
SOFTENG 2019

The Fifth International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-61208-701-6

March 24 - 28, 2019

Valencia, Spain

SOFTENG 2019 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

 1 / 84

SOFTENG 2019

Forward

The Fifth International Conference on Advances and Trends in Software Engineering
(SOFTENG 2019), held between March 24, 2019 and March 28, 2019 in Valencia, Spain,
continued a series of events focusing on the challenging aspects for software development and
deployment, across the whole life-cycle.

Software engineering exhibits challenging dimensions in the light of new applications,
devices and services. Mobility, user-centric development, smart-devices, e-services, ambient
environments, e-health and wearable/implantable devices pose specific challenges for
specifying software requirements and developing reliable and safe software. Specific software
interfaces, agile organization and software dependability require particular approaches for
software security, maintainability, and sustainability.

We welcomed academic, research and industry contributions. The conference had the
following tracks:

 Challenges for dedicated software, platforms, and tools

 Software testing and validation

 Software requirements

 Maintenance and life-cycle management
We take here the opportunity to warmly thank all the members of the SOFTENG 2019

technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors who dedicated much of their time and effort to contribute to SOFTENG
2019. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

We also thank the members of the SOFTENG 2019 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that SOFTENG 2019 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the field of
software engineering. We also hope that Valencia, Spain provided a pleasant environment
during the conference and everyone saved some time to enjoy the historic charm of the city.

SOFTENG 2019 Chairs

SOFTENG Steering Committee
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Miroslaw Staron, University of Gothenburg, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, University of Applied Sciences Munich, Germany

 2 / 84

SOFTENG Industry/Research Advisory Committee
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Sigrid Eldh, Ericsson AB, Sweden
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

SOFTENG 2019 Special Tracks Chair
Raquel Lacuesta, University of Zaragoza, Spain

 3 / 84

SOFTENG 2019
Committee

SOFTENG Steering Committee
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Miroslaw Staron, University of Gothenburg, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, University of Applied Sciences Munich, Germany

SOFTENG Industry/Research Advisory Committee
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Sigrid Eldh, Ericsson AB, Sweden
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

SOFTENG 2019 Special Tracks Chair
Raquel Lacuesta, University of Zaragoza, Spain

SOFTENG 2019 Technical Program Committee

Ibrahim Akman, Atilim University, Turkey
Issam Al-Azzoni, Al Ain University of Science and Technology, UAE
Rafael Alves Paes Oliveira, The Federal University of Technology - Paraná (UTFPR - Dois
Vizinhos-PR), Brazil
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Doo-Hwan Bae, School of Computing - KAIST, South Korea
Alessandra Bagnato, SOFTEAM R&D Department, France
Marcello M. Bersani, Politecinco di Milano - DEIB, Italy
Anna Bobkowska, Gdansk University of Technology, Poland
Luigi Buglione, Engineering SpA, Italy
Azahara Camacho, Carbures Defense, Spain
Gerardo Canfora, University of Sannio, Italy
Pablo C. Cañizares, Universidad Complutense de Madrid, Spain
Rafael Capilla, Universidad Rey Juan Carlos, Madrid, Spain
Gemma Catolino, University of Salerno, Italy
Byoungju Choi, Ewha Womans University, South Korea
Morshed U. Chowdhury, Deakin University, Australia
Dario Di Nucci, Vrije Universiteit Brussel, Belgium
Amleto Di Salle, University of L'Aquila, Italy
Cesario Di Sarno, University of Naples "Parthenope", Italy

 4 / 84

Sigrid Eldh, Ericsson AB, Sweden
Pål Ellingsen, Høgskulen på Vestlandet, Norway
Faten Fakhfakh, University of Sfax, Tunisia
João Pascoal Faria, University of Porto, Portugal
Fausto Fasano, University of Molise, Italy
Rita Francese, Università di Salerno, Italy
Barbara Gallina, Mälardalen University, Sweden
Matthias Galster, University of Canterbury, Christchurch, New Zealand
Alessia Garofalo, COSIRE Group, Aversa, Italy
Pascal Giessler, SYNDIKAT7 GmbH, Germany
Jiaping Gui, University of Southern California, USA
Ulrike Hammerschall, University of Applied Sciences Munich, Germany
Noriko Hanakawa, Hannan University, Japan
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus Group Innovations, Hamburg, Germany
Samedi Heng, HEC Liège - Université de Liège, Belgium
Jang-Eui Hong, Chungbuk National University, South Korea
Fu-Hau Hsu, National Central University, Taiwan
Shinji Inoue, Kansai University, Japan
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Ludovico Iovino, Gran Sasso Science Institute, Italy
Takashi Ishio, Nara Institute of Science and Technology (NAIST), Japan
Janne Järvinen, F-Secure Corporation, Finland
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Atsushi Kanai, Hosei University, Japan
Afrina Khatun, University of Dhaka, Bangladesh
Abdelmajid Khelil, Landshut University of Applied Sciences, Germany
Takashi Kitamura, National Institute of Advanced Industrial Science and Technology (AIST),
Japan
Johann Krautlager, Airbus Helicopters Deutschland GmbH, Germany
Stephan Krusche, Technische Universität München, Germany
Herbert Kuchen, Westfälische Wilhelms-Universität Münster, Germany
Dieter Landes, University of Applied Sciences Coburg, Germany
Karl Leung, Hong Kong Institute of Vocational Education (Chai Wan), Hong Kong
Bruno Lima, University of Porto / INESC TEC, Portugal
Chu-Ti Lin, National Chiayi University, Taiwan
Panos Linos, Butler University, USA
Tongping Liu, University of Texas at San Antonio, USA
Francesca Lonetti, CNR-ISTI, Pisa, Italy
Damian M. Lyons, Fordham University, USA
Yingjun Lyu, University of Southern California, USA
Ivano Malavolta, Vrije Universiteit Amsterdam, Netherlands
Eda Marchetti, ISTI - CNR, Pisa Italy
Paolo Maresca, Verisign, Switzerland

 5 / 84

Alessandro Margara, Politecnico di Milano, Italy
Sanjay Misra, Covenant University, Nigeria
Masahide Nakamura, Kobe (National) University, Japan
Mohammad Reza Nami, TUDelft University of Technology, The Netherlands
Krishna Narasimhan, Itemis AG, Germany
Risto Nevalainen, Finnish Software Measurement Association (FiSMA), Finland
Flavio Oquendo, IRISA - University of South Brittany, France
Fabrizio Pastore, University of Milano – Bicocca, Italy
Antonio Pecchia, Federico II University of Naples, Italy
Andréa Pereira Mendonça, Amazonas Federal Institute (IFAM), Brazil
Michael Perscheid, Innovation Center Network, SAP, Germany
Heidar Pirzadeh, SAP SE, Canada
Pasqualina Potena, RISE SICS Västerås, Sweden
Fumin Qi, Wuhan University, China
Zhengrui Qin, Northwest Missouri State University, USA
Oliviero Riganelli, University of Milano Bicocca, Italy
Michele Risi, University of Salerno, Italy
Alvaro Rubio-Largo, Universidade NOVA de Lisboa, Portugal
Gunter Saake, Otto-von-Guericke-University Magdeburg, Germany
Kazi Muheymin Sakib, University of Dhaka, Bangladesh
Rodrigo Salvador Monteiro, Universidade Federal Fluminense, Brazil
Pasquale Salza, USI Università della Svizzera italiana, Switzerland
Hiroyuki Sato, University of Tokyo, Japan
Daniel Schnetzer Fava, University of Oslo, Norway
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Alberto Sillitti, Innopolis University, Russian Federation
Paulino Silva, ISCAP - IPP, Porto, Portugal
Rocky Slavin, University of Texas at San Antonio, USA
Maria Spichkova, RMIT University, Australia
Praveen Ranjan Srivastava, Indian Institute of Management (IIM), Rohtak, India
Miroslaw Staron, University of Gothenburg, Sweden
Bernard Stepien, University of Ottawa, Canada
Ting Su, Nanyang Technological University, Singapore
Tugkan Tuglular, Izmir Institute of Technology, Turkey
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Carmine Vassallo, University of Zurich, Switzerland
Sylvain Vauttier, Ecole des Mines d'Alès, France
Miroslav Velev, Aries Design Automation, USA
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences, Hungary
Andreas Vogelsang, Technical University of Berlin, Germany
Song Wang, University of Waterloo, Canada
Yan Wang, The Ohio State University, USA
Hironori Washizaki, Waseda University, Japan

 6 / 84

Ralf Wimmer, Albert-Ludwigs-University & Concept Engineering GmbH, Freiburg im Breisgau,
Germany
Krzysztof Wnuk, Blekinge Institute of Technology (BTH), Sweden
Xin Xia, Monash University, Australia
Guowei Yang, Texas State University, USA
Cemal Yilmaz, Sabanci University, Turkey
Mansooreh Zahedi, IT University of Copenhagen, Denmark
Yongjie Zheng, University of Missouri - Kansas City, USA
Peter Zimmerer, Siemens AG, Germany
Alejandro Zunino, ISISTAN-UNICEN-CONICET, Argentina

 7 / 84

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 8 / 84

Table of Contents

Survey on Trends in Big Data: Data Management, Integration and Cloud Computing Environment
Washington Almeida, Luciano Monteiro, Anderson Lima, Raphael Hazin, and Fernando Escobar

1

Microservices: A Review of the Costs and the Benefits
Ahmed Elfatatry

8

Microservice Development Based on Tool-Supported Domain Modeling
Michael Schneider, Benjamin Hippchen, Pascal Giessler, Chris Irrgang, and Sebastian Abeck

11

Towards a Modelling Language for Managing the Requirements of ISO/IEC 27001 Standard
Daniel Ganji, Haralambos Mouratidis, and Saeed Malekshahi Gheytassi

17

Improving Software Quality and Reliability Through Analysing Sets of System Test Defects
Vincent Sinclair

24

An Approach to Testing Software on Networked Transport Robots
Ichiro Satoh

27

Challenges of Cost Estimation for Software Testing
Bernard Stepien and Liam Peyton

33

What T-shirt Are You Wearing? Towards the Collective Team Grokking of Product Requirements
Robert Fuller

37

User Characteristics Validation for User Scenario Based on Use-Case Models in Requirements Analysis
Saeko Matsuura

41

Analysis of Requirements and Technologies to Migrate Software Development to the PaaS Model
Fabiano Rosa and Vitor Santos

47

Methodology for Splitting Business Capabilities into a Microservice Architecture: Design and Maintenance Using
a Domain-Driven Approach
Benjamin Hippchen, Michael Schneider, Iris Landerer, Pascal Giessler, and Sebastian Abeck

53

Improving Code Smell Predictions in Continuous Integration by Differentiating Organic from Cumulative
Measures
Md Abdullah Al Mamun, Miroslaw Staron, Christian Berger, Regina Hebig, and Jorgen Hansson

62

Using SPICE Models for Flexible and Scalable Assessments
Tomas Schweigert and Gizem Kemaneci

72

Powered by TCPDF (www.tcpdf.org)

 1 / 1 9 / 84

Survey on Trends in Big Data: Data Management, Integration and Cloud
Computing Environment

Washington Henrique Carvalho Almeida1, Luciano de Aguiar Monteiro1, Anderson Cavalcanti de Lima1, Raphael
Rodrigues Hazin1 and Fernando Escobar2

1Recife Center for Advanced Studies and Systems
Recife, Brazil

2PMI-DF
Brasília, Brazil

E-mail: {washington.hc.almeida, lucianoaguiarthe, andclima, raphaelhazin}@gmail.com
Email: fernando.escobar@pmidf.org

Abstract — The evolution of the processing power of computers
has increased the applicability of Big Data, reinforced by the
advent of Internet of Things and Industry 4.0. This article
conducts a literature review in order to address aspects of Big
Data related to Data Management, Integration, Processing,
and Cloud Computing Environment. This paper presents a
perspective on the major conceptual foundations of this
technology in cloud environments. Also, the survey presents
trends and concerns related to this subject.

Keywords- Big Data; Cloud; Architecture; Hadoop.

INTRODUCTION

This paper discusses trends in Big Data, challenges and
opportunities. The motivation for this work is to identify
trends through a survey in the most recent publications on
the subject, as well as challenges and opportunities.

Recently, there has been increased interest in Big Data,
mainly driven by a widespread number of research problems
strongly related to real-life applications and systems, such as
representation, modeling, processing, querying and mining
massive, distributed, large-scale repositories. The term ‘Big
Data’ identifies specific kinds of data sets, mainly of
unstructured data, which populate the data layer of scientific
computing applications [1].

Big Data can be understood as “datasets whose sizes are
beyond the ability of typical database software tools to
capture, store, manage, and analyze” [2]. Also, the term is
generally used to describe the collection, processing,
analysis and visualization associated with very large data
sets. Although it is difficult to define Big Data, it can be
described in terms of the data characteristics of Big Data
(the ‘what’ of Big Data); the architectures and processing
for Big Data (the ‘how’ of Big Data); and the applications of
Big Data (the ‘why’ of Big Data) [3]. Figure 1 illustrates
this approach.

Figure 1. The components of a Big Data Definition [3].

‘Big Data’ is used mostly as an umbrella term to cover a
range of data, technologies, and applications. This contrasts
with previous data management approaches, which are
typically based on data models that define the structure and
operations on a database and specify elements, such as data
structures and data operators [3].

The process of collecting and organizing raw data to
discover patterns and draw conclusions about the
information is called data analytics. It differs from data
mining in three aspects – scope, purpose and focus of
analysis. Data mining sorts through Big Data to identify
patterns that are undiscovered and to identify hidden
relationships, whereas data analysis focuses on the
conclusion and process of deriving it based only on
information already known by the researcher. Organizations
can better understand the content of data and help them to
identify the data, which will be useful for future scope in
business [4].

The approach known as the 3V’s (Volume, Velocity,
Variety) is widely used, particularly in the practitioner and
technical literature. Volume, Velocity and Variety are not
by themselves regarded as sufficient to define Big Data and
these terms also require definition. ‘Volume’, for example,
is understood differently in different contexts. The 3Vs
approach focuses on the characteristics of data and does not
consider the wider Big Data environment [3][5].

Big Data is characterized by what is often referred to as
a multi-V model. As depicted, Variety represents the data
types, Velocity refers to the rate at which the data is

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 10 / 84

produced and processed and Volume defines the amount of
data. In addition, expanding the multi-V model, Veracity
refers to how much the data can be trusted, given the
reliability of its source, whereas Value corresponds to the
monetary worth that a company can derive from employing
Big Data computing [6]. Below, we summarize the
definitions of the 5V’s:

Variety - Data types
Velocity - Data production and processing speed
Volume - Data size
Veracity - Data reliability and trust
Value - Worth derived from exploiting Big Data

Figure 2 shows the information applied to travel and
transportation companies, but it can be used to exemplify
data complexity; it illustrates the multi-V model.

Figure 2. Large variety type of companies’ data [7].

With Big Data, it is evident that many of the challenges
of cloud analytics concern data management, integration,
and processing [6]. The overview of the analytics workflow
for Big Data is presented in Figure 3.

Figure 3. Overview of the analytics workflow for Big Data [6].

As shown in Figure 3, ‘Data Sources’ represents the
Variety of sources and types. ‘Data Management’ describes
the transformation process, because the large Volume can
demand it; after that, on ‘Modelling’, the processed data is
used to train a model and to estimate the parameters; finally,
on ‘Results Analysis and Visualization’, the results are
analyzed and evaluated, generating Value [6].

Regarding researches related to Big Data, in the first
stage, they were primarily focused on the technology
requirements that companies needed in order to correctly
process the huge amount of data [8]. To extract knowledge
from Big Data, various models, programs, software,
hardware, and technologies have been designed and
proposed. They tried to ensure more accurate and reliable
results for Big Data applications. However, in such
environment, it may be time-consuming and challenging to
choose among numerous technologies [9].

The trends in Big Data are focused on the challenges for
the popularization of its use in corporations, as well as in the
predictive analysis. The future of the technology is being
called Big Data 3.0.

The main contributors of Big Data 3.0 are the Internet of
Things (IoT) and applications that generate data in the form
of images, audio, and video. The IoT refers to a technology
environment in which devices and sensors have unique
identifiers with the ability to share data and collaborate over
the Internet even without human intervention. With the rapid
growth of the IoT, connected devices and sensors will
surpass social media and e-commerce websites as the
primary sources of Big Data [10].

Also, the fourth revolution, Industry 4.0, is mainly based
on the IoT, Cyber-Physical-Systems (CPS), Internet of
Services (IoS), Internet of People (IoP), and Internet of
Energy (IoE) [11]. Big Data will integrate all technologies.

In this scenario, a big concern is related to human
resources, especially data scientists. As the need to
manipulate unstructured data, such as text, video, and
images increases rapidly, the need for more competent data
scientists grows. According to Kearney’s survey [10] of 430
senior executives, despite the prediction that firms will need
33% more Big Data specialists over the next 5 years,
roughly 66% of firms with advanced analytics capabilities
were not able to obtain enough employees to deliver insights
into their Big Data [10].

Challenges and opportunities will be addressed in this
article and in the following sections: Section II introduces
the data management. Section III presents integration and
Section IV shows the processes adopted in solutions to Big
Data. Also, Section V describes the cloud environment and
Section VI lists the standards and solutions; finally, Section
VII presents our conclusion.

II. DATA MANAGEMENT

Data management is one of the great challenges of this
approach. Trends for the future are related to the volume of
data growing exponentially bringing a series of advantages
and, at the same time, handicaps.

In this aspect, data complexity is a fundamental problem
related to how to formulate or quantitatively describe the
essential characteristics of the complexity of Big Data. The
study on complexity theory of Big Data will help
understand essential characteristics and formation of
complex patterns in Big Data, simplify its representation,
get better knowledge abstraction, and guide the design of
computing models and algorithms on Big Data. To do so,

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 11 / 84

we will need to establish the theory and models of data
distribution under multi-modal interrelationships. We will
also need to sort out intrinsic connections between data
complexity and spatio-temporal computational complexity
[12].

Over time, key challenges were related to storage,
transportation, and processing of high throughput data. This
is different from Big Data challenges to which we have to
add ambiguity, uncertainty and variety. Consequently, these
requirements imply an additional step where data is cleaned,
tagged, classified and formatted [2].

Also, social media and streaming sensors generate
massive amounts of data that need to be processed. Few
firms would be able to invest in data storage for all Big Data
collected from their sources [10]. For example, in recent
years, cloud computing has rapidly evolved from a vague
concept at the beginning to a mature technology. Many big
companies, including Google, Microsoft, Amazon,
Facebook, Alibaba, Baidu, Tencent, and other Information
Technology (IT) giants, are working on cloud computing
technologies and cloud-based computing services. Big Data
and Cloud Computing are seen as two sides of the same
coin: Big Data is a killer application of Cloud Computing,
whereas Cloud Computing provides the IT infrastructure to
Big Data. The tightly coupled Big Data and Cloud
Computing nexus are expected to change the ecosystem of
the Internet, and even affect the pattern of the entire
information industry [13].

Focusing on proper security aspects of Big Data, query
processing and, in particular, on confidentiality of data
during such a critical task are the major concern. Here, the
main problem consists in defining models which protect
cloud private data via the widely-accepted solutions: (i)
encryption approaches and (ii) trust computing. Both aim at
trading-off strong confidentiality and high efficiency of
query processing over Big Data [14].

In this paper, we will cover the following Big Data main
elements:

A. Data Quality
Data quality refers to the fitness of data with respect to a

specific purpose of usage. Data quality is critical to
confidence in decision making. As data are more
unstructured and collected from a wider array of sources,
the quality of data tends to decline. For firms adopting data
analytics for their supply chain, data quality is paramount. If
the data are not of high quality, managers will not use the
data, let alone want to share the data with their partners.
Streaming analytics use data generated by interconnected
sensors and communication devices [10].

B. Data Security
Weak security creates user resistance to the adoption of

Big Data. It also leads to financial loss and damage to a
firm’s reputation. Without installing proper security
mechanisms, confidential information could be transmitted
inadvertently to unintended parties. Also, cloud
infrastructure has become an appealing target for cyber
attackers [15]. Blockchain, an underlying technology

behind the Bitcoin cryptocurrency, is a promising future
technology for Big Data security management [10].

C. Data Storage
Service Oriented Architecture (SOA) and virtualization

altered the whole paradigm of Information and
Communication Technology (ICT) resources management
from traditional computing to Cloud Computing. Storage,
computing power, infrastructures, platforms, and software
are provided as a service in the form of Pay-as-you-go on
demand usage. Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS) are
the three main service models of Cloud Computing. IoT
Cloud Computing architecture plays a tremendous role in
IoT data. IoT data and applications are stored in the cloud to
make it accessible from anywhere with any web browser or
client software [11][16].

These Bid Data’s main elements are fundamental to the
organized implementation of Big Data solutions and have
been adopted; hence they were considered in this survey.

Information, privacy and security are the most
concerning issues for Cloud Computing due to its open
environment with very limited user-side control posing great
challenges. Especially on cloud-based platforms, where
there are two important aspects of Big Data security. One is
how to protect data. The other is how to use Big Data
analytic techniques to enhance security of the whole system.
Current work on Big Data focuses on information
processing, such as data mining and analysis [17].

Big Data are valuable because they are a treasured
source of knowledge that turns to be useful for decision
making and prediction purposes. Analytics are exploited to
this end, but they expose the underlying knowledge
discovery process to challenging research issues, due to the
fact that analytics process huge volumes of (big) data; hence
privacy of target data sets is not preserved [18].

