
SOFTENG 2024

The Tenth International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-68558-178-7

May 26 - 30, 2024

Barcelona, Spain

SOFTENG 2024 Editors

Tadashi Dohi, Hiroshima University, Japan

Luigi Lavazza, Università dell'Insubria - Varese, Italy

 1 / 31

SOFTENG 2024

Forward

The Tenth International Conference on Advances and Trends in Software Engineering (SOFTENG
2024), held between May 26-30, 2024 in Barcelona, Spain, continued a series of events focusing on the
challenging aspects for software development and deployment, across the whole life-cycle.

Software engineering exhibits challenging dimensions in the light of new applications, devices and
services. Mobility, user-centric development, smart-devices, e-services, ambient environments, e-health
and wearable/implantable devices pose specific challenges for specifying software requirements and
developing reliable and safe software. Specific software interfaces, agile organization and software
dependability require particular approaches for software security, maintainability, and sustainability.

We welcomed academic, research and industry contributions. The conference had the following
tracks:

 Challenges for dedicated software, platforms, and tools

 Software testing and validation

 Software requirements

 Maintenance and life-cycle management
We take here the opportunity to warmly thank all the members of the SOFTENG 2024 technical

program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to SOFTENG 2024. We truly believe that, thanks to
all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the SOFTENG 2024 organizing committee for their help in handling
the logistics and for their work that made this professional meeting a success.

We hope that SOFTENG 2024 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the field of software
engineering. We also hope that Barcelona provided a pleasant environment during the conference and
everyone saved some time to enjoy the historic charm of the city.

SOFTENG 2024 Chairs

SOFTENG Steering Committee
Zeeshan Ali Rana, NUCES, Lahore, Pakistan

Tsuyoshi Nakajima(中島毅), Shibaura Institute of Technology, Japan

SOFTENG Publicity Chairs
Laura Garcia, Universidad Politécnica de Cartagena, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

 2 / 31

SOFTENG 2024

Committee

SOFTENG Steering Committee

Zeeshan Ali Rana, NUCES, Lahore, Pakistan

Tsuyoshi Nakajima(中島毅), Shibaura Institute of Technology, Japan

SOFTENG 2024 Publicity Chairs

Laura Garcia, Universidad Politécnica de Cartagena, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

SOFTENG 2024 Technical Program Committee

Khelil Abdelmajid, Landshut University of Applied Sciences, Germany
Mo Adda, University of Portsmouth, UK
Bestoun S. Ahmed, Karlstad University, Sweden
Issam Al-Azzoni, Al Ain University of Science and Technology, UAE
Vahid Alizadeh, College of Computing & Digital Media - DePaul University, USA
Washington Almeida, Cesar School | Center of Advanced Studies and Systems of Recife, Brazil
Vu Nguyen Huynh Anh, Université Catholique de Louvain, Belgium
Pablo O. Antonino, Fraunhofer IESE, Germany
Darlan Arruda, University of Western Ontario, Canada
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Heitor Augustus Xavier Costa, Federal University of Lavras (UFLA), Brazil
Lerina Aversano, University of Sannio, Italy
Ali Babar, University of Adelaide, Australia
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Mohamed Basel Almourad, College of Technological Innovation - Zayed University, Dubai, UAE
Bernhard Bauer, University of Augsburg, Germany
Imen Ben Mansour, University of Manouba, Tunisia
Maya Benabdelhafid, Ecole Supérieure de Comptabilité et de Finances (ESCF) de Constantine, Algeria
Marciele Berger, University of Minho, Portugal
Marcello M. Bersani, Politecnico di Milano, Italy
Anna Bobkowska, Gdansk University of Technology, Poland
Pierre Bourque, ETS Montreal, Canada
Fernando Brito e Abreu, ISCTE-IUL & ISTAR-IUL, Portugal
Antonio Brogi, University of Pisa, Italy
Azahara Camacho, RTI - Real Time Innovations, Spain
Qinglei Cao, University of Tennessee, Knoxville, USA
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Luis Fernando Castro Rojas, University of Quindío, Colombia
Pablo Cerro Cañizares, Universidad Complutense de Madrid, Spain
Allaoua Chaoui, University Constantine 2 - Abdelhamid Mehri, Algeria

 3 / 31

Stefano Cirillo, University of Salerno, Italy
Andrea D'Ambrogio, University of Rome Tor Vergata, Italy
Lilian Michele da Silva Barros, Instituto Tecnológico de Aeronáutica, Brazil
Luciano de Aguiar Monteiro, Institute of Higher Education iCEV - Teresina-Piauí, Brazil
Serge Demeyer, Universiteit Antwerpen, Belgium
Amleto Di Salle, University of L'Aquila, Italy
Juergen Doellner, Hasso-Plattner-Institute for Digital Engineering | University of Potsdam, Germany
Tadashi Dohi, Hiroshima University, Japan
Sigrid Eldh, Ericsson AB, Sweden
Gencer Erdogan, SINTEF Digital, Norway
Fernando Escobar, PMI-DF Brasilia, Brazil
Vladimir Estivill-Castro, Universitat Pompeu Fabra, Spain
Naser Ezzati Jivan, Brock University, Canada
Faten Fakhfakh, National School of Engineering of Sfax, Tunisia
Stefano Forti, University of Pisa, Italy
Barbara Gallina, Mälardalen University, Sweden
Atef Gharbi, National Institute of Applied. Sciences and Technology, Tunisia
Pablo Gordillo, Universidad Complutense de Madrid, Spain
Adriana Guran, Babes-Bolyai University, Cluj-Napoca, Romania
Ulrike Hammerschall, University of Applied Sciences Munich, Germany
Noriko Hanakawa, Hannan University, Japan
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Samedi Heng, Université de Liège, Belgium
Jang Eui Hong, Chungbuk National University, South Korea
Stijn Hoppenbrouwers, HAN University of Applied Sciences / Radboud University, Netherlands
Fu-Hau Hsu, National Central University, Taiwan
LiGuo Huang, Southern Methodist University, USA
Rui Humberto Pereira, ISCAP/IPP, Portugal
Carlos Hurtado Sánchez, Tecnológico Nacional de México - campus Tijuana, Mexico
Miren Illarramendi, Mondragon University, Spain
Shinji Inoue, Kansai University, Osaka, Japan
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Takashi Ishio, Future University Hakodate, Japan
Faouzi Jaidi, University of Carthage - Higher School of Communications of Tunis & National School of
Engineers of Carthage, Tunisia
Jiajun Jiang, Tianjin University, China
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Atsushi Kanai, Hosei University, Japan
Afrina Khatun, BRAC University, Bangladesh
Wiem Khlif, Mir@cl Laboratory | University of Sfax, Tunisia
Alexander Knapp, Universität Augsburg, Germany
Sondes Ksibi, University of Carthage | Higher School of Communications of Tunis, Tunisia
Luigi Lavazza, Università dell'Insubria, Italy
Dieter Landes, University of Applied Sciences Coburg, Germany
Seyong Lee, Oak Ridge National Laboratory, USA
Maurizio Leotta, University of Genova, Italy
Horst Lichter, RWTH Aachen University, Germany

 4 / 31

Bruno Lima, INESC TEC | FEUP, Porto, Portugal
Panos Linos, Butler University, USA
Hsin-Yu Liu, University of California San Diego, USA
Xiaobo Liu-Henke, Ostfalia University of Applied Sciences, Germany
Qinghua Lu, CSIRO, Australia
Yingjun Lyu, University of Southern California, USA
Damian M. Lyons, Fordham University, USA
Jianbing Ma, Chengdu University of Information Technology, China
Eda Marchetti, ISTI-CNR, Pisa, Italy
Johnny Marques, Aeronautics Institute of Technology, Brazil
Imen Marsit, University of Sousse, Tunisia
Danilo Martínez Espinoza, ESPE, Ecuador / Technical University of Madrid, Spain
Núria Mata, Fraunhofer Institute for Cognitive Systems, Germany
Mohammadreza Mehrabian, South Dakota School of Mines and Technology, USA
Weizhi Meng, Technical University of Denmark, Denmark
Edgardo Montes de Oca, Montimage, Paris, France
Fernando Moreira, Universidade Portucalense, Portugal
Ines Mouakher, University of Tunis El Manar, Tunisia

Tsuyoshi Nakajima(中島毅), Shibaura Institute of Technology, Japan
Krishna Narasimhan, Itemis AG, Stuttgart, Germany
Risto Nevalainen, FiSMA (Finnish software measurement association), Finland
Virginia Niculescu, Babes-Bolyai University, Cluj-Napoca, Romania
Stoicuta Olimpiu, University of Petrosani, Romania
Rafael Oliveira, UTFPR - The Federal University of Technology - Paraná, Brazil
Nelson Pacheco Rocha, University of Aveiro, Portugal
João Pascoal Faria, University of Porto, Portugal
Antonio Pecchia, Università degli Studi di Napoli Federico II, Italy
Fabiano Pecorelli, University of Salerno, Italy
Michael Perscheid, SAP Technology & Innovation, Germany
Dessislava Petrova-Antonova, Sofia University, Bulgaria
Tamas Pflanzner, University of Szeged, Hungary
Fumin Qi, National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center), China
Zhengrui Qin, Northwest Missouri State University, USA
Stefano Quer, Politecnico di Torino, Italy
Łukasz Radliński, West Pomeranian University of Technology in Szczecin, Poland
Raman Ramsin, Sharif University of Technology, Iran
Zeeshan Ali Rana, National University of Computer and Emerging Sciences (FAST-NUCES), Lahore,
Pakistan
Miary Andrianjaka Rapatsalahy, University of Fianarantsoa, Madagascar
Hajarisena Razafimahatratra, University of Fianarantsoa, Madagascar
Mohammad Reza Nami, Islamic Azad University-Qazvin, Iran
Oliviero Riganelli, University of Milano - Bicocca, Italy
Simona Riurean, University of Petrosani, Romania
António Miguel Rosado da Cruz, Higher School Technology and Management - Polytechnic Institute of
Viana do Castelo, Portugal
Gunter Saake, Otto-von-Guericke-Universitaet, Magdeburg, Germany
Sébastien Salva, University Clermont Auvergne, France
Hiroyuki Sato, University of Tokyo, Japan

 5 / 31

Daniel Schnetzer Fava, University of Oslo, Norway
Ruth Schorr, Frankfurt University of Applied Sciences, Germany
Josep Silva Galiana, Universitat Politècnica de València, Spain
Rocky Slavin, University of Texas at San Antonio, USA
Cristovão Sousa, Polytechnic Institute of Porto / INESC TEC, Portugal
Sinan Tanilkan, Norwegian Computing Center, Norway
Christos Troussas, University of West Attica, Greece
Harsh Vardhan, Vanderbilt University, USA
Miroslav Velev, Aries Design Automation, USA
Colin Venters, University of Huddersfield, UK
Flavien Vernier, Université Savoie Mont Blanc, France
László Vidács, University of Szeged, Hungary
António Vieira, University of Minho, Portugal
Gianmario Voria, University of Salerno, Italy
Shaohua Wang, New Jersey Institute of Technology, USA
Ralf Wimmer, Concept Engineering GmbH / Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau,
Germany
Xiaofei Xie, Nanyang Technological University, Singapore
Rui Yang, Xi’an Jiaotong-Liverpool University, China
Cemal Yilmaz, Sabanci University, Istanbul, Turkey
Levent Yilmaz, Auburn University, USA
Peter Zimmerer, Siemens AG, Germany
Alejandro Zunino, ISISTAN, UNICEN & CONICET, Argentina
Aditya Zutshi, Galois Inc., USA

 6 / 31

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 31

Table of Contents

Project Smells for Early Detection of Problems with Benefits Realization
Sinan Sigurd Tanilkan and Jo Erskine Hannay

1

Software Bug Prediction Based on Semi-definite Logistic Regression Model
Tadashi Dohi, Jingchi Wu, and Hiroyuki Okamura

11

On Reducibility of Developer-Written Unit Tests in C#
Arpit Christi and David Weber

17

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 31

Project Smells for Early Detection of Problems with Benefits Realization

Sinan Sigurd Tanilkan
Department of Applied Research in Information Technology

Norwegian Computing Center
Pb. 114 Blindern, Oslo, Norway

Center for Effective Digitalization of the Public Sector
Simula Metropolitan

Pb 4, St.Olavs Plass, Oslo, Norway
Email: sinan@nr.no

0000-0003-4216-5172

Jo Erskine Hannay
Center for Effective Digitalization of the Public Sector

Simula Metropolitan
Pb 4, St.Olavs Plass, Oslo, Norway

Email: johannay@simula.no
0000-0002-8657-7593

Abstract—Although substantial research has provided guid-
ance on how to identify and manage the benefits of new software
solutions, ensuring the realization of those benefits remains a
challenge. Inspired by the notion of code smells for software
quality, we develop a concept of project smells for benefits real-
ization. We conducted 22 in-depth interviews with participants
in nine public-sector digitalization projects, and elicited seven
project smells: 1. Dilemma between enthusiasm and formality,
2. Situational differences, 3. Resistance to realization, 4. Slipping
opportunities, 5. Loss of focus due to project size, 6. Lacking
commitment, 7 Insufficient contact with recipients. We argue
that these project smells are a complement to traditional project
metrics which focus on time, cost and scope, or the evaluation
of benefits after a project is finished. Each smell comes with
a set of questions intended to help practitioners identify the
odour of their projects. The intention is that project smells can
function as low-cost, early indicators helping practitioners adjust
work readily and rapidly to ensure benefits realization of their
software development investments, thereby focusing actively on
the project’s product, rather than myopically on the project itself.

Keywords— Software Project; Continuous Product Development;
Benefits Realization; Agile; DevOps; BizDev.

I. INTRODUCTION

Keeping track of the status of a software engineering
initiative is important for all who have stakes in investing,
developing and benefiting from the system under development.
The purpose of such monitoring is to ensure project and
product success.

The iron-triangle metrics time, cost and scope are often
habitually monitored during software development. However,
keeping track of the benefit of the system under development is
not regularly done [1]. This may result in suboptimal choices
in terms of what functionality to develop early and may
lead to poor decisions on development progress, and even
termination, based on time, cost and scope alone. Indeed, a
recent study found that software professionals perceive that
important decisions in software development are mostly based
on rationales in terms of time, cost and scope, rather than on
benefit or the benefit/cost ratio, but that they think decisions
should be based on benefit or the benefit/cost ratio to a greater
extent [2].

