
SOFTENG 2023

The Ninth International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-68558-042-1

April 24th – 28th, 2023

Venice, Italy

SOFTENG 2023 Editors

Luigi Lavazza, Università degli Studi dell’Insubria, Italy

 1 / 54

SOFTENG 2023

Forward

The Ninth International Conference on Advances and Trends in Software Engineering (SOFTENG
2023), held between April 24th and April 28th, 2023, continued a series of events focusing on these
challenging aspects for software development and deployment, across the whole life-cycle.

Software engineering exhibits challenging dimensions in the light of new applications, devices, and
services. Mobility, user-centric development, smart-devices, e-services, ambient environments, e-health
and wearable/implantable devices pose specific challenges for specifying software requirements and
developing reliable and safe software. Specific software interfaces, agile organization and software
dependability require particular approaches for software security, maintainability, and sustainability.

We take here the opportunity to warmly thank all the members of the SOFTENG 2023 technical
program committee, as well as all the reviewers. The creation of such a high-quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to SOFTENG 2023. We truly believe that, thanks to
all these efforts, the final conference program consisted of top-quality contributions. We also thank the
members of the SOFTENG 2023 organizing committee for their help in handling the logistics of this
event.

We hope that SOFTENG 2023 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of software
engineering.

SOFTENG 2023 Chairs

SOFTENG 2023 Steering Committee

Zeeshan Ali Rana, NUCES, Lahore, Pakistan

SOFTENG 2023 Publicity Chairs

Laura Garcia, Universitat Politecnica de Valencia, Spain
Javier Rocher Morant, Universitat Politecnica de Valencia, Spain

 2 / 54

SOFTENG 2023
Committee

SOFTENG 2023 Steering Committee

Zeeshan Ali Rana, NUCES, Lahore, Pakistan

SOFTENG 2023 Publicity Chairs

Laura Garcia, Universitat Politecnica de Valencia, Spain
Javier Rocher Morant, Universitat Politecnica de Valencia, Spain

SOFTENG 2023 Technical Program Committee

Khelil Abdelmajid, Landshut University of Applied Sciences, Germany
Mo Adda, University of Portsmouth, UK
Bestoun S. Ahmed, Karlstad University, Sweden
Issam Al-Azzoni, Al Ain University of Science and Technology, UAE
Mahmoud Alfadel, Concordia University, Montreal, Canada
Vahid Alizadeh, College of Computing & Digital Media - DePaul University, USA
Washington Almeida, Cesar School | Center of Advanced Studies and Systems of Recife, Brazil
Hussein Almulla, University of South Carolina, USA / University of Anbar, Irak
Vu Nguyen Huynh Anh, Université Catholique de Louvain, Belgium
Pablo O. Antonino, Fraunhofer IESE, Germany
Darlan Arruda, University of Western Ontario, Canada
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Lerina Aversano, University of Sannio, Italy
Ali Babar, University of Adelaide, Australia
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Mohamed Basel Almourad, College of Technological Innovation - Zayed University, Dubai, UAE
Imen Ben Mansour, University of Manouba, Tunisia
Maya Benabdelhafid, Ecole Supérieure de Comptabilité et de Finances (ESCF) de Constantine, Algeria
Marciele Berger, University of Minho, Portugal
Marcello M. Bersani, Politecnico di Milano, Italy
Anna Bobkowska, Gdansk University of Technology, Poland
Antonio Brogi, University of Pisa, Italy
Azahara Camacho, RTI - Real Time Innovations, Spain
Qinglei Cao, University of Tennessee, Knoxville, USA
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Pablo Cerro Cañizares, Universidad Complutense de Madrid, Spain
Allaoua Chaoui, University Constantine 2 - Abdelhamid Mehri, Algeria
Andrea D'Ambrogio, University of Rome Tor Vergata, Italy
Lilian Michele da Silva Barros, Instituto Tecnológico de Aeronáutica, Brazil
Luciano de Aguiar Monteiro, Institute of Higher Education iCEV - Teresina-Piauí, Brazil
Amleto Di Salle, University of L'Aquila, Italy
Sigrid Eldh, Ericsson AB, Sweden
Gencer Erdogan, SINTEF Digital, Norway

 3 / 54

Fernando Escobar, PMI-DF Brasilia, Brazil
Naser Ezzati Jivan, Brock University, Canada
Faten Fakhfakh, National School of Engineering of Sfax, Tunisia
Stefano Forti, University of Pisa, Italy
Barbara Gallina, Mälardalen University, Sweden
Atef Gharbi, National Institute of Applied. Sciences and Technology, Tunisia
Pablo Gordillo, Universidad Complutense de Madrid, Spain
Adriana Guran, Babes-Bolyai University, Cluj-Napoca, Romania
Ulrike Hammerschall, University of Applied Sciences Munich, Germany
Noriko Hanakawa, Hannan University, Japan
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Samedi Heng, Université de Liège, Belgium
Birgit Hofer, Institute of Software Technology | Graz University of Technology, Austria
Jang Eui Hong, Chungbuk National University, South Korea
Fu-Hau Hsu, National Central University, Taiwan
LiGuo Huang, Southern Methodist University, USA
Rui Humberto Pereira, ISCAP/IPP, Portugal
Carlos Hurtado Sánchez, Tecnológico Nacional de México - campus Tijuana, Mexico
Miren Illarramendi, Mondragon University, Spain
Shinji Inoue, Kansai University, Osaka, Japan
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Faouzi Jaidi, University of Carthage - Higher School of Communications of Tunis & National School of
Engineers of Carthage, Tunisia
Jiajun Jiang, Tianjin University, China
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Atsushi Kanai, Hosei University, Japan
Afrina Khatun, BRAC University, Bangladesh
Wiem Khlif, Mir@cl Laboratory | University of Sfax, Tunisia
Alexander Knapp, Universität Augsburg, Germany
Johann Krautlager, Airbus Defence and Space GmbH, Germany
Sondes Ksibi, University of Carthage | Higher School of Communications of Tunis, Tunisia
Dieter Landes, University of Applied Sciences Coburg, Germany
Seyong Lee, Oak Ridge National Laboratory, USA
Maurizio Leotta, University of Genova, Italy
Bruno Lima, INESC TEC | FEUP, Porto, Portugal
Hsin-Yu Liu, University of California San Diego, USA
Xiaobo Liu-Henke, Ostfalia University of Applied Sciences, Germany
Qinghua Lu, CSIRO, Australia
Yingjun Lyu, University of Southern California, USA
Damian M. Lyons, Fordham University, USA
Jianbing Ma, Chengdu University of Information Technology, China
Ivan Machado, Institute of Computing - Federal University of Bahia, Brazil
Eda Marchetti, ISTI-CNR, Pisa, Italy
Johnny Marques, Aeronautics Institute of Technology, Brazil
Imen Marsit, University of Sousse, Tunisia
Danilo Martínez Espinoza, ESPE, Ecuador / Technical University of Madrid, Spain
Núria Mata, Fraunhofer Institute for Cognitive Systems, Germany

 4 / 54

Ibéria Medeiros, University of Lisboa, Portugal
Mohammadreza Mehrabian, South Dakota School of Mines and Technology, USA
Weizhi Meng, Technical University of Denmark, Denmark
Edgardo Montes de Oca, Montimage, Paris, France
Fernando Moreira, Universidade Portucalense, Portugal
Ines Mouakher, University of Tunis El Manar, Tunisia
Krishna Narasimhan, Itemis AG, Stuttgart, Germany
Risto Nevalainen, FiSMA (Finnish software measurement association), Finland
Virginia Niculescu, Babes-Bolyai University, Cluj-Napoca, Romania
Stoicuta Olimpiu, University of Petrosani, Romania
Rafael Oliveira, UTFPR - The Federal University of Technology - Paraná, Brazil
Nelson Pacheco Rocha, University of Aveiro, Portugal
João Pascoal Faria, University of Porto, Portugal
Antonio Pecchia, Università degli Studi di Napoli Federico II, Italy
Fabiano Pecorelli, University of Salerno, Italy
Michael Perscheid, SAP Technology & Innovation, Germany
Dessislava Petrova-Antonova, Sofia University, Bulgaria
Fumin Qi, National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center), China
Zhengrui Qin, Northwest Missouri State University, USA
Stefano Quer, Politecnico di Torino, Italy
Aamir Raihan, University of British Columbia, Canada
Raman Ramsin, Sharif University of Technology, Iran
Zeeshan Ali Rana, National University of Computer and Emerging Sciences (FAST-NUCES), Lahore,
Pakistan
Miary Andrianjaka Rapatsalahy, University of Fianarantsoa, Madagascar
Hajarisena Razafimahatratra, University of Fianarantsoa, Madagascar
Mohammad Reza Nami, Islamic Azad University-Qazvin, Iran
Oliviero Riganelli, University of Milano - Bicocca, Italy
Michele Risi, University of Salerno, Italy
Simona Riurean, University of Petrosani, Romania
António Miguel Rosado da Cruz, Higher School Technology and Management - Polytechnic Institute of
Viana do Castelo, Portugal
Gunter Saake, Otto-von-Guericke-Universitaet, Magdeburg, Germany
Sébastien Salva, University Clermont Auvergne, France
Hiroyuki Sato, University of Tokyo, Japan
Daniel Schnetzer Fava, University of Oslo, Norway
Ruth Schorr, Frankfurt University of Applied Sciences, Germany
Ali Sedaghatbaf, RISE Research Institute of Sweden, Sweden
Rocky Slavin, University of Texas at San Antonio, USA
Cristovão Sousa, Polytechnic Institute of Porto / INESC TEC, Portugal
Yoshihisa Udagawa, Tokyo University of Information Sciences, Japan
Harsh Vardhan, Vanderbilt University, USA
Miroslav Velev, Aries Design Automation, USA
Colin Venters, University of Huddersfield, UK
Roberto Verdecchia, Gran Sasso Science Institute (GSSI), Italy / Vrije Universiteit Amsterdam (VU),
Netherlands
Flavien Vernier, Université Savoie Mont Blanc, France
László Vidács, University of Szeged, Hungary

 5 / 54

António Vieira, University of Minho, Portugal
Shaohua Wang, New Jersey Institute of Technology, USA
Ralf Wimmer, Concept Engineering GmbH / Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau,
Germany
Xiaofei Xie, Nanyang Technological University, Singapore
Rui Yang, Xi’an Jiaotong-Liverpool University, China
Cemal Yilmaz, Sabanci University, Istanbul, Turkey
Levent Yilmaz, Auburn University, USA
Peter Zimmerer, Siemens AG, Germany
Alejandro Zunino, ISISTAN, UNICEN & CONICET, Argentina
Aditya Zutshi, Galois Inc., USA

 6 / 54

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 54

Table of Contents

Lightweight Sample Code Recommendation System to Support Programming Education
Yoshihisa Udagawa

1

Taxonomy of Requirements Specification Templates
Hiba Hnaini, Raul Mazo, Paola Vallejo, Jose Galindo, and Joel Champeau

8

Estimating Functional Size of Software with Confidence Intervals
Luigi Lavazza, Angela Locoro, and Roberto Meli

14

Projects VS Continuous Product Development - Does it Affect Benefits Realization?
Sinan Sigurd Tanilkan and Jo Erskine Hannay

20

A Model Library Tool for Holistic Embedded Software Design
Sven Jacobitz and Xiaobo Liu-Henke

26

A Lightweight Method to Define Solver-Agnostic Semantics of Domain Specific Languages for Software Product
Line Variability Models
Camilo Correa Restrepo, Raul Mazo, Andres Lopez, and Jacques Robin

32

A Federated Source Code Quality Query and Analysis Platform
Tugkan Tuglular, Onur Leblebici, Emre Baran Karaca, Nasit Uygun, and Osman Anil Hicyilmaz

41

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 54

Lightweight Sample Code Recommendation System

to Support Programming Education

Yoshihisa Udagawa

Faculty of Informatics, Tokyo University of Information Sciences
Chiba-city, Chiba, Japan

e-mail: yu207233@rsch.tuis.ac.jp

Abstract— One effective way to learn programming techniques
is to refer to sample programs. As the number of sample
programs increases, however, it becomes difficult and time-
consuming to find appropriate sample code visually. To
overcome this shortcoming, research and development of
program recommendation systems have been actively
conducted. This paper discusses a recommendation system for
Java sample programs using an unsupervised machine
learning technique. The proposed system includes three major
steps: (1) extracting invoked methods used in each sample
program, (2) clustering the sample programs by applying a
data mining technique to the extracted methods, and (3)
ranking the programs by calculating a weighted average of the
extracted methods. Experiments using file input and output
sample programs indicate that the proposed system has
sufficient potential to support programming education.

Keywords—Recommendation System for Software Engineering;
Mining Software Repository; Maximal Frequent Itemset; Tf-idf;
Unsupervised Machine Learning; Programming Education.

I. INTRODUCTION

Sample programs are an important source for learning new
programming technologies. In particular, sample programs
for using Application Programming Interfaces (API) related
to open-source programs are available on the Internet. Since
the amount of publicly concerning sample code becomes
enormous, it might become time-consuming and error-prone
to find appropriate sample code visually. Over the past few
decades, there has been a great deal of research and
development on the systems that provide useful
programming information for students and developers.

Recommendation systems are generally employed in
online stores and video/music websites, where rankings of
items are calculated based on users’ reactions and similarities
among products and/or works. The recommendation system
for software development deals with artifacts, such as sample
programs, specifications, test cases and bug reports. Several
techniques have been developed to collect, rank, and
visualize similar artifacts based on various indicators
reflecting their nature. These techniques are often specific to
software engineering and cause a recommendation system to
be called a Recommendation System for Software
Engineering (RSSE) [1].

Gasparic and Janes [2] survey 46 research and
development articles on RSSE published between 2003 and
2013, and categorize them with respect to the covered data

and the methods for recommendation. The most common
type of covered data is source code with 21 papers, followed
by help information to perform changes with 6 papers. As for
ranking method, list format is the most common with 33
papers, followed by document format with three papers, and
table format with two papers.

Hsu and Lin [3] propose a recommendation system based
on frequent patterns in source code. They originally define
17 syntax patterns and extract them from the source code
under study. A sequence pattern extraction algorithm based
on frequency known as Prefix-Span is applied to recommend
API usage patterns.

Katirtzis, Diamantopoulos, and Sutton [4] discuss an
algorithm that extracts API call sequences and then clusters
them to create an API usage summary known as a source
code snippet. Hierarchical clustering is performed by
calculating the distance of extracted API call sequences
using the longest common subsequence algorithm. Then,
code slice techniques are applied to create a source code
snippet.

Diamantopoulos and Symeonidis [5] develop a system to
recommend sample code stored in software repositories on
the Internet, such as GitHub, GitLab and Bitbucket. The
input to the system is a code fragment presented by a user,
and the output is a set of sample codes similar to the code
fragment. Similarities among source codes are calculated
based on the vector space model and the Levenshtein
distance.

Hora [6] discusses a source code recommendation system
that analyzes source code contained in a particular project
and creates ranked API usage examples on a web site. The
system ranks the source code based on three quality
measures, i.e., similarity, readability, and reusability. The
similarity is calculated using the cosine similarity in data
analysis, while readability and reusability are calculated
using indicators developed in software engineering studies.

Nguyen, Rocco, Sipio, Ruscio, and Penta [7] implement a
system to present API usage in a timely manner during a
coding process, and discuss the evaluation of experimental
results. The system calculates the similarity among similar
projects by Term Frequency-Inverse Document Frequency
(tf-idf) [8] and ranks API usage patterns using a collaborative
filtering technique [9].

This paper discusses a lightweight recommendation
system for analyzing Java sample programs that are collected
from the Internet. The system clusters Java sample programs

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 9 / 54

based on the methods that are invoked by the programs so
that each cluster represents a programming subject. The
system ranks the sample programs using a tf-idf weighted
vector space model for each clustering. Since the higher
ranked samples contain more invoked methods than those
ranked lower, this system assists a student in selecting
sample code suitable for learning.

The contributions of this study are as follows:
I. In general, method call patterns differ from one

programming subject to another. This system can
automatically cluster sample programs by programming
subjects and represent them to students.

II. The RSSEs proposed so far employ hard-clustering, if
any. In hard-clustering, the results depend on the initial
values and have the restriction that one sample belongs to
only one cluster. This study employes soft-clustering.
Therefore, a sample program can belong to multiple
clusters, and a cluster only contains related programs.

III. By modifying tf-idf to give greater weights to the
methods that frequently appear in a cluster, sample
programs that fit the subject of a cluster and invoke many
rare methods are ranked higher.

IV. The proposed system employs unsupervised machine
learning, making it lightweight to use, operate and
maintain the system.

The remainder of the paper is organized as follows.
Section II gives the architecture of the proposed system.
Section III describes the implementation of the main
functions of the proposed system. Section IV shows the
experimental results using file I/O sample programs. Section
V discusses other implementation options. Section VI
concludes the paper with our plans for future work.

II. OVERVIEW OF PROPOSED SYSTEM

This section describes the architecture of the proposed
system from the functional point of view, and outlines
typical usage.

A. Code Analyzer

Figure 1 depicts the architecture of the proposed system.
The input for this system is sample programs available on
the Internet. Currently, sample programs are collected
manually and stored in a specific project typically in Eclipse,
an Integrated Development Environment (IDE) for Java [10].
In this study, we assume that all sample programs are
correct and work properly.

Figure 1. Overview of the proposed system.

Figure 2 shows a set of sample programs used in this
study, which is stored in a project named Sample_File_IO in
Eclipse. The sample program can be stored in packages.
There is no limitation to the depth of the package hierarchy.
As discussed later sections, these programs are concerned
with binary and string file I/O. Programs can be stored in
any directory other than an Eclipse project.

Figure 2. Sample programs stored in Eclipse project.

The code analyzer in Figure 1 extracts method

declarations and invoked method names from all Java files
under the specified directory or project. A list of method
names being invoked is used for clustering the declared
methods and ranking them.

B. Automatic Identification of Subjects and Clusters

Following code analysis, the Apriori algorithm [11] is
started to identify the set of invoked methods that occur
frequently. Based on the frequent method set, programming
subjects are automatically identified. Each subject
corresponds to a cluster. Figure 3 shows an example of
identified clusters.

Figure 3. Identified programming subjects and clusters.

This study uses a soft-clustering technique based on a

maximal frequent itemset [12], i.e., a compact itemset that
represents a frequent itemset. Strictly, the method names
displayed in each cell of the combo box in Figure 3 are
elements of a maximal frequent itemset. For example,
“BufferedInputStream close FileInputStream read” suggests
from the method names that the cluster is related to the
subject of reading binary data.

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 10 / 54

C. Calculation of Recommended Ranking

Selecting a cell in the combo box in Figure 3 causes to
specify a cluster of methods, which starts calculations of
recommendation values for each of the declared methods in
the cluster. Figure 4 shows an example of a method
recommendation. The values of recommendation for each
declared method are normalized so that the maximum value
is equal to one.

Figure 4. Sample of program recommendation.

Method names are prefixed with class names, so that a

student can easily check method source code using an IDE,
such as Eclipse, NetBeans and IntelliJ IDEA.

III. IMPLEMENTATION

This section describes the implementation of three major
steps of the proposed system. Those steps are code analysis,
clustering, and ranking.

A. Code Analysis for Extracting Invoked Method Set

Functions necessary for system development are typically
provided as runtime methods in Java. After learning the
control structure of programs and object-oriented techniques,
students and developers enhance their programming skills by
learning how to use the runtime methods provided by Java
communities. Therefore, the methods being invoked are
closely related to the functionality of the program. In this
study, we make the assumption that program similarity can
be computed by the similarity of the method sets being
invoked.

The code analyzer in Figure 1 extracts a declared method
signature and a set of invoked methods. We implemented the
code analyzer using the Scanner class [13], a tokenizer in
Eclipse Java Development Tools (JDT) core. This class
provides the ability to classify the tokens in a Java program
into more than 100 types, and excludes comments allowing
efficient analysis of executable statements. The class is
widely used in Eclipse for navigating Java programs,
including a class-method hierarchy.

Figure 5 shows a sample of a Java program. Figure 6
shows a list of declared methods and invoked ones that are
generated from the Java program. A method with the same
name is usually invoked multiple times in a declared method.
Therefore, the analyzer extracts the method name and the
number of times invoked, which are used for calculating
cosine similarity. For example, the main() method in the
Sample1607 class in Figure 5 invokes the timeMeasure()
method four times.

Figure 5. Sample Java programs.

Figure 6. Extracted method names and the number of times invoked.

It should be noted that the methods, such as println() and

printStackTrace(), are intentionally excluded from the
extraction process because they are often used to print data
values for debugging purpose and fail to characterize the
function of a declared method.

B. Apriori Algorithm for Identifying Subjects and Clusters

Apriori algorithm proposed by Agrawal and Srikant [11]
starts by identifying the frequent individual items and
extending them to larger itemset as long as those itemset
frequently appear in the database under consideration.

Let a database D be a set of transactions t, i.e., D= {t1, t2,…,
tn}. Let each transaction ti be a nonempty set of itemset, i.e.,
ti = {ii1, ii2,…, iim}. The itemset is a nonempty set of items
observed together.

A support value of an itemset refers to the number of
transactions that contain the itemset. In terms of D and ti, the
support value of an itemset X is defined by the following
formula:

Support(X)= | { ti∈D : X⊆ti & 1 ≤ i ≤ n } | (1)

A set of items is called frequent if its support value is

greater than a user-specified minimum support value, i.e.,
minSup.

Here, we cite the Apriori principle:
If an itemset is frequent, then all of its subsets are

also frequent.
This means that if a set is infrequent, then all of its

supersets are infrequent. The Apriori algorithm works based
on this principle, in which k-frequent item sets are utilized
to identify k+1 frequent item sets.

Sample1607::main(String[])
 timeMeasure,4
Sample1607::ReadByte()
 FileInputStream,1
 close,1
 read,1
 toHexString,1

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 11 / 54

Since the frequent itemset generated by the Apriori
algorithm tends to be very large, it is beneficial to identify a
compact representation of all the frequent itemset for a
particular database. One such approach is to use a maximal
frequent itemset [12].

Definition:

A maximal frequent itemset is a frequent itemset for
which none of its immediate supersets are frequent.

By definition, all frequent itemset can be derived from the
set of maximal itemset. Table I shows an example of a
database consisting of five transactions of itemset. Figure 8
illustrates an example of the maximal frequent itemset in a
lattice structure where a node corresponds to an itemset and
arcs correspond to the subset relation [12]. MinSup is set to
1 or 20% (= 1/5*100).

TABLE I. EXAMPLE OF DATABASE

In Figure 7, the nodes surrounded by solid lines indicate
the frequent itemset, while the nodes with yellow
backgrounds indicate the maximal frequent itemset.

Figure 7. Maximal frequent itemset in lattice structure.

The frequent itemset can be soft-clustered by the maximal
frequent itemset. For example, the subsets of {A, C, D} are
{A, C}, {A, D}, {C, D}, {A}, {C}, {D}. The subsets of {A,
B} are {A}, {B}. Analogously, the subsets generated from
{B, C, D} are {B, C}, {B, D}, {C, D}, {B}, {C}, {D}.
These subsets formulate three soft-clusters sharing the
subsets, such as {A}, {B}, {C}, {D}.

Table II shows the number of the frequent itemset, the
maximal frequent itemset, and the compression ratio of
when the minimum support minSup varies. The experiment
is performed using 33 methods declared in 23 Java files.
The number of unique invoked methods is 36.

TABLE II. NUMBER OF ELEMENTS IN ITEMSET

For example, when minSup is 12%, the number of
frequent itemset is 127 and the number of maximal frequent
itemset is 6. The number of elements compresses to 4.7%.
The maximal frequent itemset headlines the frequent itemset
and defines the cluster.

C. Clustering Methods Using Maximal Frequent Itemset

More than ten binary programs that implement the Apriori
algorithm are available on the web page maintained by
Borgelt [14]. For the sake of openness and efficiency of
implementation, this study uses fpgrowth.exe listed on the
web page. Specifically, we implement a maximal-frequent-
itemset generating function by calling fpgrowth.exe using
java.lang.Runtime.exec() that executes the specified
command and arguments in a separate process. The input
data for this program is the set of invoked methods for each
declared method shown in Figure 6, ignoring the number of
invoked methods citations.

Figure 8 shows the maximal frequent itemset obtained
from the sample program shown in Figure 2, with a minSup
of 11%. The maximal frequent itemset corresponds to the
programming subjects and is shown in Figure 3 as well.

Figure 8. Example of generated maximal frequent itemset.

Figure 9 shows a list of declared methods that contain at

least two invoked method names that are elements of a
maximal frequent itemset. These clusters are broadly
classified into two categories, i.e., those related to reading
files and those related to writing files.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 12 / 54

Figure 9. Methods belonging to each cluster.

Due to soft-clustering, one method belongs to multiple

clusters. For example, Sample1607::ReadByte() is included
in clusters 0 and 5, and Sample1607::ReadText() is included
in clusters 0, 4 and 5.

