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Abstract— Remote photoplethysmography has emerged as a 

promising continuous, non-invasive vital signs monitoring 

technique. This technique provides real-time estimation of key 

vital signs, including blood oxygen saturation, breathing rate, 

and heart rate, by analyzing a video of the user's face. To assess 

perceived usability, elderly end-users and related caregivers 

completed the System Usability Scale and the short version of 

the User Experience Questionnaire, providing quantitative 

scores and qualitative feedback on usability, reliability, and 

satisfaction. The results demonstrate the robustness and user-

friendliness of the system, particularly for caregivers, 

suggesting some refinement to make it more accessible to older 

users.  

Keywords- Remote Photoplethysmography (rPPG); Contactless 

Health Monitoring; Vital Sign Estimation; Usability Evaluation; 

System Usability Scale (SUS); User Experience Questionnaire 

(UEQ). 

I.  INTRODUCTION  

      Continuous monitoring of vital signs plays a key role in 
preventing various heart and respiratory system diseases. 
Heart Rate (HR), Breathing Rate (BR), and blood oxygen 
saturation (SpO2) are critical indicators for assessing the state 
of human health. While wearable devices such as 
smartwatches have gained widespread popularity, contactless 
systems have seen increased adoption, particularly following 
the COVID-19 pandemic [1]. In recent years, researchers have 
investigated remote photoplethysmography (rPPG), a non-
contact technique that analyses subtle variations in skin color 
caused by blood fluctuation in peripheral vessels [2]. These 
color variations are due to periodic changes in blood volume 
linked to the cardiac cycle, which can be extracted from Red-
Green-Blue (RGB) video signals using signal processing and 
filtering techniques. The rPPG method typically involves face 
detection, Region-Of-Interest (ROI) selection, signal 
decomposition, and post-processing to estimate heart rate, 
breathing rate, and blood oxygen saturation with high 
accuracy [3]. This technology enables non-invasive vital signs 
monitoring by analyzing video data of the user's face acquired 
using consumer devices, such as RGB or smartphone-
integrated cameras, which are low-cost and extremely 
diffused [4]. This innovation offers substantial promise for 
remote health monitoring, especially within telemedicine 

applications. Ensuring usability is essential to make health 
monitoring solutions practical, efficient, and accessible in 
real-world scenarios. Usability and acceptability are 
particularly critical for adopting systems, such as rPPG, 
especially among older adults, as they strongly influence 
engagement and sustained use [5]. This paper examines the 
experimental development phase of the proposed solution, 
focusing on usability outcomes, feedback on sustainability, 
and its potential integration into services and interventions 
designed for aging populations. The structure of the paper is 
as follows: Section II outlines the materials and methods used, 
detailing the device under usability investigation, as well as 
the protocols and questionnaires used for user experience data 
collection; Section III presents the findings related to usability 
and discusses the obtained results, while Section IV provides 
conclusion and future works. 

II. MATERIALS AND METHODS 

This section provides an overview of the rPPG system 
employed in the study followed by an introduction to the basic 
concepts of usability and a description of the questionnaires 
used to evaluate the user experience in this research.  

A. Hardware and Software Description 

       Remote photoplethysmography (rPPG) allows the 

monitoring of vital signs using only a vision sensor and a 

processing unit. Most studies use consumer webcams or 

cameras connected to PCs to capture the video stream of the 

user's face. In our system, the NexiGo N960E webcam (Figure 

1a) was selected for facial video acquisition since the built-in 

light ring ensures optimal signal quality even in low-light 

conditions (three adjustable brightness levels) and the 

Raspberry Pi 4 Model B was selected as the processing unit 

due to its efficiency and cost-performance ratio (Figure 1b), 

as evidenced in [6]. The input of the algorithmic pipeline for 

vital signs estimation is a video stream taken by the selected 

webcam. As detailed in [6], the pipeline consists of two main 

stages: (1) the pre-processing stage and (2) the feature 

extraction and vital signs estimation stage.  
The system was tested in a controlled environment to 

assess its accuracy. The experiment involved measuring vital 
signs at various distances from the user to the camera, using 
data collected by certified devices for ground truth. 

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-255-5
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Figure 1. (a) NexiGo N960E Webcam and (b) Raspberry Pi 4 Model B. 

Different kinds of metrics were proposed in this research 
area for evaluating vital signs measurement methods. Here, 
the commonly used Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE) metrics were utilized. At 0.5m, 
the system demonstrated accurate HR estimation with a MAE 
of 2.20 and an RMSE of 3.96. Similarly, the best results for 
BR were achieved at 0.5m, with a MAE of 1.80 and an RMSE 
of 2.15. For SpO₂ estimation, the average percentage 
difference from ground truth increased with distance, with the 
lowest error (0.85%) at 0.5m. Performance declined as 
distance increased, emphasizing optimal accuracy at closer 
proximity. The experiment was conducted in a controlled 
environment to ensure optimal lighting and positioning. 
However, real-world conditions may introduce factors such as 
variable lighting, background noise, and user movement, 
which could affect both the accuracy of rPPG measurements 
and overall usability. 