Early on, Baccarini made the distinction between project
management success and product success and defined overall
project success as a healthy balance between the two [3].
Project management success is delivering on time, cost and
scope, while product success is delivering software that gen-
erates value, or benefit. In other words, software engineering
is, in many cases, suffering from myopia on project manage-
ment success, even though practitioners, policy makers and
academics call for a greater focus on organizing work to ensure
that the software is capable of delivering benefit.

The field of benefits management arose to address the
lack of attention on benefits in development initiatives [4]–
[10]. Even though studies suggest that projects that engage
in benefits management activities during project execution [1]
are more successful on delivering benefit (but also on time,
cost and scope), the adoption of such activities has been low
[1], [11]. Of several reasons for this, we highlight that benefits
management is for the most part formulated at the portfolio
and project program level (such as in Managing Successful
Programs®), and benefits management activities during devel-
opment mostly relate to strategic and organizational aspects,
such as paying attention to the business case and the benefits
realization plan, but with no operational means for doing so.

Considerations of the benefit of a system under development
may belong at the strategic level of business cases and at the
organizational level for planning how to use a system under
development to produce value in organizations and in society.
Nevertheless, it has been argued convincingly that to realize
such high-level plans, one must also move benefits considera-
tions from the strategic level onto the operational level. A step
on this route is to measure the realization of intended benefits
[4], [5], [10]. If this is done in an incremental-development
setting, measurements on how beneficial an increment is
can be fed back to provide project learning on benefit for
successive increments. However, such data is usually not used
in this way, but rather collected after a project is completed
as part of reporting [5], [10].

Methods have been developed for monitoring how well the
project is doing in producing valuable software during project
execution, for example, using lead indicators of benefits [5],
[12]. Another approach is to use benefits points (and related

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 9 / 31

techniques) [13]–[16] to estimate and keep track of a system’s
potential for realizing benefits during project execution [17].
This includes using lag indicators to update lead indicators to
take advantage of learning during project execution. However,
getting industry to take such techniques into use in a broad
scale requires integrated tools for managing daily work (e.g.,
Jira), which are under development but not operational [18],
and an appropriate organizational mindset, which seems to
depend more on vogue grey literature than academic studies.

In this article, we approach the problem of keeping track
of software engineering work, and specifically with respect to
benefits creation, not from a managerial standpoint, but from
the point of view of the working software engineer. To update
lead and lag indicators for benefit one needs ground truth
from those close to development and close to stakeholders
affected by the system. To provide a lower threshold utility,
and inspired by the work of Fowler et al. on code smells [19],
we elicit and elaborate the notion of project smells for benefits
realization. While code smells help to identify software design
flaws, these project smells help to identify concerns regarding
the benefits from software projects. We will argue that project
smells can help provide a shared view of project status between
software engineering teams and their managers. This addresses
the issue that project participants may be aware of projects that
are in trouble, while management is unaware [20]. This topic
has been studied under the term employee silence – when
individuals remains silent about project concerns or problems,
resulting in a situation where the project’s true status is not
known [21]. Project smells for benefits realization can help
give voice to such concerns.

Section II presents relevant background. Section III de-
scribes the development of the project smells notion, moving
from interviews, through coding and concept development to
concept operationalization in smells. We present and discuss
the results in Sections IV and V. We consider limitations in
Section VI and conclude in Section VII.

II. BACKGROUND AND PREVIOUS WORK

The term project smells has been used previously, with
different meanings. The first academic mention of project
smells in 2007 focused on end-of-project retrospectives. No
elaborations of the project smells were provided, but the
proposed purpose of project smells is to “... alert us to a broken
or ill-fitting process” [22].

Three months later, the term project smells was used again,
in the context of software testing. Three categories of test
smells were proposed: 1) test code smells, 2) automated test
behaviour smells, and 3) project smells [23]. Factors to identify
project smells in this context are: i) buggy tests, ii) developers
not writing tests, iii) high costs of test maintenance, and iv)
bugs in production. The purpose of project smells in this
context is that “... project smells are likely to be the first
hint they get that something may be less than perfect in test
automation land” [23].

The third academic reference for project smells was pub-
lished recently, within machine-learning project management

[24], where project smells are presented as a holistic view
of software quality in machine learning projects, and code
smells are considered to be a part of project smells. Here,
characteristics of project smells are lack of 1) dependency
management, 2) version control, 3) unit testing, 4) proper
configuration of continuous integration, and 5) effective static
analysis tooling [24]. Project smells are evaluated using a
static analysis tool on the source code, the data and the tools
configuration in the projects. The purpose of project smells
in this setting is thus to provide feedback to practitioners on
their use of a set of practices for machine-learning quality
assurance.

Smells have also been used for the assessment of agile
practices in organizations. Agile smells [25] constitute a
catalogue of practices that are considered suboptimal in an
agile context. Simlilarly, Mike Cohn, has written an article
about scrum smells [26] – a catalogue of suboptimal practices
in scrum.

The above smells revolve around appropriate work practices
and delivering on time, cost and scope, and also software
(intrinsic) quality. What is absent, then, from our vantage
point, are smells concerning the benefits of the software.

The field of managerial problem solving brings relevant
perspectives to the table and regards problem solving as
consisting of two parts: 1. problem formulation and 2. problem
solving [27]. Project smells for the early detection of problems
(ground truth) with benefits realization falls into a subset of
the first category, specifically problem detection, concerning
observations “... that events are taking an unacceptable trajec-
tory and may require action” [28]. Once a problem is detected,
people can choose from a set of option categories: look for
more information, pay more attention to related events, attempt
to identify the underlying problem, discuss the concern with
others, explain away the observation or take action to manage
the problem by mitigating actions or accepting a change in
situation and updating plans and goals [28].

However, the above options are only available once the
problem has been identified. An interesting aspect of man-
agerial problem detection is its contrast to the detection of
managerial opportunities and crises in terms of the relevant
stimuli. While both opportunities and crises are often stimu-
lated by one single idea or triggering event, problems often
require multiple stimuli, and problem-stimuli are often milder
than stimuli from opportunities and crises [29]. Also, decision
makers have a tendency to desire more information about
problems before they act [30]. This makes problem detection
more complex and less clearly delineated than other critical
events in management.

Then, the three most important factors for identifying a
problem is: expertise, stance and attention management [28].
While expertise is intuitively understood, and most would
agree that an experienced project manager is more likely to
spot project problems, stance and attention management war-
rants a short description. Stance is a person’s position towards
a situation [31]. Stance (or general alertness) can range from
denial (nothing can go wrong) to being confident that any

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 10 / 31

obstacle can be overcome, to an alertness that problems may
arise, to hysteria (over-reacting to every minor indication) [28].
Attention management, on the other hand, focuses on what is
monitored (and ignored) [28]. This is central to our discussion,
because we have a tendency to overlook relevant information,
even when it is just in front of us [32], [33]. Although the
project smells are unlikely to affect people’s expertise and
stance, it is our hope that the project smells can help guide
practitioners’ attention to factors that help them with early
detection of problems with benefits realization.

III. RESEARCH METHOD

The present study is an elaboration of a particular concept
that was elicited in a larger qualitative study based on thematic
analysis of interview data. Several concepts emerged in that
larger study, and it is the further elaboration of the concept
Characteristics of projects that affects the realization of ben-
efits that is presented here. More information about the full
study can be found at [34]. Focusing on a single concept from
a larger study is recommended to allow one to go into detail
in that particular concept [35]. That concept is the basis for
the seven project smells for benefits realization that will be
presented in Section IV.

The research was conducted using the Stepwise-Deductive
Induction (SDI) method [36]. The SDI method is a struc-
tured qualitative method for building concepts and theories,
grounded in empirical data. Our intention is not to develop
new theories, so the last step of the SDI method – theory
development – is omitted. The phases of the SDI method used
here are:

1) Case selection and data generation
2) Processing of raw data
3) Coding
4) Code grouping
5) Concept development

Moving from one phase to the next is an inductive move.
Deduction is used to test the results from each phase by
comparing the results to the data that formed the input to
the phase. Abduction is used in the latter phases (primarily
during concept development), to find plausible explanations
for the observations [37].

In addition to the phases of the SDI method we added a
sixth phase, which operationalizes the developed concepts into
actionable tools; in this case, project smells and questions to
keep in mind to become aware of the smells:

6) Operationalization of the concept
Braun & Clarke [38] distinguish between different ap-

proaches to thematic analysis. The neopositivst approach, at
one end of the scale, focuses on objective and unbiased
coding. In that approach, it is common to use a predefined
codebook and have multiple coders, so that agreement between
coders can be measured numerically as a measure of coding
reliability [39]. At the other end of the scale is the reflexive
approach, where coding is “... open and organic ...” [38], with
no predefined codebook. An important distinction between

the two ends of the scale is when themes or concepts are
developed. In the neopositivst approach, themes are developed
early, often prior to coding, while in the reflexive approach,
themes and concepts are the final outcome of the analysis. The
SDI method used here is at the reflexive end of the scale, where
codes are developed inductively from the data. Still, coding
reliability, which is often not a concern in reflexive thematic
analysis, has a strong focus in the SDI method. While the
neopositivist thematic analysis approach to coding reliability is
often handled by codebook design and using multiple coders,
coding reliability in the SDI method is handled by adhering
to strict coding rules (see Section III-C).

Coding for this study was conducted by the first author
only. To ensure conceptual clarity at the higher levels (Steps
5 and 6), the code groups of the concept under study and
their operationalization in smells were discussed extensively
between both authors.

The following sections describe how the the six phases were
applied in this study.

A. Case Selection and Data Generation

Due to the low adoption of benefits management in practice
[40], it is challenging to find organizations where its use can be
studied. The Norwegian Digitalization Agency has a funding
program for public-sector digitalization projects, where one of
the conditions for funding is the active use of certain benefits
management practices, as described in [41].

We invited all the projects that received funding in 2016 to
participate in the study. Nine out of twelve projects chose to
participate. All included projects had a duration of three years,
except one, which had a duration of two years, and funding
was granted up to 50% of the net project costs with an upper
bound to funding at NOK 15 million (approx. USD 1.9 million
at project completion time).

All the studied projects involved the creation of a new
software solution for digitalization in the public sector. The
new software included solutions for:

• data sharing,
• unique data storage (to avoid a situation where data is

duplicated and out of sync across organizations),
• providing individuals and organizations with self-service

to public-sector data and applications,
• automating previously manual and/or paper-based case

processing,
• guiding individuals and organizations on how to use

public-sector services.
Examples of benefits from the new software solutions

included more efficient use of resources in the public sector,
improved quality of data in the public sector, faster response
times when interacting with the public sector and improved
rules of law.

Data was collected through 22 face-to-face interviews with
professionals involved in the projects. The interview questions
are available at [34]. We chose a semi-structured approach in
order to follow (other) topics that respondents brought up as

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 11 / 31

relevant to benefits management and realization. Interview par-
ticipants included project sponsors, project managers, people
responsible for benefits realization, project team members and
one benefits recipient.

Interview duration ranged from 25 to 120 minutes, depend-
ing on the amount of relevant information the respondent had
to provide. For all interviews, two researchers and one re-
spondent took part, except for five interviews. Four interviews
were conducted with one researcher and one respondent, and
one interview was conducted with one researcher and two
respondents. Interviews were conducted face-to-face, in the
premises of the studied organizations.

All interviews were recorded using an audio recorder and
notes were taken. Due to strict confidentiality agreements,
none of the collected raw data is made available; neither are
organization names nor exact project topics.

B. Processing of Raw Data

The recorded audio files were transcribed, resulting in 612
pages of transcribed text. After transcription was completed
all audio files were listened to while simultaneously reading
the transcribed texts to ensure correct transcriptions.

C. Coding

All the transcribed texts were coded using NVivo (release
1.7.1). In total, 274 codes related to the concept focused on
in this study were created.

A two-step code test was applied to all codes to ensure
that the codes represented the respondents’ statements [36].
This approach is designed to reduce the potential biases of
having only one coder [39], when relevant. The applied code
tests suggested by [36] emphasize groundedness in data, and
semantic codes, rather than mere sorting codes: 1. If the
code could have been created prior to seeing the data, this
is considered an a priori code, and a different code should be
created based on the data. 2. If the code only labels topics in
the data, e.g. “quantification of benefits”, this is considered
an unnecessary sorting code, and a different code should
be created that reflects what the respondent expressed, e.g.,
“Numbers makes people lose interest”.

To give the reader an impression of the codes and the
respondents’ statements that the codes represent, examples
of codes and corresponding extracts from the interviews are
included in the results section (Section IV).

D. Code Grouping

Codes were grouped thematically, using a code grouping
test. Rather than applying this test at the end of the phase (as
suggested by [36]), the grouping test was used as a guide or
condition when placing codes into groups. The grouping test
checks that when adding a code to a group, the group should
still be thematically different from the other groups and the
content of the group should still be consistent. If a code cannot
be placed in any group (and still fulfil these conditions), a new
group should be created.

Due to the large number, the code groups were divided into
two levels. This approach is supported by [36, p. 210], who

suggests that when there are more than 3–5 code groups, it
can be useful to organize them into more than one level. The
five high-level and eight low-level code groups are the primary
building blocks of the concept under elaboration here, and the
results section (Section IV) is organized accordingly.

E. Concept Development

The concept Characteristics of projects that affects the
realization of benefits evolved using abduction – moving back
and forth between the code groups and relevant background
knowledge and theories [42] to consolidate the concept. Recall
that the abduction process was performed in the context of
the larger study, and the concept was generated in relation
to the other concepts in that encompassing study. All these
were tested by considering how well they described different
subsets of code groups.

F. Operationalization of the Concept

From that concept we distilled the project smells for benefits
realization. Within each high-level code group, this was done
by operationalizing the lower-level code groups into actionable
tools for practitioners; namely indicators (smells) and actions
(questions to be asked). These proposed indicators and actions
can be found as subsections of Section IV, starting with
“Smell:”.

