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VALID 2014

Forward

The Sixth International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2014), held between October 12 - 16, 2014 in Nice, France, continued a series of events
focusing on designing robust components and systems with testability for various features of
behavior and interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large
scale systems provide less visibility for vulnerability discovery and resolution, and make testing
tedious, sometimes unsuccessful, if not properly thought from the design phase.

The conference had the following tracks:

 Testing techniques and mechanisms

 Software verification and validation

 System and feature testing

We take here the opportunity to warmly thank all the members of the VALID 2014 technical
program committee, as well as the numerous reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and effort to contribute to VALID 2014.
We truly believe that, thanks to all these efforts, the final conference program consisted of top
quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2014
organizing committee for their help in handling the logistics and for their work that made this
professional meeting a success.

We hope VALID 2014 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the area of system testing
and validation. We also hope that Nice, France provided a pleasant environment during the
conference and everyone saved some time to enjoy the charm of the city.
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Adaptive Knowledge-Supported Testing: An Approach for Improving Testing Efficiency

Philipp Helle and Wladimir Schamai
Airbus Group Innovations

Hamburg, Germany
Email: {philipp.helle,wladimir.schamai}@eads.net

Abstract—This paper introduces a new method for auto-
matic test parameter generation that has been named adaptive
knowledge-supported testing. The approach uses a combination
of random testing for test parameter generation and machine
learning and data mining techniques to optimize these test
parameters based on the results from previous tests. The goal is to
enable efficient testing of complex systems which cannot be tested
exhaustively anymore due to the huge number of possible input
combinations. The paper provides a description of the method
and also results from the evaluation of a first proof-of-concept
demonstrator that has been implemented to validate the method.

Keywords—Testing, Adaptive Testing, Machine Learning.

I. INTRODUCTION

Increasing system complexity results in an increase in
complexity of the test engineers’ task to ensure that systems
are correct. In recent industry practice, the verification phase
is commonly the longest phase in system development and is
the most critical to completing a product on time [1].

This raises the need for the development of new techniques
and methodologies that can provide the test engineers with
the means to achieve their goals quickly and with limited
resources. These solutions succeed in removing much of the
manual labour traditionally involved in the verification process.
Tasks such as test execution and test report generation are
now typically automated to a high degree. Model-based testing
(MBT) is a new trend in industry that focuses on automatic test
case generation [2] [3]. However, test parameter generation is
often still a manual task [4].

Adaptive knowledge-supported testing is a new method for
automatic test parameter generation. It combines methods from
the area of machine learning and artificial intelligence, e.g.,
neural networks and methods from the area of data mining,
e.g., data clustering and existing methods for test parameter
generation, e.g., random testing.

Under the assumption that critical test points, i.e., stimulus
combinations that lead to errors, typically occur in groups in
the whole test parameter space, adaptive knowledge-supported
testing allows to generate optimized test parameters from
previously executed tests and their results.

This paper is structured as follows: Section 2 provides
some background regarding testing and machine learning.
Section 3 deals with related and prior work. Section 4 intro-
duces the adaptive knowledge-supported testing method using
a running example and, finally, Section 5 concludes the paper.

II. BACKGROUND

A. Testing

”Testing is the process of executing a program with the
intent of finding errors” [5]. Testing is a well-known discipline
in the software and system engineering fields, and in recent
decades many testing strategies have been developed, such as
stress testing, fault injection, coverage-based testing, black-
box, and white-box testing, or combinations of these.

However, it has been pointed out that ”[in] general, it
is impractical, often impossible, to find all the errors in a
program” [5] and ”every testing method (save exhaustive
testing [..]) is less than perfect” [6]. Testing cannot guarantee
the absence of errors, but it can help to discover their presence.
The economics of testing, i.e., the balance between the testing
effort and project time or resource constraints, depends on the
selected testing strategy and the way test cases are designed,
as well as the experience of the testers [5].

Half of all embedded systems development projects are
way behind schedule and less than half of the designs meet
20% of the expectations in terms of functionality and perfor-
mance according to the study in [7]. This is despite the fact
that around half of the total development effort is spent on
testing [7], [8]. These numbers underline the importance and
desirability of reducing test effort by advances in the testing
methodologies, especially considering the trend for ”increase
in software complexity [and] shorter innovation cycle times”
[9].

B. Machine learning

According to a standard definition, ”Machine learning is
programming computers to optimize a performance criterion
using example data or past experience.” [10]. And more
formally: ”a computer program is said to learn from experience
E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by
P, improves with experience E” [11].

Transferred to our application this translates as follows:
The adaptive knowledge-supported testing learns from past test
results (experience E) with respect to the task test parameter
generation (task t) and performance measure effectiveness of
the generated test parameter sets in detecting errors (perfor-
mance measure p). So, the test parameter generation, mea-
sured by the effectiveness of the generated test parameter sets
improves with the number of past test results.

There are different machine learning techniques, such as
supervised, unsupervised or reinforcement learning, as well
as classification methods, such as decision trees, naive Bayes
classifier, support vector machines, neural networks, etc. The

1Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4
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methods differ in learning complexity, classification accuracy
and robustness, the possibility to interpret the generated results,
and performance. Each of the classification methods has advan-
tages and disadvantages. For example, decision trees may be
computationally expensive because of the number of distinct
nodes to be created. Support vector machines require more
effort in setting up the learning and may also be computational
expensive. The advantage of using naive Bayes models is the
simplicity of learning. However, the underlying assumption is
that all input values are independent, which is not always
applicable to our setting, in which test parameters values
may be interrelated. In turn, artificial neural networks are an
alternative to dynamic and non-linear problems because they
are not restricted in terms of normality, independence of input
data etc.

Artificial Neural Networks (ANN) mimic the biological
neural networks in their learning function. ANN are com-
posed of connected neuron models. Each connection has a
different weight that is adjusted throughout learning. A special
type of artificial neural networks is the Probabilistic Neural
Network (PNN). It is a four layers feed-forward network
proposed by Specht [12]. When using the Dynamic Decay
Adjustment (DDA) algorithm [13] it is possible to build the
network dynamically based on the numerical training data. The
output of the trained network are inferred rules that enable to
predict the probability that new test data belongs to a certain
target category. We used PNN (DDA) for our case study for
learning from previous test runs and producing new test sets
by predicting (i.e., selecting new test data based on the their
highest probability).

III. RELATED WORK

Random testing, i.e., random selection of test cases, is
generally regarded as not only a simple but also an ”intuitively
appealing” [14] technique amongst the black box techniques
for test case generation. In random testing, test cases may be
randomly chosen based on a uniform distribution or according
to other distributions that are inferred from the operational
profile of a unit under test (UuT). Hamlet [6] points out that
the main benefits of random testing include the availability of
efficient algorithms to generate test cases, and also its ability
to provide reliability and statistical estimates. Using random
test inputs allows many design requirements to be verified
very quickly with minimal manual effort. Random tests also
have the additional possible benefit of generating test cases
that human test engineers would not necessarily think of [15].
Studies have shown that systematic testing methods are not
much better at finding failures than random testing [16] and
more recent research ”further support[s] the use of random
testing in real-world software”[17].

However, random testing also has weaknesses, e.g., ”a vast
number of test points are required” [6] and knowledge of the
operational profile of a UuT are required to infer suitable
distributions for the random number generators. Also, random
testing usually does not produce all test cases that are needed
to verify a design. The test engineer must evaluate the coverage
results of the executed tests and determine, which cases remain
to be tested, which can then either be written manually or
generated by adjusting the random number generator in an

attempt to steer the random test generation into the untested
scenarios.

Several new approaches try to combine random testing with
a more systematic approach to get the best of both worlds:
automatic and quick test case generation coupled with a system
to steer the test case generation.

Adaptive Random Testing (ART) is a method based on
random testing that seeks to distribute test cases more evenly
within the input space [18]. It uses two separate sets of test
cases, the executed set and the candidate set, which is a set
of randomly generated test points. At each iteration one or
more test points are selected from the candidate set and used
for a test. The criterion for selection is maximum distance
from previously executed tests, which results in a more even
spread of test cases in the test space. The distance function
needs to be defined for each type of test. The example in
the paper uses the Euclidean distance. Adaptive knowledge-
supported testing also distinguishes between the executed set
of tests and the candidate set of tests, which is generated using
random methods. Instead of maximising the distance between
test cases to evenly spread the tests we use machine learning
to focus testing.

Coverage Directed Test Generation (CDG) uses coverage
measurement together with a random test generator in order to
assess the progress of the testing process [15]. The coverage
analysis allows to modify the directives for the test generators
and thereby to target areas of the UuT that are not covered
well.

More recently, effort has been made to couple CDG with
machine learning techniques to close the manual feedback loop
from coverage analysis to test parameter generation. Machine
learning, i.e., a Bayesian network, is used to observe the impact
of input stimulus changes on coverage goals and a subsequent
automatic steering of the input generation parameters so that
the coverage is maximised [15]. It has been shown that this
kind of CDG can successfully generate test directives from an
analysis of observed test coverage gaps to guide the testing to
completion more quickly [19][20].

CDG requires a detailed insight into the UuT to allow
measuring the coverage achieved by testing, which is not easily
possible in blackbox testing. In contrast to CDG, which tries to
optimize coverage of the UuT, adaptive knowledge-supported
testing aims at optimizing the chance to discover errors in the
UuT while minimizing the required number of test runs.

IV. ADAPTIVE KNOWLEDGE-SUPPORTED TESTING

A. Running example

The adaptive knowledge-supported testing method was
developed using representative example data provided by a
simulation model. The test considered was a power interrupt
test, which tests the robustness of the unit under test by
applying a number of power interrupts. The test parameters
that typically characterize the power interrupt test and their
value ranges (positive integers) are provided by Table I:

These test parameters are defined by a test engineer based
on his knowledge of the UuT and the goal of the test.

2Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4
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Test parameter Min value Max value Smallest step size
Number of interrupts 1 10 1
Interrupt duration (/10ms) 1 20 1
On time duration (s) 1 20 1

TABLE I: TEST PARAMETERS FOR POWER INTERRUPT TEST

Combinatorics dictates that there exist 4000 possible test
points using full factorial parameter combination. We use a
monitor-based testing approach described in [21] for evaluating
a test run. Other automated test verdict generation approaches
could be used as well. The test verdict returned by running
one set of test parameters can take three distinct values:

• 0: test passed successfully

• 1: warning point, e.g., some values are anomalous but
are still within the allowed value range

• 2: error point, a requirement has been violated

Fig. 1: Running example error distribution

For testing the adaptive knowledge-supported testing
method, four error zones have been included in the total test
space of 4000 test points, with 6 error points and 96 warning
points as Figure 1 shows.

B. Assumptions

One general assumptions is underlying the adaptive
knowledge-supported testing approach:

• Warnings and errors occur in groups in the test space:
This stems from the observation that errors and warn-
ings do not occur in an isolated fashion in the test
space but, since moving from one test point to a
neighbouring one represents only a very slight change
of inputs, they are found in groups.

Another assumption has been made that is motivated by
the running example and is depending on the test evaluation
criteria and the possible values of the test verdict.

• Errors are surrounded by warnings: This represents
the knowledge from past testing campaigns that testers
do not stumble upon errors out of the blue but that,
when the stimuli are closing in on an error then a
system starts to behave anomalously but still within

the bounds of the allowed, e.g., a variable value that
has an upper limit starts moving towards this threshold
or a variable that should be steady starts to flutter
slightly but does not violate the fixed boundaries yet.

Both of these assumptions are based on lessons learnt from
past test campaigns and have been confirmed internally by test
experts.

C. Process

The starting point for adaptive knowledge-supported testing
is always the definition of a test case that is parametrized and
of all possible stimuli for the system under test for the given
test case. This is done by the test engineer.

For our running example, the abstract parametrized test
case can be informally described as follows:

1) Turn on the UuT.
2) After $OnTimeDuration start the first power in-

terrupt by turning off the power supply and turning
it back on after $InterruptDuration*10 ms.

3) If $NumberOfInterrupts is greater 1, after
$InterruptDuration*10 ms initiate the next
power interrupt until $NumberOfInterrupts in-
terrupts have been executed.

4) Five seconds after the last power interrupt check if
the UuT is in the normal operating mode and has
successfully passed the initialisation.

The unique benefits of adaptive knowledge-supported test-
ing come to fruition when existing test results are available. If
this is not the case then adaptive testing largely corresponds
to the underlying test method that is used for the test data
generation, i.e., without existing rest results adaptive testing
using random data generators becomes random testing.

Fig. 2: Adaptive knowledge-supported testing process

Figure 2 provides an overview of the general process for
the adaptive knowledge-supported testing.

1) Analyse test results The goal is to find starting points
for the generation of new test parameter values. This
may be achieved using different methods:
• Clustering: test results are grouped into clus-

ters. A possible starting point can then be the
center of a cluster.

• Error point: new starting points are all the
discovered error points
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2) Generate new test parameters Based on the results
of the test results analysis and the derived starting
points, new potential test parameters are generated to
form the candidate set. Various methods can be used
for that:
• Random: new values are generated randomly
• Stochastics: new values are generated based

on stochastic distributions (e.g., Gaussian dis-
tribution)

• Fixed step sizes: new values are generated
using steps with predefined step sizes from
the starting point(s)

Other methods for test parameter generation, such as
the Category-Partition Method [22] or other struc-
tured parameter generation methods could be used
as well here.

3) Learn and predict Test results from previously
executed tests are put into a neural network to derive
a decision function. This function can then be used
to automatically classify new input data into the three
classes that are relevant for our need: test passed suc-
cessfully, warning and error. New input data means
test data that has not been used for learning before.
Simply put, the trained neural network is used to
predict which of the newly generated test input com-
binations from the candidate set are highly likely to
produce an error or a warning. This information is
used in the next step to select a desired set of new
test stimuli.

4) Select test parameters based on prediction results
Usually, test parameter generation results in a very
large number of new test parameter combinations,
especially when the new individual test parameter
values are combined using the Cartesian product
to generate new test points. Since it is not always
possible to run thousands of tests, this process steps
allows reducing the final number of new test points.
In this step, some of the test points from the candidate
set are selected for the next test execution. This can
be done using different selection criteria:
• Only test points with high error probability

(according to the prediction)
• Mix of test points with high and low error

probability
• Absolute limit for number of test points

5) Execute test One by one all the newly selected test
points are used to drive one test and obtain a test
result. Ideally, this task is automated but depending
on the type of task it may also be conducted com-
pletely manually. Test execution is not in the focus
of this work but has a strong impact on the number
of tests that can be conveniently executed. A manual
test that lasts one or two hours cannot be conducted
a 1000 times with different parameters while a fully
automatic test that executes in a couple of seconds
can.

Note, that the process is iterative. In each iteration loop,
the focus of the test effort is adapted and shifted according
to the knowledge gained from the accumulated past results,
hence the name of the approach.

Past test results are not necessarily limited to tests on the
same version of or indeed the very same type of UuT. The
power interrupt test is a very general test, that is applicable to
all kinds of components. Different components with a similar
start-up routine might exhibit similar failures especially if there
are other influencing factors, e.g., in our case two different
components might be from the same supplier and therefore
use the same kind of power converters, which have a heavy
influence on the behaviour reacting to power interrupts or two
components might have the same kind of interface, e.g., a CAN
bus interface, that is implemented using the same commercial-
of-the-shelf interface controller.

Deciding if past test results from another test campaign are
suitable for the current UuT is a task left to the test engineer
but might, in the future, be supported by a classification of
different components, e.g., using an ontology database.

D. Implementation

The adaptive knowledge-supported testing approach has
been implemented in a proof-of-concept demonstrator. This
demonstrator is based on the Konstanz Information Miner
(KNIME) [23] tool, which is available under the GPL GNU
Public License, Version 3, an open source license. KNIME is a
data analytics platform for data access, transformation, mining
and visualisation. It provides a basic set of data processing
operations, called nodes, that can be combined graphically in
a so-called workflow to achieve complex information manip-
ulation processes.

The test bench and the UuT were implemented as a
single simulation, basically a lookup table that accepts a test
parameter set at a time and provides the ”test result” as a
three-valued integer output as explained before. This allowed
us to define the errors zones so that we could benchmark
the performance of the adaptive knowledge-supported testing
approach. Comma Separated Values (CSV) was chosen as the
data exchange format between KNIME and the simulated test
bench because it is natively supported by KNIME and an easily
adaptable format that can be read in a standard editor, which
eases debugging. The complete demonstrator setup is shown
by Figure 3.

Fig. 3: Adaptive knowledge-supported testing demonstrator

E. Evaluation results

Table II shows the result from the application of the
adaptive knowledge-supported testing approach to the power
interrupt test. Four iterations of 100 test sets each where
conducted. For comparison, we included a brute-force ap-
proach, which simple runs all 4000 possible test points and

4Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            13 / 96



unsurprisingly discovers all warnings and errors but also has a
high cost attached to it, i.e., the number of tests per uncovered
error or warning is significantly higher than using the adaptive
testing approach.

Method
Metric Brute-force Adaptive testing I Adaptive testing II
Tested points 4000 400 400
Warnings found 96 22 67
Errors found 6 0 2
Tests/Warnings 41,7 18,2 6
Tests/Errors 666,7 n/a 200

TABLE II: COMPARISON BETWEEN BRUTE-FORCE AND ADAPTIVE TESTING

As already discussed in Section IV-C, the process step
”Select test parameters based on prediction results” permits
different options for the selection of the new test parameter
sets from the pool of generated test parameters. To understand
these options, it is important to understand the output of the
predictor. For each test set the predictor has four different
outputs:

• 0: The predicted likelihood between 0 and 1 that this
test set will return a 0 result (test passed successfully)

• 1: The predicted likelihood between 0 and 1 that this
test set will return a 1 result (warning)

• 2: The predicted likelihood between 0 and 1 that this
test set will return a 2 result (error)

• Winner: Either 0, 1 or 2; the most likely, i.e., the
one with the highest likelihood, of the three possible
results.

We use the Winner value, as well as the 0 likelihood value
for selecting test parameters for the next iteration of testing
from the candidate set of test parameter values that were
created in the ”Generate new test parameters” process step.

As can be seen from Table II two different options of
the adaptive knowledge-supported testing approach have been
evaluated:

• Adaptive testing I: All the test parameters, for which
the predictor predicts a warning or error result (Winner
is 1 or 2) are included in the new test set. Additionally,
to fill the set up to 100 new test sets per generation it-
eration, the test points, for which the predictor predicts
a 0 test result with the lowest likelihood are included
as well.

• Adaptive testing II: All the test parameters, for which
the predictor predicts a warning or error result (Winner
is 1 or 2) are included in the new test set. Additionally,
to fill the set up to 100 new test sets per generation
iteration, a mix of 50 percent test points, for which
the predictor predicts a 0 test result with the lowest
likelihood and 50 percent random test points from the
remaining points are included.

As we can see from the results, the second run, which
includes randomly chosen test points fares better at detecting
error and warnings than the run, which focuses on the most
likely negative test results. The reason for that is that by

focusing only on likely error producing test points the chance
to uncover new error zones in the test space is increased.
Ultimately, this means that a combination of random testing
and focused testing delivers the most promising results.

Table III illustrates the iterative approach of adaptive
testing. The results show that adaptive testing is able to
exhaustively check an error zone once it is discovered. Using
the random element in the ”Select test parameters based on
prediction results” process step allows to uncover further error
zones.

Iteration
Metric 1 2 3 4 5
Tested points 100 200 300 400 500
Warnings found 2 24 42 67 70
Errors found 0 2 2 2 2
Tests/Warnings 50 8,3 7,1 6 7,1
Tests/Errors n/a 100 150 200 250

TABLE III: INCREMENTAL USAGE OF ADAPTIVE TESTING

A further evaluation was done comparing the results from
the adaptive testing to pure random testing. To establish a
mean value for the effectiveness of random testing, Monte
Carlo simulations with 10000 runs each were conducted for
different numbers of randomly (uniform distribution) selected
tested points. Table IV contains the results.

Metric Number of tested points
Tested points 100 200 300 400 1000
Warnings found (mean) 2,4 4,83 7,19 9,59 24
Errors found (mean) 0,15 0,29 0,45 0,60 1,5
Tests/Warnings 41,7 41,4 41,72 41,71 41,7
Tests/Errors 666,7 689,7 666,7 666,67 666,7

TABLE IV: RANDOM TESTING RESULTS

The first evaluation results look promising. The first it-
eration of adaptive testing corresponds to random testing as
no test results where available to optimise the test parameter
generation. After the first iteration, adaptive testing proved
to be more effective in detecting warnings and errors than
pure random testing. It should be noted, however, that a more
thorough evaluation is called for, where especially different
error distributions will be evaluated and more runs of the
adaptive testing approach need to be conducted to form a more
substantiated statement about the overall effectiveness of the
adaptive testing approach. One outcome of this work will also
be a guideline for the user which supports the selection of the
various possible options that our method has. Furthermore, it
is planned to evaluate the approach using a real unit under test
to show its usefulness in an industrial context.

V. CONCLUSION

In this paper, we present a new approach for testing models
or systems. The approach leverages knowledge captured in
previous tests in order to minimise the number of required
tests for detecting errors. Our first case study shows that this
approach is promising because of its ability to locate errors
by using a fraction of the number of tests compared to a
brute force or random testing approach. This is achieved by
a mixture of random samples, which enable discovering new

5Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            14 / 96



error zones and test points that focus on zones as soon as first
error indicators are found.

Our case study shows the first promising results. However,
the validity of the approach beyond the presented results is still
an open question. It is subject to our future work to experiment
with other classification methods, such as support vector
machines or naive Bayes classifiers, as well as, evaluating the
approach using different sets of randomly generated training
data. Moreover, we plan to automate the workflows in KNIME
in order to minimize the manual effort for setting up and
running the tests.

In addition to that, we plan to run a more thorough evalua-
tion campaign. In this we will use a larger example case with a
higher number of possible test input combinations to compare
our approach to a number of systematic testing approaches in
terms of complexity, runtime and testing efficiency.
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Abstract—Image processing systems are characterized by very
high computational demand caused by large amounts of data,
short response times, and the complexity of image processing
tasks. For these reasons, specialized hardware solutions based
on multiple processing cores, complex interconnects, or custom
hardware elements are used for image processing. Due to the
complexity of the computational tasks, the complexity of the
specialized hardware solutions is continuously increasing. There-
fore, new design techniques that reduce the risk of lacks in the
system design or of expensive design-to-implementation iterations
are desirable. Test-driven Agile Simulation (TAS) is a general-
purpose approach that combines novel model-based simulation
and testing techniques to achieve an improved overall quality for
the development process. In this paper, we present an application
and extension of the TAS approach for the efficient design process
of image processing systems.

Keywords–Test-driven agile simulation, model-based engi-
neering, UML, SysML, MARTE, UTP, image processing systems

I. INTRODUCTION

Image processing systems (IPS) play an increasingly im-
portant role in our daily life with applications for medical
diagnosis, remote sensing, or fingerprint recognition. In ge-
neral, image processing tasks have very high computational
demands. Due to continuously changing requirements, decrea-
sing times and physical restrictions, IPS are becoming more
heterogeneous resulting in the distribution and deployment of
computational tasks on different processors and programmable
logic units ([1][2]). Without the usage of effective design
tools and development techniques, the realization of a complex
heterogeneous IPS is difficult to carry out. This leads to a
decreasing quality of the development process and finally to
deficient systems.

Test-drive Agile Simulation (TAS) is an agile approach
that improves the overall quality of the development process
and reduces the design and development costs, while the
reliability of possibly complex implementations increases due
to early validation techniques. The main focus of TAS is on
constructing the models that allow to detect design errors or
inconsistencies in a system specification as early as possible
by simulating the given system and executing test cases at
the model level. In our work, we deploy the VeriTAS [3]
framework that supports the automation of consecutive steps of
the TAS approach. Thus, the simulation and testing are applied
in earlier stages of a development process which also increases
it’s agility.

To construct models, TAS provides a modeling metho-
dology [4] based on the UML (Unified Modeling Language)
and applies multiple extension profiles, such as System Mod-
eling Language (SysML) [5], Modeling and Analysis of Real-
time and Embedded systems (MARTE) [6], and UML Testing
Profile (UTP) [7]. Due to the utilization of a general-purpose

modeling language, the provided modeling methodology is
not limited to a specific application domain. However, in the
context of heterogeneous image processing systems, one has
to deal with typical image processing peculiarities and issues
like modeling of image processing pipelines or the distribution
of computational tasks on different hardware components. In
this paper, we will explain the utilization of the TAS approach
in the context of heterogeneous image systems.

II. OVERVIEW OF THE GENERAL DESIGN FLOW

The TAS approach structures the design process into the
modeling of requirements, of high-level and refined system
specifications as well as of test specifications using UML and
a set of extension profiles (see Figure 1). Starting with the
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Figure 1: General design flow of the TAS approach.

common requirements specification, our approach is deriving
system and test models in the subsequent steps independently
from each other in order to ensure their mutual validation. In
the high-level specification phase, the modeling is focused on
the functional description of a system and corresponding tests.
The functional models may be enriched in the subsequent re-
fined specification phase with finer implementation or technical
details of the functionality or of additional components for the
hardware/software co-design.

Based on the developed models, our approach sup-
ports functional verification and performance analysis using
simulation-based techniques at different abstraction levels.
Prior to the expensive implementation and testing on the
real hardware, the simulation of modeled system as well as
the simulated execution of test cases allow the validation of
the designed system with the specified tests at more abstract
levels. Defects found in system specifications during an agile
simulation step are easier to correct in the models than in the
derived source code and corresponding test scripts.
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III. OVERVIEW OF THE DESIGN FLOW FOR IMAGE
PROCESSING SYSTEMS

The general modeling methodology for TAS is based on a
combined subset of SysML, MARTE and UTP. However, the
standard UML profiles do not provide enough semantics for
the effective design process in the image processing domain.
In order to introduce the required semantics in a specific appli-
cation domain, the definition of a Domain-Specific Language
(DSL) offers a feasible solution. However, the usage of DSL
involves the additional effort to learn a new modeling language
as well as to design and to maintain domain-specific model
editors. Therefore, we are working on an UML-based library
for image processing systems modeling named Lib4IPS. The
library provides a pre-characterization of usable components
for building models in the image processing domain. Star-
ting with a detailed analysis of the IPS domain, we extract
the most important characteristics and major tasks of image
processing applications. The common procedure scheme in
such applications is called image processing pipeline and is
based on a similar workflow, namely: (1) image acquisition,
(2) image pre-processing using local operators, (3) image
processing using global operators, and finally (4) image post-
processing using complex operators. For example, local pre-
processing operators are used to perform an image filtering like
the smoothing or edge detection [8]. In addition, the operators
can be divided into groups depending on specific criteria
like linear or non-linear filtering. According to this structure
Lib4IPS performs the classification and characterization of
typical image operations by means of UML. For each operator
in the image processing pipeline, we define metrics that are
important for application design and for performance analysis
issues in the later steps of the development process. These
metrics include computation cycles, number of instructions,
and memory usage. Furthermore, the library holds specific
image processing elements, i.e.: bitmap, vector graphics, pixels
or image resolution.

Early validation and testing of system properties may have
a deep impact on the performance of the final implementa-
tion. Hence, we utilize the general design flow of the TAS
approach (see Section II) and adjust it for the IPS design and
development process. Based on the requirements, a designer
needs to devise system design at a high abstraction level,
as illustrated in Figure 2. This level is independent of any
hardware platform and application details. Its sole purpose is
to describe the systems’s functional behavior and to provide
an initial performance validation step. The refined-level system
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Figure 2: Design flow for image processing systems.

design distinguishes between the application, the hardware
architecture, and a possible mapping step. The hardware
architecture model defines platform resources and captures
resource acquisitions, performance and timing constraints. The
application model describes the functional behavior of the
image processing application in an architecture-independent
manner. The allocation relationships involve the mapping of
the application model onto the hardware architecture model,
after which the system model is able to be validated quanti-
tatively. For validation and testing purposes, we combine two
simulation frameworks - OMNeT++ [9] and SystemC [10]. The
first simulation framework facilitates the system simulation
at a high-level of abstraction with the focus on component’s
communication interfaces. The second simulation framework
enables the simulation of image processing application on
hardware components. Iterative simulation and test on the
model level supports the planning and customization of system
specification in order to achieve a desired quality. Furthermore,
the approach helps identifying architectural bottlenecks, taking
well-founded design decisions as well as finding ways for
optimization of the application’s execution efficiency.

IV. CONCLUSION AND FUTURE WORK

In this paper, we explain the application of the TAS ap-
proach for the image processing domain that assists a designer
in the development of models for the system specification and
analysis purposes. We extend the TAS approach by implemen-
ting the specific UML-based library which provides required
semantics encountered in the image processing domain. In one
of our next research steps, we are going to design a result back-
tracing strategy for our approach, that will help developers to
get simulation results directly into their designed models.
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Abstract— Assertion-Based software testing has been shown to 

be effective in detecting program faults as compared to 

traditional black-box and white-box software testing methods; 

however in the presence of large numbers of assertions this 

approach may be very expensive. As reported in the literature, 

Assertion-Based software testing executes the whole program 

based on a given input data in order to find an assertion’s 

violation. Executing the whole program for every assertion 

may be very costly especially for large programs with very 

larger number of assertions. The cost is related to search time 

required during the process of generating test input data to 

violate such large number of assertions. This paper introduces 

a testability transformation approach based on the analysis of 

control and data flow dependencies that affect the execution of 

every assertion in the program. It achieves this by eliminating 

program statements that do not lead the program flow control 

to the assertion under consideration. A small case study is 

presented, which demonstrates the value of the proposed 

approach. 

Keywords-assertion-based software testing; testability 

transformation; software testing; data dependency analysis 

I.  INTRODUCTION 

Software testing is the process of executing a program 
with the intent of detecting faults [1]. Software testing is a 
very labor intensive and tedious task. For this reason, many 
studies have been devoted to the automation software testing 
[2]-[7]. There are two main approaches to software testing: 
Black-box and White-box [1]. Test data generation is the 
process of finding program input data that satisfies a given 
criteria. Test generators that support black-box testing create 
test cases by using a set of rules and procedures; the most 
popular methods include equivalence class partitioning, 
boundary value analysis, cause-effect graphing [1]. White-
box testing is supported by coverage analyzers that assess the 
coverage of test cases with respect to executed statements, 
branches, paths, etc. Programmers usually start by testing 
software using black-box methods against a given 
specification. By their nature, black-box testing methods 
might not lead to the execution of all parts of the code. 
Therefore, this method may not uncover all faults in the 
program. To increase the possibility of uncovering program 
faults, white-box testing is then used to ensure that an 
acceptable coverage has been reached, e.g., branch coverage. 

Assertion-based software testing [9]-[10] has been shown 
to be effective in detecting program faults as compared to 
traditional black-box and white-box software testing 

methods. The main objective of assertion-based testing is to 
find a program input on which an assertion is violated. If 
such an input is found then there is a fault in the program. 
Some programming languages support assertions by default, 
e.g., Java [21] and Perl [22]. For languages without built-in 
support, assertions can be added in the form of annotated 
statements. In [9], assertions are represented as commented 
statements that are pre-processed and converted into Pascal 
code before compilation. Many types of assertions can be 
easily generated automatically such as boundary checks, 
division by zero, null pointers, variable overflow/underflow, 
etc. Therefore, programmers may be encouraged to write 
more assertions in their programs in order to enhance their 
confidence in their programs. 

As reported by Korel and Al-Yami [9], assertion-based 
software testing searches for a program input data that may 
lead to the violation of a given assertion. In order to test 
whether this input data will violate the given assertion or not, 
assertion-based testing executes the whole program based on 
based on the given input data. The process of executing the 
whole program for every assertion may be very costly in 
larger programs with possibly very large number of 
assertions. Therefore, the performance of assertion-based 
software testing may be degraded. In order to alleviate this 
problem and to enhance the performance of assertion-based 
software testing in the presence of larger number of 
assertions, the main goal of this paper is to utilize the 
advantages offered by testability transformation (TeTra) 
techniques [8] during the process of assertion-based software 
testing. 

The approach presented in this paper applies testability 
transformation techniques [8] on an original program Po with 
assertions to produce a new version Pn such that assertion-
based software testing will be more effective in testing the 
new version Pn than it would be in testing the old version Po. 
The primary contributions of this paper are: (1) It introduces 
a new testability transformation mechanism for programs 
with assertions. (2) It empowers assertion-based software 
testing approach and makes more effective in large 
commercial software with very large number of assertions. 
(3) The approach may be generally applied to programs with 
complex pre/post conditions or temporarily embedded pieces 
of code during instrumentation. 

The rest of this paper is organized as follows. A 
background of assertion-based software testing is presented 
in Section II. In Section III, related work is discussed. The 
proposed approach is presented in Section IV. A case study 
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to demonstrate the proposed approach is presented in Section 
V. Conclusions and future work is discussed in Section VI. 

II. ASSERTION-BASED SOFTWARE TESTING 

Assertions have been recognized as a powerful tool for 
automatic run-time detection of software errors during 
testing, debugging, and maintenance [9]-[14]. An assertion 
specifies a constraint that applies to some state of a 
computation. When an assertion evaluates to a false during 
program execution, there exist an incorrect state in the 
program. An approach which employs program assertions 
for the purpose of test data generation was presented in [9]. 
In that research, it was shown that assertion-based testing 
was able to uncover program faults which were uncovered 
by black-box and white-box testing. Given an assertion A, 
the goal of Assertion-Based testing is to identify program 
input for which A will be violated. The main aim of 
Assertion-Based software testing is to increase the developer 
confidence in the software under test. Therefore, Assertion-
Based software is intended to be used as an extra and 
complimentary step after all traditional testing methods have 
been performed to the software. Assertion-Based Testing 
gives the tester the chance to think deeply about the software 
under test and to locate positions in the software that are very 
important with regard to the functionality of the software. 
After locating those important locations, assertions are added 
to guard against possible errors with regard to the 
functionality performed in these locations 

An assertion may be described as a Boolean formula built 

from the logical expressions and from the (and, or, not) 

operators. There are two types of logical expressions: 

Boolean expression and relational expression. A Boolean 

expression involves Boolean variables and has the following 

form: e1 op e2, where e1 and e2 are Boolean variables or 

true/false constant, and op is one of {=, ≠}. Relational 

expressions, on the other hand, have the following form: e1 

op e2, where e1 and e2 are arithmetic expressions and op is 

one of {<, ≤, >, ≥, =, ≠}. For example, (x < y) is a relational 

expression, and (f = false) is a Boolean expression. 

The goal of assertion-based test data generation [9] is to 

identify program input on which an assertion(s) is violated. 

Assertion-based testing is based on goal-oriented testing 

[2][15],  which requires the execution of the program during 

the process of test data generation. This method reduces the 

problem of test data generation to the problem of finding 

input data to execute a target program‟s statement s. In this 

method, each assertion is eventually represented by a set of 

program‟s statements (nodes). The execution of any of these 

nodes causes the violation of this assertion.  In order to 

generate input data to execute a target statement s (node), 

this method uses the chaining approach [15]. Given a target 

program statement s, the chaining approach starts by 

executing the program for an arbitrary input. When the 

target statement s is not executed on this input, a fitness 

function [4][5][20] is associated with this statement and 

function minimization search algorithms are used to find 

automatically input to execute s. If the search process can 

not find program input to execute s, this method identifies 

program‟s statements that have to be executed prior to 

reaching the target statement s. This way, this approach 

builds a chain of goals that have to be satisfied before the 

execution to the target statement s. More details of the 

chaining approach can be found in [20]. As presented in [9], 

each assertion is written inside Pascal comment regions 

using the extended comment indicators: (*@  assertion @*) 

in order to be replaced by an actual code and inserted into 

the program during a preprocessing stage of the program 

under test. Figure 1 shows a sample program with two 

assertions A1 and A2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.  A Sample program with assertions 

Assertion-based software testing [9]-[10] is a promising 
approach in terms of finding programming bugs. However, 
this approach may be expensive in terms of search time 
required to violate each assertion imbedded in the program. 
This is because this approach is an execution-based approach 
[2], which depends on finding a program input data that may 
lead to the violation of an assertion during the program 
execution on this input data. The problem arises in big size 
programs with large number of assertions, where the process 

program example; 

var data: array[1..40] of integer;  

var x, i, MAX: integer;  
var positive: boolean; 

begin 

1  input(i, MAX, x); 
2  positive:= true; 

3  data[i]:= x; 

4  while i <= MAX do begin 
5     Input(x); 

6     i:=i+1; 

7     data[i]:= x; 

8      if (x  0) then  begin 

9          value:= data[i]; 

10        write(„Value entered: „, value); 
        end 

        else  

        begin 

11       value := data[i]; 

12       write(„Value entered: „, value); 

13        i:= i-1; 
14        positive:= false; 

        end; 

  (*@  (i 1) and (i  40)  @*)                     A1 

 

15     if ((x<0) OR (i=MAX)) AND ((i=MAX)  

                  OR (positive=false)) then 
          begin 

16         write(i, MAX, positive); 

17         if (i=MAX) OR (positive=false) then 
             begin 

 (*@ ((i=MAX) or (positive=false)) @*)     A2 

18, 19      if (i=MAX) then writeln(„Full capacity reached!‟) 
20            else writeln(„Negative value entered!‟);  

              end; 

            end; 
21        positive:= true; 

           end;   

      end. 
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of re-executing the program for each assertion may be very 
costly. In order to make assertion-based software testing [9] 
more effective and efficient in testing big programs with 
large number of assertions, we propose applying testability 
transformation [8] on programs with assertions prior to the 
process of assertion-based software testing. 

III. RELATED WORK 

Testability transformation (TeTra) is a source-to-source 
program code transformation with the objective to make the 
new programs easier to test [8]. In other words, testability 
transformation seeks to improve the process of test data 
generation and makes it more successful. Testability 
transformation approaches have been applied on many types 
of programs with encouraging results. For example, in [17], 
testability transformation improved the performance of 
Evolutionary Testing (ET) [18] for state-based programs. 
Korel et al. [19] presented a testability transformation 
mechanism that is based on data dependencies analysis. In 
this approach a transformation function is constructed for 
those program statements that need to be considered during 
test data generation. Then, the process of test data generation 
is performed on this transformation function instead of the 
original program. Although the testability approaches  
presented in [17] and [19] work well for  single program 
statements they cannot be applied directly for programs with 
assertions because assertion each assertion may be 
comprised of more than one program statements as will be 
shown later in the next section. In order for the approach 
presented by Korel et al. [19] to be applied on programs with 
assertions, we need to perform a testability transformation 
for each assertion found in the program.  

IV. THE PROPOSED APPROACH 

The main objective of this paper is to present a testability 
transformation mechanism for programs with assertions that 
may makes assertion-based testing more cost-effective and 
efficient when applied on programs with large number of 
assertions. Given an original version of a program, Po, with 
assertions, the proposed approach works as follows.  

At the first stage, this approach performs a pre-
processing scan of Po during which all assertions are 
identified. At the next stage the approach performs a 
testability transformation process for each assertion 
identified at the first stage. The results of this stage is that 
each assertions is transformed into a set of nodes (program 
statements), as will be explained later, in such a way that 
executing any of these nodes is equivalent to the violation of 
this specific assertion. Then, the proposed approach 
designates each node as a target node and formulates a 
conditional branch (p,q) and  a real valued fitness function 
associated with this branch [2] such that the execution of 
node p leads to the execution of the target node.  

At this stage the chaining approach presented by 
Ferguson and Korel [16] is employed during the process of 
assertion-based test data generation to change the program‟s 
flow of execution to lead to branch (p,q) such that target 
node is executed. Because re-executing the original program, 
Po, during the process of assertion-based test data generation 

[9] is very costly during the attempt to execute target nodes, 
in the fourth stage,  the proposed approach applies the 
testability transformation presented in [19] on each of the 
target nodes as follows. 

 For each branch (p,q) that leads to the execution of a 
target node, this testability transformation approach [19] uses 
data dependency analysis [15][20] in order to identify other 
program statements that may have influence on leading the 
program flow towards the target node. There exists a data 
dependency between two program nodes nj and nk with 
respect to a variable v if the following three conditions are 
satisfied: (1) v is assigned a valued at nj, (2) v is used at nk, 
and (3) there exists a program‟s execution path from node nj 
to node nk where variable v is not modified.  

For each of the target nodes identified in the previous 
stage, the testability transformation approach [19] constructs 
a data dependency sub-graph [19] and then based on this 
sub-graph, only selected nodes of the original program, Po, is 
included in a new code sub-routine called the transformation 
function: TransFunc() [19]. At this stage, the process of 
assertion-based test data generation is only performed on 
TransFunc() in order to find program input data to cause the 
execution of the associated target node under consideration. 
By doing so, a huge amount of time is saved during the 
assertion-based test data generation, because re-executing the 
TransFunc() is much cheaper than re-executing the whole 
original program Po in order to find input program data to 
execute each target node. Furthermore, it has been shown in 
[20] that using this method of testability transformation 
empowers the process of test data generation and makes it 
more efficient.  