      The Graphical User Interface (GUI) was designed to be 

intuitive. Figure 2 illustrates the GUI that caregivers and 

elderly users interacted with. In the upper-left corner, a live 

feed from the webcam is displayed, assisting users in 

correctly positioning their faces for capturing. Once the 

acquisition is completed, the estimated vital signs are 

displayed in the upper right corner (green box). In addition, 

there is a section (black box) for manual entry of parameters 

from certified devices. Under this area (red box) any 

messages about data transmission or connection errors are 

displayed. Below the data transmission area, a countdown 

timer, set to 30 seconds, informs the user of the remaining 

acquisition time. Since the graphical user interface is entirely 

in Italian, Figure 3 shows for clarity a translated English 

version of the interface, created specifically for dissemination 

purposes and not presented to users. 
 

 
Figure 2. Graphical User Interface of the rPPG system, Italian version. 

Figure 3. Graphical User Interface of the rPPG system, English version. 

B. Usability Rules and Protocols 

      Usability measures how easy and intuitive a software 

product, website, application, or interactive system is for 

users. Two widely accepted definitions of usability come 

from Jakob Nielsen and ISO 9241-11. Nielsen describes 

usability as a quality attribute that evaluates ease of use and 

includes components such as learnability, efficiency, 

memorability, error reduction, and satisfaction. He proposed 

ten general heuristics to guide User Interface (UI) design, 

focusing on accessibility and intuitiveness [7]. Usability 

principles have been widely studied since the foundational 

works of Nielsen, and more recent studies have further 

explored their applications in digital health technologies [8]. 

      The ISO 9241-11 standard defines usability as "the extent 

to which a system, product or service can be used by specific 

users to achieve specific goals with effectiveness, efficiency, 

and satisfaction in a defined context of use" [9]. Usability 

evaluation typically combines quantitative approaches, such 

as standardized questionnaires and metrics, with qualitative 

methods like interviews and observations to provide deeper 

insights into user behavior and preferences. For decades, 

practitioners and researchers in user-centered design and 

Human-Computer Interaction (HCI) have had a strong 

interest in the measurement of perceived usability [10]. 

      A key tool for measuring perceived usability is the 

System Usability Scale (SUS), developed in the 1980s. The 

SUS is a 10-item questionnaire where participants rate each 

item on a 5-point Likert scale. The resulting score, ranging 

from 0 to 100, offers a quick and reliable assessment of 

usability and is especially useful for benchmarking systems 

[11]. Table 1 provides the full list of SUS items. 

        Another widely used tool is the User Experience 

Questionnaire (UEQ) which provides a more detailed 

assessment of usability dimensions. This questionnaire 

examines specific aspects such as reliability, intuitiveness, 

and satisfaction, offering a nuanced perspective on user 

perceptions. The standard UEQ includes 26 items, taking 3–

5 minutes to complete, while its short version (UEQ-S) 

comprises only 8 items, making it suitable for constrained 

circumstances. The UEQ-S Questionnaire has been 

employed in this study to complement the SUS. It evaluates 
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two main dimensions: Pragmatic Quality (PQ), focused on 

usability and efficiency, and Hedonic Quality (HQ), related 

to attractiveness and emotional engagement [12]. The 

decision to limit the analysis to these dimensions aligns with 

the UEQ-S structure and ensures a focused assessment of the 

system's perceived usability and user experience. The UEQ-

S uses a 7-point bipolar scale, ranging from -3 (extremely 

negative) to +3 (extremely positive), with 0 indicating 

neutrality. This balanced scale effectively captures both 

positive and negative feedback. Key pairs in the scale include 

“Confusing – Clear,” “Complicated – Easy” (PQ), and 

“Boring – Exciting,” “Uninteresting – Interesting” (HQ), 

which evaluate how users perceive the system's functionality 

and its emotional impact. Table 2 lists the items included in 

the UEQ-S. 

TABLE I. SYSTEM USABILITY SCALE (SUS) ITEMS. 

 SUS items 

1. I think that I would like to use this system frequently. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 

4. 
I think that I would need the support of a technical person to be able 

to use this system. 

5. I found the various functions in the system were well integrated. 

6. I thought there was too much inconsistency in this system. 

7. 
I would imagine that most people would learn to use this system 

very quickly. 

8. I found the system very cumbersome to use.  

9. I felt very confident using the system. 

10. 
I needed to learn a lot of things before I could get going with this 

system. 

       

TABLE II. SHORT VERSION OF THE USER EXPERIENCE 

QUESTIONNAIRE (UEQ-S) ITEMS. 

 UEQ-S items  

Obstructive -3 -2 -1 0 +1 +2 +3  Supporting 

Complicated -3 -2 -1 0 +1 +2 +3 Easy 

Inefficient -3 -2 -1 0 +1 +2 +3 Efficient 

Confusing -3 -2 -1 0 +1 +2 +3 Clear 

Boring -3 -2 -1 0 +1 +2 +3 Exiting 

Not Interesting -3 -2 -1 0 +1 +2 +3 Interesting 

Conventional -3 -2 -1 0 +1 +2 +3 Inventive 

Usual -3 -2 -1 0 +1 +2 +3 Leading 

 
The short version of the UEQ (UEQ-S) was chosen over 

the more recent UEQ+ because it allows for a rapid yet 
reliable evaluation of user experience while minimizing 
cognitive load for elderly participants. Given the target 
population's limited familiarity with technology, a more 
extensive questionnaire could have impacted response quality 
and completion rates. The UEQ-S retains the core dimensions 
of usability and user engagement, making it well-suited for 
our study's goals. 