We tested the notion project smells with other candidate
denotations, such as “characteristics of benefits”, “project
heuristics”, “product smells” and “project status detectors” by
presenting them to practitioners with experience from software
projects, with continuous product development [43], [44], and
with project managers of construction projects, to get feedback
and see how well the different denotation resonated in the
different settings. The denotation “project smells for benefits
realization” was kept.

IV. RESULTS

The total SDI-analysis resulted in several conceptual topics,
where one of these concepts is Characteristics of projects that
affects the realization of benefits, which is the topic of this
paper. The concept is built on the following high-level code
groups (1–5) and low-level code groups (a–d):

1) Motivation
a) The importance of caring about benefits
b) Factors that affects peoples’ motivation for benefits

2) Understanding
a) Familiarity
b) Proximity to domain
c) The ability to understand resistance to benefits

realization
d) The ability to understand possibilities

3) Project size
4) Dependencies

a) Changes in regulations
b) Contributions from other organizations

5) The need and ability to reach benefits recipients

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 12 / 31

In the following subsections we describe the code groups,
exemplifying them with extracts from the interviews and the
accompanying codes. The project smells are given after the
corresponding code groups have been presented.

A. Motivation

1) The importance of caring about benefits: Simply caring
about the benefits of the system under development is reported
to be important, both to motivate people to conduct mea-
surements and to make the necessary adaptions when needed,
as exemplified in the following excerpt (code: Caring affects
effort):

It is important that you care about realizing the
benefits. If not, you will neither collect the necessary
measurements, nor take the necessary actions when
deviations from the plan occur.

While the above example illustrates that caring about the
benefits is important for those working to provide them,
caring is also important for those receiving benefits. After
explaining an unanticipated benefit that was raised by an
external organization, the following respondent stated that
the benefits recipients’ motivation was important in making
this benefit materialize (code: Interested recipients lead to
unanticipated benefits):

They [the benefits recipients] are perhaps more than
average interested ... and it turns out that they found
benefits that we had not anticipated.

This observation is important, because it indicates that highly
motivated recipients can lead to more, or further, benefits than
anticipated.

2) Factors that affects peoples’ motivation for benefits:
Respondents report that people are easily motivated to work
for society, as in the following excerpt (code: Easy to motivate
people for societal benefits):

It is not difficult to motivate [role] to work for
society because they see that this is beneficial. They
are driven by ... that is, they get energy from it.
This is not merely an academic exercise, this is
production of benefits for society.

In addition to the type of benefit, such as societal benefits in
the above example, the way information about the benefits
is shared also seems to affect peoples’ enthusiasm for the
benefits. In particular, verbalizing benefits, without emphasiz-
ing metrics and returns has been advocated (code: Talk about
benefits but not the numbers):

I think it helps just to talk about the benefits. Turn
them into something concrete. That is, without fo-
cusing on the numbers, that is perhaps not something
that motivates people.

Indeed, quantifying benefits seems to be a proper turn-off
(code: Numbers makes people lose interest):

Talking about the numbers in the excel sheet makes
many people lose interest.

The above demonstrates a preference for verbal descriptions
of the benefits over the numbers relating to benefits. This is

further corroborated by the following statement highlighting
story-telling (code: Storytelling provided common direction):

I believe the pilot project was very important. But
I was the only person who took part in that and
the current project, and I think it was the story that
was developed in the pilot project that people bought
into. They immediately understood where we wanted
to go, or the direction we were going in.

There also seems to be more engagement in benefits that
people can envision thorough their daily work over the benefits
reported in the benefits plans (code: Driven by real, not
artificial benefits):

Respondent: It has been a collaboration. And she
has worked with them very much, also with the
municipalities, in order to realize the benefits. But
it’s not... I don’t think the benefits is what drives
her. I think it is... That is, she genuinely cares about
people, including the municipalities ... There are
many qualitative benefits here that she is able to
realize as a result of dialogue with the municipalities
and other agencies.

Interviewer: When you say that she was not driven
by benefits, but that she genuinely cared. What is the
difference between the two?

Respondent: I think there is a difference between
the benefits in the benefits plan and the benefits
talked about in daily work, but I don’t know how
to explain it. One of them [the benefits] is perhaps
something you have under your skin. Something
you feel ownership of. You feel an ownership of
a product, and by... You understand that this can
lead to a process improvement for example, or that
this simplifies things, makes them more efficient etc.
That is, we spend much time in the domain and
understand what is good for the user ... While the
benefits in the benefits plan are much more narrow.
And perhaps a bit artificial.

The engagement and enthusiasm that good stories and personal
experience create seems to be pivotal for the motivation to real-
ize benefits. Structured, and perhaps quantified, specifications
of benefits do not seem to motivate to the same degree and
even seem to demotivate.

Somehow, though, size (quantification) still matters (code:
Small benefits feels meaningless):

Sometimes the benefits are small, and that feels
meaningless ...

Although the motivation for benefits realization might hinge
on engagement and enthusiasm rather than more formal spec-
ifications, we will not conclude that the former should be
chosen over the latter. However, the findings suggest that it
is important to be aware of this possible dilemma, since sug-
gested methodologies both by academia and governing bodies
emphasize the explicit, clear and measureable specification
of benefits. To make this dilemma explicit, we declare the

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 13 / 31

following smell, and propose to make a habit of asking the
accompanying question:

3) Smell: Dilemma between enthusiasm and formality,
Questions to ask:: Are the benefits and the motivation of the
relevant stakeholders in harmony? How do the specified and
the unspecified benefits relate to each other?

B. Understanding

1) Familiarity: Having experience from previous work that
is similar to what lies ahead is reported as a success factor
in realizing benefits (code: Previous experience from similar
project aided in realizing benefits):

We had a similar project for another internal por-
tal... which had many similarities. The majority of
challenges were in areas where the projects were
different.

2) Proximity to domain: When benefits span multiple or-
ganizations, the ability to recognize possibilities seems to
decrease when a stakeholder’s distance to the relevant domain
increases (code: Distance between domains reduces under-
standing):

They are further away, so you need more frequent
meetings ... they might not have the same semantic
understanding of the information provided to them
... It’s like using a topographic map to navigate at
sea, which can have grave consequences. If you
are within the same agency, you usually have a
pretty good understanding. If you are within the
same sector, you might still have a pretty good
understanding. When we start to talk about services
that go across sectors, understanding starts to be
reduced, and when you move into the private or
municipal sector it is even worse.

Both familiarity with similar work and proximity to domain
are well-known success factors when it comes to controlling
the iron triangle factors cost, scope and time, and caution has
been raised toward using data and experience from earlier ini-
tiatives that are not very similar [45]. Here, these perspectives
appear for benefits realization as well.

3) Smell: Situational differences, Questions to ask:: Do
those who need to understand the benefits, the conditions for
the benefits, and the relevant situational factors have sufficient
understanding? Do we have the necessary conditions (such as
time and mindset) and data (on situational factors) to increase
our understanding?

4) The ability to understand resistance to benefits realiza-
tion: When encountering impediments or resistance to benefits
realization, understanding the domain where resistance occurs
is important in order to evaluate 1) if the resistance is war-
ranted or based on false assumptions and 2) how to mitigate
the impediments/resistance.

An example of warranted resistance can be seen in the
following excerpt. Here the new process resulted in loss of
access to information for a user group. This information was
necessary for the users to complete their job assignments.

Through dialogue with the users and understanding of the
users domain, a solution was found by changing regulations
and changing the new software solution so it would provide an
aggregated version of the data to the users (code: Resistance
mitigated by providing new functionality):

And this brings us to the [name of user group].
We had not thought about them. Losing access to
the data from the previous process, they could not
complete their responsibility of [responsibility] ...
The ministry of health and care services helped us
change the relevant regulations, providing us with
the legal basis for including the statistics that [name
of user group] needed.

Resistance to the new solution can also be unwarranted. One
organization that lost access to information when introducing
a new software solution saw this as a problem, because the
information was important for their tasks. However, it turned
out that the process used by the organization was not in
accordance with current regulations. Even though representa-
tivies from the organization had wanted to continue using the
old process when the new software solution was introduced,
they learned that this was not an option, without changes to
regulations (code: Resistance mitigated by understanding and
sharing information):

They were very worried about losing access to [in-
formation name] ... We prepared well and invited the
[organization name] to a meeting, with our lawyers.
In the meeting we explained that the processes they
followed today were not in accordance with the
relevant regulations. And if they need to continue
as before, they need a change in regulations in their
sector. So during the meeting they did not get any
of what they wanted, but it was still a positive
meeting, and they thanked us for informing them
and preparing and presented the case well. The key
was involvement, and that functioned well.

In both the above examples, understanding – and working
to understand – was key to 1) evaluate if the resistance was
warranted, and 2) decide how to handle the resistance.

5) Smell: Resistance to realization, Questions to ask::
What resistance to benefits realization are there among stake-
holders? How warranted is that resistance?

6) The ability to understand possibilities: The ability to
understand possibilities is reported as important for successful
benefits realization. A challenge raised in this regards is that
many people seem to have a “linear” way of thinking, which
limits their perception of new possibilities (code: Some have
a linear way of thinking).

We were struggling to get ownership in the line orga-
nization. We still struggle with that ... When we have
new needs, they don’t consider self service to be an
option. They recreate their work process in a modern
architecture. So if we are talking about processing
of [case type anonymized], such as changing the
name of a [anonymized object type], they expect a

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 14 / 31

more efficient system for registering this ... While
in reality, the users can do it by themselves ... It is
characterised by not thinking about new ways to do
things. A linear way of thinking based on how we
used to work.

The ability to recognize opportunities requires personal chrac-
teristics, including competence on digitalization and on the
relevant domains (code: Need digitalization and domain com-
petence to see possibilities):

To look up and see the possibilities, then you need
a person that is able to look outward, and onward.
Understand how data can be used and understand
user needs ... You are dependent on a person who
can think in terms of digitalization, think new ...
And you need to understand the tools ... You need
IT competence and you need domain competence in
order to understand the user.

7) Smell: Slipping opportunities, Questions to ask:: Do
we have the conditions necessary for recognizing new op-
portunities for benefits realization? Do those who are in
position to recognize new opportunities have the necessary
understanding of those conditions and the competence of the
relevant domains?

C. Project Size

In general, respondents report that it is more challenging to
succeed with realizing the benefits from larger projects than
from smaller projects. Reasons include that smaller projects
require less followup and that it is easier to make people
interact when the project is small. Further, larger projects have
more tasks that are unrelated to benefits creation, and there are
more things that can go wrong in larger projects

Still, smaller projects can suffer from a lack of priority,
having key resources who are allocated late or shared with
other projects, and difficulties in obtaining assistance.

As the statements related to project size are straight-forward,
we do not include excerpts here. However, what seems to be
the common denominator mentioned with regards to project
size is the challenge to maintaining a focus on benefits.

1) Smell: Loss of focus due to project size, Questions to
ask:: Is the project maintaining a focus on benefits realization
in the face of organizational size issues, such as overhead and
complexity (large initiatives) and lack of priority and visibility
(small initiatives)?

D. Dependencies

Dependencies at work outside of the project or within the
organization can affect benefits realization negatively.

1) Changes in regulations: Digitalization in the public
sector often involves the processing of personal data. In
the digitalization projects we studied, it happened that the
project uncovered that processes were not defined according
to regulations or that the new process required changes in
regulations (both of which are exemplified in Section IV-B).
Dependencies on changes in regulations puts benefits at risk,
especially when there are uncertainties about the regulations.

2) Contributions from other organizations: The observed
collaborations have been less focused on contractual agree-
ments and more focused on pragmatic collaboration to realize
benefits. An effect of this collaborative basis is that people’s
and organizations’ contributions are based on the different
stakeholders’ perceptions of benefits, rather than on a set of
agreed-upon common benefits to be achieved.

Respondents reported problems with this collaborative basis
when other organizations did not contribute with what was
necessary. However, one project which seemed especially suc-
cessful in ensuring contributions from the other organizations
described how they worked actively to keep organizations
involved (code: Ensured contribution by keeping organizations
involved):

This work [ensuring external organizations’ con-
tribution] started at day one. When we wrote the
mandate for the pilot project, we collaborated with
[contributing organization]. And all the contributing
organizations were involved in the pilot project.
We had defined seven domains and spent a week
exploring each of them to understand the situation
... So they had taken part in describing the problem,
as much as they had contributed to designing the
solution. And then we had them with us. Since then
we have had a regular meeting every Wednesday ...
to work with the needs, look at and comment designs
and user stories, and to test each iteration before final
user testing. These meetings has continued even after
the project was finished.

The degree of involvement that makes sense for each
contributing organization is likely to vary from situation to
situation, but being aware of the potential fragility of their
involvement and contribution has been raised as a concern.

3) Smell: Lacking commitment, Questions to ask:: Which
external parties are we dependent upon and how confident are
we in their (continued) involvement and contribution?

E. The Need and Ability to Reach Benefits Recipients

It is often necessary to interact with those who are supposed
to benefit from a system (the benefits recipients) to help or
make them use the system in their work or life processes.
Direct benefits recipients are those who get benefits from the
system itself, while indirect recipients get benefits as follow-
on effects of the effects that the direct recipients experience.
Constellations of those who receive the benefits of a system
vary from a few direct recipients, through many direct recip-
ients to a mix of direct and indirect recipients. When there
are only a few benefits recipients, spending time on each
recipient might not represent a large cost. When the number of
recipients is large, the amount of time spent on each recipients
is often expected to be low. This can pose a problem when
adoption does not go as expected; especially when the diversity
among benefits recipients is large. That is, the cost of reaching
all recipients is large when there are many, or they cannot
be reached directly, such as when benefits recipients are a
peripheral part of the process far away from the organization

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 15 / 31

owning the new process/solution (code: We cannot get in touch
with all recipients):

When creating a self service solution, we cannot
get in touch with all [anonymized profession], or
all citizens of Norway, to make them use the new
solution.

1) Smell: Insufficient contact with recipients, Questions to
ask:: Do we need to, and do we have the resources to, reach
the benefits recipients to ensure benefits realization?