Another relevant data management context for Big Data
research is represented by the issue of effective and
efficiently supporting analytics over Big Data, a collection
of models, algorithms and techniques oriented to extract
useful knowledge from cloud-based Big Data repositories
for decision making and prediction purposes, e.g., by means
of multidimensional data analysis paradigms [14].

III. INTEGRATION

Data integration is the cornerstone of Big Data, due to
distributed and heterogeneous data sources and data types to
provide data discover and predictive analysis. The big
difference is that the software must go to the data rather than
the traditional approach to data warehouse.

Concurrent with the success of the regional integration
of computers and advances in fixed computers everywhere,
smartphones have gained a significant contract rate capacity
and resources, particularly movement and awareness related
to a sensor’s unique location-based services and multimedia
data. The data generated through heterogeneous resources

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 12 / 84

are unstructured and cannot be stored in traditional
databases [19].

Alternatives appear, like the Data Vault, a persistent
staging area, which advocates for less structured
repositories. This trend reaches the extreme in the form of
Data Lake as a repository where raw data is stored in
waiting for an analytical resolution [20].

For analysis of Big Data, database integration and
cleaning are much harder than the traditional mining
approaches. Manipulation of large datasets possesses
problems of computational speed and error recovery. In this
survey, the issue of speed has been addressed by distributing
the computation over several nodes each of which works in
parallel on a subset of the complete dataset and maintains
coherence for producing appropriate result [21].

Through effective integration and accurate analysis on
multisource heterogeneous Big Data, better predictions of
future trends of events can be achieved. It is possible for Big
Data analysis to even promote sustainable developments of
society and economy and further give birth to new industries
related to data services [13].

To overcome the delays in storing Big Data on
distributed cloud storage, public storage is used as a
solution. However, using public storage will make the data
vulnerable to transmission and storage. Therefore, there is a
need for a security algorithms to provide tradeoffs during
time delay, security strength, and storage risks with
encryption techniques based on flexible key [22]. The data
which is being stored onto the cloud is most likely to be
infiltrated with. This data can be best protected using
encryption [23].

IV. PROCESSING / ANALYTICS

Big Data analytics are used in many areas, such as
machine learning, computer vision, Web statistics, medical
applications, Deoxyribonucleic Acid (DNA) analysis, data
classification and clustering [7].

Related to this, data validation is a major concern and is
applied to define data validity, data completeness and data
consistency, as well as to validate if data are trustworthy,
accurate, and meaningful. It has been reported [24] that
more than half of the time spent on Big Data projects goes
towards data cleansing and preparation. This section
discusses the validation process for Big Data. Data
collection, data cleaning, data transformation, data loading
and results report are the necessary data validation processes
[24].

Further, in visual analytic applications for Big Data, it is
often the case that one or more models are used to calculate
or to transform data prior to visualizing the results [25].
Algorithmic intelligence has gained popularity along with
the rise of Big Data and current advancements in technology
and organizations are increasingly able to rely on such
intelligence to analyze Big Data [26].

However, the adoption of Big Data technologies is
complex. The deployment and setup of an implementation
of Big Data solution are time-consuming, expensive, and

resource-intensive. Companies need tools and
methodologies to accelerate the deployment of Big Data
analytics. For this reason, Cloud Computing is becoming a
mainstream solution to provide large clusters on a pay-per-
use basis [27].

V. CLOUD ENVIRONMENT

As stated, Big Data is intrinsically linked to Cloud
Computing; hence, its expansion will require the adoption
of cloud environments due to the various aspects presented
in this work. Several privacy and security discussions are
covered when talking about the cloud environment, but the
big-time trend is the adoption of this kind of solution.
Figure 4 shows the exponential growth in digital data during
the current decade.

Figure 4. Exponential growth in digital data during current decade [7].

Cloud Computing provides an interesting model for
analytics, where solutions can be hosted on the Cloud and
consumed by customers in a pay-as-you-go fashion. For this
delivery model to become reality; however, several
technical issues must be addressed, such as data
management, tuning of models, privacy, data quality and
data currency [6].

Reinforcing the approach, cloud appears as hot topic to
Big Data, which explains the importance of their
‘relationship’. Table I presents a research [28] of more
important topics in Big Data, where (A) represents the
abstracts found, (K) for keywords, and (T) for title of the
papers analyzed.

TABLE I. NUMBER OF PAPERS DEDICATED TO BIG DATA AND TO ONE OF

HOT TOPICS [28]

Numbers
of Papers

Dimensions

with chains
in A, K or T

with chains in
K or T

with chains in
T

Cloud 154 66 25
Analytics 136 49 36

Social 99 33 11
Mobility 78 15 5

Internet of
things

37 15 4

In order to setup their Big Data on cloud environment,
organizations would need to setup a master cloud to achieve
the performance against the Big Data requests. All incoming
client requests are submitted to the master cloud, which
analyses the Big Data request size and detects the
availability of suitable slave clouds (private/public),

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 13 / 84

according to the priority set on the cloud table. Master cloud
diverts incoming request intelligently to those slave clouds,
which contain big size clusters so that it takes less time to
fulfill their computational needs [29].

Related to security issues, Architectural Security
includes various parameters like distributed nodes, shared
data, data ownership, inter-node communication, etc. The
security measures elaborated in are related to the
architecture of Big Data. Mostly, the security and privacy
concern of Big Data arises due to its distributed file system
and large volumetric data. The capabilities of the
architecture need to use the data generated for mapping
[23]. Moreover, we can classify the security issues as a
hierarchy of security weaknesses with challenges on the
present Cloud Computing models, specifically deployment
and service models [30].

There are many solutions for Big Data related to Cloud
Computing. Depending on the level of volume, velocity,
and variety, it is important to choose appropriate Big Data
tools. Thanks to the cloud, the tendency is towards Big Data
as a Service and Analytics as a Service. Thus, customer and
provider’s staff are much more involved in the loop [28].

VI. BIG DATA STANDARDS AND SOLUTIONS

Several solutions and standards were found in this
research. In this section, we present fundamental elements
that have become trends.

The pioneer in managing Big Data was Google. In order
to be able to store up to petabytes, they moved away from
Relational Database (RDBMSs) and created a distributed
file system that could scale to thousands of machines
[5][20].

Recently, Big Data platforms are supported by several
processing analytical tools as well as dynamic visualization
[31].

Highly Archived Distributed Object Oriented
Programming (HADOOP) [24][31][32][33] was created by
Cutting and Cafarella, in 2005, for supporting a distributed
search Engine Project. It is an Open source Java Framework
technology that helps to store, access, and gain large
resources from Big Data in a distributed fashion at lower
cost, high degree of fault tolerance and high scalability [34].

A key component of HADOOP is the Hadoop
Distributed File System (HDFS), which is used to store all
input and output data for applications [4][31].

HADOOP Architecture [15][35][36] should be
implemented within the slave clouds registered in the
existing stack. HADOOP is a map/reduce framework that
works on HDFS, which provides high throughput access to
application data and has the capability to store large data
across thousands of servers. In the context of the HADOOP
architecture, a job is split into smaller identical tasks that
can be executed closer to the data node in two phases. In
map phase each task is distributed and parallelized. After
map phase, all intermediate results are combined into one
result, which is called reduced phase [29].

MapReduce [2][5][31][37] is a framework for writing
applications that can handle large volumes of structured and
unstructured data in parallel on a cluster of thousands

machines, reliable and fault tolerant. The distribution of data
across multiple servers allows parallelized processing of
multiple tasks, each bearing on separate pieces of files. The
Map function performs a specific operation on each item.
The Reduce transaction combines the elements according to
a particular algorithm, and provides the result [38].

Data Nodes are responsible for storing the blocks of files
as determined by the Name Node. Data file to be stored is
first split into one or more blocks internally. Data Nodes
serve the read/write requests from file system’s client data.
These are also responsible for creating, deleting and
replicating blocks of file after being instructed by the Name
Node [39].

Hive [31][32][40] is a data warehousing solution built on
top of HADOOP. It provides SQL-like query language
named HiveQL. The Apache Mahout free machine learning
library's goal is to build scalable machine learning tools and
data mining framework for use on analyzing Big Data on a
distributed manner [41].

Apache Spark [9][31][42] is an open source distributed
processing framework that was created at the UC Berkeley
AMPLab. Spark is like HADOOP, but it is based on in-
memory system to improve performance. It is a recognized
analytics platform that ensures fast, easy-to-use and flexible
computing. Spark handles complex analysis on large data
sets. Indeed, Spark runs programs up to 100x faster than
Hive and Apache Hadoop via MapReduce in memory
system. Spark is based on the Apache Hive codebase. In
order to improve system performance, Spark swaps out the
physical execution engine of Hive. In addition, Spark offers
APIs to support a fast application development in various
languages, including Java, Python, and Scala. Spark
[40][43][44] is able to work with all files storage systems
that are supported by HADOOP [9].

Supported Database. All of these selected tools support
different types of databases, including both relation
databases and non-relational databases. The most popular
supported relational databases include MySQL, DB2,
Oracle, PostgreSQL, Vertica and Teradata. The commonly
used non-relational databases include Hive and Hbase [9].
In addition, Datameer also supports Windows Azure Blob
Storage and Amazon Redshift [24]. In order to remove the
scalability limit of index searching and have a fast searching
speed simultaneously, HBase, the Hadoop NoSQL database,
is often exploited to store chunk index table in current
Hadoop-based deduplication system [45].

Supported File Format. All of the listed tools have a
wide range support for different types of data files formats.
The commonly supported file formats include: CSV/TSV,
TXT Files, Fixed Width Text, HTML, and Server Log File
[24].

VII. CONCLUSION

This survey presents elements of Big Data in the Cloud
Computing environment. In the search carried out,
references were searched for the construction of a
framework for better understanding Big Data trends.

The models proposed increasingly based on this concept
were found in the most recent research on the subject. The

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 14 / 84

main issues run into problems faced in the Cloud
Computing environment, such as security and privacy.

The standards adopted have been found in many studies
with the implementation of increasingly flexible solutions.
Regardless of the technology used, this work presents the
main features of Big Data and some barriers to the use of
the resources.

A more detailed analysis of privacy problems can be
made due to the exposure of the Bid Data in cloud, since
only the use of the researched model does not guarantee the
implementation of this architecture reliably. Some issues
that we can also highlight is the investigation of new
patterns that may arise, since technological changes have
been increasingly fast and can be investigated and analyzed
for the discovery of new techniques.

Trends identified in this paper include the growing
contribution of the Internet of Things adoption, promoting
exponential increasing in the volume of data analyzed as a
data source for Big Data solutions. This trend also
highlights the growth in the demand for qualified
professionals for the data scientist profile. In the context of
data management, we verified in the study as a trend the
need for the definition of a data distribution model that
allows a multi-modal interrelationship, with the adoption of
less structured repositories.

In the processing and analysis of Big Data, it was also
shown as a tendency the adoption algorithmic intelligence to
create models to calculate and transform data in order to
facilitate the visualization of the analysis results. In this
sense, the use of distributed file systems to facilitate access
and manipulation of the large volume of data analyzed by
Big Data solutions was also a trend. Finally, a trend strongly
identified in the study was the use of Cloud Computing
environments for the deployment of Big Data solutions,
allowing the use of large solutions in the form of clusters
that promote significant gains in the treatment of the data
maintained by the solution.

Many problems will undoubtedly arise, as for
monitoring, deployment, elastic scheduling and runtime
adaptation when the architecture of solutions based on Big
Data will replace the data warehouse solutions and, in this
context, their adoption can become complementary, since in
this research a complete study on the post-migration reality
was not closed.

REFERENCES

[1] A. Cuzzocrea, D. Saccà, and J. D. Ullman, “Big Data: A
Research Agenda,” Proc. 17th Int. Database Eng. Appl.
Symp. - IDEAS ’13, pp. 198–203, 2013.

[2] C. Kacfah Emani, N. Cullot, and C. Nicolle, “Understandable
Big Data: A survey,” Comput. Sci. Rev., vol. 17, pp. 70–81,
2015.

[3] E. Dumbill, “Defining Big Data,” Forbes, 2014.

[4] S. Garion, “Big Data Analytics Hadoop and Spark,” pp. 1–55,
2016.

[5] U. Kazemi, “A Survey of Big Data : Challenges and
Specifications,” no. May, 2018.

[6] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto,
and R. Buyya, “Big Data computing and clouds: Trends and

future directions,” J. Parallel Distrib. Comput., vol. 79–80, pp.
3–15, 2015.

[7] A. Ben Ayed, M. Ben Halima, and A. M. Alimi, “Big data
analytics for logistics and transportation,” 2015 4th IEEE Int.
Conf. Adv. Logist. Transp. IEEE ICALT 2015, pp. 311–316,
2015.

[8] J. F. Aldana, “Big Data. New approaches of modelling and
management,” Comput. Stand. Interfaces, vol. 54, pp. 61–63,
2017.

[9] A. Oussous, F. Z. Benjelloun, A. Ait Lahcen, and S. Belfkih,
“Big Data technologies: A survey,” J. King Saud Univ. -
Comput. Inf. Sci., 2017.

[10] I. Lee, “Big data: Dimensions, evolution, impacts, and
challenges,” Bus. Horiz., vol. 60, no. 3, pp. 293–303, 2017.

[11] R. M. Ward, R. Schmieder, G. Highnam, and D. Mittelman,
“Big data challenges and opportunities in high-throughput
sequencing,” no. March, pp. 1–6, 2013.

[12] X. Jin, B. W. Wah, X. Cheng, and Y. Wang, “Significance
and Challenges of Big Data Research,” Big Data Res., vol. 2,
no. 2, pp. 59–64, 2015.

[13] S. Yu, “The Role of Big Data Analysis in New Product
Development,” 2016.

[14] A. Cuzzocrea, “Warehousing and protecting big data: State-
of-the-art-analysis, methodologies, future challenges,” ACM
Int. Conf. Proceeding Ser., vol. 22–23–Marc, pp. 1–7, 2016.

[15] T. Y. Win, H. Tianfield, and Q. Mair, “Big Data Based
Security Analytics for Protecting Virtualized Infrastructures
in Cloud Computing,” IEEE Trans. Big Data, vol. 7790, no. c,
p. 1, 2017.

[16] M. Dastbaz, H. Arabnia, and B. Ahgkar, “Technology for
smart futures,” Technol. Smart Futur., pp. 1–363, 2017.

[17] Q. Liu, A. Srinivasan, J. Hu, and G. Wang, “Preface: Security
and privacy in big data clouds,” Futur. Gener. Comput. Syst.,
vol. 72, pp. 206–207, 2017.

[18] A. Cuzzocrea, “Privacy and Security of Big Data : Current
Challenges and Future Research Perspectives,” pp. 45–47,
2014.

[19] I. Yaqoob et al., “Big data: From beginning to future,” Int. J.
Inf. Manage., vol. 36, no. 6, pp. 1231–1247, 2016.

[20] A. Abelló, “Big Data Design,” Dol. ’15 Proc. ACM
Eighteenth Int. Work. Data Warehous. Ol., pp. 35–38, 2015.

[21] A. Saldhi, “Big Data Analysis Using Hadoop Cluster,” 2014
IEEE Int. Conf. Comput. Intell. Comput. Res., pp. 0–3, 2014.

[22] P. Adluru, S. S. Datla, and X. Zhang, “Hadoop eco system for
big data security and privacy,” 2015 Long Isl. Syst. Appl.
Technol., pp. 1–6, 2015.

[23] S. Bahulikar, “Security measures for the Big Data ,
Virtualization and the Cloud Infrastructure .,” pp. 0–3, 2016.

[24] C. Xie, J. Gao, and C. Tao, “Big data validation case study,”
Proc. - 3rd IEEE Int. Conf. Big Data Comput. Serv. Appl.
BigDataService 2017, pp. 281–286, 2017.

[25] A. Endert, S. Szymczak, D. Gunning, and J. Gersh,
“Modeling in Big Data Environments,” Proc. 2014 Work.
Hum. Centered Big Data Res., p. 56:56--56:58, 2014.

[26] W. A. Günther, M. H. Rezazade Mehrizi, M. Huysman, and
F. Feldberg, “Debating big data: A literature review on
realizing value from big data,” J. Strateg. Inf. Syst., 2017.

[27] M. Ciavotta, E. Gianniti, and D. Ardagna, “Capacity
Allocation for Big Data Applications in the Cloud,” Proc. 8th
ACM/SPEC Int. Conf. Perform. Eng. Companion - ICPE ’17
Companion, pp. 175–176, 2017.

[28] J. Akoka, I. Comyn-Wattiau, and N. Laoufi, “Research on Big
Data – A systematic mapping study,” Comput. Stand.
Interfaces, vol. 54, no. April 2016, pp. 105–115, 2017.

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 15 / 84

[29] M. Adnan, M. Afzal, M. Aslam, R. Jan, and A. M. Martinez-
Enriquez, “Minimizing big data problems using cloud
computing based on Hadoop architecture,” 2014 11th Annu.
High Capacit. Opt. Networks Emerging/Enabling Technol.
(Photonics Energy), pp. 99–103, 2014.

[30] G. J.-W. Communication and undefined 2017, “Cloud
Security Issues and Privacy,” Ciitresearch.Org, pp. 499–514.

[31] A. Oussous, F. Z. Benjelloun, A. Ait Lahcen, and S. Belfkih,
“Big Data technologies: A survey,” J. King Saud Univ. -
Comput. Inf. Sci., vol. 30, no. 4, pp. 431–448, 2018.

[32] C. Dincer, G. Akpolat, and E. Zeydan, “Mobil Operatörler
Tarafından Servis Edilen Büyük Veri Uygulamalarında
Güvenlik Sorunları Security Issues of Big Data Applications
Served by Mobile Operators,” pp. 0–3, 2017.

[33] J. Eckroth, “Teaching Future Big Data Analysts : Curriculum
and Experience Report,” 2017.

[34] B. Saraladevi, N. Pazhaniraja, P. V. Paul, M. S. S. Basha, and
P. Dhavachelvan, “Big data and Hadoop-A study in security
perspective,” Procedia Comput. Sci., vol. 50, pp. 596–601,
2015.

[35] A. O’Driscoll, J. Daugelaite, and R. D. Sleator, “‘Big data’,
Hadoop and cloud computing in genomics,” J. Biomed.
Inform., vol. 46, no. 5, pp. 774–781, 2013.

[36] Y. Yetis, R. G. Sara, B. A. Erol, H. Kaplan, A. Akuzum, and
M. Jamshidi, “Application of Big Data Analytics via Cloud
Computing,” 2016 World Autom. Congr., pp. 1–5, 2016.

[37] M. M. Rathore, A. Paul, and A. Ahmad, “Big Data Analytics
of Geosocial Media for Planning and Real-Time Decisions,”
2017.

[38] K. Abouelmehdi, A. Beni-Hssane, H. Khaloufi, and M. Saadi,
“Big data emerging issues: Hadoop security and privacy,” Int.
Conf. Multimed. Comput. Syst. -Proceedings, pp. 731–736,
2017.

[39] K. Singh and R. Kaur, “Hadoop: Addressing challenges of
Big Data,” Souvenir 2014 IEEE Int. Adv. Comput. Conf.
IACC 2014, pp. 686–689, 2014.

[40] zhihan Lv, H. Song, P. Basanta-Val, A. Steed, and M. Jo,
“Next-Generation Big Data Analytics: State of the Art,
Challenges, and Future Research Topics,” IEEE Trans. Ind.
Informatics, vol. 3203, 2017.

[41] J. P. Verma, B. Patel, and A. Patel, “Big data analysis:
Recommendation system with hadoop framework,” Proc. -
2015 IEEE Int. Conf. Comput. Intell. Commun. Technol.
CICT 2015, pp. 92–97, 2015.

[42] K. S and I. Bodrušić, “A Big Data Solution for
Troubleshooting Mobile Network Performance Problems,”
pp. 472–477, 2017.

[43] I. Sorić, D. Dinjar, and D. Oreščanin, “Efficient Social
Network Analysis in Big Data Architectures,” pp. 1397–1400,
2017.

[44] J. Eickholt, “Teaching Big Data and Cloud Computing with a
Physical Cluster,” Proc. 2017 ACM SIGCSE Tech. Symp.
Comput. Sci. Educ., pp. 177–181, 2017.

[45] Q. Liu, Y. Fu, G. Ni, and R. Hou, “Hadoop Based Scalable
Cluster Deduplication for Big Data,” Proc. - 2016 IEEE 36th
Int. Conf. Distrib. Comput. Syst. Work. ICDCSW 2016, pp.
98–105, 2016.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 16 / 84

Microservices: AReview of the Costs and the Benefits

Ahmed Elfatatry
Information Technology Department

Alexandria University
Alexandria, Egypt

elfatatry@alexu.edu.eg

Abstract—This work is concerned with analyzing the merits
and the costs of Microservices. Following the hype associated
with a new technology may result in more problems rather
than solutions. The Microservices approach offers many
benefits in terms of flexibility and scalability. However, rushing
to use Microservices without balancing the situation may add
unnecessary complexity and there is a possibility that the costs
may outweigh the benefits. The key question is: are
Microservices in their current form solving more problems
than they create? In this paper, we analyze the benefits and the
costs of switching to Microservices. The aim is to support the
decision of whether to move to Microservices or not based on
the evaluation of the advantages and the disadvantages. The
main contribution of this work is the provision of a clear
picture of the costs and benefits of the technology to help
decide if and when a switch to Microservices is the correct
choice.

Keywords- Microservices; Flexibility, Scalability, Software
Engineering.