In order to clarify how the proposed approach works, 
consider the following classification. Let A = {A1, A2, …, 

An} be a set of assertions found in an original version of a 

program Po.  For each assertion A  A, a set of nodes N(A) = 

{n1, n2, …, nq} where q  1, is identified during a 
preprocessing stage of the program under test, where the 

execution of any node nk  N(A), 1≤k≤q, corresponds to the 
violation of assertion A. In other words, an assertion A is 
violated if and only if there exists a program input data x for 

which at least one node nk  N(A) is executed.  For example, 
consider the following sample assertion: 

(*@ ((xy) or (xz)) and ((z99) or (Full=False)) and 

(z0) @*) 
 
The set of nodes for this assertion is: N(A) = { n1, n2, n3 } 

and the code generated is shown in Figure 2. 

 

    

 

 

 

 

 

 

 

Figure 2.  Code generated for a sample assertion A 

   IF (x  y) THEN 

        IF (x  z) THEN 

n1 Report_Violation; 

    IF (z  99) THEN  

           IF (Full  True) THEN 

n2 Report_Violation; 

   IF (z  0) THEN 

n3 Report Violation; 
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In order for an assertion A to be violated the search 
process attempts to generate a program input data x that may 
leads to the execution of at least one of n1, n2, or n3. 

 

V. CASE STUDY 

To demonstrate how our proposed approach works, 
consider assertion A1 in the sample program of Figure 1. In 
the preprocessing step, assertion A1 is transformed into the 
following code: 

 
p1 IF  i <1 THEN 

n11   write(„Assertion A1 Violation!‟); 

p2  IF  i  40 THEN  

n22    write(„Assertion A1 Violation!‟); 

 

where nodes n11 and n22 are the constituents nodes for 

assertion A1 such that the execution of either of these nodes 

causes the violation of this assertion.  Now, the objective of 

assertion-based testing is to generate program input data that 

causes the execution of at least one of these nodes [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Testability transformation code generated for assertion A1 to 

replace original program in Figure 1 

 

In order to lead the program‟s execution flow towards 

nodes n11 and n22, nodes p1 and p2 are designated by the 

proposed approach as problem nodes [19]. In order make 

the process of assertion-based test data generation more 

efficient, and to avoid re-executing the whole program, the 

proposed approach applies data dependency based 

testability transformation approach [19] on the problem 

nodes p1 and p2. For example, the testability transformation 

code generated for the purpose of generating test data to 

violate assertion A1 through the execution of node n11 is 

shown in Figure 3. Note that the code in Figure 3, only 

includes program statements that has data dependencies [19] 

with the problem node p1 with respect to variable i which is 

used at p1. Also, note that the fitness function constructed 

for the problem node p1 is placed at the return statement of 

TransFunc() [19] in Figure 3. 
By applying this method of testability transformation, 

only small part of the program code is executed during the 
process of assertion-based testing which makes assertion-
based testing more efficient and suitable for programs with 
large number of assertions. For example, only the code in 
shown in Figure 3 is executed during the process applying 
assertion-based testing on node n11 of assertion A1. 

VI. CONCLUSTIONS AND FUTURE WORK 

In this paper, we presented a novel software testability 
transformation for programs with assertions. The presented 
approach builds upon previous methods of testability 
transformations and utilizes them for the purpose of making 
assertion-based testing more efficient. The results of 
applying the proposed approach on programs with large 
number of assertions may save valuable testing resources 
during the process of software testing which enhances rapid 
development of software products. For our future research, 
we intend to perform an experimental study to evaluate the 
effectiveness of the proposed approach in various types of 
commercial software which may contain large number of 
assertions. 
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Abstract—Test Case Diversity investigations promise to reduce
the number of Test Cases to be executed whereby addressing
one of the drawbacks of automated model-based testing. Based
on the assumption that more diverse Test Cases have a higher
probability to fail, algorithms for distance analysis and search
based minimisation techniques can help to enhance the quality
of selection. This work discusses the application of Hamming
Distance and Levenshtein Distance to compute similarity scores
and outlines how Random Search and Hill Climbing can be
applied to the problem of group optimisation based on pairwise
Test Case similarity scores. The evaluation results, conducted with
a test framework for automated test derivation and execution for
IoT-based services, indicates that proposed Group Hill Climbing
algorithm can outperform Random Search and at the same time
utilising less computation time. The inclusion of the sequence-
based Levenshtein algorithm shows advantages over the utilisa-
tion of the set-based Hamming-inspired scoring methodology.

Keywords–Model-based testing; Test Case Diversity, Data Anal-
ysis, Hill Climbing, Optimisation Problem.

I. INTRODUCTION

Model-based testing offers the ability for (semi-) automated
Test Case (TC) creation and execution based on machine
interpretable software specifications. Concepts to derive TCs
out of a test model result in a lot of TCs, which can not be
executed within a reasonable time without expensive testing
costs [1]. Therefore, it is eminent to identify which TC and
which test data should be selected for execution to ensure the
best target test coverage within given time and resources. The
underlying assumption is that automated test case creation can
guarantee a wide test target coverage only by creating partly
redundant TCs. As a consequence, the process of selecting test
data and TCs, which have the highest possibility to identify
failures, is crucial for a successful appliance of model-based
testing paradigms for application testing.

The present work follows a similarity investigation ap-
proach, which tries to identify the most diverse TCs for test
execution based on a pairwise similarity between all TCs. This
approach can improve the selection of TCs, if parts of the
TCs have redundancies and the removal of these redundant
TCs have a lower impact to the fault detection rate than
randomly removing TCs. The present work tries to enhance
the understanding of the application of distance algorithm to
the problem of TC reduction whereby investigating the impact
off set and sequence-based distance algorithm. The pairwise
calculation of the distances of different TCs results in a NP-

hard problem [2] if it comes to the selection of a group of TCs
out of all TCs (set cover problem). One of the open questions
is, if specific search-techniques can enhance the performance
compared to random search with comparable computation time
effort. This can only be the case if the distance between
TCs are not normally distributed and correlations exist for
example for TC neighbours. Within this work concepts of
the identification of local optimums as introduced by Hill
Climbing are applied to the problem of group optimisation
of the TC selection.

The evaluation of the work is based on a finite state
machine, which is utilised to create TCs based on the W-
Method [3]. The results of the experiments indicate that a
proposed Group Hill Climbing algorithm perform better than
random search with 100 repetitions and on the same time
requires less computation time. Positive impact of Group Hill
Climbing is identified in case of the utilisation of Levenshtein,
which provides a higher granularity between the computed
similarity scores.

The paper is organised as follows. After the related work
presented in Section II, the investigated algorithm of distance
calculation and group optimisation based on search methodol-
ogy and their application of the TC problem are described in
Section III. Afterwards, the evaluation setup and the example
test model is presented and the test process is outlined in
Subsection IV-A. In Section IV the evaluation findings are
highlighted and the conclusion wraps up the paper in Section
V.

II. RELATED WORK

Related concepts to reduce the number of TCs exist based
on i) test execution history, ii) test purposes and iii) similarity
investigations (other approaches especially for white-box test-
ing exists cf. [4]). TC reduction based on history is one oft the
widely used techniques for regression tests [5]. The knowledge
which TCs failed in previous versions of the System Under
Test (SUT) is utilised to select the TCs that are executed
during the current test procedure. Other works extended this
approach by categorising SUTs and assuming that there is a
correlation between failures that occur at different SUT of the
same category [6]. Nevertheless, for this approach it is curial
to have a good history base. The assumption of correlation
between failures in different versions or SUTs of the same
categories has not been proven so far as been valid for all kinds
of software (with our best knowledge). One methodology to
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overcome a missing execution history is based on mutation
testing. For example, Zhang et. al. [7] combined mutation
testing with test reduction and TC selection/prioritisation. A
more straightforward technique is the reduction of the target
coverage [8]. By limiting the area of interest it is possible to
reduce the number of TCs, but the question remains, which
parts are more important than others. The MINTS tool com-
bines coverage, history and costs data for the test case selection
[9]. It models the multi-dimensional minimisation problem as
a binary Integer Linear Programming (ILP) and can utilise
different ILP solvers. The results indicate that this approach
can be as good as classical heuristic techniques. Although, the
approach is only applicable for regression testing and white-
box testing. In advance, it remains unclear how to proceed
if no optimal solution exists (e.g contradicting requirements).
Other approaches also try to use scenarios or TC weighting
mechanisms by including the knowledge of experts [10].

Recent trends in software engineering indicate that search-
based optimisation techniques are a promising candidate for
several software issues such as requirements, project planning,
testing and re-engineering optimisations [11]. Approaches for
test case selection (often called prioritisation within this con-
text) include the utilisation of greedy [12] and clustering
[13][14] algorithms for white-box testing. The results indi-
cate that cluster-based algorithm can outperform traditional
coverage-based TC selection techniques by including human
input. Different to these approaches the outlined work follows
a model-based testing approach without human interaction
within the TC selection process. One of the first researchers
who used these search-based approaches for model-based
testing was Cartaxo et. al. [15], who tried to select the less
similar TCs while maximising the state or transition coverage
of the test model with the remaining TCs. Hemmati et. al
[16] extended this approach by utilising several similarity
functions and minimisation algorithm and applied them to two
larger SUTs. The findings indicate that the choice of technique
significantly influences the performance. Although, it remains
open if the results can be transferred to other SUT and if there
is a general setup which is always the best. While the previous
results from Cartaxo and Hemmati focus on maximisation of
the fault detection rate with the minimum number of TCs, the
outlined work focus on validating the average group similarity
of the selected TCs. Different to previous approaches the
present work focuses on a more precise interpretation of the
methodology and tries to make the results better repeatable
and comparable to enable a generalisation of results.

III. ALGORITHMS

For the followed TC diversity approach it is necessary to
identify the similarity between TCs. Therefore, the starting
influence factor is, which information is included into the com-
parison. Findings from [16] indicate that the best performance
can be achieved by including all information present in the
test model. To access the distance between two objects in a
multidimensional feature space, set-based similarity scoring
mechanism can be used. In our case, a TC is not only a
group of objects (e.g., states, transitions, input, output), it is
also a sequence which could have a different order of these
objects compared to other TCs. Therefore, also sequence-
based distance algorithm can improve the test case selection.
The result of the similarity computation is a similarity matrix

which contains the pairwise similarity between all TCs. In the
last step, the target number of TCs is selected based on the
similarity matrix. It is the goal to find the group of TCs which
have the lowest average similarity between the TCs of the
selected group. Note, that this is a NP-hard problem [2] and
the optimum can therefore not be found in polynomial time. In
our example, discussed in Section IV-A, with a total number of
n = 132 TCs the maximum number of combination possibilities
is reached with a group size of k = 66 (

(
n
k

)
≈ 3, 8 · 1038 with

n=132 and k=66).
The presented work evaluates the performance of one set-

based and a sequence-based similarity scoring computation
together with a baseline random-search and Group Hill Climb-
ing. The algorithms are outlined within this section, including
pseudo code to ensure that the realisation approach can be
validated and compared to other approaches.

A. Similarity Score Computation
As a baseline, a Hamming-inspired algorithm is realised

according to the work discussed in [16]. The Hamming Dis-
tance is an edit-based distance algorithm, which is widely used
in the literature. It defines the minimum required operations to
transform one string to another with editing operations (delete,
insert, substitute) for strings with the same length [17].

Input: allowedSymbols
foreach testCase do

foreach allowedSymbol do
if testCase contains allowedSymbol then

occurrenceBit = 1
else

occurrenceBit = 0
end
Add occurrenceBit to bitOcurrenceStream

end
end
foreach bitOcurrenceSteam do

simStream = pairwise XOR of bitOcurrenceStream
similarity = simStream / length of bitOccurenceStream

end

Figure 1. Hamming-based Similarity Scoring Algorithm.

The pseudo code shown in Figure 1, shows the basic steps
for this approach. In all discussed similarity scoring mecha-
nism, the algorithm starts with the identification of the allowed
symbols. Dependent on the encoding, this could include input,
output symbols, states, guards etc. For the sake of simplicity,
all experiments are conducted with allowed symbols for input,
output and states. Guards have not been taken into account (cf.
Section IV-A which describes the example service). Although,
if the algorithm extension would use also guards, it would
not change the algorithm but would result in a larger symbol
space, which consequences in lower similarities between all
TCs. For each TC, the occurrence of the individual allowed
symbols is identified. Each occurrence is documented with a
occurenceBit = 1 and 0 if it is not present. Afterwards this
occurenceBit is added to a bitOccurenceStream. For each TC
the bitOccurenceStream is pair- and bitwise XOR compared
to each bitOccurenceStream from all other TCs. The resulting
XOR distance is then used to count the bits that are 1 and
divide them by the length of the bitOccurenceStream. The
result is stored as the pairwise similarity score. The classical
Hamming Distance algorithm is limited to strings with the
same length. Since TCs does not necessarily have the same
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length, the classical algorithm has been altered as proposed by
[11]. As a consequence the implemented Hamming inspired
algorithm can handle strings with different length but is only
set-based and does not take the occurrence order of the
symbols into account.

Input: SymbolsOfEachCase
foreach pair of testCases do

foreach symbolNum of FirstTestCase do
m[symbolNum, 0] = symbolNum

end
foreach symbolNum of SecondTestCase do

m[0, symbolNum] = symbolNum
end
foreach symbol of FirstTestCase do

foreach symbol of SecondTestCase do
if symbolFirst == symbolSecond then

m[symbolFirst, symbolSec] = m[symbolFirst -1 , symbol-
Sec -1]

else
m[symbolFirst, symbolSec] = Min (
m[symbolFirst -1 , symbolSec] + 1,
m[symbolFirst, symbolSec -1] + 1,
m[symbolFirst -1 , symbolSec -1] + 1 )

end
end

end
similarity = 1 - m[numOfSymbolsFirst, numOfSymbolsSec] /maxNum-
Symbols;

end

Figure 2. Levensthein-based Similarity Scoring based on Wagner-Fischer
Algorithm [18].

The realisation of the Levenshtein similarity computation is
shown in Figure 2. Levenshtein is also an edit-based distance
algorithm and is not limited to strings with the same length
[17]. Each edit operation (delete, etc.) results in an increasing
distance between the compared strings. The Levenshtein algo-
rithm is initiated by the identification of the symbols, which are
part of the current pair of TCs. A matrix is created where the
first row and column contain an increasing sequence from one
to the quantity of symbols with an increment of one. Based
on the basic operations of add, del, modify the sequence of
symbols of the FirstTestCase is compared to the sequence of
symbols of the SecondTestCase. It is identified how many
operation steps are required to alter the FirstTestCase and
reach the second one. The algorithm is based on the Wagner-
Fischer algorithm [18] and it always prefers matches over
insertions or deletions even if they provide a better score. The
last computed matrix element contain the distance between the
two TCs. For comparison reason this distance is then converted
to a similarity score and normalised to the maxNumSymbols.
Different to the realisation of Hematie et. al where only
matches have been counted, this algorithm is able to identify
the distance between two TCs as intended by the Levenshtein
algorithm.

B. TC Selection
As the baseline, the random selection of a group of TCs has

been implemented. As outlined in Figure 3 it starts with the
input of the Similarity Scores matrix, all TCs, the target number
of TCs and the number of trials (numTrials). The output of
the algorithm is the list of selected TCs for the execution. For
each trial, the target number of TCs is selected out of all TCs.
Afterwards, the summary similarity between all selected TCs
is computed based on the pairwise similarity scores. For each

iteration, the computed summary similarity is compared to the
lowest previous summary similarity. After the defined number
of trials the group of TCs with the lowest summary similarity
is selected for the test execution. While this approach finds the
best group of TCs if the number of trials is infinity it is the
question if other search algorithms exist, which can outperform
this simple random methodology by identifying a better group
of TCs within the same amount of resources (e.g., computation
time).

Input: Similarity Scores
Input: Test Cases (TCs)
Input: Trial Numbers (numTrials)
Input: n /* Target number Test Cases */
Output: selTCs /* List of Selected TCs */
for trialNum = 0 to numTrials do

tmpSelTCs /* list of selected TCs */
tmpSelTCs = randomly select n test cases out of all
foreach Selected Test Cases do

rowSim /* Current Row Similarity */
rowSim = sum similarity of tmpSelTCs
sumSim = sumSim + rowSim

end
lastSumSimilarity = 0
if sumSim >= lastSumSimilarity then

selTCs /* list of selected TCs */
selTCs = tmpSelTCs
lastSumSimilarity = sumSim

end
end

Figure 3. Random Search Test Case Group Selection.

One promising candidate is Hill Climbing, which is based
on the identification of local optimums. Instead of searching
for the best possible solution out of all groups of TCs, it can
help to find good but not necessarily the best group of TCs
(local optimum). Hill Climbing searches for local optimums
by looking at neighbour elements. A neighbour is an element
which is structural close. From a start point, the algorithm
tries to find a better solution by exchanging one element
with a neighbour. The algorithm stops if no better neighbour
is found (local optimum reached). Hill Climbing approaches
differs how the starting point is chosen, how neighbours are
defined and how many elements can be reached with one move
operation (numbers of direct neighbours) [16].

The following application of a Group Hill Climbing is
shown in Figure 4. The first step is equal to the Random Search
algorithm with a number of trials of one. Then, for each TC
within this group it is investigated if a neighbour TC exists,
which lowers the summary similarity between all TCs of the
selected group (sumSim < lastSumSimilarity). The order of the
created TCs thereby defines which TCs are neighbours. There-
fore, the methodology how the TCs are created is expected to
have influences on the performance of the identification of
neighbours. The experiments are only conducted with the W-
method and further investigations could quantify the influences
of different test case creation methodologies. To reduce the
computation effort only the variable part of the summary
similarity is computed. The variable part of this summary is
the pairwise similarity score between the selected group of
TCs (without the current TC) to the neighbours of the current
TCs (rowSim). The neighbour search is stopped as soon as
there is a neighbour with worse characteristics than the last
one. Therefore, the computation effort is not deterministic and
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depends on the initial set of TCs and the characteristics of the
neighbours (e.g., if the next optimum is nearby).

Input: Similarity Scores
Input: Test Cases (TCs)
Input: n /* Target number Test Cases */
selTCs /* list of selected test cases */
selTCs = randomly select n test cases out of all
foreach Selected TC do

rowSim /* Current Row Similarity */
rowSim = sum similarity of selTCs
tmpSelTCs /* temp. list of sel. TCs */
tmpSelTCs = selTCs - currentTestCase
rTC /* Right TC of Current TC */
rTC = currentTestCaseNumber + 1
lTC /* Left TC of Current TC */
lTC = currentTestCaseNumber - 1
rRowSim /* Row Similarity with rTC */
rRowSim = sum Similarity of rTC to tmpSelTCs
lRowSim /* Row Similarity with lTC */
lRowSim = sum similarity of lTC to tmpSelTCs
if rowSim > rRowSim < leftRowSimiarity then

laRowSim /* Last Row Similarity */
laRowSim = rRowSim
while rowSim > laRowSim do

laRowSim = rowSim
rTC = rTC + 1
rowSim = sum similarity of rTC to selTCs

end
tmpSelTCs = selTCs + (rTC - 1)

else if rowSim > lRowSim < rRowSim then
search left in the same way as befor for the right sight

else
tmpSelTCs = selTCs + currentTestCase

end

Figure 4. Hill Climbing Test Case Group Selection.

IV. EVALUATION RESULTS

The different methodologies to compute the similarity
between the TCs as well as the minimisation algorithm results
in several experimentation setups where the different aspects
are evaluated individually. The next Subsection will briefly
explain the overall test approach and introduces an example
finite state machine, which is conducted for the experiment.
Afterwards, the different experiments are explained and the
results are discussed.

A. Setup
The TC selection concept of the present work is included

in a test automation framework for IoT-based services. The
framework is capable to create and execute IoT-domain specific
TCs. Nevertheless, the presented test derivation concept is not
limited to that and will be discussed here on a generalised
level. The test creation process can be described as follows:
the framework explained in detail in [19] derives a test model
out of semantic descriptions of the SUT. Subsequently, the test
model is represented by an extended finite state machine. This
test model is utilised to derive TCs based on the W-method.
Afterwards, the TCs are translated with a template engine into
the TTCN-3 language which afterwards can be compiled and
executed with the TTworkbench [20].

An example of a state machine with 5 states, 10 transitions,
2 input messages and 2 output messages is implemented
and as a result the W-method creates 132 TCs with full
state and transition coverage. The example state machine is
depicted in Figure 5. It shows a behaviour of a reactive

start q1initial

a/0

q4b/1

b/1

q3a/1

q2

a/0

q5
b/0

a/1b/1

end
endTrans

b/1

a/0

Figure 5. Example Finite State Machine.

system, which will be utilised to evaluate the performance of
the similarity scoring and minimisation methodologies within
this paper. As an example the input symbols are [a,b] and
output symbols are [0,1]. In order to be executable in our
test framework, also transitions for the initialisation (e.g.,
starting of the SUT) and an end transition exists but does
not affect the experiments. The outlined experiments, shown
during the next subsection, start after the derivation of the
TCs. For each setup, the experiment has been repeated 10,000
times to ensure convincing results. For each combination, of
similarity score computation and minimisation algorithm, the
experiment is repeated with different target number of TCs
from 130 to 5 TCs. Due to computation time the experiments
are conducted with a step range of 10 between 130 and 10
target TCs. Although, the results follow a continuous curve and
it is not expected to have a divergent behaviour between these
values. Each experiment is shown with boxplots to visualise
the distribution of the 10,000 repetitions of the experiment.
In addition, the median average similarity score is shown
in comparison to the other combinations of the algorithms.
The time measurements indicate the implemented computation
effort, although it does not replace theoretical analysis of the
algorithm complexity. The boxplot whiskers show the lowest
datum still within 1.5 Inter-Quartile Range (IQR) of the lower
quartile and the highest datum still within 1.5 IQR of the upper
quartile. Outliers are indicated with a circle.

B. Random Search and Group Hill Climbing with Hamming
Similarity Scoring

Figure 6 shows the boxplots of the average similarity
between the selected TCs as a function of the number of
selected TCs (target TC number). The experiment is conducted
with N=1, where N is the number of trials and with the
Hamming Distance inspired scoring methodology. As a general
characteristic, the median average similarity decreases while
the number of selected TCs also decreases. The diversity of
the results increases with the decreasing number of selected
TCs due to larger influences of individual TCs, which can
result in either small or large average similarity scores. The
influence of the number of trials is shown in Figure 7, where
the number of trials is N=100. Compared to N=1 the diversity
is much lower and reduces the median average similarity up
to 0.067 with the number of selected TCs equals five.

Figure 8 shows the measurements conducted with the
Group Hill Climbing algorithm. While the Group Hill Climb-
ing can outperform random search with N=100 during 120
and 30 TCs, it shows limitations for numbers of selected TCs
lower than 20. One reason is that the number of possible
groups decreases for groups smaller than 66 (for this example)
and thus helps the random search approach. As shown in
Figure 9 Group Hill Climbing reduces the median average
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Figure 6. Boxplot of the Average Similarity Between the Selected TCs with
Hamming Distance Inspired Scoring and Random Search with N=1.
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Figure 7. Boxplot of the Average Similarity Between the Selected TCs with
Hamming Distance Inspired Scoring and Random Search with N=100.

similarity compared to Random Search with N=100 up to
0.02 (3,4%) with 70 selected TCs and up to 0,056 (6,6%)
compared with Random Search with N=1. One explanation
why the outperform is maximised with 60 and 70 TCs selected,
is that the number of possible groups is maximised with a
group size of 66 (

(
n
k

)
≈ 3, 8 · 1038 with n=132 and k=66) and

therefore random search is very limited. At the same time there
are direct neighbours that have not been selected in the initial
group and therefore group hill climbing can benefit from the
correlation between closely TC neighbours. The computation
effort of the implementation is shown in Figure 10. It indicates
that Random Search with N=100 requires more computation
time than Group Hill Climbing. The Group Hill Climbing
computation time decreases with the number of selected TCs
since only neighbours for each selected TC are identified. The
Group Hill Climbing could be improved further (in terms of
computation time), if the Group Hill Climbing tries to find
either the group of TC which are not selected (by finding the
maximised average similarity) or discover the group of TC
which are selected (discover the minimum average similarity).
The algorithm can always be applied to the smaller of these
two groups and this would optimise the execution time. With
this approach it can be assumed that the curve is mirror-
symmetric to the right side of 66 selected TCs. Note, that
the shown performance is dependent on the derived TCs and
further investigations are required to verify this behaviour on
different SUTs and different numbers of initial TCs.
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Figure 8. Boxplot of the Average Similarity Between the Selected TCs with
Hamming Distance Inspired Scoring and Group Hill Climbing with N=100.
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Figure 9. Average Median Similarity Between the Selected TCs with
Hamming Distance Inspired Scoring and Group Hill Climbing Compared

with Random Search.
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Figure 10. Median Execution Time as a Function of the Number of Selected
TCs with Hamming Distance Inspired Scoring and Group Hill Climbing and

Random Search.

C. Random Search and Group Hill Climbing with Levenshtein
Scoring

As presented before the experiments have been repeated
with the Levenshtein similarity scoring discussed in Section
III-A. Figure 11 shows the random search with N=1 where
N is the number of trials. The results can be compared to
the results with Hamming-based Similarity Scoring. While
the average similarity with 130 TCs starts with 0,55 instead
of 0,76 (due to different normalisations), the trend with a
decreasing number of TCs remains the same. The median
average similarity decreases, while the diversity increases.

18Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4
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Figure 11. Boxplot of the Average Similarity Between the Selected TCs with
Levenshtein Scoring and Random Search with N=1.
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Figure 12. Boxplot of the Average Similarity Between the Selected TCs with
Levenshtein Scoring and Random Search with N=100.

Also the enhancement of number of trials, shown in Fig-
ure 12 is comparable to the results with Hamming-based
scoring. Figure 13 shows the average similarity score as the
function of the number of TCs with Levenshtein Similarity
Scoring. While the median average similarity decreases with
a decreasing number of selected TCs, it exposes also the
drawback of Group Hill Climbing, since the diversity of the
average similarity score increases. It is much more likely to
compute values that are worse than randomly generated with
numbers of selected TCs from 20 to 5. As shown in Figure
14 Group Hill Climbing outperforms Random Search (max
0,03 (6%) for N=100 and 0,06 (10,9%) for N=1 for 70 TCs)
between 30 and 120 TCs, while using less computation time
(Figure 15). Although, the performance gain of Group Hill
Climbing is higher with Levenshtein Similarity Scoring, the
median execution time is higher compared with Hamming-
based Similarity Scoring since the scoring mechanism requires
more computation time. Therefore, future work will include the
evaluation if Random-search with Hamming-based Scoring,
with comparable computation time (more than 100 trials),
can outperform the Group Hill Climbing performance with
Levenshtein Similarity Scoring.

V. CONCLUSION

TC reduction based on diversity investigation is a promis-
ing approach to enable scalable model-based test automation.
To enhance the understanding how distance and search-based
minimisation algorithm can be correctly applied to select a
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Figure 13. Boxplot of the Average Similarity Between the Selected TCs with
Levenshtein Scoring and Group Hill Climbing.
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Figure 14. Average Median Similarity Between the Selected TCs with
Levenshtein Inspired Scoring and Group Hill Climbing Compared with

Random Search.
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Figure 15. Median Execution Time as a Function of the Number of Selected
TCs with Levenshtein and Group Hill Climbing and Random Search.

group of TCs, Hamming-based Similarity Scoring and Leven-
shtein Similarity Scoring are evaluated together with random
search and a proposed Group Hill Climbing algorithm. Based
on an example finite state machine, experiments are conducted.
The results indicate, that the best performance can be achieved
with Group Hill Climbing and Levenshtein Similarity Scoring
and on the same time it consumes less computation time
compared to Random Search with 100 trials. Future work
will include additional search- and similarity computation
algorithms, which will be evaluated with different SUTs in
order to generalise the results.
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Abstract—Combinatory explosion is a limit which can be en-
countered when a state space exploration is driven on large
specification modeled with Petri nets. Technics like unfolding have
been proposed to cope with this problem. This paper presents an
axiomatic model to reduce unfoldings to canonic forms which
preserves conflicts.

Keywords–Petri Nets; Unfolding; Branching process; Algebra.

I. INTRODUCTION

Petri nets are a widely used tool used to model critical
real-time systems. The formal verification of properties is
then based on the computation of state space [1]. But, this
computation faces generally, for highly concurrent and large
systems, to combinatory explosion. A major cause is the
semantics of interleaving. Partial order semantics [2] have been
introduced to shunt those interleavings. This work, initiated in
[3], go further with the introduction of the conflict equivalence.
An operator which is an abstraction of sequence and true
parallelism simplifies the representation of processes, only
conflicts are preserved. This approach can be used to speed up
the identification of the branching processes of an unfolding.
The notion of equivalence can be used to make a new type of
reduction of unfoldings.

Finite prefixes of net unfoldings constitute a first trans-
formation of the initial Petri Net (PN), where cycles have
been flattened. This computation produces a process set where
conflicts act as a discriminating factor. A conflict partitions
a process in branching processes. An unfolding can be trans-
formed into a set of finite branching processes. Theses pro-
cesses constitute a set of acyclic graphs - several graphs
can be produced when the PN contains parallelism - built
with events and conditions, and structured with two operators:
causality and true parallelism. An interesting particularity of
an unfolding is that in spite of the loss of the concept of
global marking, these processes contain enough information to
reconstitute the reachable markings of the original Petri nets. In
most of the cases, unfoldings are larger than the original Petri
net. This is provoked essentially when values of precondition
places exceed the precondition of non simple conflicts. This
produces a lot of alternative conditions. In spite of that, a
step has been taken forward: cycles have been broken and
the conflicts have structured the nets in branching processes.

A lot of works have been proposed to improve unfolding
algorithms [2][4][5][6]. Is there another way to draw on recent
works about unfolding? In spite of the eventual increase of
the size of the net unfoldings, the suppression of conflicts
and loops has decreased its structural complexity, allowing to

compute the state space and to the extract of semantics.

From a developer’s point of view an unfolding can be
efficiently coded by a boolean table of events. This table
describes every pair to pair relation between events. This table
has been the starting point of our reflection: it stresses the
point that a new connector can be defined to express that a set
of events belong to the same process. This connector allows to
aggregate all the events of a branching process. For example,
a theorem is proposed to compute all the branching processes,
in canonic form, for chains of conflicts of the kind illustrated
in Figure 1.

e1 e2 ep-1 ep

b0 b1 bp-1 bp

e3

Fig 1. Chain of conflicts.

The work presented in this paper takes place in the context
of combining process algebra [7][8] and Petri nets [9]. The
axiomatic model of Milner’s process with Calculus of Com-
municating Systems (CCS) is compared with the branching
processes and related to other works in Section II. Then, after
a brief presentation of Petri nets and unfoldings in Section
III, Section IV presents our contribution with the definition
of an axiomatic framework and the description of properties.
The last section presents examples, in particular, illustrating a
conflict equivalence.

II. RELATED WORKS

Process algebra appeared with Milner [8] on the Calculus
of Communicating Systems (CCS) and the Communicating
Sequential Processes (CSP) of Hoare [7] in not equivalent
but similar approaches. The algebra of branching process we
propose in this paper is inspired by the process algebra of
Milner. CCS is based on two central ideas: The notion of
observability and the concept of synchronized communication;
CCS is as an abstract code that corresponds to a real program
whose primitives are reduced to simple send and receive on
channels. The terms (or agents) are called processes with
interaction capabilities that match requests communication
channels. The elements of the alphabet are observable events
and concurrent systems (processes) can be specified with the
use of three operators: sequence, choice, and parallelism. A
main axiom of CCS is the rejection of distributivity of the
sequence upon the choice. Let p and q be two processes, the
complete process of syntax is:
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Capacity α := x̄ | x | τ

Proces p ::= α.p | p||q | p+q | D(x̃) | p\x | 0

a b

c

a b

c
a

Fig 2. Milner: rejection of distributivity of sequence on choice.

Consider an observer. In the first automaton of the Figure
2, after the occurrence of the action a, he can observe either b
or c. In the second automaton, the observation of a does not
imply that b and c stay observable. The behavior of the two
automata are not equivalent.

In CCS, Milner defines the observational equivalence. Two
automata are observational equivalent if there are bisimular.
On a algebraic point of view, the distributivity of the sequence
on the choice is rejected in the equation (1):

a.(b+ c) 6≡behaviorally a.b+a.c (1)

The key point of our approach is based on the fact that this
distributivity is not rejected in occurrence nets. The timing
of the choices in a process is essential [10]. The nodes of
occurrence nets are events. An event is a fired transition of the
underlying Petri net. In CCS, an observer observes possible
futures. In occurrence nets, the observer observes arborescent
past. This controversy in the theory of concurrency is an
important topic of linear time versus branching time. In our
model the equation (2) holds:

a≺ (b⊥ c)≡ (a≺ b)⊥ (a≺ c) (2)

The equation (2) is a basic axiom of our algebraic model.
The equivalence relation differs then from bisimulation equiv-
alence. This relation will be defined in the following with the
definition of the canonic form of an unfolding.

Branching process does not fit with process algebra on
numerous other aspects. For example, a difference can be
noticed about parallelism. While unfolding keeps true paral-
lelism, process algebra considers a parallelism of interleaving.
Another difference is relative to events and conditions which
are nodes of different nature in an unfolding. Conditions and
events differ in term of ancestor. Every condition is produced
by at most one event ancestor (none for the condition standing
for m0, the initial marking), whereas every event may have
1 or n condition ancestor(s). In CCS, there is no distinction
between conditions and events. Moreover, conditions will be
consumed defining processes as set of events.

However, a lot of works [6][10][11] have shown the interest
of an algebraic formalization: it allows the study of con-
nectives, the compositionally and facilitates reasoning (tools
like [12]). Let have two Petri nets; it is questionable whether
they are equivalent. In principle, they are equivalent if they
are executed strictly in the same manner. This is obviously
a too restrictive view they may have the same capabilities
of interaction without having the same internal implementa-
tions. These work resulted to find matches (rather flexible
and not strict) between nets. Mention may be made among
other the occurrence net equivalence [13], the bisimulation

equivalence [14], the partial order equivalence [15], or the
ST-bisimulation equivalence [16]. These different equivalences
are based either on the isomorphism between the unfolding
of nets or on observable actions or traces of the execution
of Petri nets or other criteria. This approach in this paper is
weaker than a trace equivalence; it does not preserves traces
but preserves conflicts. The originality of this approach is
to encapsulate causality and concurrency in a new operator
which “aggregates” and “abstract” events in a process. This
new operator reduces the representation and accelerates the
reduction process. This paper intends first, to give an algebraic
model to an unfolding, and second, to establish a canonic form
leading to the definition of an equivalence conflict.

III. UNFOLDING A PETRI NET

A. Petri Net

A Petri net [9] N =< P,T,W > is a triple with: P, a finite
set of places, T , the finite set of transitions, P∪T are nodes
of the net; (P∩T = /0), and W : (P×T ) ∪ (T ×P) −→ N ,
the flow relation defining arcs (and their valuations) between
nodes of N .

The pre-set (resp. post-set) of a node x is denoted •x = {y∈
P∪T |W (y,x) > 0} (resp. x• = {y ∈ P∪T |W (x,y) > 0}). A
marking of a Petri net N is a mapping m : P −→ N . A tran-
sition t ∈ T is said enabled by m iff: ∀p∈ •t, m(p)≥W (p, t).
This is denoted: m t→ Firing of t leads to the new marking
m′ (m t→ m′): ∀p ∈ P, m′(p) = m(p)−W (p, t)+W (t, p). The
initial marking is denoted m0.

A Petri net is k-bounded iff ∀m, reachable from m0,m(p)≤
k (with p∈ P). It is said safe when 1-bounded. Two transitions
are in a structural conflict when they share at least one pre-set
place; a conflict is effective when these transitions are both
enabled by a same marking. The considered Petri nets in this
paper are k-bounded.

B. Unfolding

In [4], the notion of branching process is defined as an
initial part of a run of a Petri net respecting its partial order
semantics and possibly including non deterministic choices
(conflicts). This net is acyclic and the largest branching process
of an initially marked Petri net is called the unfolding of this
net. Resulting net from an unfolding is a labeled occurrence
net, a Petri net whose places are called conditions (labeled
with their corresponding place name in the original net) and
transitions are called events (labeled with their corresponding
transition name in the original net).

An occurrence net [17] O =< B,E ,F > is a 1-valued arcs
Petri net, with B the set of conditions, E the set of events,
and F the flow relation (1-valued arcs), such that: |•b| ≤ 1 (
∀b∈B), •e 6= /0 (∀e∈ E ), and F+ (the transitive closure of F )
is a strict order relation. This net O is a set of acyclic graphs.
Min(O) = {b | b ∈B, |•b|= 0} is the minimal conditions set:
the set of conditions with no ancestor can be mapped with the
initial marking of the underlying Petri net. Also, Max(O) =
{x | x ∈B∪E , |x•|= 0} are maximal nodes.

Three kinds of relations could be defined between the nodes
of O:

• The strict causality relation noted ≺: ∀x,y ∈ B ∪
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E , x≺ y if (x,y) ∈F+

• The conflict relation noted #: ∀b ∈B, if e1,e2 ∈ b•
(e1 6= e2), then e1 and e2 are in conflict relation,
denoted e1 # e2 (in Figure 3.b e4#e5 ).

• The concurrency relation noted o: ∀x,y ∈B∪E (x 6=
y), x o y ssi ¬((x ≺ y)∨ (y ≺ x)∨ (x ] y)). (in Figure
3.b e2 o e3).

Remark 3.1: The transitive aspect of F+ implies a tran-
sitive definition of strict causality.

A set B⊆B of conditions such as ∀b,b′ ∈ B,b 6= b′⇒ b ob′ is
a cut. Let B be a cut with ∀b ∈ B,@b′ ∈B\B, b ob′, B is the
maximal cut.

Definition 3.2: The unfolding Un fF
def=< OF ,λF > of a

marked net < N ,m0 >, with OF
def=< BF ,EF ,FF > an occur-

rence net and λF : BF ∪EF → P∪T (such as λ (BF)⊆P
and λ (EF)⊆T ) a labeling function, is given by:

1) ∀p ∈P , if m0(p) 6= /0, then Bp
def= {b ∈BF | λF(b) =

p∧ •b = /0} and m0(p) = |Bp|;
2) ∀Bt ⊆BF such as Bt is a cut, if ∃t ∈ T ,λF(Bt) =

•t ∧|Bt |= |•t|, then:
a) ∃!e ∈ EF such as •e = Bt ∧λF(e) = t;
b) if t• 6= /0, then B′t

def= {b ∈BF | •b = {e}} is
as λF(B′t) = t•∧|B′t |= |t•|;

c) if t• = /0, then B′t
def= {b ∈BF | •b = {e}} is

as λF(B′t) = /0∧|B′t |= 1;
3) ∀Bt ⊆BF , if Bt is not a cut , then @e ∈ EF such as

•e = Bt .

The definition 3.2 represents an exhaustive unfolding algo-
rithm of < N ,m0 >. In 1., the algorithm for the building of the
unfolding starts with the creation of conditions corresponding
to the initial marking of < N ,m0 > and in 2., news events
are added one at a time together with their output conditions
(taking into account sink transitions). In 3., the algorithm
requires that any event is a possible action: there are no adding
nodes to those created in item 1 and 2. The algorithm does
not necessary terminate; it terminates if and only if the net
< N ,m0 > does not have any infinite sequence. The sink
transitions (ie t ∈T , t• = /0) are taken into account in 2.(c).

Let be E ⊂ EF . The occurrence net O
def=< B,E ,F >

associated with E such as B
def= {b ∈BF | ∃e ∈ E ,b ∈ •e∪e•}

and F
def= {(x,y) ∈FF | x ∈ E ∨ y ∈ E } is a prefix of OF if

Min(O) = Min(OF). By extension, Un f def=< O,λ > (with λ ,
the restriction of λF to B∪E ) is a prefix of unfolding Un fF .

It should be noted that, according to the implementation,
the names (the elements in the sets E and B) given to
nodes in the same unfolding can be different. A name can be
independently chosen in an implementation using a tree formed
by its causal predecessors and the name of the corresponding
nodes in N [4].

Definition 3.3: A causal net C is an occurrence net C
def=<

B,E ,F > such as:

1) ∀e ∈ E : e• 6= /0 ∧ •e 6= /0;
2) ∀b ∈B : |b•| ≤ 1 ∧ |•b| ≤ 1.