D. Calculation of Recommendation Ranking

1) Definition of tf-idf
The Term Frequency-Inverse Document Frequency (tf-

idf) weight [8] is one that commonly used in information
retrieval. In the context of our study, the tf-idf can be
rephrased as follows:

Tf (term frequency) means the frequency of an invoked
method name in a sample program,

Idf (inverse document frequency) indicates a numerical
value that reflects how rare or important an invoked
method name in a set of sample programs.

Among several options to calculate the tf and idf, we
adopt the following definitions.

Tfi is defined as the number of occurrences of an invoked
method i.

Idfi is defined as log(N/DFi), where N is the total number
of declared methods that occur in a set of sample
programs, and DFi is the number of declared methods
where an invoked method i appears at least once. It
should be noted that idfi of an invoked method i that
appears in all declared methods is equal to log(N/N),
which is equal to 0.

2) Calculating Tf-idf for Sample Program Recommendation
As mentioned earlier, the maximal frequent itemset

consists of a set of method names that suggest programming
subjects. The maximal frequent itemset is displayed on the
combo box in the GUI as shown in Figure 3. The proposed
system identifies a set of declared methods when a user
selects a cell on the combo box, and then starts to compute tf
and idf for the set of declared methods. Table III lists the tf
and idf values of the invoked method names corresponding
to the maximal frequent itemset {BufferedInputStream,
close, FileInputStream, read} that is shown at the top of
Figure 9. There are 19 invoked methods in the sample
programs related to the maximal frequent itemset.

TABLE III. TF AND IDF VALUES OF INVOKED METHOD NAMES

Since the proposed system uses clustering based on a
maximal frequent itemset, the method names that are
included in the Maximal Frequent Itemset (MFI) should be
considered to characterize the sample programs more
strongly than the others. In this study, the weights of the
invoked method names are adjusted using the following
formula.

0 BufferedInputStream close FileInputStream read
 FileInOut08::main(String[])

 FileInOut09::main(String[])

 Sample1602::main(String[])
 Sample1603::main(String[])

 Sample1604::main(String[])

 Sample1607::ReadByte()
 Sample1607::ReadByteBuffered()

 Sample1607::ReadText()

1 BufferedOutputStream close FileOutputStream write
 FileInOut07::main(String[])

 FileInOut09::main(String[])

 Sample1608::main(String[])
 Sample1609::main(String[])

 Sample1610::main(String[])

 Sample1613::byteBufferedWrite()
 Sample1613::byteWrite()

2 FileWriter write close

 Sample1611::main(String[])
 Sample1612::main(String[])

 Sample1613::textBufferedWrite()

 Sample1613::textWrite()
3 PrintWriter close File FileOutputStream OutputStreamWriter

 FileInOut01::main(String[])

 FileInOut02::main(String[])
 FileInOut03::main(String[])

 FileInOut06::main(String[])

 FileInOut07::main(String[])
 FileInOut09::main(String[])

 Sample1610::main(String[])

4 readLine close File FileInputStream InputStreamReader BufferedReader

 CountUniqueMathod::main(String[])

 FileInOut04::main(String[])

 FileInOut05::main(String[])
 FileInOut06::main(String[])

 FileInOut08::main(String[])

 FileInOut09::main(String[])
 GetCurrentPath::main(String[])

 Sample1604::main(String[])

 Sample1607::ReadText()
5 toHexString close FileInputStream read

 FileInOut08::main(String[])

 FileInOut09::main(String[])
 Sample1602::main(String[])

 Sample1603::main(String[])

 Sample1604::main(String[])
 Sample1607::ReadByte()

 Sample1607::ReadByteBuffered()

 Sample1607::ReadText()

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 13 / 54

Let MFI be the maximal frequent itemset specified by a
user and idfmax be the maximum idf values.

Adjusted idfj= idfj + idfmax if j ∊MFI (2)

 = idfj if j ∉MFI

Table IV shows the adjusted idf values for the maximal

frequent itemset {BufferedInputStream, close,
FileInputStream, read}.

TABLE IV. ADJUSTED IDF VALUES

The degree of recommendation DegRi for a declared
method i is calculated as:

where tfik is the number of occurrences of the invoked
method k in the declared method i, and idfk is the inverse
document frequency of the invoked method k.

Table V shows the degrees of recommendation for the
declared method related to the maximal frequent itemset
{BufferedInputStream, close, FileInputStream, read}.

TABLE V. DEGREES OF RECOMMENDATION FOR SAMPLE PROGRAMS

The maximal degree of recommendation is normalized to
be 1 and displayed in the GUI. For the lists in Table 3, the
normalized degrees of recommendation are obtained by
dividing all the degrees by 11.885. This calculation
generates the final list of recommendations shown in Figure
4.

Performance is measured 10 times for the following two
processes that comprise this system. Both include the time
displayed in the GUI.

(1) From the start of parsing to the end of clustering:
average 360.8ms, standard deviation 10.5ms

(2) After specifying a cluster to generating a list of
recommendations: average 128.6ms, standard
deviation 5.95ms

The specifications of a PC used are as follows:
CPU: AMD Ryzen 7 5700U (Laptop PC)
RAM: 16.0 GB
OS: Windows 10 Home 64 bit.

IV. EXPERIMENTAL RESULTS

This section describes experimental results. Figure 10
shows the sample program or the declared method that
corresponds to the top of the recommended list in Figure 4
with a normalized recommendation value of 1.000. The
sample program includes all of the invoked methods that
constitute the maximal frequent itemset
{BufferedInputStream, close, FileInputStream, read}. In
addition, it contains essential methods for binary file outputs,
e.g., FileOutputStream(), write().

Figure 10. Sample program with recommendation value 1.000.

Figure 11 shows a sample program with a normalized

recommendation value of 0.512. It contains all four method
names that constitute the maximal frequency itemset and
another method, i.e., toHexString(). Compared to the sample
program in Figure 10, this provides a concise one.

Figure 11. Sample program with recommendation value 0.512.

Figure 12 shows a sample program with a normalized
recommendation value of 0.350. It includes three method
names of the maximal frequency itemset and another
method, i.e., InputStreamReader().

Figure 12. Sample program with recommendation value 0.350.

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 14 / 54

Compared to the sample programs in Figures 10 and 11,
Figure 12 shows the most concise program regarding a
method usage for file read operations. These results
demonstrate that the proposed system works as expected.

V. DISCUSSION

A. Syntax Analysis

In this study, the Scanner [13] class is used for parsing
sample programs mainly because it reduces development
effort. There are several options of parsing tools, including
JavaParser [15] and ANTLR [16], both of which generate an
Abstract Syntax Tree (AST). AST is an intermediate
representation of a program’s source code in a tree structure.
“Traversing” an AST that would require a few hundred lines
of programming allows applications to perform more
complex operations than a mere method name extraction.
ANTLR can parse formal languages other than Java. All
parsing tools work independently of IDEs and can parse
sample code stored in arbitrary directories.

B. ChatGPT

ChatGPT is a chat-based tool released by OpenAI in Nov
2022 [17]. The latest ChatGPT Feb 13 version allows users
to chat about Java sample code for File I/O successfully.
However, the sample code is limited to what ChatGPT has
already learned. Since a learning process is exclusively
conducted by an OpenAI team, it is difficult for a lecturer to
configure sample programs to fit her/his classes. The
method proposed in this study allows the lecturer to
compose sample programs tailored for a class, even if those
programs are specific or even unusual.

VI. CONCLUSION AND FUTURE WORK

This study deals with a recommendation system of sample
programs using unsupervised machine learning. The
proposed system soft-clusters the sample programs based on
the set of invoked method names that frequently observed.
The clustering corresponds to programming subjects and is
performed automatically using the Apriori algorithm. The
recommended ranking of the sample programs is calculated
based on an adjusted tf-idf model that takes the method name
and number of times it is invoked.

It is confirmed through experiments using file I/O sample
programs that declared methods including useful information
on the programming subjects, such as read and write
string/binary data, are ranked in higher position. This result
indicates that the proposed recommendation system has
sufficient potential to support programming education.

The Apriori algorithm employed in this study requires the
minimum number of supports, i.e., minSup, to be specified in
advance. The ability to automatically determine the optimal
minSup is left as a topic for future research. Manual
collection of sample programs is a drawback of this study.
Sample code downloader is an issue for future development.
Additional experiments on larger sample programs are
planned to verify the effectiveness of the proposed
recommendation system for programming education.

REFERENCES

[1] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
“Recommendation systems for software engineering,” IEEE
Software 27, pp. 80-86, Jul. 2010, DOI: 10.1109/MS.2009.161

[2] M. Gasparic and A. Janes, “What Recommendation Systems
for Software Engineering Recommend: A Systematic
Literature Review,” Journal of Systems and Software 113, pp.
101-113, Mar. 2016, DOI: 10.1016/j.jss.2015.11.036

[3] S.-K. Hsu and S.-J. Lin, “Mining Source Codes to Guide
Software Development,” Asian Conference on Intelligent
Information and Database Systems, pp. 445-454, Mar. 2010,
DOI: 10.1007/978-3-642-12145-6_46

[4] N. Katirtzis, T. Diamantopoulos, and C. Sutton, “Summarizing
Software API Usage Examples using Clustering Techniques,”
Proc. of the 21st International Conference on Fundamental
Approaches to Software Engineering. vol. 10802, Springer, pp.
189-206, Apr. 2018, DOI: 10.1007/978-3-319-89363-1_11

[5] T. Diamantopoulos and A. Symeonidis, “Mining Source Code
for Component Reuse,” Mining Software Engineering Data for
Software Reuse, Advanced Information and Knowledge
Processing. Springer, pp. 133-174, Mar. 2020, DOI:
10.1007/978-3-030-30106-4_6

[6] A. Hora, “APISonar: Mining API usage examples,” Wiley
Online Library, Software: Practice and Experience Vol. 51,
Issue 2, pp. 319-352, Oct. 2020, DOI: 10.1002/spe.2906

[7] P. T. Nguyen, J. D. Rocco, C. D. Sipio, D. D. Ruscio, and M.
D. Penta, “Recommending API Function Calls and Code
Snippets to Support Software Development,” IEEE
Transactions on Software Engineering, Vol. 48, Issue 7, pp.
2417-2438, Jul. 2022, DOI: 10.1109/TSE.2021.3059907

[8] G. Sidorov. “Vector Space Model for Texts and the tf-idf
Measure,” In Syntactic n-grams in Computational Linguistics,
pp.11-15, Apr. 2019, Springer, Cham, ISBN: 978-3-030-
14770-9.

[9] A. Roy, “Introduction to Recommender Systems-1: Content-
Based Filtering and Collaborative Filtering,” Available from:
https://towardsdatascience.com/introduction-to-recommender-
systems-1-971bd274f421 [retrieved: Jul. 2020]

[10] Eclipse foundation, “Download Eclipse Technology that is
right for you,” Available from:
https://www.eclipse.org/downloads/ [retrieved: Mar. 2023]

[11] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proc.
11th IEEE International Conference on Data Engineering
(ICDE), pp.3-14, 1995, DOI: 10.1109/ICDE.1995.380415

[12] J. Rousu, “Finding frequent itemsets - concepts and
algorithms,” University of Helsinki, Available from:
https://www.cs.helsinki.fi/group/bioinfo/teaching/dami_s10/da
mi_lecture4.pdf [retrieved: Apr. 2010]

[13] IBM Rational Software Architect, “Interface IScanner,” in
org.eclipse.jdt.core.compiler, Available from:
https://www.ibm.com/docs/ja/developer-for-zos/9.5.1?topic=
SSQ2R2_9.5.1/org.eclipse.wst.jsdt.doc/reference/api/org/eclips
e/wst/jsdt/core/compiler/IScanner.htm [retrieved: Mar. 2021]

[14] “Christian Borgelt’s Web Pages,” Available from:
https://borgelt.net/fpgrowth.html [retrieved: Nov. 2022]

[15] JavaParser.org, “Tools for your Java code,” Available from:
https://javaparser.org [retrieved: 2019]

[16] T. Parr, “Download ANTLR”, Available from: https://
www.antlr.org/download.html [retrieved: Feb. 2023]

[17] OpenAI, “Introducing ChatGPT,” Available from:
https://openai.com/blog/chatgpt [retrieved: Nov. 2022]

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 15 / 54

Taxonomy of Requirements Specification Templates
Hiba Hnaini∗, Raúl Mazo∗, Paola Vallejo†, Jose Galindo‡, and Joël Champeau∗

∗Lab-STICC, ENSTA Bretagne, Brest, France
{hiba.hnaini, raul.mazo, joel.champeau}@ensta-bretagne.fr

†GIDITIC, Universidad EAFIT, Medellı́n, Colombia
pvallej3@eafit.edu.co

‡Dpto. de Lenguajes y Sistemas Inf., Universidad de Sevilla, Sevilla, Spain
jagalindo@us.es

Abstract—Requirements specification is an early stage of sys-
tem design. It consists of rephrasing and documenting stakehold-
ers’ explanations and needs in the form of clear and coherent
requirements. However, these requirements are often expressed
in natural language since it is the easiest communication method.
Researchers have proposed semi-structured natural language
templates or boilerplates for specifying functional and non-
functional requirements, which consider security requirements.
This seeks to enhance the quality of the requirements speci-
fications and simplify their transformation to system models.
However, it is still unknown what concepts, quality attributes,
and good practices should be considered to specify requirements
in a semi-structured natural language and how that information
has been considered in the existing templates. In this paper, we
aim to determine how templates are related among them and
what are the implications (e.g., complexity, completeness, time)
of using one or another. In this paper, we identify each template’s
concepts, quality attributes, and good practices by studying the
template’s aspects and then using a running example to formulate
requirements using these templates. We also identify the aspects
repeated or inherited from one template to another. This paper
puts forward a taxonomy of requirements specification templates
that categorize and specify the sources of the templates, which
helps determine what template considers the aspects of another.

Index Terms—Security Requirements Template, Boilerplate,
Requirements Specification, Natural Language, Taxonomy.

I. INTRODUCTION

The increase of security threats on software and hardware
systems within the past few years has imposed consideration
of security at all stages of system development, starting from
the requirements specification stage. However, eliciting precise
and non-complex security requirements can take time and
effort. This challenge originates from the need for guides that
help security requirements engineers define their requirements.
Similarly to standard requirements, security requirements also
aim that (i) the same interpretation is reached by all readers
and (ii) this interpretation corresponds to the idea that the
author of the requirement was trying to convey.

According to Denger et al. [1], the most common method
for specifying and documenting requirements is Natural Lan-
guage (NL) since it needs no training and is within reach.
However, the drawbacks of NL are too significant to disregard.
As Dalpiaz et al. [2] explain, these disadvantages are ambi-
guity, unclarity, inconsistency, and incompleteness. Mavin et
al. [3] add the disadvantages of vagueness, complexity, du-
plication, verbosity, implementation, and untestability. Several

researchers have proposed the use of semi-structured natural
language in the form of guidelines, templates, boilerplates, pat-
terns, and so on to mitigate some of the weaknesses of natural
language when writing requirements. For example, a template
controls the structure of the requirement by possibilities and
restrictions while preserving the advantage of being in NL. In
addition, this method reduces faults in the early stages of a
system’s development process.

Some proposals consist of generic guidelines that make
it possible to specify requirements for almost any type of
systems [4] [5].

Other proposals present different strategies to facilitate the
work of the requirements engineers and, therefore, improve
the quality of the products specified by modeling textual
requirements. For example, through standard reference data
[6], a generic syntactic requirements specification template [7],
a robust template [8], or a template based on the 5W1H (Why,
Who, Where, When, What, How) questions [9].

Other researchers defined and used templates for a specific
domain. For example, Esser and Struss propose a natural
language template-based interface to acquire requirements for
functional testing of control software for passenger vehicles
[10], and Mavin et al. present a set of structural rules to
address common requirements problems, such as ambiguity,
complexity, and vagueness [3]. The rule set allows all require-
ments to be expressed in natural language in one of five simple
templates. The rule set was applied to extract requirements
for an aero engine control system from an airworthiness
standard document, and Mahmud et al. propose a toolchain
for structured requirements specification in the Requirements
Specification and Analysis (ReSA) language. “ReSA is an
ontology-based requirements specification language tailored to
automotive embedded systems development” [11].

Other researchers concentrated on security requirements
specifications. For example, Toval et al. present a method
for eliciting and specifying system and software requirements,
including a repository containing reusable requirements, a
spiral process model, and a set of requirements document
templates [12]. Firesmith discussed the value of reusable
parameterized templates for specifying security requirements
[13]. Firesmith outlined an asset-based risk-driven analysis
approach for determining the appropriate actual parameters to
use when reusing such parameterized templates to specify se-

8Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 16 / 54

curity requirements that should improve the quality of security
requirements in requirements specifications. Kamalrudin et al.
propose a security requirements library and template to assist
the requirements engineer in writing security requirements by
providing them with the relevant sentence structure [14]. The
library was built by compiling security attributes derived from
parsing and keyword matching.

However, we could not find a knowledge resource that
combines all the concepts, relations, and best practices needed
during the requirements specification.

To fill the gaps identified in the state of the art, this paper
proposes a taxonomy with the concepts and relationships of
existing templates and guidelines for requirements specifica-
tion. The taxonomy will give the requirements and constraints
to create a new template.

The paper is organized as follows: The guidelines and tem-
plates used to form the taxonomy are presented and detailed in
Section II. Section III briefly discusses the analyzed templates.
Section IV presents a taxonomy of requirements specification
templates. Finally, Section V concludes this work.

II. BASELINE GUIDELINES AND TEMPLATES

This section lists and explains the different templates and
guidelines found in the literature for requirements specifica-
tion. For a more precise illustration, we have used the example
of the Blood Infusion Pump System presented by Lindvall et
al. [15] to re-specify a requirement of the system using the
guidelines and templates, where applicable.

A. Attempto Controlled English (ACE)

ACE, proposed by Schwitter and Fuchs [4], is a computer-
processable subset of English with restricted grammar and
domain-specific vocabulary that allows specialists to formulate
requirement specifications. ACE is associated with its parser
(APE) and a reasoner (RACE). ACE is structured by simple,
composite, and interrogative sentences.

• Simple sentences express a true state of affairs, and their
form is subject + predicator (+ complement + adjunct).

• Composite sentences are built from simpler sentences
and constructors: coordination (and,or, either-or), subor-
dination (if-then, who/which/that), and negation (not).

• Interrogative sentences allow users to pose yes/no ques-
tions and wh-questions.

ACE is based on syntactic, semantic, and disambiguation
principles.

• Syntactic principles illustrate a form of the sentence of
requirement. For instance, a syntactic principle is “nouns
are always used with a determiner” (e.g., “The customer
enters a card”).

• Semantic principles represent how different parts of the
requirement are interpreted. For instance, “verbs denote
events and states”.

• Disambiguation principles are the steps taken to de-
crease and limit the ambiguity in the requirement. For
instance, “some ambiguous constructs are not available”
(e.g., “John and Mary enter a card”) and “unambiguous

alternatives with scope markers can be used instead” (e.g.,
“John and Mary enter a card each”).

B. Gellish

Van Renssen presents an application-independent language
that allows textual modeling requirements through standard
reference data for system customization, data integration,
and data exchange [6]. It is based on ontological concepts,
where like in an ontology, the Gellish language represents the
relationship between two objects. It adopts a table form to
represent the language with the following columns:

• Left-hand object UID: a unique ID associated with the
source object of the relationship.

• Left-hand object name: the name of the relationship’s
source object.

• Fact UID: a unique ID of the relationship (or fact).
• Relationship type name: the name of the relationship or

fact. For example, is a specialization of, is part of.
• Right-hand object UID: a unique ID associated with the

target object of the relationship.
• Right-hand object name: the name of the relationship’s

target object.
“Gellish is not limited to specific application domains,

although the current ontology (the dictionary) does not yet
cover the scope of a natural language”. Table I illustrates a
fact specified by Gellish.

TABLE I
GELLISH EXAMPLE.

Left-
hand
object
UID

Left-
hand
object
name

Fact
UID

Relationship
type
name

Right-
hand
object
UID

Right-
hand
object
name

111 Andries 11 is classi-
fied as a

990007 man

C. Nayak et al.’s template

Nayak et al. propose a reliable requirements specification
template [5] (based on Volere template [16]) with some param-
eters that evaluate the reliability of the individual requirement
before finalizing the requirements documentation from the
initial phase of software development. The template contains
information about a requirement, such as Rationale, Source,
Requirement Type, etc., but it focuses on the following reliabil-
ity parameters: Severity Level, Confidence Level, and Rank of
Requirement. However, this template does not give a structure
for the requirement itself and considers it a description (“a one
sentence statement of intention of the requirement”) written
entirely in natural language.

D. Rupp et. al.’s template

Rupp et. al. propose a generic syntactic requirements spec-
ification template, which focuses on the syntax (structure) of
a requirement, not its semantics (content) [7]. The following
parts compose the template.

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 17 / 54

• Condition: condition or constraint under which the
requirement is to take place. <When? Under what
conditions?>.

• System: name of the system concerned by the require-
ment. THE SYSTEM <system name>.

• Priority: degree of the legal obligation of the require-
ment. SHALL, SHOULD, WILL, MAY.

• Functional activity: functionality to be provided by the
system:

– Independent system action: <process verb>
– User interaction: PROVIDE <whom?> WITH THE

ABILITY TO <process verb>
– Interface requirement: BE ABLE TO <process verb>

• Object: object concerned by the requirement. <object>.
• Additional object details: additional details or explana-

tion about the object of the requirement, for example,
where? or how? <additional details about the object>.

E. Easy Approach to Requirements Syntax (EARS)

Mavin et al. present a set of structural rules to address
common requirements problems such as ambiguity, com-
plexity, and vagueness [3]. It is based on ECA, “In ECA,
the event specifies the signal that triggers the rule and the
condition is a logical test that (if satisfied) causes the specified
system action” [3]. The rule set allows all requirements to be
expressed in natural language in one of the following simple
templates.

• Generic requirements syntax: <optional
preconditions> <optional trigger> the <system
name> shall <system response>.

• Ubiquitous requirements - no pre-condition: The
<system name> shall <system response>.

• Event-driven requirements - triggering event: WHEN
<optional preconditions> <trigger> the <system
name> shall <system response>.

• Unwanted behaviors: IF <optional
preconditions><trigger>, THEN the <system name>
shall <system response>.

• State-driven requirements: WHILE <in a specific
state> the <system name> shall <system response>.

• Optional features: WHERE <feature is included> the
<system name> shall <system response>.

F. Mazo et al.’s template

Mazo et al. identify some gaps in Rupp et al.’s template
and, based on those gaps, propose a more robust template
that facilitates the work of the requirements engineers and,
therefore, improves the quality of the products specified with
the new template [8]. Mazo et al.’s template is adapted to
product lines and auto-adaptive systems (using the RELAX
language presented in [17]). It has the following sections.

• Conditions under which a behavior occurs: describe
behaviors performed or provided only under specific
conditions (e.g., IF, WHILE, IN CASE, AFTER).

• Family of systems, systems, or parts of a system:
allows specifying the name of the product line, system,

subsystem, or system component (e.g., ALL SYSTEMS
OF THE <product line name>).

• Degree of priority: specifies the degree of priority
associated with a requirement (i.e. SHALL, SHOULD,
COULD, WILL).

• Activity: specifies the characterization of the activity
conducted by the system or the systems of a product line.

• Object or objects: specifies the object or objects that
make up the system (e.g., EACH <object>).

• Complementary details of the object(s): can be one or
more adjectives or a more enhanced description of the
object.

• Conditionality in the object: describes a behavior that
the system must execute if and only if the object at-
tains the specified condition (i.e., IF AND ONLY IF
<condition>.

• Verification criterion (adjustment) of the requirement:
a detectable criterion to determine to what degree the
requirement is verifiable.

• Relax requirements statements for self-adaptive sys-
tems: represents the autonomous nature of requirements
in self-adaptive systems (e.g., AS MANY, UNTIL).

G. Cube

Pabuccu et al. present the Cube requirement writing tem-
plate dedicated to software systems and based on 5W1H
questions [9].

• Why: the goal of the requirement.
• Who: the actor of the requirement.
• Where: the place of the requirement.
• When-trigger: pre-condition of the requirement.
• When-condition: post-condition of the requirement.
• What: the requirement’s action or activity.
• How: it explains how the system will be developed.
Cube identifies three types of requirements and provides

three different templates:
• Business Requirement: WHO - WHAT- WHERE -

WHEN TRIGGER- WHEN CONDITION Aim, Reason:
WHY.

• User Requirement: - when WHO - WHEN TRIGGER
- WHERE - What - if - WHEN CONDITION - HOW
(optional) - WHY (optional).

• Functional Non-functional Requirement: Who - What
- when - When Trigger -and When Condition - Where -
WHY (optional) - HOW (optional).

