaluation criteria are valid for all generated
test scenarios.

According to [5][6], the formal verification is currently the
only known way to ensure that a system works as specified.
This means that the implementation strictly follows the specifi-
cation and thus it is possible to determine its behavior in every
situation. To perform a formal verification, the specification
must meet some requirements. Among others, the specifica-
tion must be complete and correct. This is a big challenge,
especially in large projects with many dependencies to external
components from different suppliers.
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A comparative study on methods to automatically deter-
mine the expected response of the SUT is given in [7]. Such
methods are necessary for the automatic testing. Otherwise, the
response has to be verified manually. The presented approaches
are mostly limited to their application field and cannot be
generally applied.

III. SYSTEM UNDER TEST

The SUT, which is also named as “test object”, is a
physical or logical unit as illustrated in Fig. 1 that is tested for
correctness against the specification. It has an input interface
X and an output interface Y . A stimulus x ∈ X at the input
causes a response y ∈ Y at the output, as can be seen in (1),
where the stimulus x can change over time.

x(t)
τ−→ y(t) (1)

For the reproducibility of the test results, a defined start
state of the SUT is required at the beginning of the test
execution. Given that, it is possible to obtain an identical
response when repeating a test case or after changing the
execution order of test cases in a test run. For this purpose,
however, the SUT must meet the following properties:

a) time-invariant
b) memoryless

According to [8], a system is called time-invariant, if a
delay of the input causes the same delay at the output as shown
in (2), and memoryless, if the response does only depend on
the current input and not on an input from the past. If both
properties are satisfied by the SUT, exactly one y ∈ Y can
be associated for each x ∈ X regardless of the point in time
and the sequence of the stimulation. Other systems that do not
meet these properties can show different responses to the same
stimulus.

x(t)
τ−→ y(t) =⇒ x(t+ δ)

τ−→ y(t+ δ) (2)

Decisions in autonomous driving are dependent on the
environment and usually on the history of events, which means
that different stimulation sequences over time are needed
for the testing. A static input pattern or a small number of
scenarios are not sufficient to verify a DAS.

A. Stimulation
The input interface of the SUT consists of signals pro-

viding data from other Electronical Control Units (ECUs). It
represents the lowest level of stimulation and can be stimulated
at a Model-in-the-Loop (MIL) or Software-in-the-Loop (SIL)
test bench. At a Hardware-in-the-Loop (HIL) test bench, a bus
interface and a Residual Bus Simulation (RBS), which could

Figure 1. Schematic representation of the SUT

have effects to the time behavior of the stimulation as shown
in [9], are required.

A direct access to the input interface on the signal-level
allows a precise stimulation of the SUT. The large fan-in leads
to an exponential number of test cases, which can be generated.
State-of-the-art DASs have hundreds of input signals, which
have to be consistently stimulated with the correct values over
time. Many input signals that are not in the scope of the current
test case, but are necessary for the proper operation of the SUT,
must be correct and should not be manipulated by the test case
generator. Deviations from the correct sequence are usually
detected by the SUT and leads to a functional degradation
to bring the SUT into a safe state. This outcome must be
considered at the evaluation of the test.

To cope with the complexity of the input interface, it
is a common practice to use models to abstract the input
signals and thus to simplify the stimulation of the SUT. The
models are acting as an intermediate layer between the signal-
level and the used level of stimulation and ensure that the
stimulation is performed in a consistent way. The advantage
of the simplification is achieved by losing direct control of
the input interface, which could complicate the stimulation, if
specific signal characteristics are needed.

B. Evaluation
Depending on the stimulation of the SUT a response can

be observed at the output interface, which has to be checked
for its correctness. The evaluation of the signal characteristics
can be done at selected points in time or over a certain period
of time. Within these time intervals, the observed response of
the SUT is compared against the expected response to ensure
that the behavior corresponds with the specification. Thereby,
the specification is a single point of failure. If the specification
is not reliable, the tests do not recognize an abnormal behavior
of the SUT in specific situations.

IV. AUTOMATIC TESTING

As explained in the previous section, it is not sufficient to
test only static input pattern or a small number of scenarios
to verify the functionality and the safety of a DAS. Rather,
it is required to test a broad range of different situations as
they can be found in real-world environments. The variety of
environmental conditions makes it difficult to verify the DAS
within its operating range and to ensure that a safe state is
always reached. For this reason, automatic testing in addition
to the already performed testing is thought to play an important
role.

A. Setup
Fig. 2 shows the setup for the automatic testing as used

by the presented approach. The Test Generator comprises two
parts. In the first part, the Scenario Generator composes a
Scenario and the corresponding Stimulus for the Test Bench
that is responsible for the test execution. In the second part,
the Response Determination determines the Expected Response
based on the generated Scenario. The Test Bench applies the
Stimulus created by the Scenario Generator to the SUT, while
observing the Response. The Evaluator compares the observed
Response of the SUT with the Expected Response provided by
the Response Determination. Differences outside a specified
tolerance value cause the Result to fail as described in [10].
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Figure 2. Setup for the automatic testing

The Report Generator processes the raw data provided by the
Evaluator and creates a detailed Report, which allows a person
with appropriate domain knowledge to analyze failed test cases
and to verify successfully executed test cases. To speed-up the
analysis, relevant signal characteristics are diagrammed and,
where required, derived values and signals are calculated in
advance.