III. RESULTS 

The usability and acceptability of the rPPG system were 
tested in two elderly care facilities, involving 27 participants: 
20 beneficiaries (age 65-85, with a mean age of 74.5 years) 
with varying levels of education and low to moderate 
familiarity with technology, and 7 staff members (age 30-55), 
mainly nurses and care assistants with greater technological 
proficiency. Training sessions were conducted to ensure the 
correct use of the device and accurate data collection 
procedures. During the experiment, the camera and computer 
were positioned in a controlled environment with optimal 
lighting and seating conditions. SUS and UEQ-S tests were 
completed by both the elderly beneficiaries and the nursing 
home staff. The results of the perceived usability evaluation 
are detailed below. 

Table 3 provides the average scores for each item of the 
SUS questionnaire by users and staff during trials. The scores 
for each item are then transformed: for odd-numbered items, 
1 is subtracted from the response, and for even-numbered 
items, the response is subtracted from 5. The transformed 
scores are then summed and multiplied by 2.5 to obtain a score 
ranging from 0 to 100.  

TABLE III. SUS SCORES. 

Item 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Scores 

Users  5 1 5 5 5 1 4 4 5 1 80.0 

Staff  5 1 5 1 5 1 4 1 5 1 97.5 

       

       A SUS score of 68 is widely considered to be the 

benchmark for good usability, based on extensive research 

and studies of SUS interpretation. The SUS evaluation 

revealed a notable difference between the two user groups. 

Employees gave an average score of 97.5, reflecting their 

perception of the system as exceptionally easy to use and 

well-suited to their professional needs. This high score 

underscores the functionality, reliability, and user-friendly 

design of the rPPG system, which fits well with the workflow 

requirements of trained professionals. 

      In contrast, users gave a lower average score of 80. While 

this score still indicates good usability, it also indicates minor 

difficulties experienced by non-professional elderly users. 

These challenges are mainly related to specific items, such as 

the need for technical support and system comfort (items 4 

and 8), maybe due to differences in technological familiarity 

and user expectations. It could also be due to the difficulty in 

terms of accessibility to interact with the user interface. This 

differentiation underlines the importance of user-centered 

design and emphasizes the need to develop health monitoring 

systems that meet the different needs of all user groups.  

      Table 4 shows the average scores given by both staff and 

beneficiaries for the items in the UEQ-S, while Table 5 

presents the scores given by the two groups in terms of PQ 

and HQ. For each dimension (PQ and HQ), the transformed 

scores were summed and then divided by the number of items 

in the respective category. The overall quality score was 
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calculated as the average of the PQ and HQ scores. The 

results of the UEQ-S questionnaire show that users highly 

appreciate both the PQ and HQ of the system. Among users, 

the system achieved a PQ score of 2.250 and an HQ score of 

3.000, resulting in an overall quality score of 2.625. These 

results suggest that the system is not only highly functional 

but also emotionally appealing. The higher hedonic score 

indicates that the interface design and user experience 

resonate strongly with users and evoke a positive emotional 

response. While the pragmatic quality score is strong, its 

slightly lower value suggests opportunities for further 

improvement in task-related usability. For employees, the 

system received a PQ score of 2.000 and an HQ score of 

2.250, resulting in an overall quality score of 2.125. These 

slightly lower scores, compared to those of beneficiaries, 

suggest that while staff find the system competent and 

effective, they may experience minor functionality or 

emotional engagement challenges. These differences 

between users and staff are probably due to the different 

contexts in which each group interacts with the system. Users 

may approach the system with lower initial expectations and 

find the interactivity with the system particularly appealing, 

increasing their hedonic perception. Usually, staff familiar 

with professional tools may prioritize pragmatic aspects such 

as efficiency and precision, resulting in slightly lower 

hedonic ratings. 

TABLE IV. UEQ-S SCORES. 

 Users Staff  

Obstructive 2 1 Supporting 

Complicated 2 3 Easy 

Inefficient 2 1 Efficient 

Confusing 3 3 Clear 

Boring 3 2 Exiting 

Not Interesting 3 2 Interesting 

Conventional 3 3 Inventive 

Usual 3 2 Leading 

TABLE V. PRAGMATIC, HEDONIC, AND OVERALL QUALITY 

SCORES. 

 PQ HQ Overall 

Users  2.250 3.000 2.625 

Staff  2.000 2.250 2.125 

 
This balance between functionality and pleasure is critical 

for health monitoring applications, as it promotes both short-
term effectiveness and long-term adherence. However, the 
UEQ-S overall scores of 2.125 for the staff and 2.625 for the 
elderly users highlight the system's strong ability to effectively 
support user tasks while providing engaging and positive user 
experience. 

      The SUS and UEQ-S questionnaires highlight different 

but complementary aspects of the system’s performance. The 

SUS focuses on usability, emphasizing functionality, 

efficiency, and ease of learning, making it ideal to assess the 

effectiveness of the system in completing tasks. This explains 

the higher SUS scores from staff, prioritizing seamless 

integration into professional workflows. In contrast, the 

UEQ-S evaluates both usability and overall user experience, 

capturing emotional engagement and aesthetic appeal 

through its Pragmatic and Hedonic Quality dimensions. 