V. DISCUSSION

The benefits of a system impacts work and life processes
and are (or should be) rooted in business, organizational and
societal goals. Understanding how a system will contribute
to those goals – that is, understanding the system’s benefits
– through shifting and evolving technological, organizational
and psychosocial mechanisms is to understand a complex and
opaque problem (Section II). According to one school of
thought, human beings have evolved to make good enough
(satisficing [46]) judgements on minimal cues in complex
situations [47], [48]. However, due to this complexity and
opacity, practitioners often lack data and/or the appropriate
verbalizations to back those perceptions and judgements. As
a result, actions might be taken late or not at all.

The projects smells that emerged in this study can be seen
as empirically-based encapsulations of practitioner insights
for ensuring better benefits realization. The smells embody
good-enough actions in a complex and opaque environment.
Relating again to managerial problem-solving (Section II),
the three most important factors for people in identifying a
problem – expertise, stance and attention management [28]
– can function as impediments to problem detection. While
influencing people’s expertise and stance can be costly and
time consuming, we believe the project smells can be a low
cost solution to focusing people’s attention on factors that
are important for realizing the benefits of software projects.
If organizations include project smells for early detection of
problems with benefits realization as part of what they keep
track of – and pay attention to – the threshold for problem-
stimuli to actually be detected may become lower. This should
put practitioners in a situation where they can react timely to
problem-stimuli.

If adopted in an organization or in a project, project smells
could provide important reflection points for software engi-
neers with a legitimacy for concerns raised by those closest
to were relevant observations are made. The time horizon for
actions based on project smells should not be in the future, at
the stratgeic level, but rather, in the short term or immediately.

Smells are not termination indicators. They are indicators
that something must be done to make a situation better, but
this has to happen on time. Projects who practice benefits
management activities during project execution seem to be
more successful on benefits realization, and also on other
success criteria [1]. Brooks famously said: “How does a
project get to be a year late? ... One day at a time” [49].
Thinking analogously for benefits realization, the need for

day-to-day adjustments becomes pertinent. These day-to-day
adjustments can only be done if software engineering teams
and their managers understand what is going on. The project
smells, we argue, helps teams identify and understand what
is going on regarding benefits realization and can help prac-
titioners to identify the right time to take action. Rather than
the project smells being binary warning lights that managers
should monitor at the cost of everything else, we think people
should hold them in mind to guide them when talking with
people or otherwise observing their projects.

There are a myriad of recommended sensible actions one
can take in development initiatives with the aim to get good
results, but it is hard to tell what, of all these things, to do
and when to do it, before it is too late. In hindsight, there are
often few surprises to what went well or wrong, but the trick
is to do something before the fact, and the project smells are
an empirically-based contribution to that.

We do not address the follow-up question of what to do for
each project smell and who should do it. While this may seem
as an omission, trying to list all the sensible ways to react to
each smell quickly comes out of hand. Indeed, whereas the
smells are generic, the ways to take action must be specific
and depend on the details of the initiative’s organization and
culture. These specific details will also influence how the
interaction of events which might lead to a mix of smells.

VI. LIMITATIONS

The main threats to validity to the empirical study are
construct validity and external validity [50], [51].

A. Construct Validity

Construct validity for the SDI method concerns the extent to
which the concepts are well-defined (accuracy) and whether
they are validly founded in the data (reliability) [36], [51].
As mentioned, the concept under elaboration in this article
(“characteristics of projects that affects the realization of
benefits”) is one of several concepts elicited in a larger study.
Although the reflexive approach does not see a single reviewer
at lower levels of coding as threat to validity, scholars versed
in the neopositivist tradition might still consider this a threat
to construct validity. The SDI method itself has safeguards to
heighten validity, even when using one reviewer. Moreover, the
fact that many concepts were elicited in the larger study, which
demands extensive adjusting of the various concepts to gain
a level of integrity and distinction for each concept relative
to the other concepts, also gives credibility for accuracy and
reliability for the concept under elaboration here. In this
study, the concept was also refined further by both authors. In
our case, construct validity justifies generalizability, roughly
speaking, to situations for which the concept, including the
project smells which are derived from the concept, applies.

B. External Validity

This concerns the extent to which the results obtained for the
study’s sample and situation hold across other samples and sit-
uations. The sample is designed, rather than random, in that the

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 16 / 31

projects were incentivized to perform benefits management.
In the outset, this poses threats to generalizability. However,
the sample is particularly relevant to the topic of interest,
which increases the construct validity of the responses. This is
advantageous for conceptual development, which is our aim in
this study. Also, the sample is critical [52], in that challenges
with benefits management, and project smells, that appear in
the sample are arguably even more present in non-incentivized
settings. On the other hand, external validity may be reduced,
since our sample may be biased by special interest in the topic
and that the sample is from the Norwegian public sector. To
validate the concept and the smells, further studies should
be conducted with other samples and in other development
contexts.

VII. CONCLUSION AND FURTHER RESEARCH

Further studies that observe the use of the smells will tell the
extent to which the proposed seven project smells for benefits
realization are useful. Observational studies, in similar and
related context, will hopefully lead to refinements of the smells
and the identification of further smells.

Benefits realization concerns the effects of using a software
product, and the idea is that the project smells will facilitate
a product focus in projects. Further, it is natural to study the
smells in product-centric development, where cross-functional
autonomous teams are responsible for the entire lifecycle of
functional areas.

The notion of code smells inspired, in form, our notion of
project smells. Work on code smells has been ongoing for
close to 25 years, and both manual and static approaches to
identifying code smells have been applied [53]. Project smells
for early detection of problems with benefits realization, as
presented here, is not even at the level of the first publication
on code smells [19], which have names and labels for a large
set of different smells. Although labelling the identified project
smells is easy enough, we propose to postpone that exercise,
and rather focus on the understanding that lies behind each
project smell. That way, the labels (which are less important
than the understanding) can come at a later point, when
the categories of smells has congealed as a result of further
research.

Acknowledgments

The authors are grateful to Magne Jørgensen and Geir K.
Hanssen for their contributions in designing and conducting
interviews. The authors are further grateful to the interview
participants for sharing their time and insights, and to Maur-
izio Giardini, Eckhart Köppen, Stian Støle, Lene Renneflott,
Adam Lawson and Kristoffer Flottorp for their feedback and
reflections on the developed concept.

REFERENCES

[1] M. Jørgensen, “A survey of the characteristics of projects with success in
delivering client benefits,” Information and Software Technology, vol. 78,
pp. 83–94, 2016.

[2] S. S. Tanilkan and J. E. Hannay, “Benefit considerations in project
decisions,” in Proc. Int’l Conf. Product-Focused Software Process Im-
provement (PROFES), pp. 217–234, Springer, 2022.

[3] D. Baccarini, “The logical framework method for defining project
success,” Project management journal, vol. 30, no. 4, pp. 25–32, 1999.

[4] G. Bradley, Benefit Realisation Management: A practical guide to
achieving benefits through change. Routledge, 2016.

[5] S. Jenner, Managing Benefits: Optimizing the Return from Investments.
The Stationery Office, APMG-International, 2014.

[6] C. Lin and G. Pervan, “The practice of IS/IT benefits management in
large Australian organizations,” Information & Management, vol. 41,
no. 1, pp. 13–24, 2003.

[7] T. Melton, P. Iles-Smith, and J. Yates, Project Benefits Management:
Linking projects to the Business. Butterworth-Heinemann, 2008.

[8] M. Payne, Benefits Management: Releasing project value into the
business. Project Manager Today, 2007.

[9] J. Thorp, The Information Paradox: Realizing the Business Benefits of
Information Technology. McGraw-Hill, revised ed., 2007.

[10] J. Ward and E. Daniel, Benefits Management: How to increase the
business value of your IT projects. Wiley, 2nd ed., 2012.

[11] R. Breese, S. Jenner, C. E. M. Serra, and J. Thorp, “Benefits manage-
ment: Lost or found in translation,” International Journal of Project
Management, vol. 33, no. 7, pp. 1438–1451, 2015.

[12] Infrastructure and Projects Authority (UK), “Guide for effective benefits
management in major projects,” guidance to practitioners, Infrastructure
and Projects Authority, 2017.

[13] J. E. Hannay, H. C. Benestad, and K. Strand, “Benefit points—the best
part of the story,” IEEE Software, vol. 34, no. 3, pp. 73–85, 2017.

[14] C. Larman and B. Vodde, Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development with Large-
Scale Scrum. Addison Wesley, 2010.

[15] D. Leffingwell, Agile Software Requirements: Lean Requirements Prac-
tices for Teams, Programs and the Enterprise. Addison Wesley, 2011.

[16] D. Reinertsen, Principles of Product Development Flow: Second Gen-
eration Lean Product Development. Celeritas Publishing, 2009.

[17] J. E. Hannay, H. C. Benestad, and K. Strand, “Earned business value
management—see that you deliver value to your customer,” IEEE
Software, vol. 34, no. 4, pp. 58–70, 2017.

[18] M. Haaber and P. Grøhøj, “Benefit points in scrum: A design science
study,” tech. rep., Dept. of Computer Science, Aalborg University, 2018.

[19] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. addison. Wesley Longman
Publishing Co., Inc., 1999.

[20] A. P. Snow and M. Keil, “The challenge of accurate software project
status reporting: a two-stage model incorporating status errors and re-
porting bias,” IEEE Transactions on Engineering Management, vol. 49,
no. 4, pp. 491–504, 2002.

[21] S. Petter, “If you can’t say something nice: Factors contributing to team
member silence in distributed software project teams,” in Proceedings of
the 2018 ACM SIGMIS Conference on Computers and People Research,
pp. 43–49, 2018.

[22] J. Andrea, “The case of the missing fingerprint: Solve the mystery of
successful end-of-projects retrospectives,” Better Software, pp. 30–36,
February 2007.

[23] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[24] B. Van Oort, L. Cruz, B. Loni, and A. Van Deursen, “”Project smells”
– Experiences in analysing the software quality of ML projects with
mllint,” in Proc. 44th IEEE/ACM Int’l Conf. Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 211–220, 2022.

[25] U. Telemaco, T. Oliveira, P. Alencar, and D. Cowan, “A catalogue of
agile smells for agility assessment,” IEEE Access, vol. 8, pp. 79239–
79259, 2020.

[26] M. Cohn, “Toward a catalog of scrum smells,” 2003.
[27] E. E. Smith, “Concepts and thought,” The psychology of human thought,

vol. 147, 1988.
[28] G. Klein, R. Pliske, B. Crandall, and D. D. Woods, “Problem detection,”

Cognition, Technology & Work, vol. 7, pp. 14–28, 2005.
[29] D. A. Cowan, “Developing a process model of problem recognition,”

Academy of Management Review, vol. 11, no. 4, pp. 763–776, 1986.
[30] H. Mintzberg, D. Raisinghani, and A. Theoret, “The structure of

”unstructured” decision processes,” Administrative Science Quarterly,
vol. 21, no. 2, pp. 246–275, 1976.

[31] R. Chow, K. Christoffersen, and D. D. Woods, “A model of communica-
tion in support of distributed anomaly response and replanning,” Proc.
Human Factors and Ergonomics Society Annual Meeting, vol. 44, no. 1,
pp. 34–37, 2000.

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 17 / 31

[32] R. F. Haines, “A breakdown in simultaneous information processing,”
in Presbyopia research: From molecular biology to visual adaptation,
pp. 171–175, Springer, 1991.

[33] A. Mack, “Inattentional blindness: Looking without seeing,” Current
directions in psychological science, vol. 12, no. 5, pp. 180–184, 2003.

[34] S. S. Tanilkan, “Benefits management – a study of public sector
digitalization projects.” https://tinyurl.com/PubSecBM. Accessed: 2024-
04-08.

[35] J. Corbin and A. Strauss, Basics of Qualitative Research. Sage
Publications, 2015.

[36] A. Tjora, Kvalitative forskningsmetoder i praksis. Gyldendal Norsk
Forlag AS, 2020.

[37] M. Alvesson and K. Sköldberg, Reflexive Methodology: New Vistas for
Qualitative Research. Sage Publications, 2018.

[38] V. Braun and V. Clarke, “One size fits all? what counts as quality practice
in (reflexive) thematic analysis?,” Qualitative research in psychology,
vol. 18, no. 3, pp. 328–352, 2021.

[39] C. O’Connor and H. Joffe, “Intercoder reliability in qualitative research:
Debates and practical guidelines,” Int’l J. Qualitative Methods, vol. 19,
2020.

[40] K. K. Holgeid, M. Jørgensen, D. I. K. Sjøberg, and J. Krogstie, “Benefits
management in software development: A systematic review of empirical
studies,” IET Software, vol. 15, 2021.

[41] Direktoratet for Økonomistyring, “Gevinstrealisering – planlegging for
å hente ut gevinster av offentlige prosjekter,” guidance to practitioners,
Direktoratet for Økonomistyring, 2014.

[42] M. Saunders, P. Lewis, and A. Thornhill, Research methods for business
students. Pearson Education, 8th ed., 2019.

[43] W. Huang, The Management of Continuous Product Development:
Empirical Research in the Online Game Industry. Springer Nature,
2022.

[44] S. S. Tanilkan and J. E. Hannay, “Projects vs continuous product
development – does it affect benefits realization?,” in Proc. Int’l Conf.
Advances and Trends in Software Engineering (SOFTENG), pp. 20–25,
2023.

[45] S. S. Gautam and V. Singh, “The state-of-the-art in software develop-
ment effort estimation,” J Software: Evolution and Process, vol. 30,
no. 12, 2018.

[46] H. A. Simon, The sciences of the artificial. MIT press, 1996.
[47] G. Gigerenzer and P. M. Todd, Simple heuristics that make us smart.

Oxford University Press, USA, 1999.
[48] R. M. Hogarth, Educating intuition. University of Chicago Press, 2001.
[49] F. P. Brooks Jr, “The mythical man-month (anniversary ed.),” 1995.
[50] T. D. Cook and D. T. Campbell, Quasi-Experimention: Design &

Analysis Issues For Field Settings. Houghton Wifflin Co., 1979.
[51] W. M. Trochim and J. P. Donnelly, Research methods knowledge base,

vol. 2. Atomic Dog Pub. Macmillan Publishing Company, New York,
2001.

[52] R. K. Yin, Case study research: Design and methods, volume 5 of
Applied Social Research Methods Series. Sage, 3rd ed., 2003.