H. Esser and Struss’s template

Esser and Strauss propose a natural language template-
based interface to acquire requirements for functional testing
of control software for passenger vehicles [10]. The content
of the filled-in templates can be represented in propositional
logic and temporal relationships and form the correct expected
behavior model. The template is structured as an if (start-
condition) - then (consequence) - until (end-condition)
sentence (e.g., “if the system is in mode m1, lamp L3 is off,

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 18 / 54

and button B4 is released, then immediately lamp L3 is lit
until button B4 is down again or the system leaves m1”).

I. ReSA

Mahmud et al. propose a toolchain for structured require-
ments specification in the ReSA language [11]. “ReSA is an
ontology-based requirements specification language tailored
to automotive embedded systems development”. ReSA “(i)
renders natural language terms (words, phrases), and syntax,
(ii) uses an ontology that defines concepts and syntactic rules
of the specification, and (iii) uses requirements boiler-plates
to structure specification”. It is composed of six boilerplates
or templates.

• Simple: statement that contains a modal verb, such as,
shall (e.g., “system shall be activated”).

• Proposition: proposition or assertive statement (e.g.,
“button is pressed”.

• Complex: “is constructed from a Simple, Proposition
boilerplate, and an adverbial conjunctive (such as while,
when, until)”, e.g., “the error shall be reported while the
fault is present”.

• Compound: “is composed of two or more Simple
or Proposition boilerplates and the logical operators,
AND/OR” (e.g., “system shall be activated and driver shall
be notified”).

• Conditional: “a different variant of conditional state-
ments, i.e., if, if-else, if-elseif, or if-elseif-else, and con-
ditional nesting”.

• Prepositional Phrase: “can be used to describe timing
properties, the occurrence of events, and other comple-
ments to the subject of a main phrase” (e.g., “within 5ms,
by the driver”.

J. SImple REuse of software requiremeNts (SIREN)

Toval et al. present a method for eliciting and specifying
system and software requirements. The method includes a
repository with reusable requirements, a spiral process model,
and a set of requirements document templates [12]. The
method focuses on information systems security. It does not
provide a structured template for the requirements description
but for the entire Software Requirements Specification docu-
ment. The repository contains two types of requirements: pa-
rameterised (some parts have to be adapted to the application
being developed at the time, e.g., “The security manager shall
check the user’s identifiers every [time in months] to detect
which ones have not been used in the last [time in months]”)
and non-parameterised (could be applied directly to any
project concerning the repository’s profiles and/or domains,
e.g., “The firewall configuration will be screened host”).

K. Firesmith template

Firesmith discusses the value of reusable parameterized
templates for specifying security requirements [13]. Firesmith
outlined an asset-based risk-driven analysis approach for deter-
mining the appropriate current parameters to use when reusing
parameterized templates to specify security requirements that

should improve the quality of security requirements in re-
quirements specifications. Firesmith explains how to create
templates and gives an example of a security requirement
to specify integrity: “The [application/component/data cen-
ter/business unit] shall protect the [identifier—type] data it
transmits from corruption (e.g., unauthorized addition, modifi-
cation, deletion, or replay) due to [unsophisticated/somewhat
sophisticated/sophisticated] attack during execution of [a set
of interactions/use cases] as indicated in [specified table]”.
However, no general template was provided.

L. Kamalrudin et al.’s template

Kamalrudin et al. propose a security requirements library
and template to assist the requirements engineer in writing se-
curity requirements by providing them with the sentence struc-
ture [14]. The library was built by compiling security attributes
derived from parsing and keyword matching. The template
provided is as follows: The <Subject> should <Verb/Security
Keyword> to the <Object> <Security Keyword> <Security
Mechanism> in order to <Adjective Phrase> (e.g., “[The]
customer should register [to] the system using unique user-
name and password in order to proceed to book ticket ser-
vice”).

M. AMAN-DA

Souag et al. propose a security requirements elicitation
and an analysis method [18]. It uses a multi-level do-
main ontology of security notions and provides a security
requirements template: <When><Under what condition>
<Agent name> ”Shall/Should/Will” <Action> <Assets>
<Additional Information> (e.g., “The web publishing system
should lock accounts after reaching logon failure threshold”).

III. APPLICATION EXAMPLE

Table II shows the re-specification of some Blood Infusion
Pump System requirements using templates discussed in Sec-
tion II. Per the result of the requirements re-specification and
the information provided in Section II concerning each guide-
line and template, we were able to categorize them according
to their structure or nature, the type of requirements they can
represent, and their output. We also noticed a similarity in
the structure of some templates. It is because they were based
on a combination of other ones. For example, Mazo et al.’s
template uses the structure of Rupp et al.’s and the EARS
templates. This categorization resulted in the creation of the
taxonomy presented in Section IV. For example, it is explained
by Mavin et al., and clear in the structure of EARS, that the
EARS template integrates the event-condition-action concepts
of the Event-Condition-Action (ECA) language or template.
This is also true in the Mazo et al. template, which inherits
some concepts, quality attributes, and good practices from the
Rupp et al. and EARS templates.

IV. TAXONOMY

To identify the source and the guidelines and templates used
in constructing each template, we propose a taxonomy of all

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 19 / 54

TABLE II
EXAMPLE REQUIREMENTS USING THE TEMPLATES.

Template Example Requirement - Blood Infusion Pump Sys-
tem

ACE R1.2 If the silent warning alarm persists for 10 seconds
or more, then the system shall trigger an audible warn-
ing alarm
R1.2.ACE If the silent warning alarm persists for 10
seconds or more, then the system triggers an audible
warning alarm

Rupp et al. R2.5: If BP improves from true critical condition to true
warning condition, then the system shall trigger a true
warning alarm
R2.5.Rupp: <If BP improves from true critical con-
dition to true warning condition then>condition<the
blood infusion pump system>system <shall>priority

<trigger>activity <an audible critical alarm>object

EARS R2.8: The system shall disable the “Start infusion”
button whenever blood infusion is stopped due to critical
alarm
R2.8.EARS: The <blood infusion pump
system>systemname shall <disable the “Start
infusion” button whenever blood infusion is stopped
due to critical alarm>systemresponse

Mazo et al. R3.1: If the system received two consecutive out-of-
range BP low values (less than 10) or high values
(greater than 180), then the system shall initiate system
shutdown
R3.1.Mazo: If <the system received two consecu-
tive out-of-range BP low values (less than 10) or
high values (greater than 180)>condition then <the
blood infusion pump system>system <shall>priority

<initiate>activity <system shutdown>object

Cube R1.6: The system shall disable the ‘Start Infusion’
button during the warning alarm
R1.6.Cube: <The system>who <shall disable the
‘Start Infusion’ button>what <when the warning alarm
starts>whentrigger<and enable the button after the
alarm stops>whencondition

Esser and
Struss

R2.2: If the silent critical alarm clears within 10 sec-
onds and there was a true warning alarm before, then
the system shall resume blood infusion and clear the
warning alarm
R2.2.Esser: If -the silent critical alarm clears within 10
seconds and there was a true warning alarm before-,
then -the system shall resume blood infusion and clear
the warning alarm- until ?

ReSA R1.3:If BP improves, then the system shall resume
blood infusion and clear the warning alarm
R1.3.ReSA: <If BP improves,>conditional <the sys-
tem shall resume blood infusion and clear the warning
alarm>compound

Kamalrudin
et al.

S2.2: The system shall use the authenticators to validate
the source of the BP value
S2.2.Kamal: <The system>subject

<shall authenticate>verb <the BP
value>object <using>Security−keyword <an
authenticator>security−mechanism <to validate the
source of the BP value>adjectivephrase

AMAN-DA S4.1.1: A known-good cryptographic algorithm shall be
used to implement authentication.
S4.1.1.AMAN-DA: <The system>agent

<shall><implement >action < authentication>asset

<using a known-good cryptographic algorithm
>additionalinformation

the above templates in Figure 1. A relationship between two
templates means that the target (target of the arrow) template
has been considered or studied when constructing the source
template (source of the arrow). The benefit of having such

a taxonomy is to avoid repeating already included templates
when building new requirement templates. The taxonomy
categorizes the templates and guidelines between controlled-
natural languages and templates. Then, each category deter-
mines the type of requirements that can be represented by each
template (functional, non-functional, or security requirements).
There are also two types of templates identified in the tax-
onomy, templates for requirements description and templates
for System Requirements Specification (SRS) documents, as
shown in the legend of Figure 1. For example, as we have
mentioned in Section III, Mazo et al.’s template integrates
some aspects of the Rupp et al. and EARS templates. It is
evident through the example given in Table II that the syntax of
the requirement formulated with the Mazo et al.’s template is
similar to the requirement reformulated with the Rupp et al.’s
template. Both requirements are composed of a condition, a
system name, a priority keyword, an action, and an object. This
similarity is described in Figure 1 by the relationship between
Mazo et al.’s template (source) and the EARS and Rupp et
al. templates (targets). This relationship indicates that Mazo
et al.’s template already respects and integrates the concepts,
quality attributes, and good practices from Rupp et al. and
EARS. Thus, it is unnecessary to reconsider them when using
the Mazoet al.’s template, which reduces the time and resource
cost.

V. CONCLUSION

System security has become a very critical issue to handle
at all stages of system design, starting from the requirements
specification stage. To guide and simplify this stage, sev-
eral requirements templates have been proposed. We have
discussed the concepts, attributes, and good practices and
examined these templates in Section II. Then, in Section III,
we re-specified some requirements of the Blood Infusion Pump
System using the templates found. We could categorize the
templates and guidelines according to different characteristics
in this process. However, most of these templates were built
based on other templates, where they integrate the concepts,
quality attributes, and good practices of others. With the
categorization of these templates and the identification of the
sources of each template, we were able to create a taxonomy.
The taxonomy presented in Section IV aims to avoid the
repeated study of source templates which is a loss of research
hours and resources. We intend to use this taxonomy as a
baseline to create a new security requirements specification
template where we can identify, using the taxonomy, the
templates we can base our new template on while avoiding
re-studying already integrated templates.

ACKNOWLEDGMENT

We thank the French DGA (Direction Générale de
l’Armement), the European Union, and the Spanish Govern-
ment for supporting this research. This work was supported
by the project Data-pl funded by FEDER/Ministry of Science
and Innovation — State Research Agency; the COPERNICA

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 20 / 54

Fig. 1. Requirements templates and guidelines taxonomy.

(P20 01224) and METAMORFOSIS (FEDER US-1381375)
projects funded by Junta de Andalucı́a.

REFERENCES

[1] C. Denger, D. M. Berry, and E. Kamsties, “Higher quality requirements
specifications through natural language patterns,” Proceedings 2003
Symposium on Security and Privacy, pp. 80–90, 2003.

[2] F. Dalpiaz, I. Schalk, and G. Lucassen, Pinpointing Ambiguity and In-
completeness in Requirements Engineering via Information Visualization
and NLP, 03 2018, pp. 119–135.

[3] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (ears),” in Proceedings of Requirements Engi-
neering Conference, 2009. RE ’09. 17th IEEE International. United
States: IEEE, Nov. 2009, pp. 317–322, 2009 17th IEEE International
Requirements Engineering Conference ; Conference date: 31-08-2009
Through 04-09-2009.

[4] N. Fuchs and R. Schwitter, “Attempto controlled english (ace),” CoRR,
vol. cmp-lg/9603003, 03 1996.

[5] S. K. Nayak, R. A. Khan, and M. R. Beg, “A comparative template for
reliable requirement specification,” International Journal of Computer
Applications, vol. 14, no. 2, pp. 27–30, 2011.

[6] A. van Renssen, “Gellish: an information representation language,
knowledge base and ontology,” ESSDERC 2003. Proceedings of the 33rd
European Solid-State Device Research - ESSDERC ’03 (IEEE Cat. No.
03EX704), pp. 215–228, 2003.

[7] C. Rupp, M. Simon, and F. Hocker, “Requirements engineering und
management,” HMD Praxis der Wirtschaftsinformatik, vol. 46, pp. 94–
103, 06 2014.

[8] R. Mazo, C. M. Z. Jaramillo, P. Vallejo, and J. M. Medina, “Towards
a new template for the specification of requirements in semi-structured
natural language,” J. Softw. Eng. Res. Dev., vol. 8, p. 3, 2020.

[9] Y. U. Pabuccu, I. Yel, A. B. Helvacioglu, and B. N. Asa, “The require-
ment cube: A requirement template for business, user, and functional
requirements with 5w1h approach,” International Journal of Information
System Modeling and Design (IJISMD), vol. 13, no. 1, pp. 1–18, 2022.

[10] M. Esser and P. Struss, “Obtaining models for test generation from
natural-language-like functional specifications,” pp. 75–82, 2007.

[11] N. Mahmud, C. Seceleanu, and O. Ljungkrantz, “Resa tool: Structured
requirements specification and sat-based consistency-checking,” in 2016
Federated Conference on Computer Science and Information Systems
(FedCSIS), 2016, pp. 1737–1746.

[12] A. Toval, J. Nicolás, B. Moros, and F. Garcı́a, “Requirements reuse
for improving information systems security: a practitioner’s approach,”
Requirements Engineering, vol. 6, no. 4, pp. 205–219, 2002.

[13] D. Firesmith, “Specifying reusable security requirements.” J. Object
Technol., vol. 3, no. 1, pp. 61–75, 2004.

[14] M. Kamalrudin, N. Mustafa, and S. Sidek, “A template for writing
security requirements,” in Asia Pacific Requirements Engeneering Con-
ference. Springer, 2017, pp. 73–86.

[15] M. Lindvall, M. Diep, M. Klein, P. Jones, Y. Zhang, and E. Vasserman,
“Safety-focused security requirements elicitation for medical device
software,” in 2017 IEEE 25th International Requirements Engineering
Conference (RE), 2017, pp. 134–143.

[16] J. Robertson and S. Robertson, “Volere,” Requirements Specification
Templates, 2000.

[17] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“Relax: Incorporating uncertainty into the specification of self-adaptive
systems,” in 2009 17th IEEE International Requirements Engineering
Conference, 2009, pp. 79–88.

[18] A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, “Using the
aman-da method to generate security requirements: a case study in the
maritime domain,” Requirements Engineering, vol. 23, no. 4, pp. 557–
580, 2018.

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 21 / 54

Estimating Functional Size of Software with
Confidence Intervals

Luigi Lavazza Angela Locoro
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

email:luigi.lavazza, angela.locoro@uninsubria.it

Roberto Meli
DPO

Rome, Italy
email:roberto.meli@dpo.it

Abstract—In many projects, software functional size is mea-
sured via the IFPUG (International Function Point Users Group)
Function Point Analysis method. However, applying Function
Point Analysis using the IFPUG process is possible only when
functional user requirements are known completely and in detail.
To solve this problem, several early estimation methods have
been proposed and have become de facto standard processes.
Among these, a prominent one is the ‘NESMA (Netherlands
Software Metrics Association) estimated’ (also known as High-
level Function Point Analysis) method. The NESMA estimated
method simplifies the measurement by assigning fixed weights
to Base Functional Components, instead of determining the
weights via the detailed analysis of data and transactions. This
makes the process faster and cheaper, and applicable when some
details concerning data and transactions are not yet known.
The accuracy of the mentioned method has been evaluated,
also via large-scale empirical studies, showing that the yielded
approximate measures are sufficiently accurate for practical
usage. However, a limitation of the method is that it provides a
specific size estimate, while other methods can provide confidence
intervals, i.e., they indicate with a given confidence level that the
size to be estimated is in a range. In this paper, we aim to enhance
the NESMA estimated method with the possibility of computing
a confidence interval. To this end, we carry out an empirical
study, using data from real-life projects. The proposed approach
appears effective. We expect that the possibility to estimate that
the size of an application is in a range will help project managers
deal with the risks connected with inevitable estimation errors.

Index Terms—Function Point Analysis; Early Size Estimation;
High-Level FPA; NESMA estimated.

I. INTRODUCTION

In the late seventies, Allan Albrecht introduced Function
Points Analysis (FPA) at IBM [1], as a means to measure
the functional size of software, with special reference to the
“functional content” delivered by software providers. Albrecht
aimed at defining a measure that might be correlated to the
value of software from the perspective of a user, and could
also be useful to assess the cost of developing software
applications, based on functional user requirements.

FPA is a Functional Size Measurement Method (FSMM),
compliant with the ISO/IEC 14143 standard, for measuring the
size of a software application in the early stages of a project,
generally before actual development starts. Accordingly, soft-
ware size measures expressed in Function Points (FP) are often
used for cost estimation.

The International Function Points User Group (IFPUG)
is an association that keeps FPA up to date, publishes the
official FP counting manual [2], and certifies professional
FP counters. Unfortunately, in some conditions, performing
the standard IFPUG measurement process may be too long
and expensive, with respect to management needs, because
standard FP measurement can be performed only when rel-
atively complete and detailed requirements specifications are
available, while functional measures could be needed much
earlier for management purposes.

To tackle this problem, the IFPUG proposes Simple Func-
tion Points (SFP). This is an alternative way of measuring the
functional size of software: while the SFP method is based on
the same concepts as FPA, it requires less detailed information
than FPA, so that it is applicable before complete and detailed
requirements specifications are available; besides, if is faster
and cheaper to apply. As such, it is often presented as a
lightweight functional measurement method, also suitable for
agile processes. Although the SFP method provides measures
that are quantitatively similar to those yielded by FPA, it is
not an approximation method for FPA; instead, it is a different
measurement method that yields different measures.

Before SFP was proposed, many methods were invented
and used to provide estimates of functional size measures,
based on fewer or coarser-grained information than required
by standard FPA. These methods are applied very early in
software projects, even before deciding what process (e.g.,
agile or waterfall) will be used. Among these methods, one of
the most widely used is the “NESMA estimated” method [3],
which was developed by NESMA [4]. Using this method
for size estimation was then suggested by IFPUG [5], which
renamed the method High-Level FPA (HLFPA).

HLFPA has been evaluated by several studies, which found
that the method is usable in practice to approximate traditional
FPA values, since it yields reasonably accurate estimates,
although it has been observed that the NESMA method tends
to underestimate size, which is potentially dangerous.

Many estimation methods provide a “confidence interval”,
meaning that instead of providing a single value, they predict
that the size is in an interval. The greater the required
confidence, the greater the interval. Knowing the confidence
interval is considered very useful by project managers, because

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 22 / 54

it helps managing the risk deriving from inevitable estimation
errors and the inherent uncertainty of estimates. Unfortunately,
the NESMA estimated method does not provide a confidence
interval. This papers aim to enhancing the NESMA estimated
method by equipping it with a mechanism to create a confi-
dence interval.

The remainder of the paper is organized as follows.
Section II provides an overview of FPA and the NESMA
method. Section III describes the empirical study and its
results, which are discussed in Section IV. In Section V, we
discuss the threats to the validity of the study. Section VI
reports about related work. Finally, in Section VII, we draw
some conclusions and outline future work.

II. BACKGROUND

Function Point Analysis was originally introduced by Al-
brecht to measure the size of data-processing systems from
the point of view of end-users, with the goal of the estimating
the value of an application and the development effort [1].
The critical fortunes of this measure led to the creation of
the IFPUG (International Function Points User Group), which
maintains the method and certifies professional measurers.

The “amount of functionality” released to the user can be
evaluated by taking into account 1) the data used by the appli-
cation to provide the required functions, and 2) the transactions
(i.e., operations that involve data crossing the boundaries of
the application) through which the functionality is delivered to
the user. Both data and transactions are counted on the basis
of Functional User Requirements (FURs) specifications, and
constitute the IFPUG Function Points measure.

FURs are modeled as a set of Base Functional Components
(BFCs), which are the measurable elements of FURs: each
of the identified BFCs is measured, and the size of the
application is obtained as the sum of the sizes of BFCs. IFPUG
BFCs are: data functions (also known as logical files), which
are classified into Internal Logical Files (ILF) and External
Interface Files (EIF); and Elementary Processes (EP)—also
known as transaction functions—which are classified into
External Inputs (EI), External Outputs (EO), and External
inQuiries (EQ), according to the activities carried out within
the considered process and the primary intent.

The complexity of a data function (ILF or EIF) depends on
the RETs (Record Element Types), which indicate how many
types of variations (e.g., sub-classes, in object-oriented terms)
exist per logical data file, and DETs (Data Element Types),
which indicate how many types of elementary information
(e.g., attributes, in object-oriented terms) are contained in the
given logical data file.

The complexity of a transaction depends on the number of
FTRs—i.e., the number of File Types Referenced while per-
forming the required operation—and the number of DETs—
i.e., the number of types of elementary data—that the con-
sidered transaction sends and receives across the boundaries
of the application. Details concerning the determination of
complexity can be found in the official documentation [2].

The core of FPA involves three main activities:

1) Identifying data and transaction functions.
2) Classifying data functions as ILF or EIF and transactions

as EI, EO or EQ.
3) Determining the complexity of each data or transaction

function.
The first two of these activities can be carried out even if

the FURs have not yet been fully detailed. On the contrary,
activity 3 requires that all details are available, so that FP
measurers can determine the number of RET or FTR and DET
involved in every function. Activity 3 is relatively time- and
effort-consuming [6].

HLFPA does not require activity 3, thus allowing for size
estimation when FURs are not fully detailed: it only requires
that the complete sets of data and transaction functions are
identified and classified.

The SFP method [7] does not require activities 2 and 3: it
only requires that the complete sets of data and transaction
functions are identified.

Both the HLFPA and SFP methods let measurers skip
the most time- and effort-consuming activity, thus both are
relatively fast and cheap. The SFP method does not even
require classification, making size estimation even faster and
less subjective (since different measurers can sometimes clas-
sify differently the same transaction, based on the subjective
perception of the transaction’s primary intent).

NESMA defined two size estimation methods: the ‘NESMA
Indicative’ and the ‘NESMA Estimated’ methods. IFPUG
acknowledged these methods as early function point analysis
methods, under the names of ‘Indicative FPA’ and ‘High-
Level FPA,’ respectively [5]. The NESMA Indicative method
proved definitely less accurate [8], [9]. Hence, in this paper,
we consider only the NESMA Estimated method.

The NESMA Estimated method requires the identification
and classification of all data and transaction functions, but
does not require the assessment of the complexity of functions:
ILF and EIF are assumed to be of low complexity, while EI,
EQ and EO are assumed to be of average complexity. Hence,
estimated size is computed as follows:

EstSizeUFP = 7 #ILF + 5 #EIF + 4 #EI + 5 #EO + 4 #EQ

where #ILF is the number of data functions of type ILF, #EI is
the number of transaction functions of type EI, etc.

III. EMPIRICAL STUDY

In this section, the empirical study is described: Sec-
tion III-A described the dataset used for the reported anal-
ysis; Section III-B illustrates some considerations concerning
the accuracy of the NESMA method that affect the study;
Section III-C describes how the study was performed; finally,
SectionIII-D describes the obtained results.

A. The dataset

In the empirical study, we use an ISBSG dataset [10], which
has been extensively used for studies concerning functional
size [11]–[16].

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 23 / 54

The ISBSG dataset contains several small project data. As a
matter of fact, estimating the size of small projects is not very
interesting. Based on these considerations, we removed from
the dataset the projects smaller than 100 UFP (Unadjusted
Function Points). The resulting dataset includes data from 140
projects having size in the [103, 4202] range. Some descriptive
statistics for this dataset are given in Table I.

TABLE I
DESCRIPTIVE STATISTICS FOR THE ISBSG DATASET.

UFP #ILF #EIF #EI #EO #EQ NESMA
Mean 801 22 20 35 37 37 730
Std 818 21 22 37 65 48 721
Median 475.5 14 14.5 22 10 20.5 463
Min 103 0 0 0 0 0 71
Max 4202 100 172 204 442 366 3755

B. The accuracy of the NESMA estimated method

As already observed in previous papers [16], [17], the
NESMA estimated method tends to underestimate. Figure 1
shows that more than 75% of the estimates by NESMA have
positive error. Being the error defined as the actual size (i.e.,
the size measured via the ISBSG standard FPA process) minus
the estimate, positive error indicate underestimation.

Fig. 1. Histogram of estimation errors by the NESMA method, when applied
to the ISBSG dataset.

In addition, Figure 1 suggests that the distribution of
NESMA errors is skewed. The skewedness of NESMA errors
is clearly visible in Figure 2, which illustrates the distribution
of errors: it is easy to notice that most errors are positive.

For our purposes, the fact that the distribution of NESMA
errors is skewed and not centered on zero means that we can-
not evaluate confidence errors as is usually done. Specifically,
given a confidence level C we cannot select two error levels
eL and eH that are symmetric with respect to the mean error
ē (i.e., |eH − ē| = |ē− eL|) such that the proportion of errors
such that eH ≥ error ≥ eL is C.

Since it makes hardly sense to provide confidence intervals
for a method that underestimates systematically, we first
“correct” the NESMA estimated method. Via a trial-and-error
procedure, we found that by multiplying NESMA estimates
by 1.08 it is possible to obtain estimates that have a better
error distribution (less skewed and centered around zero) and
a smaller mean absolute error (50.7 UFP instead of 83.8 UFP).