Together, these tools provide a holistic view, combining 

functional reliability with user-centered design insights.  
The findings indicate the reliability and effectiveness of 

the rPPG system, especially among professional personnel. 
However, to achieve a universally excellent user experience, 
it is essential to address the specific challenges faced by 
elderly users. Refinements such as larger fonts, high-contrast 
color schemes, and a more guided user experience could 
significantly enhance accessibility and satisfaction, 
encouraging broader adoption in diverse settings. Moreover, 
this study focuses on short-term usability assessment. While 
initial feedback is positive, long-term user engagement and 
system sustainability are crucial aspects of health monitoring 
applications, warranting further investigation. While the 
sample size (N=27) is appropriate for an initial usability study, 
future research should involve a larger and more diverse 
participant pool to improve generalizability. Additionally, 
participants had different levels of prior exposure to digital 
health technologies, which could influence their perceptions 
of usability. Usability evaluations are inherently subjective 
and may be influenced by participants' prior experience with 
technology. Staff members, being more technologically 
proficient, reported higher usability scores, while elderly users 
encountered minor difficulties. Future studies should account 
for this factor by stratifying participants based on their digital 
literacy levels.  The system interface was initially developed 
in Italian to match the target population. An English version 
was created for dissemination purposes, but future research 
should explore how cultural and linguistic factors may affect 
usability in international contexts. The study was conducted 
in two elderly care facilities, where participants had access to 
structured assistance. These results may not be fully 
generalized for older adults living independently or in 
different cultural and socio-economic contexts. Future 
research should expand the evaluation to diverse settings.  

IV. CONCLUSION 

      This study investigated the usability of an rPPG-based 

system for non-invasive vital sign monitoring, particularly for 

elderly users. A total of 27 participants (20 care facility 

residents and 7 staff members) evaluated the system through 

SUS and UEQ-S. Staff rated it highly (SUS: 97.5), reflecting 

professional suitability, while beneficiaries gave it a strong 

but lower score (SUS: 80.0), indicating room for improved 

accessibility. Similarly, the UEQ-S results highlighted a 

positive balance between functionality and emotional 

engagement, with overall scores of 2.125 for Pragmatic 

Quality and 2.625 for Hedonic Quality. While previous 

methods have focused primarily on accuracy, our approach 
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emphasizes both technical performance and usability, making 

it a viable solution for real-world healthcare applications. 

These results underline the system's potential and highlight 

the necessity to improve it, ensuring wider acceptability and 

better user experience across different target groups. Future 

studies should explore long-term usability and effectiveness 

in diverse real-world scenarios, particularly focusing on 

iterative improvements based on user feedback from different 

demographic groups. 
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Abstract—Several movement disorders with a wide range of 

motor and non-motor symptoms have been identified in the 

medical field. Incorporating wearable sensors in rehabilitation 

and disease management applications has seen its fair share of 

growth over the past few decades, with a significant increase in 

monitoring movement disorders. In this recent period, it is quite 

evident how ingenious wrist devices, such as wristbands, smart 

bracelets, and smartwatches are growing increasingly popular 

among all age groups. The ease of use, inexpensiveness, 

and higher degree of acceptability in contrast to other 

categories of sensors employed to monitor health status offer 

reasons for this diffusion. This recent review of the literature 

intends to collect studies that exploit commercial smart wrist 

devices for one of the more well-known movement-related 

disorder considered to be prevalent among the world's 

population of all ages: seizure detection or epilepsy. Here, the 

Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) methodology was used to select and analyze 

19 articles. For each article, information is given on the type of 

sensor used, any pipelines implemented, and classification 

results obtained. Almost all the studies were published within 

the last decade indicating an increasing interest in the scientific 

community for the considered topic.  

Keywords- smartwatch; wristband; bracelet; wrist-worn, 

movement disorders; epilepsy; seizure detection.   

I.  INTRODUCTION 

Patients with many kinds of diseases have been admitted 
to hospitals and private nursing homes in greater numbers in 
recent years. The aging of the global population is the primary 
cause of this increase, even though numerous studies 
document a notable rise in therapeutic and pharmaceutical 
treatment approaches. This incentive has gradually 
encouraged technology companies to develop affordable, 
user-friendly devices that are appropriate also for elderly 
people. In addition to companies, researchers also utilize 
wearable technology to explore specific clinical conditions.  
Among the most investigated of the latter, we find the 
category of movement disorders, which are widely prevalent 
in the global population of young people and adults. 

Due to the typical integration of sensors like the 
gyroscope, accelerometer, and magnetometer, commercial 
smartphones may now conduct a large-scale assessment of 
movement disorders, of which most people worldwide suffer. 
Furthermore, a growing number of smartphones have 
processing units, enabling programmers to develop 
computational pipelines that execute in real-time directly into 
the device. As a result, the market for applications that offer 

information about movement disorders has grown in recent 
years, often for free. A fascinating and recently published 
review article lists and discusses the applications created to 
identify, track, evaluate, or treat movement disorders by 
smartphones [1]. However, the smartphone is wrongly 
considered a wearable device. Although for most of the day, 
it is held in the hand of the end-user, it is often placed within 
the living environment in different locations (tables, desks, 
bedside tables), and this is more frequent when considering 
the use of such devices by frail and elderly individuals. 
Consequently, it may be inconvenient to use smartphones to 
assess, for example, changes in movement disorders for which 
continuous monitoring is required.  