B. Need for an Automatic Evaluation
Tools for generating scenarios usually do not provide the

expected responses of the SUT, which constitutes the basis for
an automatic evaluation. They leave it to the tester to define
them. Without an automatic evaluation the generated scenarios
can be executed at a test bench, but the actual behavior of the
SUT cannot be automatically evaluated. This means that each
scenario must be analyzed manually by an expert before the
first execution. In this manner the evaluation can be done for
individual scenarios, but this is not feasible in practice for the
expected large number of generated scenarios needed for the
testing.

V. EVALUATION BASED ON ABSTRACTION LEVEL
CONSTRAINTS

In order to benefit from the advantages of automatic testing,
a constraint based approach is presented to determine the
response of the SUT working on different levels of abstraction.
It uses an automatic analysis of the observed behavior to
classify individual situations of the scenarios on the system-
level after the test execution. Thereby the approach recognizes
an unusual behavior of the SUT initially on the system-level
from the viewpoint of an outside observer and is subsequently
going down to lower levels.

For being able to implement the determination of the
response on the signal-level, a profound expert knowledge is

necessary to determine whether an output signal provides a
correct value, or not. Dependencies between signals complicate
the evaluation in addition. On the input interface, it is a
common practice to use models to abstract the large number
of input signals. The same is done by the approach on the
output interface. Through the use of models the abstraction
at the output is increased to a higher level. As a result of
this, less knowledge about the functionality of the DAS is
necessary to evaluate the response. However, missing parts of
the overall system have to be simulated due to the increasing
of the abstraction. The higher the level of the abstraction, the
more parts are missing. For the evaluation of a DAS on the
system level, at least a physical model of the system vehicle
and simulations of all other involved ECUs are necessary.

The approach uses a parameterized model for the evalua-
tion on the system-level, which spans a safety area around the
road objects. As shown in Fig. 3, the safety area is thereby
defined by the variables d1, d2, d3 and d4 that represents the
safe distance in each direction. These variables can be changed
over the time and thus dynamically adapted to the current
situation. The safety area can be, e.g., increased in specific
directions depending on the vehicle velocity.

A. Classification
For the evaluation, the observed behavior of the DAS

is analyzed after the test execution to classify individual
situations of the performed scenario according to the following
four classes.

The class “Fallback” is a specified and thus explicitly
allowed state of a DAS. The state is not necessarily critical,
but rather it indicates a situation that cannot be handled by the
system. As a precaution, the DAS returns the vehicle control
to the driver at the expense of its availability. In relation to
highly automated driving, these situations still reveal functional
restrictions of the system.

Definition 1 (Fallback): The fallback is a state of the DAS,
which is entered if the system cannot handle the situation by
its own and returns the vehicle control to the driver.

A “Hazardous Situation” is a critical situation without a
collision that is either caused by the DAS itself or by at least
one object included in the scenario. On the one hand, an object
vehicle can cause such a situation, e.g., during a lane change
if the scenario generator has ignored the safety distance and
thus the object gets too close to the system vehicle. On the
other hand, the DAS can cause the critical situation, e.g.,

Figure 3. Safety area spanned around a vehicle
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by following too closely on an object vehicle. From when a
situation is considered as hazardous heavily depends on the
conditions given by the scenario. The change of only one
condition can lead to a new driving scenario with a different
hazard potential.

Definition 2 (Hazardous Situation): A hazardous situation
occurs, when:

a) the system vehicle leaves the lane without cause.
b) the minimum distance between the system vehicle

and an object is less than a specified value.

The class “Event of Damage” means that the DAS was not
able to avoid a collision. Further investigations are required to
find out, whether there is any misconduct of the system, or
not. The event of damage is usually preceded by a hazardous
situation.

Definition 3 (Event of Damage): An event of damage oc-
curs, when:

a) the system vehicle leaves the road.
b) a collision between the system vehicle and one or

more objects cannot be avoided by the DAS.

All other situations are classified as “Unsuspicious”, which
is used as the default class.

Definition 4 (Unsuspicious): A situation is unsuspicious,
if an event of damage or a hazardous situation does not exist,
as well as, the DAS is not in the fallback state.

In general, the operating mode of the DAS during a
situation is crucial for the evaluation. If the DAS is in an
emergency situation, its behavior is different from the behavior
in the driving mode. While a collision in the driving mode is
not acceptable, an unavoidable collision that was mitigated in
an emergency situation might be tolerable.

B. Determination of the Expected Response
The determination of the expected response works on a

knowledge base individually created for each DAS on the
basis of the available specifications. In the knowledge base,
a hierarchical structure ensures that the behavior of the SUT
is stored dependent on its abstraction level. At the beginning
only the behavior described on a high level is used to fill
the knowledge base. Already after a short time, a state is
thus reached, which allows the determination of the expected
response of the DAS. This turns out to be sufficient to execute
the first test cases and to get a test result, which guides the
system developer to refine the behavior on lower levels and to
establish relations between different abstraction levels.

In addition, the use of constraints allows a selective de-
scription of the behavior. Based on the stimulus, a distinction
can be made at each abstraction level to describe deviating
responses of the SUT. In this way, different situations can be
handled.