The boxplot of estimation errors obtained with the corrected
NESMA method is shown in Figure 3. The error distribution
is shown in Figure 4: it can be noticed that the distribution is
much less skewed than in Figure 2.

Fig. 2. Histogram of estimation errors by the NESMA method, when applied
to the ISBSG dataset.

Fig. 3. Boxplot of estimation errors by the corrected NESMA method, when
applied to the ISBSG dataset.

Fig. 4. Boxplot of estimation errors by the corrected NESMA method, when
applied to the ISBSG dataset.

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 24 / 54

Since the practical objective of this work is to provide
project managers with reliable predictions of functional size,
in what follows we consider only estimates provided by the
original NESMA method and corrected as described above. In
other words, we consider the following estimates:

EstSizeUFP = 1.08 (7 #ILF+5 #EIF+4 #EI+5 #EO+4 #EQ)

We make reference to this estimation as the “Corrected
NESMA” method.

C. Method used

In essence, given a confidence level C we aim at finding two
values kL and kH such that a proportion C of the actual size
measures (i.e., measures obtained via the official IFPUG FPA
process) is in the range [kL·EstSizeUFP, kH ·EstSizeUFP], where
EstSizeUFP is the size estimates computed via the Corrected
NESMA method.

Finding kL and kH would be straightforward if the estima-
tion errors obtained via the Corrected NESMA method were
normally distributed. Instead, it is not so, as shown by the
Shapiro-Wilk test.

Therefore, we proceeded as follows:
1) We computed the ratio ActualSize

EstSizeUFP
for all projects in the

dataset, obtaining a set of ratios; this set was then sorted
and stored in vector vRatios.

2) We computed the quantiles from 0 to 1, with 0.01 steps,
of vRatios, obtaining an ordered vector vQuant.

3) We looked for two indexes iL and iH in vQuant such
that iH − iL + 1 = C · n (where n is the number of
projects in the dataset).

4) kL and kH are the values in vRatios having index iL and
iH , respectively, i.e., vRatios[iL] and vRatios[iH].

In this way, we obtain a size estimate interval that contains
a proportion C of all estimates, such that all estimates outside
the interval are greater than those within the interval.

D. Results obtained

We applied the procedure described in Section III-C for
various confidence levels. The results obtained are given in
Table II. Note that these results depend on the dataset being
used, in our case, the ISBSG dataset. In other contexts, a given
confidence level could correspond to different confidence
intervals. For instance, in the ISBSG dataset, the minimum and
maximum ratios ActualSize

EstSizeUFP
are 0.758 and 1.343, respectively; in

another dataset, a smaller minimum and a larger maximum
ratios are clearly possible.

TABLE II
CONFIDENCE INTERVALS FOR VARIOUS CONFIDENCE LEVELS.

conf. level kL kH
0.50 0.947 1.053
0.60 0.933 1.069
0.70 0.902 1.100
0.80 0.875 1.134
0.90 0.840 1.165
0.95 0.826 1.220
1.00 0.758 1.343

Fig. 5. Corrected NESMA estimates vs. actual size in UFP, with confidence
C = 0.75.

For illustration purposes, Figure 5 plots the ISBSG project
data in the plan defined by actual size (the y axis) and the
size estimated via the Corrected NESMA method (the x axis).
In the plot, the dashed blue lines represent the y = kL x and
y = kH x lines.

IV. DISCUSSION OF RESULTS

In the previous sections, we exploited a dataset that collects
measures from real-life projects to determine a) a correction
of the estimates provides by the NESMA method, and b)
confidence intervals for the corrected estimates.

The contribution of this paper is twofold:
– Organizations that own historical data like those we used

can apply the procedure illustrated in Sections III-B
and III-C to derive the correction constant and the confi-
dence intervals that suite best their development process.

– Organizations that do not own historical data like those
we used can use our correction constant (1.08) and the
intervals in Table II, to get an idea of how much estimates
obtained via the NESMA method can vary in practice.
However, these organizations should be aware that the
data we used might not match their situations, hence both
the correction constant and the confidence intervals might
not be perfectly suited for their case.

The confidence interval can be used to perform risk analysis.
For instance, Table II shows that, given an estimate already
corrected with respect to the NESMA original prediction,
there are 30% probabilities that the actual size is more than
10% different (greater or smaller) than estimated. Most likely,
half of these 30% probabilities concern the underestimation
case: as a result, a project manager should consider that the
probability of underestimating functional size of 10% or more
is around 15%. The risk concerning the underestimation of

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 25 / 54

cost can be then computed, if the relationship between size
and cost is known. So, the proposed method supports typical
project management activities, like controlling the risk of
size underestimation, that are not supported by the original
NESMA size estimation method.

Finally, being the estimates obtained via the Corrected
NESMA method proportional to the estimates obtained via
the original NESMA method, the confidence intervals for
the Corrected NESMA method can be easily converted into
confidence intervals for the original NESMA method.

V. THREATS TO VALIDITY

The proposed approach is mostly empirical. From a theoret-
ical point of view, the adopted practices may not be perfect,
but the context itself suggests that this is not very relevant.
The definition of the NESMA estimated method itself has
no theoretically strong basis: it is simply the hypothesis—not
experimentally verified—that on average data have low com-
plexity (in FPA terms) while transactions have mid complexity.
So, we looked for reasonable confidence intervals, although
these intervals are not statistically linked to confidence levels
in a rigorous way.

Another typical concern in this kind of studies is the
generalizability of results outside the scope and context of the
analyzed dataset. In our case, the ISBSG dataset is deemed
the standard benchmark among the community, and it includes
data from several application domains. Therefore, our results
may be representative of a fairly comprehensive situation.
However, additional studies are needed for confirming the
general validity of this study. In the meanwhile, readers are
reminded that the amount by which the NESMA method
underestimates depend on the considered dataset; similarly,
the confidence interval depends on the dataset. In both cases,
the distribution of the complexity of BFCs (i.e., ILF, EIF, EI,
EO and EQ) rules.

VI. RELATED WORK

Measures for early software estimation were conceived
since the last decades [18]–[20]. The present study aims to
advance this field by providing statistical foundations to some
of these measures, by using confidence intervals where ap-
proaches not based on probability distributions were adopted.
For example, the “Early & Quick Function Point” (EQFP)
method [21] estimates an error of ±10% of the real size of
software, for most of the times, but fails to indicate a more
robust indicator of this estimate, such as a confidence inter-
val. Several other early estimation methods were proposed:
Table III lists the most popular ones.

TABLE III
EARLY ESTIMATION METHODS: DEFINITIONS AND EVALUATIONS

Method name Definition Used functions Weight Evaluation
NESMA indicative [22] [23] data fixed [3] [17], [24]–[27] [9]
NESMA estimated [22] [23] all functions fixed [3] [17], [24]–[27] [9]
Early & Quick FP [20] [28] [21] all functions statistics [9] [29]
simplified FP (sFP) [30] all functions fixed [9]
ISBSG average weights [31] all functions statistics [9]
SiFP [32] data and trans. statistics [11] [13]

Recently, comparisons based on the accuracy of the HLFPA
method and statistical modelling methods were carried out in
order to assess whether standard measures fail in underesti-
mating or overestimating software size [16].

A survey [33] reports how machine learning techniques
were used for software development effort estimation, report-
ing accuracy as a comparison criterion for all the methods
analysed. To the best of our knowledge, confidence intervals
are overlooked as robust indicators of the estimates done in
software size. In this respect, this study aims to emphasize the
importance of providing robust indicators for a more reliable
comparison and precision of reporting.

VII. CONCLUSION

The “NESMA estimated” method was proposed to estimate
the functional size of software (expressed in IFPUG Function
Points). The NESMA method assigns fixed weights to base
functional components (i.e., ILF, EIF, EI, EO and EQ), so that
it is not necessary to analyze in depth every logic data file or
transaction. This makes the method both easier and faster, and
applicable when the details needed to characterize and weight
base functional components are not yet available.

Previous studies showed that the NESMA method is suffi-
ciently accurate to be used in practice. However, it has two
possibly relevant limitations: 1) it tends to underestimate the
“real” (i.e., as obtained via the IFPUG FPA process) size of
software, and 2) it yields a single estimate, with no confidence
intervals. Both these characteristics can be be problematic for
software project managers. In fact, planning a project based
on underestimated size and, consequently, on underestimated
effort estimates usually leads to unrealistic plans. Besides,
getting a confidence interval for size estimates allows for
evaluating the risks connected with imprecise size estimates.

In this paper, we have proposed a correction for the esti-
mates yielded by the NESMA method, to avoid underestima-
tion, and a procedure to compute the confidence interval. Both
these contributions are expected to make project managers’ life
easier.

ACKNOWLEDGMENT

The work reported here was partly supported by Fondo per
la Ricerca di Ateneo, Università degli Studi dell’Insubria.

REFERENCES

[1] A. J. Albrecht, “Measuring application development productivity,” in
Proceedings of the joint SHARE/GUIDE/IBM application development
symposium, vol. 10, 1979, pp. 83–92.

[2] International Function Point Users Group (IFPUG), “Function point
counting practices manual, release 4.3.1,” 2010.

[3] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement-accuracy versus costs–is it really worth it?” in Software
Measurement European Forum (SMEF), 2009.

[4] nesma, “nesma site,” https://nesma.org/ [retrieved: March, 2023].
[5] A. Timp, “uTip – Early Function Point Analysis and Consistent Cost

Estimating,” 2015, uTip # 03 – (version # 1.0 2015/07/01).
[6] L. Lavazza, “On the effort required by function point measurement

phases,” International Journal on Advances in Software, vol. 10, no.
1 & 2, 2017, pp. 108–120.

[7] IFPUG, “Simple Function Point (SFP) Counting Practices Manual
Release 2.1,” 2021.

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 26 / 54

[8] nesma, “Early Function Point Analysis,” https://nesma.org/themes/
sizing/function-point-analysis/early-function-point-counting/ [retrieved:
March, 2023].

[9] L. Lavazza and G. Liu, “An empirical evaluation of simplified function
point measurement processes,” Journal on Advances in Software, vol. 6,
no. 1& 2, 2013, pp. 1–13.

[10] International Software Benchmarking Standards Group, ““Worldwide
Software Development: The Benchmark, release 11,” ISBSG, 2009.

[11] L. Lavazza and R. Meli, “An evaluation of simple function point as
a replacement of IFPUG function point,” in IWSM–MENSURA 2014.
IEEE, 2014, pp. 196–206.

[12] L. Lavazza, S. Morasca, and D. Tosi, “An empirical study on the effect
of programming languages on productivity,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing, 2016, pp. 1434–1439.

[13] F. Ferrucci, C. Gravino, and L. Lavazza, “Simple function points for ef-
fort estimation: a further assessment,” in 31st Annual ACM Symposium
on Applied Computing. ACM, 2016, pp. 1428–1433.

[14] L. Lavazza, S. Morasca, and D. Tosi, “An empirical study on the factors
affecting software development productivity,” E-Informatica Software
Engineering Journal, vol. 12, no. 1, 2018, pp. 27–49.

[15] L. Lavazza, G. Liu, and R. Meli, “Productivity of software enhancement
projects: an empirical study.” in IWSM-Mensura, 2020, pp. 1–15.

[16] G. Liu and L. Lavazza, “Early and quick function points analysis:
Evaluations and proposals,” Journal of Systems and Software, vol. 174,
2021, p. 110888.

[17] L. Lavazza and G. Liu, “An Empirical Evaluation of the Accuracy of
NESMA Function Points Estimates,” in ICSEA, 2019, pp. 24–29.

[18] D. B. Bock and R. Klepper, “FP-S: a simplified function point counting
method,” Journal of Systems and Software, vol. 18, no. 3, 1992, pp.
245–254.

[19] G. Horgan, S. Khaddaj, and P. Forte, “Construction of an FPA-type met-
ric for early lifecycle estimation,” Information and Software Technology,
vol. 40, no. 8, 1998, pp. 409–415.

[20] L. Santillo, M. Conte, and R. Meli, “Early & Quick Function Point:
sizing more with less,” in 11th IEEE International Software Metrics
Symposium (METRICS’05). IEEE, 2005, pp. 41–41.

[21] DPO, “Early & Quick Function Points Reference Manual - IFPUG
version,” DPO, Roma, Italy, Tech. Rep. EQ&FP-IFPUG-31-RM-11-EN-
P, April 2012.

[22] NESMA–the Netherlands Software Metrics Association, “Definitions
and counting guidelines for the application of function point analysis.
NESMA Functional Size Measurement method compliant to ISO/IEC
24570 version 2.1,” 2004.

[23] International Standards Organisation, “ISO/IEC 24570:2005 – Software
Engineering – NESMA functional size measurement method version
2.1 – definitions and counting guidelines for the application of Function
Point Analysis,” 2005.

[24] F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, and N. Lester,
“The value of software sizing,” Information and Software Technology,
vol. 53, no. 11, 2011, pp. 1236–1249.

[25] J. Popović and D. Bojić, “A comparative evaluation of effort estimation
methods in the software life cycle,” Computer Science and Information
Systems, vol. 9, no. 1, 2012, pp. 455–484.

[26] P. Morrow, F. G. Wilkie, and I. McChesney, “Function point analysis
using nesma: simplifying the sizing without simplifying the size,”
Software Quality Journal, vol. 22, no. 4, 2014, pp. 611–660.

[27] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Assessing the
effectiveness of approximate functional sizing approaches for effort
estimation,” Information and Software Technology, vol. 123, July 2020.

[28] T. Iorio, R. Meli, and F. Perna, “Early&quick function points® v3. 0:
enhancements for a publicly available method,” in SMEF, 2007, pp.
179–198.

[29] R. Meli, “Early & quick function point method-an empirical validation
experiment,” in Int. Conf. on Advances and Trends in Software Engi-
neering, Barcelona, Spain, 2015, pp. 14–22.

[30] L. Bernstein and C. M. Yuhas, Trustworthy systems through quantitative
software engineering. John Wiley & Sons, 2005, vol. 1.

[31] R. Meli and L. Santillo, “Function point estimation methods: A com-
parative overview,” in FESMA, vol. 99. Citeseer, 1999, pp. 6–8.

[32] R. Meli, “Simple function point: a new functional size measurement
method fully compliant with IFPUG 4.x,” in Software Measurement
European Forum, 2011, pp. 145–152.

[33] M. N. Mahdi, M. H. Mohamed Zabil, A. R. Ahmad, R. Ismail, Y. Yusoff,
L. K. Cheng, M. S. B. M. Azmi, H. Natiq, and H. Happala Naidu,

“Software project management using machine learning technique—a
review,” Applied Sciences, vol. 11, no. 11, 2021, p. 5183.

19Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 27 / 54

Projects VS Continuous Product Development – Does it Affect Benefits Realization?

Sinan S. Tanilkan
Center for Effective Digitalization of the Public Sector

Simula Metropolitan
Pb 4, St.Olavs Plass, Oslo, Norway

Email: sinan@simula.no
0000-0003-4216-5172

Jo E. Hannay
Center for Effective Digitalization of the Public Sector

Simula Metropolitan
Pb 4, St.Olavs Plass, Oslo, Norway

Email: johannay@simula.no
0000-0002-8657-7593

Abstract—Software investments are traditionally implemented
using project organization, which often leads project participants
to focus on time, cost and scope, rather than the intended benefits
of the investment. We conducted a survey to compare work
organized as projects against work organized as Continuous
Product Development (CPD). Our results indicate that: 1. Both
project organization and CPD are commonly used in practice. 2.
Agile is very popular, but DevOps and the use of linear models
for organizing work are also frequent. 3. CPD is perceived to
outperform projects in realization of benefits. 4. We found no
difference in perceived realization of benefits between those using
or not using a set of ways of organizing work (including linear
models, agile, DevOps, BizDev or program organization). We
conclude that organizing work using CPD is a viable alternative
to project organization, especially in situations where failure
must be avoided. Also, we suggest that more research should
be conducted to better understand what factors of the different
ways of organizing work affects the realization of benefits.

Keywords— Software Project; Continuous Product Development;
Benefits Realization; Agile; DevOps; BizDev.

I. INTRODUCTION

Traditionally, software investments are implemented
through projects or programs – sometimes managed using
portfolio management. Once a project is finished, the solution
is transferred to IT operations, who takes over responsibility
for the solution, including its maintenance. This approach
fits nicely into financial management, where the temporary
organization of projects are considered capital expenditure,
and the continuous maintenance done by IT operations are
considered operational expenses.

Although there are clearly organizations that are successful
in developing software solutions using project organization [1],
many studies raise concerns about the low degree of success
in software projects [2]–[4].

To better understand project success, Baccarini suggests that
project success = project management success + product suc-
cess [5]. In this way of thinking, project management success
is concerned with delivering a project according to the agreed
time, cost and scope, while product success is concerned with
the realization of benefits of investments. When the temporary
project organization is dismantled before realization of the
benefits of the product begins, project participants tend to
prioritize what they can be measured on [6] – which is project
management success [7]. Thus, the way software investments
are financed is likely to limit the realization of benefits.

An alternative approach to financing software investments,
that seems to be popular when talking with practitioners, is
the use of Continuous Product Development (CPD). In CPD,
the team or organization is tasked to work on a product, or
product area, with no defined end date, often as a solid line
organization. The cost side of the investment is managed by
the amount of people allocated to the product organization,
allowing the people involved to focus on the product and the
benefits of the product.

There are two important differences between software in-
vestments organized as projects vs. CPD. First, although the
success criteria should be the same, they often end up being
different. While projects have a tendency to focus on project
management success, CPD organizations has to deal with the
product’s success or failure over time. Second, unpredictably
is handled differently. While projects have a defined end date
within which the agreed scope should be delivered, CPD is
often used to deliver product features continuously, handling
changes as they come.

As CPD seems a popular way of organizing software work,
we wish to explore the degree of adoption of project and CPD.
Also, we wish to explore the degree to which one way of
organizing work performs better in realizing benefits of the
investment. To explore these topics, we conducted a survey
among practitioners in the Norwegian IT-industry.

The next section presents work relevant for the research
topic, before the research questions are presented in Sec-
tion III. The research method is presented in Section IV and
the results in Section V. After that, we discuss and conclude.

II. BACKGROUND

The organizing of software work has evolved over the
years driven by a need to make use of the information and
understanding that is gained during the software process, for
the purpose of meeting stakeholder needs better. Even the
earliest process models had a focus on producing a system
that is useful for the customer.

One of the earliest process models for software development
was described in 1956 [8], later coined the waterfall model [9].
The waterfall model is a linear model, where requirements
are communicated clearly in the beginning of a project, and
the project is planned from initiation to completion, providing
stability, structure and predictability [10]. In 1970, Royce [11]
suggested that understanding gained in one phase, can result

20Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 28 / 54

in the need to redo work from a previous phase. Royce’s take
on this problem, was that moving back to previous project
phases is costly, and should be avoided by better preparations.

Iterative process models take a different approach to chang-
ing understanding. Rather than considering changed under-
standing as a deviation from the plan, iterative models are
designed so that understanding acquired in one iteration of
software development, can be utilized in the following itera-
tions. Rather than trying to eliminate the need for adaptation,
iterative approaches are designed to handle change proactively,
rather than reactively. Although iterative organization of soft-
ware work has reportedly taken place as early as 1957, the
first publications on the topic were only due in 1988 [12].

Although early iterative models helped practitioners to uti-
lize new understanding acquired during development, feedback
from users often came late, due to infrequent, perhaps only
yearly, releases. From around the year 2000, release cycles
started to shorten, and by 2010 companies were releasing
software multiple times a day [13]. It is likely that this change
has been aided both by agile development and management,
and the emergence of approaches such as DevOps.

Agile software development is all about feedback and
change [14]. This is aided by principles such as “early
and continuous delivery of valuable software”, “welcoming
changing requirements”, and “business people and developers
working together daily” [15]. Projects using agile practices,
have been found to see themselves as more successful in
realizing benefits than other projects [16], especially those with
flexible scope and frequent delivery to the client.

DevOps, and later BizDev, were designed to increase
information sharing and collaboration among organizational
units: “DevOps integrates the two worlds of development and
operations, using automated development, deployment, and
infrastructure monitoring. It’s an organizational shift in which,
instead of distributed siloed groups performing functions sepa-
rately, cross-functional teams work on continuous operational
feature deliveries” [17]. This means that those who develop
become integrated into where benefit are experienced, which
ostensibly, should foster increased understanding of benefits
during development. Moreover, just as DevOps brings the
organizational units responsible for development and opera-
tions closer together, BizDev suggests to bring those making
business decisions closer to those developing software solu-
tions, through continuous planning and continuous budgeting.
On the face of it, this is perfect for evolving and utilizing
understanding of benefits. Combining DevOps and BizDev
into BizDevOps [18] would seem better still.

Practices such as agile, DevOps and BizDev fit nicely
into CPD organization, because the practices are geared to-
wards continuously learning and delivering value, without the
constraints imposed by project organization and more linear
approaches. An approach that shares many similarities with
CPD is Continuous Software Engineering (CSE) [18]. In CSE
it is suggested that software engineering should be considered
as a set of continuous processes, including continuous plan-
ning, budgeting, integration, delivery, deployment, verification,

testing, compliance, security, evolution, use, trust, run-time
monitoring, improvement, innovation and experimentation.
While all of these processes fit nicely into CPD, they are not
a requirement for CPD. What CPD adds to the picture is the
explicit lifecycle-focus on product and the discard of the time-
bounded project as organizational form.

III. RESEARCH QUESTIONS

Our first objective is to understand how common different
ways of organizing software work are. We look into the
adoption of project vs. CPD, and the adoption of ways of
organizing, such as the use of linear models, agile, DevOps,
BizDev and program organization.

Our second objective is to understand if there are differences
in the perceived realization of benefits when using the above
ways of organizing.

We pose the following research questions:
RQ1 How common is CPD compared to project organiza-

tion?
RQ2 How common are the following ways of organizing

work: linear model (waterfall, v-model, etc.), agile,
DevOps, BizDev and program organization?

RQ3 Is the realization of benefits perceived to be higher
in work organized as project or as CPD?

RQ4 Are there differences in the perceived benefits among
those organizing work using linear models, agile,
DevOps, BizDev or program organization?

IV. RESEARCH METHOD

We conducted a survey consisting of an online question-
naire to address the research questions. Data was collected
during a webinar titled Digitalization as Continuous Product
Development in June 2021. During this webinar selected IT-
professionals presented experiences and reflections on CPD.

Respondents were asked to base all answers on the latest
IT system product development they had taken part in (either
organized as project or CPD), where the product or part of
the product had been taken into use. As discussed in [19],
selecting the last project (in this case the last IT product
development) “... reduces the risk that the sample of projects
is biased towards the most successful or the largest software
projects ...” [19]. This is relevant, because we want to compare
characteristics of the reported work with perceived success in
realizing benefits.

Comparing the sizes of projects and CPD is not straight-
forward, since CPD does not have a defined end-date, and
consequently not a comparable amount of man-hours to com-
pare with projects. Nevertheless, for a description of the size
of the work, we asked respondents to provide the number of
people involved in the work at most. Then, when including
size in the analysis, we used the categories of organization
sizes proposed by the European Commission [20].

A. Survey Questions
The survey questions most relevant to answering the re-

search questions are presented in Table I. A complete list of
survey questions and responses are available at [21].

21Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 29 / 54

TABLE I: SURVEY QUESTIONS

Question Answer options
SQ1
How was this work organized?

Select one:
-Project
-CPD
-Other, explain: [text field]

SQ2
Approximately how many peo-
ple was/are actively involved
in the work at most? - both
from the product owner side
and the product developer side

[text field]

SQ3
By and large, how well do you
consider that you succeeded in
realizing benefits as a result of
the product?

Five-point ordinal:
(Very Successful 1–5 Very Unsuccess-
ful + 6 Don’t know)

SQ4
Was the product owned by
public or private sector?

Select one:
-Public sector
-Private Sector

SQ5
Which ways of
working/organizing was
used?

Multiple choice:
-Linear model (waterfall, V-model, etc.)
-Agile
-DevOps
-BizDev
-Organized as program
-Other: [text field]

B. Respondents and Response Rate

A total of 140 people were present at the seminar at the point
in time when the survey started. Of these, 131 participated in
the survey, but 19 stopped after providing demographic data
only. These 19 are not included in the survey results. In total
npartial=112 (85%) people completed the first three pages of
the survey, and ncomplete=94 (72%) finished the entire survey.
The size of work reported on are in the following categories:
20% micro (<10 people involved), 55% small (10–49 people
involved), 20% medium (50–249 people involved) and 4%
large (>250 people involved).

Figure 1 shows an overview of the success in realizing
benefits. Compared to what is reported in similar studies (see
[19]), it seems that respondents in this survey reported on work
that is more successful in realizing benefits.