I. INTRODUCTION

Software Engineering has a long history of proposing
ways to deal with change. Flexibility is a desirable software
attribute, especially in business systems [1]. The ability to
change a system as a result of changing requirements with
minimum cost has been at the heart of Software Engineering
solutions [2] . Targeting low coupling, high cohesion,
modularization, and separation of concerns are just a few
examples.

The “service thinking” has been a shift in how software
is created and delivered. The core of such thinking is that the
focus should be on how to consume a functionality rather
than the means by which the functionality is produced [3].
In software terms, it is the decoupling of the producer from
the product. The Service Oriented Architecture (SOA) has
been an early implementation of such concept.

Micorservices are software components where
independence of development and deployment is a key
concern [4]. The concept of loose coupling is fundamental to
the idea of Microservices. Better flexibility can be achieved
if a system is built using independent services.

In this work, we provide an analysis of the costs and the
benefits of Microservices with respect to achieving
flexibility. The aim is to support the decision of switching to
Microservices.

This paper is structured as follows. Section 2 examines
the concept of Microservices and highlights the benefits of
applying such thinking. In Section 3, the Microservices
model is compared with the monolithic model in the context

of flexibility. Section 4 analyzes the inherent problems of
Microservices. The challenges of and future of
Microservices are discussed in Section 5. Finally, the
conclusions are presented in Section 6.

II. PROBLEM STATEMENT

Microservices architecture is a relatively new
architecture which originated in the industry. While there is
a great interest in the academia, however, there is an obvious
gap between the academia and the industry concerning the
topic. Few experience reports by the industry are available,
and less practical solutions from the academia [5]. Research
efforts usually focus on a single aspect of Micorservices
such as migration from legacy systems, architecture,
security, database heterogeneity, or service patterns. Other
research works highlight only benefits [6], or otherwise only
disadvantages. There is a gap in the literature concerning
studies that balance the costs versus the benefits.

III. WHAT ARE MICROSERVICES?

The Microservices approach is another way to think
about how to build software applications. The approach
advocates building the applications as suites of small,
independently deployable services, each running its own
process. There is no universally accepted definition of
Microservices. The independence of Microservices is a key
design issue. A service has to be independently deployable.
The reason is that this issue has an impact on managing
large scale deployment. Each service would be
independently developed as a self-contained product with its
own complete team. Microservices are built to serve a
specific context. Services are built around business

capabilities [7]. Related functionalities are combined into a
single business capability, and each Microservice
implements one such capability [7]. The development team
would include a user interface person, a database person,
and a business logic person. A team is usually responsible
for the whole life cycle of a Microservice [8].

Having described what Microservices are, in the
following we discuss the benefits of such approach.

 It is possible to release functionality faster. The
reason is that it is not needed to wait until it is
possible to release the whole system. Bringing
changes into production rapidly is a priority for any
business. The more an application is broken down
into smaller components, the easier it is to deal
with changes. Currently, this is not the case with
most monolithic applications [9] [10].

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 17 / 84

 Braking a system into smaller components supports
flexibility. The consumer of a specific functionality
may choose from a number of providers that
provide the same functionality with different non-
functional attributes. The more the software is
loosely coupled, the easier it is to engage with open
source, provided that there is a license. If a
company needs some functionality to be
incorporated into the systems from open source
components, it has to decompose the system into
smaller loosely coupled components.

 Independent scaling. Only the parts of the
application that need to be scaled up can be
assigned the required resources. There is no need to
upgrade the whole infrastructure only to serve
selected parts of the system [11]. The result is
efficient use of resources. Parts of the system that
need more computing power can be assigned the
needed resources without having to scale up the
whole system [12].

 It is easier to focus on security wherever it is
needed. More sensitive services could be put into
more protective zones. Less sensitive services that
require less protection can be assigned the
appropriate resources.

 Each service can be built using the best and most
appropriate tool for the task. It can be possible to
move parts of the system to the cloud [13]. A
company may decide to put some components on
the cloud to be managed by specialized
competencies. Whether or not the decision is to use
multiple technologies in a system, there is a
possibility to do it if needed [13].

 Redundancy. Usually, it is assumed that
redundancy should be avoided. In a Microservice
design, redundancy is a classic way of increasing
resilience. Microservices can help implementing
this concept more easily.

IV. MICROSERVICES VERSUS MONOLITHS

In a monolithic appication, modules cannot be executed
independently. Any change in one module of a monolith
requires rebooting the whole application. Scalability is
usually a problem in monolithic applications. Often, the
entire application does not need to be scaled up. Only a
subset of the modules need to be scaled up. The usual
strategy for handling such situation is to create new
instances of the entire application.

Typically, when monolithic architectures are exposed to
a growing load, it is difficult to locate which components of
the system are actually affected, since the system runs
within a single process. This means that although only a
single component may be experiencing load, the whole
monolith will need to be scaled up. This will be the only
solution even if it is known which component is
experiencing the load, as it is difficult to scale it in isolation

V. MICROSERVICES VERSUS SOA

Microservices are mainly focused on application
architecture, but they may have some elements that can be

taken to the enterprise level. This depends on the size of the
enterprise. SOA is an enterprise level concept. SOA is on
the enterprise scale while Microservices is on the application
scale. In short, a Microservice is a component while SOA is
an architecture.

In the traditional SOA, organizations would buy and
deploy an Enterprise Service Bus (ESB) and then deploy
their individual services on that ESB. But if more scalability
is needed, then, the entire ESB has to be scaled up [13]. The
Microservices advantage here is that individual services can
be scaled up. As Martion Fowler points out, the difference is
the shift from the intelligence that is built into the transport
layer to having the end points more intelligent and the pipes
being a little less intelligent [7].

VI. PROBLEMS OF MICROSERVICES

As stated in [11], the first disadvantage of Microservices
is its name. The goal of Microservices is to decompose an
application in order to facilitate development and
deployment of agile applications. Building small services is
not the goal of Microservices, but rather facilitating agile
development.

Although individual services may be very simple, there
is an increase in complexity as a result of having
communications between different components. Distributed
systems are more complex compared to monolithic systems.
In addition, managing running services is more complex
compared to monolithic services.

Partitioning a database across a number of different
Microservices makes it difficult to implement some business
transactions that can be implemented much easier in
monolithic systems. Implementing a query that needs
multiple joins can be a problem in some cases. Managing
consistency between databases is a difficult task.

Every single time a computation is done outside the
module boundary, the request has to travel through the
network. This results in communication overhead. The
Microservices approach will result in slower services.

From a mobile development perspective, a large number
of calls to backend Microservices is very expensive in terms
of battery usage. It is not possible to build a version of the
application for mobile devices only because all calls have to
eventually go to the backend servers.

The core idea of Microservices is having a large number
of small services, each doing small part of the work. Here,
the focus is not only on what such services are doing but on
the communications between them. Every single
communication between one service and another is a
potential place for something that can go wrong. In addition
to unit testing, testing a portion of communicating services
all together is necessary to obtain a better image of how the
system would behave in production.

Knowing what other services expect without hardcoding
such requirements may not be an easy task. In contract
testing, ingoing and outgoing attributes are checked for
conformance with the expected attributes in each case. The
development team of each Microservice has to check
communication with other services for conformance of
contracts.

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 18 / 84

Sharing code is harder. The objective of Microservices is
to create truly independent services. However, if there is a
need to share common utility code between services, then
the only option is to replicate a functionally across a number
of different services.

VII. CHALLENGES

While the concept of Microservices is simple, its
implementation is not. The problem is building a system of
Microservices. There are no specific rules for many issues:
only tradeoffs. One of the underlying tenets of
Microservices is that each service runs in its own isolated
process. In such case, the question is: how do services find
each other to connect? Hence, there is a need for a service
discovery mechanism to avoid hard coding the addresses.

One challenge of Microservices is deciding when to
include functions inside one service, and when to break
them into separate services. The shift to Microservices
requires changing the development methodology. The agile
approach would be suitable for the Microservices way.

Monitoring the system is another challenge because each
service may be running on a different computer or even on a
different platform. There is a potential that something might
go wrong. Having a mechanism for viewing which service is
causing a bottle neck is essential for such systems.

Having dispersed services, and more opened ports leads
to a greater attack surface. If each service has its own
database, then there is more potential for database related
attacks.

Although the Microservices approach offers substantial
benefits, a Microservices architecture requires extra
machinery, which can impose substantial costs. To enhance
the economics of Microservices, it is useful to be integrated
with the cloud [12].

Discovery, granularity, and security are among the
challenges that faced prior technologies as well, such as
Web services [14]. While security and granularity had some
solutions, automatic discovery has never been solved.

VIII. CONCLUSION

The term Microservices implies something small, but
this name can be misleading since not all services in a
Microservices architecture need to be micro [7]. A service
will become as big as it needs to be to provide a coherent,
efficient, and reliable function. However, it is not about the
size. It is about focus and logical cohesion. The main
advantage is breaking the system into smaller chunks that
can be managed individually.

Before switching to Microservices, a number of
questions need to be answered depending on each individual
case: why it is needed? Is it scalability? Is it flexibility?
Which parts of the business have such needs? An additional
issue concerns the readiness of the teams for the journey. If
the answers are not clear enough and justified, then finding
the correct answer should come first. Unless the goals are
clear enough, benefits cannot be measured.

Writing Microservices based application involves many
different issues compared to writing monolithic applications.
However, transitioning from a monolith is even more
difficult than building Microservices from scratch.

Advocates for Microservices implicitly suggest that
monoliths are outdated. While flexibility and scalability are
weak points in monoliths, they may not be priority for all
applications.

Everything comes with a cost, and so do Microservices.
If the benefits of switching to Microservices do not
outweigh the gains, then the decision is not rational.
Whether to move the whole monolith to Microservices is a
critical question and does not have a black or white answer.
Chosen parts of the application can be migrated into
Microservices. The Microservices design thinking can be
applied to a monolith. Decomposition strategy, and
interaction patterns have to be revisited. A monolithic
system can still implement asynchronous communication.

REFERENCES

[1] S. Peng, L. Shen , H. Liu and F. Li, "User-Oriented
Measurement of Software Flexibility," in 2009 WRI World
Congress on Computer Science and Information Engineering,
vol. 7, IEEE, pp. 629-633, 2009,.

[2] M. Elkholy and A. Elfatatry, "Change Taxonomy: A Fine-
Grained Classification of Software Change," IT Professional,
vol. 20, no. 4, pp. 28-36, 2018.

[3] A. Elfatatry, "Dealing with Change: Components Versus
Services," Communications of the ACM, vol. 50, no. 8, pp. 35-
39, August 2007.

[4] P. Jamshidi, C. Pahl, N. Mendonca, and J. Lewis,
"Microservices: The Journey So Far and Challenges Ahead,"
IEEE Software, vol. 35, no. 3, pp. 24-35, 2018.

[5] N. Alshuqayran , N. Ali, and R. Evans, "A Systematic Mapping
Study in Microservice Architecture," pp. 44-51, 4-6 Nov. 2016.

[6] M. Fowler, "martinfowler.com," 2017. [Online]. Available:
https://martinfowler.com/articles/microservices.html. [Accessed
January 2109].

[7] J. Thönes, "Microservices," IEEE Software, vol. 32, no. 1, pp.
116, 2015.

[8] S. Newman, Building Microservices, CA: O'Reilly Media, Inc.,
pp. 9-12, 2015.

[9] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N.
Josuttis, "Microservices in Practice, Part 2: Service Integration
and Sustainability," IEEE Software, vol. 34, no. 2, pp. 97-104,
2017.

[10] A. Kwan, H.-A. Jacobsen, A. Chan, and S. Samoojh,
"Microservices in the modern software world," pp. 297-299,
2016.

[11] S. Green, How To Build Microservices: Top 10 Hacks To
Modeling, Integrating & Deploying Microservices, pp. 24-32,
2015.

[12] A. Singleton, "The Economics of Microservices," IEEE Cloud
Computing, vol. 3, no. 5, pp. 16-20, 2016.

[13]C. EsL. S. David, "Practical Use of Microservices in Moving
Workloads to the Cloud," IEEE Cloud Computing, vol. 3, no. 5,
pp. 10-14, 2016.

[14] C. Zeng , Z. Lu , J. Wang , P. Hung, and J. Tian, "Variable
Granularity Index on Massive Service Processes,", IEEE 20th
International Conference on Web Services, Santa Clara, CA,
USA pp. 18-25, 2013.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 19 / 84

Microservice Development Based on Tool-Supported Domain Modeling

Michael Schneider, Benjamin Hippchen, Pascal Giessler, Chris Irrgang,
Sebastian Abeck

Cooperation & Management (C&M), Institute for Telematics
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: {michael.schneider, benjamin.hippchen, pascal.giessler, abeck}@kit.edu

Email: chris.irrgang@student.kit.edu

Abstract—Developing complex business-related software solutions
with domain-driven microservices has become popular recently.
Based on the concepts of domain-driven design, the business is
expressed as a domain model. However, domain-driven design
does not mention any modeling guidelines or tools for assisting
the design process. In addition, modeling a complex domain can
lead to a complex domain model that is difficult to read and
implement. To tackle the complexity of the domain model, we
introduce a concept for splitting the domain model into several
diagrams, and we apply formalization based on the Unified
Modeling Language. Furthermore, we illustrate how the created
domain model is transferred step by step into code.

Keywords–Domain-Driven Design; Modeling; Tool; Microser-
vices; UML profile; Model to Code.

I. INTRODUCTION

Modeling the domain of a business unit is part of many
design procedures and decisions in software development.
For the development of microservices-based systems, Domain-
Driven Design (DDD) is a suitable approach [1]. The concept
of the domain model was clarified by Eric Evans in his book
Domain-Driven Design: Tackling Complexity in the Heart of
Software [2], and it was further refined by Vernon [3]. After
DDD, everything goes for modeling the domain. This includes
the activities or business processes, the information involved,
and any restrictions that may appear. Therefore, the creation
of a domain model helps not only to better build the software
architecture through a mannequin-driven design but also to
increase the understanding of the business area in which an
application operates.

When one is modeling with DDD, there are no restrictions
as to how to express the domain. However, DDD emphasizes
that the domain implementation should represent the domain
model. Without a systematic modeling approach, it is possible
that the development of the domain model results in models
that are not suitable for the implementation. Furthermore, our
experiences have shown that modeling the domain without
any tool support can lead to domain models that are dif-
ferent. One example of the differences relates to the used
designations, such as notations, names, and elements. This
makes collaboration on the models within a team challenging
and makes the automatic code generation from the domain
model impossible. A further step can entail automatically
generating the code from the model. However, a certain degree
of formalization of the model is required in order to generate
code automatically. Formalization can ensure that the model
and the code are synchronized. For example, the automatic

generation of Java code when one uses a UML-compliant
domain model could be possible [4]. To assist the modeling
process of a formalized model, as well as automatic code
generation, a tool should be used. Furthermore, interfaces of
microservices, which often are RESTful APIs, can be derived
[5] when one follows API guidelines [6]. In addition, in terms
of a microservice architecture, it is important to maintain the
domain model in order to maintain the microservices. Without
a tool, this maintenance can be difficult. Therefore, applying
a tool-supported domain model creation process can help to
solve this problem. Furthermore, we discuss how to generate
the code from the created domain models.

The paper is structured as follows. Section II presents
related work and articles. Section III illustrates why there is
the requirement of additional modeling elements. In addition,
a suggestion for structuring the domain models is shown.
Section IV discusses the UML profile enhancements. Section
V explains the necessary steps for using the UML profile with
the tool; moreover, this section illustrates the usage of the tool.
Section VI discusses the conversion of the model into the code.
Finally, Section VII gives a summary of the paper and surmises
what the prospects are for future research.

II. RELATED WORK

Our results presented in this paper are related to or were
inspired by the work of several other authors. First of all
in this section, we introduce DDD as our main software
development approach for modeling patterns in greater detail.
Its concepts are the basis for our research. After this section, a
first step for formalizing DDD’s domain modeling is evaluated.
Furthermore, we explain how our systematic approach is
based on model-to-code approaches, such as the Model-Driven
Architecture (MDA).

A. Domain Modeling with Domain-Driven Design
DDD is a software development approach introduced by

Evans [2] that emphasizes the design phase in modeling
activities. Model activities aim at gathering information about
a given customer’s domain–the so-called domain knowledge.
The domain knowledge is stated in a domain model, the
central artifact of DDD. In line with the principles of Evans,
only business logic is relevant to the domain model. Other
information, such as technical aspects of applications is ne-
glected. DDD provides several stereotypes of domain objects;
a domain object represents a business object from the real
world. Classifying the domain objects is important for both

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 20 / 84

the domain model and the implementation of the application.
The stereotype is stated in the domain model at the modeling
element. Two of the most important stereotypes are "entities"
and "value objects". Entities are real-world objects with an
identity; this identity enables to find the specific instance of
this real-world object. This identity never changes for these
kinds of domain objects. Value objects describe also real-
world objects, but an identity is not necessary in this case. A
more detailed look at these stereotypes has been provided by
Vernon [3]. Derived from this stereotype, the implementation
is adapted accordingly.

DDD offers a substantial number of useful patterns that
help to understand the domain and manifest it into a model.
Nevertheless, one major problem of DDD is the missing
modeling guideline, such as a specified modeling language.
Actually, Evans emphasizes the use of any kind of representa-
tion for domain models as long as it supports the understanding
of the customer’s domain. When one examines the domain
models in [2], they mostly remind one of UML class diagrams,
but Evans has never stated that UML acts as modeling syntax.
In Section IV, we build on a DDD-based UML profile to tackle
the missing modeling guidelines.

B. Formalization of Domain-Driven Design’s Domain Model
While DDD does provide useful patterns to model the

domain, the application for the representation within the model
is challenging. The look and feel of domain models differ from
development team to development team. Especially when one
develops applications in a microservice architecture, it is nec-
essary that development teams have a common understanding
of how to model a given customer’s domain. Thus, applying
these patterns would be more efficient with the help of a
formalized modeling language.

To tackle these problems, [7] has provided a first Unified
Modeling Language (UML) profile for DDD. Based on the
domain models used by Evans in [2], the authors have created
an overview of which UML elements are used, and they
have derived their domain-driven MSA modeling (DDMM);
MSA stands for "microservice architecture." More or less,
Evans has used UML modeling elements which has led to the
decision that a UML profile would close the lacking modeling
guidelines.

The UML profile provided by [7] presents an inspiring
first step for closing the modeling language gap for DDD.
Nevertheless, we can see further room for improving the UML
profile. When one considers a complex domain, modeling it in
a domain model can lead automatically to a complex model.
Thus, we have introduced a concept called "relation view" that
decreases the complexity of the domain model by splitting the
model apart. Further, we have provided a concrete example for
a modeling tool that is able to apply UML profiles.

C. Model-to-Code Transformation
The classic approach for model-to-code transformation

is directly associated with an Object Management Group’s
(OMG) Model-Driven Architecture (MDA) [8]. MDA is a
software development approach that emphasizes the use of
models. Different types of models have different purposes in
the software development phases. Furthermore, depending on
the model’s type, the depth of details is more fine-grained
or coarse-grained. The idea behind MDA is to focus on the

modeling aspects, while software development for providing
(domain) knowledge rich models. As a next step, the source
code can be generated automatically based on the knowledge
within these models. Previous research has claimed a great
number of advantages for MDA-based software development
[9], but the establishment in software development companies
has proven that this approach has its own problems to apply.
The main problem is that the automated generation of source
code is not well realized. Often source code has to be adjusted
to either work or fit to the problem modeled in the model.
Due to this knowledge about automated model-to-code trans-
formations, we elected a systematic (not automated) approach
to transform a model into the source code. We provided a fix
structure (for example, packages) for the microservice’s source
code.

III. STRUCTURING AND MODELING OF THE DOMAIN

Domain-driven design differs between several types of
objects that we translate into a systematic modeling approach.
A domain may contain several domain objects located in
distinct bounded contexts. Modeling each domain object into
only one diagram may lead to a complex and incomprehen-
sible diagram. Therefore, we separate the domain model into
different diagrams: for instance, the relation view for modeling
the structural domain aspects.

A. Systematic Domain Structure
When modeling the domain, several diagrams are created.

Figure 1 shows a simplified version of a so-called "relation
view", a tactical diagram concerning the to-do list domain.
The to-do list domain is concerned with managing to-do lists as
well as the to-dos themselves. The considered domain is simple
and easy to understand, but the handling of the relation view
can be shown well. Especially for modeling larger and complex
domains we see a benefit for using the relation view diagram.
Developers can work simultaneously on the different relation
view diagrams. Tactical modeling focuses on a partial aspect
of the domain within a bounded context, while strategical
modeling concerns the higher-level structure of the domain
model. A bounded context defines the scope of validity of
the model and the code [10]. For each bounded context, we
modeled the relation view as depicted in Figure 1.

Figure 1. Extract of a relation view

The model is similar to a UML class diagram [2][7], but,
in addition, the excerpt contains additional identifiers. These

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 21 / 84

TodoListManagement
Domain Model

TodoList (Context Map)
«subdomain> IAM
«subdomain» TodoList

«bounded context» TodoManagement
TodoManagement (Orchestration
View)
TodoManagement (Relation View)
«entity» Todo
«entity» TodoList
«entity» User
«value object» Address

Figure 2. Domain structure

identifiers represent several elements that are required for
modeling DDD, such as entities, value objects, and different
kinds of relationships. Additionally, attributes and methods
express the domain logic. For example, the method cre-
ateTodo(String):Todo is responsible for creating a "to-do" that
belongs to the to-do list.