VI. CASE STUDY

In this section, two examples, which were done as a case
study, are discussed to show the idea behind the approach. All
scenarios of both examples are executed at a SIL test bench.
The first example demonstrates a passing maneuver that is
analyzed using dynamically expandable safety areas around the
objects. It describes, how individual situations of a scenario
are classified corresponding to the Section V-A. Following
this, a second example is presented that uses an algorithm
based on [11] as a SUT to provide the functionality of a
CMS. It explains the determination of the expected response
on the system-level and discusses the results with respect to
the performed scenarios.

A. First Example: Classification of a Scenario
The safe distance between objects in the road traffic heavily

depends on a variety of factors, such as the vehicle velocity or
the weather, and cannot be specified by generally valid values.
Even in the law, usually no specific values are specified, but a
sufficient safe distance is stipulated, e.g., in the German Road
Traffic Act [12], to avoid hazardous situations or collisions
with other road users. The distances considered as safe vary
with the velocity, the driving direction or environmental con-
ditions.

As the basis for the example, the model of the safety
area used for classification was parameterized according to the
two-second rule [13][14] (in some states also known as three-
second rule), which states that a driver of a vehicle should stay
at least two seconds behind the vehicle in front. During the
test execution the safety area are dynamically expanded in the
driving direction based on the vehicle velocity with a lower
saturation at one meter. The other parameters of the model,
i.e., the safe distance to the left and to the right, as well as,
the safe distance to the rear, are set to a constant value of one
meter.

The scenario used for the example represents a passing
maneuver at high speed, as illustrated on the left side of Fig.
4, in which an object vehicle passes the system vehicle on the
left lane. The timing of the passing maneuver has been chosen
such that it is hazardous by violating the safety distance but
not damaging.

Figure 4. Passing maneuver illustrated as a difference representation (left side) and the corresponding test result (right side)
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The test results diagrammed on the right side of Fig. 4 show
the detection of a hazardous situation. Thereby, it is striking
that the situation has been classified as hazardous after the
minimum distance between the system vehicle and the object
vehicle had already reached its minimum value. The minimum
value is achieved, when both vehicles are at the same level.
At this point in time, the distance between the left side of
the system vehicle and the right side of the object vehicle are
considered by the model only. The first instance of violating
the safe distance can be seen during the lane change. At this,
the safe distance of the system vehicle is violated by the object
vehicle and the hazardous situation is recognized by the model
based on the two-second rule.

The example shows that the obtained sequence of classified
situations describes the scenario on the system-level, which can
be used in the next step to evaluate the behavior of the SUT.
It is thus not necessary to directly cope with signals.

B. Second Example: Behavior Analysis in Different Environ-
mental Conditions

The Collision Mitigation System (CMS) [15], which can
be found nowadays in almost all new vehicles, monitors the
traffic around the vehicle and warns the driver of potential
collisions in hazardous situations. If the driver does not react
to the warning, an automatic braking is performed. The success
of the system, whether a collision can be avoided or at least
the effects of a collision can be reduced, is highly determined
by the environmental conditions.

On the one hand, the automotive manufacturer has to
ensure that no unnecessary triggering of an automatic braking
is performed by the CMS, which can cause a threat on the road.
On the other hand, the system should provide an added value
to the driver in as many situations as possible. As elucidated
in [16], there is a trade-off for the automobile manufacturers
between safeness and availability.

In contrast to other DASs, the driver sees the CMS only in
action in hazardous situations or at collisions. The same applies
for testers, which have to put themselves in danger for the test-
ing of the system. Although there is the opportunity to simulate
virtual objects for the system vehicle [17] and thus to reduce
the risk, the number of tests that can be performed is limited
and in no relation to the possible scenarios. Through automatic
testing, a variety of different scenarios can be executed on
test benches. Thereby, the presented approach provides the
expected responses of the DAS for the generated scenarios
on different abstraction levels, which can be compared with
the observed response obtained from the test bench.

The determination of the expected response is based on
the specification of the CMS. Only the behavior described on
a high level is used in the following to get a test result within a
short time. In further work, the determination can be extended
to support additional abstraction levels down to the signal-
level.

Two characteristic scenarios for the CMS are presented in
the following:

1) Reaching the Tail End of a Traffic Jam at Low Speed
without the Driver Applying the Brake: Based on the scenario
a hazardous situation is determined, where it comes to a brake
intervention by the CMS. Through the intervention, the system
vehicle should be slowed down to standstill, before there can
be a front-end collision with the object vehicle ahead. As
shown by the test results on the left side of Fig. 5, the minimal
distance between the system vehicle and the object vehicle
decreases over the time. A hazardous situation is recognized,
but there is, as expected, no collision. Shortly before standstill,
the situation is no longer evaluated to be hazardous due to the
automatic braking.

2) Reaching the Tail End of a Traffic Jam at High Speed
without the Driver Applying the Brake: In contrast to the
previous scenario, the system vehicle has a much higher
velocity in this situation than before. Due to the increased
velocity, a brake intervention with subsequent collision is
determined. The test results, as diagrammed on the right side of
Fig. 5, shows that the minimal distance between both vehicles
rapidly decreases. Also a hazardous situation is recognized, but
this time there is an event of damage caused by the collision of
the system vehicle and the object vehicle. After the collision,
no further information was provided by the test bench.

The example shows that the determination of the expected
response on the system-level can be used for an automatically
evaluation of driving scenarios within unknown environmental
situations. The abstraction leads to a simplification of the
evaluation.