[53] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in 2009 3rd international symposium on empirical software engineering
and measurement, pp. 390–400, IEEE, 2009.

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 18 / 31

Software Bug Prediction Based on Semi-definite Logistic Regression Model

Tadashi Dohi, Jingchi Wu, and Hiroyuki Okamura

Graduate School of Advanced Science and Engineering, Hiroshima University
Higashi-Hiroshima 739-8527, Japan

email: {dohi, d220580, okamu}@hiroshima-u.ac.jp

Abstract—In software bug prediction to identify bug-prone
modules, several machine learning techniques have been used
in past. However, it has been known that almost all of them
were not explainable and could not be applied to the program
understanding, because the contributions of software metrics
were unclear in such black box techniques. In this article, we aim
at overcoming the problems in an explainable logistic regression
model, called multicollinearity and interaction, and apply the
semi-definite logistic regression model to identify software bug-
prone modules. More specifically, we use three actual software
development project data sets to evaluate the F-score as well
as precision and recall, and compare our semi-definite logistic
regression model with the classical logistic one, in terms of
the predictive performance of software bug-prone modules. It
is shown that our semi-definite logistic regression model involves
the common logistic regression model as a special case and can
improve the predictive performances on the F-score.

Keywords-software bug prediction; bug-prone module; logistic
regressions; semi-definite programming; discrimination problem;
F-score.

I. INTRODUCTION

In testing and maintenance phases of software development,
identification of software bug-prone modules containing bugs
is crucial for both localizing software bugs on a computer
program and optimizing the software test process. Since this
problem is formulated as a typical discrimination problem to
identify software bug-prone modules, several machine learning
techniques have been used in past, where the underlying data
are the binary data to denote whether each module is bug-
prone (1) or not (0), and the features called software metrics to
characterize the quality attributes of each module, such as the
module’s size and program complexity. Various discrimination
and data mining techniques, including logistic regressions [2]
[14], support vector machines [4], naive Bayes [15], Bayesian
networks [3] [16], random forest [5], multilayer perceptron
neural networks [6], convolutional neural networks [1], and
spam filtering technique [13], among others [12] [17], have
been directly used to identify software bug-prone modules.
For the recent survey on software bug prediction, see Li et al.
[11].

However, it has been known that almost all of them were
not explainable and could not be applied to the program
understanding, because the contributions of software metrics
were unclear in such black box techniques. In fact, through
a careful analysis on the contribution of each software metric
in the bug prediction, it would be possible to improve the test
efficiency by localizing software bugs from the code metrics
such as the number of lines of code, cyclomatic numbers,

the number of operators measured in each module develop-
ment. In the view point of program understanding, it is quite
important to investigate the relationship between bug-prone
modules and explanatory variables (features), and to infer the
presence/absence of software bugs in each module. If there is
a clear causal relationship with the explanatory variables in
an explainable method as logistic regression models, we may
design the test cases efficiently according to the contribution
of the metrics.

Unfortunately, it should be noted that the classical logistic
regression model could not provide satisfactory bug-prediction
results in terms of predictive performances [2] [14], compared
to the typical deep machine learning techniques. Even for the
explainable models, we need to carefully check not only the
independence between explanatory variables but also multi-
collinearity and interaction in the regression-based approach.
Konno et al. [8] pointed out in the problem of estimating
bankruptcy probability from financial metrics in companies
that the logistic regression model used conventionally deals
with the metrics that have a monotonic relationship, where
the bankruptcy probability increases (decreases) as the values
of the financial metrics increase (decrease). In the financial
bankruptcy problem, it is implicitly assumed that there is no
interaction on effects of each explanatory variable as a finan-
cial metric on the bankruptcy probability, but generally, the
impact of explanatory variables on the bankruptcy probability
may vary depending on the size of the explanatory variable.

Although the conventional logistic regression model, being
simple and low in computational cost, is frequently applied
to many real-world discrimination problems by devising the
selection of explanatory variables and the classification of the
dependent variable groups, there are theoretical and empirical
limitations on the explainable logistic regression model. Konno
et al. [8] proposed a semi-definite logistic regression model
and attempted to solve large-scale semi-definite logistic regres-
sion problems in real-time [10] by applying a few optimization
techniques such as the cutting-plane method [7] and the two-
stage method [9].

In this article, we aim at overcoming the problems in a
classical logistic regression model for software bug predic-
tion, and apply the semi-definite logistic regression model to
identify software bug-prone modules. More specifically, we
use three actual software development project data sets, and
evaluate the predictive performance on F-score, as well as
precision and recall. We compare our semi-definite logistic
regression model with the classical logistic regression model

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 19 / 31

in the context of software bug prediction. It is shown that our
semi-definite logistic regression model involves the common
logistic regression model as a special case and can improve
the predictive performances on the F-score in the software bug
prediction.

The remaining part of this article is organized as follows.
In Section II, we describe a software bug prediction problem
by means of the logistic regression model. Section III for-
mulates a semi-definite logistic regression and summarizes a
variable selection method. Section IV is devoted to numerical
experiments, where the underlying data sets are given and
the predictive performances between two logistic regression
models are compared. Finally the article is concluded with
some remarks in Section V.

II. SOFTWARE BUG PREDICTION

Suppose that there are N software modules in the module
testing. Let xi = (xi1, xi2, . . . , xin) denote the feature vector
of the i (= 1, 2, ..., N)-th software module, where n types of
features, called software metrics, are available in the software
development. Define the probability that the i-th module
contains any software bug by f(xi) as a function of the
feature vector xi, where f(·) denotes a nonlinear function.
In the nonlinear equation yi = f(xi) for a given yi, it is
not possible to directly observe the probability of a module
containing software bugs in advance, so that the information
about the presence/absence of software bugs in each module
is used post-hoc. Define the binary random variable Yi with
the realization yi in the following:

Yi =

{
1, if module i contains software bugs,
0, if module i does not contain software bugs.

(1)

There are various methods to formulate the above discrimi-
nation problem. Among them, the logistic regression model
is easy to understand in terms of the formulation and the
low computation cost. In the logistic regression model, the
regression function f(xi) is given by

f(xi) =
exp(Zi)

1 + exp(Zi)
, (2)

where exp(Zi) = βTxi + β0 denotes the random vari-
ables representing the tendency of bug presence, β =
(β1, β2, . . . , βn) is the regression coefficient vector, β0 is a
scalar constant, and T is the transpose. Since the bug-prone
probability f(xi) = f(xi;β, β0) is given by a function of xi,
it turns out that the dependent variable becomes a monotonic
function with respect to each component of xi.

Once the binary data and the software metric data
(yi,xi) (i = 1, 2, . . . , N) are given, the log likelihood
function is obtained as

lnL(β, β0) =

N∑
i=1

{
yi ln f(xi;β, β0)

+ (1− yi) ln(1− f(xi;β, β0))
}
. (3)

Then the problem is to seek the maximum likelihood estimate
(β̃, β̃0) = argmax lnL(β, β0).

As mentioned in Section I, it is known that the logistic
regression has several limitations. First, it is assumed that the
larger (smaller) the value of each explanatory variable, the
larger (smaller) the predicted probability yi becomes. Second,
it is assumed that the elements of each explanatory variable are
independent of each other, and there is no interaction effects
of each explanatory variable on the bug-prone probability. In
the actual software bug prediction, for instance, an increase
in the number of comment lines on a program is implicitly
assumed as one of the software metrics increases the bug-
prone probability. However, this property may not always hold,
because insertion of a certain type of detailed comments may
increase the understandability of the program, and may re-
duce the bug-prone probability efficiently. Furthermore, among
many software metrics, the relationship between the lines of
code and the total number of operators on the program may be
unlikely to be independent. This is because an increase in the
lines of codes may naturally tend to increase the total number
of operators.

III. SEMI-DEFINITE LOGISTIC REGRESSION APPROACH

The semi-definite logistic regression model was proposed
in the reference [8]. For the real symmetric matrix B ∈
Rn×n, the bug-prone probability f(xi) = f(xi;B, β0) (i =
1, 2, . . . , N) is also defined by Eq.(2), where

Zi = xT
i Bxi + βTxi + β0, (4)

B = BT . (5)

In our semi-definite logistic regression model, it should be
noted that Zi is a quadratic form of xi. Hence, it is possible to
incorporate non-monotonicity and interaction effects between
explanatory variables.

Several optimization algorithms have already been proposed
to solve the semi-definite logistic regression problems [7] [8]
[9] [10]. As the problem size in dealing with the software bug
prediction increases, it tends to be difficult to solve the max-
imum likelihood estimation problem. Fortunately, since our
problem size is relatively small comparing with the financial
bankruptcy problem, we can handle the maximum likelihood
estimation for the semi-definite logistic regression model, by
applying the quadratic programming algorithm implemented
in the statistical software, R, without using the cutting-plane
method [7] and the two-stage method [9]. On the other hand,
it should be emphasized that all the explanatory variables may
not always be useful for discriminating the software bug-prone
modules. Generally, it is important to select a small number
of useful explanatory features from all available ones. In this
article, we use the well-known Akaike information criterion
(AIC):

AIC =− 2 lnL(B̃, β̃0)

+ 2× (number of free parameters in the model)
(6)

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 20 / 31

TABLE I
DATA SETS.

No. modules (N) Bug inclusion rate No. metrics (n)
jm1 7782 21.05% 21
pc1 705 8.65% 37
cm1 327 12.80% 37

for the maximum likelihood estimate (B̃, β̃0) to determine the
explanatory variables employed in the analysis. A smaller AIC
indicates better model fit.

In general, there are two variable selection methods; the
variable reduction method and variable increase method under
the AIC criterion. We apply the variable reduction method to
the semi-definite logistic regression model. The main reason
why the variable increase method is not used here is that the
number of arbitrary parameters in the semi-definite logistic
regression model becomes large in the order of squares, and
results in enormous computation cost, so our semi-definite
logistic regression model penalizes by applying the variable
increase method. Concretely, we estimate the parameters (re-
gression coefficients) using all software metrics first, and then
remove unnecessary feature one by one so as to minimize the
AIC. We repeat this procedure again and again until the AIC
value can be reduced no longer. In summary, we describe the
procedure for our variable reduction method as follows.

Step 1: For (yi,xi) (i = 1, 2, . . . ,m), where m is the num-
ber of training data, apply a semi-definite quadratic
programming to the semi-definite logistic regres-
sion model, derive the maximum likelihood estimate
(β̃, β̃0), and calculate the AIC.

Step 2: Apply the variable reduction method, remove one
unnecessary software metric with minimum regres-
sion coefficient and set m− 1 → m.

Step 3: Go to Step 1 and calculate the AIC’ with the updated
m.

Step 4: If AIC > AIC’, then Go to Step 1, otherwise, and
set m → m− 1 and Stop the procedure.

IV. NUMERICAL EXPERIMENTS

A. Data Sets

Data sets used here are from NASA’s software development
projects, namely, jm1, pc1, and cm1. The number of modules,
defect density, and the number of software metrics used in the
experiments for each data set are shown in Tables I to III.1

B. Predictive Performances

We compare the predictive performances of four bug predic-
tion models; the standard logistic regression model, the semi-
definite logistic regression model, and respective models re-
fined by variable reduction. Hereafter, we denote the standard
logistic regression as Logit-11, the standard logistic regression

1The data sets were reported in NASA/WVU IV &V Facility, Metrics Data
Program. http://mdp.ivv.nasa.gov/.

TABLE II
SOFTWARE METRICS IN JM1.

Software metrics
xi1 LOC BLANK
xi2 BRANCH COUNT
xi3 LOC CODE AND COMMENT
xi4 LOC COMMENTS
xi5 CYCLOMATIC COMPLEXITY
xi6 DESIGN COMPLEXITY
xi7 ESSENTIAL COMPLEXITY
xi8 LOC EXECUTABLE
xi9 HALSTEAD CONTENT
xi10 HALSTEAD DIFFICULTY
xi11 HALSTEAD EFFORT
xi12 HALSTEAD ERROR EST
xi13 HALSTEAD LENGTH
xi14 HALSTEAD LEVEL
xi15 HALSTEAD PROG TIME
xi16 HALSTEAD VOLUME
xi17 NUM OPERANDS
xi18 NUM OPERATORS
xi19 NUM UNIQUE OPERANDS
xi20 NUM UNIQUE OPERATORS
xi21 LOC TOTAL
xi22 DEFECTIVE

with variable reduction method Logit-12, the semi-definite lo-
gistic regression model Logit-21, and the semi-definite logistic
regression model with variable reduction method Logit-22.
In our experiments, the data sets are randomly split into the
training data and the validation data. Especially, three cases
with different training data sizes; 25%, 50%, and 75% of the
whole data, are considered. In each case, the remaining 75%,
50% and 25% data sets are used for validation/prediction.

To evaluate the bug-prone probability, we apply the F-
score which is a harmonic mean of precision and recall,
where precision indicates a proportion of correct results in
the prediction, and recall is a proportion of how much of the
correct answers could be predicted. That is, we have

Precision =
True Positive

True Positive + False Positive
,

Recall =
True Positive

True Positive + False Negative
,

(7)

where True Positive is the number of data that could be
correctly predicted to contain software bugs, False Positive is
the number of data incorrectly predicted to contain software
bugs, and False Negative is the number of data incorrectly
predicted to contain no software bugs. Then F-score is defined
by

F -score =
2× Precision × Recall

Precision + Recall
. (8)

Note that F-score is given by a real number between 0 and
1, and can be interpreted such that the higher the value of
F-score the higher the predictive performance of the model.

In order to predict the bug-proneness of each software
module, it is necessary to choose a threshold for judgement
of bug proneness. In our experiments we set five threshold
values; 0.3, 0.4, 0.5, 0.6, and 0.7. If the bug-prone probability
is greater than a given threshold, then the resulting software

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 21 / 31

TABLE III
SOFTWARE METRICS IN PC1 AND CM1.