Among the npartial respondents, 36% represented the product
owner side exclusively, 49% represented the product de-
veloper side exclusively, while 15% represented both sides.
The respondents’ average experience with creation of digital
solutions ranged from under a year to 50 years, with a mean
of 17.6 years and median of 20 years. The number of years

Fig. 1: Degree of Realization of Benefits

of experience as a manager in this field ranged from one to
30 years, with a mean of 10.5 years and median of 9 years.
Further, 51.8% of the respondents reported to organize work
as projects, while 40.2% reported to organize work as CPD,
and 8% reported to organize work as “other” (most of these
were combinations of project and CPD). Finally, 68% of the
respondents reported on products owned by the public sector,
while 32% reported on products owned by the private sector.

C. Analysis

For each of the four research questions, we present de-
scriptive statistics for the corresponding survey questions. For
RQ3 and RQ4, where we look at relations between variables,
we also present significance values and effect sizes for the
comparisons.

When comparing projects and CPD with respect to the
realization of benefits (RQ3 and RQ4), we exclude data from
work organized as “other” and data where the respondents
reported not to know the degree of benefits realization. We
use a t-test to calculate significance values and effect sizes
[22]. Although the data is not normally distributed, the sample
size is large enough for the t-test even with a skewed sample
(condition: n≥40 [22, p. 516], current sample: nproject=56,
nCPD=45). For effect sizes we use Cohen’s d with the following
rules of thumb [23]: <0.1 (very small), 0.1 – <0.3 (small), 0.3
– <0.5 (medium), 0.5 – <1.2 (large), 1.2 – <2.0 (very large)
and >=2.0 (huge). We use a two-tailed test [22], because we
make no assumptions on projects performing better or worse
than CPD.

When comparing other ways of organizing work with re-
spect to the realization of benefits, we exclude only the data
where respondents reported not to know the degree of benefits
realization. Because some of the ways of organizing work have
few reported occurrences, we use the Fisher’s exact test [24]
to calculate significance values.

V. RESULTS

A. Organization of work (RQ1 and RQ2)

Figure 2 summarizes the results on the different ways of
organizing work. Figure 2a shows the data from SQ1, where
we see that project organization is more common than CPD.
Those selecting the “other”-category, were combining project
organization and CPD, or using program organization; often
organizing work using CPD-like aspects within a project.

Figure 2b shows work organization (SQ1) differentiated by
size (SQ2). We observe that the micro and large endeavors use
CPD more often than project organization. When looking at
the small- and medium-sized endeavors, project organization
is more common than CPD. It is interesting to note that
large endeavors observed here are either organized as CPD or
using program organization (reported as other, with program
organization written in the freetext field).

Figure 2c shows differences between endeavors in the public
sector versus the private sector (SQ4) in selection of work
organization (SQ1). Visual inspection indicates no substantial

22Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 30 / 54

(a) Use of Organization Method (n=112) (b) Use of Organization Method Grouped by Size (n=110)

(c) Use of Organization Method Grouped by Owner (n=110) (d) Use of Way of Organizing Work (n=94)

Fig. 2: Organization of work

differences between work organization in efforts owned by the
public versus the private sector.

Figure 2d shows which ways of organizing are most com-
monly applied (SQ5). SQ5 is a multiple choice question,
allowing respondents to select several ways of organizing
work. Respondents report the use of agile to be very common,
with 84% of respondents reporting to use agile in their latest
completed endeavor. DevOps is the second most common way
of working (32% adoption). Interestingly, linear models are
also somewhat frequently used (23% adoption), and 21.5% of
those using agile, also use a linear model.

B. Comparing the Use of Practices with Realization of Bene-
fits (RQ3 and RQ4)

Table II shows the realization of benefits (SQ3) when
organizing work as projects versus CPD (SQ1), by percentage
of responses in each benefits realization category. Our data
shows that work organized as CPD is perceived to be signif-
icantly (two-tailed t-test p=.020) more successful in realizing
benefits than work organized as projects. The effect size of
the comparison is Cohen’s d=0.475, which is considered a
medium effect size. Although this does suggest that CPD

outperforms projects, there are other takeaways from Table II
worth highlighting:

• 55% of the projects were reported to be successful or
very successful (78% for CPD).

• Projects are more distributed on the success-scale than
CPD.

• Work organized as CPD was always reported to be neutral
or better.

In summary, work organized as CPD was perceived to
be more successful than projects, but there are also many
successful projects. Among the work reported to use CPD,
there were no unsuccessful occurrences.

TABLE II: PERCEIVED REALIZATION OF BENEFITS FOR WORK
ORGANIZED AS PROJECT VS CPD (n=101)

Benefits realization Project CPD
Very Successful ∼ 12% ∼ 9%
Successful ∼ 43% ∼ 69%
Neutral ∼ 29% ∼ 22%
Unsuccessful ∼ 11% 0%
Very Unsuccessful ∼ 5% 0%
Two tailed t-test p=.020
Effect size d=0.475

23Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 31 / 54

TABLE III: REALIZATION OF BENEFITS FOR EACH WAY OF ORGANIZING WORK (n=93)

Linear Agile DevOps Program
No Yes No Yes No Yes No Yes

Benefits realization (n=71) (n=22) (n=14) (n=79) (n=63) (n=30) (n=80) (n=13)
Very Successful 13% 9% 7% 13% 14% 7% 13% 8%
Successful 58% 50% 57% 56% 51% 67% 55% 62%
Neutral 24% 27% 29% 24% 27% 20% 26% 15%
Unsuccessful 5% 5% 0% 6% 6% 3% 5% 8%
Very Unsuccessful 0% 9% 7% 1% 2% 3% 1% 8%
Fisher’s exact test p=0.208 p=0.594 p=0.589 p=0.462

Table III shows comparisons between the other categories
for organizing work (SQ5) with respect to benefits realization
(SQ3). Using the Fisher’s exact test (bottom row in Table III),
we see that our data does not show significant differences in
the realization of benefits between those using or not using
any of the ways of organizing work. Thus, our data data does
not support the current trends in software engineering, where
linear models are considered inferior, and agile and DevOps
has become very popular.

VI. DISCUSSION

The observation that CPD outperforms projects when it
comes to the realization benefits, is relevant for several groups.

First, it is relevant for those making investment decisions.
By organizing investment into projects there might be a
perceived predictability of time, cost and scope, but this seems
to come at he expense of reduced benefits realization.

Second, it is relevant for those working to create software
products and realize the benefits of those products. Organizing
work in a manner that increases the probability of realizing
benefits, helps team members achieving the purpose of their
work, which is likely to provide improved job satisfaction.

Third, it is relevant for researchers, because it raises the
awareness that several ways of organizing IT development and
lifecycle work can lead to success; even though some modes
of organizing work are currently in vogue. Researchers should
not become evangelists for one approach or the other. Rather,
one should conduct research that helps us understand the
characteristics of situations where various ways of organizing
work – and in particular, project or CPD – is most suitable.

We are puzzled to observe that neither the use, nor non-use,
of linear models, agile, DevOps or program organization, had
any significant effect on the realization of benefits. Given that
further studies with larger power (see next section) corroborate
this, one might contrast this to what seems to be the main-
stream opinions in the software industry, where linear models
are considered bad, and agile is very popular. We speculate that
this could be due, either to practitioners making good choices
about various ways of organizing work, or, conversely, that
practitioners are not successful in using the different ways of
organizing work. Both of these situations could explain the
lack of differences, and more in-depth studies are called for
to unravel the connections between various nuances in ways
of organizing work and success in benefits realization. In the
mean time one might speculate as follows:

Looking at the results under the assumption that practition-
ers are making good choices of ways of organizing work,
one can speculate that practitioners employ linear models in
situations of low uncertainty (where this approach would fit)
and agile approaches when there is more uncertainty. This
assumption is supported by the observation that the overall
degree of realization of benefits reported here, is higher than
in similar studies [19] (see Section IV-B and Figure 1).

Alternatively, looking at the results from the view that
practitioners are not able to utilize the different ways of
organizing work, could help explain why using agile, DevOps
and program organization does not seem to lead to higher
realization of benefits. This view finds support in challenges
reported when introducing agile, DevOps and program organi-
zation. Introducing new ways of working can be a challenging
task [25], including resistance to change [26] and pressure to
use traditional approaches [27]. For DevOps, there is lacking
consensus on the best way of organizing work to ensure
collaboration between development and operations [28].

VII. LIMITATIONS

A. Statistical Conclusion Validity

The low number of respondents (112) in this survey, gives
low statistical power with a low probability of observing
significant results that are actually present in the population.
Replicating studies using a larger sample may find effects that
were not uncovered in our data.

It is possible that a webinar on CPD attracts people who
are already using CPD. If this is the case, the percentage
of respondents using CPD would be higher here than in
the population of software product development initiatives.
However, the resulting near equal group sizes for projects
versus CPD was beneficial for the purpose of answering our
research questions via the present survey.

B. External Validity

Based on demographic data in this study, one can generalize
the results to populations with similar characteristics. For our
sample, this can be problematic for three reasons:

1) We have limited demographic information of the work
reported on in this study. Limited information was
collected due to time limitations duration the webinar.

2) It is possible that practitioners attending a seminar on
CPD think differently about organization of software
work than others. As such, it is likely that the number
of respondents reporting to organize work using CPD is

24Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 32 / 54

higher in our sample than in the population of software
development endeavors in the industry.

3) A webinar and survey conducted in Norwegian, limits
the effects of cultural difference, and difference in
respondents background. It is possible that respondents
with a different background would yield different results.

C. Construct Validity

A recent study of the use of linear models and agile method-
ology [29] found that work organization only accounts for 40%
of observed activities in organizations, while the remaining
60% are a result of method incompleteness, peoples skills
and habits, organizational noise and similar factors. Thus,
when practitioners report to use a linear model, agile, DevOps,
BizDev or program organization, it is not clear exactly to what
extent, or how, these ways of organizing are implemented.

We observed that the number of respondents reporting to
use BizDev was very small. Our impression after talking with
practitioners, is that many of the practices in BizDev are
commonly used. If this is the case, it seems BizDev is not
known to practitioners, resulting in a low count in the survey.

VIII. CONCLUSION AND FURTHER RESEARCH

Based on the above results and discussion, we conclude
that CPD is a very viable alternative to organizing software
investments as projects, especially in situations where failure
to realize benefits must be avoided. Also, we believe that
more research is needed to understand in what situations
practitioners would benefit from selecting eithe project or CPD
organization, or a combinaton of both.

We did not find any evidence for or against the use of linear
models, agile, DevOps, BizDev or program organization. Still,
we believe that all of these has previously been used to realize
the benefits of software investments successfully. We suggest
that more research is needed to understand better these ways
of organizing work, especially focusing on how the different
ways of organizing work perform in different situations. This
we hope will provide practitioners with actionable guidance
on the selection of ways of organizing work.

ACKNOWLEDGMENTS

The authors are grateful to the survey respondents for their
time and experience.

REFERENCES

[1] R. Berntsson-Svensson and A. Aurum, “Successful software project
and products: An empirical investigation,” in Proceedings of the 2006
ACM/IEEE international symposium on Empirical software engineering,
pp. 144–153, 2006.

[2] S. Goldfinch, “Pessimism, computer failure, and information systems
development in the public sector,” Public Administration Review, vol. 67,
no. 4, pp. 917–929, 2007.

[3] A. Bharadwaj, M. Keil, and M. Mähring, “Effects of information
technology failures on the market value of firms,” The Journal of
Strategic Information Systems, vol. 18, no. 2, pp. 66–79, 2009.

[4] K. Conboy, “Project failure en masse: a study of loose budgetary control
in isd projects,” European Journal of Information Systems, vol. 19, no. 3,
pp. 273–287, 2010.

[5] D. Baccarini, “The logical framework method for defining project
success,” Project management journal, vol. 30, no. 4, pp. 25–32, 1999.

[6] E. Bouwers, J. Visser, and A. Van Deursen, “Getting what you measure,”
Communications of the ACM, vol. 55, no. 7, pp. 54–59, 2012.

[7] S. S. Tanilkan and J. E. Hannay, “Benefit considerations in project
decisions,” in International Conference on Product-Focused Software
Process Improvement, pp. 217–234, Springer, 2022.

[8] R. Kneuper, “Sixty years of software development life cycle models,”
IEEE Annals of the History of Computing, vol. 39, no. 3, pp. 41–54,
2017.

[9] T. E. Bell and T. A. Thayer, “Software requirements: Are they really
a problem?,” in Proceedings of the 2nd International Conference on
Software Engineering, pp. 61–68, 1976.

[10] T. Thesing, C. Feldmann, and M. Burchardt, “Agile versus waterfall
project management: Decision model for selecting the appropriate ap-
proach to a project,” Procedia Computer Science, vol. 181, pp. 746–756,
2021.

[11] W. Royce, “Managing the development of large software systems:
concepts and techniques,” in Proceedings of the 9th International
Conference on Software Engineering, pp. 328–338, 1987.

[12] C. Larman and V. Basili, “Iterative and incremental developments. a
brief history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

[13] J. Bosch, Continuous software engineering, ch. Continuous Software En-
gineering: An Introduction, pp. 3–13. Springer International Publishing,
01 2014.

[14] L. Williams and A. Cockburn, “Agile software development: it’s about
feedback and change,” Computer, vol. 36, no. 6, pp. 39–43, 2003.

[15] M. Fowler et al., “The agile manifesto,” Software development, vol. 9,
no. 8, pp. 28–35, 2001.

[16] K. K. Holgeid and M. Jørgensen, “Benefits management and agile
practices in software projects: how perceived benefits are impacted,”
IEEE 22nd Conference on Business Informatics (CBI), vol. 2, pp. 48–
56, 2020.

[17] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 2016.

[18] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123,
pp. 176–189, 2017.

[19] M. Jørgensen, “A survey on the characteristics of projects with success in
delivering client benefits,” Information and Software Technology, vol. 78,
pp. 83–94, 2016.

[20] European Commission and Directorate-General for Internal Market,
Industry, Entrepreneurship and SMEs, User guide to the SME definition.
Publications Office, 2020.

[21] S. S. Tanilkan, “Organization as project vs continuous product develop-
ment.” https://tinyurl.com/pvscpd. Accessed: 2023-04-24.

[22] D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics.
W. H. Freeman and Company, 2001.

[23] S. S. Sawilowsky, “New effect size rules of thumb,” Journal of Modern
Applied Statistical Methods, vol. 8, no. 2, pp. 596–599, 2009.

[24] S. Weerahandi, Exact statistical methods for data analysis. Springer
Science & Business Media, 2003.

[25] Z. Shehu and A. Akintoye, “Major challenges to the successful imple-
mentation and practice of programme management in the construction
environment: A critical analysis,” International Journal of Project Man-
agement, vol. 28, no. 1, pp. 26–39, 2010.

[26] T. J. Gandomani, H. Zulzalil, A. A. Ghani, A. B. M. Sultan, and
K. Y. Sharif, “How human aspects impress agile software development
transition and adoption,” International Journal of Software Engineering
and its Applications, vol. 8, no. 1, pp. 129–148, 2014.

[27] C. de O. Melo et al., “The evolution of agile software development
in brazil,” Journal of the Brazilian Computer Society, vol. 19, no. 4,
pp. 523–552, 2013.

[28] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of
devops concepts and challenges,” ACM Comput. Surv., vol. 52, pp. 1–35,
Nov. 2019.

[29] B. V. Thummadi and K. Lyytinen, “How much method-in-use matters?
a case study of agile and waterfall software projects and their design
routine variation,” Journal of the Association for Information Systems,
vol. 21, no. 4, pp. 863–900, 2020.

25Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 33 / 54

A Model Library Tool for Holistic Embedded
Software Design
Sven Jacobitz, Xiaobo Liu-Henke

Ostfalia University of Applied Sciences
Department of Mechanical Engineering, Institute for Mechatronics

Salzdahlumer Str. 46/48, 38302 Wolfenbüttel, Germany
Email: {sve.jacobitz; x.liu-henke}@ostfalia.de

Abstract—The ever-increasing complexity and connectivity
of mechatronic systems makes using a structured, systematic
methodology essential for embedded software design. The model-
based Rapid Control Prototyping is a widely used model-based
development process for this. Essential is a seamless support by a
Computer Aided Engineering platform. However, such platforms
are very cost-intensive, which is why the seamless low-cost
platform LoRra was developed by the authors. A key element of
this platform is the Model Library tool, which provides consistent
access and traceable change management to all data (especially
functional and plant models as well as resulting artefacts) used
throughout the holistic process of software development. Version
and configuration management also increase the reusability of
resulting artefacts. This paper presents the new ideas, used
to design the LoRra model library for the low-cost function
development of mechatronic systems. The holistic coverage of
the entire development process, from modelling to real-time
realization, is the feature, that distinguishes the LoRra model
library from existing tools.

Index Terms—Rapid Control Prototyping (RCP), low-lost de-
velopment platform, model-based design, model library.

I. INTRODUCTION

Mechatronic systems continue to increase in complexity and
functionality. This trend is a major challenge for Small and
Medium-sized Enterprises (SMEs). To remain competitive,
they need to integrate ever more intelligent hardware and
software into their products. This is not only due to the
number of functions in a system, but also to the ever-increasing
degree of connectivity between complex software components
that strongly interact with each other [1]. The structured and
systematic development of such software intensive systems is
essential to meet ever shorter development times and higher
quality requirements [2]. In this context, model-based Rapid
Control Prototyping (RCP) is a widely used methodology
for embedded software design. The seamless support by a
Computer Aided Engineering (CAE) development platform
is essential for RCP in order to achieve a high degree of
automation. Established seamless CAE tool chains are very
cost-intensive, which is a major barrier to the adoption of
the RCP process, especially for SMEs [3]. Therefore, as part
of the EU-funded research project Low-Cost Rapid Control
Prototyping System with Open-Source-Platform for Functional
Development of Embedded Mechatronic Systems (LoCoRCP),
the authors developed a seamless low-cost development plat-
form named LoRra [4].

This paper presents the conception, design and exemplary
realization of the CAE-based LoRra model library. This library
enables access to a consistent data base throughout the entire
development process, as well as traceable change management
- especially for functional or plant models and resulting arte-
facts. The rest is structured as follows: Section III summarizes
the RCP development methodology and introduces the LoRra
platform. The state of the art is outlined in Section II. In
Section IV, the concept and the basic solution approach is
presented based on a requirement analysis. The design is
detailed in Section V. Section VI is a description of the
implementation. Finally, Section VII summarizes the results
and gives an outlook on future work.

II. STATE OF THE ART

Developing in distributed teams and the associated central
data management has been an important topic in classical
software development for a long time. This is especially, due to
the high diversity, flexibility and short development times of
software [5]. Model-based software development poses new
challenges for methods and tools. To ensure the reusabil-
ity of models and the associated software functions newly,
systematic, integrated data management approaches with the
associated sub-processes, such as version and configuration
management must be used. This is important because, in
comparison to classical software development, the resulting
artefacts no longer result from manual textual changes, but
are derived from models [6].

First regulations for this came up in the early 1960s
at NASA [7]. According to Sax et al. [8], inconsistencies
during function development are increasingly caused by the
high number of variants, which can be avoided by using an
appropriate configuration management. In the context of RCP,
a CAE-based model library that manages all relevant artefacts
(result of a subprocess such as models, program source code
or documentation) is recommended for this purpose [9].

Version and configuration management is widely used in
classical software development. An overview is provided
by [10]. A primitive but widely used method is manual
versioning. A backup is generated by manual copying and
renaming. In comparison, the backup copies are created auto-
matically when version control tools are used. There are many

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 34 / 54

different kinds of software available, such as the Concurrent
Version System (CVS), Subversion (SVN) or Mercurial.

A frequently used open source tool for versioning is
GIT [11]. However, the focus of this tool is on change-based
management of text files [12]. An application of this approach
to data formats common in model-based design is not very
practicable [13]. Therefore, extensive adaptations are required
for use in a model library.

In order to identify the type and scope of the necessary
adaptations, systematic investigations were carried out by
Niedzwiedz and Frei [14], for example. Here, a model is
constructed in a standardized way from metadata, interface
information and parameters. Based on such a standardized
structure, version and configuration management can be per-
formed even for complex, integrated models. An example of
such a systematic structural description approach is the System
Entity Structure (SES) [15].

In summary, there is currently no applicable solution for
central model management within the framework of a low-
cost RCP platform. Available approaches are either designed
for textual changes, but do not offer the structures necessary
for model-based software design or do not support essential
processes, such as version and configuration management.
Approaches that exist for UML-based models, for instance (c.f.
[16]), often only support the models themselves, but not the
resulting artefacts such as the source code. Also, the holistic
coverage of the entire development process, from modelling
to real-time realization, is not supported by other tools, yet.

III. DEVELOPMENT METHODOLOGY AND PLATFORM

Due to the high system complexity of modern intercon-
nected mechatronic systems, the structured, model-based,
verification-oriented RCP process is used for software de-
velopment and validation. This consists of the process steps
modelling, analysis / synthesis, automated generation of source
code, automated implementation on real-time hardware and
online experimentation. The whole methodology is supported
by Model-in-the-Loop (MiL), Software-in-the-Loop (SiL) and
Hardware-in-the-Loop (HiL) simulations [17].

The presented methodology is characterized by a high
degree of consistency and automation, from modelling and
model-based software design to automatic code generation and
real-time realization (cf. Fig. 1 on the left). It is accompanied
by a seamless, fully automated CAE platform. The modular,
cost-effective development platform LoRra is such a CAE
platform. Fig. 1 illustrates the RCP development process,
as well as the seamless support by means of LoRra [4].
Of particular relevance here is a central model library that
makes a consistent, traceable development status available in
all process steps.

The domain-independent model library serves as a central
data base from the modelling process up to the realization.
By means of version and configuration management, model
variants can be designed, managed and integrated to higher
level models. The open source CAE tool Scilab / Xcos
(cf. [18]) is used for model analysis and synthesis of the

Modelling

Automatic C-Code
generation

Automatic
implementation

Target Hardware

RCP process

Online experiment
with HMI

Se
am

le
ss

 R
C

P
de

ve
lo

pm
en

t p
la

tf
or

m Analysis and Synthesis

LoRra-iGES
For online measurement

and calibration

LoRra-RTI
executable program file

LoRra approach

Scilab/Xcos

LoRra-Code-generator
efficient and adaptable code

Microcontroller

LoRra model libraries

Fig. 1. RCP development process with seamless support by the LoRra
platform [4].

software. It offers a wide range of functionality comparable to
those of the commercially frequently used Matlab / Simulink.
The resulting function model can be integrated directly into
the model library. Thanks to the open interfaces of the LoRra
API, existing programmes and interface drivers can also be
integrated with little effort. MiL simulations can be used to
optimize and test the developed functions at an early stage of
development.

The LoRra code generator automatically generates efficient,
modular C source code from the functional model by means
of model-to-text transformation. Open functional descriptions
of basic elements of the model, so-called basic blocks, make
the LoRra code generator flexibly extendable. The generated
source code can be re-integrated into the Xcos model without
manual work, e.g., for optimization and testing by means of
SiL simulations.

The signals to the plant models or, depending on the devel-
opment focus, to other software components are replaced by
interface blocks of the LoRra Real-Time Interface (RTI) when
the development reaches a sufficient functional status. This
enables the use of real-time hardware interfaces without man-
ual programming. In combination with hardware-specific RTI
basic software, which includes a real-time operating system
and standardised interface drivers, automated implementation
on the real-time hardware by the RTI is possible. Low-cost mi-
crocontrollers, e.g., of the STM32H7 series, are used as real-
time hardware. By means of HiL simulations, the developed
function can thus also be optimized and tested under real-
time conditions. The integrated Ggraphics-supported Experi-
mentation Software (iGES) is available as a Human-Machine
Interface (HMI). It can be used to intuitively perform and
monitor online experiments, as well as to record measurement
data by means of real-time data acquisition.

IV. CONCEPT OF THE MODEL LIBRARY

In this section, the conception of the LoRra model library
is presented. First, some approaches for the graphical user

27Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 35 / 54

interface development are introduced. Then, the requirements
are outlined and the initial stage for a solution is derived.

A. Human Machine Interface development approaches

Nowadays, standardised architecture styles are used for
structured software design [19]. These serve in particular to
increase reusability, to structure the design and to create a
uniform vocabulary. More than 25% of the existing styles are
used for the design of HMI [20]. In the context of this work,
the Model-View-Controller (MVC) principle is particularly
relevant.

The architectural style MVC, according to [21], is illus-
trated in Fig. 2. Here, the view (also called visualization or
presentation), the controller and the data model are realized
separately with defined interfaces. The controller component
reacts to user inputs in the Graphical User Interface (GUI)
and changes the model if necessary. Furthermore, the model
can also be changed by other software components. It notifies
the controller of the changes made. The controller updates
the presentation. Due to the low component coupling, this
principle is particularly suitable for HMI that are used on
different target platforms [22]. For example, the operating
system-dependent graphical presentation can be completely
decoupled from the controller and the model.

B. Model library requirements

As outlined in Section III, the model library is a central
tool for data management in all process steps of software
development. In order to fully support the model-based version
and configuration management approach, the model library
must meet the following overarching requirements:

1) Coherent versioning of all contained data and support for
version management processes (e.g., review, approval).