VII. CONCLUSION AND FUTURE WORK

Automatic testing, which can be used within traffic sim-
ulations, would have the potential for analyzing the response
of a DAS based on a large number of different scenarios with
reasonable effort. However, an appropriated determination of
the expected response and a convincing approach for an evalu-
ation are mostly missing nowadays. Due to the expected large
number of generated test cases for the automatic testing and
the time-consuming definition of the expected responses, the

Figure 5. Test result of the slow maneuver (left side) and the test result of the fast maneuver (right side)
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determination and the evaluation should be done automatically
by the test generator and not manually performed by experts
with appropriate domain knowledge about the DAS and its
included functionality.

It has been shown that the complexity of the determination
and the evaluation, which arises due to the number of signals
in the output interface of the SUT, is manageable through
the use of models. The higher the level of abstraction at
the output interface is chosen, the less domain knowledge is
necessary for the evaluation. The abstraction and the resulting
simplification cause that not all information from the signal-
level are available at each level of abstraction. By increasing
the level of abstraction, parts of the overall system must
be simulated. The closer the simulation to reality, the more
reliable the results obtained. However, for software-driven
testing issues a sufficient imitation of the real-world system
is supposed to be precise enough. A simulation that considers
all eventualities is usually not necessary.

Furthermore, it has been shown that the behavior of a SUT
can be determined after the test execution by classifying the
response observed at the test bench. Thereby, the obtained se-
quence of classified situations describes the driving scenario on
the system-level. This sequence can be automatically evaluated
based on the determined response und used to find errors or
missing parts in the specification.

It is left for future work to apply the current approach to a
DAS with several assistance functions. One aspect might be to
analyze, how many abstraction levels are required to model the
behavior of the SUT and to examine at which abstraction level
constraints are necessary to correctly determine the expected
response based on the stimulus. Another aspect might be to
optimize the scenario generator to increasing the search space
coverage with a minimum number of additional test cases.
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Abstract—Prognostic health management is desirable for com-
mercial core router systems to ensure high reliability and rapid
error recovery. The effectiveness of prognostic health manage-
ment depends on whether failures can be accurately predicted
with sufficient lead time. However, directly predicting failures
from a large amount of historical logs is difficult. We describe the
design of an anomaly-detection-based failure prediction approach
that first detects anomalies from collected time-series data, and
then utilizes these “outliers” to predict system failures. A feature-
categorizing-based hybrid anomaly detection is developed to
identify a wide range of anomalies. Furthermore, an anomaly
analyzer is implemented to remove irrelevant and redundant
anomalies. Finally, a Support-Vector-Machine (SVM)-based fail-
ure predictor is developed to predict both categories and lead
time of system failures from collected anomalies. Synthetic data
generated using a small amount of real data for a commercial
telecom system, are used to validate the proposed anomaly
detector and failure predictor. The experimental results show
that both our anomaly detector and failure predictor achieve
better performance than traditional methods.

Keywords—Anomaly Detection; Failure Prediction; SVM.

I. INTRODUCTION

A core router is responsible for the transfer of a large
amount of traffic in a reliable and timely manner in the
network backbone [1]. The complex hardware and software
architectures of core router systems make them more vulner-
able to hard-to-detect/hard-to-recover errors [2]. For example,
a wide range of failures can occur in a complex multi-card
chassis core router system:

• Hardware failures: The cards that constitute the chassis
system and the components that constitute a card can en-
counter hardware failures. Moreover, connectors between
cards and interconnects between different components
inside a card are also subject to hard faults. A multi-card
chassis system can have tens of different cards, each card
can have hundreds of components, and each component
consists of hundreds of advanced chips. Each chip in turn
has hundreds of I/Os and millions of logic gates, and the
operating frequency of chips and I/Os are now in the
GHz range. Such high complexity and operating speed
lead to an increase in incorrect or inconsistent hardware

behaviors. Moreover, in such a large-scale complex sys-
tem, whenever a hardware failure occurs in the chassis
system, it is difficult for debug technicians to accurately
identify the root cause of this failure and take effective
corrective action [3][4].

• Software failures: The entire chassis system and each
card have their own software platforms to control and
manage different network tasks. However, since the per-
formance requirement of network devices in the core
layer is approaching Tbps levels, failures caused by subtle
interactions between parallel threads or applications have
become more frequent. These failures often arise because
software applications tend to distribute their tasks into
parallel agents in order to improve performance [4][5].

All these different types of faults can cause a core router to
become incapacitated, necessitating the design and implemen-
tation of fault-tolerant mechanisms for reliable computing in
the core layer.

Due to the non-stop utilization (99.999% uptime) require-
ment of core router systems deployed in the network backbone,
a traditional fault-diagnosis system is of limited applicability
here because it aims at repair after failures occur. Such
solutions inevitably stall system operation. In contrast, prog-
nostic health management is promising because it monitors
the system in real time, triggers alarms when anomalies are
detected, and takes preventive actions before a system failure
occurs. Therefore, it ensures non-stop utilization of the entire
system [6]. The effectiveness of prognostic health management
depends on whether system failures can be predicted in a
timely manner [7]. Therefore, in this paper, we present the
design of an efficient anomaly-detection-based failure predic-
tor that can be applied to a commercial core router system.