Unlike the smartphone, a smart wrist device is like a 
wearable computer that comes in a variety of forms, 
dimensions, and features. Depending on the possession of 
these characteristics, such a device is called a smartwatch, 
bracelet, or wristband. Large-scale gathering and analyzing of 
data that would have seemed impossible in the past are now 
made possible by the widespread use of smart wrist devices. 
This is a developing trend that has the potential to increase our 
understanding of various diseases [2][3] significantly. 
Movement disorders cover a wide variety of neurological 
illnesses, including hypokinetic and hyperkinetic disorders, as 
multiple publications have demonstrated. Decreased motions, 
such as stiffness and akinesia/bradykinesia, are indicative of 
hypokinetic movement disorders. On the other hand, 
excessive movements and a variety of motor symptoms are 
hallmarks of hyperkinetic movement disorders. 

One of the most prevalent hyperkinetic movement 
disorders is epilepsy, which affects approximately 1% of 
people worldwide [4] and causes 20.6 million disability-
adjusted life years lost. The most common feature of epilepsy 
is an increased brain tendency to have epileptic seizures, 
which can have severe neurobiological, cognitive, 
psychological, and social consequences. Up to one-third of 
people with epilepsy still experience recurrent seizures even 
after decades of developing new medications and undergoing 
surgery [5]. Epileptic seizures are sudden, potentially fatal 
episodes that can threaten the lives of both the individual with 
epilepsy and others, even though most people spend more than 
99.9% of their lives without experiencing any symptoms. 
Accurate monitoring and tracking of epilepsy or seizures are 
important to evaluate seizure burden, recurrence risk, and 
response to treatment. Outside the hospital, seizure tracking 
relies on patients' and families' self-reporting, which is often 
unreliable due to underreporting, seizures missed by 
caregivers, and patients' difficulties recalling seizures [6][7]. 
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While the gold standard for accurately diagnosing and 
evaluating epilepsy in the Epilepsy Monitoring Unit (EMU) is 
long-term Video-Electroencephalography (EEG) [8], such 
technology turns out to be expensive and time-consuming. 
Previous research indicates that there is a significant clinical 
gap and an urgent medical need to identify a wide variety of 
seizures or epilepsy with wearable devices [9][10][11].  

Also, the COVID-19 pandemic that hit the population in 
2020 created significant disruptions in clinical practice, the 
main effect of which was the spread of remote medicine to 
provide clinical care [12]. To address this gap and enable 
continuous patient monitoring in the outpatient setting, new 
developments in the use of non-Electroencephalography-
based seizure detection systems that employ a range of sensors 
and modalities have emerged, including smart wrist devices 
which, among other categories of wearable sensors, are more 
tolerated by patients over time and less stigmatizing [13]. 

The main aim of this literature review is to provide a 
collection of the most recent research advancements made in 
the field of smart wrist devices for monitoring epilepsy or 
seizure detection. The primary objective is to provide a recent 
state of the art that will help medical staff, caregivers, 
researchers, and engineers involved in the development of 
solutions in these research areas, along with a general idea of 
recent trends and future developments. 

This paper is organized as follows: after this introductory 
section, Section II explains the criteria adopted for the 
selection of the articles in this review, whereas in Section III 
a brief description of each article included in this review is 
given. Finally, Section IV draws some conclusions and final 
remarks. 

II. MATERIAL AND METHODS 

The Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) was adopted in this review 
article as the systematic review methodology [14].  

The PRISMA guidelines consist of a four-phase flow 
diagram and a 27-item checklist. The flow diagram describes 
the identification, screening, eligibility, and inclusion criteria 
of the reports that fall under the scope of a review. Two 
databases were searched, including Scopus and PubMed, to 
identify relevant studies published from 2014 until July 2024. 
The search strategy included a combination of keywords and 
terms related to smartwatches, bracelets, wristbands, and 
epilepsy or epileptic seizures. The structured queries for 
extracting items for analysis were selected based on the 
following question: “How are smartwatches, bracelets, or 
wristbands used to provide information about epilepsy or 
epileptic seizure?”. 

  To use the search functionalities provided by the two 
scientific databases under consideration, two queries were 
defined that vary slightly in their syntactic composition but 
not in their keyword definition. The queries used are shown 
in Table I. 

A. Article selection, Inclusion, and Exclusion criteria 

The queries in Table 1 returned a total of 186 articles (111 
from Scopus, and 75 from PubMed). Only articles produced 
within the last 10 years, starting from January 2014, were 

selected.  In the screening phase, 71 duplicates were first 
eliminated, along with 2 other articles that, although returned 
as results from the search query, have no relevance to the 
topic investigated. Then, the remaining articles (113) were 
analyzed by title and abstract, after checking the availability 
of the full text. The eligibility criteria for inclusion in the 
review were: 

 
- articles published in an indexed journal (conference 

abstracts, workshop results, preprint articles, book chapters, 
and posters were not considered for inclusion in the review). 

- articles in which a smart wrist device is used (both 
commercial and prototype). 

- articles presenting results from studies where data 
were collected using humans. 

 
On the other hand, the eligibility criteria for exclusion in 

the review were: 
 
- articles in which the device used for the assessment of 

the movement disorder is not wrist-worn. 
- articles that do not provide information on movement 

disorders. 
- articles containing reviews, surveys, or proceedings. 
- articles not produced in the English language. 
- articles downloadable only against payment. 
 