2) Supporting the data structures required for Configuration
Management throughout the process steps, as well as
the Configuration Management processes (e.g. review,
approval) to ensure a consistent data state at all times
and across all RCP steps.

3) Hierarchical structuring of the models in configurable
categories and hierarchy levels.

4) Search function to quickly find specific models, even
though a large amount of data are contained.

5) Support for distributed teams working from a common
model base.

6) Presentation of all relevant model information in one
overview.

ModelView

Controller

Output

Input

Changes

Notifies

Changes

Fig. 2. Architecture style Model-View-Controller according to [21].

C. Basic idea of the concept

In order to be fully compliant with the requirements of the
model library, the first step is a closer look at the structure of
a model. In doing this, generic and aggregated models need
to be distinguished.

A generic model is the smallest self-contained model unit at
the lowest hierarchical level. It is not subdivided into further
hierarchically ordered sub-models. An example of a generic
model is the electrical part of a DC motor, which can be
described by (1) (cf. [23]). The structured assembly of a
generic model is illustrated by Fig. 3. It consists of four
components:

• Metadata describes the higher-level characteristics (e.g.,
name, author, general description) of the model.

• Interface information: Data structure, units and other
relevant information of the inputs- and outputs of the
model. Using the example of (1), the terminal voltage
u in V and the angular speed ω in rad/s as input or the
motor current i in A as output.

• Parameter: Information and values about the parameters
of the model. Using (1) as an example, the resistance R
in Ω, the inductance L in H and the machine constant c
in V s.

• Artefacts of the model such as the (Xcos-)model file, the
generated C-code or the model documentation.

Generic
 Model

Metadata

Model

ParameterInterface informationArtifacts

Fig. 3. Structured assembly of a generic model.

u = Ri+ L
di

dt
− cω (1)

An aggregated model is composed of further sub-models
and thus represents higher hierarchy levels. Aggregated models
are mapped as so-called configurations in the model library. A
configuration is created by integrating defined version levels
of the part models. Fig. 4 illustrates the principle assembly of
a configuration.

The models are arranged hierarchically in a tree structure.
The tree contains folders (grouping hierarchy elements) and
model elements (both generic and aggregated models). User
rights and individual processes can be assigned to both group-
ings and individual elements.

To enable model access for several users, the principle of a
central data repository is applied. Fig. 5 illustrates the concept.
All model data are stored in the central repository, which acts

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 36 / 54

Model Part 1

Model Part 2

Configuration 1
1.0 2.0

1.0

3.0 4.0 5.0

1.1 1.2

Legend
Model change
Model reference

Model version

Fig. 4. Principle assembly of a configuration.

Central
repository

Local working
copy

Local working
copy

User 1 User n

…

Changes
Copy Changes

Fig. 5. Concept of the central data repository.

as a database. Model artefacts are accessed via local working
copies. Changes are transmitted to the central repository and
merged to the original data. Users can then pull the changed
data to their local working copy.

V. MODEL LIBRARY DESIGN

The concept from Section IV will now be fleshed out and
transferred into a concreted design. For this purpose, the data
structures and interfaces, as well as the data management are
designed.

A. Data structures

There are a number of data structures and interfaces that
are necessary for the model library. The core element is a
hierarchical model tree, which also serves as the data basis
for the MVC of the GUI. In the following, the data structure
and interfaces of the model tree are designed as an example.

The set-up of the data structure is object-oriented. For
each element of the tree, the abstract class AModelElement
represents the basic structure. It contains central data such
as title, path in the tree or parent element. The classes
HierarchyElement and ModelElement are derived from it.
HierarchyElement contains a list with subordinate elements.
ModelElement summarizes interface information, parameters
and memory information of the model among other data. Fig. 6
illustrates the relationship as a UML class structure.

The model tree requires interfaces for various operations,
which are served by the controller classes. For example, adding
or moving child elements of the class HierarchyElement is

AModel Element

Hierarchy element Model Element

Interface information Memory information

Parameter

Fig. 6. Class structure of the hierarchical model tree.

provided here. Model elements require more extensive inter-
faces, for example to change the metadata or to generate new
versions. Each modification must be captured and documented
by the version management.

B. Data Management

Data management is the key function of the model library.
On the one hand, version and configuration management
are very important. On the other hand, the storage of local
working copies must also be coordinated. For example, only
models that have been selected by users should be completely
downloaded as working copies. For other models, storing the
metadata is enough.

To ensure versioning and thus consistent reuse of software
in the form of configurations, the model library must sup-
port an appropriate version management process. This mainly
concerns releasing new versions. If changes are made to a
model or other artefacts, a new model version may only be
used following specific release processes. For the LoRra model
library, this means that versions proposed by users are not
released to the public until they have been approved by the
groups of people required according to the configured process.

For version numbering, the concept of semantic version-
ing is applied. Different versions of a models and artefacts
are identified by version numbers of the form x.y. Where
x is the major version and y is the minor version. If no
compatibility-relevant adjustments were made to the model
during a change (e.g., bug fixes or pure visual changes -
behaviour and interfaces remain the same), only the minor
version is incremented. If adjustments have been made that
affect the compatibility of the model with other models (e.g.,
changes to the interfaces, extension of the functionality), the
major version is incremented and the minor version is set to
0.

The composition of a configuration is done by linking sub-
models. For this purpose, the corresponding version numbers
of the models are referenced, and the interfaces are linked.
Fig. 4 illustrates the principle.

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 37 / 54

VI. REALIZATION

The model library is implemented in Java as Eclipse Rich
Client Platform (cf. [24]). A basic set of functions is im-
plemented in an object-oriented way. The Eclipse framework
already offers many mechanisms necessary for realization,
such as the Standard Widget Toolkit or event-based, minimal-
coupling communication between different graphical elements.
In addition, numerous extensions with open interfaces can be
used.

Versioning is done using the existing open source tool GIT
(cf. [11]), which also connects to the central storage infrastruc-
ture. There is a separate GIT repository for each model. Proven
mechanisms for versioning are already available here. By
using structured, text-based model descriptions, the limitations
mentioned in Section II can be avoided. The GIT branching
enables variant management in addition to the version and
configuration management functions described above. Initially,
user authentication is implemented for the Atlassian service
Bitbucket. Later extension is possible.

The structured model description is in JSON format (cf.
[25]). Listing 1 contains an exemplary stored model tree.
Hierarchy elements are identified by the fields title (display
title of the element), relPath (relative file path to the parent
hierarchy element) and children. Model elements contain the
fields relPath, metaFileName and repoUrl (URL to the online
GIT repository). All relevant metadata is stored in the file
specified in metaFileName.

The integration of sub-models into a configuration is XML-
based. This is done in the form of an SES. Thus, the structure
of a new configuration can first be created at an abstract
level. A concrete configuration is then generated by pruning
and referencing the sub-models and specifying the version
and variant. This approach with flexible, standardised data
structures and interfaces allows the model library to be applied
in various simulation environments. It can therefore be used
as part of the LoRra platform, as well as in the context of
other development platforms or further model editors.

Finally, the GUI is built according to the MVC principle
introduced in Section IV-A. The data basis for this (model)
is the model tree designed in Section V-A. Fig. 7 illustrates
the overall design (presentation) of the LoRra model library.
The main window is divided into three areas. The navigation
area (on the left) contains the hierarchical model tree of the
library. Here, users can perform actions on individual models
(e.g., open or edit) and get an initial overview of the current
model status. In addition, the model tree can be searched.
The display area (on the right) contains various views for
displaying and editing information. Here, for example, the
metadata and model artefacts can be displayed or the version
history can be viewed. In addition, a context-dependent toolbar
and the menu structure for operating the library are arranged
in the tool area.

VII. SUMMARY AND FUTURE WORK

This paper presents the design of a model library for
low-cost software development of mechatronic systems using

Listing 1. Exemplary model tree in JSON format.

{
"title" : "root",
"relPath" : "",
"children" : [{
"title" : "Vehicle models",
"relPath" : "vehicles/",
"children" : [...]

}, {
"title" : "Functional models",
"relPath" : "functions/",
"children" : [{
"title" : "VMS",
"relPath" : "VMS/",
"children" : [...]

},
{
"title" : "AMS",
"relPath" : "AMS/",
"children" : [{

"relPath" : "efm/",
"metaFileName" : "efm.json",
"repoUrl" : "https://tinyurl.com/

repo_efm/"
}, ...]

}]
}, ...]

}

model-based design approaches. As part of the seamless RCP
development platform LoRra, which is based on open source
software, the model library provides a consistent and traceable
model basis for each development step. In this way, the model

Fig. 7. Layout of the graphical user interface of the model library.

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 38 / 54

library covers the entire development process holistically.
Based on the basic requirements, an approach for version and
configuration management of hierarchical models, as well as
for central model storage was developed. This was followed
by the exemplary design of a model tree data structure
for hierarchical model configurations and the graphical user
interface. Finally, the implementation of a basic functionality
is summarized.

Based on existing technologies, such as version manage-
ment with GIT, a new tool for the continuous development of
software for mechatronic systems has been created. An easy-
to-use graphical interface facilitates version and configuration
management of project artefacts throughout the entire devel-
opment process from MiL, SiL and HiL to prototype.

Future work will focus on further optimizing the user expe-
rience. To this end, the integration of graphical editors to sim-
plify the generation and management of configurations is also
possible. An extension of the GIT tool diff, which visualizes
model changes, is planned for an optimized overview of the
version history. Finally, a generalization of user authentication
is possible, so that any kind of central storage system can be
used. For further testing and optimization, the model library
will be integrated into the virtual embedded software test
bench of the authors.

ACKNOWLEDGMENT

Funded by the Lower Saxony Ministry of Science and
Culture under grant number ZN3495 within the Lower Saxony
”Vorab” of the Volkswagen Foundation and supported by the
Center for Digital Innovations (ZDIN).

REFERENCES

[1] X. Liu-Henke, S. Scherler, M. Fritsch, and F. Quantmeyer, “Holistic
development of a full-active electric vehicle by means of a model-
based systems engineering,” in Proceedings of 2016 IEEE International
Symposium on Systems Engineering (ISSE), B. Rassa and P. Carbone,
Eds., 2016, pp. 1–7.

[2] S. Jacobitz, M. Gollner, J. Zhang, O. A. Yarom, and X. Liu-Henke,
“Seamless validation of cyber-physical systems under real-time condi-
tions by using a cyber-physical laboratory test field,” in 2021 IEEE
International Conference on Recent Advances in Systems Science and
Engineering (RASSE). IEEE, 2021, pp. 1–8.

[3] X. Liu-Henke, R. Feind, M. Roch, and F. Quantmeyer, “Investigation of
low-cost open-source platforms for developing of mechatronic functions
with rapid control prototyping,” in Proceedings of the 2014 International
Conference Mechatronic Systems and Materials (MSM), 2014, pp. 1–9.

[4] S. Jacobitz and X. Liu-Henke, “The Seamless Low-cost Development
Platform LoRra for Model based Systems Engineering,” in Proceedings
of the 8th International Conference on Model-Driven Engineering and
Software Development. SCITEPRESS - Science and Technology
Publications, 2020, pp. 57–64.

[5] H.-B. Kittlaus, Software Product Management. Berlin, Heidelberg,
Germany: Springer, 2022.

[6] K. Henderson and A. Salado, “Value and benefits of model–based
systems engineering (MBSE): Evidence from the literature,” Systems
Engineering, vol. 24, no. 1, pp. 51–66, 2021.

[7] B. L. Summers, “Software Configuration Management,” in Effective
Methods for Software Engineering, B. L. Summers, Ed. New York,
USA: Auerbach Publications, 2020, pp. 57–65.

[8] H. Guissouma, H. Klare, E. Sax, and E. Burger, “An Empirical Study on
the Current and Future Challenges of Automotive Software Release and
Configuration Management,” in 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2018, pp. 298–
305.

[9] B. Kruse and K. Shea, “Design Library Solution Patterns in SysML for
Concept Design and Simulation,” Procedia CIRP, vol. 50, pp. 695–700,
2016.

[10] N. Ratti and P. Kaur, “Case Study: Version Control in Component-
Based Systems,” in Designing, Engineering, and Analyzing Reliable and
Efficient Software, H. Singh and K. Kaur, Eds. Hershey, USA: IGI
Global, 2013, pp. 283–297.

[11] H. Eriksson, J. Sun, V. Tarandi, and L. Harrie, “Comparison of ver-
sioning methods to improve the information flow in the planning and
building processes,” Transactions in GIS, vol. 25, no. 1, pp. 134–163,
2021.

[12] Y. S. Nugroho, H. Hata, and K. Matsumoto, “How different are different
diff algorithms in Git?” Empirical Software Engineering, vol. 25, no. 1,
pp. 790–823, 2020.

[13] D. Schmitz, W. Deng, T. Rose, M. Jarke, H. Nonn, and K. Sanguanpiya-
pan, “Configuration Management for Realtime Simulation Software,”
in 2009 35th Euromicro Conference on Software Engineering and
Advanced Applications. IEEE, 2009, pp. 229–236.

[14] S. Niedzwiedz and S. Frei, “A structured model library for the anal-
ysis of electric-vehicle drivetrains,” in AmE 2012 - automotive meets
electronics, ser. GMM technical report. VDE-Verlag, 2012, pp. 21–26.

[15] U. Durak, T. Pawletta, H. Oguztuzun, and B. P. Zeigler, “System entity
structure and model base framework in model based engineering of
simulations for technical systems,” in Proceedings of the Symposium on
Model-driven Approaches for Simulation Engineering, A. D’Ambrogio,
Ed. ACM Society for Computer Simulation International, 2017, pp.
1–10.

[16] R. S. Bashir, S. P. Lee, S. U. R. Khan, V. Chang, and S. Farid,
“Uml models consistency management: Guidelines for software quality
manager,” International Journal of Information Management, vol. 36,
no. 6, 2016.

[17] X. Liu-Henke, S. Jacobitz, S. Scherler, M. Göllner, O. Yarom, and
J. Zhang, “A Holistic Methodology for Model-based Design of Mecha-
tronic Systems in Digitized and Connected System Environments,” in
Proceedings of the 16th International Conference on Software Technolo-
gies, H.-G. Fill, M. van Sindern, and L. Maciaszek, Eds. SCITEPRESS
- Science and Technology Publications, 2021, pp. 215–223.

[18] A. K. Verma and R. Verma, Introduction to Xcos - A Scilab Tool
for Modeling Dynamical Systems, 1st ed. Jodhpur, India: MBM
Engineering College, JNV University, 2020.

[19] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
3rd ed., ser. SEI series in software engineering. Upper Saddle River,
USA: Addison-Wesley, 2013.

[20] S. Henninger and V. Corrêa, “Software pattern communities: current
practices and challenges,” in Proceedings of the 14th Conference on
Pattern Languages of Programs - PLOP ’07, A. Aguiar and J. Yoder,
Eds. ACM Press, 2007, pp. 1–19.

[21] S. Adams, “MetaMethods: The MVC paradigm,” HOOPLA!, vol. 1,
no. 4, 1988.

[22] Z. Liu, F. Li, H. Liu, C. Wu, and J. Zhang, “A Study of Cockpit HMI
Simulation Design Based on the Concept of MVC Design Pattern,” in
Proceedings of the 2018 3rd International Conference on Modelling,
Simulation and Applied Mathematics (MSAM 2018). Atlantis Press,
2018, pp. 82–84.

[23] X. Liu-Henke, M. Gollner, M. Fritsch, R. Feind, and R. Buchta, “FreDy
- An electric vehicle with intelligent chassis-control systems,” in 2015
Tenth International Conference on Ecological Vehicles and Renewable
Energies (EVER). IEEE, 2015, pp. 1–8.

[24] L. Vogel and M. Milinkovich, Eclipse Rich Client Platform: The
complete guide to Eclipse application development, 3rd ed., ser. Vogella
series. Hamburg, Germany: Vogella, 2015.

[25] “ISO/IEC 21778:2017: Information technology — The JSON data
interchange syntax,” International Organization for Standardization.

31Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 39 / 54

A Lightweight Method to Define Solver-Agnostic
Semantics of Domain Specific Languages for

Software Product Line Variability Models
Camilo Correa Restrepo

Centre de Recherche en Informatique (CRI)
University of Paris 1 Panthéon-Sorbonne

Paris, France
email: camilo.correa-restrepo@univ-paris1.fr

Raul Mazo
Lab STICC

ENSTA Bretagne
Brest, France

email: raul.mazo@ensta-bretagne.fr

Andres López
Investigación y desarrollo

SoftControlWeb
Medellin, Colombia

email: andresorlandolopez@gmail.com

Jacques Robin
Learning, Data and Robotics Laboratory, ESIEA, Paris, France

Center for Research in Informatics (CRI), University of Paris 1 Panthéon-Sorbonne, Paris, France
email: jacques.robin@esiea.fr

Abstract—We propose a method to address the current lack
of standards for both software product line variability modeling
languages and their formal semantics. It allows specifying, in an
agile, declarative, and solver-agnostic fashion the formal seman-
tics of a domain-specific variability modeling language through a
simple JSON based specification format. Our approach leverages
the Common Logic Interchange Format (CLIF) standard for
interoperability among logical inference engines. We demonstrate
our approach with two concrete examples of Variability Models,
and present the tooling and architecture that makes this possible.

Keywords—Variability Modeling; Formal Semantics; Modeling
Language Specification; Common Logic.

I. INTRODUCTION

Software Product Lines Engineering (SPLE) [1] is a
method to systematically coordinate and automate the en-
gineering and evolution of a large set of related software
products with overlapping functionalities and reusable soft-
ware assets over long life-cycles, whose products, put to-
gether, form a Software Product Line (SPL). In model-
driven SPLE, these assets are both models and code files
while, in code-driven SPLE, these assets are mostly code
files implementing services, components, classes, decorators,
aspects and functions. The key artifact that distinguishes an
SPL from a single software product is its Variability Model
(VM). It explicitly identifies sets of requirements, generally
called features, that are cohesive from a business or tech-
nical perspective and determines how they partially overlap
across the different products of the line. This VM generally
organizes those features into an abstraction and composition
hierarchy and associates the lowest level ones with reusable
and composable concrete software assets implementing them.
Developing an SPL VM and such composable assets requires
a large upfront investment. However, once done, it enables
the automated generation of a very large number of product
variants, which, in turn, supports the simultaneously low-cost

and rapid delivery of very many customized software products,
all maintained and evolved in coordination. It has provided
great returns on investment mostly within industries such as
transportation, healthcare and energy [2] where systems have
a long lifecycle and have a critical nature.

Initially, an SPL VM was a purely design-time artifact used
to interactively choose a valid set of features and attribute
value choices to then generate the source code of a product
variant (a.k.a. an SPL configuration) resulting from these
choices by composing and/or transforming the associated
SPL’s reusable assets. More recently, they have started to
be used as Models-at-Run-Time (M@RT) [3] artifacts for
context-aware self-adaptive systems that continuously monitor
their execution context for changes that might require a run-
time reconfiguration. In this approach, called dynamic SPLE
[4], an additional context model needs to be included into the
SPL VM and the whole SPL and its configuration tool are
embedded into each deployed product they generate. When
monitoring systems detect that in a new context, the current
configuration no longer satisfies some system requirements, it
triggers the SPL configuration tool to search the SPL VM for
alternative configurations better adapted to this new context
and then update the implementation with it. To contrast them
from dynamic SPLs, the original, purely design-time SPLs are
called static SPLs.

In the current state of the art, there is no accepted standard
for SPL VMs, so every SPLE tool uses its own Domain Spe-
cific Language (DSL) to model the VM. Nonetheless, almost
all of these languages used for VMs share four key expressive
capabilities. The first is to distinguish between mandatory
and optional elements. The second is to specify ranges of
alternative possible values for a given element parameter. The
third is to specify ranges of alternative possibilities for the
refinement of a higher-level elements into a set of lower-
level elements. The fourth is to specify complex business

32Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 40 / 54

and regulatory constraints concerning the co-occurrence of
various elements or values across the abstraction hierarchy,
that any product must satisfy, while also being implementable
by a subset of the reusable assets available in the SPL. The
existence of this common core results from the main purpose
of any VM: supporting semi- or fully-automated configuration
of a particular product out of the product line. Typically, this
configuration process is divided into two stages. The first
consists of choosing one valid point in the problem space
represented by alternatives in the VM. The second consists of
deriving a working implementation solution from the reusable
assets associated with the options selected during the first
stage.

As SPLs grow larger, VMs grow increasingly complex.
Real-life industrial SPLs routinely contain over 10K elements
and constraints. Since the problem and solution spaces are
subtly but sparsely constrained combinations of the optional
and alternative VM elements, their sizes are subject to a com-
binatorial explosion. This makes fully manual configuration
impractical. It also inevitably leads to the introduction of
inconsistent elements or constraints during the engineering and
evolution of the VM. Therefore, as with any software artifact,
the VM needs to be verified and validated with the help of
automation tools.

A wide variety of approaches have been proposed to im-
plement SPL VM verification and VM-guided SPL configu-
ration tools. Just like for SPL VM languages, there is also
currently no accepted standard API for such tools, though
the overwhelming majority of them share a key feature in
common: they rely on some form of logical knowledge
representation and automated reasoning. This allows them to
reuse practically scalable inference engines developed over
the last 50 years by two research communities, the formal
software engineering methods community and the artificial
intelligence community. Four main classes of such engines
have been extensively proposed and evaluated to automate SPL
VM verification and VM-guided configurations: SATisfiability
(SAT) solvers and their Satisfiability Modulo Theories (SMT)
successors, Constraint Satisfaction Problem (CSP) solvers,
Logic Programming (LP) engines and their Constraint LP
(CLP) successors and Description Logic (DL) engines and
their semantic web successors. No member of these engine
families is a silver bullet for all SPL VM verification or
VM-guided SPL configuration problems. They have subtle
differences in expressiveness and performance on different
kinds of problems, even if expressed in the same DSL VM
language.

In this paper we propose a novel, light weight approach to
bridge the gap between, on the one hand, the existing diversity
and lack of standardization in VM languages, and, on the other
hand, the existing diversity of logical languages that have been
proposed to provide VM languages with formal semantics and
are accepted as input by various classes of inference engines.
Our approach is based on two key ideas. The first is to use
a lightweight, declarative, textual syntax to specify both the
concrete and abstract syntax of a VM DSL. This textual syntax

is encoded both as Python objects from the Pydantic library [5]
and as JSON files in the Open API web service standard [6]. It
can be seen as a more agile alternative to the traditional Model-
Driven Engineering [7] based on diagrammatic models, meta-
models, and meta-meta-models. It is the subject of another
publication under preparation. The second key idea, which
is the focus of the present paper, is the proposal of the
Common Logic Interchange Format (CLIF) [8] standard
from the International Organization for Standardization
(ISO), originally put forward to support interoperability among
logical inference engines, to represent the formal semantics
of any VM DSL in a solver-agnostic fashion. It starts from
realizing that the four main classes of logical languages listed
above and commonly used for VM verification and VM-
guided SPL configuration are all essentially sub-languages of
CLIF in terms of their expressiveness. In addition, CLIF is
also the language used to define the formal semantics of the
fUML [9] standard, the formal core of the Unified Modeling
Language (UML) [10]. Therefore, any model-driven SPLE
approach using the UML to model assets, could leverage the
mapping from VM models to CLIF to provide a uniform
formal semantics for the whole SPL model comprising both
the VM and the asset model.

The main contribution of this paper is to propose a first step
towards a common formal semantics for SPL VM based on an
ISO standard. We show, with a couple of illustrative examples,
how the semantics of two very different SPL VM graphical
languages, Extended Feature Models for static SPL VMs and
Sawyer et al’s [11] extension of the Knowledge Acquisition
in autOmated Specification (KAOS) modeling language [12]
for context-aware dynamic SPL VMs, can both be uniformly
expressed in CLIF. We also describe the architecture of the
VariaMos tool that validates the approach by allowing one
to specify, in CLIF, the semantics of a SPL VM DSL and
then automatically generate the CLIF formula to logically
represent this semantics for a specific, graphically edited SPL
VM. Given that CLIF is expressive enough to capture the
restricted subsets of First Order Logic (FOL) accepted as
input by most constraint solvers (which will be touched upon
in the following section), this contribution will allow the
subsequent use of a variety of inference engines that can be
tailored to each VM language. We demonstrate our approach
within an open-source tool called VariaMos [13] that allows its
users to specify the concrete visual syntax, the abstract syntax
and the formal semantics in agile, declarative, textual and
uniform fashion as JSON files. The formal semantics JSON
specification then serves to associate abstract syntax elements
with CLIF elements formulas.