The remainder of this paper is organized as follows. Section
II discusses the anomaly detection and failure prediction prob-
lems in more detail and highlights the contributions of this pa-
per. In Section III, a number of time-series-based anomaly de-
tection techniques are discussed and a feature-categorization-
based hybrid method is proposed. Then, a correlation-based
anomaly analyzer is described to select representative anoma-
lies. Section IV discusses how to predict failures based on
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historical anomaly events. In Section V, experimental results
on a synthetic data set generated from a commercial core
router system are used to demonstrate the effectiveness of the
proposed method. Finally, Section VI concludes the paper and
discusses future works.

II. PROBLEM STATEMENT

Prognostic health management can benefit from reasoning-
based and data-driven techniques [8], as shown in Fig. 1. The
system is monitored by recording different Key Performance
Indicators (KPIs). The logged KPI data is then fed to an
anomaly detector. When anomalies occur, an anomaly analyzer
can be used to filter redundant and irrelevant anomalies. Then,
a failure predictor can be triggered to forecast the occurrences
of different system failures [7]. Finally, appropriate preventive
actions can be executed on the monitored system to avoid
failures in advance. We can see that the anomaly detector and
failure predictor are two essential components in a data-driven
prognostic health management scheme.

Monitored
System

Anomaly
Detector

Anomaly
Analyzer

Failure
Predictor

Set of 
Anomalies

Representative 
Anomalies 

Failures
Preventive

Actions

Figure 1. An illustration of data-driven prognostic health management.

Anomaly detection, which is also sometimes referred to as
outlier detection, has been widely used in other domains, e.g.,
intrusion detection and fraud detection [9][10]. For example,
density-based techniques, such as K-Nearest Neighbor (KNN)
have been used in detecting outliers in high-dimensional
datasets [11]. Machine-learning methods, such as Artificial
Neural Networks (ANN) have also been applied to detect
fraud in large multivariate databases [12]. A Multivariate State
Estimation Technique (MSET) has been used to reduce or

eliminate No-Trouble-Found [13]. This technique is sensitive
to subtle changes in the signal trend, making it effective for
detecting indirect anomalies [14].

Failure prediction has also been studied to assess the reli-
ability, availability and serviceability of complex computing
systems [15]. For example, a semi-markov reward model has
been used to forecast the resource exhaustion problem in
software systems [16]. Machine-learning methods, such as
Naive Bayes have also been applied to predict hard disk
drive failures [17]. A rule-based model has been built to
predict attacks in computer networks and illegal financial
transactions [18]. However, little research has focused thus
far on combining failure prediction with anomaly detection in
a high-performance and complex communication system.

The difficulty of developing an efficient anomaly detector
and failure predictor for a complex communication system
can be attributed to the reason that features extracted from
communication systems are far more complex than those from
a general computing system. For example, as shown in Fig. 2,
a multi-card chassis core router system uses monitors to log a
large amount of features from different functional units. These
features include performance metrics (e.g., events, bandwidth,
throughput, latency, jitter, error rate), resource usage (e.g.,
CPU, memory, pool, thread, queue length), low-level hardware
information (e.g., voltage, temperature, interrupts), configu-
ration status of different network devices, and so on. Each
of these features can have significantly different statistical
characteristics, making it difficult for a single type of anomaly-
detection/failure-prediction technique to be effective.

We, therefore, address the important practical problem of
designing an anomaly-detection-based failure predictor that
can be effectively applied to a commercial core router sys-
tem. To achieve this, a feature-categorization-based hybrid
method is developed to detect a wide range of anomalies; a
correlation-based anomaly analyzer is implemented to select
the most important anomalies; and a machine-learning-based
failure predictor is developed to predict different failures from

Time stamp:  2015-09-05 08:11:50 Saturday UTC

System version: V100R100

Patch version: V100R100_P0025.PAT

……

SFU 11: uptime is 1 days, 20 hours, 48 minutes

Startup time 2015/09/03 11:23:33

CPU usage: 3% Memory usage: 15%

Board temperature: 45

……

LPU 8: uptime is 1 days, 20 hours, 47 minutes

Startup time 2015/09/03 11:24:33

CPU usage: 13% Memory usage: 13%

Board temperature: 52

NP backpressure: RB0RS > IF_Channel(127 0)

NP exception: EXCP_ID_IPV4_ARP_MISS

……

Interface 3: last uptime is 1 days, 20 hours, 50 minutes

Router ID: 190.80.80.80/16

Input rate: 1976 bits/sec

Output rate: 3015 bits/sec

……

Figure 2. A multi-card chassis core router system and a snapshot of extracted (monitored) features.
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historical anomalies.

III. ANOMALY DETECTION AND ANALYSIS

In complex communication systems, such as a core router,
data is collected in the form of time-series. Three kinds
of techniques have been studied in the literature to detect
anomalies in time-series data [9]. The first one is distance-
based anomaly detection, which utilizes a distance measure
between a pair of time-series instances to represent the simi-
larity between these two time-series. The smaller the overall
“distance” is, the closer this pair of time-series instances
would be. Instances far away from others will be identified
as being abnormal. The second one is window-based anomaly
detection. This method divides time series instances into
overlapping windows. Anomaly scores are first calculated
per window and then aggregated to be compared with a
predefined threshold. Only when the overall anomaly score of
a single time-series instance significantly exceeds a predefined
threshold, this instance will be identified as being abnormal.
The third one is prediction-based anomaly detection. First,
a machine-learning-based predictive model is learned from
historical logs. Next, predicted values are obtained by feeding
test data to this predictive model. These predicted values are
then compared with the actual measured data points. The
accumulated difference between these predicted and the actual
observations is defined as the anomaly score for each test time-
series instance.