 Next, 37 articles needed to be screened once the inclusion 

and exclusion criteria were defined, and a more in-depth 
reading was necessary for these articles. Specifically, the 
internal content of each paper was examined to incorporate 
into the review only articles that used the raw data acquired 
from the wrist device to classify epilepsy or seizure. In the 
final analysis, 19 articles satisfied the inclusion requirements 
and were taken into consideration for the proposed literature 
review. Figure 1 shows the study selection procedure. 

TABLE I.  SEARCH QUERY AT VARYING OF EACH 

CONSIDERED MULTIDISCIPLINARY DATABASE 

Database Search query 

Scopus 

 

TITLE-ABS ((("Smartwatch" OR "Smartwatches" OR 

"Wristband" OR "Wristbands" OR "Brace-let" OR 

"Bracelets" OR "Smart watch" OR "Wrist-worn" OR 

"Wrist device" OR "Wrist devices" OR "Actigraph" OR 

"Apple watch" OR "Garmin" OR "Fitbit") AND 

("Epilepsy" OR "Seizure"))) 

 

 

PubMed 

((Smartwatch[Title/Abstract]) OR 

(Smartwatches[Title/Abstract]) OR 

(Wristband[Title/Abstract]) OR 

(Wristbands[Title/Abstract]) OR 

(Bracelet[Title/Abstract]) OR (Bracelets[Title/Abstract]) 

OR (Smart watch[Title/Abstract]) OR (Wrist-

worn[Title/Abstract]) OR (Wrist device[Title/Abstract]) 

OR (Wrist devices[Title/Abstract]) OR 

(Actigraph[Title/Abstract]) OR (Apple 

watch[Title/Abstract]) OR (Garmin[Title/Abstract]) OR 

(Fitbit[Title/Abstract])) AND ((Epilepsy[Title/Abstract]) 

OR Seizure[Title/Abstract])) 
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Figure 1. Flow diagram generated with PRISMA methodology, depicting the 
reviewers’ process of finding published data on the considered topic and how 

they decided whether to include it in the review.  

III. RESULTS 

Many medical studies indicate that a person with epilepsy 
has two or more unprovoked seizures that happen more than 
twenty-four hours apart. Instead, depending on which areas 
of the brain are affected, an excessive spike in electrical 
activity in the brain, known as a seizure, can produce a range 
of symptoms. It follows that the words “seizure disorder” and 
“epilepsy” are often used interchangeably. However, 
“provoked” seizures, such as those due to severe 
hypoglycemia, are not considered to be forms of epilepsy. A 
consequence of all the above considerations is that the articles 
included in the present literature review concerning the use 
of smart devices for epilepsy also discuss using the wrist 
device, commercial or otherwise, for seizure detection. 

The authors of [15] designed and developed an electronic 
device and data collection system for epilepsy and seizure 
detection, and they investigated and proved the practicality of 
the new proposed device and methodology for data 
classification. Using the proposed smart bracelet, they 
gathered information from epileptics outside of the hospital. 
Following a seizure, the individuals were instructed to hit the 
mark button. To eliminate non-moving segments, the authors 
also introduced an automated extraction and annotation of 
moving segments technique. Next, they classified seizure and 
non-seizure movement segments using a two-layer ensemble 
model and Machine Learning (ML) techniques, achieving 
about 77% sensitivity and 97% accuracy in data 
classification. In [16], the authors investigated the detection 
of convulsive epileptic seizures using a single accelerometer 
sensor worn on the wrist. Three categories of convulsive 
seizures were included in the data set examined in this study: 
1) psychogenic non-epileptic seizures, 2) generalized tonic-

clonic seizures, and 3) complex partial seizures. The 
suggested system identified convulsive seizures lasting at 
least 10 seconds and only re-quired one accelerometer sensor. 
Accelerometer data from patients receiving video-
electroencephalography monitoring—the gold standard for 
identifying epileptic seizures—was used to validate the 
suggested algorithm. To train Kernelized support vector data 
description, a new set of computationally efficient time 
domain features—including features extracted using a non-
linear method—were utilized to classify seizure and non-
seizure events, detecting roughly 87% of the three types of 
seizures. Using a tested seizure detection algorithm, in [17] 
the performance of two wearable devices based on 
electrocardiography and photoplethysmography is compared 
with a typical hospital Electrocardiogram (ECG). This 
algorithm categorizes seizures based on heart rate 
characteristics that are taken from the heart rate increase. The 
sensitivity reported in the article of wearable 
photoplethysmography (PPG) device, the hospital system, 
and the wearable ECG device are 32%, 57%, and 70%, 
respectively, concluding that wearable ECG performance is 
comparable to hospital ECG performance, however, seizure 
detection performance with the wrist-worn PPG device was 
significantly lower. On the other hand, the authors of [18] 
used a smartwatch to see if it might identify seizure 
occurrences in patients compared to continuous 
Electroencephalographic (EEG) monitoring for those 
admitted to an epilepsy monitoring unit. The selected neural 
network models for data classification were often able to 
detect seizure occurrences at an above-chance level, as 
evidenced by the patient-aggregated receiver operating 
characteristic curve's area under the curve of 0.58, even if the 
obtained overall low specificity implied a false alarm rate that 
would likely make the model unsuitable in practice. 