The rest of the paper is organized as follows: in Section II,
we present an overview of the background and work related to
our approach; in Section III, we present our proposal for the
use of CLIF as the standard formal semantics for Variability
Modeling; in Section IV, present our CLIF translation mecha-
nism by example, by examining the translation of two different
modeling languages; in Section V, we elaborate on our use of
CLIF and the specific dialect we have chosen; in Section VI,

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 41 / 54

we present the overall architecture of our prototype and its
implementation; in Section VII, we cover the limitations of
our approach and outline planned future work; and, finally, in
Section VIII, we present our conclusions.

II. BACKGROUND AND RELATED WORK

There have been many approaches to establishing for-
mal semantics for variability modeling languages; these have
generally always been defined in the context of performing
automated analyses of the constructed models. Since the
constructs for each language vary, the corresponding semantics
have always been defined as a function of the expressiveness
of each language. Some of the first exploratory works on
this topic proposed the use of first-order logic to provide
the semantics for Basic Feature Models (BFMs) [14] (the
simplest and original type of VM), though they essentially
remained within the propositional core of FOL and only
needed first order constructs to encode their semantics into
manually constructed Prolog programs. As BFMs evolved,
so too did their semantics, and, in particular, Benavides
et al. [15] provided a characterization of Cardinality-based
feature models as Satisfiability [16], Binary Decision Diagram
[17] and (Boolean) Constraint Satisfaction Problems [18], all
falling into the purview of first order theories.

There exist many variability modeling languages that are
used for SPLE and beyond. The models constructed with these
languages aim to capture the variability relations that exist
within a given domain with the aim of expressing the set
of allowable combinations of domain elements in products.
These domain elements are commonly modeled as “features”
that encode an end-user-facing piece of functionality [1].
The relations among these features make explicit the design
constraints imposed both by the domain itself and the tech-
nological choices involved. There has been a considerable
amount of work regarding the automated analysis of these
models during the past few decades [19], such as automated
configuration of products or finding errors in the models.
These efforts primarily focused on models of a particular type,
that is, feature models, which were originally proposed in
[20] and have been since extended with additional constructs
that increase their expressivity. A considerable amount of
alternative modeling languages, and even syntactic variations
of the aforementioned variability models have been proposed,
each aiming to improve upon the characteristics of these
feature models to support more expressive models that better
capture the nature of the domain.

It has been noted in the literature that (finite domain)
constraint solving approaches are those best suited to handle
the expressivity of features models extended with numerical
and symbolic constructs as surveyed by Benavides et al. [21].
This survey highlights several other semantic approaches that
have been proposed in the literature, like the use of Description
Logic [22] originally proposed by Wang et al. [23]. That being
said, the overwhelming majority of approaches fit squarely in
the realm of classical predicate (first order) logic.

In addition, most of the works here cited, and cited in
the above surveys [19] [21], demonstrate that the approaches,
whenever constructed to support tooling, transform the vari-
ability models directly into the representations amenable for
analysis by the underlying solver technologies. This makes
these formalizations difficult to reuse, compare, debug and
render them inflexible to changes in the input language. We
therefore diverge from these approaches and aim to construct
a representation that directly encodes first order formulas, i.e.,
Common Logic [8], and in particular its machine- and human-
interpretable syntax, the Common Logic Interchange Format
or CLIF.

III. CLIF AS STANDARD FORMAL SEMANTICS FOR
VARIABILITY MODELING

One of the main contributions of this article is the proposal
of the Common Logic [8] standard as the ideal target rep-
resentation of the logical semantics of variability models. In
particular, we propose the use of a fully conformant subset
of the Common Logic Interchange Format (CLIF) as the
preferred notation towards which transformation procedures
should aim to produce their results. While CLIF’s expressivity
surpasses that of First Order Logic (FOL) through some
additional constructs allowing for infinite expressions, we
consider that there is only need to support the constructs
effectively contained in FOL (c.f. Section 6.5 of [8] for a
deeper justification and discussion as to why this is admis-
sible and does not fundamentally limit our expressiveness).
The justifications for choosing Common Logic (and CLIF in
particular) are threefold: first, its capacity to be as expressive
as FOL means that it easily represents all constructs that
are handled by the most commonly used tools for analysis
[19] [21], namely Constraint Logic Programming over finite
domains [24], constraint programming [18], SAT solvers [16]
and SMT [25] solvers, among others; second, its status as
an international standard with a normative and fully defined
representation format (CLIF) makes it easily interoperable
with other systems and understandable by humans and ma-
chines alike; and, finally, the Lisp-like S-expression derived
syntax make parsing and managing models represented in
CLIF simple. In addition, this same structure facilitates the
generation of these expressions from model elements.

There is an additional angle to consider as to why CLIF
is particularly suitable for providing the semantics of models.
Real world SPL projects go beyond domain VMs, and model
the concrete software assets or artifacts that are to be used to
assemble software products. UML models model the structure
and behaviour of software systems, and are one possible type
of asset model. As highlighted in the introduction, there have
been ongoing efforts to provide formal semantics for UML
models for automated execution and analysis, which have been
defined in CLIF [9] for a subset of UML models. This opens
the door to a possible avenue for investigating the logical
integration between variability models and UML-derived asset
models within a single analysis framework. CLIF has also
found use in other domains, such as the basis for a large

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 42 / 54

Fig. 1. An extended feature model with an arbitrary cross tree constraint
depicted in VariaMos. Adapated from the example in Figure 2 in [29].

repository of formal ontologies [26], or as the input language
for a tool that brings together heterogenous theorem provers
[27].

IV. ILLUSTRATING VM LANGUAGE AGNOSTICISM BY
EXAMPLE

In this section, we aim to demonstrate the genericity of
our approach by examining the translation of two different
VM languages into CLIF. The key idea behind both of these
examples is that, by providing each VM language with a
specification for its semantics, we can transform any model
constructed with said language into its corresponding logical
semantics. These semantics could, in turn, be used as the
input for inference engines with which different analyses could
be performed. To achieve this, we make use of JSON [28]
specifications that act as sets of templates for each of the
elements present in each language’s abstract syntax. These
templates generate logic formulas with CLIF syntax, and,
when collected together (with an implicit conjunction of all
these formulas), form a complete CLIF model, that acts as the
logical theory one associates to a given model.

To capture as large a gammut as possible of VM languages,
we allow the semantics to be defined for all syntactic con-
structs that can be depicted in our modeling tool. In addition,
some languages include constructs that reify, for instance,
one-to-many relations that, to render their semantics, need
information from neighboring nodes in the graph; therefore,
we explicitly allow translation rules to capture information
about neighboring elements in the graph to generate the CLIF
formulas.

A. Feature Models

Figure 1 depicts an extended feature model for a product
line of accesible web browsers featuring cardinalities and
attributes. All the elements of the model have been annotated
and numbered according to their type: features are in green;
relations in blue; and elements that reify one to many relations
(with UML-like cardinality ranges), called bundles, are in
light orange. The logical semantics of the model in CLIF are

(model 1

(and (bool Web Browser) (= Web Browser 1)) 2

(bool Navigation) 3

(bool TextToSpeech) 4

(bool VoiceControl) 5

(int VoiceControl::Version) 6

(bool Tabbing) 7

(bool Spatial) 8

(and (=< (Navigation * 1) (Tabbing + Spatial)) 9

(=< (Tabbing + Spatial) (Navigation * 2))) 10

(and (int (0 5) CustomisedTabbing) (and 11

(=< (Tabbing * 1) CustomisedTabbing) 12

(=< CustomisedTabbing (Tabbing * 5)))) 13

(= (Classic + Advanced) (TextToSpeech * 2)) 14

(bool Classic) 15

(bool Advanced) 16

(= Web Browser Navigation) 17

(>= Web Browser TextToSpeech) 18

(>= Web Browser VoiceControl) 19

(=< (Spatial + VoiceControl) 1) 20

(if (= Advanced 1) (>= VoiceControl::Version 2)) 21

) 22

Fig. 2. The logical semantics of the feature model from Figure 1 in CLIF.

portrayed in Figure 2. The correspondence between the model
and its semantics is as follows:

• Line 2 depicts the semantics of F1 as a boolean variable,
and, since it is a root feature, it also models a constraint
that obligates it to be present, i.e., set to 1.

• Lines 3–5, 7–8, and 15–16 represent features F2–5 and
F7–9 as boolean variables.

• Line 6 represents the Version attribute (not visible in the
figure) of F4 as an integer variable.

• Line 9 represents the semantics of the reified relation B1,
giving a range of 1 to 2 selected features if feature F2 is
present.

• Line 11 represents the semantics of F6, a feature that,
unlike the others, is not boolean, but can instead be
present as up to 5 instances (also called clones in the
literature).

• Line 14 represents the reified “and” relation B2, implying
that if the parent feature F3 is present both F8 and F9
must be present aswell.

• Line 17 represents the mandatory relation R1, i.e., the
two features must be bound to the same value.

• Lines 18 and 19 represent the optional relations from F1
to F3 and F4.

• Line 20 encodes the exclusion relation between F7 and
F4.

• Line 21 encodes a complex constraint between F9 and
the Version attribute of F4.

The transformation of the model and its elements is done
through the specification of the semantics of the VM lan-
guage’s syntax elements in a JSON format. This JSON serves
to provide a set of “templates” to turn these abstract syntax
elements of the model into CLIF expressions. Figure 3 presents
a fragment of the translation rules necessary to transform
a feature model into its corresponding CLIF model. These
templates form a bridge between the graph structure of the
model and the CLIF expressions that represent them:

• Lines 1–7 define the semantics of the (boolean) features

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 43 / 54

1 {
2 "elementTypes": ["ConcreteFeature", ...],
3 "elementTranslationRules": {
4 "ConcreteFeature": {
5 "param": "F", "constraint": "(bool F)", ...
6 }
7 },
8 "relationTypes": ["Excludes", ...],
9 "relationPropertySchema": {

10 "type": { "index": 0, "key": "value" }
11 },
12 "relationTranslationRules": { ...,
13 "Excludes": { "params": ["FA","FB"],
14 "constraint": "(=< (F1 + F2) 1)"
15 },
16 "Optional": { "params": ["FA","FB"],
17 "constraint": "(>= F1 F2)"
18 },
19 "Mandatory": { "params": ["F1","F2"],
20 "constraint": "(= F1 F2)"
21 }
22 },
23 "relationReificationTypes": ["Bundle"],
24 "relationReificationTranslationRules":{
25 "Bundle": { "param": ["F","Xs","min","max"],
26 "paramMapping": {
27 "inboundEdges": {"unique": true,"var": "F"},
28 "outboundEdges": {"unique": false,"var": "Xs"}
29 },
30 "constraint": { ..., "And": "(= (sum(Xs)) (F * len(Xs)))",
31 "Range": "(and (=< (F*min) (sum(Xs))) (=< (sum(Xs)) (F*max)))"
32 }
33 }
34 },
35 ...
36 }

Fig. 3. Fragment of Feature Model Semantic Translation specification JSON.

as boolean variables where where bool is a distinguished
unary predicate defining the domain of the variable F,
i.e., F ∈ {0, 1}.

• Lines 8–21 define the semantics of the relations between
features as CLIF expressions with arithmetic predicates
and the mechanism for determining their type according
to their properties.

• Lines 23–34 define the semantics of the bundles, and,
given their one-to-many nature, define which of the two
sides (ingoing or outgoing) contains multiple edges to
expand expressions like sum or use their length in the
CLIF expressions. In addition, depending on the type of
the bundle, additional properties of the node may play a
role, like the min/max properties for a range.

B. Sawyer et al.’s Variability Modeling Langauge

Figure 4 depicts a fragment of the principal model, using
a modified KAOS [12] language, proposed in [11]. It models
a flood early-warning system and how the system can modify
its operational configuration depending on the state of its
environment as reported through sensors. The language they
have defined is structured as follows:

• Goals, with labels in green, determine the functional
requirements of the system and are analogous to features
in feature models. Goals form a hierarchy wherein the
lower level goals imply how the goals they point to are
to be achieved.

• Soft Goals, depicted as clouds annotated in Blue, encode
the non-functional requirements of the system and can
be satisfied in a 0 to 4 scale, which is encoded as “--”,
“-”, “=”, “+”, “++” in the model. They themselves form
a hierarchy in a manner analogous to goals.

• Context Variables, annotated in light red, encode the state
of the system’s environment among a set possible choices
enconded as an enumeration of strings.

• Operationalizations, labeled in gray, specify the ways in
which a goal can be satisfied and correspond to concrete
modes of operation of the system. They are tied to a
goal through Bundles, in light orange, which behave
analogously to feature models (though with the edge
direction reversed).

• Claims, annotated in magenta, express the level to which
operationalizations satisfy the Soft Goals as a function of
which has been selected.

• Soft Influences, labeled in yellow, relate the context
variables to the Soft Goals, and determine the required
level of satisfaction when the given state is determined
by the context, e.g., if CV1 is “Low”, the required level
of satisfaction of SG5 is “++”.

The aim with this language is to construct an optimization
problem where the largest amount of claims can be satisfied in
terms of the selected operationalizations, and therefore ensure
that the Soft Goals are satisfied to a given level.

As before, we can interpret the semantics interpretation of
the CLIF model in Figure 5 as follows:

• Lines 2–4, 11–14 encode the the Goals G1–3 and the op-
erationalizations O1–4 as boolean variables. In addition,
lines 45 and 46 encode the relations of the subgoals to
the main goal.

• Lines 5–10 encode the value relations of the Softgoals
with those above them in the hierarchy as their average.

• Lines 15–18 encode the bundles B1–2 as the choices
between the operationalizations.

• Lines 19–30 encode the consequences of the claims C1–
4 on the Soft Goals, with the claims themselves being a
boolean variable that is true iff their claims are satisfied
in the resulting configuration.

• Lines 31–32, 35–40 encode the semantics of the Soft
Influences on the Soft Goals, and, just like the claims,
are boolean values that are true iff the requirements are
satisfied.

• Lines 33–34 encode the Context Variables CV1–2 as
enumerations in a fixed range.

• Lines 41–44 encode the Soft Goals as bounded integer
variables.

In Section V, we will continue with the analysis of this
example, its semantic specification and the implications for
representing VMs in CLIF.

V. DIFFERENCES BETWEEN THE DIALECT USED FOR
SEMANTIC SPECIFICATION AND (STANDARD) CLIF

As was hinted at in the previous section, while we target
CLIF as our representation, there are some practical consid-

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 44 / 54

Fig. 4. A fragment of the model for the run-time variability of a flood early-warning originally proposed in and using the language of Sawyer et al.’s [11].

1 (model
2 (bool PredictFlooding)
3 (bool TransmitData)
4 (bool CalculateFlowRate)
5 (and (int (0 4) EnergyEfficiency)
6 (= EnergyEfficiency ((CFREE + TDEE)/2)))
7 (and (int (0 4) FaultTolerance)
8 (= FaultTolerance ((TDFT)/1)))
9 (and (int (0 4) PredictionAccuracy)

10 (= PredictionAccuracy ((CFRPA)/1)))
11 (bool Bluetooth)
12 (bool WiFi)
13 (bool Distributed)
14 (bool SingleNode)
15 (and (=< (TransmitData * 1) (Bluetooth + WiFi))
16 (=< (Bluetooth + WiFi) (TransmitData * 1)))
17 (and (=< (CalculateFlowRate * 1) (SingleNode + Distributed))
18 (=< (SingleNode + Distributed) (CalculateFlowRate * 1)))
19 (and (bool C1) (iff (= C1 1) (and
20 (if (= Bluetooth 1) (=< TDEE 4))
21 (if (= WiFi 1) (=< TDEE 1)))))
22 (and (bool C2) (iff (= C2 1) (and
23 (if (= Bluetooth 1) (=< TDFT 1))
24 (if (= WiFi 1) (=< TDFT 4)))))
25 (and (bool C3) (iff (= C3 1) (and
26 (if (= SingleNode 1) (=< CFREE 4))
27 (if (= Distributed 1) (=< CFREE 0)))))
28 (and (bool C4) (iff (= C4 1) (and
29 (if (= SingleNode 1) (=< CFRPA 1))
30 (if (= Distributed 1) (=< CFRPA 4)))))
31 (and (bool SI1) (iff (= SI1 1) (if (= BatteryHealth 0)
32 (and (= EnergyEfficiency 4)))))
33 (enum (0 1 2) BatteryHealth)
34 (enum (0 1) RiverState)
35 (and (bool SI2) (iff (= SI2 1)
36 (if (= RiverState 0) (and (= EnergyEfficiency 4)))))
37 (and (bool SI3) (iff (= SI3 1) (if (= RiverState 2)
38 (and (= FaultTolerance 4) (= PredictionAccuracy 4)))))
39 (and (bool SI4) (iff (= SI4 1)
40 (if (= RiverState 1) (and (= PredictionAccuracy 4)))))
41 (int (0 4) TDEE)
42 (int (0 4) CFREE)
43 (int (0 4) TDFT)
44 (int (0 4) CFRPA)
45 (= TransmitData PredictFlooding)
46 (= CalculateFlowRate PredictFlooding)
47)

Fig. 5. The logical semantics of the feature model from Figure 1 in CLIF.

erations for its use that mean that we differ from CLIF as
presented in the standard. These deviations, though small, have
important consequences for the models produced through the
semantic specification mechanism. The first of these departures
is that we expressly recognize a set of distinguished predicates
beyond the sole equality recognized by CLIF, such as unary
or binary predicates like int and bool relating to the domains
of variables used in the program. This is motivated by a desire
to facilitate the construction of executable representations in
different solvers that generally cannot automatically infer do-
main membership or require it outright for every variable. The
other quite salient departure from the standard presentation
of CLIF relates to the treatment of quantifiers; in effect, to
enable complex arbitrary constraints, or even merely support
the conjunction of the sentences outlined in the example from
subsection IV-B, the reocurrence of the same variables must
imply that they refer to the same object. Therefore, variables
that occur free in the generated semantics are to be interpreted
as being implicitly universally quantified over the conjunction
of all the generated sentences; we do this following the
tradition set by the standard first-order semantics for (pure)
Prolog programs given by Clark’s completion [30] and that of
the Knowledge Interchange Format [31] language from which
CLIF itself was derived. For example, the full logical reading
of the exclusion relation in Figure 1 and therefore lines 5,8
and 20 from Figure 2 would be (using their annotated names
for brevity):

∀F4, F7

∧
{(F4 ∈ {0, 1}), (F7 ∈ {0, 1}), (F4 + F7 ≤ 1)}

This naturally leads to the question of handling quantifiers
within each of the sentences. We have not yet found it neces-
sary to introduce existential quantifiers for the semantics of the
models languages we have dealt with so far; however, we have
found very important applications of universal quantifiers, in
particular, as a construct allowing one to deal with sentences

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 45 / 54

that involve sets of incoming or outgoing edges to a given
node in the directed graph. We currently consider, then, that
the quantifiers range over finite sets that are defined precisely
by the multiplicity of possible connections. This, in turn,
leads to an important transformation that can be done directly
without any loss of expressivity, namely that one can transform
the universal quantification over a single variable and over a
sentence into the iterated conjunction of a set of sentences each
being the original sentence with the bound variable replaced by
a member of the set. This is due to the following equivalence:

Let S be a finite set and ϕ an arbitrary first order sentence
with only s unbound.

∀s ∈ Sϕ(s) ⇔
∧
s∈S

ϕ(s)

This greatly simplifies, and augments the power of, the
semantics we can express and in turn greatly simplifies the
translation from CLIF towards some solver paradigms where
there is no pure or declarative handling of classical universal
quantification, e.g., Prolog. To be clear, the quantifier expan-
sion draws its values from the graph’s elements and not from
the variable domains over which we are solving. This subtle
point means that we retain the intensive expression of the
semantics but are able to write more general rules that have
potentially varying amounts of appearances of certain elements
from neighboring elements.

To demonstrate these mechanisms and differences in prac-
tice, consider the example from Figure 4, and in particular
centered on the element SI3 and its relation with its neighbors
SG6, SG7 and CV2. We have defined the semantics of the
Soft Influence as shown in Figure 6. Within this semantic
specification, we “bind” the set over which the x variable
is quantified as the target nodes of the outbound edges,
corresponding to Xs in the translation rule and to SG6 and
SG7 in Figure 4. We also have distinguished functions relating
to intrinsic properties of the directed graph, such as edge(x)
whose value is the edge leading to the x node, and we also
allow references to arbitrary custom properties defined on
graph elements through the :: operator.

The corresponding logical reading of these semantics would
be as follows:

Let X be the set of nodes in the graph, Xs ⊂ X be the set
of nodes corresponding to the outgoing edges in the model,
E be the set of edges in the model, edge be a function edge :
X → E, V the set of attribute types and Vs the set of attribute
values, :: be an infix binary function (::) : E ∪X × V → Vs,
S be the variable corresponding to the id of the soft influence
node, and F ∈ {0, 1} the variable corresponding to the id
of the unique inbound node. It is to be understood that the
predicate imposing bounds on the F variable would also be
part of the semantics.

∀S, F
[
bool(S) ∧

(
(S = 1) ⇐⇒ (F = edge(F) :: V alue

=⇒ ∀x ∈ Xs(x = edge(x) :: SatisfactionLevel))
)]

However, given the equivalence cited above, the rendered
semantics would be (lines 37–38):

{ ..., 1

"relationReificationTranslationRules": { 2

"SoftInfluence": { 3

"param": ["S", "F", "Xs"], 4

"paramMapping": { 5

"node": "S", 6

"inboundEdges": { "unique": true, "var": "F" }, 7

"outboundEdges": { "unique": false, "var": "Xs" } 8

}, 9

"constraint": { 10

"SoftInfluence": "\ 11

(and (bool S) (iff \ 12

(= S 1) (if \ 13

(= F edge(F)::Value) 14

(forall (x:Xs) \ 15

(= x edge(x)::SatisfactionLevel) \ 16

) \ 17

) \ 18

))" 19

} 20

}, ... 21

}, ... 22

} 23

Fig. 6. Fragment of Sawyer et al.’s language’s Semantic Translation specifi-
cation JSON. The “\” indicates the split in the multiline string for readability
and formatting.

(and (bool SI3) (iff (= SI3 1)
(if (= CV2 edge(CV2)::Value) (and

(= SG6 edge(SG6)::Value) (= SG7 edge(SG7)::Value)))))

This removes the need to handle the internal quantifier, and
simplifies the reading of the rendered formula.

VI. VARIABILITY MODEL TO CLIF TRANSLATION
ARCHITECTURE AND IMPLEMENTATION

We propose a distributed architecture for CLIF semantic
translation, as depicted in Figure 7. The necessary tooling
for modeling is served from a cloud infrastructure avoiding
the need to perform any installation on the client beyond
browsing to the website, where the user is served the user
interface (shown in green) by the FrontEnd HTTP server.
Within the cloud infrastructure, all concerns relating to the
storage of the languages are handled, including their syntax
and semantics, with a database backing these operations and
providing a source of persistence between client interactions.
An additional service that can perform certain checks on graph
validity, such as allowed element amounts and connections
beyond what can be handled natively by the graphics library
used by the client is proposed in the architecture, to offload
some responsibilities from the client. All of these services are
deployed as containers, and are shown in white in our logical
architecture diagram.

When it comes to the semantic translator service (shown
in yellow), which is the core tool covered by this articles, it
has been developed as a Docker [32] container which will
expose a REST API endpoint over which the translation (and
eventual analysis) operations will be served. Since our Front
End is inherently configurable, this Back End can be deployed
anywhere. For our prototype we have deployed it locally
within a test cluster, but it will be made available within the

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 46 / 54

Fig. 7. High Level logical architecture of the VariaMos tool and the translation
tool.

VariaMos cloud infrastructure, where it will be the default
point of access for translation. Looking forward, however,
to the integration of the underlying solvers (which may also
require licenses and hence can only be run locally), it seems
clear that decoupling the translation mechanism allows for the
best use of the available computational resources by allowing
the user to choose where he desires the operations to be run,
either sharing a cloud resource with others or deploying a local
version of the container if he so wishes. This retains all the
benefits of a cloud-native solution, while also being flexible
when additional computational resources are required for a
particular project.

The high-level operating principles of the translation mech-
anism are described in Figure 8. The fundamental operations
carried out involve performing data validation on both the form
of the provided Model and the semantics. Then the serialized
model is reconstructed into a Graph; this, put together with the
semantics, are then put through the CLIF model generation
procedure which ultimately outputs the model’s semantics
which are the reported back to the user. This is all exposed
through the API endpoint served in the translator container.

In terms of the implementation of the translation Back End,
we have constructed the server in python with the following
software components: Flask [33] for the server code, pydantic
[5] for data schema validation, networkX [34] for graph
representation in python, and textX [35] for managing the
CLIF grammar. All of the code for the translator is open-
source and freely available on GitHub at [36]. Within this
repository are included the full grammar for our subset of
CLIF, and complete examples (including models, semantics
and syntax) for basic and extended feature models, as well as
for Sawyer et al.’s [11] modified version of KAOS.