KPI Category 
Identification

Statistical 
Analysis of 
Features

Data point 𝐷1 = { 𝑓11, 𝑓12, …, 𝑓1𝑖, 𝑓1(𝑖+1), …, 𝑓1(𝑣−1), 𝑓1𝑣 }

Data point 𝐷2 = { 𝑓21, 𝑓22, …, 𝑓2𝑖, 𝑓2(𝑖+1), …, 𝑓2(𝑣−1), 𝑓2𝑣 }

……
……

Data point 𝐷t = { 𝑓𝑡1, 𝑓𝑡2, …, 𝑓𝑡𝑖 , 𝑓𝑡(𝑖+1), …,  𝑓𝑡(𝑣−1), 𝑓𝑡𝑣 }

𝐶𝑎,    …     𝐶𝑘,     …      𝐶𝑟

Distance-based 
anomaly 
detector

Window-based 
anomaly 
detector

prediction-
based anomaly 

detector

Global 
aggregated 

anomaly checker

Time-Series 
KPI Features

Figure 3. A depiction of feature-categorization-based hybrid anomaly
detection.

However, a single class of anomaly detection methods
is effective for only a limited number of time-series types.
Therefore, we propose a feature-categorization-based hybrid
method whereby each class of features can be classified
by the most appropriate anomaly detection method. Fig. 3
illustrates the proposed feature-categorization-based hybrid
anomaly detection. First, time-series data of different features
extracted from the core router system is fed to a KPI-category
identification component. Since features belonging to different
KPI categories often exhibit significantly different statistical
characteristics across the timeline, natural language processing
techniques are utilized here to ensure that different KPI
categories, such as configuration, traffic, resource type, and
hardware can be identified. However, it is also possible that

features belonging to different KPI categories have similar
trend or distribution across time intervals; therefore, a statis-
tical analysis component is needed to ensure that all features
that exhibit similar statistical characteristics are placed in the
same class. After these steps, a data point Dt with v features
can be divided into different groups Ca, Cb, . . . , Ck, . . . , Cr,
where each group has different statistical characteristics. Next,
each group of features is fed to the anomaly detector that
is most suitable for this type of features. Finally, the results
provided by different anomaly detectors are aggregated so that
we can detect an anomaly in terms of the entire feature space.

Although the proposed feature-categorization-based hybrid
method can help us detect a wide range of anomalies, not
all anomalies are useful and necessary for predicting system
failures. First, the temporal and spatial localities of neighbor-
ing components lead to co-occurrences of similar anomalies.
Second, some anomalies are caused by workload variations
or temporary external noise, which makes them irrelevant
for predicting system failures. Since the number of possible
anomalies will increase from hundreds to tens of thousands
when more new features are identified and extracted from the
raw log data, anomaly analysis is needed in order to remove
irrelevant and redundant anomalies before predicting failures.

Anomalies

Clustering Correlating

Anomaly Analyzer

Selected
Anomalies

Correlation
Graph

Figure 4. Overview architecture of the proposed Anomaly Analyzer.

Fig. 4 presents an outline of the proposed anomaly an-
alyzer. A set of detected anomalies is fed to the anomaly
analyzer. It then goes through two components: the cluster-
ing component and the correlating component in sequential
order. The clustering component groups anomalies that occur
”simultaneously” (within the same small time interval) and
have similar statistical characteristics. Only one anomaly is
selected from each cluster and then fed to the next component.
The correlating component first identifies both linear and non-
linear relationships among these anomalies and then group
anomalies that have strong correlations. Finally, the anomaly
analyzer outputs a number of correlated anomaly groups. An
effective anomaly subset can be generated by selecting the
most representative anomalies from these correlated groups.
Furthermore, detailed relationships among anomalies within
each group can be represented by a correlation graph G =
(V,E), where the set of vertices V represent anomalies and
the set of edges E represent correlations between anomalies.
Therefore, a correlation graph is generated for each group of
anomalies.
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IV. FAILURE PREDICTION

Fig. 5 shows the temporal relationship between faults,
anomalies, and failures. Assume that a fault occurs in the
system at time point tr. After a period of time, a wide range of
anomalies begin to appear at time point tas. Finally, at time
point tf , the system encounters a fatal failure and crashes.
Two important time intervals are defined here: δtl, referred as
the lead time, is the time interval between the occurrence of
the last anomaly and the occurrence of the predicted failure.
It is defined as δtl = tf − tae. Only if this lead time is
larger than the time required to take preventive actions can
our prediction become useful in reality. The parameter δtd
is defined as the time interval between the occurrence of the
first and last anomaly, i.e., δtd = tae − tas. Since our failure
prediction is based on the detected anomalies in the system,
δtd can be considered to the temporal length of our dataset.

Timert ftast aet

dt lt

Fault

Anomalies

Failure

System

Figure 5. Temporal relationship between faults, anomalies, and failures.