Definition 3.4: Pi = (Ci,λF) is a process of < N ,m0 >

iff: Ci
def=< Bi,Ei,Fi > is a causal net and λ : Bi∪Ei → P∪T

p3 p4

t3 t4

t1 t2

p1 p2

p5

(p3) (p4)

(t3) (t4)

(t1) (t2)

(p1) (p2)

(p4)

(t2)

(p2)

(p3)

(t1)

(p1)
(p5) (p5)

(t4)

b
1

b
2

b
3

b
4

b
5 b

6

b
9

b
8

b
7

b
10

e
1

e
2

e
3

e
6

e
5

e
4

e
7

a)

b)

Fig 3. a) Petri net, b) Unfolding.

is a labeling fonction such as:

1) Bi ⊆BF and Ei ⊆ EF
2) λF(Bi)⊆ P and λF(Ei)⊆ T ;
3) λF(•e) =• λF(e) and λF(e•) = λF(e)•
4) ∀ei ∈ Ei, ∀p ∈ P : W (p,λF(e)) = |λ−1(p) ∩•

e| ∧ W (λF(e), p) = |λ−1(p)∩ e•|
5) If p ∈Min(P)⇒∃b ∈Bi : •b = /0 ∧ λF(b) = p

Max(Ci) is the state of N . Min(Ci) and Max(Ci) are
maximum cuts. Generally, any maximal cut B ⊆ Bi corre-
sponds to a reachable marking m of < N ,m0 > such as
∀p ∈P,m(p) = |Bp| avec Bp = {b ∈ B | λ (b) = p}.

The local configuration of an event e is defined by: [e] def=
{e′ | e′ ≺ e}∪{e} and is a process. For example of unfolding
in Figure 3.b: [e4]

def= {e1,e3,e4}.
The conflits in a unfolding derive from the fact that there

is an reachable marking (a cut in an unfolding) such as two or
many transitions of a labelled net < N ,m0 > are enabled
and the firing of one transition disable other. Whence the
proposition:

Proposition 3.5: Let be e1,e2 ∈ EF . If e1 ⊥ e2, then there
∃(e′1,e′2)∈ [e1]× [e2] such as •e′1∩ •e′2 6= /0 et •e′1∪ •e′2 is a cut.

IV. BRANCHING PROCESS ALGEBRA

The previous section showed how unfolding exhibits causal
nets and conflicts. Otherwise, every couple of events which
are not bounded by a causal relation or the same conflict set
are in concurrency. Then, an unfolding allows to build a 2D-
table making explicit every binary relations between events.
Practically, this table establishes the relations of causality and
exclusion. If a binary relation is not explicit in the table, it
means that the couple of events are in a concurrency relation.

Let E B = E ∪B a finite alphabet, composed of the events
and the conditions generated by the unfolding. The event table
(produced by the unfolding) defines for every couple in E B
either a causality relation C , either a concurrency relation I
or an exclusive relation X . These sets of binary relations dot
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not intersect and the following expressions can be deduced:

Un f /X = C ∪I (3)
Un f /C = X ∪I (4)
Un f /I = C ∪X (5)

To illustrate these relation sets, the negation operator noted
¬ can be introduced. Then, the equations (3),(4),(5) leads to
(6),(7),(8):

¬((e1,e2) ∈I ) ⇔ (e1,e2) ∈ C ∪X (6)
¬((e1,e2) ∈ C ) ⇔ (e1,e2) ∈I ∪X (7)
¬((e1,e2) ∈X ) ⇔ (e1,e2) ∈ C ∪I (8)

The equation (8) expresses that if two events are not in conflict
they are in the same branching process. Let us now define the
union of binary relations C and I : P = C ∪ I For
every couple (e1,e2) ∈P , either (e1,e2) are in causality or in
concurrency: P is the union of every branching process of an
unfolding.

a) Example: Let us consider an unfolding (left part)
on the Figure 4 and the table T (right part) which is its
representation: In Figure 4, the table T contains 7 causal

e0

e2

e3 e4

e5 e6

e1

Table : 

T(e0, e2)=#t
T(e1, e3)=#t
T(e1, e4)=#t
T(e3, e5)=#t
T(e4, e6)=#t
T(e1, e5)=#t
T(e1, e6)=#t 

T(e3, e4)=#f
T(e3, e6)=#f
T(e4, e5)=#f
T(e5, e6)=#f

Causalities Conflicts

Fig 4. Unfolding.

relations and 4 conflict relations. (e0,e4) is not (negation) in
the table, expresses that e0 and e4 are concurrent. Moreover,
if two events are not in conflict (consider e0 and e6): (e0,e6)
is not a key of the table, (e0,e6) are in concurrency and thus,
those events belongs to the same branching process.

A. Definition of the Algebra

The starting point of this work is based on the fact that
the logical negation operator articulates the relation between
two sets: the process set P , and the exclusion set X . As
mentioned in Section IV, C , I and , P does not intersect,
then semantically, if a couple of events is not in a relation of
exclusion (noted ⊥), the events are in P . P contains binary
relations between events that are in branching process.

To express that events are in the same branching process,
a new operator noted ⊕ is introduced. An algebra describing
branching process can be defined as follow:

{U ,≺ , o , ⊥ ,⊕, ¬}

Let us note; ∗=⊕,≺, or ⊥, #t the void process, and # f
the false process. Here is the formal signature of the language:

• ∀e ∈ E B,e ∈U ,#t ∈U ,# f ∈U

• ∀e ∈U ,¬e ∈U

• ∀(e1,e2) ∈U 2,e1 ∗ e2 ∈U

Properties, neutral/absorbing elements, distributivities and
semi-distributivities have been defined in [3]. However, let us
now just recall the definitions (equations (9),(10),(11),(12)):

1) Causality: C is the set of all the causalities between
every elements of E B. e1≺ e2 if e1 is in the local configuration
of e2:

e1 ≺ e2 if e1 ∈ [e2] (9)

2) Exclusion: X is the set of all the exclusion relations
between every elements of E B. Two events are in exclusion
iff they are either in direct conflict, either it exists a conflict
at any level with an ancestor:

e1 ⊥ e2 ≡ ((•e1∩•e2 6= /0) or (∃ei,ei ≺ e2 and e1 ⊥ ei)) (10)

3) Concurrency: I is the set of every couple of element
of E B in concurrency. e1 and e2 are in concurrency if the
occurrence of one is independent of the occurrence of the
other. So, e1 o e2 iff e1 and e2 are neither in causality neither
in exclusion.

e1 o e2 ≡ ¬((e1 ⊥ e2) or (e1 ≺ e2) or (e2 ≺ e1)) (11)

4) Process: ⊕ aggregates events in one process. Two events
e1 and e2 are in the same process if e1 causes e2 or if e1 is
concurrent with e2:

e1⊕ e2 ≡ (e1 ≺ e2) or (e2 ≺ e1) or (e1 o e2) (12)

This operator constitutes an abstraction which hides in a black
box causalities and concurrency. The meaning of this operator
is similar to the linear connector ⊕ of MILL [18]. It allows to
aggregates resources. But, in the context of unfolding, events
or conditions are unique and then they cannot be counted.
Thus, this operator is here idempotent.

The expression e1⊕ e2 defines that e1 and e2 are in the
same process.

Note that (⊕ e1 e2 ... en−1 en) will abbreviate (e1⊕ e2⊕
e3⊕ ...en−1⊕ en)

B. Axioms

The following axioms stem directly from previous assump-
tions and definitions made upon the algebraic model:

Axiom 4.1 (Distributivity of ≺):

e≺ (e1 ⊥ e2)≡de f (e≺ e1)⊥ (e≺ e2)

The first axiom constitutes the basis of our approach. As
discussed in the Section II, on the contrary of CCS, e is
distributed onto two expressions, giving alternative process.

Axiom 4.2 (Definition of ⊕):

e1⊕ e2 ≡de f (e1 ≺ e2)⊥ (e2 ≺ e1)⊥ (e1 o e2)

⊕ aggregates two elements in a process. Two elements are in
a process if they are concurrent or in a causality relation.

Axiom 4.3 (≺):

e1 ≺ e2 ≡de f ¬e1 ⊥ (e1⊕ e2)

A causality can be expressed by two processes in exclusion:
either ¬e1: e1 has not occurred either e1⊕e2: e1 and e2 within
the same process.

Axiom 4.4 (Duality between ⊕ and ⊥):

e1⊕ e2 ≡de f e1¬⊥e2 e1¬⊕e2 ≡de f e1 ⊥ e2
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This axiom comes from the introduction of the operator ¬
discussed in the beginning of the Section IV. It expresses that
P and X are complementary sets.

Axiom 4.5 (Exclusion):

e1 ⊥ e2 ≡de f (¬e1⊕ e2)⊥ (e1⊕¬e2)

The fifth axiom expresses that a conflict can be considered as
two processes in conflict

Axiom 4.6 (Distributivities):

• ≺,⊥,⊕ are distributive over o.
• ≺,⊕, o are distributive over ⊥ (axiom 4.3).

• ⊥, o are distributive over ⊥ and ⊕.

The distributivities over ⊥ are used in the transformation of
an expression in the canonic form. The other distributivities
will be used in the reduction process.

C. Canonic Form

1) Definition: The definition of the canonic form allows to
define an equivalence called a “conflict equivalence”.

Definition 4.1: A canonic process is a formula expressed
on elements of E B and with the operators ⊕, ⊥ ordered by
an alphanumeric sort on the name of its symbol.

Theorem 4.2 (Canonical form): Let us consider an unfold-
ing U , this form can be reduced in the following form:

U = (⊥ P1 P2 ... Pn) where Pi = (⊕ ei1 ... ein)

This form is canonic and exhibits every processes Pi of the
unfolding.

Proof: In an unfolding every causality (≺) and every
partial order (o) can be reduced in ⊕ by deduction rules Modus
Ponens (MP,MP1,MP2), Simplification rule (S) and Par (see
Section IV-C2). Moreover, ⊕ and ⊥ are mutually distributive,
so ⊥ can be factorized in every sub-formula to reach the higher
level of the formula. In fine, an alphanumeric sort on symbols
of the processes can be applied to assure the unicity of the
form.

This canonic form preserves conflicts, let us now define a
conflict equivalence:

Definition 4.3 (Conflict Equivalence): Let us U1,U2 un-
foldings of Petri nets:

U1 ≈con f U2 iff they have the same canonic form.

Remark 4.4: A process is an aggregate set of events where
≺ and o are hidden. This equivalence is lower than a trace
equivalence: each process Pi is an abstraction of a set of traces.

2) Derivation Rules: This section gives a set of rules
which transform branching processes toward a canonical form.
Theses transformations preserve conflicts whereas ≺ and o are
transformed in ⊕.

Let us note b a condition, e an event and E a well formed
formula on the algebra. Theses rules allow to reduct process:

1) Modus Ponens:

` ⊕ b... ` ⊕ b...≺ e
` e

MP1
` e ` e≺⊕ b...
` ⊕ e b...

MP2

Where ⊕b... stands for the general form for
⊕b1b2... bn. MP1 expresses that b... are consumed
by the causality, whereas, in MP2 e stays in the
conclusion.

2) Dual form:
` ¬e1 ` e1 ≺ e2

` ¬e1⊕¬e2
MP′

3) Simplification:
` ¬e1⊕E
` E

S1
` ⊕b... E
` E

S2

Those rules are applied, in fine, to clear not pertinent
informations in the process. S1 rule is applied, to
clear the negations whereas S2 is applied to clear the
conditions which have not been consumed.

4) Reduction of o:
` e1 o e2

` e1⊕ e2
Par

This rule corresponds to the definition of ⊕
These rules have been defined to lead to a canonic
form.

D. Theorems

The properties of operators (definition, axioms and distribu-
tivites) allow to define theorems which are congruences w.r.t
the operators of Section IV-A (proofs have been already stated
in [3]).

Theorem 4.5 (Conflict):

e1 ≺ (e2 ⊥ e3)≡ (e1 ≺ (e2⊕¬e3))⊥ (e1 ≺ (¬e2⊕ e3))

This theorem expresses how to develop a conflict and the
following theorem allows to reduce processes:

Theorem 4.6 (Absorption): Let E,F some processes: E ⊥
(E⊕F)≡ E⊕F

1) Chain of conflicts: This section presents a theorem
which computes the branching process in canonic form of a
chain of conflict illustrated in Figure 5.

e1 e2 ep-1 ep

b0 b1 bp-1 bp

e3

Fig 5. Chain of conflicts.

The axiomatic representation of the unfolding is:

U = ((⊕ b0 b1 ... (b0 ≺ (e1 ⊥ e2))(b1 ≺ (e2 ⊥ e3))...)

After some steps of reduction (MP+S):

U = (e1 ⊥ e2 ⊥ ...⊥ ep)

Let us now consider the following conventions: Let us note:

• l1 = (e1,e2, ...en), l2 = (e2, ...en)

• li the ith element of a list l.

• If ei is an element of the list l, let us note indice(ei)
the position of ei in l.
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Remark 4.7: In the list of event constituting a chain of
conflict (l = (e1,e2, ...en)), for every event ei, the next (resp.
previous) event in the same branching process is ei+2 or ei+3
(resp. ei−2 or ei−3)

The next definition defines two processes Un and Vn which are
aggregation of events where the possible successor of an event
ei is either l(indice(ei)+2) either l(indice(ei)+3).

Definition 4.8: Let us consider that n <= p (p: index of
the last event implied in the chain of conflict):

U0 = e1
U1

n = l1
n+2⊕U2

n+2
U2

n = l1
n+3⊕U2

n+3
Un = U1

n ⊕U2
n

Un: processes beginning by e1


V0 = e2
V 1

n = l2
n+2⊕V 2

n+2
V 2

n = l2
n+3⊕V 2

n+3
Vn = V 1

n ⊕V 2
n

Vn: processes beginning by e2

Theorem 4.9: The canonic form of a chain of conflict C is
Un⊕Vn:

(e1 ⊥ e2 ⊥ ...⊥ ep)≡Un⊕Vn

V. EXAMPLES

A. Example 1

The Figure 6 gives a Petri net which represents a chain
of conflicts and its unfolding. The unfolding gives a table of

e1 e2 e3 e4 e5

b2 b3 b4

t1

P1

t2

P2

t3

P3

t4

P4

t5

b1

Fig 6. PN and unfolding of a chain of conflicts.

binary relations on events (see Section IV) which is represented
by the following algebraic expression U2:

U1 = (⊕ b1 b2 b3 b4 b5 (b1 ≺ (e1 ⊥ e2)) (b2 ≺ (e2 ⊥ e3)) ...)

After some steps of reduction (MP+S), U1 becomes:

(e1 ⊥ e2 ⊥ e3 ⊥ e4 ⊥ e5) (13)

The theorem (T 4.9) allows to compute from (13) its following
canonic form:

(⊥ (⊕ e1 e3 e5)(⊕ e1 e4 )(⊕ e2 e4)(⊕ e2 e5))

B. Example 2
Let us consider the following Unfolding of the Figure 7.

The table computed which leads to the following algebraic

e1(t1) e2(t2) e3(t3)

b12

b0

e4(t4) e5(t5)

b2b1 b3

e3(t3) e4(t4) e5(t5)

b4

e4(t4) e5(t5)

b3 b4

e1(t1) e5(t5)

b7

e1(t1) e2(t2)

b8 b10b9 b11

e3(t3) e2(t2) e1(t1)

Fig 7. U2.

expression U2:

U2 = (⊕ b12 (b12 ≺ (e1 ⊥ e2 ⊥ e3 ⊥ e4 ⊥ e5))
(e1 ≺ (⊕ b0 b1 b2 b3))(e2 ≺ b4)(e3 ≺ (⊕b5 b6))(e4 ≺ b7)
(e5 ≺ (⊕b8 b9 b10 b11))((⊕ b0 b1)≺ e3) ((⊕ b1 b2)≺ e4)
((⊕ b2 b3)≺ e5) (b4 ≺ (⊥ e4 e5))(b5 ≺ e1) (b6 ≺ e5)
(b7 ≺ (⊥ e1 e2)) ((⊕ b8 b9)≺ e3) ((⊕ b9 b10)≺ e2)
((⊕ b10 b11)≺ e1)) (14)

Let us note P the aggregation of the five first lines of the
equation. (14) becomes:

U2 = (⊕ b12 (b12 ≺ (⊥ e1 e2 e3 e4 e5)) P (15)

Rules MP1, MP2 and theorem 1, reduce (15) in:

U2 = (⊥ (⊕ e1 P) (⊕ e2 P) (⊕ e3 P) (⊕ e4 P) (⊕ e5 P) )

Distributivity of perp:

U2 = (⊕ (⊥ (⊕ e1 b0 b1 b2 b3)(⊕ e2 b4)(⊕ e3 b5 b6) (⊕ e4 b7)
(⊕ e5 b8 b9 b10 b11)) ((⊕ b0 b1)≺ e3) ((⊕ b1 b2)≺ e4)
((⊕ b2 b3)≺ e5) (b4 ≺ (⊥ e4 e5))(b5 ≺ e1) (b6 ≺ e5)
(b7 ≺ (⊥ e1 e2))((⊕ b8 b9)≺ e3) ((⊕ b9 b10)≺ e2)
((⊕ b10 b11)≺ e1))

Distributivity of ⊥ and MP1:

U2 = (⊥ (⊕ e1 e3 e5 b1 b2)(⊕ e1 e4 b0 b3)(⊕ e2 e4)(⊕ e2 e5)
(⊕ e3 e1)(⊕ e3 e5)(⊕ e4 e1)(⊕ e4 e2)(⊕ e5 e1 e3 b9 b10)
(⊕ e5 e2 b8 b11))

Theorem 2 (absorption of (⊕ e3 e1) and (⊕ e3 e5) in
(⊕ e1 e3 e5 b1 b2), idempotency of ⊥:

U2 = (⊥ (⊕ e1 e3 e5 b1 b2)(⊕ e1 e4 b0 b3)(⊕ e2 e4)(⊕ e2 e5)
(⊕ e4 e1)(⊕ e5 e1 e3 b9 b10)(⊕ e5 e2 b8 b11))

Rules of simplification S1 and S2 and theorem 2:

U2 = (⊥ (⊕ e1 e3 e5)(⊕ e1 e4)(⊕ e2 e4)(⊕ e2 e5))

The two unfoldings of example 1 and 2 have the same
canonic form, they are conflict-equivalent: U1 ≈con f U2

1) Reasoning about processes: Let us consider all the
process p of U2 : (⊕ e1 e3 e5),(⊕ e1 e4), ...

• ∀p ∈U2 whenever e3 is present, e1 is present.

• ∀p ∈U2,¬e3 ⊥ (e1⊕ e3⊕ e5)
This is the algebraic definition of ≺. Finally from
this chain of conflicts, the following causality can be
deduced:

e3 ≺ (e1⊕ e5) (16)

• A similar reasoning can be made:

∀p ∈U2,¬(e1⊕ e5)⊥ (e1⊕ e3⊕ e5)

This is the algebraic definition of:

(e1⊕ e5)≺ e3 (17)

(16) and (17) expresses that there is a strong link
between e3 and the process (e1 ⊕ e5) but ≺ is no
well suited to encompass this relation. Theses two
processes are like “intricated”.

26Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            35 / 96



• In the same manner:
¬e2 ⊥ (e2⊕ e4)⊥ (e2⊕ e5) ≡dist ¬e2 ⊥ (e2⊕ (e4 ⊥ e5))

≡de f e2 ≺ (e4 ⊥ e5) (18)

e2 leads to a conflict

¬e1 ⊥ ((⊕e1e3e5)⊥ (e1⊕ e4) ≡dist ¬e1 ⊥ (e1⊕ ((e3⊕ e5)⊥ e4))

≡de f e1 ≺ ((e3 ⊕ e5)⊥ e4) (19)

Equations (18) and (19) show that e1 and e2 transform the
chain of conflict in a unique conflict. New relations between
events or processes can be introduced:

• Alliance relation: e1,e3 and e5 are in “an alliance
relation”. Every event of this set is enforced by the
occurrence of the other events: e1⊕ e3 enforces e5,
e1⊕ e5 enforces e3 and e3⊕ e5 enforces e1.

• Intrication: the occurrence of e3 forces e1 ⊕ e5 and
reciprocally e1⊕ e5 forces e3.

• Resolving conflicts (liberation):
◦ e1 resolves 3 conflicts on 4 (as e2, e4 and e5)
◦ e3 resolves every conflicts.

Semantically, e3 can be identified as an important event in
the chain. Moreover (⊕e1 e3 e5) is a process aggregated with
“associated events”. This chain of conflict can be seen as two
causalities in conflicts: (e1 ≺ (e4 ⊥ (e3⊕e5))) ⊥ (e2 ≺ (e4 ⊥ e5))

1

WaitCustomerAction

AnalyzeCode

WaitEnterCode

ReadyToGetCash

WaitConsult WaitGetCash

ReadyToConsult

Consult

GetConsult

GetCash

EnterCode

Getcash

OKcode

BadCode

Fig 8. Cash dispenser.

2) Example 3 (Cash dispenser): Let us consider the cash
dispenser of the Figure 8, its unfolding in canonical form is:

U3 = (⊥ (⊕ Consult EnterCode OKcode GetConsult)
(⊕ Consult EnterCode OKcode Getcash)
(⊕ Consult EnterCode BadCode)
(⊕ GetCash EnterCode OKcode Getcash)
(⊕ GetCash EnterCode OKcode GetConsult)
(⊕ GetCash EnterCode BadCode))

This expression enlightens that GetCash and BadCode are
neither in the same process.

VI. CONCLUSION AND FUTURE WORK

This work is a first attempt to present an axiomatic frame-
work to the analyze of the processes issued of an unfolding.
From a set of axioms, distributivities and derivation rules,
theorems have been established and a reduction process can
lead to a canonic form The unfolding process, definitions,
theorems and reduction rules have been coded in LISP[19]

with a package named PLT/Redex[3][12]. This canonic form
assets an equivalence conflicts (≡con f ) between unfoldings and
then Petri nets.

Several perspectives are into progress. First, news theorems
have to be established allowing to speed up the procedure
of canonic reduction and to extend extraction of knowledge
on relationship between events. Different kinds of relationship
between events have to be defined and formalized: Alliance
relation, Intrication, etc. Moreover, as already outlined in the
last part of the example section, algebraic reasoning can raise
semantic informations about events from the canonic form.
Another perspective is to extend this approach to Petri nets
with inhibitor and drain arcs.
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Abstract—Automated test derivation is expected to be one of the

key drivers of a rapid creation of robust Internet of Things

(IoT) applications. The paper describes a two-step approach

how concepts for semantically described IoT services can be

used to derive functional test cases to test services in a sandbox

environment. In the first step, the description of the service is

used to generate a state based model of the service behaviour

and its interfaces. Therefore, a methodology to enrich service

descriptions for (semi-) automated test derivation and the re-

quired IoT specific adaptations are discussed in detail. These

descriptions are used to generate customised test data and to

achieve full parameter combination coverage. In the second step,

the generated extended finite state machine model is analysed to

create test cases in a standardised testing notation. Utilising this

two-step automation approach enables test developers to evaluate

and influence resulting test cases. The implementation proves that

the envisaged extension can amplify the usefulness of web services

descriptions for the test derivation for IoT services by reducing

the effort to create and execute test cases.

Keywords–IoT; Model Based Testing; Test Derivation; Semantic

Annotation; RESTful; TTCN-3; WADL.

I. INTRODUCTION

Distributed IoT services are becoming increasingly com-
plex since the usage of sensors and actuators with atomic
functionalities brings along a high variety of heterogeneous
interfaces [1]. Therefore, it is crucial to employ functional
tests to evaluate faultless service interaction. Manual test
creation causes a high effort in analysing interfaces and service
behaviour to find suitable test cases. This effort can be reduced
by employing model-based test approaches [2]. This work il-
lustrates how a two-step model-driven testing approach, which
utilises explicit information representation at different abstrac-
tion levels, can be used to create test cases for semantically
described Representational State Transfer based (RESTful)
IoT services whilst regarding their stateful behaviour. A fully
automated model based testing approach needs very extensive
Input, Output, Precondition and Effect (IOPE) descriptions [3]
and deprives the control of the test developer to evaluate tests
dependent on the services usage. Therefore, this work tries
to lower the effort for the service description by enabling a
use case-based sequence description approach. Furthermore,
it aims at reducing the effort for manually enhancing service
descriptions compared to a full manual test case creation.

The remainder of the paper is structured as follows: After
the discussion of the current state of the art in Section II,
the overall project concept and implemented architecture is
outlined in Section III. Detailed descriptions of the utilised
annotation methods are shown in Section IV. Section V depicts
an IoT example service, which is used in Section VI to discuss
the test derivation process and its model transformation. The
conclusion and outlook section completes the paper.

II. RELATED WORK

In recent years, a lot of research efforts have been invested
in providing efficient ways to automate the process of testing
software. Different strategies have been developed in gener-
ating test cases and providing them with adequate test data.
Basically, three approaches can be identified. First, finding
suspicious code through code analysis [4]. This approach
requires access to the source code of the System Under
Test (SUT) and is able to find unreachable code and other
violations to coding rules. The second approach tries to find
implementation faults by exploiting public interfaces with a
large number of randomly generated data [5]. This fuzzing
approach can find security relevant implementation errors (e.g.,
buffer overflow) but on the other hand it produces a very large
number of test cases of rather poor quality. The employment of
Equivalence Class Partitioning (ECP) can reduce the amount of
test data and test cases by defining valid and invalid arguments
for the interface invocation [6]. By employing more precise
semantic service descriptions, the approach proposed in this
work tries to overcome solely random generations by taking
reusable parameter range definitions into account.

The third group of approaches uses abstract behaviour
models of the application to generate meaningful test cases.
These test models are created manually, generated from source
code or derived from other models through model transforma-
tion [7]. Walkinshow et al. [8] trace the execution of software
to infer a test model. Different modelling languages including
state charts, Petri nets, message sequence charts or Finite State
Machine (FSM) can be used [9]. While executing a test case an
execution engine iterates through the elements of the model,
e.g., a transition in a FSM, to trigger the SUT and validate
its output. Since the efficiency of the test case highly depends
on the test data, a lot of research has be done in the field of
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test data generation. The challenge is to find boundaries of the
valid input space. Tracey et al. [10] exploit search techniques to
automate the generation of test data. Evolutionary algorithms,
namely Genetic Algorithm (GA) are used to derive test data
from an initial data pool in [11] to have a fully automated test
data creation. Here, a new generation has close relations to the
generation before, thus focusing on relevant test data. Fischer
et al. [12] propose the use of a GA to enhance the quality
of automatically generated test data. IoT-based services are
often based on energy restricted (e.g., battery driven) sensors
and actuators that have a limited number of usage cycles. This
IoT limitation hinders GA usage in testing due to the high
amounts of test cases, which are used to optimise the test data.
To overcome this limitation the proposed approach realises
the optimisation of test data and test cases by using service
descriptions before the service is tested.

In recent years several works investigated model based
testing approaches for services. Ramollari et al. [3] create
functional conformance tests by utilising IOPE sets without
detailed interface descriptions. A semantic parameter confor-
mance validation can be found in [13] missing the abstraction
of detailed interface parameters and following a stateless ap-
proach. The commercial available solution [14] enables func-
tional test creation based on web service interface descriptions.
The approach of Schanes et al. [15] concentrates on Extensible
Markup Language (XML) as generic data format for test
execution. They both do not consider stateful service behaviour
of reactive systems by modelling conjunctions between various
methods of the service.

III. CONCEPT AND ARCHITECTURE

The presented concepts are part of the IoT.est [16] project,
which aims at developing an IoT service creation environment
whilst bridging the gap between various business services
and the heterogeneity of networked sensors, actuators and
objects. The approach employs semantic service descriptions
to compose IoT services and derive corresponding functional
conformance tests, semi-automatically. After the manual anno-
tation of a service the service model is generated automatically.
It can be altered manually before the automated generation of
test cases begins. A consistent service concept is specified to
enable this process.

A. IoT.est Service Concept

IoT.est utilises RESTful interfaces to encapsulate IoT ser-
vices for enhanced re-usability. It defines two types of services
to ensure direct consumption and composition of IoT services
without dealing with heterogeneous interfaces:

The Atomic Service (AS) is a RESTful web service,
accessing 0 � n IoT resources via their own individual in-
terfaces and radio technologies. It enables access to these
resources via standardised Get, Post, Put, Delete re-
quest methods, whose invocation is defined in a Web Appli-
cation Description Language (WADL) document [17]. Input
parameters as well as service responses are extensively se-
mantically described in the Knowledge Management (KM).
The implemented AS can be deployed to a Runtime (RT) for
web services and is registered in the KM.

The Composite Service (CS) enables a business process-
based composition of various AS and CS. It also provides a
RESTful interface for service invocation and does not directly

connect to IoT resources using their proprietary interfaces. It
only uses AS and CS interfaces to acquire sensor information
and to control actuators. The interfaces are also described in
WADL and a semantic description is used to enable re-usability
for composition and testing.

B. Architecture

The IoT.est project architecture specifies a Test Design
Engine (TDE), which enables the generation of test data
and derivation of test cases and flows for IoT services (see
Figure 1). The derivation is driven by processing service
descriptions and utilising domain knowledge. IoT.est uses a
KM to store descriptions of IoT services. These services
can be deployed and composed via a Service Composition
Environment (SCE) in distributed RT environments of the
framework. To support testing by the Test Execution Engine
(TEE) prior to runtime deployment we employ a Sandbox
Runtime (SRT) instance of the RT. The SRT supports em-
ulation of IoT resources [18] to enable IoT service testing
without communicating with resource constrained IoT sensors
or altering IoT actuators during test execution.

Service  Composition 
Environment (SCE)

Runtime (RT)

Sandbox Runtime
(SRT)

Knowledge
 Management (KM)

Test Design 
Engine (TDE)

Test Execution 
Engine (TEE)

System Under 
Test (SUT)

Use Knowledge 
for Composition

Get Service 
Description

Place Derived 
Tests

Trigger Test 
Execution

Execute 
Tests on SUT

Trigger Test
 Derivation

Figure 1. Simplified IoT.est Architecture.

To obtain a comprehensible test generation, the TDE
utilises an explicit information representation approach, which
can also be used to evaluate and alter the model and tests,
which are automatically derived. During the first step the ser-
vice model, which is generated from the semantic description,
is represented as an Eclipse Modeling Framework (EMF)-
model. It is editable with the Graphical Modeling Framework
(GMF). During the second step, test cases are created in the
ETSI standardised Testing and Test Control Notation Version 3
(TTCN-3) to obtain a readable and reusable representation.

IV. SERVICE INTERFACE DESCRIPTION

In this section, the different types of service descriptions
are described. These descriptions are used in Section VI
to build the EMF state machine model. The client–server
communication of RESTful services is constrained by no client
context being stored on the server between requests [19],
although services can follow a stateful behaviour. Since the
interfaces are implemented stateless there is a missing support
of behavioural descriptions in established description notations
like WADL. To enhance testability the proposed approach
extensively describes service interfaces and also the service
behaviour to get information for valid and invalid interface
calls with test parameters depending on parameter values and
current service states. The information is used to enable an
ECP-based model generation.
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A. Precise Parameter Descriptions

The service model creation utilises service descriptions
to find valid and invalid equivalence classes, which are used
to model state-based transitions. The equivalence classes are
processed by a boundary value analysis and random value
generators to derive the test cases. Conventional service de-
scriptions, based on WADL, describe resource parameters
as implementation-specific technical parameters using well
known data types like string and double (shown in
Figure 2). This leads to a very simple equivalence class model,
which accepts the whole data type as valid input although the
application specific usage of the parameter can be restricted to
a small range.

1 <resource path="/zoom/{id}/{value}">
2 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="

id"
3 style="template" type="xs:string" />
4 <param name="value" style="template" type="xs:double" />
5 <method id="setZoom" name="POST" />
6 </resource>

Figure 2. Basic WADL Parameter Descriptions.

The following paragraphs show examples of information,
which is used to precisely define service parameters.

1) Simple Value Range Limitation: A fundamental ap-
proach of the enhanced service descriptions is to define the
precise value ranges of parameters to gain an abstracted model
of method parameters. This model is not only based on a
technical data type that is used to transfer the information. It
also specifies the defined value ranges processed by the service
logic (e.g., a valve position between �25.0 and 15.5). A simple
limitation of this parameter value in an XML-Schema is shown
in Figure 3. Numeric data types can be restricted by value
ranges and an enumeration of allowed values. Character data
types can be restricted by the number of allowed characters,
the length, an enumeration or a regular expression which
could e.g., define an email-pattern. The mapping between
a parameter of a method or resource in the WADL file is
performed by namespaces, which do not require any extension
of the existing WADL definition.

1 <?xml version="1.0"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3 <xs:element name="valve">
4 <xs:simpleType>
5 <xs:restriction base="xs:double">
6 <xs:minInclusive value="-25.0"/>
7 <xs:maxInclusive value="15.5"/>
8 </xs:restriction>
9 </xs:simpleType>

10 </xs:element>

Figure 3. Simple XML parameter restrictions.

The given example describes one valid (vP ) and two
invalid equivalence classes (iP ). Since division by zero and
switching between negative and positive values are typical
code weaknesses, we divide the valid class into two using
�0,+0 for boundary value analysis (see Figure 4). This
methodology results in 4 disjoint classes: iP1, vP1, vP2, iP2

−30 −20 −10 0 10 20

iP1 vP1 vP2 iP2

Figure 4. Equivalence Class Partitioning Example.

The definition of valid partitions is not only limited to a
single value range it can describe various valid and invalid par-
titions for one parameter (see XML-Schema restrictions [20]).
It also supports complex definitions of strings not only by
enumerations but also with regular expressions. This way, e.g.,
an email address can be described as parameter input. The
definition of regular expressions is then reused for the test
data generation.

2) Semantic Parameter Description: The test data genera-
tion uses semantic annotations that can be linked to upper level
ontologies like SUMO [21] for reusable test case derivation.
Reusable parameter limitations can, e.g., restrict the range of
a Celsius temperature and the possible temperature units or
define e.g., sets of countries.

Semantic Parameter Interdependency: The description
of service parameters has to take into account that they have
interdependent connections to each other. Ontology documents
take this into account by describing individuals using classes,
relations and attributes. The value range of a parameter
Cityname for example depends on the Countryname param-
eter since for example the city Bologna exists in Italy but
not in Germany. The description of linking interdependent
parameters on the predicate geographicSubregion is shown
in Figure 5. The owlType definition is declared for each
semantic parameter and linked to a class definition within the
ontology by the requestLink tag (Figure 5:3,6). The restriction

tag describes the predicate on which the interdependency is
defined (Figure 5:7). Figure 6 shows the generated SPARQL
Protocol and RDF Query Language (SPARQL) code that is
used to find the matching entities in the ontology.

1 <owlTypeDefinition>
2 <owlType name="Countryname" type="base">
3 <requestLink uri="http://www.onto.org/SUMO.owl#Nation"/>
4 </owlType>
5 <owlType name="Cityname" type="restricted">
6 <requestLink uri="http://www.onto.org/SUMO.owl#City"/>
7 <restriction uri="http://www.onto.org/SUMO.owl#

geographicSubregion" value="{Countryname}"/>
8 </owlType>
9 </owlTypeDefinition>

Figure 5. Semantic Parameter Interdependency.

1 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 prefix sumo: <http://www.ontologyportal.org/SUMO.owl#>
3 select ?city where {
4 ?city rdf:type sumo:City .
5 ?city sumo:geographicSubregion sumo:Germany .
6 }

Figure 6. SPARQL-Query.

B. Geospatial Testdata Derivation

Since IoT-based sevices often cover specific areas, a
geospatial description of services is very useful to determine
functional conformance. A common description approach for
geospatial areas is to describe a bounding box (rectangle)
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defining the min. and max. latitude and longitude values that
cover an area. This often leads to a very imprecise area
description. A better way is to specify the precise geospatial
coverage by defining a polygon(concatenation of a list of
coordinates, surrounding an area), which defines the covered
area. Since for a complex polygon like a city boundary it’s a
very long description it is not feasible that everybody annotates
a precise polygon for every supported area. Therefore, we
use an external knowledge base (OpenStreetMap (OSM) [22])
that can access those polygons just by annotating it with the
city/country name. The following shows an example of the
three annotation methods. You can see the resulting areas in
Figure 7.

• Bounding Box (BB):
longitude min:11.2295654 max:11.4336305,
latitude min:44.4211136 max:44.5566394

• Polygon (544 coordinates): (11.366030, 44.449526

11.363828, 44.450242 11.362467, 44.450953 11.362356,

44.451083 11.360538, 44.44932 . . . )

• Country name and city name lookup in spatial data
infrastructure (OSM): Italy, Bologna

Figure 7 shows the created equivalence partitions of the
bounding box (Figure 7(a)) and the polygon (Figure 7(b)). The
precision improvement of the polygon is shown in Figure 8(a)
since after comparison it shows that the bounding box de-
scribes a false positive valid equivalence class (see Equation 1):

vP
BB2 v iP

Poly1 (1)

(a) Equivalence Classes by
BB

(b) Equivalence Classes by
Polygon

Figure 7. Equivalence Partitioning of the Bologna Area.

(a) Comparing the Equivalence Classes

stratified ( 102 )
+proj=utm +zone=32 +ellps=WGS84

(b) Random Generated Test Data

Figure 8. Utilising OSM for ECP.

Figure 8(b) shows the test data generation creating 102
coordinates for randomly testing the service in the covered
area. Using boundary value analysis on the buffered polygon
it is also possible to test the service behaviour at the defined
border with valid and invalid values.

C. Service Behaviour Description

By featuring clearly defined interface and parameter de-
scriptions, documents such as WADL enable easy technical
integration of RESTful services. The lack of standardised state-
ful service descriptions is the main challenge for the process of
stateful testing. Therefore, a simple and easy to use description
format has been developed which can be used to define typical
use cases for the IoT service. In addition to the existing WADL
document, this description format facilitates the definition of a
sequence of resource and method executions including loops
and concurrent calls. The XML-based sequence description
document refers to method calls in the WADL document to
gain compatibility. Figure 9 illustrates the main structure of a
sequence description document.

1 <sequencespecification xmlns:ws1="application.wadl">
2 <vars><var name="cameraPan" type="double"/></vars>
3 <paramsets><paramset id="cameraPan">
4 <param name="id">10.11.127.6</param>
5 <param name="value"></param>
6 </paramset>...</paramsets>
7 <results><result name="testPosition" mediatype="application

/xml">...</result>
8 </results>
9 <sequence mode="multiple" subSequenceType="All">

10 <subsequence mode="single" subSequenceType="
MutualExclusive">

11 <subsequence mode="single">
12 <wsuri path="ws1:/Camera/pan/{id}/{value}" paramset="

cameraPan"/>
13 <wsmethod name="ws1:setPan" returnCode="2xx"/>
14 <setvar var="cameraPan">{value}</setvar>
15 </subsequence>
16 <subsequence mode="single">...</subsequence>
17 </sequence>
18 </sequencespecification>

Figure 9. Service Sequence Description.

The sequence and subsequence elements are transformed
into a state machine to enable the model based testing process.
Each sequence and subsequence with a wsmethod and wsuri

definition represents a single state and at least one transition
to this state in the constructed state machine. The number of
transitions depends on the number of values for the parameters
and the combination of the same. The elements are structured
into groups, which will be affecting the structure of the state
machine directly (e.g., multiple paths, creation of sub state
machines). Each sequence has a definition of a called WADL-
resource (wsuri, Figure 9:16) and a method (wsmethod, Fig-
ure 9:18), which is provided by the IoT service. Furthermore,
control commands are also a part of a sequence. In case of the
control command setvar an actual value of a parameter from
a method or a resource is saved into an internal variable. This
procedure allows the implementation of stateful knowledge
since the internal variable can be used over different transitions
at any time and can also be part of a validation process. The
content of a response message of an IoT service is mapped on a
result definition to validate the content against previous inputs.
With the sequence description, the values for each parameter
(e.g., resource and method) can be predefined for this use
case by the user. Missing values for each individual simple or
complex (e.g., structures like XML) parameter in the sequence
description are generated by the test data generation if a user
provides only a portion of parameter values for the use case.
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V. EVALUATION OF EXAMPLE SERVICE

To demonstrate the algorithms and the process of the
test framework this work employs a camera control example
service. The service is used to control multiple CCTV Cameras
at different locations that are adjustable in their pan and tilt
via a RESTful interface. The following sections describe the
transformation and test derivation aligned to this service. The
sequence begins with an initialisation process of the camera
(illustrated in Figure 10).
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Figure 10. Camera Example Service.

Between S3 and S4, the values can be set with the
setTilt and setPan method and evaluated with the
getPosition method at the transition back to S3.