The authors of [19] evaluated a Deep Learning (DL) 
approach to predict seizures in a statistically significant 
manner using multimodal wristband sensor data from several 
epileptic patients. They found that 43% of the patients had 
better-than-chance prediction using a leave-one-subject-out 
cross-validation technique. Analyses of time-matched seizure 
surrogate data showed that forecasting was not solely 
influenced by alertness state or time of day. When all sensor 
modalities were employed, prediction performance was 
maximized. It did not differ between focal and generalized 
seizure types, but it did typically improve with the size of the 
training dataset, suggesting that future work with larger 
datasets may yield even greater improvements. Also, a wrist-
worn device was used to collect accelerometer data from 
patients in [20] for diagnostic evaluation of convulsive 
seizures. Specifically, K-means clustering and Support 
Vector Machine (SVM) were employed in an automated 
procedure to identify and categorize each seizure as either 
Epileptic Seizures (ES) or Psychogenic Non-Epileptic 
Seizures (PNES). Epileptology who were blinded to the 
accelerometer data compared the results with video EEG 
monitoring diagnoses. The results reported a sensitivity and 
specificity value for classifying ES from PNES of about 
72.7% and 100%, respectively, whereas the positive and 
negative predictive values for classifying PNES were 81.3% 
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and 100%. The authors of [21] tested a wrist-worn smart 
device on children, adolescents, and young adults with 
various types of seizures in an epilepsy monitoring unit. 
Confirmation of seizure type and if there was rhythmic upper 
extremity jerking associated with the seizure was determined 
by a review of the video electroencephalograph. This was 
compared with the standard detection system of the 
considered commercial smartwatch, which detected only 
16% of the total seizures, 31% of the generalized tonic-clonic 
seizures, and 34% of seizures associated with rhythmic arm 
movements. The main objective of the work proposed in [22] 
was to examine the features of motor manifestation during 
psychogenic nonepileptic seizures and convulsive epileptic 
seizures, as recorded by a wrist-worn accelerometer device. 
Finding quantifiable accelerometer characteristics that can 
distinguish between convulsive epilepsy and convulsive 
psychogenic nonepileptic seizures was the primary objective. 
Two new indices—tonic index and dispersion decay index —
were used to quantify the Poincaré-derived temporal 
variations for every generalized tonic-clonic seizure and 
convulsive psycho-genic nonepileptic seizure event. The 
authors concluded that an automated classifier built using the 
features differentiated convulsive psychogenic nonepileptic 
seizure events with a sensitivity of about 95.5% and classified 
generalized tonic-clonic seizures with a specificity of 95%. 

Van de Vel et al. [23] evaluated four different systems 
(including a smart mattress and a smart wrist device) based 
on efficiency, comfort, and user-friendliness and compared 
them to one patient suffering from focal epilepsy with 
secondary generalization. Despite nongeneralized and 
nonrhythmic motor seizures (involving only the head, having 
a tonic phase, or presenting primarily as sound) were 
frequently ignored, some of the devices had good results. In 
addition to its ease of use (few setup steps), comfort (con-
tactless), and ability to customize patient-specific settings, 
the smart mattress was selected for the only selected patient 
for the experimentation stage. On the other hand, in [24] the 
development and validation of an Artificial Neural Network 
(ANN) model for automated detection of tonic seizures with 
visible clinical manifestation using a wearable wristband 
movement sensor (accelerometer and gyroscope) was 
reported. The dataset prospectively recorded for this study 
included 70 tonic seizures from 15 patients. An ANN model 
was trained to detect tonic seizures. The independent test 
dataset comprised nocturnal recordings, including 10 tonic 
seizures from three patients and additional (distractor) data 
from three subjects without seizures. The ANN model 
detected nocturnal tonic seizures with visible clinical 
manifestation with a sensitivity of 100%. Moreover, in 
another interesting work, accelerometer and electrodermal 
activity data captured by wrist-worn devices were used to 
create two multimodal automated convulsive seizure 
detectors [25]. The proposed algorithms were tested using a 
more varied data set than previous clinical studies, obtaining 
a much higher sensitivity (approximately 95%) when 
compared directly to the best state-of-the-art system using 
accelerometer and electrodermal activity. Most patients 
experienced less than one false alarm every four days, and 
90% of patients experienced fewer false alarms than their 

seizure rate; no false alarms happened while they were at rest. 
Apart from detecting seizures, the algorithm demonstrated 
postictal autonomic dysfunction in 73% of cases and enabled 
accurate annotation of motor convulsion lengths. By a 
commercial wrist device, it was demonstrated in the study 
reported in [26] that PPG frequency showed an increase 
during pre- and post-seizure periods that was higher than the 
changes during seizure-free periods. Additionally, the PPG 
slope decreased during pre-seizure periods compared to 
seizure-free periods, and smoothness increased during the 
post-seizure period as compared to seizure-free periods. 
These results suggested to the authors that PPG analysis may 
offer additional information when monitoring patients with 
epilepsy. The study reported in [27] was among a few studies 
that evaluated and described extracerebral signal 
characteristics of various seizure types using a wrist-worn 
multimodal smartwatch. Based on the author’s findings, 
Heart Rate (HR), Accelerometer data (ACC), and 
electrodermal activity were significantly elevated during 
seizures when compared with the baseline period during 
normal physical activities. However, only HR and ACC were 
independent predictors for overall seizures. Ge et al. [28] 
showed in another very interesting work how mobile devices 
might be used to track seizures and complete postictal 
surveys to find seizure triggers in a heterogeneous, 
nationwide population with epilepsy. 26% of all seizures 
were linked to different triggers, and 41% of participants who 
tracked seizures reported seizure triggers. According to 
persons with epilepsy in this study, stress was the most 
frequent cause of their seizures, followed by sleep 
deprivation and correlations with the menstrual cycle. 
However, many participants with seizure triggers noted that 
a combination of circumstances, most frequently stress and 
other factors like fatigue or lack of sleep, can cause seizures. 
This implied that these variables used together may change 
seizure thresholds and affect seizure timing and risk. A 
multicentre, in-home, prospective, video-controlled cohort 
study was proposed in [29], wherein people who had epilepsy 
intellectual disability, and nocturnal seizures were identified 
by movement or HR. Approximately 82% of the initial study 
participants completed the trial with the following results: 
median sensitivity per participant amounted to 86%, the 
false-negative alarm rate was 0.03 per night, and the positive 
predictive value was 49%, concluding that the combination 
of heart rate and movement resulted in reliable detection of a 
broad range of nocturnal seizures. 