The DDD elements need to be formalized in order to
support tool-assisted modeling. In addition, the diagrams need
to be stored in a structured way. Structuring the domain leads
to several advantages, such as an easier communication across
the team - thus, each team member knows exactly where the
necessary diagrams are located. Therefore, we have provided a
suggestion for structuring the different diagrams of the domain
in order to increase retrievability and the value of the diagrams
for the teams.

Each domain is structured in its own repository, comparable
to folders and paths. Figure 2 illustrates the structure of the
domain “TodoListManagement” of the TodoListManagement
application. The repository contains strategical and tactical
modeling diagrams. In this work, we only focus on the tactical
diagrams, and we only briefly mention how the strategical
modeling diagrams are placed in this structure. Each folder
contains a domain model. The domain model is structured as
follows. On the top level, the context map of the domain is
shown. The context map is a concept of DDD [2] that contains
bounded contexts related to a domain. In a microservice archi-
tecture, each bounded context is a candidate for a microservice
that could be reused by other applications [11]. Using the
context map diagram, the tool-support allows the easy access
and navigation of the related diagrams simply by allowing one
to click on the modeled bounded contexts.

Following the context map, all subdomains are located
on the top level path. Figure 2 depicts two subdomains:
identity and access management (IAM) as well as the TodoList,
whereby the subdomain "TodoList" is unfolded. Each subdo-
main contains their related bounded contexts. In the example
of the TodoListManagement the bounded context is called
TodoManagement. Each bounded context contains diagrams
concerning this bounded context (see Figure 2). The first
diagram is a strategical diagram — the context orchestration
that concerns the orchestration. In addition to the context or-
chestration, the tactical diagrams follow. Each bounded context
consists of at least one relation view. The relation view is
the tactical diagram that contains the domain elements and

their relationships. In addition to the structural elements, the
behavior of the domain behavior is modeled as well in different
diagrams. For the dynamic components, ordinary sequence
and activity diagrams can be used, which are, therefore, not
considered further in the following analysis. The diagram
elements corresponding to the relation view, such as entities,
value objects, or relations, are located directly below the
diagrams. These elements can be reused for all diagrams
concerning the related bounded context.

IV. UML PROFILE

In this section, the formalization of the model is discussed.
Possible options are UML profiles or metamodels, but each
has their own advantages and disadvantages. The creation of
a UML profile is preferable to an extension of the metamodel
due to the low added value. Therefore, we used a UML profile
for our modeling purposes (see [7]) and added the relation
view.

A. UML Profile of the Relation View

The relation view describes the inner structure of a bounded
context, essentially corresponding to a class diagram and
representing the tactical part of DDD. A first approach for
dividing the model into several views has already been men-
tioned by other scholars [1]. Many domains are complex and
contain many domain objects. The relation view reduces the
complexity for modeling the domain and should be used for
complex domains. Only the domain objects corresponding to
the current bounded context are considered in the relation view.
Therefore, the relation view describes a manageable section of
the domain. Each bounded context has at least one relation
view, which can consist of entities, value objects, domain
services, and their relationships. Therefore, the relation view
defines the domain terms and correlates them into a relation-
ship. The elements and relations used in the relation view
are also already largely defined in UML. Established DDD
concepts, such as entities and value objects, are supported with
the UML profile. Due to the large intersection, only minor
adjustments compared to UML are necessary since mainly
new stereotypes have to be introduced and the behavior of
existing elements, such as packages, components, and classes
can be maintained. Thus, the power provided by heavyweight
modeling using metamodels would hardly be used. The most
important UML additions for the relation view are based on
[7] and discussed in the following.

Figure 3. Profile of the relation view

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 22 / 84

1) Entity: An entity is one of the most important elements
of the relation view. The entities represent the corresponding
objects from the domain, are defined as UML classes, and
include attributes and methods. They encapsulate all function-
ality associated with or emanating from this entity. Entities can
be provided via the API. As Figure 3 illustrates, we added the
stereotype "entity" to the UML class element. For example, the
domain object "todo" (see Figure 1) is an entity; therefore, the
modeling element for an entity (declared with the stereotype
"entity") was added to the diagram.

2) Value Object: A value object behaves similarly to
an entity but does not have an identity. Another difference
between entities and value objects is that a value object is
not immutable, and, therefore, a new object must be created
when changes are made. This means that only the attributes
are considered in object comparisons, which makes a com-
parison between two different objects with the same attribute
values true. For example, an address consisting of first name,
surname, street, and the city used by several people (in this
example, "users") - could become a value object. In a different
domain, the address could be an entity as well. Value objects
are identified with the stereotype "value object."

3) Domain Service: Domain services are used when the
responsibility of a process is incumbent upon several entities
or value objects. A domain service does not maintain any state
in order to guarantee consistent and predictable behavior. The
stereotype "domain service" identifies a domain service.

4) Relationships between Domain Objects: The relation
view does not contain any additional self-defined stereotypes
for relationships. Instead, the most important relationships
from the UML class diagrams are used. This includes the gen-
eralization, the composition, the aggregation, and the binary
association. Relationships between the domain elements are
usually defined by means of a verb and the reading direction.
In addition, multiplicities and directions are assigned in the
same manner as in a UML class diagram.

V. USED TOOL AND EXAMPLE

This section presents Enterprise Architect (EA) [12], which
is the tool we are have used for modeling the domain.
Furthermore, this section explains how the UML profile is
applied in the tool.

A. Enterprise Architect
EA is a software modeling tool that is based on OMG

UML [13]. By default, Enterprise Architect provides support
for user-defined extensions, including the use of UML profiles.
Enterprise Architect already provides some useful profiles for
popular modeling languages, such as Business Process Model
and Notation (BPMN), Systems Modeling Language (SysML),
or ArchiMate.

B. Enterprise Architect Profiles (MDG)
Besides the UML profile discussed in Section IV, further

profiles are required. In order to create a UML profile for DDD
with optimal user experience, additional diagram and toolbox
profiles are required next to the previous (see Section IV) UML
profiles. These diagram and toolbox profiles are specified in
EA. The diagram profiles allow the easy creation of custom
diagram types that are suitable for the DDD modeling problem.
Figure 4 depicts an excerpt of the definition of the custom

Figure 4. Excerpt of the EA DDD profile

diagram profile for the relation view. The custom diagrams
illustrated in Figure 4 extend the standard UML diagram
metaclasses and predefine the appearance and feature visibility
of the diagram elements. These diagrams can be accessed via
toolboxes. Therefore, in addition to the profiles, a toolbox
profile is specified. The toolbox profile links an arbitrary dia-
gram type to a custom-built toolbox. Opening a diagram type
automatically displays the corresponding toolbox. This toolbox
contains the configured elements and connectors. For example,
the toolbox of the relation view contains elements, such as
"Entity", "Value Object", and "Domain Service". Figure 5
illustrates our defined toolbox for the relation view. Thus,

Figure 5. Toolbox profile for relation view

the user has only the necessary self-defined and predefined
standard modeling elements available; this, in turn, simplifies
the modeling process and reduces modeling inconsistencies.

C. Modeling with EA
In order to model the different diagram types, the corre-

sponding DDD profile is loaded. For example, the relation view
is modeled by using the previously defined relation view tool-
boxes. This simplifies the modeling process because EA offers
many modeling elements. The result of the toolbox defined in
Section V-B is illustrated in Figure 6. The toolbox contains all
the previously discussed elements as well as the relationships.
For modeling purposes, the elements are simply dragged out
of the toolbox into the diagram. In Section III, several domain
objects are illustrated in Figure 1 – “TodoList,” “Todo,” “User,”

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 23 / 84

Figure 6. Resulting EA toolbox for the relation view

and “Address” – as well as several relationships. The diagram
itself was created by using EA and the corresponding DDD
profile.

VI. MODEL-TO-CODE AND CODE-MODEL EQUALITY

The tool-supported domain modeling based on an extended
UML profile enables the possibility of generating code directly
from the model. Enterprise Architect and other tools auto-
matically generate classes, attributes, and methods (including
parameters) from the model. Using this generation process
ensures that the model and code are equal at the point of the
code creation process. During implementation, there is a high
chance that the developers will notice that the modeled meth-
ods, attributes, and classes are not enough or that they require
changes. Therefore, the code should be adjusted according to
the needs. Adding new classes, methods, and attributes to the
implementation does not automatically adjust the model. If the
model is not adjusted afterwards, the model is no longer useful
as a convenient reference. This model state is not desired;
therefore, an interface between the tool and the code is required
that can automatically adjust the model when code changes
happen. EA allows importing source code that can be used
to automatically create a model. The imported source code
creates a new model, but it does not adjust the model used to
generate the code.

A. Step-Wise Model-To-Code Transformation
For the implementation of the todo list domain, we used

Java as a programming language and the framework Spring
[14], which simplifies the developing of enterprise applica-
tions. The relation view that we created was transferred step
by step into code. Figure 7 shows the different steps for imple-
menting the domain model. To simplify the implementation
process, we implemented an entity-base class that provides
useful DDD functionality and can reduce the boilerplate code
of the microservice implementation. As depicted in Figure 8
line 2, this base class is inherited and provides useful classes,
configurations, and methods (for example, an ID and corre-
sponding equals- and hashCode methods,) and it simplifies
the microservice-based development with Spring Boot. The
annotation @Entity in line 1 enables the mapping to a database
by an ORM framework and is used for domain objects that are
entities. In addition, the annotation @ValueObject is used for
value objects.

In the next step, the infrastructural annotations were added.
As shown in line 7 of Figure 8, domain database annotations
define the relationships and cardinalities between the domain
objects for the database. These database-specific annotations
are sufficient in this simple case since the domain can be

Figure 7. Implementation steps and code annotations

mapped to the database as it is–a structural adjustment of the
class by database restrictions did not take place accordingly.
The annotations were added to relating domain objects, for
example, TodoList and Todo. After this step, the methods that
contained the domain logic were implemented. It should be
noted that the class does not contain any "getters" and, espe-
cially, no "setter" methods because business methods are not
covered with simple setter methods [3]. Getters are only used if
they are really necessary for fulfilling business capabilities and
cannot be queried indirectly by the use of business methods.

1 @Entity
2 public class TodoList extends EntityBase {
3

4 @Column(nullable = false)
5 private String title;
6

7 @OneToMany(cascade = CascadeType.ALL,
8 mappedBy = "todoList",
9 orphanRemoval = true)

10 private List<Todo> todos;

Figure 8. Excerpt of the TodoList implementation

Once the implementation of the domain model were com-
pleted, the implementation was tested. At the domain level,
unit tests were used for the testing purpose that focused on
the formal correctness of the domain at a technical level and
ensured the correct behavior of the domain implementation.
For aggregate elements, the root element methods were called
in order to test the domain logic within the aggregate.

B. REST-based Web API

According to [15] and with consideration for the Richard-
son maturity model (RMM) [16], several questions have to be
answered to provide a REST-based Web API: 1) Which domain
objects should be exposed? 2) Which information from these
selected domain objects should be exposed? 3) Which methods
of the domain should be provided?

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 24 / 84

TABLE I. END POINTS OF THE TO-DO LIST EXAMPLE

Entity Collection Resource ID
TodoList /todo-lists /{id}
Todo /todo-lists/{id}/todos /{number}

Once these questions have been clarified, an initial speci-
fication of the Web API can be derived. For the specification,
the domain objects will be mapped onto so-called "resources"
that act as data transfer objects (DTOs) that contain (partial)
information of the respective domain objects. By using such an
approach, we introduce an abstraction layer so that the domain
objects can develop independently of each other without a
necessary Web API change. A Web API change can result
in a negative side-effect for existing service customers if the
provided methods are changed. The domain object methods are
mapped to corresponding HTTP methods to reflect on the oper-
ation semantically (create, read, write, update, delete, execute).
The positive impact of a good Web API is uncontroversial
especially when offering the underlying service to a wide range
of possible service customers. That is why several companies
apply dedicated review cycles and also create guidelines on
how to build Web APIs with quality in mind [17][18]. There
is also an aggregation of well-known best practices that should
be kept in mind during the design process [6][19][20]. For
the purpose of formalization and further processing, dedicated
specific languages, such as OpenAPI can be used, which,
in turn, come with corresponding tool support. For instance,
dedicated client libraries can be automatically generated to
simplify the integration.

In our case, we derived two end points for our to-do list
example, as illustrated in Table I. Using the tool SwaggerUI,
we could visualize and interact with the Web API with no
written code from client side. The end points of the to-do list
example are displayed in Table I. Requests to the entity Todo
are always passed over to-do lists because the entity TodoList
is the aggregate root.

VII. CONCLUSION AND LIMITATION

We focused on the tactical modeling of a domain based
on UML profiles in order to formalize the modeling process.
Our approach has allowed us to divide the domain model
into multiple models; this has allowed us to develop different
models simultaneously, which reduces the complexity of the
modeling process. In order to model the diagrams, we used
EA as modeling tool; this enables an automatic translation
of the model into code. For entities and value objects, we
implemented base classes that provide useful functionality
for these domain concepts. However, at this point we trans-
ferred the model into code manually. For an automatic code
generation, additional work is required. Currently, we are
only able to automatically generate the classes, methods, and
attributes. Further research is required, because the annotations
and mappings could be automatically added by the modeling
tool as well. The annotations remove boilerplate code from the
implementation, but the tool needs to automatically provide
the annotation when code is generated. For example, the
annotations @Entity, @ValueObject need to be automatically
generated. In addition, relationships and database annotations
need to be considered as well. In future work, we need to

add the mappings that are required to automatically create the
complete code from the toolset we presented.

Since we focused on tactical models only, strategical mod-
eling and the implementation aspects should be investigated to
a greater extend in further research.

REFERENCES
[1] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck,

“Designing Microservice-Based Applications by Using a Domain-
Driven Design Approach,” in International Journal on Advances in
Software, Vol. 10, No. 3&4, Pages 432 - 445, 2017.

[2] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2004.

[3] V. Vernon, Ed., Implementing Domain-Driven Design. Addison-
Wesley, 2013, ISBN: 978-0321834577.

[4] M. Usman and A. Nadeem, “Automatic generation of Java code from
UML diagrams using UJECTOR,” International Journal of Software
Engineering and Its Applications, vol. 3, no. 2, 2009, pp. 21–37.

[5] P. Giessler, “Domain Driven Design of Resource-oriented Microser-
vices,” Ph.D. dissertation, Karlsruhe Institute of Technology, Germany,
2018.

[6] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and S. Abeck, “Best
Practices for the Design of RESTful Web Services,” in International
Conferences of Software Advances (ICSEA), 2015, pp. 392–397.

[7] F. Rademacher, S. Sachweh, and A. Zündorf, “Towards a UML Profile
for Domain-Driven Design of Microservice Architectures,” in Inter-
national Conference on Software Engineering and Formal Methods.
Springer, 2017, pp. 230–245.

[8] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained, The model
driven architecture: practice and promise. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 2003.

[9] K. Czarnecki and S. Helsen, “Classification of model transformation
approaches,” in Proceedings of the 2nd OOPSLA Workshop on Gen-
erative Techniques in the Context of the Model Driven Architecture,
vol. 45, no. 3. USA, 2003, pp. 1–17.

[10] E. Evans, Domain-Driven Design Reference: Definitions and Pattern
Summaries. Dog Ear Publishing, 2014.

[11] S. Newman, Building Microservices: Designing Fine-grained Systems.
" O’Reilly Media, Inc.", 2015.

[12] Sparx Systems, “Enterprise Architect - Model Driven UML Tool,” URL:
https://www.sparxsystems.eu/start/home/ [retrieved: 2019.03.15].

[13] O. OMG, “Unified Modeling Language (OMG UML),” Superstructure,
2007.

[14] Pivotal Software, “Spring Framework,” URL: https://spring.io/projects/
spring-framework/ [retrieved: 2019.03.15].

[15] R. T. Fielding, “REST: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of
California, Irvine, 2000, URL: http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm [retrieved: 2019.01.31].

[16] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-
media and Systems Architecture, 1st ed. O’Reilly Media, Inc., 2010.

[17] A. Macvean, M. Maly, and J. Daughtry, “API Design Reviews at Scale,”
in Proceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems. ACM, 2016, pp. 849–858.

[18] Zalando, “Zalando RESTful API and Event Scheme Guide-
lines,” 2017, URL: https://zalando.github.io/restful-api-guidelines/
[retrieved: 2019.01.31]. [Online]. Available: https://zalando.github.
io/restful-api-guidelines/

[19] M. Masse, REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. " O’Reilly Media, Inc.", 2011.

[20] P. Giessler, M. Gebhart, R. Steinegger, and S. Abeck, “Best Practices
for the Design of RESTful Web Services,” International Journal On
Advances in Internet Technology, vol. 9, no. 3 and 4, 2016.

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 25 / 84

Towards a Modelling Language for Managing the Requirements of

ISO/IEC 27001 Standard

Daniel Ganji

Centre for Secure, Intelligent
and Usable Systems (CSIUS)

University of Brighton
Brighton, UK

d.ganji2@brighton.ac.uk

Haralambos Mouratidis

Centre for Secure, Intelligent
and Usable Systems (CSIUS)

University of Brighton
Brighton, UK

h.mouratidis@brighton.ac.uk

Saeed Malekshahi Gheytassi

Centre for Secure, Intelligent
and Usable Systems (CSIUS)

University of Brighton
Brighton, UK

m.s.malekshahi@brighton.ac.uk

Abstract—Security standards help organisations to continually
review and refine the information security procedures to remain
safe and secure, however, organisations face difficulties and
are concerned about understanding the requirements of the
standards. The research to date from the industry and academia
tended to focus on the overall description of the standard and such
expositions are unsatisfactory because little is being contributed
to the practicality of the Information Security Management
System (ISMS) structure. The generalisability of much-published
research on the standard is insufficient for organisations aiming
to implement the standard. An objective of this paper is to
offer a direction towards a new modelling language to assist
organisations to better understand the requirements of the
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) 27001 standard.
The methodological approach took in developing our proposed
research was found by systematically investigating the current
gap in the literature and to explore the underlying needs of
organisations to adopt the ISMS. This paper contributes a set of
original components and concepts to holistically capture, model,
and manage the requirements of the standard. Our modelling lan-
guage enables information security practitioners and interested
parties in organisations to develop an ISMS and promote their
corporate compliance with a well-established standard.

Keywords–information security management system; require-
ments engineering; ISO/IEC 27001; PDCA; ISMS.

I. INTRODUCTION

In the new global economy, organisations face tougher
pressure in securing the information of their clients. Some of
these pressures are through mandatory rules and regulations,
such as complying with the European Union General Data
Protection Regulation (EU GDPR), the interested parties’
requirements, or their own requirements to safeguard their
trade secret from their competitors. Increasingly, regulations
demand software engineers to analyse, design and implement
responsible systems to comply with laws and regulations [1]. It
is an important task for organisations to meet their information
security requirements and take appropriate actions to satisfy
their expectations.

The number of information security breaches is getting
bigger and invaders are getting smarter in ways to exploit
security vulnerabilities [2] [3]. Conventional and outdated
management of security systems does not answer the needs
of the current structure. Improving security in an organisation

is not just about expenditure on new technologies but correctly
addressing the basics of information security and risk-related
elements such as threat and vulnerability management, log
management, backup and system hardening [4]. To date, there
has been no solid evidence to absolute security and protec-
tion, however, there are available frameworks and approaches
such as the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC)
27001 standard to promote the best practices in managing
information security. Organisations need to prepare towards
sophisticated approaches considering security techniques under
one interconnected application known as Information Security
Management System (ISMS) to preserve the confidentiality,
integrity, and availability of information assets.

ISO/IEC 27001 is an international standard and applicable
to all organisations, regardless of their type, size, or nature [5].
It constitutes a certifiable standard and is widely used with
steady growth in a number of adoptions [6]. The standard is
composed of processes, policies, and resources that can be
used to systematise the security demands of an organisation.
The ISO/IEC 27000 family of standards helps organisations to
implement a robust approach to managing information security
and building resilience. By providing compliance to a globally
known standard, certification significantly reduces the need for
repeated client audits.

Understanding and applying the requirements of any stan-
dard into an organisation is not always a straightforward
process. From the review of the literature, it appears that
opportunities exist to evaluate the implementation and ef-
fectiveness of the standard in organisations, but academic
researchers as described in Section III have not taken the
challenge. Our research proposes a model-driven approach to
enable organisations to adopt the requirements of the standard
using requirements engineering concepts.

The remainder of the paper is thus set out as follows:
Current challenges are described in Section II, and the related
work in Section III. In Section IV, we present the mapping
methodology and mapping requirements for our proposed
framework. Our modelling language and its concepts are
described in Section V. Finally, our conclusions and future
work will be set out in Section VI.

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 26 / 84

II. CURRENT CHALLENGES

IT Governance, a provider of IT compliance solutions to
organisations released an annual survey [7] centred around
the experience and implementation challenges of the ISO/IEC
27001 for organisations in 2016. The investigation of 250
information security professionals from 53 countries who
participated in the survey were mostly certified or working to-
wards certification (80%). 71% of respondents received either
regular or occasional requests to provide the ISO/IEC 27001
certification from clients or when proposing for new business.
By providing compliance to a globally known standard, certifi-
cation significantly reduces the need for repeated client audits.
The survey also found that a third of all respondents were
concerned about understanding the requirements of the stan-
dard and 28% considered the creation and managing the
standard documentation a challenging task. Other substantial
challenging tasks were conducting the information security risk
assessment and identifying the required controls for 22% and
14% of the respondents respectively.