VI. TEST CASE DERIVATION & EXECUTION

The retrieval of the outlined service behaviour description
of Section IV-C is the starting point for the test case derivation
and execution, which is explained in this section. Whereby
the main aim is to enable a fully automated test derivation
process it also allows manual enhancements based on expert
knowledge. The approach is divided into two translation steps:
i) derive an EMF service model that represents an abstract
behaviour of the SUT from testing perspective (e.g., detectable
behaviour) and ii) derive executable test cases from this model
based on TTCN-3. While the two steps are fully automated,
the test developer can adapt the derived EMF service model
with an Eclipse GMF editor and the created TTCN-3 test
cases. For the model transformation, classical state machine
concepts of states and transitions are re-used. In addition, the
inclusion of concepts of TTCN-3 (e.g., Ports, Components,
MessageTemplates) enables an easy model transformation. The
basic model objects are shown in Figure 11 and can be
described as follows:
States represent different logical conditions of the SUT and

limit the number of correct functionality.
Events characterise the starting of an activity, which might

result in actions or a state change. Events can be either
from the type timer or input message.

Actions describe the reaction of the system to an event. An
Action can be either a response message (output) or can
result in a request sent to an IoT resource.

Transitions describe how the SUT reacts (action) to a certain
event and a specific state. A Transition connects different
states within the model.
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Figure 11. Simplified EMF Service Model.

The stages of the test derivation process and its information
flow are shown in Figure 12. The process is initiated via
a web interface during stage A. At this time, the required
service behaviour descriptions are retrieved from the Knowl-
edge Management. The service descriptions are analysed and
transferred into the EMF model in stage B. At stage C this
model is translated into executable test cases (TTCN-3). The
final stage D executes these test cases and evaluates the results.
The following paragraphs explain this process in more detail.
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Figure 12. Information Flow.

A. Start of the Test Derivation Process

The test derivation process is triggered via a web interface,
which accepts an ID identifying the service that was registered
and has to be tested. The TDE fetches the needed service
description documents from the KM and evaluates links of
the semantic annotations to build the complete data model.
B. Building the EMF Service Model

The Test Data Generation analyses referenced data types
and their interdependencies, which are described in the service
descriptions. For the derivation of test data for each parameter
ECP is used since it has been proven to provide high effective-
ness in finding defects [23]. This technique divides the possible
input data for each parameter in at least two disjunctive
partitions (e.g., valid and invalid values). The partitions are
created by parsing the parameter restrictions (see Section IV).
The test data generation is designed to cover each partition
with at least one test case. Due to the behaviour change of an
IoT service between the boundary of two disjunctive partitions,
the test data generation uses a boundary-value analysis to fully
cover the boundaries of each partition. In this approach, valid
parameter ranges are annotated with the use of XML Schema
and with a semantic description. It generates code snippets
for parameterised method invocations for the RESTful service
and stores them in the EMF service model. Those snippets are
based on generated random parameters for the used data types
or enable code libraries based on lazy testing [24] to generate
test data during runtime.

The Test Sequence Analysis is used to build the EMF
service model based on the IoT Service WADL description
and a sequence description. The model is implemented as a
Extended Finite State Machine (EFSM), which has at least
a unique InitialState and an EndState, as well as one Nor-
malState definition. While the InitialState and the EndState(s)
are generated automatically, the NormalStates will be created
through the process shown in Table I. If a sequence has
subsequence definitions multiple Normal states are created,
followed by the creation of state transitions, which connect two

32Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            41 / 96



TABLE I. DOCUMENT TRANSFORMATION TO MODEL OBJECT
NORMALSTATE.

Input: Action:

<sequence mode=”single”> ...
</sequence>

Create NormalState
for each sequence
part.

<!�� WADL document ��>

<resources base=”http://10.1.1.42:80/CameraService/iot/”>
<resource path=”/Camera”>
<resource path=”/pan/{id}/{value}”>
<param name=”id” style=”template”

type=”xs:string”/>
<param name=”value” style=”template”

type=”xmlschema:pan”/>
<method id=”setPan” name=”POST”/>
</resource>
</resource>
</resources>
<!�� Sequence description ��>

<sequence mode=”single”>
<wsuri path=”ws1:/Camera/pan/{id}/{value}”

paramset=”cameraPan”/>
<wsmethod name=”ws1:setPan”

returnCode=”2xx”/>
</sequence>

Create Message-
ModelTemplate
(MMT) event for
a request to a IoT
service.

<paramset id=”cameraPan”>
<param name=”id”>10.11.127.6</param>

<param name=”value”>12</param>

</paramset>

Generate test data
or use user de-
fined values from
sequence for each
parameter.

<vars>
<var name=”cameraPan” type=”double”
schema=”response:PositionResponse#pan”/>

</vars>
<sequence mode=”single”>
<wsuri path=”ws1:/Camera/pan/{id}/{value}”

paramset=”cameraPan”/>
...<setvar var=”cameraPan”>{value}</setvar>
</sequence>

Create variables
which will
represent the
actual used value
for a parameter.
Add to MMT
event.

<method id=”getSensingData” name=”GET”>
<response>
<representation mediaType=”application/xml”/>
</response>
</method>

Create a MMT ac-
tion for the re-
sponse of a IoT ser-
vice.

<wsmethod name=”ws1:setPan”
returnCode=”2xx”/>

Create and add
range of expected
HTTP status code
to MMT action.

<vars>
<var name=”cameraPan” type=”double”

schema=”response:PositionResponse#pan”/>
...</vars>

<results>
<result name=”testPosition” mediatype=”application/xml”

type=”xml”>{cameraTilt,cameraPan}</result>
<results>
<sequence mode=”single”>
<wsmethod name=”ws1:getPosition”

return=”responseVar” result=”testPosition”/>
</sequence>

Add handling of
possible return
values to the
MMT action (e.g.,
xml structure as
response). Define
variables to save
the return values.

different states. These transitions represent an interaction with
the IoT service or a timer Event. Therefore, the transaction
needs a definition for both parts of the communication (e.g.,
request and response). The request is represented by a MMT
event, which is the following step for the transformation. The
resource and method information are part of the sequence
definition and are extracted from the linked WADL document.
If the sequence does not specify user defined parameter values,
the test data generation will produce test values for each
parameter.

A sequence definition is enabled to host control commands
like the setvar tag listed in Table I/row 4. It is used to save
the current value of a parameter for future operations and

Figure 13. EMF Model Evaluation in Eclipse.

thereby allows the integration of stateful knowledge into the
state machine representing a data model of the IoT service.
The response template of the IoT service is modelled as a
MMT action storing the method and response representation,
which are defined in the WADL document that describes
the service (I/row 5). Furthermore, the sequence description
defines the expected HTTP status code for the response. The
result attribute for a wsmethod tag in a sequence description
(I/row 7) indicates another control command for the algorithm
of the test case derivation and execution. This command
produces a mechanism to compare the response of the IoT
service against previous used parameter values, which can be
used as a decision if the actual transition is valid or invalid.
The MMT action as well as the event is be linked to a single
transition in the resulting state machine model.

After creation the EMF model can be evaluated and altered
in an Eclipse GMF - Model Editor (see Figure 13).

C. Creating Test Cases From the Service Model

The EMF model is used to analyse the resulting state
machines of the previous stage. A configuration of the test case
generation allows transition coverage or transition and state-
coverage based on the W method [25]. The transition coverage
is computed by identifying the InitalState and building a test
tree based on a breadth-first visit of all transitions. Each
transition in each state is inspected and if the transitions directs
to a unvisited state a new branch path is created. Afterwards,
the new branch end states are visited and their transitions are
inspected. Each new inspected transition results in a new test
path, which represents the test cases if only transition coverage
is selected. For transition and state coverage it is further needed
to identify a characterisation set (also called W set), which is a
set of input sequences that can be utilised to distinguish every
pair of existing states in the model. The resulting test cases are
created by concatenating every sequence from the transition
coverage set with every sequence in the characterisation set
and apply them after the SUT is initiated.

The Model transformation from EMF to standardised
TTCN-3 ensures explicit representation and reproducibility of
test cases. As output of stage C test cases are derived from
the EMF Service Model. A test case is a directed graph
consisting of states and transitions and represents one possible
path from the InitialState to another defined NormalState or
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EndState (e.g., S1 ! S2 ! S3 ! S4 ! S3, see Figure 10).
During the model transformation each element is inspected
and the required TTCN-3 elements are created. The actual
writing of the TTCN-3 code is realised with a template
engine. This enables the separation of syntactical details of
the TTCN-3 language from the analysing logic thus reducing
the complexity and enhancing the manageability. The followed
approach uses the Java-based template engine Velocity [26].
In the following the transformation step is outlined with some
detail. Table II depicts the first step while going through the
model elements in the current test case. The model object
InitialState is used to create the general test case structure and
assures that the test case stops after a defined time by adding
a timer. Afterwards, the TTCN-3 element function is created
and added to the test case. TTCN-3 functions are utilised to
separate different steps of the test execution. These reusable
functions are used to represent the different states of the SUT.

TABLE II. TTCN-3 TRANSLATION OF MODEL OBJECT INITALSTATE.

Action: TTCN-3 Output:

Add timer to en-
able timout testcaseMaxExecutionTimer.start;

Create function function start 1 0() runs on c { ...}
Add function to
Test Case

testcase tc 1() runs on c system sys {
start 1 0(); ... }

The next element Transition consists of an Event that can
describe that an input is received by the SUT and an Action
that describes the output reaction of the SUT to this input
message. Table III sketches the transformation from the model
object event to a send operation and the storage of the sent
values for later usage. Since the EMF service model is created
from the service point of view the translator inverts certain
expressions for the purpose of testing. In this case the event
of a transition becomes a send call.

TABLE III. TTCN-3 TRANSLATION OF MODEL OBJECT EVENT.

Action: TTCN-3 Output:

Create send
call and local
variable

template HttpRequest req setPan 1 0 := { postRequest := {
url := ”http://10.1.1.42:80/CameraService/iot/Camera/pan

/10.11.127.6/19.27”, ... } }
v PositionResponse pan := 19.27;
f request(p1, req setPan 1 0);
v req setPan 1 0 := req setPan 1 0;

Subsequently, the action part of the transition is utilised to
derive TTCN-3 code. Initially a new function for the next state
is created. Afterwards the defined response of the SUT is trans-
lated into TTNC-3. Then, the TTCN-3 element alt is used to
form the possibilities of the SUT behaviour. At first, the failure
case for delayed or unexpected service responses is modelled.
After that the followed approach assumes deterministic service
behaviour with only one possible valid reaction. This expected
behaviour is included in the alt element of TTCN-3 including
the jump to the next TTCN-3 function (state) created before.
Table IV shows the discussed transformation process of the
model object action.

While the link to the next function has been created during
the action transformation, in the last step the function itself is
created at the time the next element (NormalState) of the test
case is inspected. Table V reveals the resulting TTCN-3 output.

At the final stage of the test case the model, object EndState

is reached. This completes the TTCN-3 code creation by

TABLE IV. TTCN-3 TRANSLATION OF MODEL OBJECT ACTION.

Action: TTCN-3 Output:
Create Target Call S1 1 2();

Create expected re-
sponse message

var template GETResponse resp setPan 1 0 := {
statusCode := (200 .. 299),
content := {rawContent := omit, plainTextContent :=?},
headers := ? }

Form alt for Mes-
sage

alt {
[] testcaseMaxExecutionTimer.timeout {

tcMaxExecutionTimeout 1();}
[] any port.receive { unexcepctedStateReached 1(); }

}

Create reply ele-
ment in alt

alt {
[ischosen(req setPan 1 0.postRequest)] p1.getreply(

POSTreq: {req setPan 1 0.postRequest} value
resp setPan 1 0) �> value v resp setPan 1 0 {
S1 1 2();}

...}

TABLE V. TRANSLATION OF MODEL OBJECT NORMALSTATE.

Action: TTCN-3 Output:
Create function function S1 1 2() runs on c {...}

setting the verdict to pass. If all functions, corresponding
requests and response messages have been transmitted during
the test case execution this final statement indicates that the
SUT has the expected behaviour for this test case. Table VI
shows the resulting TTCN-3 code.

TABLE VI. TTCN-3 TRANSLATION OF MODEL OBJECT ENDSTATE.

Action: TTCN-3 Output:
Set verdict setverdict(pass, ”End�state reached”);

D. Executing the Test Cases

After compilation of the TTCN-3 test cases the whole test
flow can be executed by a web service interface or manually
using the TTworkbench [27]. It enables a visualised logging
of test execution in a log report, which can be used to evaluate
the detailed test results (see Figure 14).

Figure 14. Execution of the Test Cases.

The TTworbench provides a comprehensible graphical view
to easily identify the cause of an occurred error (e.g., protocol,
encoding or data).
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VII. CONCLUSION AND FUTURE WORK

The complexity to describe IoT services for testing pur-
poses in conjunction with missing domain specific knowledge
for data types has prevented the utilisation of automated
model-based testing for IoT services. The outlined frame-
work tries to lower the gap by employing a sequence based
modelling description which can be easily created, whereby
the automated state machine analysis allows a transition
and parameter combination coverage. Utilising semantically
definitions in combination with ECP provides distinct test
data pools enabling a more efficient and domain specific
test case generation. The testing framework follows a two-
step approach where the service description includes com-
mon utilisation information within a sequence description.
The combination of standardised WADL interface description,
semantic parameter descriptions and a sequence description
empowers the transformation into a service model. Afterwards
test cases can be derived and executed based on TTCN-3. This
approach enables adjustments by developers at an early stage
due to simple sequence descriptions and the standardised test
notation TTCN-3. The key principles of the test framework are
explained based on an example IoT service. The example is
directly taken from our prototypical implementation and proves
the applicability of our approach for IoT services. Although
there is a high complexity in the initial implementation of
the framework, the automated derivation allows the tester to
take a systematic model driven approach to test IoT services
though keeping possibilities to evaluate and modify the created
test cases in a standardised test notation. The implemented
sequence definition fills the gap between stateless interface
descriptions and model-based testing and can be used for a
more simplified and controllable test automation.

As a common approach IoT service compositions are
utilising high level business modelling languages like Business
Process Model and Notation (BPMN) [28]. Therefore, future
work will include the integration of such languages and
annotate them semantically to enable automated derivation of
a service model. Besides functional behaviour, the influence
of networking and service quality characteristics needs to be
addressed for large scale IoT service testing.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union FP7 for the IoT.est project under
grant agreement n� 257521.

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer networks, vol. 54, no. 15, May 2010, pp. 2787–2805.
[2] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-

based testing approaches,” Software Testing, Verification and Reliabil-
ity, vol. 22, no. 5, 2012, pp. 297–312.

[3] E. Ramollari, D. Kourtesis, D. Dranidis, and A. Simons, “Leveraging se-
mantic web service descriptions for validation by automated functional
testing,” The Semantic Web: Research and Applications, Jun. 2009, pp.
593–607.

[4] D. Binkley, “Source code analysis: A road map,” in 2007 Future of
Software Engineering, ser. FOSE ’07. Washington, DC, USA: IEEE
Computer Society, May 2007, pp. 104–119.

[5] A. Takanen, Fuzzing for software security testing and quality assurance,
ser. Information security and privacy series. Artech House, 2008.

[6] W.-l. Huang and J. Peleska, “Exhaustive model-based equivalence
class testing,” in Testing Software and Systems, ser. Lecture Notes in
Computer Science, H. Yenign, C. Yilmaz, and A. Ulrich, Eds. Springer
Berlin Heidelberg, 2013, vol. 8254, pp. 49–64.

[7] E. G. Aydal and J. Woodcock, “Automation of model-based testing
through model transformations,” in Testing Conference - Practice and
Research Techniques, 2009. TAIC PART ’09. IEEE, Sep. 2009, pp.
63–71.

[8] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite
state machine models from software executions,” in 2013 20th Working
Conference on Reverse Engineering (WCRE), Oct. 2013, pp. 301–310.

[9] A. Pretschner, “Model-based testing,” in 27th International Conference
on Software Engineering, 2005. ICSE 2005. Proceedings, May 2005,
pp. 722–723.

[10] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated
framework for structural test-data generation,” in Automated Software
Engineering. 13th IEEE International Conference on, Oct. 1998, pp.
285–288.

[11] M. Deng, R. Chen, and Z. Du, “Automatic test data generation model
by combining dataflow analysis with genetic algorithm,” in Pervasive
Computing (JCPC), 2009 Joint Conferences on, Dec. 2009, pp. 429–
434.

[12] M. Fischer and R. Tonjes, “Generating test data for black-box testing
using genetic algorithms,” in 2012 IEEE 17th Conference on Emerging
Technologies Factory Automation (ETFA), Sep. 2012, pp. 1–6.

[13] K. Belhajjame, S. Embury, and N. Paton, “Verification of semantic web
service annotations using ontology-based partitioning,” IEEE Transac-
tions on Services Computing, vol. 99, no. PrePrints, 2013, p. 1.

[14] C. Kankanamge, Web Services Testing with SoapUI. Packt Publishing
Ltd, 2012.

[15] C. Schanes, F. Fankhauser, S. Taber, and T. Grechenig, “Generic data
format approach for generation of security test data,” in VALID 2011,
The Third International Conference on Advances in System Testing and
Validation Lifecycle, Oct. 2011, pp. 103–108.

[16] R. Tönjes, E. S. Reetz, K. Moessner, and P. M. Barnaghi, “A test-
driven approach for life cycle management of internet of things enabled
services,” in Future Network and Mobile Summit, Berlin, 2012, pp. 1–8.

[17] M. J. Hadley, “Web application description language (wadl),” Sun
Microsystems, Inc., Mountain View, CA, USA, Tech. Rep., 2006.

[18] E. Reetz, D. Kuemper, K. Moessner, and R. Tönjes, “How to test iot-
based services before deploying them into real world,” in 19th European
Wireless Conference (EW 2013), Guildford, United Kingdom, Apr.
2013, pp. 1–6.

[19] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
2000.

[20] P. Biron and M. Ashok, “Xml schema part 2: Datatypes,” W3C
Recommendation, vol. 2, 2001.

[21] I. Niles and A. Pease, “Towards a standard upper ontology,” in Proceed-
ings of the International Conference on Formal Ontology in Information
Systems - Volume 2001, ser. FOIS ’01. New York, NY, USA: ACM,
Oct. 2001, pp. 2–9.

[22] A. Ballatore, M. Bertolotto, and D. C. Wilson, “Geographic knowledge
extraction and semantic similarity in openstreetmap,” Knowledge and
information systems, vol. 37, no. 1, Oct. 2013, pp. 61–81.

[23] N. Juristo, S. Vegas, M. Solari, S. Abrahao, and I. Ramos, “Comparing
the effectiveness of equivalence partitioning, branch testing and code
reading by stepwise abstraction applied by subjects,” in Software
Testing, Verification and Validation (ICST), 2012 IEEE, Apr. 2012, pp.
330–339.

[24] M. Lin, Y. Chen, K. Yu, and G. Wu, “Lazy symbolic execution for test
data generation,” Software, IET, vol. 5, no. 2, Apr. 2011, pp. 132–141.

[25] A. Gargantini, “4 conformance testing,” in Model-Based Testing of
Reactive Systems. Springer, 2005, pp. 87–111.

[26] Apache Software Foundation, “The apache velocity project,” Website,
available online at http://velocity.apache.org/ retrieved: 2014-08-30.

[27] Testing Technologies, “TTworkbench,” Website, available online at
http://www.testingtech.com retrieved: 2014-08-30.

[28] S. Meyer, A. Ruppen, and C. Magerkurth, “Internet of things-aware
process modeling: Integrating iot devices as business process resources,”
in Advanced Information Systems Engineering, ser. Lecture Notes in
Computer Science. Springer, 2013, vol. 7908, pp. 84–98.

35Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            44 / 96



A Novel Approach for Environment Model-Based Functional Testing of Reactive

Systems

Annamária Szenkovits and Hunor Jakab
Faculty of Mathematics and Computer Science

Babes-Bolyai University
Cluj Napoca, Romania

Email: {szenkovitsa, jakabh}@cs.ubbcluj.ro

Abstract—Automating the test process of safety-critical reactive
systems is an important problem in the software testing do-
main. One of the major difficulties in achieving this is that
test sequences cannot be generated without feedback from the
environment due to the reactive nature of the system. A common
solution is to model the environment and manually fine-tune the
model to produce test cases that target specific important usage
patterns. This paper presents a novel approach to environment-
based functional testing that automatically performs the tuning
of the environment model such that the generated test cases
cover important regions of the input space. Our method is
based on evolutionary techniques with the goal of optimizing
the weights associated with choice nodes and variable bounds
in an environment model written in the Lutin language. An
experimental test-bed is proposed based on SCADE models of
the Transmission Beacon Locomotive 1 (TBL1) system to validate
our approach in a realistic environment.

Keywords–Reactive systems; Environment model-based testing;
Evolutionary testing.

I. INTRODUCTION
Reactive systems are in continuous interaction with their

environment. They control the environment, and must also
react to the stimuli of the environment within a given time
bound. Therefore, in order to be able to automatically generate
test sequences, we must also simulate the environment and the
interaction between the environment and the System Under
Test (SUT). In order to detect possible faults in the SUT, we
must drive the environment in such configurations that might
violate some safety properties of the SUT. This is however not
a simple problem, since it requires knowledge from domain
experts.

A common way to express the properties of a reactive
system is to describe the model of the system in Lustre, a
language optimized for reactive systems [1][2][3]. Lustre is
also the kernel of the Safety Critical Application Development
Environment (SCADE) [4], a widely used industrial toolset.
The models of the TBL1 system, proposed for the experimen-
tal validation of our methods, were also implemented using
SCADE. As for environment models, a convenient way to
model the environment of Lustre and SCADE models is to
use the Lutin language [5], an automatic test generator for
reactive programs that focuses on functional testing.

This paper presents a work in progress which is based on
a method that automatically fine-tunes the environment model
in order to generate test scenarios that might detect faults in
the SUT. We propose a solution to the problem of fine-tuning
the environment model based on evolutionary techniques [6].
More precisely, we are going to exploit some of the features

of the Lutin language in order to optimize the generation of
test scenarios.

The paper is structured as follows. Section I-A reviews
some of the work relevant for this topic, Section II briefly
describes the behavior of reactive systems and the difficulties
that arise in case of test input generation for reactive systems.
Parts II-A and II-B present some of the fundamental aspects of
the languages Lustre and Lutin, respectively, focusing on how
different properties of these languages will be exploited by
our method. Part II-C summarizes how evolutionary algorithms
are planed to be used for environment optimization. Finally,
Section III describes the TBL1 system.

A. Related Work
Our work is related to environment model-based testing

of reactive systems, as well as to evolutionary testing, two
important research domains that have been explored in a
number of references. We mention a few of the related articles
which emphasize the practical applicability of evolutionary
methods to real-life problems. The work in [7] discusses
the scalability, applicability, and acceptability of evolutionary
functional testing in industry. The problem is investigated
through two case studies, drawn from serial production de-
velopment environments. The methods presented by Corno et
al. [8] and Iwashita et al. [9] use an evolutionary algorithm to
automatically generate a test program for pipelined processors
by maximizing a given verification metric. Genetic Evolution-
ary Algorithms (GEA) are also used for test generation by
Cheng and Lim [10]. The problem of parameter selection is
discussed and a Markov chain based method is used to model
the test generation process and to parametrize the process
characteristics. The method is used here in particular for gen-
erating test cases to verify hardware design for semiconductor
industry. However, unlike our approach, the methods discussed
in the above mentioned papers are not optimized for reactive
systems.

There are several tools available for performing model-
based testing on reactive systems. Bousquet et al. [11][12]
present a specification-based language called Lutess, while
Marre et al. [13][14] describe Gatel, a test generation tool for
Lustre programs. Our approach is based on similar principles,
with the added benefit of being able to optimize the distribution
of the generated test cases. This can be crucial in complex
systems where exhaustive testing is infeasible and specific
usage scenarios need to be targeted.

II. FUNCTIONAL TESTING OF REACTIVE SYSTEMS
Reactive systems have cyclic behavior, meaning that at

each cycle they read the inputs coming from their environment,
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1 node never (A: bool) returns (never_A: bool);
let

3 never_A = not(A) -> not(A) and pre(never_A);
tel

Figure 1. Example of Lustre code.

compute the outputs and update the internal state of the system.
Considering this, instead of generating a single test input, the
tester has to provide test sequences, i.e., sequences of input
vectors.

Another issue that arises during test input generation is that
input sequences cannot be generated offline. Because a reactive
system is in continuous interaction with its environment, the
input vector at a given reaction may depend on the previous
outputs. Thus, input sequences can only be produced on-line,
and their elaboration must be intertwined with the execution
of the SUT.

Due to the above seen properties, programming reactive
systems is not easy in conventional languages. Lustre [1][2][3],
on the other hand, is a synchronous languages, which means
that it is optimized for reactive systems. Therefore, it is more
suitable to implement the cyclic behavior of such systems.
Lustre is also the backbone of SCADE, a tool widely used in
the railway, automotive and aviation industry. The models pro-
posed for the validation of our methods were also implemented
in SCADE. In this article we are going to use Lustre for the
description of the SUT. This section provides a brief overview
of the language’s structure which are key to understanding the
rest of the paper.

A. Describing the SUT properties
Lustre is a synchronous language based on the data flow

model and designed for the description and verification of re-
active systems [1][2]. It can be used for both writing programs
and expressing program properties. It is structured on so-called
nodes, where a node represents a program or a subprogram and
it operates on streams: a finite or infinite sequence of values of
a given type. A program has a cyclic behavior, so that at the
nth execution cycle of the program, all the involved streams
take their nth value. A node defines one or several output
parameters as functions of one or several input parameters.
All these parameters are streams.

Figure 1 shows an example [3] of a Lustre node.
The node defined in this example takes as input the Boolean

stream A = (A1, A2, ..., An, ...) and defines as output another
Boolean stream never_A = (never_A1, never_A2, ...,
never_An, ...). The output is true if and only if the input has
never been true since the beginning of the program execution.

Assertions can be also included into the body of a Lustre
program. They are boolean expressions that should be always
true. Safety properties, the properties of a program’s environ-
ment can be easily specified by using the assertion mechanism.
Assertions will be exploited in our method for driving the SUT
environment as close as possible to configurations that might
reveal failures in the SUT.

B. Modeling the environment
Due to the reactive nature of the SUT it is necessary to

have a model of the environment. This way we can generate
test sequences without actually running the SUT in its real

node choice () returns( x :int) =
2 loop {

| 3 : x = 42
4 | 1 : x = 1
}

Figure 2. Lutin code, featuring a choice operator and the
weights in boldfaced font, associated with the different

choice possibilities.

environment. There are specialized tools for describing the
environment of reactive systems. Since we are testing programs
written in Lustre and SCADE, in our work, we will use Lutin
[5] (a language derived from Lustre) to model the environment.

Lutin is an automatic test generator for reactive programs
that focuses on functional testing. This means that the SUT
will be treated as a black-box, for which we want to check
some properties. Lutin enables us to perform guided random
exploration of the environment, taking into account the output
of the SUT, which is basically a Lustre program. This section
provides a brief description of the language Lutin, focusing on
the operators and non-deterministic statements of the language
used to perform the guided random exploration.

The language is based on the use of descriptions of the
environment, formulated in form of constraints. The constraints
can be both boolean and numerical [15]. In addition, the pre
operator enables to access the value of a given variable from
the previous iteration of the system. This operator can be used
in order to express temporal statements and constraints.

Lutin generates test scenarios by combining several con-
straints. Test input sequences for the SUT are generated by
solving the constraints and randomly selecting some of the
solutions.

A Lutin program is basically an automaton where each
transition is associated to a set of constraints that define the
possible outputs, weights that define the relative probability
for each transition to be taken.

Non-determinism in Lutin is mainly realized with the non-
deterministic choice operator |, as illustrated in the code
example from Figure 2.

The weights described above enable us to influence how
the environment reacts. One of the major goals of the proposed
method is to optimize the weights such that the responses of
the environment lead to test sequences which drive the SUT
as close to safety conditions as possible. These are namely
the scenarios where the malfunctioning of the SUT occurs the
most often.

Besides the choice operator, non-determinism can be ex-
pressed in Lutin with random loops, which are defined in terms
of expected number of iterations. Based on Raymond et al. [5],
there are two possibilities to express the expected number of
iterations:

1) loop[min,max]: the number of iterations should be
between the constants min and max.

2) loop ∼av : sd : the average number of iteration
should be av, with a standard deviation sd.

The parameters min,max, av, sd will be treated as sub-
jects of the optimization process together with the above
described weights of the choice operator.
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C. Optimizing the environment model
In the problem of automatic test generation, the domain

of possible inputs, i.e., the possible test cases is typically too
large to be exhaustively explored, even for small programs.
The dimensions of the search space are directly related to the
number of input parameters of the SUT [7]. Since evolutionary
algorithms are able to produce effective solutions for complex
and poorly understood search spaces with multiple dimensions,
they can also be successfully applied for testing [7][8][9][10].
However, the greatest challenge remains to formulate the
testing task as an optimization problem. This will influence
the success of the test case design and test input generation.

Depending on how the fitness function is formulated,
evolutionary testing can be both applied for structural testing
(e.g., maximizing coverage) and functional testing (e.g., fault
detection).

Our approach proposed for applying an evolutionary algo-
rithm for the optimization of the parameters of an environment
model is composed of the following main steps:

1) Specifying the subject of the optimization (which
parameters are to be optimized);

2) Specifying the fitness function;
3) Specifying the operators.
As mentioned in Section II-B, the language proposed for

describing and optimizing the SUT environment is Lutin. In its
current form, Lutin performs a guided random exploration of
the SUT input state space by means of programs that describe
the usage of the system [16]. The creation of these programs
and the fine-tuning of their parameters however requires the
domain specific knowledge of experts. To eliminate this depen-
dency, our approach proposes to let an evolutionary algorithm
choose some parameters of Lutin programs, such as those
presented in Section II-B. In the first step of our approach, we
need to choose the Lutin parameters that will be the subject
of the optimization. Thus, the set of individuals or candidate
solutions to the optimization problem will be created. This
set is commonly referred to in evolutionary techniques as a
population.

In the next step, promising individuals will be selected
from the population based on a fitness function. Since we want
to perform functional testing, we need a fitness function that
measures how close the generated test cases are to violating the
safety properties of the SUT and thus to detect failures in the
SUT. Assertions used in Lustre to express the safety properties
of the SUT (described in Section II-A) will be exploited to
design the suitable fitness functions.

The third step of the optimization process is to generate a
new population based on the individuals selected in the pre-
vious steps. Classical operators of the evolutionary algorithms
like mutation and crossover will be used in this step.

As a result of the optimizing process, Lutin weights will
drive the environment into test scenarios where the SUT will
get close to violating safety properties. These scenarios will
potentially cause the malfunctioning of the SUT, therefore they
are the target of our optimization method.

III. EXPERIMENTAL VALIDATION
For evaluating the proposed method, we are carrying out

experiments using simulations of a real-world, industrial prob-
lem within the domain of railway automation. The problem
specification was proposed by our industrial partner, Siemens.

1 node emergencyBraking(speed:int; speedCheck,
bac:bool)

returns (active:bool);
3 let

active=false->
5 if (speed >= 40) and speedCheck then

true
else if (speed < 40) and (not bac and

pre(bac))
7 then false

else pre(active);
9 tel;

Figure 3. Implementation of the activation of the emergency
brake in Lustre. The variable speed stores the speed of the
train, speedCheck the state of the speed restriction check
mode (active or inactive), while bac represents the button

which can deactivate the brake.

The problem is related to the TBL1 system, a train protec-
tion system used in Belgium and on Hong Kong’s East Rail
Line. Its main role is to ensure safe operation in the case
of human failure. More precisely, the TBL1 system requires
the locomotive driver to manually acknowledge a warning
when passing a double yellow signal, as well as stopping
the train automatically if it passes a red signal. (A double
yellow signal means: Preliminary caution, the next signal is
displaying a single yellow aspect, while a Single yellow aspect
signalizes the following: Caution, be prepared to stop at the
next signal.) The system is based on a trackside beacon which
sends an electromagnetic signal to an aerial located underneath
the locomotive.

Besides the above mentioned ones, the TBL1 system has
a speed restriction checking functionality. This feature is
activated by a beacon located 300 meters up-line from a signal.
If the train travels at a speed greater than 40 km/h ahead of a
red signal, the TBL1 system triggers the emergency brake.

In order to run some initial experiments, we have imple-
mented the speed restriction check functionality of the TBL1
system in Lustre. The implementation was realised based
on the specification and the SCADE model of the system,
provided by Siemens.

Figure 3 shows the implementation of a Lustre node
responsible for the activation of the emergency brake. As
already mentioned above, the brake is activated if the TBL1
system is in speed restriction check mode, and the train has a
speed greater or equal to 40 km/h. The brake can be deactivated
after 20 seconds manually by the driver, if the train’s speed
has decreased below 40 km/h. The deactivation is done by
pressing and releasing the bac button.

To test the functionality described above, it was necessary
to implement a model of the environment for which we chose
the Lutin language. A part of the code is illustrated in Figure 4.
Here, the Lutin code simulates the pressing and releasing of
the button which can deactivate the emergency brake. It can be
observed that the weight associated with the choice operators
are currently hardcoded. Together with other parameters, these
weights will be subject of the optimization process.

Besides the bac button, the speed of the train and the shape
of its braking curve is also determined by the environment. The
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1 node bacButton () returns (bac: bool) =
loop {

3 | 1 bac = true
| 4 bac = false

5 }

Figure 4. Lutin code simulating the pressing and releasing of
the bac button. The weights in boldfaced fonts are

parameters that need to be optimized.

1 node speed (emergencyBrake: bool)
returns (speed: int) =

3 exist D:int [-30; 30] in
((speed = 0) and (D = 0))

5 fby
loop (speed = pre speed + pre D)

7 and (speed>=0) and (
if not emergencyBrake

9 then ((D >= 10) and (D <= 12))
else ((D >= -20) and (D <= -10))

11 )

Figure 5. Implementation of the speed function in Lutin. The
initial value of the speed is 0 km/h. If the emergency brake

is inactive, the speed increases with a value randomly chosen
between 10 and 12; else, it decreases with a value between

10 and 20.

description of these variables is a more challenging task, since
they must be calculated individually for each different train
model. In our current environment model, the speed of the
train is only influenced by the state of the emergency brake
(active or inactive). If the brake is on, the speed decreases
with a randomly selected value; otherwise it increases. Figure
5 shows the implementation of the speed function.

The SUT and environment models are connected by the
Lurette tool [17]. Lurette ensures the cyclic interaction between
the SUT and its environment. The values generated by the
Lutin code are fed in as inputs to the SUT, while the outputs
of the SUT are processed by the Lutin code. Lurette also
checks the outputs generated by the SUT for some given inputs
based on the test oracles, and decides whether the SUT has
passed or has failed a given test case. The test oracles are also
implemented in Lustre.

IV. CONCLUSION AND FUTURE WORK
This paper presented an outline of our approach to the

use of evolutionary techniques to automatically fine-tune the
environment model based on which automatic test generation
for reactive systems can be performed. In the design of the
optimization method we made use of the choice node weights
and the variable bounds from the Lutin-based environment de-
scription. In addition, we proposed to exploit Lustre assertions
for measuring how close the generated test sequences get to
violating the safety properties of the SUT. The outlined method
could minimize the need for expert knowledge in order to
model the environment and derive test cases that could find
faults in the SUT. We outlined how our proposed method
can be applied in a realistic simulation environment from the
railway automation domain. Concrete experimental results will

only be available once the implementation of the full system
model and the required environment is done, based on the
TBL1 specification. As part of our future work, we plan to
finalize the empirical evaluation of the method and extend the
proposed optimization framework to include active-learning
based algorithms.
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Abstract—Software in complex systems like embedded systems
usually include protocols (Sleep Wakeup, Controller Area Net-
work Communication, and so on) implemented in multiple code-
regions, and these protocols are crucial for the system correctness.
For such protocol implementations, code review and testing often
fail to detect some of the critical bugs. Many of these bugs are
traced back to inconsistencies in the implemented code-regions.
We present a new verification technique that identifies likely
coding inconsistencies by computing and comparing protocol-
critical information over given protocol code-regions. These
inconsistencies are then manually validated. In our experiments,
the presented technique detected critical bugs that were missed
during code reviews and testing.

Index Terms—Embedded Systems; Validation and Verification;
Protocols Verification; Coding Inconsistencies

I. INTRODUCTION

Complex systems such as embedded systems usually im-
plement various protocols like as Security, Controller Area
Network (CAN) communication and Sleep Wakeup in cer-
tain patterns. In one pattern, actions of these protocols are
implemented over several parts of the system. For example,
actions in CAN communication protocol [1] include data en-
coding/decoding, message and acknowledgments sending/re-
ceiving, error checking, and so on. These actions are often
complementary to each other and are implemented in different
parts of the code. Further, the actions in a protocol may
be required and implemented by multiple components of the
embedded system, leading to several similar implementations
of the protocol. Henceforth in the paper, a part of code
that implements protocol action(s) separately is referred to
as a region. Thus, such an implemented protocol consists of
multiple code regions, and functionality wise, they can be
similar or opposite.

Verification of an embedded system is of utmost importance
[2]–[4], and it includes proving correctness of intended system
functionalities and making sure unintended behaviors are
absent [5]. In order to do this, it has become necessary to
ensure the included protocols are correctly implemented, as
they are crucial for correctness of the system functionality.
We describe this by using a Sleep Wakeup protocol that is
usually implemented in three regions - Startup, Sleep and
Wakeup [6]. This protocol is typically used in battery-powered
systems to minimize power consumed by a microcontroller
(also referred to as Electronic Control Unit (ECU)). Such
power minimization is achieved by toggling the ECU between

low power consumption mode (Sleep state) and high power
consumption mode (Run state).

Figure 1 presents a sample implementation of Sleep Wakeup
protocol. In this implementation, the Sleep region starts at line
41 and ends at line 45. This region performs certain actions
to reduce power consumption before an ECU enters the Sleep
state. These actions include configuring registers (hardware
ports), disabling hardware such as timers, CAN communica-
tion channels, and ADC (Analog to Digital Converter). The
Startup region (lines 11 to 18) and Wakeup region (lines 83
to 90) perform similar actions before the ECU enters the Run
state. These actions are opposite to the actions performed in
the Sleep region and often include reconfiguring the registers,
enabling hardware that were disabled before entering the Sleep
state.

When a protocol is implemented in multiple regions, possi-
bility of defect introduction increases. This is explained below
with respect to the sample implementation.

1) Let us assume that the system functionality (implemented
by perform Job function) requires register TRISA (Port
A) to be configured with 0x00 value. The Startup region
performs the expected register configuration, however the
Wakeup region misses to do so. This mismatch can lead
to unexpected system behaviors.

2) The CAN communication channel (CANCHNL0) and
timer (Timer0) are always enabled in the Startup and
Wakeup regions, however their disabling is missed in the
Sleep region. Having them enabled during the ECU Sleep
state can result in more power consumption, and this may
lead to battery drain.

3) The hardware HWx is always turned off in the Sleep
region, but it is missed to turn on in the Wakeup region.
Due to this, it remains off during execution of the system
functionality code, and a read or write access to such
hardware can result in unexpected watch dog timer reset
[7].

4) The analog-to-digital converter (ADC) is always disabled
in the Sleep region, whereas it is possibly enabled in the
Wakeup region. When the Wakeup region fails to enable
the ADC, accessing the ADC in the system functionality
code can lead to unexpected behaviors.

The above described defects are introduced due to coding
inconsistencies, and detecting all such defects in practice
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1. int main()
2. {

...
11. // Startup region begin
12. TRISA = 0x00; //Port A configuration
13. CANCHNL0=0x0010; //Enable CAN channel
14. Timer0 &= 0x80; //Enable Timer 0
15. HWx = 0x0000; //Switch-on hardware X
16. ADC = 0x0010; //Enable ADC
17. var1 = 10;
18. // Startup region end
19. ...
20. while(1)
21. {
22. perform_Job();//System functionality
23. sleep_Wakeup_sequence();
24. }
25. }

31. void sleep_Wakeup_sequence(){
...