Using the proposed anomaly detector and analyzer, repre-
sentative anomalies can be identified and recorded. Correlating
them with logs of system failures, two types of anomaly event
set can be formed: failure-related anomaly event set and non-
failure-related anomaly event set. An example of these two
types of anomaly event sets is shown in Fig. 6. We can see that
Ai represents the ID of each anomaly and Fj represents the ID
of each failure. The failure-related anomaly event set consists
of records that always end with a failure event Fj while the
non-failure-related anomaly event set consists of records that
do not have any failure events.

A1: 03/11/16 10:12:25 …… A9: 03/11/16 10:16:08 …… F2: 03/11/16 10:29:42
A4: 03/12/16 13:34:05        F4: 03/12/16 13:51:17
……
A3: 03/13/16 12:01:23 …… A8: 03/13/16 12:10:15
A8: 03/14/16 12:22:31 
……

Failure ID

Anomaly ID

Figure 6. An example of anomaly event sets.

An efficient failure predictor should not only predict
whether failures will occur, but also predict the type/category
and occurrence time of those failures. Therefore, as shown
in Fig. 7, the proposed failure predictor consists of two main
components: the classifier and the regressor so that both the
category and the lead time of failures can be predicted. First,
the historical logs including both failure-related and non-
failure-related anomaly events are fed as training data to both

the classifier and the regressor in order to build corresponding
learning models. Second, a set of newly detected anomalies
of is fed to these learning models. Finally, the learnt classifier
outputs which type of system failures will be triggered by
the current anomalies, and the learnt regressor will output the
predicted lead time for this type of system failure.

Failure-Related
Non-Failure
-Related

Historical Anomaly Event Sets

Classifier Regressor

Category Lead Time

Predicted Failures

Current
Anomalies

Figure 7. Overview architecture of the proposed failure predictor.

One key step implicit in Fig. 7 is to build training datasets
from historical anomaly event sets for both the classification
component and the regression component. Suppose we have
identified a set of anomalies A = {A1, A2, ..., AN} and a set
of system failures F = {F1, F2, ..., FM} from our historical
log H. The training dataset D for the classification component
can then be built. For each record Hi in the historical log, it
can contain one or more anomalies and either no failure or one
failure. If the anomaly Aj appears in the record Hi, Dij = 1,
otherwise Dij = 0. Note that Di(N+1) represents the failure
category of the record Hi: If the failure Fk appears in the
record Hi, Di(N+1) = k. If no failures occur in the record,
Di(N+1) = 0. The process of building the training dataset T
for the regression component is similar. The only difference
is that the occurrence times of anomalies and failures needs
to be included now. If the anomaly Aj appears at time tj in
the record Hi, Tij = tj , otherwise Tij = 0. If the failure
Fk appears at time tk in the record Hi, Ti(N+1) = tk. If no
failures occur in the record, Ti(N+1) = 0.

Different machine-learning techniques can be applied for
classification and regression in the proposed failure predic-
tor. Among these techniques, the Support Vector Machine
(SVM) algorithm offers several advantages, such as overfitting
control through regularisation parameters and performance
improvement via custom kernels [19]. Therefore, we utilize
SVM-based techniques in this paper. Specifically, we apply
multiclass SVM for the classification component and support
vector regression for the regression component.

V. EXPERIMENTS AND RESULTS

The commercial core router system used in our experiments
consists of a number of different functional units, such as the
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main processing unit, line processing unit, switch fabric unit,
etc. A total of 602 features are monitored and sampled every
5 minutes for 15 days of operation of the core router system,
generating a set of multivariate time-series data consisting of
4320 time points.

To evaluate the performance of the proposed anomaly de-
tection and failure prediction methods, we use a 4-fold cross-
validation method, which randomly partitions the extracted
time series dataset into four groups. Each group is regarded
as a test case while all the other cases are used for training. The
Success Ratio (SR), referred to as a percentage, is the ratio of
the number of correctly detected anomalies/predicted failures
to the total number of anomalies/failures in the testing set. For
example, a SR of 70% means that 7 out of 10 anomalies are
correctly detected. In addition to SR, the Non-False-Alarm
Ratio (NFAR) is also considered as an evaluation metric. It
is defined as the ratio of the number of correctly detected
anomalies/predicted failures to the total number of alarms
flagged by the anomaly detector/failure predictor.

A. Anomaly Detection and Analysis

To evaluate the effectiveness of feature-categorization-based
hybrid anomaly detection, five base algorithms are imple-
mented: KNN is a distance-based anomaly detection method,
and for each test instance, its distance to its kth near-
est neighboring instance will be considered as its anomaly
score. Window-based KNN and window-based SVM are two
window-based methods, and the difference between them is
the way they calculate their per-window anomaly score. SVR
and AR are two prediction-based methods, and the difference
is that the former one uses support vector regression to predict
values while the latter uses auto-regression for forecasting.

The results are shown in Fig. 8-9. We can see that for the six
anomaly detection methods, i.e., KNN, Window-based KNN,
window-based SVM, SVR, AR, and the feature-categorization-
based hybrid method, the success ratios are 82.7%, 84.5%,
86.4%, 88.2%, 78.6% and 95.1%, respectively, and the non-
false-alarm ratios are 73.1%, 76.3%, 80.7%, 88.1%, 71.6% and
92.1%. The reason that the proposed feature-categorization-
based hybrid method achieves much higher SR and NFAR
than other methods is that it can overcome the difficulty of
adopting a single class of anomaly detection to features with
significantly different statistical characteristics.