Organisations understand that it is in their interest to follow
some type of internationally recognised reference framework to
create environments for ISMS rather than doing it ad hoc [8].
From the commercial aspect, it is rather difficult and costly task
to identify the resource required to plan, implement, measure
information security management system.

From an academic perspective, ISMS has mostly drawn
from the views of practitioners [9] and the investigation of
the literature indicates that ISMS has not been particularly
attractive in academia with a lack of research and approaches
are egregious. Management systems on information security
have received very limited observation and research from the
academic community despite the high interest from organi-
sations in particular for IT, operational and compliance audits
[10]. There is a relative paucity of scientific literature focusing
specifically on the requirements of the standard; most of these
studies have been on the previous version of the standard
prior to 2013. In response to the real-world and academic
challenges, this research contributes a model-based approach
to organisations to identify and manage the requirements of
the standard.

III. RELATED WORK

Mayer proposed Information System Security Risk Man-
agement (ISSRM) [11] [12], which provided a reference
conceptual model for security risk management. The author
proposed a model-based approach for ISSRM, applicable since
the early phases of IS development. The work focused on the
modelling support to such an approach, by proposing a domain
model for ISSRM. The work defined a reference conceptual
model for security risk management and enhancement of
the domain model with the different metrics used in a risk
management method. Further, the authors developed a proposal
of the Secure Tropos language and a process to use the
extension in the frame of risk management.

Beckers et al. proposed PAttern-based method for estab-
lishing a Cloud specific informaTion Security management
system (PACTS) [13] [14]. An approach for creating an ISMS
methodology compliance to the ISO/IEC 27001 standard cloud
environment with a specific interest in legal compliance and
privacy. The overview of the methodology was leadership com-
mitment, asset identification, threats analysis, risk assessment,

security policies and reasoning, ISMS specification, identify
relevant laws and regulations, the definition of compliance
controls, instantiating privacy patterns, privacy threats analysis.

Beckers et al. proposed ISMS-CORAS [15] [16], an ex-
tension of the COROS method to support the establishment
of the ISO/IEC 27001 compliant ISMS. Authors proposed a
methodology following the CORAS method. CORAS is a risk
management methodology based on the ISO 31000 standard.

Susanto et al. proposed Integrated Solution Framework (I-
SolFramework) [17] [18] to assesses the readiness level of
an organisation towards the implementation of the ISO/IEC
27001. The framework offered e-assessment and e-monitoring
to analyse and perform an assessment of the readiness level
of the standard implementation. E-assessment measures the
standard parameters based on the framework, which is consist
of six components. It helps to validate the ISMS parameters
through an analytical interface such as histogram, charts and
graphs, provided by a framework.

The investigation of the related work indicates that far
too little attention has been paid to address all or most
requirements of the standard. Limited studies were found to
support most requirements of the standard. Restricted to no
evidence of some requirements were detected in the literature,
such as monitoring and evaluation of the information security
performance, internal audit, management review to consider
the effectiveness of the management system, nonconformity
and corrective action to identify and eliminate the root of non-
conformities, and continual improvement to improve the effec-
tiveness of the ISMS. Majority of the literature such as PACTS,
I-SolFramework, ISMS-CORAS mainly support the planning
stage of the standard, which is the pre-implementation of the
standard, therefore, the post-implementation is missing from
the current literature.

IV. METHODOLOGY

The ISO/IEC 27001 standard is a set of requirements for
establishing, implementing, deploying, monitoring, reviewing,
maintaining, updating and improving an ISMS with regard to
an organisation’s overall risks and opportunities. The former
version of the standard was based on a process approach is
known as Plan-Do-Check-Act (PDCA) model which each is
defined below:

• Plan: Establish the ISMS policy, objectives, processes
and procedures relevant to managing risk and improv-
ing information security.

• Do: Implement and operate the ISMS policy, controls,
process and procedures.

• Check: Assess and measure process performance
against ISMS policy.

• Act: Maintain and improve the ISMS by taking cor-
rective actions where nonconformity occurs.

An organisation must identify and implement the standard
requirements in order to claim conformity with the standard.
It needs to be able to distinguish these requirements from
other recommendations where there is a certain freedom of
choice. The standard document consists of many clauses and
sub-clauses in the form of normative phrases. There is no
specific method in the interpretation of the ISO/IEC 27000
family of standards, however, an approach developed by the

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 27 / 84

ISO to extract and interpret the clauses of the standard is
available. The interpretation rules are based on the provisions
of the ISO/IEC Directives, Part three, Rules for the structure
and drafting of international standards, Annex H.

The requirements set out in the standard are generic and
exclusions of any of the requirements specified in clause four
to ten are not allowed when an organisation claims conformity
to this international standard. Compliance with ISO/IEC 27001
can be formally assessed and certified by an external accredited
certification body. A detailed descriptions of all requirements
used as part of this paper are summarised in Table I.

V. PROPOSED MODELLING LANGUAGE

The requirements of the standard were described in the
previous section. Part of the aim of this paper is to introduce
a mapping between the requirements of the standard and
concepts taken from the requirements engineering to assist
with the implementation of the ISMS, the result of the mapping
is illustrated in Fig. 1. The top part of the figure shows the
requirements of the ISMS and the layers of the PDCA covering
the requirement. The bottom part of the figure represents the
concepts proposed in our modelling language indicating the
area of relevancy with the requirements of the standard.

In this section, we present our modelling language which
enables the expression of the relationships and concepts in
correspondence with the ISO/IEC 27001 standard. The rest of
this section focuses on presenting the various building blocks
of the proposed language. First, an overview of the language
components will be explained. Next, each concept will be
discussed in details. The concepts attributes and relationships
proposed in the modelling language are demonstrated in the
meta-model, provided in Fig. 2.

The four components used in the modelling process in-
clude:

• Information security requirements elicitation: The first

component captures the overall organisational struc-
ture in relation to information security.

• Information security analysis: The second component
analyses the organisational standing in relation to
information security.

• Management system requirements elicitation: The
third component develops management system posture
with the organisational structure.

• Management system analysis: The fourth component
identifies and analyses the processes of the manage-
ment system.

A. Information Security Requirements Elicitation
This component discusses each concept required to model

the organisational structure including Actor, Constraint, Goal,
Asset, and Dependency. A description of each concept and its
properties are discussed below.

Actor: A concept of actor represents a person or entity that
has intentionality and strategic goal relevant to the scope of
the ISMS. An actor could have a direct or indirect effect, be
affected by or perceive themselves to be affected by a decision
or activity within the scope of the ISMS. This concept has four
properties including Id, Description, Type, and Competency.

An actor is also known as a user or stakeholder, however,
this interpretation may isolate the full characteristics of an
actor, hence, types of actors were introduced to capture the
interest of an actor within the organisation. The two types of
actor are external or internal. An external actor is a person
or entity from the external environment of the organisation
who pays for a service or expects the level of principles
in relation to the external context of the organisation as a
whole, and not necessarily from the ISMS. This could be an
independent person(s) like a client or an entity like a national
or international authority such as governmental agencies and
regulatory bodies. An internal actor is a person or entity
from the internal environment of the organisation who benefits

TABLE I. REQUIREMENTS OF ISO/IEC 27001:2013 STANDARD

Requirement Description
Organisational context Define the external and internal parameters and issues affecting the outcome of ISMS.
Interested parties Identify the interested parties and their information security requirements relevant to the ISMS.
Determining the scope Identify the logical or physical boundaries and applicability of the ISMS.
ISMS Establish, implement, and continually improve an ISMS under the requirements of the standard.
Leadership Top management to demonstrate leadership and commitment with respect to the ISMS that are compatible with the strategic direction of

the organisation.
Policy Establish directions and making references to IS objectives and appropriate to the purpose and context of the organisation.
Roles Top management to assign and communicate the responsibilities and authorities relevant to information security for reporting performance

of the ISMS within the organisation.
Risk and opportunities Systematically determine the potential risks and opportunities that may be involved in a projected activity or undertaking.
Information security objectives Define measurable information security objectives.
Resources Identify the resources needs to manage the ISMS.
Competence Identify the necessary ability of a persons knowledge and skills doing work under its control that affects information security performance.
Awareness Persons working under the organisation’s control to be aware of the information security policy and their contribution to the effectiveness

of the ISMS.
Communication Apply internal and external communication process relevant to the ISMS.
Documented information Create, update, and control documented information required by the standard and necessary for the effectiveness of the ISMS.
Operational planning Plan, implement and control the process needed to meet information security requirements including risk and opportunities, and information

security objectives.
IS risk assessment Perform security risk assessment.
IS risk treatment Implement information security risk treatment.
Monitoring & measurement Evaluate the information security performance and its effectiveness.
Internal audit Conduct regular internal audits and systematically evaluate the effectiveness of the implemented and maintained ISMS.
Management review Top management to review the organisation ISMS at planned intervals to ensure its continuing suitability, adequacy and effectiveness.
Nonconformity & corrective action React and evaluate nonconformity occurrences, review and deal with appropriate corrective actions.
Continual improvement Recurring activity to continually improve the suitability, adequacy and effectiveness of the ISMS.

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 28 / 84

Roles

Leadership

Interested Parties

Scope

Organisational
context

Policy

ISMS

Risk &
Opportunities

Security
Objectives

Communication

Awareness

Competence

Resources

Documented
Information

Operational
Planning

Risk Assessment

Risk Treatment

Monitoring &
Measurement

Internal Audit

Management
Review

Continual
Improvement

Nonconformity &
Corrective Action

Objectives

Constraint

Actor Goal

Threat

Vulnerability

Dependency

Asset

Treatment

Monitoring &
Measurement

Internal Audit

Do
Check

Act

Plan

MS Requirement Elicitation

IS Requirement Elicitation
IS Analysis

MS Analysis

Nonconformity &
Corrective Action

Continual
Improvement

Management
Review

Figure 1. Language mapping to the requirements of the ISO/IEC 27001 standard

from the success of the ISMS or contribute to the success
of the ISMS. This could be an employee, a contractor who
works under the supervision of the organisation, or a group
of interested parties such as shareholders or owners who may
only have a financial interest in the organisation.

The last property of an actor is the competency level,
which indicates the ability to apply knowledge to intended
goals within the scope of the ISMS. An actor must have the
necessary competence for doing work under his/her control
that affects its information security performances.

Constraint: A concept of constraint represents the restric-
tions that an actor may have within the scope of the ISMS.
A constraint could limit the operation of goals or access to
assets. Constraint represents boundaries that do not permit
specific action to be taken or prevent a certain goal from
being achieved. Constraints are often beyond the control of an
organisation, these are conditions or expectations that actors
wish to introduce and impose to the organisation. A constraint
concept has three properties including Id, Description, and
Type.

Consideration to all constraints are an important part of an
ISMS, however, not all constraints are equal in their nature
and an application of a constraint could be designated based
on relevance and priority. Some constraints may have specific
instructions on how they should be satisfied whilst some others
may be more flexible and could be satisfied by a number
of means, therefore, it allows the organisation to prioritise
and effectively plan its resources. In the light of above, two
types of constraints were introduced, obligatory or advisory.
An obligatory constraint means the organisation has no control
or negotiation capability over the implementation or dismissing
such a constraint. An obligatory constraint could be introduced
by any types of an actor but it is likely to be instructed by
external actors such as governmental and regulatory bodies
or as part of a contractual obligation with another entity. An
advisory constraint means the organisation has some flexibility
or negotiation capability to apply alternative means to satisfy

a constraint. An advisory constraint could be introduced by
both the internal and external types of actors.

Asset: A concept of asset refers to organisational assets and
anything that has value for the organisation. An asset includes
tangible or intangible items and not only refers to the monetary
value of an item. An asset concept has four properties including
Id, Description, Classification, and Ownership.

Information assets should be classified in terms of legal
requirements, value, criticality and sensitivity to unauthorised
disclosure or modification. Classification property categorises
assets into three types of public, confidential, restricted. An
organisation is responsible to define or extend the number of
categories in accordance with the information classification
scheme and suitable to their needs.

The last property is asset ownership. Each asset owner
should be identified, this is an actor who owns an asset and
could be different from an actor who uses the asset in the
organisation. The owner is not necessarily a person but it could
be a number of people or an entity such as a department in
the organisation that owns an asset or group of assets.

Goal: This concept refers to the actor’s strategic interest
[19] or duty. Each actor could have a number of goals within
the scope of the ISMS. A goal could be initiated by an internal
actor such as an employee to being able to do their job such as
accessing customer’s account or from an external actor such
as clients to access their services provided by the organisation.
This concept has two properties including Id and Description.

A Goal could be divided into smaller goals known as sub-
goals. Goals are an important part of a management system and
they could lead the management system to success or failure
if not identified and addressed correctly.

Dependency: A concept of dependency derived from the
Secure-Tropos methodology [19], which express the relation-
ship between an actor with a goal depending on another actor,
goal or asset to accomplish its goal. The former actor called
the depender and the latter is called dependee. The types of the

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 29 / 84

include

dependee

depender

Actor

 +id: String
 +description: String
 +type: ActorType
 +competency: Boolean

restrictConstraint

 +id: String
 +description: String
 +type: ConstraintType

conduct

satisfy

Objective

 +id: String
 +description: String

conduct
Task

 +id: String
 +type: TaskType

mitigate

define
Treatment

 +id: String
 +type: TreatmentType
 +ownership: Boolean

include

Goal

 +id: String
 +description: String

include

Asset

 +id: String
 +description: String
 +classification: AssetClassification
 +ownership: Actor

Dependency

impact

impact

exploit

Threat

 +id: String
 +description: String
 +likelihood: Integer

Vulnerability

 +id: String
 +description: String
 +Ease of exploit: Integer

<<enumeration>>
TreatmentType

 accept
 avoid
 control
 share

<<enumeration>>
AssetClassification

 public
 confidential
 restricted

<<enumeration>>
ActorType

 internal
 external

<<enumeration>>
ConstraintType

 advisory
 obligatory

0..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

0..*

1..*

0..*

0..*

1..*

1..*

0..*

1..*

1..*

1..*

1..*

0..*

0..*

0..*

0..*

<<enumeration>>
TaskType

 monitoring & measurement
 internal audit
 management review
 nonconformity & corrective action
 continual improvement

Risk

Role

0..*

1..*

0..*

restrict

0..*

0..*

0..*

1..*

Figure 2. Proposed meta-model

dependency describe the nature of an object between dependee
and depender is refereed as dependum. A dependency concept
has no properties.

B. Information Security Analysis

This component exercises the concepts required to model
the analysis of the organisation in relation to information
security. The analysis is performed around a risk management
methodology which enables to better understand the impacts of
the information security risks on the organisational goals and
assets by introducing concepts such as Vulnerability, Threat,
and Treatment. A description of each concept and its properties
are discussed below.

Vulnerability: A concept of vulnerability refers to a weak-
ness of a goal, asset, or treatment which can be exploited by
one or more threats. A threat that does not have a correspond-
ing vulnerability may not result in risk. A vulnerability concept
has three properties including Id, Description, and Ease of
exploit. Ease of exploit determines a chance of vulnerability
to happen and will be the subject of a successful attack.

Threat: A concept of threat refers to the potential cause
of an unwanted incident, which may result in harm to a goal
or asset. A threat has the potential to harm assets such as
information, process, and systems and therefore organisation.
A threat concept has three properties including Id, Description,
and Likelihood. Threats may be of natural or human origin
and could be accidental or deliberate. Both accidental and
deliberate threat sources should be identified and assess their
likelihood. Likelihood or probability indicates the severity of
the cause of a threat.

Treatment: This concept refers to mitigate a risk arising
from the impact of threats to assets or goals by exploiting
a vulnerability. A treatment concept has three properties in-
cluding Id, Type, and Ownership approval. A treatment type
may involve one or more mitigating approach including accept,
avoid, transfer, and reduce. Ownership approval indicates that
a mitigating approach is approved by the responsible risk
owner. The risk owners’ approval for the information security
risk treatment plan and acceptance of the residual information
security risks is a mandatory requirement of the standard.

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 30 / 84

C. Management System Requirements Elicitation
This component utilises the concept to develop manage-

ment system posture along with the organisational structure
in relation to the information security. The description of the
Objective and its two properties are discussed below.

Objective: It refers to the achievement of a specific result
from the ISMS. Information security objective could be defined
by targeting the aim of a treatment control or a policy to satisfy
a constraint raised from actors. An objective concept has two
properties including Id and Description.

D. Management System Analysis:
This component identifies the mandatory processes of the

management system that involves the analysis of the outcomes
from the concepts developed in the previous components.
The structure of the ISMS is analysed and measured against
the requirements of the standard to ensure that the ISMS
is effective. The description of Task and its properties are
discussed below.

Task: A concept of task refers to general mandatory
requirements of the management system to ensures that pro-
cesses of the ISMS are developed, implemented and working
as expected. A task concept has two properties including Id and
Type. Type refers to specific constitutions of the management
system. Task types are monitoring and measurement, internal
audit, management review, nonconformity and corrective ac-
tion, and continual improvement.

The first type of task is the monitoring and measurement,
a mandatory requirement for an organisation to evaluates
the information security performance and the effectiveness
of the ISMS. An example is to monitor the treatment con-
trols identified in the risk management and evaluate their
effectiveness with the expected target. This activity could be
automated using tools or physically observe and measure the
effectiveness of such treatment control. A role for performing
monitoring and measurement and an interval for measuring
and effectiveness should be identified. A person responsible for
evaluating the results of monitoring and measurement should
be identified.

The second type is the internal audit, a mandatory re-
quirement of the management system to ensures that the
organisation conforms to the requirements of the standard and
own requirements for its ISMS. Internal audit should be carried
out at a planned interval. The organisation should develop an
audit programme, including the frequency, methods, and re-
sponsibilities for delivering the audit. Suitable auditors should
be identified and the results of the internal audit to be reported
to the relevant management.

The third type is the management review, a mandatory
requirement for the top management to review and assess
the outcome of the management system at an interval period.
The management review should consider the status of the
previous management reviews, feedback from actors, results
of the internal audit, and monitoring and measurements. The
outcome of the management review should include decisions
related to continual improvement and any need for changes to
the ISMS should be noted.

The fourth type is the non-conformity and corrective action,
it is a task to model the cause of the non-conformities and
identify the root causes. It is a mandatory requirement for an

organisation to implement necessary corrective actions against
the cause of the non-conformities.

The last type of task is the continual improvement, a task
that requires an organisation developing ISMS to improve the
suitability, adequacy and effectiveness of the ISMS.

VI. CONCLUSION

The work proposed in this paper extends existing research
efforts in security requirements engineering, building upon
concepts from software engineering and deliver a language to
coherently model and capture the requirements of an informa-
tion security management system.

In this paper, we focus on bridging the gap in requirements
engineering with information security management system.
The intention is to align the development of secure systems
in organisations towards the requirements of the standard. We
presented a model-driven approach to employ a number of
requirements engineering concepts to holistically manage the
requirements of the standard under four inter-related compo-
nents. The work goes beyond the aim of the research in relation
to the security requirements engineering and it contributes in
understanding the key concepts in successfully preparing and
applying the ISMS and how it can be developed as a process
to address the specific needs of the normative standards like
ISO/IEC 27001 standard.

Further research to enhance all four components and ex-
pand a series of complete processes to work along with the
concepts of the language is required. In future investigations,
our proposed risk methodology will be evolved as well as the
introduction of new attributes to the task concept.

The present paper was limited by the absence of an
assessment example to better understand the effectiveness of
our research, however, our model-based language is currently
under evaluation by applying our approach to a UK health
insurance provider aiming to comply with the ISO/IEC 27001
standard. The preliminary feedback suggests that our approach
has been successful in capturing the requirements of the
standard and the experimentation from the top management
has shown positive results in understanding the importance of
the ISMS for the establishment. This has given confidence to
the organisation that the implementation of the ISMS through
a structured process would enhance operational excellence and
reduce liabilities.

REFERENCES

[1] T. D. Breaux and A. I. Anton, “Analyzing regulatory rules for privacy
and security requirements,” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 1, 2008, pp. 5–20.

[2] E. Targett, “6 months, 945 data breaches, 4.5 billion
records,” 2018. [Online]. Available: https://www.cbronline.com/news/
global-data-breaches-2018

[3] Breach Level Index, “Data breach database,” 2018. [Online]. Available:
https://breachlevelindex.com/data-breach-database

[4] S. Moore, “Gartner Says Worldwide Information Security Spending
Will Grow 7 Percent to Reach $86.4 Billion in 2017,” 2017. [Online].
Available: https://www.gartner.com/newsroom/id/3784965

[5] ISO, “ISO/IEC 27001 Information security management.” [Online].
Available: https://www.iso.org/isoiec-27001-information-security.html

[6] ISO, “The ISO survey of management system standard certifications
2017,” International Organisation for Standardisation, Tech. Rep., 2017.

[7] IT Governance, “ISO 27001 global report,” IT Governance, Tech. Rep.,
2016.

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 31 / 84

[8] B. Von Solms, “Information Security governance: COBIT or ISO 17799
or both?” Computers and Security, vol. 24, no. 2, 2005, pp. 99–104.

[9] E. Coles-Kemp, “The anatomy of an information security management
system,” Ph.D. dissertation, King’s College London, 2008.

[10] E. W. Bernroider and M. Ivanov, “IT project management control
and the Control Objectives for IT and related Technology (CobiT)
framework,” International Journal of Project Management, vol. 29,
no. 3, 2011, pp. 325–336.