41. // Sleep region begin
42. TRISA = 0xff; //Port A configuration
43. HWx = 0xffff; //Switch-off hardware X
44. ADC = 0x0001; //Disable ADC
45. // Sleep region end
46. SYS_REG = 0x7fff;//ECU in Sleep state
47. ...
48. while( !wakeup_condition );

...
81. SYS_REG = 0x8fff; //ECU in Run state
82. ...
83. // Wakeup region begin
84. TRISA = 0xff; //Port A configuration
85. CANCHNL0=0x0010;//Enable CAN channel
86. Timer0 &= 0x80; //Enable Timer 0
87. if(...){
88. ADC = 0x0010; //Enable ADC
89. }
90. // Wakeup region end
91. }

Fig. 1. Sample implementation of a Sleep Wakeup protocol

through code reviews may not be possible. This is because, the
protocol regions can start and end anywhere in the application
and may span over thousands of lines of code that configures
(initializes) hundreds of registers (variables). Further, it is not
always guaranteed that all such defects will be detected during
system testing. For example, the defect (2), due to miss of
disabling of CAN channels and timers in the Sleep region,
can not be observed via system output parameters. Hence,
detecting this defect using testing is difficult as it requires use
of sophisticated power consumption monitoring techniques.
Due to these issues, a verification technique that helps in
automatic and early detection of such defects is always useful.

This paper presents a verification technique that accepts
the protocol regions to be verified as inputs and detects
possible defects by checking consistency over these regions.
This technique is based on computing certain protocol-critical
information over each of these regions (referred to as Regional
Information), comparing the regional information, and raising
an inconsistency so found as a possible defect. Further, this
paper shortly describes a framework to compute the required
regional information over the input regions. The described
framework, first identifies program points that lie inside a
given region and later computes the regional information as
an effect of the identified program points. This technique to
compute regional information is referred as regional analysis.

We applied the proposed inconsistencies detection technique
to verify Sleep Wakeup protocols in two C applications from
automotive industry. The empirical results indicate - a) the
presented verification technique detects defects in protocol
implementations, which are missed by the other defect finding
techniques such as testing and manual code reviews, and b)
like for any other static analysis technique, generation of false
alarms is a concern for our technique.

The key contributions of this paper are - a) an idea to break
a complex protocol implementation into similar or opposite

regions for the protocol verification, b) a framework for the
regional information computation, and c) an approach to detect
likely inconsistencies by comparing regional information and
viewing them as possible defects.

Paper outline: Section II describes the inconsistencies-based
verification technique, and Section III provides details of
the regional analysis framework. The experiments and their
results are described in Section IV. Section V and Section VI,
respectively, present related work and conclusion.

II. MULTI-REGION PROTOCOL VERIFICATION

This section describes an inconsistencies-based approach to
verify a multi-region protocol implementation by using exam-
ples of Sleep Wakeup and CAN communication protocols.

A. Protocol Region: Definition

We define a region starting at PS and ending at PE as
the part of code having program points that appear on a
path originating at PS and terminating at PE . The program
points in a given region, thus identified, are referred to as in-
region points, and they include assignment and conditional
statements, calls to functions, return statements, etc. Table
I provides a few sample regions for a code snippet shown
in Figure 2 and their in-region points excluding the region
boundaries. It uses line numbers to denote the program points.

As there exists a variety of protocols and each protocol
can be implemented in different ways, automatic identification
of regions is difficult and may not be generic. Hence, we
accept them as inputs specified by their start and end points. In
practice, the start and end points of a given region can appear
anywhere in the application, and only the code belonging to
the given region needs to be analyzed for computation of
the intended regional information. For example, in Figure 1,
variable ADC is possibly modified over the Wakeup region
(lines 83 to 90), but computing this modification type over
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1. void main()
2. {
3. gVar1 = 1;
4. while(c1)
5. {
6. gVar2 = 2;
7. func();
8. gVar3 = 3;
9. gVar4 = 4;
10. }
11.}

21. void func()
22. {
23. var1 = 1;
24. if ( c2 )
25. var2 = 2;
26. else
27. var3 = 3;
28. var4 = 4;
29. if ( c3 )
30. var5 = 5;
31. }

Fig. 2. Code snippet for sample regions

TABLE I
SAMPLE REGIONS

Sample
Region

Start
Point

End
Point

In-Region Points

I 6 8 7, [23-30]
II 6 28 7, [23-27]
III 28 6 29, 30, 8, 9, 4
IV 28 23 29, 30, 8, 9, 4, 6, 7
V 25 9 [28-30], 8
VI 25 30 [27-29], [4-9], 23, 24
VII 30 25 [4-9], 23, 24, [27-29]

the complete function (sleep Wakeup sequence) would find it
as definite.

B. Sleep Wakeup Protocol Verification

As discussed earlier in Section I, the defects in the sample
protocol implementation in Figure 1 arise due to either wrong
or miss of a register/variable initialization in one of the re-
gions. In order to detect these defects, a systematic approach is
required to select, compute, and compare suitable information
over the protocol regions.

1) Regional information computation: We select and com-
pute below regional information to verify a Sleep Wakeup
protocol implementation.

i. Regional Modification Type: Modification type of a regis-
ter/variable over the protocol regions is suitable to check
if these regions consistently modify the involved regis-
ter/variable. An inconsistency found this way represents
a miss of a register/variable initialization in one of the
regions. Computation of such regional modification type
of a variable v over an input region starting at RS and
ending at RE points is described below.

a) Definite (D): The regional modification type of v is
definite if each path originating at RS and ending at
RE modifies v.

b) Possible (P): The regional modification type of v is
possible only if v is modified along at least one path
and not by all the paths that originate at RS and end
at RE .

c) No (N): v has no modification type when no path
originating at RS and ending at RE modifies v.

ii. Regional Values: Values assigned to a variable/register
over each of the input regions (regional values) are
suitable to detect mismatch in the initialization values
of the register/variable. Such a mismatch in the regional

values over two expected similar regions represents a
wrong initialization of the register/variable in any one of
the regions.

2) Regional inconsistencies detection: In order to detect
the possible defects, the regional information computed over
each of the Sleep Wakeup protocol regions is compared as
described below.

Comparing Regional Modification Types: Regional modifi-
cation types of a register/variable are compared in below com-
binations to detect miss of a register configuration (variable
initialization).

a) Startup Vs Wakeup, because a register configuration (vari-
able initialization) in the Startup region should have its
corresponding configuration (initialization) in the Wakeup
region.

b) Sleep Vs Wakeup, because a register configuration in Sleep
region should have its opposite configuration in the Wakeup
region. It is to note that, only registers are considered in this
combination, and the hardware ports, timers, ADC, other
hardware, etc are to be treated as the registers.

Given the comparisons in the aforementioned combinations, it
is intuitive that such comparisons are not required for Startup
Vs Sleep. In these comparisons, consistency is reported only
if both the modification types being compared are definite, and
all other comparison scenarios are treated as inconsistencies.
To be conservative, comparison of two possible modification
types is treated as an inconsistency, since in this setting, a
configuration in one region can not be guaranteed to have
its corresponding configuration in the other region. Such a
conservative approach may lead to an increased number of
inconsistencies and thus a high rate of false alarms.

Comparing Regional Values: Regional values of a register/-
variable are compared to detect a wrong configuration/initial-
ization. When the regional values over one region differ with
the values from some other similar region, such a scenario is
reported as an inconsistency. Also, when the regional values of
a register/variable can not be computed statically or are found
as interval of values, to be conservative, their comparisons are
reported as inconsistencies. Such regional value comparisons
are performed only for the Startup Vs Wakeup combination.
The Sleep Vs Wakeup combination is considered since the
variable/register values are not expected to be same over these
regions.

Table II presents results of the consistency checks performed
for the protocol implementation in Figure 1. All the defects in
the implementation (as described in Section I) are represented
by the inconsistencies shown in this table.

The regional information used to detect likely inconsisten-
cies is not limited to modification type and values. One can
use other Sleep Wakeup protocol-critical information such as
call type (definite, possible and no) of instructions that en-
able/disable the interrupts, and other system calls that acquire
and release the locks. Comparing such regional information
can help to identify miss on a call of these system calls or
instructions.

42Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            51 / 96



TABLE II
CONSISTENCY CHECKS OVER SAMPLE REGIONS

Variable Regional Modification Type Regional Values Regional Modification Type
/Register Startup Wakeup Consistency? Startup Wakeup Consistency? Sleep Wakeup Consistency?
TRISA D D

√
0x00 0xff X D D

√

CANCHNL0 D D
√

0x0010 0x0010
√

N D X
Timer0 D D

√
0x80 0x80

√
N D X

HWx D N X 0x0000 - NA D N X
ADC D P X 0x0010 0x0010

√
D P X

var1 D N X 10 - X N N NA

C. CAN Communication Protocol Verification
Selection of the regional information for inconsistencies

detection varies as per the protocol. For example, the regional
information used to verify an implementation of CAN com-
munication protocol may not be same as it is used in the
Sleep Wakeup protocol verification. This is because, a CAN
protocol is usually implemented by several components of an
automobile embedded system such as wiper, flasher, and body
control unit. Thus, there are repeatative implementations of
the same CAN protocol and they ought to be consistent with
each other.

The regional information that can be used to verify such
implementations may include - a) call type (definite, possible
and no) of the communication services/APIs [1], b) calling
sequence of above services/APIs, c) modification type of
parameters of the services/APIs related to message sending, d)
read type of parameters of the services/APIs related to message
receiving.

It is to note that the presented protocols verification tech-
nique is not limited to Sleep Wakeup and CAN communication
protocols. Through suitable regional information identified,
this technique can be applied to other protocols whose im-
plementation is distributed over multiple similar or opposite
regions.

III. REGIONAL ANALYSIS FRAMEWORK

This section briefly describes a framework to compute
regional information over a region specified by its start and end
points. This computation is achieved in two steps. In the first
step, in-region points for a given region are marked (referred
to as region marking), and in the next step, the in-region points
are analyzed to obtain the required regional information.

A. Region Marking
As discussed earlier (in Section II-A), identification and

analysis of in-region points is essential to compute the in-
tended regional information. Although, we have defined the
in-region points by referring to paths between the region
boundaries, computing them this way may not be feasible
in practice since the number of paths grows exponentially
to number of the conditions. Thus, we use may and must
reachabilities of a program point from region boundaries, in
forward and backward direction, to identify if the program
point is an in-region point.

Definition: In-region point- A program point P is an in-
region point with respect to a region having RS and RE as its

start and end points respectively only if both of the following
hold true.

1) In forward flow, P is may reachable from RS and it is
not must reachable from RE .

2) In backward flow, P is may reachable from RE and it is
not must reachable from RS .

Here, the may reachability subsumes the must reachability.
Due to space constraints we avoid detailing the region marking
step further.

B. Regional Information Computation

The regional information used in inconsistencies detection
can be of several types and varies as per the protocols being
verified. The regional modification types and values of the
variables are applicable to most of the protocols. Thus, we
describe their computation as a representative example of the
regional information computation.

1) Computation of regional modification types: Data flow
analysis [8] is suitable to compute the must and may modified
variables, and their corresponding data flow formalizations are
shown in Table III. For simplicity of the shown formalizations,
we have assumed the region code is free of pointers and the
region boundaries lie in the same function. These formaliza-
tions use results of the region marking to compute the required
regional information over the in-region points only. In these
formalizations, Inn represents the information flowing in at
the start of a node n, while Outn represents the information
flowing out of the exit of the node n. The Genn corresponds
to the information generated as an effect of the node n.

Using must and may modified variables over a given re-
gion, the regional modification types of the variables can
be obtained. The must modified variables have the Definite
modification type. The variables which are may but not must
modified, have Possible modification type. A variable that is
not may modified, has No modification type.

2) Computation of regional values: A data flow formaliza-
tion similar to the formalizations shown in Table III can be
used to compute the regional values. Due to space constraints,
we avoid providing a separate formalization for regional values
computation.

IV. EXPERIMENTAL RESULTS

This section describes various experiments performed to
verify the Sleep Wakeup protocols and observations from the
results.

43Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            52 / 96



TABLE III
DFA FORMALIZATIONS FOR REGIONAL MODIFICATION TYPES

Parameter Must Modified Variables May Modified Variables
Initialization (Top) Set of all variables in the application ∅
Meet/Join Intersection Union

Inn =

 ∅ n is start of a function⋂
pεpred(n)

Outp Otherwise

 ∅ n is start of a function⋃
pεpred(n)

Outp Otherwise

Outn = Inn + Genn Inn + Genn

Genn =


Top n is an out-region point
v n is an in-region point and defines v

∅ Otherwise

{
v n is an in-region point and defines v

∅ Otherwise

We implemented the described Sleep Wakeup protocol
verification technique in TCS Embedded Code Analyzer (TCS
ECA) [9]. TCS ECA is a static analysis tool to verify C
source code. We selected two C applications from automotive
industry, one of 56 KLOC representing automobile Body Con-
trol Module (BDCM) and another of 40 KLOC representing
automobile Battery Control Module (BTCM). The boundaries
of the Startup, Sleep, and Wakeup regions from both the
applications were provided as inputs to TCS ECA during
verification of the protocols. Table IV presents information
about each of the regions from the selected protocols. This
information includes size of the region, number of variables
with the Definite modification types (DMTVs), and number of
variables with the Possible modification type (PMTVs).

TABLE IV
REGIONAL ANALYSIS RESULTS

Application Region LOC DMTVs PMTVs

BDCM
Startup 3168 302 283
Sleep 838 32 65

Wakeup 3193 299 288

BTCM
Startup 2246 59 150
Sleep 1150 62 18

Wakeup 2246 59 150

TABLE V
COUNTS OF REGIONAL (IN)CONSISTENCIES

Appli- Startup Vs Wakeup Sleep Vs Wakeup
cation RMTIs RMTCs RVIs RVCs Register

RMTIs
Register
RMTCs

BDCM 413 186 143 544 66 33
BTCM 150 59 48 161 48 32

A. Observations from protocols verification

Table V presents the summary of the verification results of
the selected Sleep Wakeup protocols. In this table, RMTCs
(RMTIs) denotes count of the regional modification type
consistencies (inconsistencies), and the RVCs (RVIs) denotes
count of the regional values consistencies (inconsistencies).

BDCM Application: Large number of inconsistencies were
reported for this application due to possible modification types,
and its reason was traced to the conditional calls of the

functions that initialized the registers/variables in the Wakeup
region. Manual review of all the reported inconsistencies,
performed by the system developers, took around two hours
of manual efforts. Few observations from this activity are
mentioned below.

• The review of the RMTIs in Startup Vs Wakeup com-
bination revealed possible miss of configuration of four
hardware pins in the Startup region. This was due to
conditional call of the function that configured the hard-
ware pins. Also, review of these inconsistencies indicated
that initializations to two global variables were definitely
missed in the Wakeup region, and each miss was found
to be a coding defect.

• One inconsistency among the reported 86 register RMTIs
in Sleep Vs Wakeup combination indicated presence of
critical defect, which was due to miss of disabling of the
DMA controller in the Sleep region.

• None of the regional values inconsistency in Startup Vs
Wakeup represented a coding defect.

BTCM Application: The Startup and Wakeup regions in
BTCM were found to be overlapping, hence the inconsisten-
cies reported for this combination were not manually reviewed.
On manual review, none of the register modification inconsis-
tency in Sleep Vs Wakeup represented a coding defect. This
manual review took around 20 minutes.

B. Other Observations

Inconsistencies-based verification Vs Manual Code Review:
We performed an experiment to check effectiveness of the
presented verification technique against the manual code re-
view. In this experiment, a developer manually reviewed the
protocol code in BDCM application to identify the defects.
After six hours of reviewing efforts, the developer was able
to identify only one defect related to the miss of disabling of
DMA controller, and the other defects were not found during
the review. This experiment indicated the presented technique
is useful in detecting more bugs which are usually missed
during code reviews.

Inconsistencies-based verification Vs Testing: Both the se-
lected applications were after their testing at unit and sys-
tem levels. The testing of the selected BDCM application
was unable to detect the defects that were detected by the

44Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            53 / 96



inconsistencies-based verification approach. It indicated the ef-
fectiveness of the presented verification technique in detecting
defects which are hard to find during testing.

Impact of conservative approach: We performed few exper-
iments to observe impact of the conservative approach taken
during the computation of inconsistencies. These experiments
indicated that around 55% of the reported inconsistencies were
due to treating a comparison of two possible modification
types as an inconsistency. In our experiments, although the
inconsistencies due to conservative approach did not contribute
in defects identification, we believe such an approach may
benefit on some other applications. Further, these experiments
indicate that the conservative approach can be avoided in order
to generate fewer false alarms at the cost of miss of detection
some defects.

V. RELATED WORK

Coding inconsistencies have been used earlier for bugs
detection. Engler et al. [10] used automated rule extraction
to get the programmer beliefs, and one of the contradictory
beliefs are treated as an error. Lu et al. [11] have used
an inconsistency in updates to the correlated variables for
semantic bugs detection. To the best of our knowledge, such
coding inconsistencies detection has not been used in the
verification of protocol implementations. In our presented
technique, the information with which the inconsistencies are
computed is critical to the protocol functionality, and it is
based on the (dis)similarity of the actions implemented by
protocol regions. This regional information is different from
the information used by the existing techniques [10][11].

There are a number of protocols corresponding to security,
communications, cryptography (data encryption), routing in
networks, etc, and many approaches have been proposed to
verify their implementations. These approaches use a variety
of techniques such as predicate abstraction [12], patterns-based
verification [13], model checking, heuristic search, or their
combinations [14]. The approaches used and categories of the
bugs detected by these techniques are protocol-specific. None
of these techniques break a complex protocol implementation
into the similar or opposite functionality regions and achieve
the protocol verification.

Regional analysis has been used mostly earlier for effective
memory management [15][16] and efficient solving of the data
flow analysis [17], but it has been rarely used in protocol
verifications. In these existing techniques, the regions to be
analyzed are automatically identified, where the region bound-
aries belonged to the same function. Our presented regional
analysis framework analyzes a given region whose boundaries
can appear anywhere in the application.

VI. CONCLUSION AND FUTURE WORK

An idea to break a complex implementation of a protocol
into similar or opposite regions and an approach for their
verification was presented in this paper. Detecting inconsis-
tencies over the multiple regions of a protocol is an effective
verification technique, since there could be a mismatch in

their implementations due to coding by multiple developers
and its multi-place distribution. Further, discovering such an
inconsistency and its associated defect may not be easy using
manual reviews and/or conventional testing techniques. Similar
have been our observations during the experiments, which
indicated usefulness of the presented technique in detection
of the critical defects.

The thorough manual review of the reported inconsistencies
increased our confidence about correctness of the protocol
implementation. This process acted as a systematic review
of the implementations, which would have not been possible
otherwise. Although the experiments are performed on Sleep
Wakeup protocols in embedded domain applications coded
in C, we expect similar benefits on other domain/language
protocols too, due to common coding practices.

Like any other static analysis technique, our experiments
depicted a very high rate of false alarms (around 98%) for
the presented verification technique. We plan to work on
minimizing falsely reported inconsistencies in the near future.
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Abstract— Testing traditionally focuses on specific aspects of a 

system separately, such as functional conformance, robustness 

and performance. In this paper, we present a protocol test 

automation framework that considers these different 

viewpoints as a whole. It starts with a common architecture for 

protocol testing at different scales. A set of test models on top 

of this architecture are presented for addressing the different 

types of testing. Each of these models builds on top of another, 

starting with conformance testing, followed by robustness 

testing and finally overall performance testing. We apply the 

framework to session initiation protocol (SIP). 

Keywords- Test automation, framework, sip, protocol testing 

I.  INTRODUCTION 

Testing is a multifaceted discipline. It needs to verify 
various aspects of system behavior, including performance, 
robustness, and functional conformance. Different types of 
testing further have various coverage criteria, many specific 
to the type of testing and to the domain of the system under 
test (SUT). Covering these different types of testing and their 
different coverage criteria extensively can be very expensive. 
Commonly each system is also different, and creating largely 
re-usable test automation frameworks and test suites is 
difficult. In such cases, we commonly choose the most 
critical pieces of the SUT and target most of our coverage on 
those parts. 

When systems are based on a set of standardized 
protocols, the test frameworks and test suites for those parts 
can be more extensively re-used and potential for extensive 
test automation frameworks is higher. A test framework for a 
standardized protocol can be applied on many different 
systems. In fact, protocol testing is an active field of research 
and various tools for testing different aspects of different 
protocols exist. A large scale example of this is the protocol 
conformance testing effort by Microsoft for testing more 
than 250 protocols [1]. For robustness testing, another 
example is protocol fuzzers which are a popular type of tool 
used to test robustness protocol implementations [2] and a 
popular research topic (e.g., [3, 4]). Fuzzers manipulate the 
protocol messages and the contained data to evaluate how 
the implementation can handle malformed inputs. 

However, while there exist a wide range of protocol 
testing research and tools, these traditionally target a narrow 
part of the overall quality assurance for a protocol and the 
system built using that protocol. In this paper, we present a 
holistic test automation framework for protocol testing. It is 
aimed at supporting testing the protocol implementation at 
the basic protocol stack level, testing the protocol application 
to communication between two nodes, and to testing the 

application of the protocol to the overall communication in a 
large distributed system. It is also aimed at supporting 
conformance testing, robustness testing, and performance 
testing using model-based techniques with each testing type 
building on top of the previous one. 

While some adaptation of the framework architecture is 
required in going from testing a protocol stack in isolation to 
testing the protocol use at larger scale, defining the overall 
common concepts enables us to build reusable components 
for the overall framework and to systematically build better 
quality into the different layers. With the different model-
based test approaches we gain a diverse coverage for 
different types of testing, while reducing the costs in building 
the different models as layers on top of each other. 

As our work on this has been practically performed in the 
context of the session initiation protocol (SIP), we present 
the application of the framework and its specialization for 
SIP as a running example throughout the paper. 

The rest of the paper is structured as follows. Section II 
introduces the important background concepts and related 
works. Section III presents the components of our framework 
architecture. Section IV presents the set of test models for 
different types of testing and their composition. Section V 
discusses the concepts more broadly, and finally conclusions 
end the paper.  

II. BACKGROUND AND RELATED WORKS 

In this section, we give a brief introduction to relevant 
concepts for this paper, and present related works in protocol 
testing. 

A. Session Initiation Protocol (SIP) 

Throughout the rest of this paper, we will use session 
initiation protocol (SIP) as a running example to demonstrate 
the relevant concepts. SIP is a protocol used for signaling in 
setting up communication sessions. Typical usage scenario is 
Voice over IP (VoIP), where different endpoints use SIP 
based communications to signal call control flow. Various 
other protocols can then be used for the actual call (such as 
voice and video transport). We focus here only on control 
flow signaling which is what the SIP protocol is for. Figure 1 
illustrates the basic call flow in such scenario. 

Beyond this basic call setup shown in Figure 1, there can 
be various configurations such as the call going through one 
or more proxies, changing call details in mid-call (e.g., re-
negotiating quality parameters), or several parties together 
negotiating a conference call. Figure 2 illustrates these 
different configurations from the testing perspective in four 
different cases (A-D). 
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Figure 1. Basic SIP call flow. 
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Figure 2. SIP system configurations. 

In the rest of the paper, we will refer to these different 
scenarios in Figure 2 as scenarios A, B, C and D, or more 
generally scenarios A-D. In scenario A, we test the protocol 
stack in isolation as a single unit (or module). In scenario B, 
we test two devices communicating directly with each other. 
In scenario C, we test two devices communicating with a 
server connecting them. In scenario D, we have multiple 
devices all communicating together in a single call session, 
potentially across several servers as well. Sometimes these 
clients can also move during the call between servers 
(mobile clients). We will look at testing these in more detail 
in Section III with our test framework architecture and in 
Section IV with our test models. 

B. Model-Based Testing 

Model-based testing (MBT) is a concept we use widely 
in this paper. We follow the definition of MBT given in [5] 
as “generation of test cases with oracles from a behavioral 
model”. That is, the system is described using a behavioral 
model, in our case as a set of rules and actions, and test cases 

to exercise the behavior of interest are generated from these 
models by a test generator tool. SIP conformance testing is a 
case study quite often used in the MBT literature [5]. 
However, as we discuss in Section II.C, the existing work is 
mainly limited to conformance testing and in this paper, we 
discuss this more broadly with also applications to non-
functional testing of robustness and performance.  

As mentioned, our use of MBT is based on test models 
defining a set of rules and actions. In this case, the actions 
define some functions to be executed on the SUT. In the case 
of SIP these actions are typically sending SIP request 
messages. The rules in the test model define when each of 
these actions are allowed. Following these rules, a test 
generator can then produce a set of test cases following the 
test specification (the test model). As the generator follows 
the rules, it produces valid test cases. These are valid from 
the test model perspective, and thus we can also define, for 
example, a robustness test model for producing invalid data 
and invalid sequences. In such a case, the test model will 
describe the types of invalid data we are interested in.  

In addition to the SIP requests in the test model, SIP 
responses are handled by the overall test framework as we 
will discuss in Section III. All these elements are linked to 
form the overall test framework, including test oracles at 
chosen detail level. 

Figure 3 shows some example rules and actions for 
testing a single device SIP scenario. The solid boxes are the 
actions and the attached dashed boxes are the rules for those 
actions.  

[Reg., No call]
INVITE

[Call on]
BYE

[Unregistered]
REGISTER

[Registered]
UNREGISTER

 
Figure 3. Example rules and actions. 

In this case, the names in the action boxes in Figure 3 are 
different SIP request messages. For example, invite is a 
message used in SIP to establish a call between two parties. 
However, if a SIP proxy server is used, the parties (SIP user 
agents) have to register with the SIP server to allow the call 
(the “registered” rule in Figure 3). This is only allowed if not 
yet registered, and the registration action updates the model 
state to registered. Once registered, invite is then allowed. 
After a call is established, it can be terminated using the bye 
message.  

The model in our case is a form of a model program, 
implemented to send the SIP messages for these actions and 
to maintain the state of the test client. This state is then used 
in the rules to define when actions are allowed. This is a 
common approach to MBT as described in e.g. [5, 1]. 

In addition to sending request messages, the tester needs 
to be able to handle other protocol messages as well. For 
example, the Trying, OK and ACK messages shown in 
Figure 1 cannot be expressed as actions as they are not 
actions initiated by the test client (or the test model). Instead, 
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the test framework must be able to process such received 
messages from the test target(s), update its state (e.g., call 
established) and to check that required responses are 
received correctly (such as Trying message when expected). 
That is, the basic functionality of the protocol should be a 
part of the test framework and the test model is built on top 
of this. Verification of this test framework then comes from 
its application to several test targets, each providing a 
verification of the applied test framework itself. 

C. SIP Protocol Testing 

One the largest efforts in protocol testing is the Microsoft 
protocol documentation assurance effort described in [1] for 
testing more than 250 different protocols to ensure 
documentation quality and regulatory conformance. The 
process and tools to perform this validation have been 
described in detail in [1]. Conformance testing for a protocol 
includes describing the expected normative behavior of the 
protocol, meaning the allowed and required messages, their 
sequences and the data values. In the Microsoft case, both 
model-based and manual test creation methods were used, 
which in our experience reflects the general good test 
automation practices. In such a case, a test model reflects the 
protocol behavior, and test cases can be generated with a 
MBT tool from this model. Test execution is built on top of a 
component based adapter layer, which also forms a basis for 
creating manual test cases as required. Our general test 
automation architecture adapts elements from this and 
includes addressing also larger scale distributed systems and 
different robustness and performance testing. It thus also 
enables more complex and realistic test scenarios. 

An example test automation framework for SIP 
conformance testing is presented in [6]. In this case, the 
framework provides a simulated SIP service environment 
that can be configured to provide different responses and 
services for SIP user agents. For example, an emulated user 
agent can be configured to perform call forwarding for a 
specific user, allowing the tester to focus on scenarios that 
make use of such SIP services. The work in [6] is aimed at 
conformance testing of different services built on top of SIP, 
and non-functional testing (performance) is left out of scope. 

A test automation framework for performance testing is 
presented in [7]. This framework uses existing SIP platforms 
and tools such as SailFin [8] and SIPp [9] to generate 
different types of traffic to test performance of SIP agents. 
This includes traffic bursts, linearly increasing traffic and 
other such usage profiles. Mentioned problems include 
difficulty to implement complex interactions between agents 
as well as control of generated traffic due to limitations of 
the third party tools used for generating traffic. That is, the 
external tools used do not have support for the required level 
of control in fine grained performance testing. We use 
similar traffic profiles as part of our performance models, 
and integrate these with conformance and robustness test 
models. 

A test automation approach based on passive monitoring 
of operational SIP based systems is presented in [10]. In this 
case, the idea is to describe the system expected behavior as 
a set of formalized properties, and use operational 

monitoring to assess whether the observed system behavior 
matches this expected specification. A similar approach 
taken in [11] provides a general specification of a protocol, 
creating a model of system behavior in different phases 
starting from observing network traffic to grouping it as 
transactions and dialogs. Finally, these are compared to the 
set of rules given in the specification. We do not explicitly 
do this type of passive monitoring as we also perform active 
generation of request messages. However, the part of our test 
framework related to listening for response messages and 
asserting the overall system behaviour based on those 
responses and their relation to test model state uses similar 
concepts. 

During performance testing, we have to collect various 
metrics on system performance to evaluate how the different 
actions and parameters applied affect the performance. These 
measurements are collected by deployed probes, which can 
be located on the different nodes in a distributed system, or 
measuring the connecting network. For example, [12] 
describes using numerous measures collected such as CPU 
load, network load, interrupts and context switches on SUT 
nodes as a basis for a performance model. These are 
combined to form a detailed view of how the different 
components in the system affect the system performance.  A 
high-level, specific, metric for performance testing of 
networked services is suggested in [13] as throughput. 
Throughput here means the number of requests (or 
transactions) performed on the system over a given time unit 
(such as a minute). In summary, we need both a high-level 
definition of what system overall performance means for us, 
as well as means to find the bottlenecks when relevant. In 
our case, we use the number of SIP messages processed as a 
basic metric, and focus using more detailed probes where 
necessary. 

For robustness testing, a stateful fuzzer for SIP is 
presented in [3]. This is based on two components: syntax 
fuzzer and state evaluator. Besides the traditional data 
fuzzing and checking of aliveness of SUT, this approach also 
checks that the correct responses (state transitions) are 
observed on the SUT and that the data provided in these 
responses is valid. Checks on the SUT are performed using 
basic protocol messages to verify the SUT is alive and in 
correct state. To describe the SUT behavior in [3], a state-
machine is learned from observing the protocol 
implementation. Messages are associated to different 
simulated clients and separate state-machines are upheld for 
each, to check responses and transactions against. Different 
combinations and mutations of messages are used to provide 
fuzzed messages where different field values are modified 
using protocol knowledge for invalid messages and where 
some field can be repeated or otherwise the overall structure 
fuzzed. 

A method coverage analysis for protocol fuzzing is 
presented in [4]. Constraints for message formats and 
processing are defined based on protocol specification 
analysis. The constraints are formally specified and a test 
generator is used to generate fuzz tests to cover them. 
Sometimes effectively fuzzing different parts of the protocol 
and interactions may require accessing deeper parts of the 
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protocol state-machine, requiring techniques similar to [3] in 
initiating the protocol to initial phases before fuzzing. 

A fuzzing tool for SIP softphones is presented in [14]. 
This is based on defining templates that identify specific data 
values to fuzz for different SIP messages. The SUT is then 
driven to specific states using scripts and these fuzzed 
messages are injected at these locations in the protocol flow. 
Additional generic SIP specific fuzzing algorithms are also 
used, such as re-ordering of SIP headers and defining 
patterns of specific SIP data vulnerabilities. Finally, the SUT 
is monitored to evaluate whether it crashes or produces 
invalid responses.  

In [15], performance and robustness testing are combined 
to evaluate robustness of the system under heavy load. 
Different types of attacks against SIP based systems are 
defined, a specific valid load is generated on the system, 
after which different attack types are launched. System 
performance is measured before, during, and after the attack. 
The results indicate system performance in face of attacks 
under different loads both temporarily and long term. 

III. SIP TESTER ARCHITECTURE 

To address both the need to test the different 
configurations (A-D) described in Figure 2, and the different 
types of testing we are interested in (conformance, 
performance, robustness) we have to consider both a test 
framework architecture for executing tests and a set of 
different test models for generating tests. The architecture 
needs to support both manual test creation and execution, as 
well as test generation (and execution) from test models. 
This means considering the different aspects similar to 
discussed in [1] but also considering a broader context of 
testing interacting systems and not just the protocol stack. 
The following subsections describe our test framework 
architecture, which is illustrated in Figure 4 (S illustrates the 
shared state). The test models will be described in Section 
IV. 

Test Client

Protocol Stack

Output 
Modifier

SUT

Verification 
Engine

Test
Controller

S

 

Figure 4. Component Architecture. 

A. Protocol Stack 

To be able to use the tested protocol and evaluate the 
SUT against it, the test framework also has to implement the 
basic protocol stack. This consists of parsing and creating 
messages, and delivering these across the network. 
Optimally, existing code or an available stack such as an 
open-source implementation can be re-used. However, 
sometimes this is not possible due to issues related to the test 
framework requiring high degree of control and observability 

over the protocol, which may not have been factors in 
building some of the available tools and libraries. 

In our case, we have implemented our test environment 
in Java and used the Jain-SIP protocol stack implementation 
[16]. In this case, our experience has been that using this 
type of an open-source stack can save some time initially in 
getting started, but the control and visibility over protocol 
details is limited. Also, some of the functionality is limited 
such as lack for proper SIP authentication support. Lack of 
control and visibility is due to regular user not requiring 
detailed access to protocol manipulation, and attempting to 
abstract some parts of the protocol from the user where 
possible, such as SIP dialog control. However, in order to 
build a protocol tester, we need to understand the protocol 
and be able to verify its specifications in sufficient detail. For 
this reason, as we need to know and understand the details 
anyway, we find it better to actually implement the stack, at 
least for the most parts on our own. 

As such, we conclude that to have a robust and powerful 
base for a protocol tester we need our own highly reliable, 
configurable and observable stack. In an optimal case, we 
can write one. In practice, resources for this may not be 
available especially for more complex protocols. In such 
cases, we need to look at our options with available stacks or 
with directly using an existing protocol client (such as a SIP 
softphone or SIP tester such as SIPp [9]). 

B. Test Adapter 

On top of the protocol stack, a test adapter capable of 
performing stateful transactions against a test target has to be 
implemented. The test adapter should support higher level 
functions such as initiating and terminating calls, managing 
responses from the SUT, and maintaining the protocol state 
for itself according to these actions and responses. In this 
sense, it is similar to a SIP softphone but does not have to 
implement a user interface as it is controlled by the test tool. 

There are many existing SIP softphones available (such 
as Twinkle and Linphone), and these can be used if 
programmatic control over them is available. Their 
usefulness depends largely on the extent of remote control 
supported, and the ability to observe details about the results 
and responses from the SUT. In our experience, most of the 
actual SIP clients have limited support or no support at all 
for such control. However, SIPp is a SIP performance test 
tool that does provide many such features. While it is limited 
in its support for detailed control and visibility for 
conformance or robustness testing, it can be a useful starting 
point for fast test automation prototyping for suitable parts. 

Optimally, the test adapter provides a simple and fast 
network interface to control it, create protocol messages, and 
receive notifications about SUT responses. Separating the 
adapter from the rest of the test framework as a separate 
networked service allows for using any tools available to 
implement it and to reuse the controllers and output 
modifier(s), as well as any existing tools and libraries for 
different platforms to build adapters. For example, SIPp 
provides a UDP communication and control interface, and 
similar interfaces are also used by other successful test 
frameworks, such as Selenium Webdriver for web 
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applications (which creates and sends JSON requests over 
the network). This also allows building different controllers 
on different platforms, using the same adapters, when 
required. 

To summarize, optimally the test adapter provides a 
stateless control and observation interface to the underlying 
protocol. This allows the test controller to create various 
types of protocol messages and observe the results at a 
selected level of detail. 

C. Test Controller 

To produce actual, executable test cases, a test controller 
is required. In the case of manually scripted test cases, this 
executes the given scripts using the test adapter. In the case 
of using a test generator, this generates the scripts based on a 
test model and executes them using the test adapter. In a 
distributed multi-client scenario similar to scenario D in 
Figure 2, the controller manages several adapters in parallel. 

The controller upholds the test state. When testing 
scenarios B and C, this means keeping track of the current 
state of the test client. When testing scenario D, this means 
tracking all the different test adapters and their connections. 
It shares this state with the verification engine, which makes 
assertions about the correct responses received from the SUT 
based on the controller actions. The adapters can be 
distributed across the network or on a single machine. 

D. Verification Engine 

A central part of testing is the test oracle, which is a 
component used to verify that the expected properties hold at 
the selected points of time in the testing process. For 
different types of tests, different types of verification engines 
are required. In conformance testing, the received responses 
are typically checked after specific actions (such as initiating 
a call) have been performed. In performance testing, we are 
interested in measuring the response times to the messages 
and collecting various metrics on the SUT to assess the 
impact of test load. In robustness testing, we are interested in 
observing the state of the target system and using this 
information to make assertions about how invalid inputs 
impact the SUT state and responses. 

The verification engine performs these various checks to 
evaluate test results during system operation. The checks 
performed can be split into passive and active checks. Active 
checks are performed as specific checks at specific points in 
the test execution, e.g., to establish that response messages 
such as TRYING, ACK, and OK are received when required 
and contain the correct data related to their associated 
requests. Examples of passive checks would be to track that 
messages that require a dialog should not be received outside 
dialogs, or to continuously ping the SUT to ensure it is alive.  

For active verification, the verification engine has to 
share state with the test controller to be able to make the 
required assertions. For some forms of passive verification 
such as pinging the SUT this is not required but the 
verification engine still has to communicate back to the test 
controller to notify of any failed checks. This then fails the 
executed test and reports the results back to the user. 

E. Output Modifier 

The output modifier is used by the test controller during 
robustness testing to invoke specific modifications on the 
input messages produced by the test client. Test data is 
passed through the output modifier and forwarded to the 
SUT. During robustness testing, the test controller can enable 
different types of fuzzing patterns to be applied to the data, 
while during other types of testing the output can be 
forwarded as is. 

IV. TEST MODELS 

This section discusses different types of test models we 
use for testing conformance, performance and robustness and 
how these relate to the architecture. The basis is the 
conformance test model, and the other models specialize and 
extend it in different ways. These models are also different 
depending on the type of scenario addressed. For scenario A, 
the models target the protocol stack functionality, 
performance and robustness. For scenarios B and C, the 
models target the interactions of a single client with other 
nodes in the network. For scenario D, the models target the 
overall system behaviour. In our testing, we have focused at 
the level of scenarios B-D, and assume that the stack will be 
tested sufficiently as part of these test cases and separately at 
unit and component testing level by the developers. 

While describing these as test models implies our 
preference towards model-based test generation, it is equally 
possible to use the information in the models to create test 
cases manually. The test model is used by the test controller 
as a part of the overall test framework. 

A. Conformance Test Models 

The conformance model describes the expected 
functional behavior of the SUT as described by its 
specification. In the case of scenarios B and C, this is the SIP 
RFC 3261 [17]. In scenario D, the specification describes the 
expected behaviour of the overall system and its interactions. 
Table I lists the basic rules and actions for the scenario B and 
C model. Table II lists the basic rules and actions for the 
scenario D model. 

TABLE I. SCENARIO B AND C MODEL ELEMENTS. 

ID Rules Action 

S_R Unregistered Register 

S_U Registered Unregister 

S_I Registered, No Call Invite 

S_C Registered, Calling Cancel 

S_O Registered Options 

S_B Registered, Call On Bye 

S_M Registered Message 

The actions in Table I are basically the SIP request 
messages as described in [17]. For scenario B and C, the test 
model is focused on generating requests to interact with the 
SUT. In addition to this, the test framework must handle the 
responses from the SUT, such as failures, errors, and 
successes. It must also provide its own responses to such 
messages when required, such as the ACK message to the 
OK for INVITE. In our test framework architecture, the test 
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controller executes the tests and maintains the relevant state 
information to manage the responses. The state information 
describes the protocol interaction state including registration 
status, call invite status, and ongoing call status.  

Additionally, the model has to define the valid data 
values in order to properly evaluate the conformance of the 
system and to expect the correct responses.  

TABLE II. SCENARIO D MODEL ELEMENTS. 

ID Rules Action 

SD_R Phones < MAX_P Register Phone 

SD_U Phones > 0 Unregister Phone 

SD_I Free Phones >= 2 Initiate Call 

SD_T Busy Phones > 0 Terminate Call 

SD_S Servers < MAX_S Start Server 

SD_X Servers > 0 Stop Server 

For scenario D, our model is focused on testing high-
level interactions of different communicating entities in the 
overall system. As illustrated in Figure 2-D, there may be 
several servers and phones or other SIP user agents in the 
system, connected in various ways. The actions shown in 
Table II allow dynamic creation of such configurations and 
to establish and terminate connections between the nodes. 
Test framework/model state in this case consists of the nodes 
and their status. The state for SIP clients is the same as for 
scenario B and C, including the connected nodes in a call. 
The SUT in this case is the overall system interactions. The 
model of a SIP phone described in Table I can be used to 
represent a phone, which is controlled by an overall system 
test model. 