A very recent study assessed through a mixed methods 
design, the direct experiences of people with epilepsy 
independently using a non-invasive monitoring system 
named EEG@HOME, for an extended duration of 6 months, 
at home [30]. The study aimed to investigate factors affecting 
engagement, gather qualitative insights, and provide 
recommendations for future home epilepsy monitoring 
systems. The reported result showed the enthusiasm and 
aptitude of individuals with epilepsy for active health 
monitoring with new technology. From the conclusions, it 
emerged that independent home use of new non-invasive 
technologies can be made possible by remote training and 
assistance; nevertheless, to guarantee long-term acceptability 
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and usability, systems must be incorporated into patients' 
daily routines, include healthcare providers, and give 
ongoing support and tailored feedback. The pilot study 
reported in [31], even if in a small cohort, has shown that 
seizure forecasting using a non-invasive wrist-worn 
multimodal sensor was much better than a random predictor 
for most patients tested. In an ambulatory scenario, wearable 
data was captured while engaging in regular activities, and 
seizure occurrences were concurrently validated by EEG. Of 
the six individuals examined, five had seizure forecasts that 
were noticeably more accurate than a random predictor, and 
seizure alarms in these five patients gave enough advance 
notice to enhance neuromodulation therapy or give fast-
acting medicine. Xiong et al. [32] validated a forecasting 
method using multimodal cycles of epileptic activity 
recorded from commercial smart wrist devices. Here, seizure 
and heart rate cycles were extracted from 13 participants, 
investigating the relationship between seizure onset time and 
phases of seizure and heart rate cycles. The results of this 
study demonstrated that cycles detected from multimodal 
data can be combined within a single, scalable seizure risk 
forecasting algorithm to provide robust performance. 

In the last article examined [33], a pilot study on the impact 
of quality of life for adolescents with epilepsy and their 
caregivers was described. Throughout the study period, there 
was a trend toward improvement in the overall quality of life 
measures of adolescents, as well as greater support for 
parental autonomy. According to the findings, adolescents 
with epilepsy and their caregivers were open to utilizing the 
commercial seizure detection device, despite certain 
restrictions with the SmartWatch. Moreover, according to the 
study's findings, seizure detection devices can help to live 
better reducing worry related to seizure safety and 
normalizing the natural developmental process of adolescents 
becoming independent of their families. The works discussed 
in this section are summarized in Table II. 

TABLE II.  OVERVIEW OF THE ARTICLES THAT INVESTIGATED 

EPILEPSY AND SEIZURE DETECTION THROUGH SMART WRIST DEVICES 

 Commercial 

Device 
Kind of smart 
wrist device # end-users Data 

Availability 
[15] no  N.A. no 
[16] yes Apple iPod touch 79 no 
[17] yes Empatica E4 11 yes 
[18] yes Fitbit Charge 2 40 no 
[19] yes Empatica E4 69 no 
[20] yes Apple Ipod touch 11 no 
[21] yes SmartMonitor 41 no 
[22] yes N.A. 79 no 

[23] yes Epi-Care Free 1 no 

[24] yes Epi-Care free 18 no 

[25] yes Empatica E3 and E4 69 no 

[26] yes Empatica E4 174 no 

[27] yes Empatica E4 30 no 

[28] yes Apple Watch 999 no 

[29] yes Nightwatch 34 yes 

[30] yes FitBit Charge 3,4,5 12 yes 

[31] yes Empatica E4 6 no 

[32] yes Fitbit 13 yes 

[33] yes SmartMonitor 10 no 

IV. CONCLUSION 

This comprehensive review has meticulously examined 
the use of smart wrist devices for the detection of epileptic 
seizures, delving into its various dimensions and identifying 
both the challenges and opportunities that lie ahead for future 
research. Through a careful selection process, scientific 
publications relevant to the topic were analyzed, excluding 
many works considered inconsistent or with non-quality 
scientific content. An accurate analysis of the publication 
dates of the articles also demonstrates how there is a growing 
interest in the topic investigated, with analyzed works no 
older than 10 years. Overall, we have included an important 
number of publications in the present review, but many of 
these have been validated in controlled contexts, so they need 
further development and evaluation before implementation in 
clinical practice. We encourage collaboration within the field 
and reuse and improvement of already existing technological 
solutions, to prevent reinventions of the wheel and premature 
termination of development efforts.  
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