VII. LIMITATIONS AND FUTURE WORK

In terms of our approach’s limitations, it must be noted that
we do not cover the entire CLIF standard, and we have not yet
found a need to construct a particular treatment of existential

Fig. 8. High-Level operation of the translation tool.

quantification within model’s semantics. There are also some
limitations tied to the translation mechanism for the generation
of the semantics, namely, we require that the elements that
participate in a given node’s or edge’s semantics be directly
connected, and thus we cannot yet perform the transitive
traversal of the graph for the generation of the semantics.
We also have no semantic treatment for elements that can be
nested. We also require the user to have some understanding
of the internal structure of the graph representation in the
front-end client in order to define rules for attribute lookup
to, for example, perform type disambiguation when a given
node or relation’s semantics depends on types defined by these
attributes. This means that while we believe our approach is
expressive enough to handle most VM languages that have
been covered in the literature, it is possible that some others
posses constructs that aren’t easily expressible or require the
aspects of CLIF we have not yet covered, such as deeply
nested negation. In addition, we are restricted to languages
that form directed graphs, so we are unable to treat languages
with more complex graph types like hypergraphs without some
measure of reification. We also do not handle the translation
of textual languages into CLIF.

As mentioned in Section VI, our principal aim is to con-
tinue expanding upon the already implemented aspects of the
proposal in order to complete the full end-to-end cycle of
model generation and subsequent automated analysis through
the use of several solvers. We will initially target constraint
solvers as these are the best attested in the literature [37] and
have the most straightforward translation from CLIF into their
respective representation, but we ultimately aim to support a

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 47 / 54

larger range of first order logic-based automated analysis tools.

VIII. CONCLUSIONS

In this article, we have presented a proposal for the use of
CLIF as the standard representation format for the semantics of
Variability models. We also present and demonstrate a mech-
anism to specify formal semantics for variability modeling
languages through a simple JSON based specification format.

Our mechanism leverages the user-friendliness of the JSON
format with the ability to quickly construct one’s needed
(and formally defined) modeling language semantics in such a
manner that it spares prospective users from the need to learn
the specifics of the programming involved. It also enables the
quick evolution of language’s semantics with no modifications
to the underlying tools.

We believe this will permit the transparent integration
of multiple analysis methods and especially solver families
through the construction of translation from CLIF into their
respective syntaxes.

ACKNOWLEDGMENT

We would like to thank Mauricio Agudelo for his work
on the architecture and development of VariaMos, Jairo Soto
for his work on the deployment of the VariaMos cloud
infrastructure, and Francisco Piedrahita for his work on an
initial version of these ideas.

REFERENCES

[1] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques, 1st ed. New
York, NY: Springer, 2005.

[2] Systems and Software Product Line Conference, “Product Line Hall Of
Fame,” https://splc.net/fame.html, n.d., accessed: 2023-03-27.

[3] B. H. Cheng et al., “Using models at runtime to address assurance for
self-adaptive systems,” Models@ run. time: foundations, applications,
and roadmaps, pp. 101–136, 2014.

[4] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software
product lines,” Computer, vol. 41, no. 4, pp. 93–95, 2008.

[5] Pydantic Services Inc., “Pydantic,” https://pydantic.dev/, 2023, accessed:
2023-03-27.

[6] OpenAPI Initiative, “OpenAPI Specification,” https://spec.openapis.org/
oas/latest.html, 2021, accessed: 2023-03-27.

[7] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software en-
gineering in practice, ser. Synthesis lectures on software engineering.
Morgan and Claypool, 2017.

[8] “Information Technology – Common Logic (CL) – A framework for a
family of logic-based languages,” International Organization for Stan-
dardization, Geneva, CH, Tech. Rep., Jul. 2018.

[9] “Semantics of a Foundational Subset for Executable UML Models
(fUML), version 1.5,” Object Management Group, Tech. Rep., Apr.
2021.

[10] S. Cook et al., “Unified Modeling Language (UML), version 2.5.1,”
Object Management Group, Tech. Rep., Dec. 2017.

[11] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Using con-
straint programming to manage configurations in self-adaptive systems,”
Computer, vol. 45, no. 10, pp. 56–63, 2012.

[12] A. Van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software. John Wiley & Sons, 2009.

[13] VariaMos Team, “VariaMos Framework,” https://variamos.com/, 2023,
accessed: 2023-03-27.

[14] M. Mannion, “Using first-order logic for product line model validation,”
in Software Product Lines: Second International Conference, SPLC 2
San Diego, CA, USA, August 19–22, 2002 Proceedings. Springer, 2002,
pp. 176–187.

[15] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés, “A first step
towards a framework for the automated analysis of feature models,”
Proc. Managing Variability for Software Product Lines: Working With
Variability Mechanisms, pp. 39–47, 2006.

[16] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfiability
solvers,” Foundations of Artificial Intelligence, vol. 3, pp. 89–134, 2008.

[17] R. Drechsler and D. Sieling, “Binary decision diagrams in theory
and practice,” International Journal on Software Tools for Technology
Transfer, vol. 3, no. 2, pp. 112–136, May 2001.

[18] R. Dechter and D. Cohen, Constraint Processing. Morgan Kaufmann,
2003.

[19] D. Benavides, “Variability Modelling and Analysis During 30 Years,”
in From Software Engineering to Formal Methods and Tools, and
Back: Essays Dedicated to Stefania Gnesi on the Occasion of Her
65th Birthday, ser. Lecture Notes in Computer Science, M. H. ter
Beek, A. Fantechi, and L. Semini, Eds. Cham: Springer International
Publishing, 2019, pp. 365–373.

[20] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son, “Feature-Oriented Domain Analysis (FODA) Feasibility Study:,”
Defense Technical Information Center, Fort Belvoir, VA, Tech. Rep.,
Nov. 1990.

[21] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, Sep. 2010.

[22] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and
D. Nardi, The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge university press, 2003.

[23] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, “A semantic web
approach to feature modeling and verification,” in Workshop on Semantic
Web Enabled Software Engineering (SWESE’05), 2005, p. 46.

[24] J. Jaffar and J.-L. Lassez, “Constraint logic programming,” in Proceed-
ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1987, pp. 111–119.

[25] C. Barrett and C. Tinelli, “Satisfiability Modulo Theories,” in Handbook
of Model Checking, E. M. Clarke, T. A. Henzinger, H. Veith, and
R. Bloem, Eds. Cham: Springer International Publishing, 2018, pp.
305–343.

[26] Semantic Technologies Laboratory, “COLORE,” http://stl.mie.utoronto.
ca/colore/, n.d., accessed: 2023-03-27.

[27] T. Mossakowski, M. Codescu, O. Kutz, C. Lange, and M. Grüninger,
“Proof support for common logic.” in ARQNL@ IJCAR, 2014, pp. 42–
58.

[28] D. Crockford, “The application/json Media Type for JavaScript Object
Notation (JSON),” Internet Engineering Task Force, Request for Com-
ments RFC 4627, Jul. 2006.

[29] J. Carbonnel, M. Huchard, and C. Nebut, “Towards complex product
line variability modelling: Mining relationships from non-boolean de-
scriptions,” Journal of Systems and Software, vol. 156, pp. 341–360,
Oct. 2019.

[30] J. W. Lloyd and J. W. Lloyd, Foundations of Logic Programming,
2nd ed., ser. Artificial Intelligence. Berlin Heidelberg: Springer, 1993.

[31] M. R. Genesereth and R. E. Fikes, “Knowledge interchange format-
version 3.0: Reference manual,” 1992.

[32] Docker Inc., “Docker Documentation,” https://docs.docker.com/, 2023,
accessed: 2023-03-27.

[33] The Pallets Projects, “Flask User’s Guide,” https://flask.palletsprojects.
com/en/2.2.x/, n.d., accessed: 2023-03-27.

[34] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[35] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković, “TextX:
A Python tool for Domain-Specific Languages implementation,”
Knowledge-Based Systems, vol. 115, pp. 1–4, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705116304178

[36] C. Correa Restrepo, “Semantic Translator,” https://github.com/ccr185/
semantic_translator, 2023, accessed: 2023-03-27.

[37] M. Pol’la, A. Buccella, and A. Cechich, “Analysis of variability models:
A systematic literature review,” Software and Systems Modeling, vol. 20,
no. 4, pp. 1043–1077, Aug. 2021.

40Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 48 / 54

A Federated Source Code Quality Query and Analysis Platform

Tugkan Tuglular

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: tugkantuglular@iyte.edu.tr

Emre Baran Karaca

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: emrekaraca@std.iyte.edu.tr

Onur Leblebici

Univera Inc.

Izmir, Turkiye

email: Onur.Leblebici@univera.com.tr

Naşit Uygun

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: nasituygun@std.iyte.edu.tr

Osman Anıl Hiçyılmaz

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: osmanhicyilmaz@std.iyte.edu.tr

Abstract—The typical approach to data analysis is to store,

query, and analyze data in a central location. In the case of

source code, where multiple organizations or partners in a

consortium contribute to a software, the repositories would be

distributed and might be private. Within such a setting, one

goal would be achieving and maintaining a certain level of

source code quality across the consortium. One solution is to

consider each partner as a node in a federated network. This

paper proposes a federated code quality query and analysis

platform. It further presents the features and the design of this

platform.

Keywords-source code quality; federated network; federated

query; federated analysis.

I. INTRODUCTION

There are cases where each partner in a consortium, such
as in the NESSI-SOFT project [1] in the Sixth Framework
Programme and in the MODUS project [2] in the Seventh
Framework Programme, does not want to share all of its
source code but needs to be queried whether holding a pre-
determined minimum source code quality level so that a
certain level across the consortium is achieved and
maintained. For such cases, one solution is to build a
federated network so that each node in this network has its
privacy, but shares required quality information. This paper
considers this setting for source code quality and proposes a
Federated Source Code Quality Query and Analysis
(FSCQQA) platform. The setting is visualized in Figure 1.

The FSCQQA platform consists of a central site as seen
at the top of Figure 1 and multiple sites, which are peers. It is
a kind of peer-to-peer network, where the peers accept and
follow a general policy and corresponding rules. In addition,

the central site is responsible for inclusion and removal of
peer sites with respect to the general policy. Such platforms
are on the rise especially in the health field, where privacy
regulations and expectations are high, and accountability is
enforced at state level. The proposed FSCQQA platform is
one of the early attempts, where the idea is applied to source
code, but not health records. Therefore, we believe that there
is a practical gain from such a platform proposal.

Figure 1. The FSCQQA platform overview.

41Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 49 / 54

The proposed platform is not only for consortiums to
utilize. A global software company with development sites in
various countries can also benefit from the FSCQQA
platform. In this setting, concerns like revealing too much
information about the software under development and the
software development team may be relieved.

The FSCQQA platform offers opportunities for querying
and monitoring source code quality across a consortium.
This platform can facilitate analyzing how source code
improvements are performed and how defect numbers are
minimized. The FSCQQA platform has the following
features:

• Analyze software quality with defect and source
code metrics.

• Share defect and source code metrics with peers and
consortium administration/management.

• Follow trends and improve.

• Compile federated historical data on defects and
source code quality.

The features are kept at minimum in the paper, but they
can be extended easily. To serve these features, the
FSCQQA platform provides a data infrastructure, a software
stack, and the operations on them. The proposed design is
novel. The FSCQQA platform can be used for source code
quality and defect prediction in the future.

As of today, there are multi-site software development
companies whose sites are globally distributed. Each site is
autonomous to some degree, but they are subject to central
management rules. In such a setting, tracking each site’s
software quality and achieving an overall performance is not
easy. Such a platform would be beneficial to them as well.

The paper is organized as follows: Section II presents the
bug, or defect, datasets and source code quality metrics.
Section III explains the proposed platform. Section IV
outlines related work, and the last section concludes the
paper.

II. FUNDAMENTALS

A. Bug Datasets

Lately, bug datasets are composed for bug or defect
prediction. Following this, Ferenc et al. [3] compiled and
standardized existing public bug datasets. The same group
[4] extended their bug dataset and made the dataset publicly
available at [5]. Several research works have produced and
utilized bug datasets to develop and evaluate novel bug
prediction methods. The objective of their study is to collect
and combine current public source code metrics-based bug
databases. In addition, they evaluated the abundance of
gathered metrics and the bug prediction skills of the unified
bug dataset. One research direction in this field moves
toward combining bug datasets with software code quality
metrics for better prediction. One of the first attempts is
published by Osman et al. [6]. They evaluated sixty distinct
bug prediction setting combinations on five open-source Java
projects using a cost-aware evaluation scheme. Change
measurements combined with source code metrics were
discovered to be the most cost-effective option for
developing a bug predictor. Another example of this work is

presented by Mashhadi et al. [7]. They conducted a
quantitative and qualitative study on two prominent datasets
(Defects4J and Bugs.jar) utilizing 10 common source code
metrics, as well as two popular static analysis tools
(SpotBugs and Infer), for the purpose of evaluating their
capacity to anticipate flaws and their severity.

B. Source Code Quality Metrics

Software quality metrics have been proposed for decades.
The literature starts in 1970s. In the 1980s and 1990s, design
metrics and their impact on software and source code were
mainly studied. Henry and Selig [8] published a book on
design metrics, which predicts source code quality. Two
early research works specifically on source code quality
metrics are by Pearse and Oman [9] and by Welker et al.
[10]. They worked on the maintainability of source code.

With the popularity of object-orientation, the research in
this area was intensified. Nuñez-Varela et al. [11] did a
comprehensive mapping investigation on 226 articles that
were published between 2010 and 2015 and discovered
nearly 300 source code metrics. Even though object-oriented
metrics have received a great deal of attention, there is a
need for greater research on aspect and feature-oriented
measurements. Prediction of software faults, complexity, and
quality evaluation were recurring themes in these
investigations.

Currently, there are separate tools as well as tools
embedded into platforms, which not only produce source
code quality metrics but also calculate technical debt. The
next step for these tools seems to be towards predictions and
suggestions for better code quality. Our vision and current
attempt are in the same direction.

III. PROPOSED PLATFORM

We propose a federated code quality query and analysis
platform, called FSCQQA. In this section, we first explain
our design goals, such as “authentication and authorization”
and “logging and monitoring” and continue with the services
the FSCQQA platform provides. Some local services may
vary between sites, but standardized procedures and rules
will be implemented to ensure uniform administration and
oversight. Finally, we present our user interface design to
give a sense of use cases for the FSCQQA platform.

A. Design Goals

The major design goals are as follows:
Authentication & Authorization (AA): Each partner or site

may have its own AA mechanism implemented. Then, each
partner is responsible for the FSCQQA platform for its users’
queries. Each query includes the user and site identification;
the site is responsible for logging the queries.

Access Control (AC) Policies: Each site may have its
policies and regulations depending on the country where the
site is. Therefore, the response to each query is filtered
locally before sending. Each site should guarantee that any
response does not contain any personal identifiable
information.

Secure Communication: Each site must be able to
communicate securely with trustworthy peers. All nodes

42Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 50 / 54

exchange secure Public Key Infrastructure certificates in
order to establish trust. While the FSCQQA platform is a
federated network, the security of the nodes is only as strong
as the network's weakest link.

Logging and Monitoring: Every query executed by a
node should be recorded in an audit trail that the peer sites
could view. The logs will be monitored by the central site for
anomalies.

Standard APIs: Each site should provide standard APIs
defined by the FSCQQA platform. Although the FSCQQA
platform provides a software agent called FSCQQA agent to
fulfil this requirement, the site may choose to implement its
own software agent.

Source Code Repositories: The FSCQQA platform
provides a software agent to work with GitHub [12]
repositories. However, this is not a must. Any site can work
with any source code repository but must ensure that
standard APIs required by the platform are provided.

Management of Federated Platform: There is a central
site responsible for the management of partners and their
sites. These management operations include adding and
removing partners and sites (a partner may have more than
one site), constantly informing partners about other alive
partners and sites, and collecting velocity and trend
information from site.

B. Services

The FSCQQA platform defines two types of services,
one provided by the FSCQQA agent and the other by the
standard FSCQQA APIs. The FSCQQA agent is
customizable through configurations with the following
parameters:

• GitHub repository address

• GitHub repository access rights
The FSCQQA agent automatically generates local defect

database for each site from a GitHub repository by extracting
commit/issue histories and analyzing them. At the same
time, it collects software metrics, such as lines of code and
cyclomatic complexity, for each commit/issue. The defect
information with software metrics will represent source code
quality of the software developed at a site. Moreover, the
FSCQQA agent extracts source code related metrics for a
specific version using tools, such as OpenStaticAnalyzer
[13]. The process is presented as an Unified Modeling
Language (UML) sequence diagram in Figure 2. The
FSCQQA agent is also responsible for the management of
the local database for defects and metrics. To mitigate
security concerns related to such an agent software, its
source code should be open.

The standard FSCQQA APIs provide the services of the
FSCQQA platform with respect to Open-API specifications
[14]. The services are grouped as follows:

• Defect related metrics: number of existing (active)
defects, defect density, defect resolve velocity,
longest unresolved defect.

• Source code related metrics: class metrics, method
metrics, coupling metrics, cohesion metrics,
cyclomatic complexity metrics.

The services provide data for a specific version. They can
be extended to supply data between two versions, but it may
complicate the presentation of information and is, therefore,
left as future work. The service calls can be for a specific
metric or a set of metrics from a specific site or the whole
network. If the whole network is queried, the query site
requests all alive sites from the central site and queries each
one individually then accumulates the results.

Figure 2. The FSCQQA platform overview.

The central site keeps a list of alive sites in the federated
network by recording their heartbeats. Each site is expected
to send a heartbeat every hour. If a site’s heartbeat is missing
necessary notifications are performed. The central site also
holds summarized metrics for the whole network, such as
overall defect resolve velocity and its trend over some time.

C. User Interface Design

The user interface design is presented via Figures 3-5. A
user either in a site or in the central site can see the
repositories with proper access rights, as shown in Figure 3.
To mimic this operation, Figure 1 presents some public
GitHub repositories. This project repository and selection
window also indicates the status of the project with four
states: “Not Analyzed”, “Analyzing”, “Analyzed”, and
“Failed”. After selecting a project, a window like the one in
Figure 4 is shown and if the status is neither “Analyzing” nor
“Analyzed”, the "Analyze" button appears. If it has already
been analyzed, the details of the analyze operation are
shown. To see the metrics, the metrics button should be
pressed, and it takes the user to a window like the one shown
in Figure 5. It is called the dashboard and presents various
metrics with charts and graphs. Metrics, charts, and graphs
are all customizable.

IV. RELATED WORK

The concept of federated networks is not new, and they
are not limited to a certain field. The services are called
federated if their service architecture spans numerous
independent control domains [15]. It is challenging to
manage federated services and provide effective customer

43Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 51 / 54

assistance since only a tiny portion of the environment can
be monitored and controlled by any given authority. Bhoj et
al. [15] characterized many facets of federated networks as
early as 1997. Some other examples of federated networks
are as follows. For instance, Afsarmanesh et al. [16]
proposed the PRODNET architecture for federated
information management. Another example is Open Cirrus

[17], which is proposed to federate a multitude of sites with
diverse hardware, services, and tools for providing federated
data centers for open source systems and services research.
The sites reside on different continents and are subject to
different privacy legislation and concerns.

Figure 3. Project repository and selection user interface design.

Figure 4. Project analysis user interface design.

44Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 52 / 54

Figure 5. Dashboard user interface design.

The health domain is currently running federated

networks. For instance, CanDIG [18] is a Canadian national
health federated research data platform designed to assist the
finding, querying, and analysis of permitted health research
data across institutions and projects. CanDIG is the first
Canadian federation of many human genomes and
biomedical data projects. Another proposal for health
domain is the Cross-Institutional Clinical Translational
Research project [19], which investigated a federated query
tool and examined how this tool can facilitate the discovery
of clinical trial cohorts by controlling access to aggregate
patient data housed in academic medical centers that are not
linked.

V. CONCLUSION

Each day, new features are added to software, and with
each new feature, extra bugs may be introduced, and source
quality may suffer. The scenario becomes more complicated
if the software development is distributed with specific
privacy and trade secret considerations. When addressing the
challenges mentioned above, it is desired that the software
quality be maintained above a particular threshold. Toward
this goal, this paper proposes a federated source code quality
query and analysis platform called FSCQQA.

With the proposed platform, sites are not required to
disclose their codes with any other site while aiming for high
source code quality and low defect ratio. At each site, local
defect datasets will be generated and analyzed. The analysis
results as defect metrics and the source code metrics
obtained from the static analysis will be shared within the
federated network and can be queried. Furthermore, trend
analysis can be conducted at the central site and shared with
consortium sites.

As future work, federated analytics and prediction using
the local datasets are planned. The sites may push defect-
related features to the central site for future machine
learning. Such a defect database is valuable in terms of
following the reliability of each site but also in improving
defect-free development by providing in-depth analysis, such
as root-cause analysis, and suggesting training and
education. Then, the prediction model will generate
predictions on sites. The prediction model will be updated
and enhanced based on further coming data, meaning new
source code. As developer data will not be exchanged, there
will be no privacy concerns.

ACKNOWLEDGMENT

The authors would like to thank Univera Inc. for valuable
guidance.

45Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

 53 / 54

REFERENCES

[1] “Networked European Software and Services Initiative-support

office team.” https://cordis.europa.eu/project/id/034359

(accessed Mar. 19, 2023).

[2] “Methodology and supporting toolset advancing embedded

systems quality.” https://cordis.europa.eu/project/id/286583

(accessed Mar. 19, 2023).

[3] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A

public unified bug dataset for java,” presented at the

Proceedings of the 14th international conference on

predictive models and data analytics in software engineering,

2018, pp. 12–21.

[4] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A

public unified bug dataset for java and its assessment

regarding metrics and bug prediction,” Software Quality

Journal, vol. 28, pp. 1447–1506, 2020.

[5] “Unified Bug Dataset.” http://www.inf.u-

szeged.hu/~ferenc/papers/UnifiedBugDataSet/ (accessed Mar.

19, 2023).

[6] H. Osman, M. Ghafari, O. Nierstrasz, and M. Lungu, “An

extensive analysis of efficient bug prediction configurations,”

presented at the Proceedings of the 13th international

conference on predictive models and data analytics in

software engineering, 2017, pp. 107–116.

[7] E. Mashhadi, S. Chowdhury, S. Modaberi, H. Hemmati, and G.

Uddin, “An Empirical Study on Bug Severity Estimation

Using Source Code Metrics and Static Analysis,” arXiv

preprint arXiv:2206.12927, 2022.

[8] S. M. Henry and C. L. Selig, Design Metrics which Predict

Source Code Quality. Department of Computer Science,

Virginia Polytechnic Institute and State University, 1987.

[9] T. Pearse and P. Oman, “Maintainability measurements on

industrial source code maintenance activities,” presented at

the Proceedings of International Conference on Software

Maintenance, IEEE, 1995, pp. 295–303.

[10] K. D. Welker, P. W. Oman, and G. G. Atkinson,

“Development and application of an automated source code

maintainability index,” Journal of Software Maintenance:

Research and Practice, vol. 9, no. 3, pp. 127–159, 1997.

[11] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martínez-

Perez, and C. Soubervielle-Montalvo, “Source code metrics:

A systematic mapping study,” Journal of Systems and

Software, vol. 128, pp. 164–197, 2017.

[12] “GitHub.” https://github.com/ (accessed Mar. 19, 2023).

[13] Department of Software Engineering, University of Szeged,

Hungary, “OpenStaticAnalyzer.”

https://openstaticanalyzer.github.io/ (accessed Mar. 19,

2023).

[14] “OPENAPI Initiative.” https://www.openapis.org/ (accessed

Mar. 19, 2023).

[15] P. Bhoj, D. Caswell, S. Chutani, G. Gopal, and M.

Kosarchyn, “Management of new federated services,”

presented at the Integrated Network Management V:

Integrated management in a virtual world Proceedings of the

Fifth IFIP/IEEE International Symposium on Integrated

Network Management San Diego, California, USA, May 12–

16, 1997, Springer, 1997, pp. 327–340.

[16] H. Afsarmanesh, C. Garita, Y. Ugur, A. Frenkel, and L. O.

Hertzberger, “Design of the federated information

management architecture for PRODNET,” presented at the

Infrastructures for Virtual Enterprises: Networking Industrial

Enterprises IFIP TC5 WG5. 3/PRODNET Working

Conference on Infrastructures for Virtual Enterprises (PRO-

VE’99) October 27–28, 1999, Porto, Portugal 1, Springer,

1999, pp. 127–146.

[17] R. H. Campbell et al., “Open CirrusTM Cloud Computing

Testbed: Federated Data Centers for Open Source Systems

and Services Research.,” HotCloud, vol. 9, pp. 1–1, 2009.

[18] L. J. Dursi et al., “CanDIG: Federated network across Canada

for multi-omic and health data discovery and analysis,” Cell

Genomics, vol. 1, no. 2, p. 100033, 2021.

[19] N. Anderson et al., “Implementation of a deidentified

federated data network for population-based cohort

discovery,” Journal of the American Medical Informatics

Association, vol. 19, no. e1, pp. e60–e67, 2012.

46Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 54 / 54

http://www.tcpdf.org