[11] N. Mayer, “Model-based management of information system security
risk,” Ph.D. dissertation, University of Namur, 2008.

[12] N. Mayer, “A cluster approach to security improvement according
to ISO/IEC 27001,” in 17th European Systems & Software Process
Improvement and Innovation Conference (EUROSPI’10), Grenoble,
France, 2010.

[13] K. Beckers, I. Cote, S. Faßbender, M. Heisel, and S. Hofbauer, “A
pattern-based method for establishing a cloud-specific information se-
curity management system,” Requirements Engineering, vol. 18, no. 4,
2013, pp. 343–395.

[14] K. Beckers, M. Heisel, I. Côté, L. Goeke, and S. Güler, “Structured
pattern-based security requirements elicitation for clouds,” Proceedings
- 2013 International Conference on Availability, Reliability and Security,
ARES 2013, 2013, pp. 465–474.

[15] K. Beckers, M. Heisel, B. Solhaug, and K. Stolen, “ISMS-CORAS : a
structured method for establishing an ISO 27001 compliant information
security management system,” Sintef, Tech. Rep., 2013.

[16] K. Beckers, “Supporting iso 27001 establishment with CORAS,” Pat-
tern and Security Requirements: Engineering-Based Establishment of
Security Standards, 2015, pp. 1–474.

[17] H. Susanto, M. N. Almunawar, and Y. C. Tuan, “Information security
challenge and breaches : novelty approach on measuring ISO 27001
readiness level,” International Journal of Engineering and Technology,
vol. 2, no. 1, 2012, pp. 67–75.

[18] H. Susanto, M. N. Almunawar, Y. C. Tuan, and M. S. Aksoy, “I-
Solframework: an integrated solution framework six layers assessment
on ultimedia information security architecture policy compliance,” In-
ternational Journal of Electrical & Computer Sciences IJECS-IJENS,
vol. 12, no. 01, 2012, pp. 20–28.

[19] H. Mouratidis and P. Giorgini, “Secure Tropos: a Security-Oriented Ex-
tension of the Tropos Methodology,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17, no. 02, 2007, pp.
285–309.

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 32 / 84

Improving Software Quality and Reliability Through

Analysing Sets of System Test Defects

Vincent Sinclair
Bell Labs Software and Systems Reliability

Dublin, Ireland
e-mail: vincent.sinclair@nokia-bell-labs.com

Abstract — Telecommunications networks support many
critical services, leading users to demand very high levels of
quality and reliability from these networks. The quality and
reliability of these services is mainly dependent on the
network’s software. At the same time, competition is driving
the demand for new software features in short delivery cycles.
There are many challenges to delivering high quality, highly
reliable software in these short cycles. Overcoming these
challenges requires fast feedback to the development processes
to minimize the number of escaped defects. This fast feedback
can be achieved through the systematic analysis of system test
defects. This method contrasts with the typical practice of
analysing customer found defects. This improved method
analyses each system test defect as it is fixed and stores this
data. A set of defect data is then analysed to identify the most
common defect type and where they are injected. This enables
teams to focus improvement efforts on their largest source of
defects. By automating this method, teams can continually fine
tune their development processes to minimise the number of
escaped defects. This results in a steady improvement over
time in the quality and reliability of the software.

Keywords - software reliability; software quality; availability;
defect analysis; continuous improvement.

I. INTRODUCTION

Today’s communications networks enable critical
services, such as e-health, video doctors, mobile banking and
remote security. Given the importance of such services,
customers are demanding high reliability from their network
providers to ensure these services are available anywhere and
at any time. Future networks will support driverless cars and
robotic surgery, requiring even higher levels of reliability.
The quality and reliability of these services is highly
dependent on the quality and reliability of the underlying
communications software. This software is very complex
and hence intrinsically prone to failure [1]. The challenge for
communications network suppliers is to deliver these
complex software systems with high quality and high
reliability, while at the same time delivering new
functionality in short delivery cycles.

This paper describes a new method for the analysis of
software defects to enable teams to quickly learn from
escaped defects. Section II describes the challenges. Sections
III and IV describe the solution and its automation. Section
V outlines the proposed future evolution of the system.

II. KEY CHALLENGES

Network software suppliers face several challenges to
delivering high quality, high reliability software. Large
development organizations typically work in complex,
multi-site, multi-time zone and multi-language teams. This
environment raises many challenges to close communication
and collaboration, a key enabler of high quality and high
reliability software. Large teams usually have a very wide
range of knowledge and skill levels, from highly experienced
engineers to junior engineers. This results in teams with
dissimilar defect patterns and hence different improvement
priorities. Each team needs to drive its own improvement
priorities. A common top down approach across different
teams is not as effective. The development processes, tools,
organisational structures, as well as roles and responsibilities
regularly change, disrupting development activities.

The software solution is typically a combination of
application, platform, third party and open source software,
leading to very complex software interactions. This can lead
to unforeseen quality and reliability challenges. Time
pressures on an already stretched team leaves very limited
time to implement improvements. Driven by end users,
network operators are demanding faster deliveries of new
features and functionality. This leaves less time for testing
out defects at system or solution level testing.

The above challenges to large-scale development lead to
defects escaping to system test and customers. Our challenge
is how to quickly learn from these escaped defects. Review
of current defect analysis methods shows that they tend to
focus on technical aspects of the individual defects. The
resulting actions focus on preventing the same defect from
escaping in future through the addition of test cases. Previous
studies on root cause analysis tend to focus on identifying the
types of defect but not on where they should have been
detected [4]. By collecting and analysing characteristic data
on system test defects, we can identify the most common
defect type and where they could have been detected. From
this, we can identify the optimum improvement action(s) to
give the largest reduction in escaped defects.

III. SOLUTION

We will outline current analysis methods, compare these
with our method and describe the key advantages of our
improved method. Particular focus is put on the ability of the
improved method to provide fast feedback to development.

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 33 / 84

A. Current method

The typical approach to root cause analysis of software
defects is to focus on customer found defects. This results in
relatively slow feedback to development. The analysis tends
to focus on individual defects, with the resulting
improvement focusing on the technical cause of the defect.
Where the analysis looks at processes, it tends to focus on
the superficial cause of the defect rather than the
fundamental cause(s) of the defect and how the defect
escaped [2][5].

B. Learning cycle

Key to addressing the wide variety of challenges listed in
section two is a learning cycle which provides fast feedback
to the development teams through analysing system test
defects. The approach must ensure that developers identify
and record the fundamental cause of each defect at the
organisational and process level. The system can then
identify the most common defect type through analysing sets
of defect data, highlighting which improvement will give the
biggest reduction in escaped defects. The system must also
measure the percentage of actual defect reduction to ensure
the improvements implemented have been effective. Using
this approach, teams can continually learn from their escaped
defects. This learning cycle is outlined in Figure 1.

C. Improved method

The innovation is the real time classification and analysis
of sets of system test defects. This method is built on the idea
that sets of defects have small but definite patterns or
signatures [3]. The steps in the method are:

 Classify each system test defect at the time the
defect is fixed, when all of the information about the
defect is fresh in the mind of the developer. The
developer selects from drop down menus the type of
defect and the development phase where it should
have been detected. This data is recorded in the
defect management tool and is mandatory to move
the defect to the next phase of the defect life cycle.

 Select a specific set of defects for analysis. This
could be at a team level, a component/sub-system
level or at the level of a complete product.

 Extract the data from the defect management tool.

 Apply decision tree techniques to determine the most
common defect type and in what phase of
development they should have been detected.

 Based on the most common defect type and where
they should be detected, quality experts perform a
deep dive analysis to identify the fundamental
changes that will reduce this specific defect type.

 Measure the impact of the improvement action(s) to
quantify the reduction in the specific defect type.

D. Advantages of the method

Analysing system test defects provides much faster
feedback to the development teams, compared to analysing
customer found defects. Characterising each defect at the
time it is fixed by a developer is easy and quick, as the
developers have all the defect details fresh in their mind.
Classifying the defect in the management system facilitates
easy and accurate data labelling. Using drop down menus to
classify each defect guides the developer towards the real
root cause. Using drop down menus to classify the defects
also provides data standardisation, facilitating easy and
accurate clustering. By applying clustering techniques within
a set of defects, teams can identify the most common type of
defect within the set and the source of these defects.
Empirical experience shows that a set of fifty defects
provides sufficient data to identify the most common type of
defect. A deep dive analysis on the most common defect type
will identify fundamental changes to the organisation that
will systematically prevent a whole class of defects escaping
from development. These are typically fundamental
improvements in communications and collaboration, changes
in roles and responsibilities as well as improvements in
processes, tools, templates and checklists. Each team can
analyse their own defects to help them identify
improvements relevant to their team. This devolves
accountability for quality down to team level. Teams can
also focus on improvements in specific areas of the software
to strengthen weaker components. Automation enables the
method to be applied regularly, with sustained defect
reduction over time.

Figure 1. Learning Cycle.

E. Testing the method

Over a period of nine months, the improved method was
tested with one product unit of seventy people, distributed
across three continents and spanning systems engineering to
system validation. The data processing and visualization
were performed manually. The analysis identified the need
for improvements in the areas of requirements gathering and
communication, including detailed customer use cases,
interface interoperability, corner cases, error cases and
failure modes. For design, it identified improvements needed

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 34 / 84

during design reviews, including communications tools and
improved checklists to assure critical points were not missed.
For the coding phase, it identified improvements in unit test,
including additional rainy day/negative testing. At system
validation, it identified the need for increased robustness
testing as well as quality assurance of third-party software.

The parameter for evaluating the method is the number of
escaped defects. Over the nine-month pilot period, these
fundamental improvements resulted in a greater than 50%
reduction in defects escaping to customers.

IV. AUTOMATING THE METHOD

A critical aspect related to the deployment of this method
is the automation of the process, integrating the data
collection, analysis and presentation of results into an
organization’s existing tool set.

A. Advantages

Automation of the method makes it fast and easy for
teams to regularly analyse their own defects at any time.
They can, for example, analyse the defects from the past four
weeks to identify the most common defect type occurring
today. This fast feedback enables teams to regularly fine tune
their development and testing processes.

B. Web application

A cloud-based Web application was developed, which
connects to the company’s defect management systems. The
application allows users to select a specific set of defects,
extracts the defect classification data, performs data
pre-processing and data analytics and finally visualises the
results.

A typical defect pattern is shown in Figure 2. For this set
of defects, the most common defect type is coding error. The
next most common defect types are requirement gaps and
high-level design gaps. From this graph, it is evident where
the team should focus their improvement efforts.

Figure 2. Defect Types – Set of 200 defects.

C. Scaling the adoption of the method

The application has been made available to all teams
through the Nokia corporate cloud, enabling a wide variety
of teams to test the usability of the application. This will also
encourage an even stronger culture of learning from sets of
defects to identify the most common defect type and trigger
actions to prevent similar defects in future. Automation will
also encourage a mindset of regular improvements to
continually fine tune the development activity.

V. EXTENDING THE APPLICATION

A number of additional capabilities are planned for future
releases.

Based on multiple factors, a weighting engine will quantify
the impact of each defect. For example, a defect which
causes a network outage or affects live traffic has more
impact than a defect that does not affect live traffic. These
weighted values will be used to rank the improvement
priorities. A recommendations engine will use data analytics
and machine learning techniques to automatically select the
optimum improvement actions from a knowledge base of
known effective solutions for specific defect type/phase
combinations. This knowledge base will evolve over time
based on the evaluation of the effectiveness of specific
improvement actions. The system will include automated
tracking of defect trends over time to measure the impact of
specific improvement actions.

VI. CONCLUSION

This method has been shown to be effective in reducing
escaped defects, resulting in improved software quality and
reliability. A key enabler to widespread deployment of the
improved method is the Web application, which enables
teams to regularly analyse their own escaped software
defects. Future releases will build on the current system to
add further machine learning and artificial intelligence
techniques to automatically recommend the most effective
improvement actions. Machine learning techniques will also
be used to optimise over time the knowledge base of known
solutions for specific defect types. Results will be presented
in a future paper.

REFERENCES

[1] R. I. Cook, '"How complex systems fail," Cognitive
Technologies Laboratory, University of Chicago IL [Online].
Available:https://www.researchgate.net/publication/22879715
8_How_complex_systems_fail. [Accessed: Jan. 30, 2019].

[2] A. C. Edmondson, '"Strategies for learning from failure,"
Harv.Bus.Rev., vol. 89, no. 4, pp. 48-55, April 2011.

[3] M. Syed, '"Black Box Thinking: Why Most People Never
Learn from Their Mistakes--But Some Do", November 2015.

[4] Timo O.A. Lehtinen, “What Are Problem Causes of Software
Projects?, International Symposium on Empirical Software
Engineering and Measurement, September 2011.

[5] Harsh Lal, “Root cause analysis of software bugs using
machine learning techniques”, International Conference on
Cloud Computing, Data Science and Engineering, January
2017.

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 35 / 84

An Approach to Testing Software on Networked Transport Robots

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi Chiyoda-ku Tokyo 101-8430 Japan

Email: ichiro@nii.ac.jp

Abstract—Networked transport robots have been widely used
to carry products in manufacturing and warehousing spaces.
Such robots communicate with servers in the spaces and other
robots through wireless local-area networks. Therefore, software
running on such robots is executed with the services that the
robots are connected to through networks, including multicast
protocols. To test such software, we need to execute it within
the network domains of the locations that the robots may move
and connect to because the correctness of the software depends
on the services. To solve this problem, we present a framework
for emulating the physical mobility of transport robots by using
the logical mobility of software designed to run on computers. It
enables such software to run within target network domains so
that the software can locally access servers and receive multicast
packets limited to the domains.

Keywords–Software testing; Wireless communication; Protocol;
Mobile agent.

I. INTRODUCTION

Many manufacturers and warehousers have been using
automated vehicles, called transport robots, to undertake repet-
itive transport tasks inside their facilities. Modern transport
robots for warehousing and manufacturing spaces have become
smart and exchange information on dynamic demands and
environmental changes in their target spaces with stationary
servers and other robots. They then should adapt themselves
according to the received information. Thus, robotics software
plays a key role as it is the medium through which their
autonomy and adaptation are embodied. One problem is that
the complexity of their software is far greater than conventional
transport robots. For example, these robots are networked with
stationary servers to exchange information with other robots
via wireless networking, e.g., Wi-Fi. Furthermore, networking
for transport robots in large warehousing and manufacturing
spaces results in another serious problem in testing software
for transport robots in the sense that these robots frequently
connect or disconnect to multiple network domains, which may
be smaller than target warehousing and manufacturing spaces,
while they move in such spaces.

In addition, not only the hardware of such transport robots
but also their software tend to be complicated. In fact, software
plays a key role in robotics as it is the medium by which
machines are made smart and adaptive. Software testing is a
popular methodology for finding information on the quality
of a software product or service by executing software intent
on finding its own problems, e.g., bugs, errors, or other
defects. Test-driven development is an evolutionary approach
to development that combines test-first development in which
you write a test before you write just enough production code
to fulfill that test and refactoring.

The development and testing software for such robots
is more difficult than that for conventional systems. This is
because, typically, software for robots need to make robots
reactive, concurrent, embedded, real-time, and data intensive.
Most transport robots tend to communicate with stationary
servers. Therefore, they are networked in order to exchange
a variety of information with stationary servers and other
robots via wireless networking. As a result, when a transport
robot moves between locations, it may lose connectivity to
a network domain provided on the previous location and
then gain connectivity at another network domain provided
on the current location. The software for running the robot
can no longer connect to the servers provided in only the
former domain, only those in the latter domain. To verify
the correctness of software for networked transport robots,
developers need to test software with all servers in the areas
that their robots may visit through the robots’ itineraries.
However, it is difficult for developers to actually move real
robots between locations in facilities that are used for business.

The purpose of this paper is to present a framework for
testing software designed to run on transport robots. The
framework is based on an early approach presented in one
of our past papers [11], in which the approach supported
testing software to be running on mobile computers by using
the movement of emulators used for mobile computers. Since
a manufacturing company asked us to develop a method to
test software designed to run on transport robots, we extended
the past approach with the ability to test moving robots to
solve the company’s problems. One reason is that mobile
computers, which the past approach focused on, do not move
between locations under their own control, but transport robots
themselves move between locations. The past approach also
assumed that the coverage areas of wireless networks to which
mobile computers connected did not overlap, but in small
spaces for warehousing and manufacturing, network domains
supported through wireless networks may not be separated.
The approach was aimed at testing client-side software running
on mobile computers but server-side software often runs on
transport robots. Therefore, although the framework presented
in this paper is constructed on the basis of the basic concept
of the past approach, it is extended with several abilities to
test software running on transport robots.

We do not intend the framework to be general. The frame-
work is aimed at testing networked software, which should be
application-level in the sense that it does not directly access
low-level hardware. Conversely, any lower-level software, e.g.,
OS and device drivers, including software for directly moni-
toring and controlling sensors and actuators is not within the
scope of the framework. The framework proposed in this paper
is an extension of our two early frameworks [11][13]. The

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 36 / 84

first enables software designed to run on portable computers
to directly connect to network domains in the sense that the
software could send and receive packets reachable within the
domains, but it does not support the movement of robots. The
second was designed for testing software running on robots
but lacks any mechanisms for emulating networking, e.g.,
changing Internet Protocol (IP) addresses, when robots move
between two coverage areas of IP-enabled wireless networks.

The remainder of this paper is organized as follows. In
Section 2 we discuss an example scenario. Section 3 presents
the design and implementation of the proposed framework.
Section 4 shows demonstrates the usage of the framework
through an example and discuss software testing with the
framework. Section 5 surveys related work and Section 6
provides a summary.

II. EXAMPLE SCENARIO

As mentioned in the previous section, our framework
was inspired by practical problems discussed in our research
collaboration with a manufacturing company. The company’s
factory is shared by the company itself and its subsidiary
companies. They use modern transport robots to carry products
between the areas managed and operated by them, where
each of the areas provides its own wireless local-area network
for communicating with transport robots running within it
and local services provided only in the network. Transport
robots move from area to area in the factory along their
itineraries as shown in Fig. 1, where the coverage area of
each wireless network access point is smaller than the target
manufacturing spaces. Each network area has one or more local
servers available. A service discovery mechanism in each area
periodically multicasts User Datagram Protocol (UDP) packets
within the network domain of the areas to avoid congestion due
to the multicasting of packets.

• When a robot arrives at a new area in the factory,
it can receive multicasted UDP packets issued from a
service discovery mechanism, e.g., Universal Plug and
Play (UPnP), in the current area and learn the network
address of the mechanism’s directory server.

• The robot connects to the server and then informs its
own addresses to the server.

• When the robot leaves the area, it can no longer
connect to the servers that it connected to in the area
and it also cannot receive any UDP packets issued
from the area’s service discovery mechanism.

Networked software running on transport robots can be
classified into two kinds, i.e., client-side and server-side
software, independently of the transmission protocol, e.g.,
Transmission Control Protocol (TCP) and UDP. To test client-
side software for the discovery mechanism on a transport
robot, the software needs to be executed within each of the
network domains of the areas that the target robot may visit
because multicasted UDP packets for the mechanism can be
reached within the individual domains. When a transport robot
discovers available services within its current network domain
one the server-side, its software also needs to be executed
to multicast UDP packets so that discover other robots or
stationary servers within each of the network domains of the
areas that the target robot may visit.

Some readers may think that even when the target software
runs outside the areas, it can receive multicasted UDP packets
via a tunneling technique. That is, we forward these packets
from a target area to a computer that runs the software.
However, there are firewalls in networks for reasons of security,
and the cost of forwarding often affects time constraints in
protocols, e.g., timeouts.

III. DESIGN AND IMPLEMENTATION

Developers are required to test their target software within
each of the areas that their target robots may visit. However,
it is difficult for developers to actually move or carry robots
between areas and connect them to networks in a running
factory. Our proposed testing framework is used to deploy and
execute software that is designed to run on transport robots that
change their current networks as they move. This framework
has two key ideas. The first is to provide a target software
with software-level-emulated execution environment in which
the software should run. The second is to provide the software
with an emulation of the physical mobility of a robot by
using the software’s logical mobility, which has been designed
to run on robots over various networks. Physical mobility
entails the movement and reconnection of mobile computing
devices between sub-networks, while logical mobility involves
software that migrates between hosts on sub-networks. The
above emulator enables the target software to be execute within
the emulation of a target robot and to directly connect to
the external environment, such as the resources and servers
provided in the networks that a robot connects to.

• The first is to use host-level virtual machines, e.g.,
VMWare and Hyper-V, and migrate the target software
and operating systems from a virtual machine host
to another host by using a technique, called live
migration. The technique enables virtual machines
to migrate to other machines to emulate the discon-
nection/reconnection of transport robots to networks
within which multicast packets for plug-and-play pro-
tocols are transmitted to servers, stationary embedded
computers, and other mobile or stationary robots.

• The second is to introduce an emulator for testing
software with plug-and-play protocols running on
language-level virtual machines, e.g., a Java virtual
machine called JVM. The emulator can carry the
target software between hosts by using a mobile agent
technology. This is useful for testing application-level
or middleware-level software.