The test oracles for the verification engine in the 
conformance model are checks of the test model state against 
the SUT state. This means we will check that when the SUT 
should accept a call, the invite message passes and the call is 
established. Similarly, when registration should succeed, the 
response is expected to be a success. After an invite has been 
performed but before the call is started, a cancel message 
should stop the call from starting. Once a call is started, a bye 
message should stop the call and allow re-starting a new call 
with another invite. Similar checks are performed at every 
point during the execution of a generated test case with 
regards to every request message performed, and every 
response message received. As the test controller maintains 
the system state according to performed actions, it can 
automatically verify all these properties with minimal effort. 

B. Robustness Test Models 

We define robustness according to the IEEE glossary as 
“The degree to which a system or component can function 
correctly in the presence of invalid inputs or stressful 
environmental conditions.” [18]. In our robustness models, 
we consider both invalid interaction sequences as well as 
invalid input data. We represent the interaction sequences 
with similar models to the conformance model, and the input 
data using the output modifier configured with message 
modification patterns. 

Defining invalid inputs and their expected responses 
explicitly can be challenging as many protocol definitions 

have required parts (must) and optional parts (may). In many 
cases, also ambiguities exist and different implementations 
have taken different interpretations of these. Due to this, we 
classify any issues observed either as warnings or errors. 
Warnings are issues related to potential issues, while errors 
indicate clear problems in the implementation. 

Our robustness models specialize the conformance 
models by changing specific parts of the models to produce 
invalid interaction sequences and data. We call these 
specializations robustness model patterns. To do this, several 
mechanisms of our MBT tool [19] are used. These are model 
composition, startup-sequences, and model slicing. 

Model composition refers to combining several separate 
model objects together. The normative model elements are 
expressed using the conformance models as shown in Table I 
and Table II. The invalid sequences are in a separate model 
object that is combined with the conformance model by the 
test generator. If we call the conformance model C and the 
robustness model R, the actual base test model T is their 

union, T = C ∪ R. Example robustness rules and actions for 

the model in Table I are shown in Table III. 

TABLE III. ROBUSTNESS MODEL ELEMENTS. 

ID Rules Action 

SR_R Registered Register 

SR_U Unregistered Unregister 

SR_I SUT in call Invite 

SR_C SUT not called Cancel 

SR_O Not registered Options 

SR_B No call with SUT Bye 

SR_M Not registered Message 

Startup-sequences are used to initiate the SUT into a state 
of interest for the robustness test pattern. These can be used 
to drive the initial test generation to a specific state by 
making the generator take a specific set of steps before 
starting its own algorithmic generation. For example, we can 
define one from the model in Table II as “Register, Invite”, 
which means the generator will start all test cases with this 
sequence and thus the tests will start from a valid registered 
state with a valid initiated call started with the SUT. 

Model slicing allows us to define which parts of the 
model are to be used for generation and how much they are 

used. If we take the test model T = C ∪ R, the sliced model 

S is then a subset of T, S ⊂ T. The slice can either remove a 
step from T completely or limit the number of times it can 
appear in T. The slice does not affect the startup sequence 
and the startup sequence does not affect the slice, allowing 
these to independently define different elements of the 
robustness test scenario. For example, the slice may forbid 
any invite messages but the startup sequence can still use 
them as the slice only affects parts after startup. 

As an example, let us show a pattern for robustness 
testing registration handling for a single node during an 
ongoing call. This is illustrated in Table IV. In this case our 

model is T = C ∪ R as discussed, where C equals the model 

shown in Table I and R equals the model shown in Table III. 
Using this pattern configuration, the generator will generate 
sequences that always start with valid register and invite 
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messages. This is then followed by any allowed messages 
except bye, which is forbidden by the slice. Notice that this 
pattern also includes and allows all steps in R. 

TABLE IV. EXAMPLE ROBUSTNESS PATTERN. 

Element Value 

Startup S_R, S_I 

Slice !S_B 

Additionally, the output modifier patterns change the 
created messages in various ways: 

 Duplicate headers and message parameters 

 Remove headers and message parameters 

 Modify headers and message parameters 
When running robustness tests, the test oracle definitions 

require some special attention. We can define how each of 
the invalid input producing steps should impact the SUT 
operation and state. Typically this would be to ignore the 
input with invalid data or sequences. In other cases we can 
also define specific impacts and update state accordingly. 
For example, if we consider security vulnerability scanning 
as part of robustness, some specially crafted input for such 
tests can be considered valid but should have no unwanted 
side-effects. In these cases, we should update the state in 
those steps, and evaluate the oracles accordingly. 

However, due to different specification interpretations or 
desire to provide flexibility in communicating with other 
endpoints of varying quality, the responses to some of the 
robustness input may differ, and the SUT may accept some 
of them as valid. For example, duplicate headers produced 
by the output modifier may be interpreted as an issue or not 
in the SUT. In such cases, we can choose to disable some of 
the more strict oracles for those models and tests generated 
from them and focus on the more generic ones to check the 
system for generic properties such as not crashing or ending 
up in a bad state for any node, or consume excess resources 
over time. 

For such cases, the test oracles that make such assertions 
can also be represented as their own model object(s). The 

test model T then becomes T = C ∪ R ∪ O, where O is the 

model object holding these oracles. By removing O, or parts 
of it, from the equation, the oracles can be disabled as 
required. In any case, as mentioned the generic test oracles 
are always valid, such as pinging the SUT and checking error 
codes. These can also be configured to run at specific 
intervals to check for general properties in, e.g., long running 
performance tests. 

C. Performance Test Models 

Our performance test models are combinations of 
different configurations of the conformance and robustness 
test models. They are intended to explore the performance 
limits of the SUT under different environment and load 
conditions. They represent different usage scenarios for 
different types of user profiles in the system. Basically we 
use our conformance test models as valid client type and the 
robustness model instances as another (invalid) client types.  

Similar to [7], we use different types of traffic patterns 
for specific user profiles, such as traffic bursts and linear 

increase in traffic. We start with our conformance test model 
clients as the reference set of providing the system 
performance under these different types of varying load. 
Once we have this model, we apply our different types of 
robustness test patterns as clients to represent invalid data, 
similar to attacks discussed in [15]. Finally, we re-run the 
initial reference test set with the conformance test clients for 
valid data and compare the results with the initial run before 
invalid data was used. We then use these results to give us a 
model for the overall system performance under different 
types of load. 

V. DISCUSSION 

While we have described a composition of model objects 
as one for the conformance test model and another for the 
robustness model, and using model composition and scenario 
slicing to create robustness patters, it is possible to further 
decompose these models as much as desired. The actual 
composition we support is not limited in the number of 
model objects and thus the operation can be seen as T = CN 

∪ RN ∪ ON, where N refers to having any number of these 

in the end result. However, in practice we have found that a 
smaller number of model objects makes it much easier to 
manage the overall set of patterns. For a protocol such as 
SIP, where there is a relatively small set of potential 
messages having one C, R, and O has worked well for us. 
For more complex protocols it may be necessary to split 
these further, for example, to make model composition and 
slicing for different test purposes and patterns easier. 

As it is, in the work presented in this paper we have so 
far focused on the SIP protocol. More generally, we see the 
approach applicable more widely to different protocols and 
networked systems. The architecture, conformance and 
robustness models, and robustness pattern definitions simply 
need to be adapted to the new specifications. This means 
creating suitable protocol adapters, and defining the valid 
and invalid sequences to be used for test generation. That is, 
the overall framework and modelling approach is intended to 
be easily specialized for a variety of protocols. 

So far our test execution and generation has focused on a 
single host environment. For now we have found this to be 
sufficient for our testing needs, as modern systems can run 
numerous clients in parallel even on a single multi-core 
system. However, more distributed systems are needed to 
address more realistic usage scenarios as well as to scale to 
very large scale testing. This would also include modelling 
different concurrent users more realistically in terms of 
latencies, burst traffic, occasional robustness scenarios 
interleaved with conformance scenarios, and other similar 
attributes. In our previous work, we have investigated 
distributed model-based test generation [20]. In the future we 
hope to extend also our test framework to make use of this 
type of strategies, including distributed (cloud) deployments. 

Another interesting point of extension for this work is to 
include actual specific security related attacks to the 
robustness patterns. Currently we mainly use fuzzing related 
patterns, which change the inputs in different ways and 
evaluate the SUT robustness. Additionally, specific inputs to 
target specific vulnerabilities in underlying backend systems 
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could be of interest. Generally, we are also looking at 
extending our work to cover more aspects as well, such as 
quality of service for the call under different conditions. 

When executing large scale test cases, the biggest issue 
we observe is making reliable overall assertions about the 
system state. For this reason we have at large scale mostly 
focused on observing overall performance across large sets 
of users. However, when issues are observed from such large 
scale tests, debugging them for root cause analysis can be 
very challenging due to large numbers of different types of 
interacting clients and servers. While these issues are not 
specific to our approach but to large scale testing in general, 
in the future we hope to explore better solutions to these 
issues as well and integrate these into our approach as easily 
applicable solutions. 

VI. CONCLUSIONS 

In this paper, we have presented an architecture, a set of 
test models and ways to compose and slice these to form a 
holistic test framework for the SIP protocol. Our framework 
supports conformance testing, robustness testing, and 
performance testing, with each part building on top of the 
previous, allowing for an effective and extensive 
implementation. We are currently extending the work by 
collecting a wider set of patterns building on top of the 
framework presented in this paper, as well as applying these 
in industry case studies. In the future, we are interested in 
refining this work based on practical applications and 
experiences, and extending it to more diverse set of 
protocols. 
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Abstract— Modern high speed serial buses are generally 
required by specification to achieve a maximum bit error ratio. 
Are these requirements too restrictive? This paper will look at 
a series of studies on Peripheral Component Interconnect 
Express and Serial AT Attachment, investigating the impact of 
bit error ratio on bus performance. The results of these studies 
suggest that typical bit error ratio requirements may be 
conservative. The findings suggest that alternative bus 
performance specifications should be considered that would 
open new possibilities for design, validation and 
manufacturing test tradeoffs. 

Keywords-bit error ratio; BER; electrical validation; high 
speed interconnect; high speed bus; I/O. 

I.  INTRODUCTION 

Modern high speed serial bus specifications generally 
have a requirement for maximum Bit Error Ratio (BER) 
[1][2][3][4].  In this context, bit error ratio is defined as the 
fraction of bits transmitted over the high speed interconnect 
that are interpreted incorrectly at the receiving device—i.e., a 
bit originally transmitted as a “1” is interpreted as a “0” or 
vice-versa. Table I summarizes these for a variety of buses: 
Third Generation Peripheral Component Interconnect 
Express (PCIe Gen 3), 10 Gigabit Ethernet, Serial AT 
Attachment (SATA), and Universal Serial Bus (USB).  Note 
that there is no inherent need or expectation that each 
interface type has the same BER requirement, but the table 
illustrates that 10−12 is quite commonly used. 

Many high speed buses such as the ones listed in Table I 
utilize error detection schemes such as a Cyclical 
Redundancy Check (CRC) at the receiving device to detect 
any signal integrity-induced bit errors that could have 
occurred over the interconnect.  In such a scheme, in the 
event of a detected error, a request is sent to the transmitting 
device to send the data again (a retry).  Ideally, a target BER 
level on an interconnect that employs a CRC check must 
take into account both the effectiveness of the CRC scheme 
with respect to the protected data packet size as well as the 
performance losses that result from error-induced retries on 
the bus.  Although studies and publications on the 
effectiveness of CRC error detection have occurred for 
multiple decades [5][6], as far as the authors know, there 
have been few, if any, studies done on real world 
performance impact at various error rates.  Some theoretical 
calculations of latency impact vs. error percentage have been 
presented [7], but this would not take into account other 
factors that interact with the error retries and contribute to 
the overall performance impact on a true workload.  This 
paper will outline the results of several studies conducted to 

better understand the real world performance impact of 
increasing error rates beyond the specification level.  

TABLE I.  BER SPECIFICATIONS FOR SOME HIGH SPEED BUSES 

Link BER Spec 

PCI Express Gen 3 10-12   [1] 

10 Gigabit Ethernet 10-12   [2] 

SATA 3.x 10-12   [3] 

USB 3.x 10-12   [4] 

 
These studies are interesting in that they provide some 

data justifying room for design tradeoffs.  For example, there 
may be significant cost savings opportunities, trading off 
slight performance impact for lower cost material.  Consider 
the example of a system design with long Peripheral 
Component Interconnect Express (PCIe) bus routing lengths. 
Instead of using more expensive low loss Printed Circuit 
Board (PCB) material, it may make sense to sacrifice error 
rate and realize a cost savings with standard FR4 PCBs. 
Likewise, there may be power reduction opportunities for 
low power devices, trading off performance for lower power 
operation, without sacrificing data integrity. 

It is easy to show through either empirical measurements 
or theoretical arguments that the bus BER of a product is a 
distribution when measured across multiple instances of that 
product.  Factors that induce this distribution include, 
among other things, the variations in the characteristics of 
the board interconnects, receiver circuitry, and transmitter 
circuitry.  For example, in the voltage domain of the bus 
signal, these factors lead to a distribution of the electrical 
margin, Vm, where Vm represents the amount of voltage 
swing at the receiving device beyond the minimum required 
voltage detection threshold.   

To simplify the example, consider an ideal case where 
there is no noise in the system when Vm is measured, i.e., 
Vm is the noise-free voltage signal margin.  In a real system, 
bit errors result from noise adding or subtracting from this 
margin.  In a zero-mean additive white Gaussian noise 
model such as that described in [8], the Vm distribution may 
be mapped into a BER distribution via the following 
relationship: 

 dxe
2πσ

1 2

2

m

2σ

x

V




BER , (1) 

 
where σ is the standard deviation of the Gaussian noise. 
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Figure 1.  Conceptual illustration of bus BER distribution across different 
units 

Fig. 1 is an example illustration of a BER distribution 
that could result from a Gaussian distribution of Vm.  The 
specifications are a hard cut off at maximum BER limit, like 
10-12. In reality, the BER performance of every lane on every 
channel on every board is different.  Is it acceptable that a 
small portion of lanes are slightly above the BER spec if the 
performance impact is negligible?  Are these systems really 
considered bad if there is no noticeable performance impact 
to the end user?  If it were acceptable to ship some portion of 
systems at a higher BER, there may be substantial benefit, 
such as the opportunity to reduce silicon test time 
requirements. 

II. PERFORMANCE IMPACT EXPERIMENT OVERVIEW 

In order to measure the performance impact of BER 
levels above specification, four different high speed serial 
bus usage scenarios were studied:  

 a PCIe Gen 3 bus used with a graphics add-in card 
 a PCIe Gen 3 test add-in card utilized for easy 

measurement of data mismatch errors 
 PCIe Gen 3 used as an interconnect between a CPU 

and Platform Control Hub (PCH) 
 a Serial ATA (SATA) 6 Gb/s interconnect attached 

to a hard disk drive. 
 
In all experiments, techniques were used to induce 

different BER levels on the link, either by  
 changing the voltage or timing sampling at the 

receiving device to be offset with respect to the data 
eye center 

 error injection at the receiver, or 
 voltage swing attenuation at the transmitting device.   
 
Then, with this induced BER present, performance 

benchmarks were run that specifically focused on the I/O 
being studied.  In some cases, the BER was able to be 
monitored at the same time as the performance, whereas in 
other cases, BER had to be measured first in a loopback 
scheme before running the performance benchmark at the 

same settings.  In all cases, experiments were re-run at least 
one time to confirm the performance results quoted. 

 

III. PERFORMANCE DATA COLLECTION AND RESULTS 

A. PCIe Gen 3 used with a graphics add-in card 

In the first experiment, the PCIe Gen 3 bus studied was 
the interconnect between a 3rd Generation Intel Core i7 
Processor and a PCIe graphics Add-In Card (AIC).  Four 
different high-performance graphics cards were included in 
the experiment, spanning three different vendors.  Graphics 
card settings were set to produce maximum performance; 
future studies will also include studies with the scenario 
where hardware acceleration is turned off.  Three different 
commercially available graphics-intensive benchmarks were 
run during the experiment: Codemasters Dirt 3, a graphics-
intensive racing game; Unigine Heaven, a graphics-intensive 
benchmark designed to stress graphics AICs, and 3DMark 
Fire Strike, a real-time graphics rendering benchmark.   In 
this experiment, the degradation of performance vs. BER 
was measured in both directions: in one set-up, the CPU 
receiver experienced the bit errors, and in a separate set of 
measurements, the graphics AIC receiver experienced the bit 
errors.   

The CPU PCIe Receiver (Rx) circuitry had built-in 
validation test hooks that allowed changing the location of 
the sampling point in the time domain with respect to the 
data eye center.  By offsetting the sampling point away from 
the data eye center, bit errors could be induced at the 
receiver.     

In the first step, the BER vs. time sampling offset was 
established by sending a known random bit sequence out the 
CPU transmitter and receiving the same bit sequence at the 
CPU receiver.  This was accomplished via the far-end digital 
loopback mode supported by all PCIe spec-compliant 
components.  In this mode, the AIC received and interpreted 
the data transmitted by the CPU and then retransmitted the 
same data back to the CPU.  Received data at the CPU was 
compared to the CPU transmitted data to detect the level of 
bit errors at each sampling offset point.  Note as sampling 
offset moved closer to nominal data eye center, more 
transmitted bits were necessary to detect bit errors.  BER vs. 
sampling offset slope was checked to ensure the relationship 
agreed with an additive white Gaussian noise model 
indicative of Random Jitter (RJ). 

In the second step, the identical set of time sampling 
offset values were used in the same system setup, this time 
allowing the three benchmarks to run and measure 
performance.  In this way, a correlation of performance vs. 
BER at the CPU receiver could be established. 

To establish the relationship between performance 
impact of bit errors received by the Graphics PCIe Rx, a 
slightly different approach was used to induce bit errors: the 
CPU transmit voltage swing was reduced incrementally to 
produce different levels of bit errors experienced at the 
receiver of the graphics card.  The relationship of BER level 
vs. transmit swing was first established by a loopback testing 
mode on the system similar to the one described above.  
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Then, using the same transmit swing settings, the 
performance of each of the three benchmarks was measured.  
Using this approach, performance vs. BER experienced at 
the graphics card receiver could be characterized. 

TABLE II.  MINIMUM BER LEVELS AT GRAPHICS RX THAT INDUCED 

3% AND 50% PERFORMANCE LOSS ON WORST-CASE BENCHMARK 

Graphics 
Card 

BER for Graphics Rx performance loss 
3%  50%  

A 1x10-8 1x10-6 

B 3x10-6 6x10-5 

C N/A N/A 
D N/A N/A 

 
Table II summarizes the performance loss observed as a 

function of BER at the Graphics Rx.  Table III lists similar 
information as a function of BER at the CPU Rx.  Values are 
reported for both 3% performance loss and 50% performance 
loss.  Note that cards C and D were extremely robust to low 
CPU Tx voltage swing and did not encounter bit errors even 
at the lowest swing settings.  Therefore it was impossible to 
characterize performance vs. Graphics AIC Rx BER on cards 
C and D using this technique.   

TABLE III.  MINIMUM BER LEVELS AT CPU RX THAT INDUCED 3% 

AND 50% PERFORMANCE LOSS ON WORST-CASE BENCHMARK 

Graphics 
Card 

BER for CPU Rx performance loss 
3%  50%

 

A 1x10-7 3x10-6 

B 1x10-4 2x10-4 

C 5x10-7 2x10-6 

D 4x10-8 3x10-7 

 
The first notable point is that even a 3% performance loss 

was not observed until a BER of at least 10-8, which is four 
orders of magnitude above the PCIe BER spec of 10-12. 

Second, although the table values represent the worst- 
case benchmark, there was not a large difference in the 
behavior of different benchmarks in terms of relative 
performance loss.  This is shown in Fig. 2, which depicts the 
BER vs. performance loss at the CPU receiver when using 
PCIe card D.  Also evident in Fig. 2 is the typical number of 
BER sample points and intervals that produced the data 
summarized in Tables II and III.  This card showed the most 
difference between benchmarks, but as can be seen, even on 
this card, the relative performance loss is roughly equivalent 
across all three benchmarks at a given BER. 

Another observation is that once performance starts to 
degrade on the order of 3%, it does not require a much 
greater BER to degrade the performance significantly 
further.  This can be seen in Tables II and III, or graphically 
in Fig. 2.  The latter graph illustrates that each benchmark 
performance metric degrades by 50% at a BER only 1 to 1.5 
orders of magnitude above the 3% degradation point. 

However, there were some differences in CPU Rx BER 
and Graphics Rx BER in this regard.  Fig. 3 depicts this 
finding for Card A running Unigine Heaven.  Graphics Rx 
BER starts to produce performance problems at a level 
roughly two orders of magnitude below CPU Rx BER, but 
the performance decrease after that point is more gradual 

than CPU Rx, such that at BER levels in the vicinity of 10-6, 
performance penalties are similar. 

 

   
Figure 2.  PCIe Card D performance vs. BER on each of three benchmarks 

It should also be mentioned that some card-to-card 
differences were observed.  This is shown in Fig. 4, which 
separately delineates the Unigine performance vs. CPU Rx 
BER for each card.  Although card B had the lowest 
performance, it proved to be the least affected by bit errors, 
with little degradation all the way up to 10−4 BER.  It could 
be speculated that the lower performance of this card 
resulted in lower utilization of the maximum available 
bandwidth on the PCIe link, thus preserving some additional 
bandwidth to compensate for the error retries on the link.  
However, this would not explain why card A, the highest 
performing card, showed the second-most resilience to bit 
errors in terms of performance impact.  This suggests there 
are other factors that create these differences from card to 
card. 

B. PCIE Gen 3 link between CPU and test add-in card 

Another round of experiments was designed with a PCIe 
Gen 3 test add-in card to understand the BER levels 
associated with serious performance degradation.  Voltage 
sampling and timing sampling points on the CPU PCIe 
receiver were offset from nominal values to induce a bit error 
ratio in the digital loopback mode described in the previous 
section, in order to establish the relationship of BER to the 
margin offsets. 

Next, a PCIe functional test mode was utilized, in which 
the CPU wrote pre-defined data to the add-in card with all 
sampling points at nominally trained values.  While reading 
back the data from the card, the CPU receiver margin hooks 
were operating to test at different sampling offset points, and 
error reporting was enabled to give visibility into detected 
receiver errors such as bad packets and CRC errors.  In 
addition, data mismatch errors escaping the PCIe error 
detection mechanisms were identified by comparing the 
received bits against the transmitted bits in the CPU 
memory.  In this way, the BER level creating normally 
undetected data mismatch errors could be empirically 
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measured.  The experiment was performed once with the 
timing sampling offset used to induce BER, and again with 
the voltage sampling offset used to induce BER at the CPU 
receiver. 

 

 
Figure 3.  Unigine performance vs. BER on either CPU Rx or Tx vs. BER 

on PCIe graphics Card A 

 

   
Figure 4.  Unigine performance vs. CPU Rx BER on each of four PCIe 

graphics cards 

Table IV shows the comparison of BER levels resulting 
in data mismatch errors during the PCIe functional test 
versus the BER levels causing a 100% performance loss.  It 
should be mentioned that with the PCIe functional test 
content running in this part of the experiment, the 100% 
performance loss in actuality resulted in a crash or link hang 
requiring a reboot. 

When BER was induced by changing the timing 
sampling point, the resolution was not sufficient to 
distinguish any data mismatch errors before reaching a BER 
that caused 100% performance loss.  When using the voltage 
sampling offset, on 8 of the 120 runs, data mismatch errors 
were distinguishable before a crash occurred.  On the other 
112 runs, the high level of BER created a crash before any 
mismatch problems occurred. 

Evident from these results is that any data mismatch 
issues escaping the built-in error detection mechanisms on 
PCIe Gen 3 occur at a BER very close to or higher than the 
BER that causes catastrophic performance problems.  This is 

supporting evidence that as BER is increased, the main area 
of concern for an end user is in fact performance degradation 
rather than undetected data mismatch issues.    

C. PCIe Gen 3 link between CPU and PCH 

In this experiment, a 2nd generation Intel Xeon E5 
processor was connected to an Intel BD82C606 Server 
Chipset Platform Control Hub (PCH) via a PCIe Gen 3 
uplink.  The intent was to study the impact of PCH Rx BER 
on performance of the uplink. 

TABLE IV.  AVERAGE BER AT WHICH 100% PERFORMANCE LOSS OR 

DATA MISMATCH ERRORS OCCURRED ON PCIE GEN3 ADD-IN CARD 

Method used to 
induce BER 

Avg BER for 100% 
performance loss 

Avg BER for data 
mismatch error 

Timing sampling 
offset 

3.0x10-7  
(120 runs) 

Not measurable 

Voltage sampling 
offset 

4.8x10-7  
(120 runs) 

5.6x10-7 (measurable on 
8 of 120 runs) 

  
  First, in order to monitor the performance, a benchmark 

test was run that was known to exercise the bandwidth of the 
PCIe link.  While this was done, jitter of various amplitudes 
was injected at the receiver to induce a BER at the PCH Rx.  
While the jitter was injected, error logs were utilized to 
monitor the rate of CRC and link recovery errors with 
respect to the total number of bits transmitted to calculate the 
effective BER at that jitter amplitude setting.  It was found 
that the jitter injection provided only a coarse control over 
the effective BER.  Finer granularity was achieved by 
complementing the jitter injection with voltage and 
temperature adjustments, which provided a finer adjustment 
to the receiver BER level.  This way, performance penalty 
vs. PCH PCIe uplink receiver BER could be characterized. 

The jitter injection technique plus voltage & temperature 
adjustment did not provide as fine of control over the BER as 
the sampling point adjustment technique used in part A.  
However, this technique did have the advantage of being 
able to monitor the actual bit errors occurring during the 
performance test runs themselves. 

Fig. 5 displays the results of this experiment.  The region 
of >3% performance penalty was witnessed to be in the 
vicinity of 10−10 BER, again implying there is some buffer 
between a performance issue and the 10−12 BER 
specification.  Because of lack of precise control over the 
BER with the jitter injection, there was a clear absence of 
data points in the BER range of 10−9 and 10−4.  Somewhere 
in this range, and by the time 3x10−4 BER is reached, the part 
is not able to function, which is represented by the 100% 
performance penalty on the graph in Fig. 5.  Because of the 
sparseness of the data points, it is not known at exactly what 
BER this occurs.   Based on the slope of the points at or 
around ~10−10, it appears that 50% degradation would occur 
in the low 10−9 range.  This agrees with the PCIe graphics 
card experiment in section A, which also showed a 
performance degradation from 3% to 50% occurring within 
approximately 1-1.5 orders of magnitude change in Rx BER. 
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D. SATA 6Gb/s link between PCH and hard disk drive 

For this measurement, an Intel BD82C606 Server PCH 
SATA 6 Gb/s link attached to a hard drive was studied.  
Similar to the experiment in the previous section, jitter 
injection was used at the PCH Rx to induce a BER.  Jitter 
frequency and amplitude changes were made to vary the 
BER, and for finer adjustments, temperature adjustments 
were made in addition to a validation test hook that provided 
some level of control of the PCH Rx voltage sampling point 
with respect to the center of the data eye.  As these 
adjustments were being made, the BER could be calculated 
by logging the disparity and CRC errors occurring on the 
SATA link and dividing by the total number of bits 
transmitted. 

While errors were being induced in this manner, a 
performance benchmark involving continuous reads and 
writes to the hard drive was utilized to stress the SATA I/O 
as well as monitor the performance at various levels of BER.  
With the combination of jitter injection and the data eye 
margining hook, a reasonable level of accuracy was achieved 
in inducing different levels of BER on the SATA link.  
Similar to the PCH PCIe uplink experiment, errors were 
induced and monitored while the performance monitor itself 
was being run.   

Fig. 6 shows the outcome of the experimental 
measurements.  As BER was increased above the spec of 
10−12, minimal overall performance degradation was 
witnessed until a BER level of approximately 3x10−10 was 
achieved.  At this level, a 3% performance penalty was 
observed, but from that point on, the rate of performance 
degradation with respect to BER increased dramatically.  As 
was so often witnessed in the experiments reported in this 
whitepaper, 50% performance degradation occurred only at a 
BER level one order of magnitude higher, at approximately 
3x10−9. 

 

IV. IMPLICATIONS AND FUTURE WORK 

The data presented here suggests for the high speed serial 
bus types studied, there are at least two orders of magnitude 
of margin above the max BER specification before a user 
would experience any noticable performance loss from 
replaying data after an error is detected.  It is worth 
mentioning, however, that the empirical data sometimes 
showed lower margin than a simple latency-based theoretical 
projection would predict.  Murali et al. [7] speculate that 
based on error retry-related latency penalties, average 
observed latency would not show degradation until a packet 
or flit error ratio in the range of 0.1%-1%.  In this context, 
latency refers to the amount of additional delay in the data 
packet, or “flit,” that is created by the receiving device 
notifying the transmitting device of the CRC error as well as 
the resend of the correct data by the transmitting device.    
Projecting this value onto PCIe Gen 3, for example, with a 
typical CRC-protected packet payload size of 1200-2200 bits 
for the products measured in this paper, one would predict 
there would be no performance concern until a BER elevates 
to the range of ~10−7 to 10−6.  Yet in some of the 

experiments, performance began to show measurable 
decrease in the neighborhood of 10−8 or even 10−10. 

 

 
 

Figure 5.  PCH performance penalty vs. PCH Rx BER on the PCIe uplink 
to the CPU 

 

Figure 6.  Performance loss vs. PCH Rx BER on the SATA 6Gb/s link to a 
hard drive 

This suggests that true effective latencies with real 
modern-day products and workloads, taking into account the 
error profiles (for example, number of consecutive packets 
with errors), are sometimes greater than the assumed 
penalties in [7].  While error ratio profiles could differ by 
scenario and would not always match those in the reported 
experiments, the fundamental sources of bit errors in the 
experiments (jitter, elevated temperature, reduced transmit 
voltage swing, and a non-centered data sampling point) are 
all sources that could be experienced in a real-world system. 

To minimize the impact of extended test runs and using 
more expensive design solutions to ensure parts meet the 
BER spec, an alternative approach to a simple spec value 
would be to architect in the right validation hooks and 
capabilities to measure performance changes as data eye 
margins decrease or alternatively, as BER increases.  
Validation activities can then concentrate on checking that 
the vast majority of parts and systems will not experience 
noticeable performance penalties—for example, no more 
than 3% performance loss—from resending data across the 
link as a result of error detection.  When needed, test content 
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such as the PCIe Gen 3 functional test used in this paper can 
be used to confirm that undetected data mismatch errors 
happen at or above BER levels that create severe 
performance degradation or hangs. 

By structuring validation targets with respect to 
performance, product validation teams can have confidence 
they are truly validating for a quality end user experience, 
rather than a generic BER level. To illustrate, the BER 
requirement of 10−12 is prevalent in specs for high speed 
serial buses, despite different levels of error detection and 
different retry time penalties on these various buses, not to 
mention product-level architectural differences that could 
create different retry penalties product to product on the 
same serial bus type.  By forcing products to abide to one 
generic BER spec that is not explicitly tied to an end user 
impact, the spec level must be overly conservative to account 
for all possible factors across all possible systems, implying 
that most products are over-designing and over-validating.   

TABLE V.  TEST TIME DIFFERENCES AT DIFFERENT BER LEVELS 

BER 
requirement 

Min test time for 95% 
confidence, PCIe G3 

(seconds) 

Min test time for 95% 
confidence, SATA 6 

Gb/s (seconds) 
10-12 374 499 

10-10 3.74 4.99 

 
In contrast, by aligning to a performance-based 

requirement, this conservatism can be avoided, resulting in 
additional design margin and shorter validation time.  Design 
margin benefit is extremely difficult to quantify even on a 
single I/O type because of the enormous variety of Si circuit 
designs, fabrication processes, and board designs.  Validation 
time benefit is more straightforward to quantify, however.  
To empirically confirm that a given link is less than or equal 
to a certain BER at a certain confidence level, one must test 
for a sufficient time.  The Poisson probability distribution 
may be used to calculate the required length of test time to 
validate against a certain BER to a level of 95% confidence, 
assuming no errors are encountered during the test: 
 

 
dataRateBER

TimeTestMin





)95.01ln(
__ . (2) 

 
Table V shows the test time improvement for PCIe Gen 3 

and SATA 6 Gb/s using this approach.  If an empirical 
validation test of this nature was implemented in a 
manufacturing test, for example, this would imply a 99% 
reduction in test time if it were confirmed that only a BER of 
10−10 was needed as opposed to 10−12.  This is immediately 
evident from (2): test time is inversely proportional to BER.  

One challenge encountered in this study was that, as far 
as the authors were able to discern, there is no published 
experimental data of performance penalties vs. BER on 
modern high-speed interconnects to which a comparison 
could be made.  All previous investigations on this subject 
appear to be purely theoretical ([7][9]) and did not even 
analyze a specific existing high speed interconnect type.  
Because this appears to be an area not previously explored, 
future studies will include other high speed interconnect 

types besides PCIe and SATA, as well as other scenarios for 
PCIe that include a graphics card AIC where hardware 
acceleration is turned off. It is also the hope that this work 
will motivate others in the industry to perform studies on 
their platform architectures. 

V. SUMMARY 

In this paper, four experiments were conducted to study 
the impact of increasing levels of BER on performance of 
high speed serial buses.  On a PCIe Gen 3 link running 
between a CPU and a graphics add-in card, it was found that 
although there were some card-to-card differences, 
performance did not start to decrease from error-induced 
retries until a BER of 10−8 at the lowest.  On a PCH PCIe 
Gen 3 uplink to a CPU as well as a SATA 6 Gb/s I/O 
running from a PCH to a hard disk, performance did not 
appreciably decline until a BER of 10−10 or higher.  Finally, 
the PCIe Gen 3 functional test between a CPU and test add-
in card showed that catastrophic performance issues arose at 
a BER of ~10−7 but that undetected mismatch errors do not 
occur until the same level of BER or worse.   

The data suggests that many products have additional 
margin above the 10−12 BER spec before any user impact 
would occur.  If new standards and practices were adopted to 
validate against performance impact instead of a generic 
BER specification level, conservatism leading to costly over-
design and over-validation could be avoided.  
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Abstract— In this paper, a new approach to automate 
software reliability verification and validation activities 
is described. The project has been developed focusing on 
functional testing of digital television and network home 
appliances. Nevertheless, at this stage of the project, the 
developed approach has proven to be sufficiently generic 
to support a wide range of domains and so it can be of 
interest for people dealing with functional test 
automation in a wide industrial range. Most commonly 
used approaches followed by the industry to automate 
functional testing require important efforts and skilled 
human resources in software development to build large 
sets of specific scripts. Consequently, these approaches 
cannot be conducted by professionals without 
programming skills since they are not sufficiently 
involved in the design, development and maintenance of 
the tests scenarios. We present in this paper an 
innovative strategy to overcome the main difficulties. We 
also show how this new strategy based on a zero-code 
approach can offer new exciting roles to test team 
members and deliver an optimized cost structure of test 
automation activities. 

 
 

Keywords-Functional Testing; Test Automation; Zero Code; 
Cost Optimization; Service Oriented Architecture; Business 
Process Modeling. 

I. INTRODUCTION 

The software development activities are each day more 
"test driven". The main reasons for such a trend mainly lie 
in the increasing complexity of the developed systems, the 
integration of third-party software modules (commercial and 
open source), the interactions with external systems partially 
mastered, the pressure put on the R&D teams with respect to 
constraints of "time to market", the difficulties in getting 
clear, complete and detailed specifications before the  
project starts, the widespread and success of agile methods 

which significantly helped software organizations detect the 
benefits of test driven development methodologies. 

 
As an immediate consequence, functional testing is each 

day a more strategic step in the product development cycle 
but it is also a more costly activity for software 
organizations due to the increasing number of tests required 
to deliver adequate test coverage of products. 

 
Thus, poor testing coverage and/or inadequate test 

automation strategies and/or inadequate testing tools can 
prove to be detrimental to the competitiveness in terms of 
product quality and cost. 

 
In this context, automating functional tests becomes 

each day a more challenging topic for software 
organizations. This paper reviews the commonly followed 
approach in the industry to carry out test execution and 
automation, for which the creation of scripts is based on 
coding, possibly simplified with an interface to abstract this 
layer. Identifying the key weaknesses of these approaches, 
we present an innovative strategy to overcome the main 
difficulties encountered in automating functional test 
activities. We show how this new strategy improves the 
quality of execution during functional test campaigns while 
providing an optimized cost structure. 

 
Beyond this introduction, Section 3 presents the most 

frequently encountered test execution and automation 
strategies in the industry to compare them with the approach 
described in this paper. We also introduce the Saturn 
software framework implementing this new strategy in the 
following section. Saturn is currently used for functional 
testing of products developed by the company, 
SoftAtHome, including its digital television 
receivers/decoders and xDSL/fiber Internet gateways. 
Section 4 deals with the main results delivered by Saturn. 
Finally, before concluding, Section 5 introduces the 
evolutions of Saturn that are currently under development. 
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II. STATE-OF-THE-ART 

 
An efficient and fully automated system must combine an 

easy interface to generate automation tests (no coding skill 
required) and the possibility for users to add their own 
modules (new functionalities or devices). 

Main actors in automated testing proposed solutions 
based on scripting that requires lengthy and expensive 
coding phases (often in python language). In order to bring 
more flexibility for the user, these solutions can include a 
package of additional libraries (for example, RT-RK 
company anticipated from future users include list of 
libraries [7]). These solutions require coding skills that often 
differ from tester to tester, according to their profiles. 

To abstract the coding layer, they subsequently developed 
additional interface (drag and drop). User can access to the 
toolbox that simplifies scripts developments. However these 
glue layers are fully linked with the automation tool and the 
user of this tool is dependent on these solution concept 
companies to supply him with future evolutions of their 
product (sometimes the solution needs a proprietary 
language, as StormTest [8], the solution developed by S3 
Group). Consequently, there is no more versatility for the 
user to generate evolutions. 

 
Our new approach is to directly start with a modeling 

system (BPM) that can interface with a toolbox suitable. In 
others words, to use a system adapted for sequencing and 
add application layers used through independent connectors. 

 

III.  STRATEGIES FOR TEST AUTOMATION 

A. Test Execution & Automation methods 

Manual testing generally delivers imprecise test results 
and fails to reproduce tests, mainly because it is largely 
subject to the interpretation of a human operator whose 
judgment is more likely to evolve over time. 

 
On the other hand, test campaigns using robots can 

significantly improve the stability of test procedure results 
and reproduction over time (which is essential, for example, 
in the case of tests performed within the context of 
certification processes). 

 
Nevertheless, it is quite frequent to see test automation 

reduced to its simplest form, and thus, limited to the 
development of scripts specifically developed for the 
product to be tested. Such scripts are sometimes even 
developed by the teams who have contributed themselves to 
the development of the tested product. 

 
Many experiences show that this approach generally 

gives poor results. Indeed, if a test case can be decomposed 
as a succession of steps to execute, this structure can’t be 

kept with a script in a coding language. Consequently, the 
understanding of an automation script will required a code 
review. 

 
Furthermore, this bias, associated with the 

implementation of complex tests for which developers in 
charge may lack time and/or skills to implement the 
complex algorithms required to replace human skills (e.g., 
computer vision), leads the tests implementation to be 
based, most of the time, on optimistic use cases. 

 
In addition, some defects resulting from omissions 

committed during the design and / or development will 
typically be perpetuated when the product and the test 
scripts are done or described by the same developers. Thus, 
using the common approach, the automation process leads 
both to replace a human operator by an automatic operator, 
but also to adapt the tests to be implemented within a 
reasonable time frame and since its use requires 
programming skills, thus needing a engineering profile 
different from that of an expert in validation. 

 
Consequently, with the common approach to test 

automation, significant bias can be introduced, typically 
leading to degraded functional tests coverage. 

 
Just the opposite, the approach followed by the Saturn 

project (modeling system BPM) ensures that the test team - 
whose role is to systematically search for defects of any 
kind in the products they have in charge - retains its 
prerogatives during the design, the development, the 
maintenance and the execution of the test campaigns.  

 
To achieve this goal, Saturn delivers to test team 

members a suitable toolbox to deal with all the activities 
related to test scenario management but without requiring 
expertise in the field of computer programming. 

 
Furthermore, the Saturn toolkit provides the tools 

necessary to replace human capacities in the field of testing 
activities. This includes, for example, computer vision 
algorithms, image quality assessment (taking into account 
the human visual system), identification of soundtracks, and 
more others features. 