Software metrics
xi1 LOC BLANK
xi2 BRANCH COUNT
xi3 CALL PAIRS
xi4 LOC CODE AND COMMENT
xi5 LOC COMMENTS
xi6 CONDITION COUNT
xi7 CYCLOMATIC COMPLEXITY
xi8 CYCLOMATIC DENSITY
xi9 DECISION COUNT
xi10 DECISION DENSITY
xi11 DESIGN COMPLEXITY
xi12 DESIGN DENSITY
xi13 EDGE COUNT
xi14 ESSENTIAL COMPLEXITY
xi15 ESSENTIAL DENSITY
xi16 LOC EXECUTABLE
xi17 PARAMETER COUNT
xi18 HALSTEAD CONTENT
xi19 HALSTEAD DIFFICULTY
xi20 HALSTEAD EFFORT
xi21 HALSTEAD ERROR EST
xi22 HALSTEAD LENGTH
xi23 HALSTEAD LEVEL
xi24 HALSTEAD PROG TIME
xi25 HALSTEAD VOLUME
xi26 MAINTENANCE SEVERITY
xi27 MODIFIED CONDITION COUNT
xi28 MULTIPLE CONDITION COUNT
xi29 NODE COUNT
xi30 NORMALIZED CYLOMATIC COMPLEXITY
xi31 NUM OPERANDS
xi32 NUM OPERATORS
xi33 NUM UNIQUE OPERANDS
xi34 NUM UNIQUE OPERATORS
xi35 NUMBER OF LINES
xi36 PERCENT COMMENTS
xi37 LOC TOTAL
xi38 DEFECTIVE

module is judged to contain software bugs. The prediction
results obtained in the experiments are shown in Tables VI to
XII. In these tables, the largest value in each table is denoted
by a double underline, and the largest value in each threshold
level is singly underlined.

In the data set, jm1, our semi-definite logistic model with
variable reduction could show the highest F-scores when
estimating the parameters using 75% of the training data. Fur-
thermore, in Tables IV to VI, the standard logistic regression
showed the highest F-score with 25% of the training data,
but our semi-definite logistic regression model with variable
reduction could give the higher performances on F-score when
estimating parameters using 50% and 75% of the training data.

In the data set, pc1, it is observed that our semi-definite
logistic regression model with variable reduction provided the
highest F-score with 75% of the training data. Also, in all
cases of models in Tables VII to IX, when estimating the
model parameters with 25%, 50% and 75% of the training
data, the semi-definite logistic regression model with variable
reduction could give the highest F-score evidently.

Finally, in the data set, m1, it can be seen that our semi-
definite logistic regression model with variable reduction gave

TABLE IV
JM1 (25% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.445 0.307 0.363

Logit-12 0.451 0.298 0.357
Logit-21 0.305 0.296 0.291
Logit-22 0.443 0.304 0.360

0.4 Logit-11 0.508 0.186 0.271
Logit-12 0.514 0.176 0.261
Logit-21 0.318 0.288 0.292
Logit-22 0.510 0.182 0.267

0.5 Logit-11 0.550 0.111 0.184
Logit-12 0.546 0.108 0.179
Logit-21 0.330 0.287 0.292
Logit-22 0.539 0.113 0.187

0.6 Logit-11 0.592 0.070 0.125
Logit-12 0.587 0.072 0.127
Logit-21 0.325 0.288 0.290
Logit-22 0.605 0.075 0.132

0.7 Logit-11 0.648 0.046 0.086
Logit-12 0.640 0.046 0.086
Logit-21 0.317 0.286 0.285
Logit-22 0.652 0.050 0.093

TABLE V
JM1 (50% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.453 0.309 0.367

Logit-12 0.462 0.307 0.368
Logit-21 0.330 0.319 0.311
Logit-22 0.432 0.326 0.371

0.4 Logit-11 0.513 0.182 0.268
Logit-12 0.518 0.176 0.262
Logit-21 0.336 0.279 0.289
Logit-22 0.509 0.183 0.268

0.5 Logit-11 0.559 0.105 0.176
Logit-12 0.558 0.105 0.176
Logit-21 0.325 0.288 0.281
Logit-22 0.557 0.115 0.190

0.6 Logit-11 0.609 0.069 0.123
Logit-12 0.610 0.066 0.119
Logit-21 0.374 0.240 0.261
Logit-22 0.631 0.071 0.128

0.7 Logit-11 0.685 0.043 0.082
Logit-12 0.682 0.044 0.083
Logit-21 0.356 0.276 0.272
Logit-22 0.646 0.046 0.086

the highest F-score with 25% of the training data. In Tables
X to XII, the standard logistic regression model gave the
highest F-score with 50% of the training data, but our semi-
definite logistic regression model with variable reduction could
show the highest predictive performances when estimating
parameters using 25% and 75% of the training data.

In comparison between the conventional logistic regression
model and the semi-definite regression model, it is found that
our novel approach could not always outperform the classical
one. However, our experimental results showed that in most
cases across all data sets, the semi-definite logistic regression
models could exhibit higher F-score than the conventional
logistic regression models. As shown in Tables IV to XII,
even though the predictive performances of our semi-definite

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 22 / 31

TABLE VI
JM1 (75% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.459 0.313 0.372

Logit-12 0.457 0.310 0.369
Logit-21 0.343 0.325 0.315
Logit-22 0.453 0.331 0.382

0.4 Logit-11 0.514 0.179 0.265
Logit-12 0.520 0.177 0.264
Logit-21 0.337 0.300 0.294
Logit-22 0.515 0.187 0.274

0.5 Logit-11 0.563 0.104 0.175
Logit-12 0.570 0.104 0.175
Logit-21 0.346 0.288 0.284
Logit-22 0.572 0.103 0.175

0.6 Logit-11 0.632 0.066 0.119
Logit-12 0.630 0.067 0.120
Logit-21 0.364 0.294 0.284
Logit-22 0.655 0.066 0.120

0.7 Logit-11 0.686 0.042 0.080
Logit-12 0.691 0.043 0.081
Logit-21 0.351 0.260 0.260
Logit-22 0.731 0.044 0.082

TABLE VII
PC1 (25% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.226 0.348 0.269

Logit-12 0.239 0.342 0.278
Logit-21 0.113 0.494 0.183
Logit-22 0.286 0.462 0.351

0.4 Logit-11 0.232 0.349 0.273
Logit-12 0.243 0.327 0.271
Logit-21 0.106 0.489 0.173
Logit-22 0.293 0.320 0.298

0.5 Logit-11 0.235 0.357 0.277
Logit-12 0.248 0.334 0.277
Logit-21 0.110 0.477 0.178
Logit-22 0.309 0.313 0.305

0.6 Logit-11 0.237 0.351 0.276
Logit-12 0.246 0.320 0.268
Logit-21 0.112 0.518 0.182
Logit-22 0.253 0.217 0.221

0.7 Logit-11 0.232 0.336 0.269
Logit-12 0.238 0.325 0.268
Logit-21 0.106 0.485 0.173
Logit-22 0.319 0.242 0.264

logistic regression models without variable reduction method
were rather low, applying the variable reduction could im-
prove the predictive performances. In a few cases, it can be
found that the conventional logistic regression models showed
better predictive performances than the semi-definite logistic
regression models. However, since the semi-definite logistic
regression model includes the logistic regression model as a
special case, the predictive performances of the semi-definite
logistic regression models are never inferior to those of the
common logistic regression models.

V. CONCLUSIONS

In this article, we have proposed a novel and explainable
software bug-prediction model based on the semi-definite
logistic model and compared the applicability in predicting

TABLE VIII
PC1 (50% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.317 0.355 0.327

Logit-12 0.303 0.338 0.312
Logit-21 0.088 0.490 0.149
Logit-22 0.328 0.298 0.304

0.4 Logit-11 0.337 0.325 0.323
Logit-12 0.326 0.280 0.294
Logit-21 0.086 0.486 0.146
Logit-22 0.350 0.234 0.270

0.5 Logit-11 0.364 0.265 0.299
Logit-12 0.369 0.243 0.280
Logit-21 0.088 0.500 0.149
Logit-22 0.489 0.267 0.334

0.6 Logit-11 0.366 0.248 0.286
Logit-12 0.374 0.220 0.266
Logit-21 0.088 0.490 0.149
Logit-22 0.366 0.288 0.305

0.7 Logit-11 0.391 0.198 0.253
Logit-12 0.421 0.207 0.266
Logit-21 0.092 0.499 0.154
Logit-22 0.461 0.187 0.239

TABLE IX
PC1 (75% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.346 0.356 0.342

Logit-12 0.312 0.317 0.306
Logit-21 0.853 0.483 0.144
Logit-22 0.391 0.349 0.357

0.4 Logit-11 0.395 0.293 0.325
Logit-12 0.388 0.267 0.305
Logit-21 0.091 0.501 0.153
Logit-22 0.412 0.329 0.353

0.5 Logit-11 0.439 0.243 0.301
Logit-12 0.404 0.196 0.260
Logit-21 0.092 0.534 0.156
Logit-22 0.385 0.405 0.374

0.6 Logit-11 0.435 0.211 0.272
Logit-12 0.422 0.167 0.242
Logit-21 0.088 0.500 0.148
Logit-22 0.417 0.245 0.294

0.7 Logit-11 0.479 0.190 0.260
Logit-12 0.486 0.160 0.241
Logit-21 0.094 0.52 0.158
Logit-22 0.521 0.250 0.301

the bug-prone module. In the past literature, almost all works
have focused on only the predictive performances including
F-score and attempted to apply several machine learning
techniques in the software bug-prediction. However, since
almost all machine learning techniques did not provide the
feedback information on the dependence between the software
metrics employed in the analysis and the bug-proneness, more
sophisticated explainable bug-prediction methods have been
demanded. In our numerical experiments, we have shown
that our semi-definite logistic model could show the potential
applicability in software bug prediction. By checking the re-
gression coefficients with respect to a combination of software
metrics, it would be possible to analyze the dependence in
software bug-prone probability.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 23 / 31

TABLE X
CM1 (25% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.200 0.360 0.253

Logit-12 0.234 0.336 0.269
Logit-21 0.137 0.467 0.211
Logit-22 0.167 0.227 0.187

0.4 Logit-11 0.206 0.367 0.260
Logit-12 0.226 0.327 0.260
Logit-21 0.133 0.466 0.205
Logit-22 0.296 0.456 0.354

0.5 Logit-11 0.204 0.355 0.254
Logit-12 0.223 0.314 0.253
Logit-21 0.139 0.488 0.215
Logit-22 0.252 0.321 0.275

0.6 Logit-11 0.211 0.352 0.260
Logit-12 0.220 0.316 0.252
Logit-21 0.141 0.505 0.220
Logit-22 0.247 0.260 0.247

0.7 Logit-11 0.202 0.359 0.254
Logit-12 0.214 0.311 0.247
Logit-21 0.136 0.452 0.207
Logit-22 0.254 0.220 0.225

TABLE XI
CM1 (50% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.269 0.349 0.295

Logit-12 0.261 0.343 0.288
Logit-21 0.135 0.479 0.209
Logit-22 0.258 0.309 0.274

0.4 Logit-11 0.268 0.327 0.288
Logit-12 0.273 0.306 0.280
Logit-21 0.139 0.502 0.216
Logit-22 0.392 0.244 0.292

0.5 Logit-11 0.264 0.307 0.276
Logit-12 0.273 0.263 0.258
Logit-21 0.140 0.489 0.216
Logit-22 0.277 0.236 0.246

0.6 Logit-11 0.269 0.251 0.251
Logit-12 0.284 0.224 0.239
Logit-21 0.133 0.464 0.206
Logit-22 0.315 0.250 0.265

0.7 Logit-11 0.283 0.254 0.258
Logit-12 0.287 0.221 0.239
Logit-21 0.133 0.471 0.206
Logit-22 0.377 0.186 0.242

In future, we will compare the semi-definite logistic regres-
sion approach with several deep learning methods in large-
scaled experiments and explore the potential to use it in
software bug prediction problems.

REFERENCES

[1] S. Balasubramaniam, and S. G. Gollagi, “Software defect prediction via
optimal trained convolutional neural network,” Advances in Engineering
Software, vol. 169, p. 103138, 2022.

[2] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the applicability of
fault-proneness models across object-oriented software projects,” IEEE
Transactions on Software Engineering, vol. 28, pp. 706-–720, 2002.

[3] G. Denaro, and M. Pezze, “An empirical evaluation of fault-proneness
models” Proceedings of The 24th International Conference on Software
Engineering (ICSE-2002), pp. 241–251, 2002.

TABLE XII
CM1 (75% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.287 0.331 0.295

Logit-12 0.276 0.326 0.295
Logit-21 0.127 0.472 0.196
Logit-22 0.312 0.396 0.337

0.4 Logit-11 0.338 0.305 0.299
Logit-12 0.311 0.272 0.286
Logit-21 0.136 0.534 0.213
Logit-22 0.348 0.322 0.336

0.5 Logit-11 0.341 0.279 0.288
Logit-12 0.301 0.188 0.235
Logit-21 0.135 0.513 0.210
Logit-22 0.418 0.212 0.277

0.6 Logit-11 0.358 0.200 0.239
Logit-12 0.322 0.160 0.243
Logit-21 0.133 0.492 0.205
Logit-22 0.364 0.190 0.263

0.7 Logit-11 0.329 0.152 0.194
Logit-12 0.342 0.091 0.215
Logit-21 0.136 0.504 0.212
Logit-22 0.347 0.123 0.220

[4] K. O. Elish, and M. O. Elish, “Predicting defect-prone software modules
using support vector machines,” Journal of Systems and Software, vol.
81, pp. 649–660, 2008.

[5] L. Guo, Y. Ma, B. Cukic, H. Singh, “Robust prediction of fault-
proneness by random forests,” Proceedings The 15th International
Symposium on Software Reliability Engineering (ISSRE-2004), pp. 417–
428, 2004.

[6] C. Jin, and S. W. Jin, “Prediction approach of software fault-proneness
based on hybrid artificial neural network and quantum particle swarm
optimization,” Applied Soft Computing, vol. 35, pp. 717–725, 2015.

[7] H. Konno, N. Kawadai, and H. Yuy, “Cutting plane algorithms
for nonlinear semi-definite programming problems with applications,”
Journal of Global Optimization, vol. 25, pp. 141–155, 2003.

[8] H. Konno, N. Kawadai, and D. Wu, “Estimation of failure probability
using semi-definite logit model,” Computational Management Science,
vol. 1, pp. 59—73, 2003.