(S
R
)

Figure 8. Success ratios of different anomaly detection methods.

(N
FA
R)

Figure 9. Non-False-Alarm ratios of different anomaly detection methods.

Initially, 467 anomalies are detected by the proposed
anomaly detector. The anomaly analyzer can then partition
these anomalies into disjoint clusters based on their inner-
similarity and inter-correlation. The results of such clustering
and correlating are summarized in Table I. We can see that
only 15 out of 467 anomalies are identified as being in
independent groups (clusters with a single element), which
implies that most anomalies are correlated. Moreover, if we
choose a single anomaly within each cluster to represent this
cluster, only 105 anomalies are needed to represent the entire
anomaly set, reducing the number of anomaly dimensions by
77.5%.

TABLE I. RESULTS AFTER CLUSTERING AND CORRELATING OF
ANOMALIES.

Size of clusters Number of clusters Number of anomalies
1 15 15
2 38 76
3 14 42
4 9 36
6 10 60
10 13 130
15 4 60
21 1 21
27 1 27

B. Failure Prediction

To evaluate the effectiveness of the SVM-based classifier
and the SVR-based regressor in the proposed failure predictor,
two base algorithms are implemented. For the classification
component, a rule-based approach is used: first, a rule model
is built from the historical log; each rule takes the form “IF
{anomaly A1, anomaly A2, ..., anomaly Ai}, THEN {failure
Fj}”. Second, for each new anomaly set, if a matched rule can
be found, the failure label of that rule is assigned to the new
anomaly set; otherwise, a random failure label is assigned. For
the regressor component, a simple linear regression method is
used to predict the lead time of a failure from the occurrence
time of its related anomalies.

Fig. 10-11 show the SR and NFAR values for the SVM-
based and the rule-based approaches. Eight failure categories
are identified from the historical log, and are denoted as A, B,
..., H in the figures. The results can be summarized as follows:

1) For all eight failure categories, the SVM method achieves
higher SR and NFAR than the rule-based method. One
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possible explanation is that the effectiveness of the rule-
based method highly depends on whether the rule model
covers a sufficient range of “IF anomalies, THEN failure”
rules. However, there are always new anomaly sets that
do not match any existing rules, and therefore cannot
be predicted well by the rule-based method. In contrast,
the SVM method can learn “implicit rules” during its
training phase, making it more suitable for predicting
failure categories of new anomaly patterns.

2) Both methods perform better in predicting failure cate-
gories A and G, but they are worse in predicting failure
categories C and F. After analyzing the anomaly event
sets related to these failure categories, we find that the
anomaly event sets for A and G are significantly different
while the anomaly event sets for C and F are very similar.
In some cases, the anomaly sets of C and F have exactly
the same anomaly events and the only difference is the
sequential order of these anomaly events. Since both
SVM and rule-based methods do not take this sequential
information into consideration, it is quite likely that
misclassification will occur when predicting the failure
category C and F.
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Figure 10. Success ratios of two failure category prediction methods.
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Figure 11. Non-False-Alarm ratios of two failure category prediction
methods.

The classical metric Root Mean Square Error (RMSE) is
used to evaluate the effectiveness of the failure lead time
prediction methods. For our experiments, we define RMSE
as the square root of the average squared distance between
the actual lead time and the predicted lead time. The results
are shown in Fig. 12. We can see that the SVR method
achieves much lower RMSE than the linear regression method.
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Figure 12. RMSE of two failure lead time prediction methods.

The reason is that in most cases, the temporal relationships
between anomalies and failures are not linear. Also, we find
that the RMSE for the SVR method for most failure categories
is not greater than 10 minutes, which means the lead time
predicted by the SVR method can be considered as a realistic
approximation.

VI. CONCLUSION AND FUTURE WORKS

We have described the design of a anomaly-detection-based
failure predictor for a complex core router system. Both a
feature-categorization-based hybrid anomaly detector and a
correlation-based anomaly analyzer have been implemented to
detect and identify important anomalies. A SVM-based failure
predictor has also been developed to predict the category and
lead time of different failures from anomaly event sets. Data
collected from a commercial core router system has been used
to evaluate the effectiveness of the proposed methods. The ex-
perimental results show that the proposed anomaly-detection-
based failure predictor achieves not only higher success ratio
and non-false-alarm ratio than traditional rule-based method in
predicting failure categories, but also lower root mean square
error than linear regression method in predicting failure lead
time.

However, several drawbacks exist in current work and need
to be addressed in the future:

1) The proposed anomaly detector did not take correlations
among features into account. Therefore, this method
cannot capture anomalies caused by abnormal combina-
tion of multiple features. A correlation engine will be
investigated in the future to detect multivariate anomalies.

2) The proposed failure predictor did not take sequen-
tial information of anomaly events into consideration.
Therefore, this method cannot accurately identify failure
categories if they share similar anomaly event set. A time-
series-based failure predictor will be investigated in the
future to better forecast different types of failures.

3) A key assumption in current work is that failures and
anomalies are well-correlated. However, this assumption
may not always hold true in real scenarios. Whether a
sequence of anomalies will trigger a specific failure de-
pends on a variety of factors such as software aging, hard-
ware update, or even human intervention. Therefore, data
from other sources such as business scenarios, system
configurations, expertise experiences will be incorporated
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and investigated in the future to build more fine-grained
relationships among anomalies and failures.
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