 
In addition, Saturn tools can provide valuable 

information about the diagnosis of the system due to their 
inherent ability to quickly process large amounts of data 
(e.g., protocol analysis).  

B. Costs of Test Execution & Automation  

While manual testing triggers operating expenses 
(OPEX) without offering any possibility of cost sharing on 
the number of test campaigns to be achieved on time, the 
development of tests automation tools constitutes an 
investment opportunity (CAPEX). 
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It is important to note that compared to the traditional 

automation approach (i.e., specific scripts development), the 
approach proposed by Saturn, which consists in offering a 
generic and reusable toolbox, can generate  some revenue. 
Indeed, generic tools can be marketed and therefore likely, 
to attract customers and business partners in a given 
industry. These business opportunities can help finance 
investments in tests automation through income generation. 
Furthermore, the development of generic tools is susceptible 
to help in extending the amortization period of the 
developments due to a longer depreciation period thanks to 
a better sustainability over time of the developed tools. All 
these aspects contribute to minimize overall labor costs 
since it spares using engineers for the development of 
automatic tests. In the Saturn approach, only widely reused 
generic tools require contribution from specialized software 
developers while as automated tests are implemented by 
technicians. 

 
These considerations, summarized by in Figure 1, make 

the strategy deployed through Saturn quite an optimized 
strategy in terms of TCO (Total Cost of Ownership) of an 
automated test infrastructure. 

 
 

Testing
Campaign

Cost

Test Infrastructure COO

Manual
Tests

Script
Automation

Saturn

Per Test Campaign
Required Effort

Manpower & Skills Requirements

EcoSystem
Leverage

Complementary Tests
Developed by : 
Offshore Offices

Customers
Partners

…  
Figure 1. Cost structures of manual testing vs. script  developments vs. 

Saturn approaches. 

IV. IMPLEMENTATION  

To enable test team members to develop their test 
scenario without requiring computer programming skills, 
the Saturn system had to provide a way to describe tests 
procedures in a graphical form. 

 

A. The Business Process Modeling Approach 

The approach consisted in selecting the BPMN 
(Business Process Modeling Notation) language in its 2.0 
version [6]. This language offered all the key characteristics 
for the development and the maintenance of test scenarios, 
as well as both easy to learn and intuitive to use. 

 
With our approach, a test scenario is developed as a 

BPMN process made of connected activities (cf. Figure 2). 
Each connection can activate - at the next execution step - 

an activity if it is connected to the currently active activity 
and the condition associated to the connection is evaluated 
to TRUE at execution time. An activity can execute a sub-
process, perform some local actions such as updating local 
or global variable values, or call connectors. Connectors are 
typically predefined routines performing some frequently 
required tasks. In the case of Saturn, the connectors are 
employed to access the toolbox API (Application 
Programming Interface). Each Saturn connector implements 
a web service call to a wrapper delivering a specific service 
(e.g., checking the presence of a given pattern on the 
television screen thanks to the computer vision wrapper 
managing video acquisition hardware). Connectors are used 
by the scenario developer as a way to access services 
delivered by the wrappers of the Saturn framework and so, 
interacting with the external devices to be tested. The state 
of the tested device is known from the test scenario thanks 
to the results returned by the wrapper calls. 

 

 
Figure 2. Test scenario example developed in BPMN 2.0 with the Bonita 
Studio editor. Thanks to the BonitaSoft solution the BPMN 2.0 files are 
then migrated to the Java framework and executed on a JBOSS server. 

 

B. The Wrappers 

The wrappers are server applications hosted by the tests 
robots whose role is to provide the services required to test 
scenarios for what concerns specialized functions typically 
interacting with the physical world (e.g., pattern detection 
on a television screen). 

 
Wrappers typically incorporate SDK (Software 

Development Kit) to manage the robots' hardware 
components (e.g., video capture card) and / or specific 
algorithms (e.g., audio identification algorithms). A 
description of the main algorithms developed for the project 
can be found in [1][2][3][4]. 

 
With our approach, the BPMS (Business Process 

Modeling System) acts as a sequencer calling - through Java 
connectors - the services rendered by the wrappers (Figure 
3). Communication between the BPMS and the wrappers is 
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done via a session oriented API whose structure is common 
to all the wrappers. At this date, the main Saturn wrappers 
are: 

• Vision (shown in Figure 4) deals with the computer 
Vision algorithms toolbox such as pattern 
matching, video detection, screenshots, optical 
character recognition, etc. 

• Audio dealing with audio processing services such 
as audio watermarking, audio detection, audio 
track identification, etc.  
Audio contents are tagged using different 
amplitude modulation (cf. Figure 5) 

• Studio (shown at Figure 6) dealing with 
audio/video content management services such as 
stream generation, video frames identification, 
video quality assessment (PSNR, SRSIM, etc.), 
"lip synching" computation. 

• Web UI dealing with Internet browser control used 
for web user interface and web services testing. 

• Power dealing with external devices power supply 
management services. 

• RCU dealing with remote control unit services, 
such as infrared and radio frequency based remote 
control simulators. 

• Traces dealing with equipments traces and logs 
management services. 

 

 
Figure 3. SOA (Service Oriented Architecture) illustrated: test scenarios 

executed by the BPMS (Business Process Modeling System) server interact 
through a standardized web services API with the wrappers applications 

hosted by the robots. 

 
Figure 4. Saturn  powerful computer vision system. Example of patterns 

recognition and localization on a set top box video output. 

 
 

  

Figure 5. Audio watermarking by amplitude modulation 
(resp. time and frequency domains). 

 
 

 

 

Figure 6. Video frame identification and clock synchronization 
by QR Code insertion/decoding. 

C. The Catcher Application 

As shown in Figure 7, the catcher application, allowing 
the test execution infrastructure to communicate with the 
information system in charge of the test plans and test 
results management,  plays a central role in Saturn. 
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Figure 7. The "catcher" application in the system's architecture. 

 
The Catcher application main roles consist in extracting 

the test campaigns descriptions stored in a third party 
application of a test management system (for example, 
TestLink, HP Quality Center), in presenting tests scenarios 
to the operator in different levels of aggregation such as unit 
testing, test sequence or functional modules, in deploying 
the Java code corresponding to the tests to be executed by 
the JBOSS server, in controlling the execution of the test 
scenarii (e.g., abort a test sequence in case of critical error), 
in collecting traces obtained during tests execution, in 
attaching these traces and various additional information 
(e.g., TV screen captures) to the test reports, in posting the 
test results to Testlink, HP Quality Center or any test 
management third party application, in keeping track of files 
versions, in managing the files versioning system (as Git 
[11]) and in centralizing the Saturn's configuration 
parameters. 

D. The Saturn Portal 

The Saturn web portal shown in Figure 8 has been 
developed to provide a single point of access to system's 
users. It mainly hosts: the wrappers applications providing 
versioned automatic updates of the applications installed on 
the robots, the files repositories for multi-sites deployments 
(tests scenarios written in BPMN 2.0, Java classes, logs, 
screenshots, test traces, A/V streams, patterns, etc.), the 
wrappers' databases, the Saturn portal and the user 
documentation. 

 

 
Figure 8. Screenshot of the Saturn web portal. 

V. MAIN RESULTS 

A. Saturn Key Benefits 

Among the main benefits experienced with the Saturn 
solution deployments, can be mentioned: a clear separation 
of the R&D and test team roles, the increased motivation of 
the test team members in dealing with the whole test 
strategy and not only with repetitive task execution, an 
increased autonomy of test teams in the test automation 
process, fully automated process supported by an easy 
integration of test management tools (TestLink [9], HP 
Quality Center [10]) dealing with IT and reporting tasks 
automation, integrated test scenarios versioning and 
reviewing process (using the version control system GIT), 
easy reuse of already developed test scenarios via BPMN 
2.0 sub-processes mechanism, version tracking of the 
totality of the elements involved in test results, quality of 
test results related to the reproduction of the test runs, multi-
site robots deployment with file versioning and repositories 
synchronization, limited training required for newcomers 
thanks to easy use of intuitive tools, scalable and easy to 
maintain architecture with new testing requirements 
managed by adding separate wrappers and connectors in an 
incremental approach without any impact on the existing 
system. 

B. Quantitative Results 

The Saturn test automation framework implements this 
strategy and is used by the company SoftAtHome,  in the 
implementation of its automated testing infrastructure for 
"Set Top Boxes" and "Home Gateway". Saturn is currently 
deployed in 4 countries: France, Belgium, UAE and Tunisia 
with about 20 test robots connected through the internet to a 
shared infrastructure. One third of the manual validation can 
be executed with automation system Saturn. Each month, 
more than 6 middleware releases are tested (robustness and 
no regression campaign). 
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VI. CONCLUSION 

We presented a novel approach to deal with functional 
tests automation. This approach - built around a Business 
Process Modeling System and according to a Service 
Oriented Architecture - instead of targeting specific scripts 
development for tests automation - focuses on the delivery 
of a generic toolkit which aims to deliver a set of human 
replacement tools that can be used by testers without 
programming skills. 

 
The versatility to add new wrappers brings many 

perspectives for Saturn tool in particular to interface with 
additional devices useful for Set Top Boxes validations: 
EDID Extended Display Identifier Data generator (as 
Quantum [12], a EDID generator that can simulate a 
connection with all kind of TV sets), stream player (as 
DekTek modulator [13] able to broadcast a specific stream 
content mandatory for the automated test), etc.  

Moreover, a new Saturn wrapper offering innovative IP 
Network datagram analysis services [5] is currently under 
development. The main goal is to offer a toolbox to develop 
automation test cases for Home Gateway (basic network) 
and to check the interoperability with Set Top Boxes, by the 
way of common scripts.   
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Abstract—Nowadays, the society is dependent on Cyber-Physical
Systems (CPSs), which are complex systems that combine digital
technologies and physical processes. The need for dealing with
constant changes in products is leading these systems to handle
variability in several aspects, which entails to a considerable
increase in the complexity of the systems. Many of the research
efforts are focused on the efficient development of these systems.
Nevertheless, the infeasibility of testing all the possible configura-
tions, the unclear notion of the achieved test coverage and the high
amount of time required make testing processes non-systematic
and challenging. This paper introduces the main problems for
testing highly configurable CPSs and proposes a novel approach
for testing systematically and efficiently while achieving high test
coverage.

Keywords–Model Based Testing; Test Methodology; Variability
Modelling; Cyber-Physical Systems

I. INTRODUCTION

CPSs integrate digital cyber computations with, often com-
plex physical processes, where embedded systems monitor
and control physical processes with sensors and actuators [1].
The dependency of the society on CPSs that control many
individual systems and complicated coordination of those
systems is considerably increasing [2]. CPSs working in indus-
tries are highly complex systems [2], which make embedded
systems to come with a set of configuration parameters [3].
As a consequence, the variability of CPSs increases, and the
embedded systems have to deal with the changes that the
physical environment requires.

Variability is the ability to change or customize a sys-
tem [4], also understood as configurability (variability in the
product space) or modifiability (variability in time) [5]. CPSs
handling variability are commonly known as highly config-
urable CPSs, which are described as heterogeneous systems
where hardware and software are integrated with the aim of
controlling a physical process. These systems share the same
embedded software code base, which has the ability of getting
configured to work in systems with different features [6]. This
configurability might be realized by parameters, where changes
in the configuration of the product might lead to a complete
different system’s behaviour [7].

Testing highly configurable CPSs is a challenging task.
These kind of systems can get configured into thousands or
even millions of configurations, which makes it infeasible to

test every single configuration and as a consequence the notion
of the achieved test coverage is uncertain for quality engineers.
Thus, ensuring that the CPS will meet all requirements in every
possible configuration is not realistic.

Two main challenges are addressed when testing highly
configurable CPSs. Each test can be executed many times, once
for each possible configuration, and as a result, “the cost of
running a test suite is proportional to the number of tests times
configurations” [8]. Selecting concrete configurations as well
as the right test cases for the selected configurations is one
of the principal challenges when testing highly configurable
CPSs.

On the other hand, the use of Model-Based Design (MBD)
tools such as MATLAB/Simulink is increasingly growing
when designing and testing CPSs. The high number of variants
and the complexity of the CPSs make manual configuration
error-prone and inefficient, which warrants the need for an
automated solution for the configuration of CPSs [2], as well
as for the test system, where a configurable test architecture
handling variability becomes essential.

Section II of this paper introduces the related work. The
proposed approach for the systematic validation of highly
configurable CPSs using a model-based testing methodology
is presented in Section III. Some discussions of the proposed
approach and expected contributions are discussed in Section
IV. Section V describes preliminary and expected results.
Finally, Section VI presents conclusions and future work.

II. RELATED WORK

The work presented by Bauer et al. [3] proposes a sys-
tematic model-based test approach named REDUCE for the
validation of highly configurable safety-critical systems. This
approach uses combinatorial and model-based technologies
with the main objective of reducing configurations and test
cases until reliability estimations based on testing become
feasible. The approach presented in [3] is focused on the
reduction of configurations and possible test cases for the
validation of highly configurable safety-critical systems using
model-based statistical testing, while our approach will be
more focused on the management and test architecture for
the validation of CPSs. In addition, in the approach presented
in [3], the test model is created for each system config-
uration, reusing similarities between different configuration-
specific test models. In our approach, a test model handling
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Figure 1. Overview of the proposed model-based methodology for the systematic validation of highly configurable CPSs.

variability in the test architecture as well as in the test cases is
proposed, as the study presented by Weißleder and Lackner [9]
demonstrates that it is more efficient binding variability after
test case design.

A similar approach for highly configurable embedded sys-
tems in the automation domain is proposed by Streitferdt et
al. [7]. In this case, a testing process is developed, where test
cases are automatically generated with a parameter model in
combination with a test model.

Combinatorial Interaction Testing (CIT) techniques are also
widely used when testing configurable systems, where config-
urations are often selected using pairwise or t-wise techniques.
According to Kuhn et al. [10], testing efficiency using pairwise
testing method is 2.4 times higher and quality a 13 % better
than manual testing method. CIT techniques are commonly
combined with model-based testing as proposed by Oster et al.
[11], where a tool chain is introduced named MoSo-PoLiTe.
This tool selects pairwise configuration selection component
on the basis of a feature model covering 100% pairwise
interaction, and test cases are generated for each configuration.

Nevertheless, these combinatorial techniques select product
configurations statically. In [8], a novel approach is presented
named SPLat, where product configurations are determined
dynamically during test execution by monitoring accesses to
configuration variables. The technique consists in executing
the test for one configuration, while observing the values of
configuration variables used to prune other configurations.

Another approach to reduce validation costs of highly
configurable systems is minimizing the test suite for testing
a product, reducing redundant test cases. A set of test cases
can be automatically obtained by selecting features of a feature
model to test a new product, but there still can exist redundant
test cases [12]. A fitness function based on three key fac-
tors (Test Minimization, Feature Pairwise Coverage and Fault
Detection Capability) for three different weight-based genetic
algorithms is defined in [12]. This approach allows reducing

the test suite covering all testing functionalities achieving a
high fault detection capability.

From the testing perspective, our previous work [13]
presents an approach based on model-based testing and vari-
ability management integrated in Simulink, where a concrete
configuration of the software is chosen by the test engineer,
and the testing infrastructure is instantiated for the chosen
configuration. In another previous work [14], a testing ar-
chitecture with variability management in the test oracles is
proposed to test distributed robotic systems in Simulink. A
product line of validation environments with variability to test
different applications in different domains and technologies
is proposed by Magro et al. [15]. However, these works do
not consider the automatic generation and configuration of the
test architectures, there are not oriented for highly configurable
CPSs, thus, they do not consider test case selection and test
suite minimization.

Model-in-the-Loop for Embedded System Test (MiLEST)
is a toolbox for MATLAB/Simulink developed by Zander-
Nowicka in [16]. This test architecture is oriented for the val-
idation of automotive real-time embedded systems in Model-
in-the-Loop (MiL) phase. The main advantages of MiLEST
is that it is oriented for the automotive domain. This industry
is the one that most uses variability modelling according to
[17]. Another advantage of MiLEST is the compatibility with
Simulink, which is a simulation tool widely used to model
embedded software and simulate CPSs. The test architecture
used in this methodology will be based on MiLEST but it will
address some changes: The developed architecture will handle
variability issues and will be able of automatically getting
configured. In addition, it will contain algorithms for the
efficient validation of highly configurable CPSs. In addition,
the test architecture will be communicated with a database
with test historic data in order to prioritize test cases to be
executed. Finally, the test architecture is expected to be used
not only in MiL phase, but also in software, processor and
hardware-in-the-loop phases.
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III. APPROACH

The methodology begins from a manual implementation
of a Feature Model that manages the variability of both,
the Cyber-Physical System Under Test (CPSUT) and the test
architecture. The feature model is developed using the tool
FeatureIDE [18], which automatically generates a .xml file.
This .xml file will be used for the automatic generation of the
test architecture and CPSUT Simulink model.

Once the model is automatically generated, the first con-
figurations will be generated by the configuration generator.
These configurations will be used by the test configurator
to configure the simulation framework. Once configured the
simulation framework, the test will be run and the results
uploaded to the test historic database. Taking these results
into account, the configuration generator will generate other
configurations.

Figure 1 depicts the proposed methodology. Its components
are classified following the theory of product lines: Domain
Engineering and Application Engineering. The components in
the domain engineering are for the whole product line, what
means that variability is implemented. On the contrary, the
components of the application engineering side correspond to
a concrete product configuration, thus, variability is already
bound.

A. Feature Model

According to Berger et al. [17], Feature Models are the
most used notation in order to model variability of systems in
industrial practice. As mentioned before, we propose using the
tool FeatureIDE [18]. The main reason for using FeatureIDE
is its simplicity, its completeness and the availability of its
source code, which enables adapting the tool to our needs.
In addition, this tool is constantly under construction, with
new updates becoming available. It also uses CIT algorithms
to generate correct configurations using pair-wise or t-wise
techniques, which can be reused when implementing our
dynamic configuration generator.

Figure 2 depicts a basic feature model from the mobile in-
dustry, where the basic functions of a feature model are shown.
The features allow the following relationships: “mandatory”,
“optional”, “alternative” and “or”. In addition, constraints be-
tween features can be specified by the relationships “requires”
and “excludes”.

Figure 2. Example of a Feature Model from the Mobile Industry [19].

As shown in Figure 3, the feature model is composed
of the CPS Feature Model, the Test Feature Model and the
Integrator. The CPS Feature Model is the feature model related
to the highly configurable CPS, which manages the variability
that the CPS has. The Test Feature Model is related to
the test architecture, and manages the variability of the test
architecture. Lastly, the integrator is a file that enables the
integration of all the components of the model among them,
which is used to automatically generate the Simulink model
of the CPSUT and the test architecture.

Figure 3. Meta-model of the Feature Model proposed for the systematic
validation of highly configurable CPSs.

Figure 4 shows an example of how a feature model could
be. The motivating example illustrates the control of the
liquid of an industrial tank. The liquid can be a chemical
product or water. In the case the liquid is a chemical product,
the pH must be measured by a pH sensor. In addition, an
optional temperature sensor can be used to measure the liquid’s
temperature. The components of the CPSUT have been placed
on the right branch of the feature model. On the left side,
the variability of the test architecture is modelled. Traceability
between both sides is modelled with constraints, as shown in
Figure 4 (“requires”).

B. Test Architecture Generator

Once the feature model is built, FeatureIDE generates a
.xml file which is read, together with the integrator file by the
test architecture generator, which is implemented in MATLAB
to automatically generate the Simulink model with the CPSUT
and the test architecture. The main work of the integrator is
to handle information about connection among the ports of
the components’ models. The Simulink model is automatically
generated using MATLAB scripts. In addition, the comonents’
models (sensors, actuators, etc.) will be designed by system
and test engineers and saved into a Simulink library. Later, this
library is going to be used when automatically configuring the
Simulink model (as shown in Figure 5).

C. Configuration generator

One of the key points when testing highly configurable sys-
tems is to efficiently generate configurations. Current studies
describe different static CIT techniques to generate configura-
tions, e.g., [3][10][11]. FeatureIDE [18] also allows generating
product configurations both automatically and manually, and
these configurations are saved into a .config file.

When testing highly configurable systems, product config-
urations can be generated statically or dynamically. Statically
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Figure 4. Example of how the Test Feature Model looks like.

generating configurations means generating a set of configu-
rations and later testing those configurations. On the contrary,
configurations are generated dynamically when the configu-
ration generator algorithm generates a product configuration,
the configuration is tested and depending on the test results
and objectives the configuration generator generates another
product configuration, e.g., [8].

Our hypothesis is that generating configurations dynami-
cally is more efficient than generating them statically, as test
results might have an influence when generating configura-
tions. For instance, taking the before explained tank liquid
controller example, the temperature sensor might be giving
errors in the system. When generating configurations, the
configuration generator should take into account this issue
and generate configurations including the temperature sensor.
Our configuration generator will be developed in C++, and it
will communicate with both, the feature model (in order to
obtain correct configurations) and the test historics database
(to obtain information of the executed tests, test quality, etc.).
The generated configurations are saved in a file with a .config
extension and stored in the configurations library.

In order to generate configurations dynamically, it is neces-
sary to study test quality metrics related to highly configurable
CPSs. These metrics will be related to requirements coverage,
features coverage, components coverage, etc.

D. Test Configurator

The configuration file is read by the test configurator, which
will be implemented in MATLAB and whose main task is to
automatically configure the CPSUT and the test system in a
Simulink model.

To achieve this goal, the components corresponding to
the CPS are allocated into a Simulink library. The previously
explained test architecture generator automatically generates a
first model, which consists of the principal components (Taking
Figure 5 as example, Sensor1, Sensor2, Actuator1, Actuator2,
REQ1 and REQ2). When the configuration is parsed by
the test configurator, the principal features are replaced by
the components corresponding to the CPS configuration, i.e.,
sensors, actuators, etc.

When modelling variability in Simulink, two kind of mod-
els can be used: 100 % models and 150 % models. The 100

% models are the models that allocate just the components
corresponding to a concrete configuration. For example, first
class variability modelling technique can be used to model
variability this way, as proposed by Haber et al. [20]. On the
contrary, the 150 % models allocate all the components in the
models, the components related to a concrete configuration are
selected with Simulink blocks such as switch or merged, e.g.,
[21] [22]. The main drawback of 150 % models is that as there
are components not selected for a configuration allocated in
the Simulink model, the simulation time is not optimal, which
increases the overall validation time. Due to this reason, we
do not rely on 150 % models, and our approach is designed
to use 100 % models and optimize the simulation time.

E. Test Architecture

The test architecture is essential in order to carry out a
systematic validation of any system and reuse the test cases
along the whole verification and validation process. As men-
tioned before, the test architecture is going to be an adaptation
of MiLEST [16], a test architecture developed to test real-time
embedded systems of the automotive domain. The hierarchy of
MiLEST is divided into four abstraction levels: Test Harness
level, Test Requirement level, Test Case level and Feature level.
The main components of the test architecture are shown in the
meta-model depicted in Figure 6.

MiLEST will be adapted to be configurable and be able of
testing any configuration of the CPSUT. To achieve this goal,
its components will handle variability. Variability in the test
data generator will be found in signals (number and charac-
teristics of each signal), requirements (number and parameters
of the requirements), test cases (test case duration and test
case characteristics), etc. In the test oracle, variability might
be found in signals (number of input signal to the oracle),
requirements (number of requirements, number of validation
function characteristics, parameters), etc.

In addition, a communication with a test historic database
will be implemented to execute test cases according to the
previous results. The test controller will encapsulate genetic
algorithms with the objective of minimizing the test suite and
prioritizing test cases.

Figure 6 shows the composition of the test architecture and
the communication among its components. The test architec-
ture is composed of the test data generator, the test controller
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Figure 5. Overview of the relations among the features in Feature Model and Simulink Model.

and the test oracle. The test data generator is the source in
charge of stimulating the CPSUT executing test cases. Test
cases are implemented manually by test engineers, and each
test case will test a single requirement of the system.

With regard to the test controller, it will select one test case
or another depending on the test purpose; before executing
any test, the test controller will obtain information about the
previously executed test cases by communicating with the test
historics database.

Finally, the test oracle will evaluate whether the expected
behaviour of the CPSUT is correct or not. The test oracle will
have one sub-oracle for each requirement, and each sub-oracle
will be composed of one or more precondition and assertion,
which are manually implemented by the test engineer, taking
into account variability.

F. Cyber-Physical System Under Test

Figure 7 shows the system to be tested, where the com-
ponents are differentiated into Cyber and Physical. In our
approach, the CPSUT is kept as black-box, where the test en-
gineer does not need to be familiar with its internal behaviour

Figure 6. Meta-model of the test architecture.

[23]. Variability in a CPS can be found in the cyber as well as
in the physical side. Variability in the physical side, commonly
known as context variability, is related to the variability of the
environment, i.e., the number and characteristics of sensors
and actuators, variability of the mechanics, etc. The embedded
system also has to handle variability in order to deal with the

70Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            79 / 96



variability of the physical side. Variability of the cyber side
can be related to the software, where different configurations
are achieved depending on the configuration of the physical
side, or to the hardware (types of microprocessors to be used,
etc.).

Cyber-Physical System Under Test 

Cyber Layer 

Physical Layer 

Actuators 
Physical 
Model 

Sensors 

Outside 
Environment 

Figure 7. High level overview of the main components of a CPS.

Model-Based Design (MBD) tools are used for the devel-
opment as well as for the testing of CPSs. Model-, Software-,
Processor- and Hardware-in-the-Loop (MiL, SiL, PiL and HiL)
tests, provide four testing phases [24], which are typically used
to test CPSs in different stages and testing objectives. Our
approach will study the possibility of testing the CPSUT in
these four stages automatically.

Figure 7 also depicts a block named outside environment.
This block refers to the environment in which the CPS resides,
which often has a strong influence into the behaviour of
the CPS. Considering the example of a mobile robot, the
outside environment would include the obstacles to which it is
exposed, e.g., the slopes, the surface or even the temperature
or humidity which can lead to an inadequate performance of
the on-board electronics.

IV. DISCUSSION

The goal of the proposed methodology is to systematically
validate highly configurable CPSs. To achieve that goal it is
necessary to obtain the needed configurations and test cases
to ensure the correctness of highly configurable CPSs in any
possible product configuration. The main contributions of the
study are foreseen to be the following:

• A methodology to systematically manage the valida-
tion of highly configurable CPSs. This methodology
begins with the implementation of a feature model. A
feature model is a notation that represents the features
and relations among them of all possible products of a
Product Line represented as a hierarchically arranged
set of features [19]. This feature model handles the
variability of both, the CPS and the test system. From
this feature model, the optimal configurations are set
in order to satisfy the maximum coverage. In addition,
a Simulink model is generated automatically integrat-
ing the configured CPS and the test architecture.

• A configurable test architecture in Simulink that han-
dles variability issues for the validation of configurable
CPSs. This test architecture, based on [16], will in-
clude test data generators and test oracles handling

variability as well as other components. The variability
of the hardware and the software architecture requires
variability in the test model at the verification and
validation stages [7]. The test architecture together
with the simulated CPS will get configured according
to the chosen configuration.

• Algorithms for the efficient validation of configurable
CPSs achieving high test coverage will be studied. The
algorithms will combine dynamic CIT techniques, test
suite minimization approaches and test case prioritiza-
tion strategies. These algorithms will choose the most
optimal configurations and will select and prioritize
test cases to be executed for the chosen configuration.

• Test quality metrics for highly configurable CPSs. As
mentioned before, it is infeasible to test all the possible
configurations in highly configurable systems, and as a
consequence, the notion of the achieved test coverage
is uncertain. Different kinds of test quality metrics will
be analysed to ensure the correctness and quality of
the highly configurable CPS for any configuration.

V. RESULTS

In our previous work [25], some experiments have been
performed for the automatic generation of the CPSUT, where
a novel variability modelling methodology is proposed for the
plant models of highly configurable CPSs. In these experi-
ments, we use FeatureIDE [18], a feature modelling tool for
managing variability. With this tool we manage the variability
of the physical side of the CPSUT and the .xml file is gen-
erated. With the .xml file, a first Simulink model is generated
semi-automatically. Human intervention is needed to integrate
the different components (sensors, actuators, mechanical com-
ponents, embedded systems) of the model. Once generated
this model, configurations are achieved either manually or
automatically from Feature IDE, and each configuration returns
a “.config” file. With this file, the configurator configures the
model of the CPSUT.

The expected results include a reduction on the time needed
for the validation of highly configurable system, at the same
time as incrementing the obtained test coverage (requirements
coverage, feature coverage, components coverage, etc.). This
goal can be achieved by reducing simulation time through the
analysis of the most effective variability modelling method-
ology. In addition, it is essential to select the optimal CPS
configurations to be tested and to automate the simulation
framework. In regard to test cases, it will be important to select
the appropriate ones, prioritizing them and minimizing the test
suite as much as possible.

VI. CONCLUSION AND FUTURE WORK

This paper identified the main challenges to face when
validating highly configurable systems. The main problems
can be summarized into (1) the automatic configuration of the
CPS and the test infrastructure, (2) the unclear notion of the
achieved coverage and (3) the need for reducing test execution
time. As a possible solution, we propose a model-based testing
methodology to efficiently and systematically validate highly
configurable CPSs.
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A highly configurable CPS can achieve different configu-
rations, in the software as well as in the hardware, which leads
to the need of automating the configuration of the model of
the CPSUT as well as the configuration of the test system at
verification and validation stages. The described methodology
proposes the automatic generation and configuration of the
test system and the CPSUT for Simulink models from Feature
Models.

A highly configurable CPS can be configured into thou-
sands or even millions of configurations. Testing each possi-
ble configuration is impracticable. Hence, the notion of the
achieved test coverage is uncertain. Optimizing the execution
time of test cases as well as configurations to be set up
is essential. We propose dynamic multi-objective algorithms
with the aim of achieving the highest possible test coverage
(requirements, feature and component coverage), using the
minimum CPS configurations and the minimal test execution
time.
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Abstract— The paper focuses on modularizing test models by 

adapting aspect-oriented modelling techniques. Model-based 

testing is an unavoidable part of contemporary model-driven 

software processes. The essence of model-based testing is to 

provide methods and tools to validate software systems by 

generating test cases systematically from models. From the 

practical usage point of view, it is critical to construct models 

that capture the essential aspects of the system under test. The 

proposed test design approach allows systematic separation of 

testing concerns, that, in turn, helps to overcome the 

complexity issues. Also, verification conditions are proposed to 

ensure the correctness of derived aspect test models and their 

compatibility with base test models. We demonstrate the 

technique of test model construction using timed automata 

models and illustrate it with a home rehabilitation system case 

study.  

Keywords-aspect-oriented testing; model-based testing; test 

model design; test generation. 

I.  INTRODUCTION 

In the current practice of software testing, including 
Model-Based Testing (MBT), the test cases are frequently 
insufficiently structured and specified. The test designers 
use component-based or hierarchical state models. 
However, these modelling approaches provide poor support 
for isolating crosscutting features, specifically, functions 
that are spread across the software modules and tangled with 
other functions. We use the principles of Aspect-Oriented 
Modelling (AOM) to modularize such crosscutting 
functions into aspects. The AOM approach has evolved 
from aspect-oriented programming [2] to produce well-
structured and well-encapsulated software. We enhance 
MBT design methodology with aspect handling capabilities 
taken from AOM [3]. Using the principles of AOM we can 
encapsulate typical cases like specifying requirements (use 
cases) that do not specify one property (scattering) or 
different functionalities (tangling). In this paper, we will 
explain how to conceptualize concerns into aspects and how 
to extract test cases from these aspect test models. 

In MBT, the tests are generated from formal models of 
the System Under Test (SUT). The AOM technique 
introduced by Sarna and Vain [9] models SUT using timed 
automata and defines aspect models as refinements of the 
base model. The structural test coverage criteria considered 
are the same as those commonly used in state models, i.e., 
state, and transition coverage. As a novelty, in this paper we 
demonstrate how a test suite can be generated according to 

structural units that are specific to AOM. This gives us new 
test coverage criteria that address implemented features – 
aspect, advice, join-points coverage, etc. - and provide more 
intuitive reference to the parts of SUT to be tested for those 
features.  

Another advantage of Aspect-Oriented (AO) MBT is the 
possibility of easy modification of the test suite. When new 
requirements arise, new advice models can be woven into 
the test suite without redesigning the existing base model. 

Applying the principles of AOM does not provide 
compositional testing techniques per se. Compositionality of 
proposed AO testing is achieved by imposing extra 
constraints on how the advice models are constructed and 
model weaving operations defined. We define these rules in 
the semantic framework of Uppaal timed automata [6] and 
formulate the proof obligations to be model-checked. Our 
approach is illustrated with a home rehabilitation system 
testing framework. 

The rest of the paper is structured as follows. We 
introduce the technical background in Section 2. Section 3 
describes AO MBT. In Section 4, the home rehabilitation 
system is introduced. Finally, Section 5 concludes the paper. 

II. BACKGROUND 

A. Aspect-oriented modelling 

AOM is a way of modularizing crosscutting concerns 
much like object−oriented programming is a way of 
modularizing common concerns. Crosscutting concerns 
generally refer to non-functional properties of software, 
such as security, synchronization, mobility, resilience, etc. 
In addition, every system may contain its own application 
specific crosscutting concerns [5]. 

Cottenier et al. [4] and Rashid [8] have admitted that 
AOM technologies have the potential to simplify software 
deployment, and the ability to improve the categorization of 
crosscutting concerns. Also, AOM aids in modular 
extension of object systems, where the treatment of 
crosscutting concerns is encapsulated in separate modules 
called aspects. We use concepts taken from AOM, such as 
Aspect, Advice, Join-points, Pointcut, and Weaving. 
     An aspect consists of two parts: the code/model 
associated with treatment of the concern (called advice), and 
a predicate defining when the advice should be applied 
during system executions (called a pointcut). The points in 
the code/model that are identified by a pointcut are called 
join-points.  
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     A pointcut selects a subset of join-points based on 
defined criteria. The criteria can be explicit function names, 
or function names specified by wildcards. Pointcuts can be 
composed using logical operators. Customized pointcuts can 
be defined, and pointcuts can identify join-points from 
different aspects. The process of adding aspects to a base 
system is called weaving; and the result is referred to as the 
woven system [5]. AOM techniques use the term advice for 
the action an aspect will take and join-points for where these 
actions will be inserted in the base system model. Pointcuts 
are used to specify the rules of where to apply an aspect. 
Advice, join-points, and pointcut are specified as one entity, 
called an aspect [7]. 
     As in AOM, AO testing uses a base test model and 
several aspect test models. An example of a base test model 
is depicted in Figure 1 (for better understanding of the 
relationship between the models, we use an Automatic 
Teller Machine (ATM) as an example of a well-known 
system). The ATM test model specifies the use case of 
withdrawing money from an ATM. Crosscutting features 
are treated as patterns described by aspect advice models, 
and common features are described in the base model. The 
result of weaving the base model with advice models is 
called the composed aspect model. An advice model can be 
woven with the base model in many places and in different 
ways. The Transaction advice model is defined as location 
refinement of both ATM and Customer automata. The 
details of advice model construction in the test design level 
are presented in [9]. 

Figure 1.  The base test model of ATM. 

     The base model of an ATM depicted in Figure 1 includes 
interacting Customer and ATM automata. Refinements in 
Figure 2 specify aspects of interest: (i) the Transaction 
advice model is defined as location refinement of both ATM 
and Customer automata; (ii) edge refinement of ATM. The 
aspect behaviour is launched from the base model explicitly 
with the help of channels. We model in Uppaal 
(www.uppaal.com), a tool box for modelling, simulation 
and verification of timed automata. In Uppaal [12], the 
synchronization mechanism is a hand-shaking 
synchronization: two processes go through a transition at the 
same time, one will be labelled x !, and the other x ?, where 
suffixes ?, and ! after the channel name x distinguish 
sending and receiving synchronization information 
respectively. A system is composed of concurrent processes, 
each of them modelled as an automaton. The automaton has 
a set of locations and edges to specify the control flow. A 
transition specified by an edge is enabled if its guard and 
synchronization conditions are satisfied. The transaction 
automaton in Figure 2 introduces the EnquireBalance aspect 

Figure 2.  The aspect model “Transaction”. 

advice. Since the refinement (ii) introduces a new 

interaction between ATM and a new actor Server (not 

shown in the model) the edge introduced is labelled with the 

‘balanceCheck!’ channel. When the aspect related tests have 

to be generated from the composed model of SUT that 

includes the automata in Figures 1 and 2, we can ignore all 

the transactions that the aspects of interest do not depend on. 

For instance, when testing the balanceCheck! transaction 

between ATM and Server the tester model is extracted from 

the composition Customer || Customer(Transaction) by 

algorithm of [1] so that the test sequence <card!, 

choseTransaction!, transaction_type := enquire, start-

Transaction!, wait,[finishTransaction?| timeout >= const1, 

TESTFAIL], choseExit!, card?, TESTPASS > can be 

executed. 

B. Model-based testing 

MBT uses abstract behavioural models for specifying 
the expected behaviour of the SUT and for automatically 
generating tests to check if the behaviour of SUT conforms 
to the model. The SUT is an executable implementation 
which is considered as a black-box during the testing 
process, i.e., only inputs and outputs of the system are 
visible externally. The SUT is tested incrementally by 
applying test cases. A test case in MBT is defined as a 
sequence of test stimuli paired with expected SUT outputs.  
A specified set of test cases constitutes a test suite. 

 

C. Uppaal timed automata 

Assume a finite alphabet  ranged over by a, b,... stands 
for actions and a finite set C of real-valued variables ranging 
over by x, y, z, standing for clocks.  
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A guard is a conjunctive formula of atomic constraints of 
the form x ~ n for c  C, ~  {, , =, >, <} and n  N. We 
use G(C) to denote the set of guards, ranged over by g. 
 

Definition 1 (Timed Automaton) [6] 
A timed automaton A is a tuple N, l0, E, I where 
– N is a finite set of locations (or nodes), 
– l0  N is the initial location, 
– E  N  G(C)    2C  N is the set of edges and 
– I: N  G(C) assigns invariants to locations (here we 
restrict to constraints in the form: x  n or x < n, nN. For 
shorthand we write l g,a,r l’ to denote l, g, a, r, l’  E. 
To model concurrent systems, timed automata are extended 
with parallel composition. In the UPPAAL modelling 
language, the CCS parallel composition operator is used, 
which allows interleaving of actions as well as hand-shake 
synchronization. The parallel composition of a set of 
automata is the product of the automata.  
The semantics of timed automata is defined as a transition 
system where configuration consists of the current location, 
valuation of state variables and the current values of clocks.  
There are two types of transitions between states: the 
automata may either delay for some time (delay transition), 
or follow an enabled edge (action transition). 
      To keep track of the changes of clock values, we use 
functions known as clock assignments mapping C to the 
non-negative reals R+. Let u, v denote such functions, and u 
 g means that clock values denoted by u satisfy the guard 
g. For d  R+ let u + d denote the clock assignment that 
maps all x  C to u(x) + d and for r  C let [r ↦0] denote 
the clock assignment mapping all clocks to 0 and agree with 
for the other clocks in C\r. 
 
Definition 2 (Operational Semantics) [6] 
The semantics of a timed automaton is a transition system 
(also known as a timed transition system) where states are 
pairs l, u and transitions are defined by the rules: 
– l, u d  l, u + d if u I(l) and (u + d)  I(l) for a non-
negative real d  R + 
- l, u a l’, u’ if l g,a,r l’, u  g, u’ = [r ↦0]u and 
u’I(l’). 
To increase the modeling power keeping the analysis  
traceable for planner synthesis we lift  the model class to 
rectangular timed automata where guard conditions are in 
conjunctive form with conjuncts including besides clock 
constraints also constraints of integer variables.  

Similarly to clock conditions, the integer variable 

conditions are of the form k ~ n for k  Z, ~  {, , =, >, <} 

and n  N. The advantage of this extension is that the model 
has rich enough modelling power to represent real-time and 
resource constraints being same time efficiently decidable 
for reachability analysis. 

III. ASPECT-ORIENTED MODEL-BASED TESTING 

In this section, we explain the concepts of AOM 
applicable in aspect-oriented MBT. The AOM allows the 
models to be organized so that they address particular 
requirements (including crosscutting ones) and 
corresponding test cases. The AO test model includes a base 
model and aspect-related advice models. Aspects may 
contain sub-aspects that require sub-advices and their own 
test cases. Sub-aspect models have to be easily inserted into 

their parent aspect models. In our examples, we use name 
prefixes that refer to the parent models so that they are 
convenient to comprehend and maintain. 
     AO testing can also be considered as an example of 
compositional testing where the test results of the composed 
system can be inferred from the test results of its 
components. In the MBT context, it means that the test 
cases are determined only by the context of the aspect 
advice models and the interface behaviour of their 
composition. AOM also provides a conceptual basis for 
defining test coverage criteria in terms of aspect related 
model elements. The hierarchy of those criteria is depicted 
in Table I. 