[9] H. Konno, N. Kawadai, and H. Shimode, “A two step algorithm for
solving a large scale semi-definite logit model,” Optimization Letters,
vol. 1, pp 329–340, 2007.

[10] H. Konno, S. Kameda, and N. Kawadai, “Solving a large scale semi-
definite logit model,” Computational Management Science, vol. 7, pp.
111—120, 2010.

[11] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software
defect prediction,” IET Software, vol. 12, 161–175, 2018.

[12] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, pp. 2—13, 2007.

[13] O. Mizuno, and T. Kikuno, “Training on errors experiment to detect
fault-prone software modules by spam filter,” Proceedings of The 6th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE2007), pp. 405–414, 2007.

[14] N. Ohlsson, and H. Alberg, “Predicting fault-prone software modules in
telephone switches,” IEEE Transactions on Software Engineering, vol.
22, pp. 886–894, 1996.

[15] S. K. Pandey, R. B. Mishra, and A. K. Triphathi, “Software bug
prediction prototype using Bayesian network classifier: A comprehensive
model,” Procedia Computer Science, vol.1 32, pp. 1412–1421, 2018.

[16] E. Perez-Minana, and J. J. Gras, “Improving fault prediction using
Bayesian networks for the development of embedded software applica-
tions,” Software Testing, Verification and Reliability, vol. 16, pp. 157–
174, 2006.

[17] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,” Information
and Software Technology, vol. 96, pp. 94–111, 2018.

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 24 / 31

On Reducibility of Developer-Written Unit Tests in C#

Arpit Christi
School of Computing
Weber State University

Ogden, UT, USA
email: arpitchristi@weber.edu

David Weber

Northrop Grumman
Roy, UT, USA

email: ein.nuff@gmail.com

Abstract—Test case reduction is employed to help developer
isolate and locate faults in complex software systems if the
failing test is complex and contains a lot of non failure-inducing
elements. Reduced test still contains the exact same failure-
inducing component as the original test. Thus, the smaller test
assists developers by focusing their attention on the faulty aspect
of the program quickly. Researchers have focused their attention
on improvement of the test reduction process. The outcome of
the test reduction is not studied thoroughly. We study the result
of the test case reduction when algorithms like Delta Debugging
are used to minimize the tests. We evaluate (1) test reduction size
based on the category of a statement and (2) effect of the category
of a statement on reduction. The developer-written tests are just
like any other code - containing the same structures, elements,
and components as the rest of the program. If we consider the
program as an abstract syntax tree, our results demonstrate that
(1) leaf nodes are removed in larger quantity and (2) leaf nodes
have higher probability of removal.

Keywords-program debugging; software testing; test case reduc-
tion.

I. INTRODUCTION

Program debugging is often tedious, time-consuming and
challenging. Most of the developer time is spent on locating
and isolating the fault. When utilizing a failed test to debug and
fix a fault, developers may need to observe and transit through
aspects of test/program that are non failure-inducing, resulting
into developer time disuse. If the failed test is minimized while
keeping the failure-inducing input, the developer may need to
rummage through lesser program elements promoting optimal
use of developer time and hence quicker debugging. Being
orthogonal to aiding developer in debugging, test reduction is
found useful in Automatic Fault Localization (FL) - a process
to automatically locate the bug in a faulty program. The entire
reduced test or the byproducts of test reduction are found to
be useful in Automatic FL [1] [2].

Delta Debugging (DD) and Hierarchical Delta Debugging
algorithms (HDD) were proposed to minimize failure-inducing
tests [3] [4]. DD algorithm is optimal for test inputs that are
flat structures like array, lists or sets. If you consider a test
written in program like C#, in order to apply DD, one needs
to consider test to be an array of lines, an array of characters
or words. As it does not consider the tree like structure,
interdependence between nodes and other such details, DD
is not optimal for structures like HTML files and programs.
HDD can process such tests better as it exploits the underlying
tree structures to its advantage. Both algorithms are essentially

a greedy search to systematically and incrementally find a
smaller test until a minimal test is reached.

Many recent algorithms and implementations to minimize
failing tests still rely on the DD and HDD algorithms as
the foundation [5]–[11]. These tools and techniques mainly
attempt to improve the test reduction process to efficiently and
accurately reduce tests. Though test reduction process have
been studied for a while, (1) the outcome of the test reduction
and (2) the entities that were reduced as part of the reduction
process have not been studied thoroughly.

Based on the type of test (program, html, xml, text files
etc.), the reduction outcome and the reduced entities can be
different. If we only consider tests written as a program in a
particular programming language, we can define and study the
reduction outcome and the reduced entities by considering the
outcome as a reduced program and the entities as programming
components like - program statements, program lines, nodes
of Abstract Syntax Tree (AST) of the program. For this work,
we consider reduced entities as nodes of AST. An example
of the test is in Figure 1 and the corresponding AST is in
Figure 4. We further categorize each statement node of the
AST into non-tree statements and tree statements as explained
in detail in Section IV.

We focus on test reduction for tests written in C# pro-
gramming language. We study the reduction outcome and the
reduced entities for 30 real world bugs in 5 open source C#
projects. Based on our study, we provide the following insights
into test reduction for C# tests.

1) The number of non-tree statements reduced are signifi-
cantly larger than the number of tree statements reduced.

2) The chance of a non-tree statement removal is slightly
higher than the chance of a tree statement removal.

The ReduSharptor tool that we used for test reduction is
publicly available on GitHub [12].

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In section III, we discuss the
background for our work and motivate the need for the study.
In Section IV, we discuss the terminology and definitions
based on the outcome of the reduction process to determine
catogory of program statements. Section V depicts the test
subjects, the experiments and the results. We mention how
we mitigate the threats to validity in Section VI. Finally,
Section VII concludes the paper by discussing the results and
the future direction.

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 25 / 31

II. RELATED WORK

DD finds minimal failure inducing input by employing a
greedy search that removes components that are unnecessary
for triggering the bug [3]. HDD improves on DD for hier-
archical inputs like xml, html, and programs. HDD achieves
the improvement by considering the AST representation of
hierarchical inputs [4].

Researchers proposed many recent algorithms, tools and
techniques. They (1) improve over the original DD and HDD
algorithms or (2) retrofit DD/HDD implementation for specific
situation or programming languages. CReduce, Generalized
Tree Reduction (GTR), Picireny, Perses, DDSET, Observa-
tional Based Slicing (ORBS), Reduktor, ProbDD, and Re-
duSharptor are a few such attempts [5]–[11], [13]–[15].

Christi et al. combined HDD with statement deletion muta-
tion to propose Test-Based Software Minimization (TBSM)
that reduces programs instead of tests to build a minimal
resource adaptive software while sacrificing low-priority but
resource-consuming functionality [16]. To improve the per-
formance of TBSM, they study the outcome of the program
reduction and the entities that were reduced. Based on that,
they proposed multiple heuristics to improve the performance
of TBMS [17].

Perses reduces the removal entities by only considering
syntactically valid variants [6]. Wang et al. propose prob-
abilistic delta debugging approach that uses AST, historic
test results and syntactic relationships to assign probability
to each element for removal [10] [11]. The approach showed
significant improvement in performance because it reduces the
number of entities under consideration for removal. We study
the reduction process only in terms of the location of an entity
within the program. Also, we use a different programming
language and a different dataset to study the reduction process.

III. BACKGROUND AND MOTIVATION

If we can categorize test program statements into distinct
categories and establish an empirical link between the category
of a statement and its probability of removal, we can preemp-
tively choose to process or ignore certain types of statements
in the test reduction process. To this end, the outcome of
test reduction and reduced entities need to be studied further.
Studying the relationship in detail can help to propose efficient
approaches like perses and probabilistic delta debugging [6],
[11]. It may help propose heuristics as proposed by Christi et
al. to reduce the search space for the reduction [17]. So far,
such categorization is not clearly established.

We will only consider tests written in C# programming
language. When DD, HDD or any other techniques are applied
on a test for test reduction, it produces a minimal test.

The test can be reduced at a different granularity. For
example, a test can be considered as a series of characters and
one or more characters can be reduced at a time to produce
minimal test. If we consider HDD, reduction granularity can
be a node of the AST of the program. Each test method is
composed of program statements that are defined as State-
mentNode. In C# the StatementNode is implemented by Roslyn

[Fact]
public void Foo(Test)
{
1 Math m = new Math();
2 int sum1 = m.Add(3,4)

// Assumption: Add method is written in a
// peculiar way and cannot add 3 and 4
// correctly.

3 Assert.Equal(sum1,7); //suppose sum1 is 8,
hence the test is failing here.

4 if(true){
5 int sum2 = m.Add(-2,-3)
6 Assert.Equal(sum2,-5); // This assert

passes.
7 }
}

Figure 1. original test, Line 3 is the failing statement.

[Fact]
public void Foo(Test) //The minimal reduced

test
{
1 Math m = new Math();
2 int sum1 = m.Add(3,4)

// Same assumption as the original test.
3 Assert.Equal(sum1,7); //suppose sum1 is 8,

hence the test is failing here.

}

Figure 2. minimal test, All statements from line 4 in Figure 1 are removed.

compiler as StatementSytax class or any other StatementNode
that is derived from StatementSyntax class [18]. The statement
node can be further decomposed for processing. Multiple
previous works suggest that reduction is useful and meaningful
at a statement level [9] [16]. Hence, we consider program
statement or StatementNode as a unit of reduction. Consider a
simple test as shown in Figure 1. The corresponding AST is
shown in Figure 4. The dotted lines mean that the nodes can be
further decomposed into non-statement nodes. But we avoid
such decomposition to only consider statement level nodes.
The reduced test is shown in Figure 2 and the corresponding
AST is shown in Figure 5

When we compare the ASTs in Figure 4 and Figure 5,
we note that two leaf statements are reduced, and one non-
leaf statement is reduced (the if statement). The reduction
in terms of program components is shown in Figiure 3. We
want to experiment with real-world tests to study the reduction
outcome and the reduced entities to establish categorization of
statements and the probability of removal for each category.

IV. TERMINOLOGY AND DEFINITIONS BASED ON
REDUCTION PROCESS AND THE OUTCOME

We use the following terminology and definitions for the
rest of the discussion.

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 26 / 31

if(true){
5 int sum2 = m.Add(-2,-3)
6 Assert.Equal(sum2,-5); // This assert

passes.
7 }

Figure 3. reduced-statements. Line 4-7 in test in Figure 1 consist of
reduced statements

If the test is in a programming language like C#, we can
define the following.

1) original-test: The test without any reduction. We con-
sider the test to be an AST with a set of StatementNodes.
Figure 1 shows the original test and Figure 4 shows the
corresponding AST.

2) minimal-test: The remaining test after a test is reduced.
If the original-test is reducible, minimal-test has one or
more statements removed. In Figure 2, the statements
from line 4 onwards in original-test are removed. The
AST in Figure 5 depicts the AST for minimal-test.

3) reduced-entities: The program statements that are re-
duced during the reduction process. If original test was
T and the minimal test was T’ then reduced-entities are
T - T’. Reduced-entities are a set of StatementNode or
statements in our case. The reduced-entities are showin
in Figure 3. If you compare Figure 4 and Figure 5, the
reducued-entities are the removed subtree.

4) TreeNode: A TreeNode is a StatementNode that has
at least one subtree that consists of one or more
StatementNode. For example, in Figure 4, IfStmt is
the TreeNode, because it contains two statements that
are TreeNode. (1) int sum2 = m.Add(-2,-3) and (2)
Assert.Equal(sum2,-5). (Note: we are ignoring Block-
Stmt, that is explained later). In our experiment subjects,
we found conditional statements, loop statements and
action statements as the majority tree nodes. As we only
consider statement nodes, Treenode can also be referred
as TreeStmt.

5) NonTreeNode: A NonTreeNode is a StatementNode that
does not have any subtree that consists of StatementN-
ode. In Figure 4 Math m = new Math(), int sum1
= m.Add(3,4) etc. are NonTreeNode. NonTreeNode can
also be referred as NonTreeStmt.

Each BlockStmt consists of one or more StatementNodes.
Removing the BlockStmt can disturb the tree structure such
that Roslyn compiler may not create syntactially correct
variants [18]. Hence, BlockStmt is never considered during
reduction. Only the statements that are below BlockStmt are
considered for reduction as it was done with ReduSharptor.

We categorize the statements of a C# tests into the categories
based on its location in the program: TreeStmt and Non-
TreeStmt. We wan to study how the quantity of removal and the
probability of removal are dependent on this categorization.

V. EXPERIMENTS

We want to study both minimal-test and reduced-entities to
understand the effect of statement category on removal process
and reduction outcome.

For that we use the same subjects and procedure used in
the previous research by Weber et al [9] to evaluate a test-
reduction tool ReduSharptor.

A. Subjects

Weber et al. used 30 real-world failing tests across five
open source C# projects as the subjects. Four out of these
five open source projects are under active development. Each
subject was selected such that it has one or more reduced-
entities. If the original-test is already minimal and cannot
be reduced any further, original-test and minimal-test are
the same. Hence, comparison and further evaluations are not
meaningful. Accuracy of our analysis depends on the accuracy
of ReduSharptor - ReduSharptor has high precision (96.58%)
and high recall (96.45%). The projects that were used as
subjects are enumerated in in Table 1 in the work of Weber
et al. [9].

B. Process and Measurement

We apply ReduSharptor on each failing test, reduced the
failing test and generated failure-inducing minimal-test. We
compare failing original-test with the failing minimal-test. We
collect the following information.

1) absolute-reduction-size (ARS): The number of state-
ments that are reduced as part of reduction process.
This is essentially the size of reduced-entities in terms
of statements. In the example in section IV, absolute-
reduction-size is three statements - the IfStmt and two
other statements at the leaf of the IfStmt subtree.

2) percentage-reduction-size (PRS): The percentage of total
statements reduced. In the example, the percentage is
50% - total statements are 6 and reduced statements are
3.

3) absolutte-TreeStmt-reduction-size (ATRS): The number
of TreeNodes reduced. In the example, 1 TreeNode is
reduced - the ItStmt.

4) percentage-TreeStmt-reduction-size (PTRS): The per-
centage of TreeNodes reduced. In the example, the PRTS
is 16.67%.