The current implementation is based on the latter because the
former needs high-speed networked storage systems, e.g., a
Storage Area Network (SAN), which are expensive and used
in data-centers rather than warehousing and manufacturing
spaces. Our target software is also Java-based software to com-
municate with stationary servers through TCP, UDP, or upper
layer protocols. Each emulator provides the target software
with not only the internal environment of its own target robot
but also the external environment, such as the resources and
servers provided in the networks that the robot connects to. Our
final goal is to emulate the reconnection of networked robots to
networks managed by multicast-based management protocols
by using virtual machine migration. In this paper we explain
our approach on the basis of the second, i.e., mobile agent-
based emulator, because the first and second are common and

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 37 / 84

Wi-Fi coverage of
network domain 2

Wi-Fi coverage of
network domain 3

Wi-Fi coverage of
network domain 4

Wi-Fi coverage of
network domain 1

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

 Moving robot
disconnected

to Wi-Fi domain 2

Moving robot
connected to

directory server
in domain 1

Moving robot

Route for robot

Figure 1. Transport robot with WiFi in a factory

it is simpler to implement the second than the first. Physical
mobility entails the reconnection of a robot to a network, while
logical mobility involves a mobile agent-based emulator of a
robot.

• Like virtual machines, this framework emulates its
target robot.

• Depending on the reconnection of its target robot, the
mobile agent-based emulator can carry software that
should run on the computer on behalf of the robot
to networks that the robot may be moved into and
connected to.

• The emulator allows us to test and debug software with
computational resources provided through its current
network as if the software were being executed on
the target robot when dynamically attached to the
network.

• Software successfully tested in the emulator can still
be run in the same way without being modified or
recompiled.

Each mobile agent is just a logical entity and must thus be
executed on a computer. Therefore, this framework assumes
that each of the sub-networks to which a device may be moved
and attached to has more than one special stationary host,
called an access point host, which offers a runtime system
for executing and migrating mobile agent-based emulators.
Each access point host is a runtime environment for allowing
applications running in a visiting emulator to connect to local
servers in its network. That is, the physical movement of a
mobile computing device from one network and attachment
to another is simulated by the logical mobility of a mobile
agent-based emulator that carries the target applications from
an access-point computer in the source network to another
access-point computer in the destination network. As a result,
each emulator is a mobile agent, and can thus basically not
only carry the codes but also the states of the applications
to the destination, so the carried applications can basically
continue their processes after arriving at another host as if
they had been moved with the target device.

The emulator delegates instruction-level emulation of target
robots to JVM. In fact, each emulator permits its inner software
to have access to the standard classes commonly supported by
the JVM as long as the target robot offers them. The upper of

Fig. 2 shows the physical mobility of robots and the lower of
Fig. 2 shows the logical mobility of emulators.

In addition, each emulator offers its inner software as
typical resources of the target robots. It can maintain a database
to store files. Each file can be stored in the database as a pair
consisting of a file/directory path name pattern and a content
and provides its target software with basic primitives for file
operation, e.g., file creation, reading, writing, and deletion. The
framework provides the target software with two states in the
lifecycle of the software running on the target robot, networked
running state and isolated running state:. The former enables
the target software to run within the target network domains,
can link up with servers on the network through TCP and
UDP and can send/receive UDP multicast packets. This state
emulates that the robot is within the coverage area of one
of the network domains provided through wireless networks.
The latter runs the software but prohibits the software from
communicating with any servers on the network. This state
emulates a situation in which a robot is out any coverage areas
of the network domains.

The framework provides an original runtime system for
emulators by extending our existing mobile agent platform
[12]. When an emulator with its target software is transferred
over a network, the runtime system transforms the state and
code of the agent, including its software, into a bitstream
defined by Java’s JAR file format, which can support digital
signatures for authentication and transmit the bitstream to the
destination host. Mobile agent-based implementation of the
framework assumes that the target software is constructed as
a set of Java bytecode, although its virtual machine-based
implementation can support other software. Each emulator
allows its target software to access most network resources
from the host, e.g., the java.net package.

As mentioned in the first section, in an earlier version of
this framework the target software must be client-side when
communicating through TCP. The current implementation of
this framework dynamically inserts a packet forwarding mech-
anism like Mobile IP [9] into the java.net package by
using a bytecode level modification technique [1] when classes
for TCP servers, e.g., ServerSocket and InetAddress,
of java.net, are invoked from the target software. When
wireless network domains overlap, robots may have more than
one IP address. Our modified classes for IP addresses, e.g.,

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 38 / 84

Network domain A

Local servers

Local servers

Local servers

Network domain B

Network domain C

Target
software

Target
software

Target
software

Logical migration

Logical migration

Local servers

Local servers

Local servers

Remote control
server

Control message

Access
point
host

Control message

Control message

Mobile agent
based emulator

Access point host

Target
software

VM

Network domain A

Network domain B

Network domain C

Physical migration

Logical mobility of emulartor

Physical mobility of robot

Figure 2. Physical mobility of robot (left) and logical mobility of emulator
(right)

InetAddress, can return an IP address explicitly specified
from developers.

IV. EXPERIENCE

To illustrate the utility of the framework, in this section
we present our experience with testing two typical kinds of
software for networked transport robots.

A. Testing software for transport robots

In developing modern transport robots, we need to test
transport robots with WiFi interfaces, which tend to be used
in factories or warehouses (Fig. 3). We had five requirements:

• Each networked transport robot has an embedded
computer (Intel Core i5, 2-GHz) with Linux and a
WiFi interface.

• The factory has eight areas, where each area has its
own wireless local area network provided through

WiFi and provides directory servers available within
the coverage space of the WiFi.

• Each robot discovers directory servers by receiving ad-
vertisement messages with their network addresses pe-
riodically issued from them through a UDP multicast-
based original service discovery protocol available
within the WiFi area of its current location.

• Each robot periodically updates its location to other
robots or stationary servers within its current area
through a TCP/IP-based original service discovery
protocol.

• The coverage areas of the WiFi access points may
overlap, and there are some spaces beyond the cover-
age areas of the WiFi access points.

Robot

WiFi interface

Sub-network area
(WiFi area)

Directory
server

Advertisement messags
(UDP multicast packets)

Moving

Figure 3. Communication between transport robot and directory server
through WiFi

We tested two protocol stacks for the service discovery
protocol through UDP multicast and session protocols between
robots and directory servers by using the proposed framework.
These protocols were constructed in Java so that we could
directly use a mobile agent-based emulator based on JVM.
To test the protocol stacks running on the client-side, i.e.,
robots, we customized a mobile agent-based emulator for the
target robots. The emulator provided virtual I/O to control the
movement of a robot for its target software, but it carried
the software to a host within the target areas and enabled
the software to receive UDP multicast packets, which were
reachable within the area, and directly connected to the servers.

The developer could instruct the emulator to migrate to
access-point hosts on the sub-networks of other areas. Also,
since the emulator could define its own itinerary in the areas,
it could precisely trace the movement of each robot. It could
carry the target software, including the protocol stacks, to
access-point hosts in the areas. It could continue to run the
software in the local area network and permitted the software
to directly receive UDP multicast packets, which servers only
transmitted within the domains of the local area networks. We
measured the processing overhead of the emulator, but the
performance of software running in an emulator on an access-
point host was not inferior to that of the same software running
on the target robot, as long as the processing capability of the
host was equivalent to that of the robot.

B. Discussion

While it was impossible to measure the framework’s bene-
fits quantitatively, it could eliminate the task of the developer
having to carry and connect his/her target robot to local-area
networks to verify whether software designed to run on the

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 39 / 84

robot can successfully coordinate with servers or other robots.
Let us now compare the framework with the other two existing
approaches.

a) Comparison with field testing approach: This ap-
proach involves the developer carrying computers running the
emulator of a target robot and testing the target software
in the emulator within the local-area network at the current
location. The developer can stay in front of his/her computer
and directly view and operate the graphical user interface of a
map viewer application on the computer. Like our framework,
this approach permits the target software to receive packets that
the location information servers multicast within the current
local-area network because the software is running within the
domain of the local-area. However, the developer carries the
computer between places simply to check whether or not the
software runs properly. This task is extremely cumbersome
for the developer. Our framework, however, can replace the
physical mobility of the developer with the logical mobility of
an emulator of the robot and it thus enables the software to
run and link up with servers within the local-area network.

b) Comparison with network-enabled emulator ap-
proach: A few emulators enable software to run on a local
computer and link up with location information servers on
target networks that their target devices may connect to through
networks. Such existing emulators cannot send and receive
packets beyond security mechanisms, e.g., firewalls. The cost
of the approach is also inevitable in the sense that it often
makes heavy traffics in networks, because packets transmitted
only within the local-area networks at the location of a target
robot tend to be much. The approach resulted in increased la-
tency and network traffic in communication between the target
application and servers, unlike ours, because the application
in an emulator had to remotely communicate with the servers
via routers and gateways, whereas the target robot could be
directly connected to the servers. This is a serious problem in
testing applications in gathering a large volume of data from
servers, and vice versa.

V. RELATED WORK

There have been many commercial and academic frame-
works for simulating the target robots in virtual environments
and for testing software for the robots in the environments.
As far as we know, there is no paper on enabling software to
be tested with networked environments that target robots may
connect to.

Nevertheless, we discuss several existing approaches to
testing software for robots. SITAF [14] is a framework for test-
ing robot components by simulating environment. It generates
test cases on the basis of specifications given by the developer.
This test generation combined with simulation allows tests to
be repeated. It also discards the need oto reuse tests, since they
are generated. Biggs [3] presented testing software by using a
repeatable regression testing method for software components
that interact with hardware, but his approach focused only on
individual components rather than whole robots. Among them,
Chung et al. [5] showed experiments on applying International
Organization for Standardization (ISO) for software testing
(ISO 9126) to components for academic robotics. Laval et al.
[7] proposed an approach to enabling the testing of not only
isolated components but also whole robots. Their approach
assumed standalone robots, so they did not support software

for networked robots. Paikan et al. [8] proposed a generic
framework for test driven development of robotic systems. It
enabled functionalities to be tested but did not support any
networking. Chen et al. [4] and Petters et al. [10] inserted
an extra step in hybrid tests between simulation and tests
based on three levels: component-level tests, online-level test
with humans, and offline test (based on logs). Son et al.
[15] proposed another three levels of tests: unit testing, state
testing and API testing. However, their approaches did not
support networked software running on robots. Laval et al. [7]
proposed a safe-by-construction architecture based on a formal
method instead of any testing approaches.

Reconnection and disconnection resulting from the move-
ment of robots are similar to that when carrying portable
computers, e.g., notebook PCs, tablets, and smartphones. There
have been several attempts at testing software designed to
run on portable computers. [2][6][16]. A typical problem in
physical mobility is that the environment of a mobile entity
can vary dynamically as the entity moves from one network
to another.

VI. CONCLUSION

In this paper, we presented a framework for testing software
running on networked transport robots, e.g., transport robots.
The goal of the framework is to enable us to test networked
software that reconnects and disconnects to the networks of the
robots’ destinations according the movement of the robots. It
can emulate the physical mobility of target robots and enables
software to directly connect to the networks of destinations in
addition to the internal execution environment of the robots.
Since our emulators were provided as mobile agents, which
can travel between computers under their own control, they
could carry and test software designed to run on their target
robots in the same way as if they had been moved with the
robots on which they were executed, and connected to services
within their current local area networks. Our early experience
with the prototype implementation of this framework strongly
suggested that the framework could greatly reduce the time
needed to develop and test software for networked industrial
computers.

REFERENCES

[1] Apache Software Foundation: “Byte Code Engineering Library,”
http://jakarta.apache.org/bcel/, October 2001.

[2] K. Beck: “Test Driven Development: By Example,” Addison Wesley,
November 2003.

[3] G. Biggs: “Applying regression testing to software for robot hard-
ware interaction,” In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA’2010), pp. 4621-4626, May 2010.

[4] I. Y. Chen, B. A. MacDonald, and B. C. Wunsche: “A flexible mixed
reality simulation framework for software development in robotics,”
Journal of Software Engineering for Robotics, No.2, Vol.1, pp. 40-54,
September 2011.

[5] Y. K. Chung and S. M. Hwang: “Software testing for intelligent robots,”
In Proceedings of International Conference on Control, Automation and
Systems, pp. 2344-2349, October 2007.

[6] D. Gelperin and B. Hetzel: “The Growth of Software Testing,” Com-
munications of the ACM, Vol. 31, No. 6, pp. 687-695, June 1988.

[7] J. Laval, L. Fabresse, and N. Bouraqadi: “A methodology for testing
mobile autonomous robots,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’2013), pp. 1842-1847, November
2013.

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 40 / 84

[8] A. Paikan, S. Traversaro, F. Nori, and L. Natale: “A Generic Testing
Framework for Test Driven Development of Robotic Systems,” Interna-
tional Workshop on Modelling and Simulation for Autonomous Systems
(MESAS 2015), pp. 216-225, Lecture Notes in Computer Science, vol.
9055. Springer, April 2015.

[9] C. Perkins, “IP Mobility Support”, Internet Request For Comments RFC
2002, October 1996.

[10] S. Petters, D. Thomas, M. Friedmann, and O. Von Stryk: “Multilevel
testing of control software for teams of autonomous mobile robots,”
Simulation, Modeling, and Programming for Autonomous Robots, pp.
183-194, November 2008.

[11] I. Satoh: “A Testing Framework for Mobile Computing Software,” IEEE
Transaction on Software Engineering, Vol.29, No.12, pp. 1112-1121,
December 2003.

[12] I. Satoh: “Mobile Agents,” Handbook of Ambient Intelligence and
Smart Environments, pp. 771-791, Springer, October 2010.

[13] I. Satoh: “Testing software for networked industrial systems,” Pro-
ceedings of 39th Conference of IEEE Industrial Electronics Society
(IECON’2013), IEEE Industrial Electronics Society, October 2013.

[14] H. Seong and J. Seok: “SITAF: simulation-based interface testing au-
tomation framework for robot software component,” In Florian Kongoli,
editor, Automation. InTech, July 2012.

[15] J. Son, T. Kuc, J. Park, and H. Kim: “Simulation based functional
and performance evaluation of robot components and modules,” In
proceedings of International Conference on Information Science and
Applications (ICISA’2011), pp. 1-7, May 2011.

[16] J. A. Whittaker: “What is Software Testing? And Why Is It So Hard?,”
IEEE Software, pp. 70-79, January 2000.

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 41 / 84

Challenges of Cost Estimation for Software Testing

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: {bstepien | lpeyton}@uottawa.ca

Abstract—Cost estimation for software testing is a complex
process due to a great variety of testing strategies and factors
to consider. In current practice, some of these are often
overlooked. The subject has been well researched all the way
back to the early stages of software development but always
within the specific context of a single application. As a result,
managers and researchers have created application-dependent
solutions to the problem rather than general solutions. As a
first step towards development of a general solution, we
provide a summary of cost estimation for software testing
using a taxonomy of testing strategies and factors.

Keywords: software testing; cost estimation; taxomomy.

I. INTRODUCTION

Cost estimation for software testing is a complex process
due to the difficulty in determining precisely the factors
affecting costs. One of the most difficult tasks consists in
separating adequately software development costs from
software testing costs especially since they are inter-related.
This is especially true when both tasks are performed by the
same person, which is often the case.

Historically, cost estimation for software testing used
macroeconomic models based on empirical studies and
produced only approximate cost estimations. Unfortunately,
one interesting characteristic of those models is that they
only estimate the combined software development and
testing cost without a clear indication on the cost share
allocated specifically for testing. Boehm started it all with
the Constructive Cost Model (COMOCO) [7] at a time
when software development models themselves, such as
structured programming, were being addressed. The concept
of testing at that time was limited and based mostly on test
plans for manual testing that would be approved by upper
management without any quantitative evaluation of costs or
benefits. They were based on a strong belief that there could
be only a finite set of bugs in a piece of software and that
most of the bugs could be caught in the early stages of
testing. Later research based on automated test case
generation proved the opposite mostly for state based
software with unpredictable traversal of state transitions.

More recently, Holzmann [4] pointed out that no single
system of metrics exists to measure costs or to measure
benefits of testing. A major effort on understanding cost
estimation for testing was achieved by the National Institute
of Standards and Technology in an extensive report [3]. Hu
et al. [2] came up with economic projection models to

quantify testing results. Ellims et al. [8] studied the
economics of unit testing and compared it to code reviews,
which were a prevailing substitute to testing at the time.
Tables showing the relative benefits of software testing and
models for cost estimation were produced by Tawileh et al.
in [5].

Application specific solutions came in the early ‘80s
with the development of a test specification language for the
telecommunication industry that was based on formal
description techniques that was later extended by the
European Telecommunications Standards Institute as
Testing and Test Control Notation version 3 (TTCN-3) [11].
TTCN-3 is now used in many different domains in addition
to telecommunications. It is particularly efficient when
applied to testing applications that use parallelism
intensively. Others addressed the testing of web application
and started comparing the performance of the solutions in
this domain [13].

Another interesting aspect of testing is the variety of
metrics for testing without any clear preference or even
understanding of their values. They include fault density,
requirement compliance, test coverage and mean time to
failure. As well, some, like in [3], differentiate between
technical metrics and economic metrics. Also, the basic unit
of measurement is traditionally the number of lines of code.
This applies for both the actual piece of software being
tested and the test software in case of test automation. For
example, in one industry we worked in, there was a de facto
standard that one would develop only 7 lines of codes per
day including testing for a given project that comprised 3
million lines of code. In all the literature cited above, we
have never found a concept of measuring the complexity of
a piece of software that would make two different pieces of
software with an equal number of lines radically different
from a costing point of view both for development and
testing. This results in biased comparisons and questionable
precision of decisions.

Interesting is the fact that recent literature, Keshta in [9],
attempts to summarize the research on software costing over
a 30 years period but again without talking about testing.

The awareness of the difficulty of estimation for
software testing costs is expressed by Wagner et al in [6].
They propose an approach that structures the factors of costs
for an optimization of fault detection techniques. They also
distinguish between minor and major faults and propose a
priority system for handling them. In any case, the

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 42 / 84

application of solution blurs the picture further due to the
fact that faults detected and corrected in previous steps no
longer exist in the subsequent stages. Ideally, one should
start from scratch every time a new technique is applied.
This is both unrealistic and no manager would approve a
budget around such an approach. Finally, most studies are
empirical rather than following a rigorous model as in [14].

II. THE REALITY OF TESTING STRATEGIES

Personal experience in industry has shown there is a
great variety of testing strategies. A good collection of
strategies, including the fundamental black box and white
box testing strategy, can be found in [1] but with no
associated costing theories other than the financial
consequences of unsatisfied customers. Brill et al [12]
decomposes the software development life cycle and
proposes enhancements. A similar taxonomy can be found
in [15].

A. Testing and test personnel configurations

1) Testing as a way to learn a software
Testing is performed by novices to learn how a piece of

software functions. The tester is thus a temporary position
towards the more glamorous position of software developer.
One may discover that this approach increases testing costs,
however, this is also a kind of training session for the same
persons once they become developers, thus potentially
reducing development costs afterwards, as shown on Figure
1. This is a typical case of tradeoff between the two
complementary activities.

Figure 1. Relationship between development and testing costs

2) Developer is also tester
Testing is performed by the software developer. This

approach has proven to be less efficient because the
behavior of the developers involved has a tendency to be
highly predictable. This results in always testing the same
paths that they know and making all kinds of assumptions
about their system. Whereas, an external tester, would try
event sequences that the developer did not anticipate and
uncover more bugs.

3) Independent team of testers approach
Testing is performed by an independent team devoted

only to testing that develops test suites from the same
requirements that the developers use. This approach has

proven to be more efficient because it reveals the most
unsuspected bugs. Testers are independent from developers
and thus are not influenced by development activities and
thus test unsuspected combinations of inputs. Also, from an
economics perspective, testers were cheaper than developers
since their activity was considered simpler than software
development. However, this is not always true for testers
who use sophisticated testing techniques, based on formal
descriptions, with dedicated test specification languages,
which require specialized knowledge and training.

4) Automated testing and test specification languages
When Object Oriented (OO) languages became

common, software development languages were used as test
specification languages to reduce testing costs mostly based
on savings for personnel training costs and testing tools.

5) Reducing the number of programming languages
In the ‘80s, there was a proliferation of programming

and test specification languages that required high training
costs and recruitment difficulties that drove personnel costs
up. This resulted in decisions to reduce considerably the
number of programming languages for software
development used in an organization especially in the light
of the new object oriented approaches.

6) The software user is the tester
It is increasingly the fashion for widely publicly used

software to use the end users as unsuspecting testers. By
this, we mean the typical approach that consists upon a
crash of the software when used by a user to ask the user if
they want to report the problem. It is very economical for
the software vendor but poses fundamental security
problems since nobody knows nor controls the amount of
user data that is sent to the software vendor. However, in a
way, some of the testing cost is transferred to the end-user.

B. The use of Testing tools and frameworks

Some tools are application oriented while others are
more general. However, the reality is that tools are often
costly but reduce the cost of personnel because tools
increase productivity as shown on Figure 2. Increased
productivity results in a shallower total cost curve
comprising cost of the tool and training the testers.

Figure 2. Testing cost savings when using tools

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 43 / 84

1) Manual testing
At the beginning, all tests were performed manually.

This proved to be both expensive and difficult to reproduce
especially in the case of personnel turn over. Thus, the
concept of test automation using test software was
introduced. These tests were either using General
Programming Languages (GPL) or dedicated testing
languages and later frameworks of all kinds.

2) Unit testing
Unit testing uses an open source framework (e.g. JUnit)

that provides for ways of specifying the test as assertions on
results from methods or functions. Unit testing consists
mostly in testing applications functions or methods, one at a
time and independently from each other. It verifies that
given certain inputs, it correctly returns some specific
output. It is an extension of traditional OO software testing
languages and thus can be easily integrated in the software
development process. Unit tests are developed first before
software development itself. Initially all tests fail but as
development progresses, tests pass. A special Graphical
User Interface (GUI) that reports the failures or successes is
provided by the framework, thus saving some test software
reports development costs.