TABLE I.  AO TEST COVERAGE CRITERIA 

             Coverage  

Type       constraint   

of coverage  

entity 

Strong 

(universal) 

coverage 

 

Weak 

(existential) 

coverage 

 

Discriminati

ng predicate 

Aspect   

A 

All aspects of the 

model 

 A  A. ... 

Some aspects of 

the model 

 A  A. ... 

Predicate on 

aspect 

constants 

/variables 

i-th join point 

jp(A, i) 

All join points of 

aspect A 

 jp(A, i)JP(A) 

. ... 

Some join points 

of aspect A 

 jp(A, i) JP(A) 

. ... 

Point cut 

condition 

Entry-exit path  

of an advice model 

MA'
 

 Paths(MA') 

All paths 

initiated at 

i-th join point 

  Paths(MA') 

Some paths 

initiated at  

i-th join point 

 Paths(MA') 

Path 

predicate, 

e.g. 

constraint on 

path length 

Model element of 

type T (location, 

transition, 

function, data, etc) 

included in the 

path 

 Paths(MA') 

All elements of   

type T in MA' 

Some elements 

of  

type T in MA' 

Predicate on 

the 

attributes of  

type T 

 

    The criteria shown in Table I can be expressed as closed 

1st order logic formula in prenex normal form, where the 

signature includes variables of particular types of structural 

elements of Uppaal Timed Automata (UPTA) (template, 

location, transition, label, function, data, etc.). The prefix of 

the prenex formula includes bound variables in a fixed order 

that is determined by the natural hierarchy of modelling 

entities: aspect, join-points, and path. These entities model 

the structural elements of UPTA, where the structural 

elements can be referred to directly by name or indirectly by 

constraints on their attributes. The matrix part may include 

discriminating predicates of all the above listed types. 

     The semantics and scoping of AO coverage constraints is 

defined by the hierarchy and type structure of AO model 

elements (left most column in Table I). Thus, the scope of 

constraints on bound variable in the formula matrix part is 

defined by the position of the bound variable in prefix. For 

instance, the scope of a path constraint is defined by the 

join-point and aspect constraints because these elements 
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precede path variable in the prefix. When not explicitly 

expressed in coverage constraint the default scoping means 

existential quantification over all those variables preceding 

in the prefix of coverage constraint. For characterization of 

coverage criteria in terms of Uppaal query language, we 

assume that the aspect model M is constructed according to 

the rules described in [9]. The idea is to use Uppaal model 

checker queries for selecting traces that constitute the test 

paths of the given test case. Uppaal query based online test 

generation methods are described by Vain et al. [1] and 

Hessel et al. [10].  

 

Aspect Coverage criteria impose to execute all or some 

aspects in a woven model at least once. In Strong Aspect 

Coverage (SAC), given an aspect model M, all possible test 

paths must be covered by the tests. To implement the Strong 

Aspect Coverage we use the parameterized UPTA templates 

where the template parameter pi ranges over indexes [1, n] 

that identify the aspect. Let P(i) be a predicate updated to 

true whenever  the i-th aspect advice model is entered. Then 

the traces of M (pi) under Strong Aspect Coverage criteria 

should satisfy the query: E<> forall (i: int [1,n]) 

P(i). Note that given query is valid only for paths that 

include traversal of all aspects' advice models. In general, 

the model M may not be fully connected and a single path 

including all aspects may not exist. Therefore, we introduce 

an auxiliary reset- transition into M that guarantees that if n 

advice models are reachable in M then at most with n 

traversals all of them are visited. The reset-transition 

connects the final location of M with its initial location. Due 

to this construct the Uppaal model checker is able to 

generate a trace that includes visits of all advice models. 

The tests paths for a final test case can achieved simply by 

"cutting" that trace at reset- transitions to many shorter sub 

traces. 

Weak Aspect Coverage (WAC) refers to the case where at 

least one advice model of some aspect is traversed by the 

test path. The query E<> forall (i:int [1,n]) P(i) 

differs little from the strong  coverage constraint but it does 

not require including reset-transitions in the model M. 

 

Join Point Coverage criteria impose to execute all or some 

join points of each aspect in a woven model at least once. 

Strong Join Point Coverage (SJPC) presumes similarly to 

strong aspect coverage introduction of an auxiliary reset- 

transition into M. Regardless the prefix (SAC or WAC)  of 

the query the SJPC contributes a conjunct of form ...forall 

(j: int [1,m]) P(i) && R(j) where j is ranging 

over  join point indexes of  the aspects referred in the prefix  

of that query and R(j)is a Boolean variable at each join 

point updated to true, whenever this join point is visited. 

Weak Join Point Coverage (WJPC) is satisfied if there is at 

least one trace for given formula prefix satisfying  ...exists 

(j: int [1,m]) P(i) && R(j). Here, like in WAC, 

auxiliary reset-transition is not needed. 

Aspect Path Coverage criteria impose to execute all or 

some paths of each aspect in a woven model at least once. 

Assume the entry and exit transitions of each advice models 

are decorated with entry(i, j,k) and exit(i, j,l) predicates 

where i, j, k, l range over the set of aspects, join points, and 

their advice entry and exit points respectively. Whenever the 

transition is executed these predicates evaluate to true. 

Then, the Strong Aspect Path Coverage (SAPC) contributes 

a conjunct to the query prefixed with aspect and join point 

constraints as follows:  ... forall (k: int [1,K]) 

forall (l: int [1,L]) P(i) && R(j) && [(k=1,K 

entry(k)) (l=1,L exit(l)). SAPC, like earlier strong 

coverage criteria, presumes the reset-transitions related 

construct. Weak Aspect Path Coverage (WAPC)  comparing 

to SAPC replaces universal quantifiers with existential ones 

for variables k and l, the coverage constraint becoming  to ... 
exists(k: int[1,K]) exists(l: int[1,L]) P(i) 

&& R(j) && [(k=1,K entry(k))  (l=1,L exit(l)). 

 

The Model Element Coverage criteria impose constraints 

on the types of UPTA elements to be covered in the advice 

model or set the specific constraints on the attributes of  

those elements, e.g. Strong (resp. Weak) Model Element 

Coverage can be parameterized with the element type, e.g. 

Transition and  universally (resp. existentially) 

quantified over given type. More specific coverage 

constraints can be constructed using type discriminating 

predicates on, e.g., local data variables of an advice model. 

 

IV. EXAMPLE: TESTING HOME REHABILITATION SYSTEM 

 The AO MBT approach described in Section 3 has been 
applied in testing a Home Rehabilitation System (HRS). The 
model-based testing is needed in the medical domain 
because of the safety critical nature of the systems and non-
trivial combination of functional, performance and security 
features [11]. The HRS is an application which drives sensor 
devices, analyses the gathered data, interacts with the patient 
and submits relevant information to the hospital through the 
Internet. HRS software contains the following 
subcomponents: dedicated health hub as communication 
gateway; vital signals' sensor system for patient 
measurements; movement tracking sensor system for fall 
detection, physical activity and exercise monitoring.            

There are three actors, namely, Patient, Plan and Sample, 
interacting in the "home exercising" use case. The 
composition of automata Plan and Sample constitute the 
base model that can be woven with different advice models 
depending on what body characteristic (pulse, blood 
pressure, etc.) is monitored. For instance in Figure 3, the use-
case exercising is refined with two advice models that are 
instances of the same automaton template. The advice 
models linked to the base model are location refinements of 
the unnamed location in the automaton Sample. Channel 
Sample ensures that the advice models are executed 
synchronously with the edge departing from location 
Measure in the automaton Sample. A weak join point 
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coverage of completing exercising can be specified now 

using query E<>exists(Screen=UB_warning[1]). 
The test case ensures that while a patient is exercising, a 
warning will be shown on a screen when the patient’s pulse 
is greater than the number in U_bound. On the other hand 
U_bound is the upper value of pulse that the patient may 
have during exercising and this is specific to each patient. 
For example if the U_bound is 140 then a warning on a 
screen goes red and warns “wait until your pulse will be 
normal”. We measure the pulse under “measurement [1]” 
and an upper bound and a lower bound are indicated. A 
normal pulse measurement have to be between U_bound and 
L_bound. 

A strong join point coverage of completing exercising 

can be specified using query E<>forall 
(Screen=normal[1])measurement[1]>=L_bound

[1]&&measurement[1]<=U_bound[1]. That means 
the screen indicates in green that everything is alright and the 
patient can continue exercising because their pulse is within 
the allowed range. By this strong join point test coverage, we 
ensure that our system is able to give the right warnings 
whenever necessary. 

 

V. CONCLUSION 

In this work, we have introduced an aspect-oriented 
approach to model-based testing in the context of Uppaal 
timed automata specifications. We advocate the view that 
aspect-oriented models help in constructing models of 
system under test in a systematic and user friendly way, thus 
helping to defeat the perennial problems of MBT - 
complexity of construction and maintenance of test models. 
It has been shown how the aspect related test coverage 
criteria can be formalized in a systematic way in Uppaal 
query language Timed Computation Tree Logic (TCTL) and 
the feasibility of test suites verified on aspect models before 
real tests are deployed and executed. 
     Our focus on how a test case can be generated according 
to structural units that are specific to AOM is novel. This 
gives new test coverage criteria that address implemented 
features – aspect, advice, join-points, etc., and provide more 
intuitive reference to the parts of SUT to be tested for those 
features. 
    Another contribution for enhancing MBT by aspects is 
the possibility of easy update of test case related models. If 
new requirements arise, new advice models can simply be 
incorporated by well-defined composition rules. This is 
especially relevant in regression testing. 
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Figure 3.  Composing the primary test models and advice model in parallel.  
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Abstract—The strong demand for customizable products is lead-
ing to increase variability in cyber-physical systems. The need of
dealing with variability issues increases complexity not only in
the product, but also in the verification and validation activities.
Due to the high amount of configurations that the system can
be set to, verification and validation activities might become
time consuming and non-systematic. In order to deal with these
problems, this paper presents an automatically configurable test
architecture together with a model-based process for the sys-
tematic validation of highly configurable cyber-physical systems,
with the main objective of reducing verification and validation
costs. The main contributions of this paper are the analysis of the
variability of the test system and its components together with
the traceability among the features of the cyber-physical system
and the test system and a definition of a model-based process to
achieve the test objectives.

Keywords–Model Based Testing; Test Architecture; Variability;
Configurable Systems.

I. INTRODUCTION

Modern society is depending on Cyber-Physical Systems
(CPSs) in charge of controlling many individual systems and
complicated coordination of those systems [1]. CPSs combine
digital cyber technologies with physical processes, where real-
time embedded and networked systems monitor and control
physical processes with sensors and actuators [2]. Industrial
CPSs are highly complex systems [1], and variability increases
in order to deal with the changes that the physical environment
requires.

Variability is defined as the ability to change or customize
a system [3], which can be understood as configurability
(variability in the product space) or modifiability (variation or
evolution over the time) [4]. Variability in CPSs can appear as
configurability when different components or functionalities
can be chosen or are optional depending on the customer’s
needs or budget, e.g., different temperature sensors with dif-
ferent precision. In addition, modifiability appears when a new
feature or functionality is added to the CPS, e.g., apart from
measuring temperature, humidity is wanted to be measured.
Run-time variability is also common in CPSs, which permits
the adaptation to changes in the environment.

Testing configurable CPSs can become a very time and
resource consuming activity. This is, to a large extent, caused
by the high number of possible variants, which give to the
system the chance of being set into thousands of configura-
tions, making the testing of all the existing combinations really

infeasible. The high number of variants and their complex-
ity make manual configuration of variability-intensive CPSs
error-prone and inefficient, which warrants the need for an
automated solution for CPS configuration [1], as well as for
its test system.

Traditional software testing activities can reach even the 50
% of the development costs [5], which can be incremented if
the System Under Test (SUT) is highly configurable. Model-
Based Design (MBD) tools help in the development of em-
bedded software, a task which is becoming more and more
complex, especially when variability issues have to be taken
into account. Model-, Software-, Processor- and Hardware-in-
the-Loop (MiL, SiL, PiL and HiL) tests, provide four testing
phases [6], which are typically used to test CPSs in different
stages and testing objectives.

According to Berger et al. [7], the automotive domain is
the industry where variability modelling is most used, and
MATLAB/Simulink is a modelling language widely used for
modelling embedded software in this domain [8], as well
as for simulating CPSs. This has been the main reason that
has motivated us to choose MATLAB/Simulink as simulation
framework to achieve our objective.

Test architectures are the organization of the group of
components in charge of testing a system. A test architecture is
a necessary artefact for a testing process [9], so that verification
and validation activities can be systematic, allowing among
other advantages reusability of test cases along the different
test phases. According to Nishi [10], test architectures can
be differentiated into test system architecture and test suite
architecture. The test system architecture focuses on issues
such as test system, SUT, platform where the SUT is executed
or test case generation, whereas the test suite architecture relies
on groups of test cases, test levels, etc. [10]. The viewpoint of
this paper will focus on the test system architecture.

Two main challenges have been identified to efficiently
test highly configurable CPSs. On the one hand, the definition
of a test architecture that automatically gets configured for
the selected configuration of the CPS. Each configuration of
the CPS is different, with different ports, parameters, func-
tionalities and requirements; therefore, the test architecture
must be adapted to the selected configuration. On the other
hand, the selection of the test cases that each configuration
must execute. Each configuration requires a set of test cases
to be executed depending on the selected components and
the product requirements. In addition, it might be possible

79Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            88 / 96



that some test cases had already been executed in a similar
configuration and that can be avoided to save time.

This paper focuses on the first issue, how to automatise
the configuration of a test architecture for configurable CPSs,
which serves as a basis to develop a configurable test architec-
ture in Simulink. Moreover, this test architecture is able of get-
ting configured automatically taking into account the selected
configuration for the configurable CPS. In addition, we propose
a systematic process that enables reducing the validation time
of configurable cyber-physical systems considerably.

The rest of this paper is structured as follows. Section
II introduces the related work. Section III presents the con-
figurable test architecture and the components composing
it. In Section IV, the necessary steps to systematically test
variability-intensive CPSs are introduced. Preliminary as well
as expected results are described in Section V. Finally, Section
VI provides the conclusions of this paper.

II. RELATED WORK

Model-in-the-Loop for Embedded System Test (MiLEST)
is a toolbox for MATLAB/Simulink developed by Zander-
Nowicka [11]. The test architecture, depicted in Figure 1,
is based on MiLEST, specially the test oracle and the test
data generator. The hierarchy of MiLEST is divided into four
abstraction levels: Test Harness level, Test Requirement level,
Test Case level and Feature level. The main difference between
the test architecture proposed in [11] and our test architecture
is that the test architecture presented in this paper supports
variability issues and we add an additional block named “Test
Historic Database” with the main objective of reducing testing
time.

From the testing perspective, our previous work [9]
presents an approach based on model-based testing and vari-
ability management integrated in Simulink, where a concrete
configuration of the software is chosen by the test engineer,
and the testing infrastructure is instantiated for the chosen
configuration; the main shortcomings of this approach are
that the plant model is not simulated and that important
components such as test oracles do not handle variability.
In another previous work [12], a testing architecture with
variability management in the test oracles is proposed to test
distributed robotic systems in Simulink; in this case, the main
limitations of this approach is that it was only oriented for
same purpose distributed systems, and the variability points
were only modelled in a test oracle.

A product line of validation environments with variability
to test different applications in different domains and technolo-
gies is proposed by Magro et al. [13]. The main limitations of
this approach are that the components handling variability are
too high level components, it does not support test automation
and variability is not managed with any tool.

Combinatorial testing is also widely used when testing
configurable systems, where configurations are often selected
using pairwise or t-wise techniques. Combinatorial testing
techniques are commonly combined with model-based testing
as proposed by Oster et al. [14], where a tool chain is
introduced named MoSo-PoLiTe. This tool selects pairwise
configuration selection component on the basis of a feature

model covering 100% pairwise interaction, and test cases are
generated for each configuration.

Nevertheless, this combinatorial technique selects product
configurations statically. In [15], a novel approach is presented
named SPLat, where product configurations are determined
dynamically during test execution by monitoring accesses to
configuration variables. The technique consists on executing
the test for one configuration, while observing the values of
configuration variables used to prune other configurations.

Another approach to reduce validation costs of highly
configurable systems is minimizing the test suite for testing
a product, reducing redundant test cases. A set of test cases
can be automatically obtained by selecting features of a
feature model to test a new product, but there still can exist
redundant test cases [16]. A fitness function based on three
key factors (Test Minimization, Feature Pairwise Coverage
and Fault Detection Capability) for three different weight-
based genetic algorithms is defined by Wang et al. [16]. This
approach allows reducing the test suite covering all testing
functionalities achieving a high fault detection capability.

III. THE CONFIGURABLE TEST ARCHITECTURE

A. Variability in the Test Architecture

As depicted in Figure 1, our test architecture is composed
by five sources: System Under Test (SUT), Test Data Gen-
erator, Test Oracle, Test Control and Test historic Database.
The experiments performed by Weißleder and Lackner [17]
show that the most efficient way to test configurable systems
is including variability down to the test case level. The test
architecture must deal with variability so as to be configurable.
The following list describes the different components and
defines where variability can be found:

• System Under Test (SUT): it is the CPS to be tested.
The components can be divided into hardware and
software, where the software can be configured as
model or software. In this approach, the SUT is kept
as black-box, what means that the test engineer does
not need to be familiar with its internal behaviour [18].
Variability in a CPS can be found in the cyber as well
as in the physical side. Variability in the physical side
(commonly known as context variability) is related
to the variability of the environment. In a previous
work [19], we proposed a methodology to manage and
model variability in plant models for CPSs.

• Test Data Generator: it is the source in charge of stim-
ulating the SUT with test signals. Variability in the test
data generator can be found in signals (number and
characteristic of each signal), requirements (number
and parameters of requirements) and test cases (test
case duration and test case characteristics).

• Test Oracle: it is the source where the SUT behaviour
is examined and the test result is determined by a
verdict [11]. Variability in the Test Oracle might be
found in signals (number of inputs to the oracle)
and requirements (number of requirements, number of
validation functions, validation function characteristics
and requirement parameters).
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• Test Control: it is the specification that executes test
cases [11]. In the case of systems with many variants,
it is important to reduce the testing time as much
as possible because there are many configurations
that must be tested. This source will execute test
suite minimization algorithms to reduce the overall
validation time, as well as test case prioritization
algorithms to reduce the time needed to detect faults.
Once the tests are finished, the test controller will send
information of the results to the test historic database.

• Test Historic Database: the results of the generated test
cases are stored in a database in order to firstly, have
information of the quality of the system and secondly,
to avoid testing the same features many times. The test
historic database would store the tested configurations,
verdicts of test cases, achieved coverage, versions of
the tested SUT, etc.

Test Data 
Generator 

Test Oracle SUT 

Test 
Control 

Test Historic 
Database 

Figure 1. Configurable Test Architecture (based on [11]).

B. Managing and Modelling Variability

The previous section has analysed where the variability
can appear in a test architecture. However, this variability
must be managed and modelled. Feature Modelling is the
most used technique in industry to manage and represent
variability of systems [7]. A feature model can be defined as a
notation that represents features and relations among them of
all possible product configurations [20]. Basic feature models
represent features as “mandatory”, “optional”, “alternative”
and “or”. Constraints among features also can appear in form
of “Require” and “Exclude”. Figure 2 depicts an example of
a feature model.

MATLAB/Simulink can be used to model variability, as
explained in several approaches in the literature. In [21],
uniform variability is modelled using different mechanisms
and blocks offered by MATLAB/Simulink, and variability is
managed using the tool pure::variants [22]. In [8], different
blocks are classified depending on their granularity, mapping
of feature types, binding times and quality aspects. Another
approach is presented Botterweck et al. [23], where variants are
managed using a tool named S2T2 and variability is modelled
in a similar way as explained in [21], but when the product is
configured, the unselected features are erased from the model.
Another interesting and different approach is presented in [24],
named “Delta Simulink”, where “Delta Modelling” is used in
Simulink models to model variability. In our previous work
[25], we compared the main characteristics of the variability
modelling and management approaches documented in the
current state of the art.

C. Traceability among Features, Feature Models and the Test
Architecture Components

We believe that using feature models to manage variability
of the testing infrastructure, as shown in Figure 2, may help to
automatically generate the components that comprise the test
architecture. The selected feature modelling tool is FeatureIDE
[26], which is an open source plug-in for Eclipse that can be
modified to adapt it to our needs.

FeatureIDE allows obtaining the .xml file of the developed
feature model. Using a .xml parser in MATLAB it is possible
to extract the data needed to automatically generate the test
architecture.

FeatureIDE also permits an automatic configuration (all
possible configurations, t-wise configuration, etc.) or a manual
configuration of products, which returns a file with an ex-
tension “.config”. This extension can be read from a model
configurator developed in MATLAB that automatically con-
figures the Simulink model (including the SUT and the test
architecture) before running the test.

 

Requires 

Requires 

Requires 

Figure 2. Example of how the Test Feature Model looks like.

We propose a motivating example involving the control of
the liquid level of an industrial tank to better understand the
proposed approach. The liquid can be water or a chemical
product. When the liquid is a chemical product, it will be
mandatory to measure its acidity with a pH sensor. Other
variability points in the example are included: an optional
temperature sensor, two different sensors to measure the liquid
level and two types of gates to drain the liquid.

The test feature model would have several branches, which
can be divided into branches for the test system (Requirements,
TDGen, TOracle) and the branches for the CPSUT, and
both are related. To achieve this, constraints (“requires” or
“excludes”) of the test feature model play an important role, as
they define the relations among components of the product line
and test cases. As shown in the example depicted in Figure 2,
Temperature Sensor requires its corresponding test case, named
“Test Case Temp”. When chemical liquid is selected, the pH
Sensor is also selected, and two test cases needs to be executed:
“Test Case Level Chemical” and “Test Case pH”. The same
happens when the liquid is water.

IV. SYSTEMATIC MODEL-BASED PROCESS FOR THE
VALIDATION OF HIGHLY CONFIGURABLE

CYBER-PHYSICAL SYSTEMS

We consider that it is essential to follow a systematic
process to test variability-intensive CPSs. There are many
possible configurations, which makes impracticable to test all
of them and there is uncertainty of the achieved test coverage.
Figure 3 depicts the overview of the model-based process that
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enables the systematic validation of highly-configurable CPSs.
The components of the process shown in Figure 3 are classified
into two phases following the theory of product lines: Domain
Engineering and Application Engineering. The main difference
between these two phases is that the components in the domain
engineering are for the whole product line, and therefore
variability is implemented. On the contrary, the components
corresponding to the application engineering are for a concrete
product configuration, where variability is already bound. In
addition, seven steps are needed to carry out the whole process:

• Step 1: The test feature model has to be developed.
This step is one of the most important ones as it will
allow to manage and handle the variability of the test
system, and later this will be used to automatically
generate the test architecture.

• Step 2: The .xml file of the developed test feature
model is generated and saved to be manipulated by
the test architecture generator. This .xml file is auto-
matically generated by the tool FeatureIDE [26].

• Step 3: The test architecture generator, which is
implemented in MATLAB, parses the .xml file of the
feature model and saves the needed information of the
test architecture and its variability in MATLAB cell ar-
rays. With the saved information, the test architecture
will automatically generate the Simulink model of the
test system integrated with the Simulink model of the
CPSUT using MATLAB scripts.

• Step 4: Configurations are generated either manually
or automatically and stored in .config files in a library.
These configurations are the ones that will later be
tested. The tool FeatureIDE [26] allows either the
manual or automatic generation of configurations. In
the case of automatic configuration generation, com-
binatorial techniques, such as pairwise or t-wise, are
used.

• Step 5: The test configurator, which is implemented in
MATLAB, parses the configuration files and the com-
ponents of the simulation framework are configured.
The different possible test cases (handling variability),
and the models of the hardware and software compo-
nents will be stored in their corresponding libraries.
The test configurator will allocate the needed compo-
nents in the correct place of the simulation framework
and integrate them, removing the components that are
not needed for the configuration with the objective of
saving simulation time.

• Step 6: When the simulation starts running, as men-
tioned before, the test controller will obtain infor-
mation about previously executed test cases in order
to prioritize and remove redundant test cases. Once
processed the information about previously executed
test cases, the simulation framework will test the
selected configuration.

• Step 7: The executed test results are saved in the
database, and ready to test another configuration. For
the second test run, it will be enough to start from the
fifth step.

Test Feature 
Model 

.xml 

Test Architecture 
Generator 

Simulation 
Framework 

Test Configurator 

Test Case 
Library 

HW Model 
Library 

Test Historic 
Database 

1 
2 

3 

5 

7 

6 
Configurations 

Library .config 
4 

SW Model 
Library 

Domain Engineering 

Application Engineering 

Figure 3. Overview of the Systematic Model-Based Process
for the Validation of Highly Configurable Cyber-Physical

Systems.

V. RESULTS

Preliminary results include the semi-automatic generation
and configuration of the SUT. In this process, we extract data
from a feature model and generate automatically the compo-
nents of the SUT’s model in Simulink. The most challenging
part is the automatic integration among the components, where
the configurator needs information about the input and output
ports of each component, i.e., their datatype, how are related
with the other components, etc. The following step would
be the automatic generation of the test architecture and its
integration with the SUT.

The proposed test architecture in combination with the
presented model-based process allows testing systematically
real-time CPSs that have to deal with many variants. In
addition, the use of a test controller, which is communicated
with the test historic database, and that contains algorithms
for different test objectives, as well as to prioritize test cases
and to remove redundant test cases will considerably reduce
verification and validation time achieving high test quality.

Another important issue for saving simulation time is the
allocation of the components for the selected product, remov-
ing the features that are not specified in the configuration.
We propose storing the different components in libraries and
allocating them automatically in the Simulink model with the
test configurator, as proposed by Arrieta et al. [19] for plant
models.

A test feature model has been proposed, but it has to be
specified which is the data needed by the test architecture
generator, as well as the optimal way of tracing components
of the SUT with test cases. In addition, different modifications
in the source code of the FeatureIDE tool might be needed to
adapt the plug-in to our needs.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an automatically configurable test
architecture that includes different sources to efficiently and
systematically test variability-intensive CPSs. The test archi-
tecture is able of self-adapting to product configurations and
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automatically tests and obtains verdicts that represent results
of the executed test cases.

We have focused our approach for the validation of
variability-intensive or highly configurable CPSs. As the SUT
must deal with variability, the test architecture also has to
handle variability. The first step taken has been the detection
of the different variation points that the components of the
proposed test architecture must deal with. Systems with many
variants must use a tool to manage the variability. We have
proposed to use Feature Models to manage variability as well
as for the traceability among components of the SUT and test
cases.

A process with seven steps that enables testing variability-
intensive CPSs in a systematic manner has been proposed,
starting from variability management with feature modelling
and ending with an upload of test results in the test historic
database.

This paper has focused on the test architecture and its
configurability. Although the test architecture plays an im-
portant role when testing highly configurable CPSs, it is also
important to study the selection of the appropriate test cases.
After developing the framework, it is expected to validate the
whole process with different case-studies, desirably from the
automotive domain. Additionally, we would like to compare
and combine our variability modelling approach with other
potential approaches, such as Delta Simulink [24] in test
architectures.
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Abstract—Storage Area Networks (SAN) solutions are highly
complex, often with enterprise class quality requirements. To
perform  end-to-end  customer-like  SAN  testing,  multiple
complex  interoperability  test  labs  are  necessary.  One  key
factor  in  field  quality  is  test  coverage;  in  distributed  test
environments  this  requires  a  centralized  view  and  coverage
model across the different areas of test. We define centralized
coverage  models  and  apply  our  novel  trace  coverage
technology  to  automatically  populate  these  models.  Early
results indicate that we are able to create a centralized view of
SAN coverage across  the  multitude  of  IBM test  labs world-
wide.  Moreover,  we  are  able  to  compare  test  lab  coverage
models with customer environments. Based on these views and
comparisons,  we  expect  to  obtain  an  increased  coverage,
resulting in increased discovery rate of high-impact defects.

Keywords-Software Test; Software Engineering;  SAN Test;
System  Test;  Distance  Matrix;  Trace  Coverage  Models;  SAN
Hardware Test Coverage

I.  INTRODUCTION AND MOTIVATION 

IBM is a global technology and innovation company with
more  than  400,000  employees  serving  clients  in  170
countries [1]. The IBM test structure consists of thousands of
test engineers world-wide.  In addition to function test teams
for  product  streams,  there  is  also  an  entire  world-wide
organization  of  many  hundreds  of  people  dedicated  to
systems and solution test.  IBM has interop and complex test
labs  world-wide  [2]. Systems  test  strategies  focus  on
customer-like,  end-to-end  solution  integration  testing
designed to cover the architectural design points of a broad
range of customer environments and operations with the end
goal  of  increased  early  discovery  of  high-impact  defects,
resulting  in  increased  quality  solutions.   One key area  of
systems and solution test is innovation.  As configurations
supported  continue  to  climb,  with  over  180  million
configurations  supported  on  the  System  Storage
Interoperation  Center  (SSIC)  site,  test  engineers  are
continually challenged to find ways to test smarter [3]. 

One  IBM  test  transformational  project  we  have  been
working  on  is  the  storage  area  network  (SAN)  distance
matrix project.  This project arose from the IBM Test and
Research  divisions  as  a  joint-project  aimed  at  better
quantifying  and  understanding  the  systems  test  SAN
coverage across IBM test groups world-wide. 

At the start of this project we had lots of questions related
to world-wide hardware and SAN coverage, but we did not
have a centralized view of the test labs across IBM.  Test
labs were built, monitored and architected on an individual
basis without the ability to easily extract coverage models
across the test locations and understand on a global scale the
total IBM coverage model.  Another piece missing was the
ability to do broad coverage reviews looking at IBM test labs
in comparison to its clients.  We have always worked hard to
build  our  test  environments  to  include  key  characteristics
from a diverse range of IBM clients, however we did not
have  a  data  environment  modeling  tool  to  take  customer
environment  variables  and  map  them  against  our  test
environments.   The  IBM  Distance  Matrix  project  was
designed  to  address  these  concerns  and help  to  centralize
visibility  and  configuration  details  about  the  systems  and
solution SAN test labs across IBM and its clients.  

The SAN distance matrix project has the abilities to look
at  key  architectural  design  points  across  the  SAN
environments and extract coverage summaries for deep-dive
reviews, comparisons and ultimately architecture changes to
continually improve our  solution test  coverage,  scalability
and customer focus. In this paper, we will further describe
the  SAN distance  matrix  project  and  the  early  results  we
have achieved.

II. RELATED WORK

There  are  existing  tools,  including  Cisco  Data  Center
Network Manager [4] and Brocade Network Advisor [5] that
provide  in-depth  and  detailed  modeling  capabilities  for
single environments or environments managed by a single
entity;  however there is a gap in the ability to easily look
across a heterogeneous group of environments controlled by
different companies, divisions or organizations. 

In  functional  modeling  and  one  of  its  optimization
techniques  Combinatorial  Test  Design  (CTD),  the  system
under  test  is  modeled  as  a  set  of  parameters,  respective
values, and restrictions on value combinations that may not
appear together in a test. A test in this setting is a tuple in
which every parameter gets a single value. A combinatorial
algorithm is applied in order to come up with a test plan (a
set  of  tests)  that  covers  all  required  interactions  between
parameters.  Kuhn,  Wallace  and  Gallo  [6]  conducted  an
empirical  study  on  the  interactions  that  cause  faults  in
software that is the basis for the rationale behind CTD. Nie

84Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

                            93 / 96



and Leung [7] provide a recent survey on CTD. The SAN
distance matrix that we create can be viewed as a functional
model. In our case, we automatically extract the model from
switch  dumps.  We term  the  creation  of  coverage  models
from existing traces 'trace coverage'.

III. PROJECT STRATEGY

The project  strategy is composed of  2 main phases  as
shown on Fig.1. The goal of the SAN distance matrix project
is  to  extract  data  quarterly  across  team  world-wide.  By
identifying key switch data, the script we execute has little
impact  to  the  regular  activity  of  the  switches.  In  the
following sections, we describe each phase and activities in
detail.

Figure 1. SAN Distance Matrix Project Strategy

IV. COLLECTING DATA

The  data  collection  phase  is  composed  of  2  main
activities:

A. Identify Key Data

Using  switch  dump  data,  we  selected  specific  switch
query commands which are used to systematically extract the
key data for  usage  and coverage  statistics across  different
IBM  test  teams  and  select  customers.  The  switch  query
commands  allow  us  to  extract  dump  data  focused  on
topologies,  coverage  points,  utilization  and  other
environmental  aspects  in our SANs.  Topology data points
include  port  speeds,  port  counts  and  port  types.
Environmental  data  points  include  the  switch  hardware
platforms, protocols used (ex: Fibre Channel, Fibre Channel
over Ethernet,  Fibre Channel over IP),  code levels,  switch
up-time and switch special functions/features enabled.

Architectural  design  points  include  port-channel/trunk
usage,  vsan/vlan  coverage,  virtualization  data  and
initiator/target  to  inter-switch link ratios.  Using this  dump
data and subsequent processing logic, we were able to create
a  summary  of  all  the  different  port  speeds  being  tested,
switch  utilization  rates,  general  architecture  modeling  and
software  and  hardware  versions  being  covered  across  the
initial  scope  of  IBM  systems  test  and  customer
environments.

This  approach  helped  us  easily  gather  promising data,
avoid limitations of manual investigation and create a model
that  is  scalable  and  easy  to  use  for  ongoing  analysis  and
trending.

B. Collect Data

For  data  collection,  we  designed  automated  scripts  to
collect the dump data from IBM test labs; the scripts use a
source csv file which contains the list  of  switches,  switch
types, IPs and credentials. It uses a telnet connection to login
the different switches, then executes the appropriate switch
query commands and generates a log containing the switch
dump  data  for  each  switch.  For  the  initial  scope  of  this
project  a  subset  of  IBM test  labs  was chosen,  that  subset
group  included  fourteen  IBM test  labs  which  contained  a
total of four hundred and eighty five SAN top of rack, edge
and core switches.

V. ANALYZING THE DATA

The problem: SAN switch dump data is heterogeneous
based on switch vendor, platform and code levels. Further,
the  data  is  collected  from  various  sources  and  unique
collection  methods  across  IBM  test  laboratories  and
customer locations. 

The  switch  dump data  is  a  text  file  created  for  each
switch.  It  contains  output  from  multiple  switch
queries/commands that are executed against the switch. Each
switch type has its own set of commands and a unique output
format.

The goal: Parse the various switch dump semi structured
data and transfer it to structured format.

The solution:  the solution relies on the novel notion of
trace coverage and the IBM EASER [8] easy log search tool.

Trace  coverage  extracts  report  data  from  traces  that
already exist in a system or are easy to create according to a
defined coverage model. The coverage model can be code
coverage  –  automatically  created  from the  code  locations
that  emit  trace  data,  or  functional  coverage  –  manually
created  to  define the system configuration or  behavior.  In
SAN coverage, the traces are created by switch dumps, and
the coverage model is a functional coverage of the possible
SAN environments. A functional coverage model describes
the test space in terms of variation points or attributes and
their values. For example, attributes may be port types, ports
rates,  and ports utilization percentages.   The IBM EASER
tool supports extraction of semi-structured data from traces
and its transformation into structured format. It provides both
a graphical user interface (GUI) for interactive exploration
and  a  headless  mode  of  operation  for  automating  the
extraction and analysis process.

After  defining  a  functional  coverage  model,  the  IBM
EASER tool is used to extract, aggregate, and compare data:

 Extract functional model values from switch dumps.
 Aggregate the coverage of multiple logs from both

customers and IBM test laboratories.
 Compare coverage between a defined set and subsets

of labs by generating multiple summary reports.
The SAN Test functional coverage model is extendable;

it  can  be  updated  to  include  additional  values  seen  in
customer environments. The collected data is aggregated by
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IBM test groups and customers and definitions are flexible
and can be supplied by the end-user.

The  automated  functional  coverage  analysis  process
includes  three  phases:  Extraction,  Aggregation  and
Reporting.

A. Extraction

The  functional  model  attributes’  values  are  extracted
from each switch dump file.  By using EASER, the log is
divided into entries and then the relevant data is extracted,
computed  and  inserted  into  the  relevant  model  attributes’
values. One file with attributes and values is created for each
switch log file.

Fig. 2 shows a sample of a single cisco_fc switch log file,
which is created using the automated scripts. In addition to
the switch summary, the log file includes the switch query
commands and corresponding switch data output.

Figure 2. Switch Log File Sample

The EASER parser extracts values from the entry in Fig.
2 and updates them into the attributes shown in Fig 3.

Figure 3. Parser extracted data Sample

Fig.  4,  shows a  sample  of  a  Cisco  switch  dump data
extract,  which the parser  will  use to compute values,  then
inserts the combined values into a model.

Figure 4. Cisco MDS extract data snippet

Fig. 5 shows an example of an abbreviated model. For
the sake of brevity, only a small portion of the parser extract
and model data are shown in these figures.

Figure 5. Cisco MDS single switch abbreviated base model.

B. Aggregation

All  data  from  Extraction output  files  is  grouped  by
switch type and switch locations into three files: 

1. Summary of all entries,
2. Summary of all samples that contains “full data” 
3. Summary of files with “no” or “partial” data. 

The  contents  of  the  first  two  files  reflect  the  model:
Attributes  and their  aggregated  values  from the  extraction
phase output files. The third file contains an ‘illegal’ list that
should  be  reviewed  by IBM  experts  for  the  cause  of  the
failure during collection. Fig. 6 contains a subset example.

Figure 6. Summary of select full data samples

2014-03-24 14:24:55 INFO Switch Summary 
    Name:     slswc10f2cis 
    IPAddr:   9.11.195.75
    Brand:    cisco
    Type:     fc
    Area:     cisco san
    Location: tucson
2014-03-24 14:24:55 INFO Log in to  device slswc10f2cis.tuc.stglabs.ibm.com
2014-03-24 14:25:00 INFO Log in to slswc10f2cis.tuc.stglabs.ibm.com successful
2014-03-24 14:25:00 INFO --------------------------------------------------
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C. Reporting

Data from the Aggregation phase is broken into several
reports. There are two summary reports types:  code levels
and machine types which are based on aggregation summary
of  all  entry files  and  results  report  which  contains  data
including:  switch functions, SAN design principles, switch
utilization, port speeds, errors, peak traffic rates and average
traffic rates. 

Fig  7.  contains  an  example  of  number  of  switches
running select Cisco NX-OS code levels from two IBM test
labs and one client location.

Figure 7. Code level sample report

VI. EARLY RESULTS

We have created a functional model that has enabled us
to:

 Identify key SAN coverage and test variants 
 Better understand our global SAN test environments

using  trace  coverage  analysis  to  aid  in  gap
identification and improve our system test coverage
strategies.

 Ensure test groups remain on IBM supported Cisco
and Brocade switch code levels

 Create central  list  of SAN switch hardware  across
IBM  test,  allowing  us  to  identify  groups  utilizing
dated  switch  hardware  and  place  them  into  a
hardware refresh pool.

 Look at switch utilization and stress rates to ensure
we are accurately stressing our equipment and if not
put plans in place to help increase load coverage.

 Review  environment  architecture  designs  and
recommend changes or complexity additions where
appropriate.

 Foster  technical  interaction  and  deep  dive
environment  cross-test-cell  reviews  with  test
technical leads from IBM test labs world-wide.

Overall, we were able to systematically collect data from
global IBM System test labs and create a centralized view of
SAN switch equipment and coverage  across  IBM systems
test.  We were  also  able  to  gather  dump data  from select
customers and compare our test lab coverage models with
customer environments.

VII. CONCLUSION AND FURTHER DEVELOPMENT 

As  solution  complexity  and  the  number  of  supported
configurations increase in the IT industry, we must continue
to re-invent the ways we do solution testing. In our global
test  environment,  the need  to  have procedures  in  place  to
extract data and create advanced comparison and coverage

models  is  essential.  This  project,  although  in  its  early
deployment stages, has already shown tremendous promise
for being able to systematically extract and model coverage
across a large number of test and client SAN environments.
One of the key factors of this models continuing success is
its scalability.

In  the  future,  we plan to  extend  the distance  function
beyond  reducing  the  data  to  a  single  dimension.  For
example, today one distance function is the difference in the
average  rates  among  different  groups.  We  could  instead
compute a distance metric over the rate vectors.

As we continue to implement the distance matrix project
across test labs within IBM we are gathering key data and
making  methodical  changes  is  SAN  test  architecture  to
provide  better  test  coverage  points  for  IBM  products  and
solutions.
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