5) absolutte-NonTreeStmt-reduction-size (ANTRS): The
number of NonTreeNodes reduced. In the example, 2
NonTreeNodes are reduced.

6) percentage-NonTreeStmt-reduction-size (PNTRS): The
percentage of NonTreeNodes reduced. In the example,
PNTRS is 33.33%.

C. Results

Across 30 failing tests, we process 759 total statements.
The results of reductions are shown in Table I. We show
total number of statements for each test, the number of
NonTreeStmts, the number of TreeStmtss, ARS, PRS, ANTRS,
PNTRS, ATRS, and PRS. On average, we processed 25.3

19Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 27 / 31

Foo

BlockStmt

Math m = new Math() int sum1 = m.Add(3,4) Assert.Equal(sum1,7); IfStmt

IfPart

BlockStmt

int sum2 = m.Add(-2,-3) Assert.Equal(sum2,-5);

Condition ElsePart

TRUE
NULL

Figure 4. AST of code in Figure 1

Foo

BlockStmt

Math m = new Math() int sum1 = m.Add(3,4) Assert.Equal(sum1,7); This subtree
is removed

Figure 5. AST of code in Figure 2

statements per test that include 24.4 NonTreeStmts and 0.9
TreeStmts. We reduced on average 19.93 statements or 71.87%
per failing test. For NonTreeStmts, the average reduction was
19.56 or 70.44%. The same numbers for TreeStmts are 0.433
and 1.43%.

The most important entities are the PRS, PNTRS and PTRS.
Consider two tests - one contains 100 statements and another
10 statements. If the 20 statements are reduced in the first test
and 4 statements are reduced in the the second test, the ARS,
ANTRS, and ATRS numbers can be misleading. For the first
test 20% statements are reduced and for the second test 40%
statements are reduced. Reduction is significant for the second
test.

More than half of the PTRS values are 0 and the data is
not normally distributed violating the t-test assumptions. We

confirm this using Shapiro-Wilk test for normality [19]. Hence,
we perform paired Wilcoxon signed rank test on PNTRS
and PTRS that has V = 465 and p-value = 1.825e − 06
(p << 0.05) [20]. Wilcoxon test suggests significant differ-
ence between PNTRS and PTRS. To exactly understand the
difference, we draw PNTRS vs PTRS boxplot in Figure 6. We
can conclude that NonTreeStmts are reduced in large numbers
compared to TreeStmts (approximately 50 times).

We also want to know the probability of removal of a
randomly chosen statement based on its category - TreeStmt
or NonTreeStmt. From the results above, we may think that
if a randomly chosen statement is NonTreeStmt, it has more
chances of removal. That may be misleading. Consider the
TestObserve test in Table I. The test has three TreeStmts and
all of them are being removed resulting into 100% removal

20Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 28 / 31

of TreeStmts. For the same test, out of 101 NonTreeStmts
98 are removed resulting into 97% removal. For the test
TreeStmts have higher probability of removal. To consider this,
we define two new terms: (1) PrNTRS - probability of removal
of NonTreeStmts defined as number of NonTreeStmts removed
over total NonTreeStmts in the test, (ANTRS÷#NTN)∗100
as per Table I (2) PrTRS - probability of removal of TreeStmts
defined same as above but for TreeStmts, (ATRS ÷#TN) ∗
100. For a certain rows in Table I, #TN is 0 and hence
PrTRS is undefined (divide by 0). We cannot use such tests for
evaluation. The results excluding the tests that have undefined
PrNTRS are shown in Table II.

Both PrNTRS and PrTRS are not normally distributed
(Shapiro-Wilk test). So, we use paired Wilcoxon signed rank
test that has V = 99 and p = 0.02877 (p < 0.05). So, PrNTRS
and PrTRS are different. To find the difference, we again draw
the values using boxplot shown in figure 7. We conclude that
the probability of removal of a non-tree statement is slightly
higher (approximately 1.7 times) than that of a tree statement
based on the boxplot.

D. Discussion on Possible Limitations

Our experiments and results depend on how the existing
tests are written for open-source C# projects. We notice that
the tree-statements per test is 0.9, which is very low. For a
tree statement to be reduced, the test must contain at least one
or more tree statements. The PTRS entity is dependent on the
availability of tree statements.

If a failed assert is at the beginning or in the middle of a test,
the entities after the failed assert will always be removed. If we
move that failed assert even at the end of the test, those entities
will still be removed. DD and HDD algorithms guarantee 1-
minimality. 1-minimality ensures that the test reduction and
our analysis are not dependent on the location of the failed
assert.

VI. THREATS TO VALIDITY

Now, we discuss threats to validity and the steps we take
to mitigate them.

A. Construct Validity

Do our results truly compare non-tree statements and tree-
statements for test reduction? The ReduSharptor tool used for
experiments has high precision and high recall. It is easy to
identify tree statements and non-tree statements in a test.

B. Internal Validity

Do we mitigate bias during experiments? All the projects
and tests are part of open-source projects available online.
Bugs were randomly sampled such that it has one or more
reduced-entities.

C. External Validity

Do our results generalize? We only performed experiments
on C# projects and tests. As tests in other programming
languages have similar structures and program statement types,
we expect the results to generalize.

Figure 6. comparison between PNTRS vs PTRS

Figure 7. comparison between PrNTRS vs PrTRS

VII. CONCLUSION AND FUTURE WORK

Based on our results, our contribution is as follows. We also
plan to extend our work to further investigate the relationship
between test reduction outcome and possible categorization of
statements.

A. Contribution

Very few DD and HDD implementations assign priority
to an entity based on the category of the entity. DD and
HDD work on wide range of inputs and hence defining a
generic category is difficult. If we only consider tests written
as programs, we can come up with a broad generic category.
Based on the categorization, we study the effect of a statement

21Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 29 / 31

TABLE I
TEST, PROJECT, TOTAL STMTS, #NTN - NUMBER OF NonTreeNodes, #TN - NUMBER OF TreeNodes, ARS, PRS, ANTRS, PNTRS, ATRS, PTRS

Test Project Stmts #NTN #TN ARS PRS ANTRS PNTRS ATRS PTRS
ListCombineTest language-ext 10 10 0 6 60.00% 6 60.00% 0 0%
EqualsTest language-ext 7 7 0 6 85.71% 6 85.71% 0 0%
ReverseListTest3 language-ext 5 5 0 2 40.00% 2 40.00% 0 0%
WriterTest language-ext 17 15 2 8 47.06% 8 47.06% 0 0%
Existential language-ext 14 14 0 11 78.57% 11 78.57% 0 0%
TestMore language-ext 55 55 0 47 85.45% 47 85.45% 0 0%
CreatedBranchIsOk Umbrraco-C.. 54 54 0 39 72% 39 72% 0 0%

CanCheckIfUserHasAccessToLanguage Umbrraco-C.. 19 17 2 6 31.58% 5 26.32% 1 5.26%
Can Unpublish ContentVariation Umbrraco-C.. 28 28 0 25 89.29% 25 89.29% 0 0%
EnumMap Umbrraco-C.. 11 11 0 6 54.55% 6 54.55% 0 0%
InheritedMap Umbrraco-C.. 17 17 0 11 64.71% 11 64.71% 0 0%

Get All Blueprints Umbrraco-C.. 25 23 2 22 88.00% 20 80.00% 2 8.00%
ShouldStart Fleck 7 5 2 3 42.86% 3 42.86% 0 0%
ShouldSupportDualStackListenWhenServerV.. Fleck 4 3 1 3 75.00% 3 75.00% 0 0%
ShouldRespondToCompleteRequestCorrectly Fleck 15 15 0 11 73.33% 11 73.33% 0 0%
ConcurrentBeginWrites Fleck 21 21 0 16 76.19% 16 76.19% 0 0%
ConcurrentBeginWritesFirstEndWriteFails Fleck 27 26 1 22 81.48% 21 77.78% 1 3.70%
HeadersShouldBeCaseInsensitive Fleck 7 7 0 5 71.43% 5 71.43% 0 0%
TestNullability BizHawk 15 15 0 13 86.67% 13 86.67% 0 0%
TestCheatcodeParsing BizHawk 8 7 1 7 87.50% 6 75.00% 1 12.50%
SaveCreateBufferRoundTrip BizHawk 31 29 2 24 77.42% 24 77.42% 0 0%
TestCRC32Stability BizHawk 27 25 2 13 48.15% 13 48.15% 0 0%
TestSHA1LessSimple BizHawk 14 14 0 7 50.00% 7 50.00% 0 0%
TestRemovePrefix BizHawk 14 14 0 13 92.86% 13 92.86% 0 0%
TestActionModificationPickup1 Skclusive.Mob.. 23 21 2 9 39.13% 9 39.13% 0 0%
TestObservableAutoRun Skclusive.Mob.. 26 25 1 23 88.46% 22 84.62% 1 3.85%
TestMapCrud Skclusive.Mob.. 39 38 1 37 94.87% 37 94.87% 0 0%
TestObserver Skclusive.Mob.. 104 101 3 101 97.12% 98 94.23% 3 2.88%
TestObserveValue Skclusive.Mob.. 62 59 3 58 93.55% 56 88.71% 3 4.84%
TestTypeDefProxy Skclusive.Mob.. 53 51 2 44 83.02% 43 81.13% 1 1.89%
Mean 25.3 24.4 0.9 19.93 71.87% 19.56 70.44% 0.433 1.43%

TABLE II
TEST, PrNTRS VS PrTRS FOR INDIVIDUAL TEST. TESTS WITH UNDEFINED

PrTRS ARE NOT INCLUDED.

Test PrNTRS PrTRS
WriterTest 53.33% 0.00%
CanCheckIfUserHasAccessToLanguage 19.41% 50%
Get All Blueprints 86.95% 100%
ShouldStart 60.00% 0.00%
ShouldSupportDualStackListenWhenServerV4All 75.00% 0.00%
ConcurrentBeginWritesFirstEndWriteFails 80.76% 100.00%
TestCheatcodeParsing 85.71% 50.00%
SaveCreateBufferRoundTrip 82.75% 0.00%
TestCRC32Stability 52.00% 0.00%
TestActionModificationPickup1 42.87% 0.00%
TestObservableAutoRun 88.00% 100.00%
TestMapCurd 97.36% 0.00%
TestObserver 97.02% 100.00%
TestObserveValue 93.22% 100.00%
TestTypeDefProxy 81.31% 50.00%

category on the reduction outcome and on the removal process.
We conclude that the location of a program within the AST has
an effect on the reduction outcome and the removal process.
The non-tree statements (leaf nodes) will be removed in larger
numbers and they will have slightly higher chance of removal.
.

B. Future Work

Our work focuses on C# tests. A very obvious extension
would be to verify the results on tests written in other program-
ming languages like Java, Python, and etc. We expect similar
results for other programming languages also. Currently we

categorize test statements into two categories based on the
location within the AST. One area of extension would be to use
other kind of categories. For example, types of the statements
like declaration statement, method call statement, if statement,
loop statement, try-catch statement etc. A broader extension
would be to derive generic categories for non-program test
inputs like html, xml, and text files.

REFERENCES

[1] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce before
you localize: Delta-debugging and spectrum-based fault localization,” in
2018 IEEE International Symposium on Software Reliability Engineer-
ing Workshops, ISSRE Workshops, Memphis, TN, USA, October 15-18,
2018, 2018, pp. 184–191.

[2] D. Vince, R. Hodován, and Á. Kiss, “Reduction-assisted fault localiza-
tion: Don’t throw away the by-products!” in ICSOFT, 2021, pp. 196–
206.

[3] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002.

[4] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06, 2006, pp. 142–151.

[5] R. Hodován and A. Kiss, “Modernizing hierarchical delta debugging,”
in Proceedings of the 7th International Workshop on Automating Test
Case Design, Selection, and Evaluation, ser. A-TEST 2016. ACM,
2016, pp. 31–37.

[6] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided
program reduction,” in Proceedings of the 40th International Conference
on Software Engineering. Association for Computing Machinery, 2018,
p. 361–371.

[7] R. Gopinath, A. Kampmann, N. Havrikov, E. O. Soremekun, and
A. Zeller, “Abstracting failure-inducing inputs,” in 29th ACM SIGSOFT
international symposium on software testing and analysis, 2020, pp.
237–248.

22Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

 30 / 31

[8] D. Stepanov, M. Akhin, and M. Belyaev, “Reduktor: How we stopped
worrying about bugs in kotlin compiler,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 317–326.

[9] D. Weber and A. Christi, “Redusharptor: A tool to simplify developer-
written c# unit tests,” International Journal of Software Engineering &
Applications, vol. 14, pp. 29–40, 09 2023.

[10] G. Wang, R. Shen, J. Chen, Y. Xiong, and L. Zhang, “Probabilistic delta
debugging,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 881–892.

[11] G. Wang et al., “A probabilistic delta debugging approach for abstract
syntax trees,” in 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2023, pp. 763–773.

[12] “ReduSharptor Tool,” https://github.com/amchristi/ReduSharptor, ac-
cessed: 2024-04-24.

[13] J. Regehr et al., “Test-case reduction for c compiler bugs,” in 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12, pp. 335–346.

[14] S. Herfert, J. Patra, and M. Pradel, “Automatically reducing tree-
structured test inputs,” in Proceedings of the 32Nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE 2017,
2017, pp. 861–871.

[15] D. Binkley et al., “Orbs: Language-independent program slicing,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 109–120.

[16] A. Christi, A. Groce, and R. Gopinath, “Resource adaptation via test-
based software minimization,” in 2017 IEEE 11th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO). IEEE,
2017, pp. 61–70.

[17] A. Christi and A. Groce, “Target selection for test-based resource
adaptation,” in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), July 2018, pp. 458–469.

[18] “Roslyn Compiler Documentation,” https://learn.microsoft.com/en-us/
dotnet/csharp/roslyn-sdk/, accessed: 2024-03-03.

[19] “Descriptive Statistics and Normality Tests for Statistical Data,” https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC6350423/, accessed: 2024-03-
07.

[20] “Wilcoxon Signed Ranked Test,” https://www.sciencedirect.com/topics/
medicine-and-dentistry/wilcoxon-signed-ranks-test, accessed: 2024-03-
07.

23Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 31 / 31

http://www.tcpdf.org