3) Application specificity of testing tools
Application specific tools are widely used for web

application testing. Frameworks, such as Selenium, among
others [13] feature the principle of record and replay based
on the belief that the same input will always produce a
unique result. In other words, there are no alternative
software behavior considerations. This is mostly not the
case and also test software is hard to maintain.

4) Automated test case generation
Test case generation derived from models, like finite

state machines, can be very efficient if not running into state
explosion problems. In this case, heuristics are used to
choose a subset of test cases that would provide enough test
coverage. Also, models allow testing the requirements
themselves even before they are attempted to be
implemented especially if they are specified in an
executable language.

III. TAXONOMY OF TESTING COSTS

A. Categories of testing costs

There are many categories of testing cost:
 Tangible costs like the cost of manpower and

equipment including testing tools to perform
testing.

 Tangible costs of training personnel to a given
testing technology.

 Intangible cost like traveling costs to the
customer premises

 Intangible cost like loss of business due to lack
of customer satisfaction.

However, it has been observed in industry that the cost
of testing tools is considered as highly tangible while
manpower to perform the tests is not in the sense that testing
tools can be used only for a class of applications while
manpower can be reassigned to other tasks or even projects,
thus, not subject to a seemingly tangible loss.

B. Areas of difficulty in testing

1) Application making intensive use of parallelism
Applications making intensive use of parallel activities

cannot be tested using unit testing alone because parallel test
components need to be well coordinated. This is the case of
most frameworks that are derivatives of unit testing. Also
parallel testing is considered as very complex and most
testers avoid it altogether. Testing tools, such as TTCN-3
are particularly efficient at testing parallel applications
because of native features that enable to control several
instances of parallel components easily and efficiently and
provide methods to explore test logs efficiently. These cover
applications based on Service Oriented Applications (SOA)
and more recently Business Process Management (BPM).
Both making extensive use of web applications as a front
end that can be easily tested using TTCN-3.

2) Computation testing
Computation testing consists in testing software that

depends solely on computation activities that upon an input
are expected to return a predictable output. These are best
tested using unit testing. This is particularly the case when
the software is autonomous, i.e., it does not interact with
other software components. It is, in a way, the benchmark in
testing methodologies.

3) State testing
State testing consists in putting a system into different

states and observing correctness of the transition to another
state. A state can be represented by specific output values of
a set of variables that the software manipulates. In this case,
we do not only test the final value of the output but also any
of the intermediary states to obtain it. This is often referred
to as grey or white testing depending on the granularity.

C. Heterogeneous testing costing data

In theory, comparing testing approaches, strategies and
supporting tools should be achieved on a specific
application or groups of applications. The reality is that no
one actually does that because having the same software
developed several times using different approaches is highly
counter-intuitive and no one would actually budget such a
strategy. The solution that comes closes to that concept is
found in [10] where an attempt to verify this theory is
applied to past software development projects. This model
also includes a technology factor. Consequently,
comparisons are performed between different and
heterogeneous applications on radically different domains
and thus, results are not totally comparable. However, this
has been achieved in a specific domain of GUI testing in
[13] and in the transportation and financial sectors in [3].

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 44 / 84

D. Industrial behavior on testing

Most software is developed around a set budget. The
same applies to testing with the difference that when
budgets are overrun, it is the development budget that is
allowed to do so while the testing budget is capped. Thus,
we could say that testing is budget centric rather than
application centric. Here, the most typical behavior consists
in hiring testers without any performance consideration. The
cases we have observed in industry include purchasing
expensive testing tools and their related personnel training.
Here, the costs are very tangible and require approval from
upper management but these situations always resulted in
the upper management requiring proof that there are
benefits to do so. Again, decisions were guided by intuition
and not by precise economic models.

As well, personnel turnover increases the cost of testing
tools training costs because as people moved on, their
expertise disappears with them. New personnel have to be
re-trained. This has the result of reducing the benefits of
dedicated testing tools as can be shown on Figure 3. Here
the break-even point has moved up both in cost and time.

Figure 3. Incidence of personnel turnover on training costs

However, this is a false problem since most of the
problem lies in the organization of testing tool usage. The
most efficient way has been to create a pool of testing tool
experts that train and mentor the testers along the testing life
cycle. This is no different than the issues with the turnover
of software developers that requires new developers to learn
the software developed by their predecessors.

One case is particularly interesting: testing critical
systems that require certification of tests. Here, changing
test approaches regardless of the lack of efficiency of
existing automated testing software is a major problem.
Effectively, besides the cost of redeveloping test software
using the new approaches, the certification process has to be
redone from the start.

IV. CONCLUSION

Despite its long history, cost estimation of testing is
mostly an ad hoc activity and still needs to explore new

avenues. The great number of factors of cost makes it
difficult to come up with an optimal solution to the problem.
Also, a key factor, complexity of software, is missing
completely from the literature. The available literature
shows that tackling the problem is difficult and no final
solution has been found as yet.

ACKNOWLEDGMENT

The authors would like to thank NSERC for funding this
research.

REFERENCES

[1] G. J. Myers, C. Sandler and T. Badgett, The Art of Sotftware Testing,
3rd Edition,Wiley Pubishing, 2011, ISDN 978-1-118-03196-4

[2] Q. Hu, R. T. Plant and D. B. Hertz, “Software Cost Estimation Using
Economic Production Models”, Journal of Management Information
Systems 15, no. 1, 1998. pp. 143-163.

[3] M. P. Gallaher and B. M. Kropp. “Economic impacts of inadequate
infrastructure for software testing”, Technical report 7007.011, RTI
International, National Institute of Standards and Technology, 2002.

[4] G. J. Holzmann, “Economics of software verification”, Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering (PASTE 01), pp. 80-89.
ACM, 2001.

[5] A. Tawileh, S. McIntosh, B. Work and W. Ivins, “The Dynamics of
Software Testing”, proceedings of the 26th international Conference
of the System Dynamics Society, 2007.

[6] S. Wagner. “Towards software quality economics for defect-detection
techniques”, 3rd Workshop on Software Quality, 29th Annual
IEEE/NASA, pp. 265-274, 2005. pp. 1-6.

[7] B. Boehm. Software engineering economics. Englewood Cliffs,
NJ:Prentice-Hall, 1981. ISBN 0-13-822122-7

[8] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit
testing”, Empirical Software Engineering 11, no. 1,2006: pp 5-31.

[9] I. M. Keshta, "Software Cost Estimation Approaches: A Survey."
Journal of Software Engineering and Applications 10, no. 10, 2017.

[10] K. Pillai and V. S. S. Nair. "A model for software development effort
and cost estimation." IEEE Transactions on Software Engineering 8
(1997): pp 485-497.

[11] ETSI ES 201 873-1, The Testing and Test Control Notation version 3
Part 1: TTCN-3 Core Language, May 2017. Accessed March 2018 at
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.09.
01_60/es_20187301v040901p.pdf

[12] C. Brill and A. Olmsted, “Security and Software Engineering:
Analyzing Effort and Cost”, SOFTENG 2017, pp110-114. Accessed
December 6, 2018 at
https://www.thinkmind.org/download_full.php?instance=SOFTENG+
2017.

[13] P. Sabev and A. Kanchev, “A Comparative Study of GUI automated
Tools for Software Testing”, SOFTENG 2017, pp7-16. Accessed
December 6, 2018 at
https://www.thinkmind.org/download_full.php?instance=SOFTENG+
2017.

[14] L. P. Kafle, “An Empirical Study On Software Test Effort
Estimation”, International Journal of Soft Computing and Artificial
Intelligence, ISSN: 2321-404X, vol. 2, issue 2, Nov. 2014.

[15] K. R. Jayakumar and A. Abran, “A Survey of Software Test
Estimation Techniques”, Journal of Software Engineering and
Applications 6, no. 10, 2013. pp. 47-52.

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 45 / 84

What T-shirt Are You Wearing?

Towards the Collective Team Grokking of Product Requirements

Rob Fuller
Electrical and Computer Engineering
The University of British Columbia

Vancouver, Canada
email: rfuller@ece.ubc.ca

Abstract—This paper describes requirements engineering
research that examines how cross-functional product teams, as a
collective, create and nurture a shared mental model that
accurately represents the external product domain and its
realities and provides the context for understanding the
requirements. In the conduct of this study, organisational factors
have been identified that support or inhibit teams from achieving
this deep collective understanding.

Keywords—empathy-driven development; collective
sensemaking; design science; requirements validation; product
team organisation.

I. INTRODUCTION

In the late 1990s, a “model revolution” [1] began to emerge
that took a new view on change, risk, and uncertainty. These
‘agile’ models typically embraced the possibility that
requirements could change throughout the development effort
in contrast to many earlier Software Development LifeCycles
(SDLCs) that strived to lock down requirements in the
specification and planning stages.

These new models had a greater focus on the software
development team, usually cross-functional, as a critical
success factor in delivering software. These teams often have
the necessary collection of functional expertise and capacity in
each functional area to be essentially self-sufficient. Many
software development companies have gone even further,
empowering their cross-functional teams to truly own the
product. This approach is now quite common, no longer
adopted only by industry thought-leaders. It is these
organisations and teams that are the main focus of this
research.

The rest of this paper is structured as follows. In Section II,
we outline the general problem and in Section III, the general
research question and importance. Section IV identifies the
focus of the research, who is being sampled in the study.
Section V is a summary of the literature review followed by
Section VI, where we discuss the research methodology.
Section VII briefly describes the status of the research to-date
and in Section VIII, emerging observations, which is the main
topic of this paper. Finally, Section IX offers thoughts on
future direction.

II. THE PROBLEM

While agile models improve many of the issues that were
breaking down during the crisis period, they still generally
cling to the notion that there is a customer, an authoritative
voice that the development team can interact with iteratively to
clarify requirements and validate results. However, as

software development became more product development
intended for a market, a new and critical challenge emerged for
software teams and that is how to gain a deep understanding of
the world for which their product is intended. Certainly,
techniques to ‘hear’ from the market are helpful but, as Polyani
[2] noted, market participants have tacit knowledge -- people
can know more than they can tell and they know more than can
be easily observed. This is evidenced by an all-too-common
experience when it is discovered that the so-called requirement
does not reflect an actual need but rather simply an articulation
of what someone wants -- “I know that is what I said I wanted
but that does not seem to be what I need.” -- they know more
than they can tell.

It is important that the entire team gains this deep
understanding because team members (individually, in sub-
teams, and in all functional roles) make decisions almost
continually based on their understanding of the context of the
requirements, and much of that context understanding is also
tacit.

Thus, it behooves product development teams to strive for a
deep, collective understanding of the context of their product,
that other world for which their product is intended, a shared
mental model of the supra-domain, since many design and
implementation decisions are unconsciously made within the
team’s understanding of the domain context. The success of
the team, of their product, and often of the software company
itself rests upon how well they do this. Teams do this with
varying degrees of success. Some achieve reasonable success
seemingly instinctively, while many struggle ineffectively.
Software development leaders are often able to observe this
phenomenon but have no theories that help explain why.

While labels are being used to describe what some they
think this deep understanding (grokking) of that external world
is (e.g., “empathy-driven development”), there does not appear
to be any clear definition of what it is, but rather simply labels
of what some think may be happening.

III. RESEARCH QUESTION AND IMPORTANCE

The purpose of this qualitative study is to develop a
substantive theory that answers the following research
question:

“what are the factors that support or impede multi-
disciplinary software product teams, empowered to own their
product, to collectively achieve a deep understanding of the
environment for which their product is intended?”

This theory will help industry practitioners explain why
certain prevailing techniques and empirical approaches for
understanding software solution needs are often inadequate,
why some succeed while others do not. These insights will

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 46 / 84

offer guidance for more effective software development
approaches.

In addition to assisting practitioners in industry, this
interpretive theory aspires to illuminate areas of potential
further research. For example, how are technically-oriented
people (primarily millennials) working in teams (typically
cross-functional) and following a rational process to create
software solutions able to develop, nurture, and incorporate
'squishier' skills into a process that strives to be as rational and
deterministic as possible? Or, how does that which cannot be
easily observed nor expressed be equally understood and
preserved within a team? Or, how does empathic appreciation
of the context of a software solution translate across
individuals, organisations, business domains, cultures?

IV. FOCUS OF THE RESEARCH

As the saying goes, “a fish does not know it is in water”,
thus the intended users often cannot clearly communicate the
context in which they operate because they are trapped in that
context. Thus, it is necessary for the team to somehow become
one of the people targetted to use a software solution, and to
truly learn from that immersion. It is very difficult to be an
outsider and obtain an insider’s perspective and knowledge. It
is especially difficult for a team to do this collectively. And it
does not easily fit into established software engineering
practices nor is it well-supported by software engineers’
training.

Thus, the focus of this research is practicing software
product teams in action, specifically teams empowered to own
their product. It also examines the empirical adaptations these
teams make to established software engineering and design
practices that represent an empathic-based development
approach towards evolving an increasingly accurate
understanding of the context in which their users operate, the
supra-domain - the business needs, technology, culture, and
politics. It also examines important organisational factors that
either allow or inhibit a team’s ability to collectively grok the
domain.

V. LITERATURE REVIEW

Literature was reviewed in 3 areas - requirements
engineering (specifically elicitation), design science, and
collective sensemaking.

This inquiry may be seen as primarily placed within
software requirements engineering, specifically requirements
elicitation (attempting to obtain and understand the true needs).
We looked at all the accepted papers for the IEEE International
Requirements Engineering Conference over the past 10 years,
plus many related papers published in other publications.
There are increasingly more views being expressed about the
shortcomings of prevailing approaches to requirements
elicitation which tend to focus on techniques and methods
rather than deepening practitioner and team understanding. We
believe this is evidence that some software product
development efforts still operate in the ‘process-driven’
paradigm and are experiencing what Kuhn [1] described as the
incommensurability across paradigms. While acknowledging
that the ‘techniques and methods’ approach is entirely
appropriate in certain domains, our focus is on problem
domains that don’t lend themselves well to clear specifications.

Controversy aside, the intent of requirements elicitation is to
understand the true software needs and, therefore, this inquiry
will contribute to the requirements engineering discipline.

In the design science space, we found a considerable
scholarship regarding empathy-driven design, e.g., (Koppen
and Meinel [3], van Rijn et al. [4], Postma et al. [5], Wood-
cock et al. [6], Dong et al. [7], Kourprie and Visser [8], Kolko
[9]). However, this research falls short of addressing our
inquiry question in three critical respects: 1) the focus is on the
design activity as part of an essentially sequential product
development process rather than design as part of an on-going
continuous product development effort, 2) rather than
considering the whole development team, they tend to focus on
the design individual or just the design team, and, 3) when it
does consider the design team, it tends not to be viewed as a
unit to consider regarding its empathic ability. There are
design science models described by Wieringa [10] that
acknowledge the challenge that empathy-driven requirements
understanding attempts to address (using very different
vocabulary) but stops short of suggesting how those challenges
are, or could be, addressed. We believe this inquiry could
enrich those models and generally contribute to the design
science field.

In the collective sensemaking field, the collective (team) is
usually considered only insofar as its relationship to the
organisation, not to its understanding of a specific domain
outside of the organisation. Some researchers, notably Daniel
Russell [11] look at sensemaking from Human-Computer
Interaction (HCI) perspective and, although his view positions
sensemaking in a collective context (the information world), he
describes a style of engagement of sensemaking that is
essentially personal, not collective. The Cynefin framework
(Kurtz and Snowden [12]) is a sensemaking framework that is
particularly useful for collective sensemaking in that it is
designed to allow shared understandings to emerge which
could be insightful with respect to how teams ingest, socialise,
and collectively store insights. As with other collective
sensemaking models, it has resonance in early problem-solving
stages and for formal and finite periods of time. Other
researchers (Klein et al. [13], Naumer et al. [14], Kolko [15])
elaborate further by bringing data-framing into the picture and
defining design synthesis as a process of sense-making, trying
to make sense of chaos. The data-framing activity of
sensemaking lends itself to being part of a long-term collective
effort to understand and therefore may have some relevance to
this inquiry.

VI. METHOD OF THE RESEARCH

As the primary interest is on substantive theory generation,
rather than extending or verifying existing theories, we are
taking an interpretive epistemological stance, employing a
Grounded Theory approach, as developed by Glaser and
Strauss [16], and using the Constructivist Grounded Theory
methodology described by Charmaz [17]. Grounded Theory is
highly applicable in research such as this because it is
explicitly emergent and can generate theory relating to a
specific research situation. This is an area that is a relatively
new, where there has been limited research, and where field
data will come from observations and interviews, conditions
for which Grounded Theory is particularly well suited.

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 47 / 84

Grounded Theory has been used successfully as a research
method to study Agile software development teams: Adolph et
al. [18], Dagenais et al. [19], Coleman and O’Connor [20],
Martin [21], Hoda [22].

The research uses theoretical sampling (Charmaz [17])
where the analysis of the data collected prior informs the
selection of and inquiry with the next participants. Individual
participants and corporate sites selected are ones involved with
software product development (teams developing software for
market) and that claim to have cross-functional product
development teams. The primary data collection methods are
observations of team meetings and team interactions, enriched
by semi-structured interviews with open-ended questions that
can allow real issues to emerge.

Participants are carefully recruited through our professional
network and via direct outreach to select software product
organisations. Where permitted, we hold interviews in the
participant's workplace to allow for environmental context to
enrich the interview data. Also, where we have approval from
the organisations involved, we locate ourselves as
unobtrusively as possible in the workplace to allow for more
casual direct observation as an additional data source which
may direct further data collection and analysis. The individual
interviews conducted are recorded whenever permitted. Our
many years of leadership with the types of people that are
participants affords us considerable comfort, understanding,
and rapid rapport.

Iterative data collection and analysis (formulation, testing,
and redevelopment of propositions) allows participant
sampling and questions to purposefully evolve as patterns
emerge in the data until we reach a theory. We use the NVivo
software tool to analyse the unstructured qualitative data
collected. Data collection will stop once the analysis indicates
the achievement of theoretical saturation, the point at which
gathering more data reveals no new properties nor yields any
further theoretical insights about the emerging grounded theory
(Charmaz [17]). This ensures a degree of consistency in the
analysis.

Our professional experience allows for a certain considered
positionality and we recognise that this shapes our objectivity
and subjectivity of many aspects of perspective in this study.
While acknowledging the challenges, we consider this
experience, and the bias it creates, to be an asset to this
research. As Eisner [23] suggests, the expert ability to “see
what counts” -- the sensitivity to tacit elements of the data,
meanings and connotations -- will guide the research,
supported fully by the collected data, towards questions that
matter.

Quality in research of this nature is generally assessed in
terms of validity and generalizability, which, together,
determine some measure of usefulness. During the research,
we employ various strategies (Maxwell [24]) to mitigate
threats to validity (credibility, dependability, reliability).
Intensive, on-going involvement, e.g., extended participation
and the ability to live in the participants’ workplace, provides
richer data and data types, less dependence on inference, and
opportunity for repeated observations and interviews, all which
will help rule out spurious associations and premature theories.
The collection and use of rich data (transcribed interviews,
thick descriptive note-taking of observations) help provide a

more complete and revealing picture of what is going on.
Participant checks (obtaining participant and peer feedback on
the data collected and conclusions drawn) help rule out
possibilities of misinterpretation. Triangulation (collection
from a range of participants and settings) reduces the risk of
chance associations and systematic biases. Finally, we will be
transparent with any discrepant evidence or negative cases.
We intend to assess transferability of final results within the
context of software product development primarily via reviews
of the resulting theory with software product development
leaders and, further, to draw comparisons with non-product
software development teams to further refine the specificity of
transferability claims.

VII. STATUS OF THE RESEARCH

To-date, we have been working with 5 software companies,
4 of which produce commercial enterprise-class software
products (skills management, retail, stem cell therapy, and
social media marketing management) and using common Agile
approaches. The 5th company develops large-scale aerospace
and satellite systems and adopts some Agile philosophies
within a large-scale, structured project management
methodology. All companies are leaders in their markets.
They range in size from 10 to several hundred employees and
in maturity from 2 to 50 years old. To-date, 9 product
development teams across these companies have participated,
resulting in 15 individual semi-structured interviews conducted
and 17 team sessions observed. More data gathering is
scheduled and more organisations and teams are being
recruited.

VIII.EMERGING OBSERVATIONS

The first emerging observation is that the organisational
model surrounding the cross-functional team significantly
impacts the cross-functional team dynamics, individual
participation and sense of primary allegiance. Where there is,
e.g., a software engineering department, a design department,
and a product management department, contributing members
to cross-functional product teams, the intra-team dynamics are
often strikingly different than when there is no functional
organisation surrounding the teams. In the former case, team
members are more likely to temper their contributions,
identifying more with their functional affiliation than with the
product mandate. The analogy we use here is that each are
wearing a functional t-shirt (e.g., the software engineering
department t-shirt with a small insignia that indicates the
person is assigned to a particular product team at the moment).
In addition to observing this in team interactions, this also
appears in the language, “I just do my job and they do theirs”,
“I trust them”, “I think someone else is looking after that”, “I
just do what Product Management (or Design) says”, “I am on
this team -- for now”. A software engineer in this environment
is much more likely to care about the how and defer to others
on the what and why. In contrast, organisations that do not
have a functional structure surrounding the cross-functional
product teams tend to have teams with a more complete sense
of ownership for their product and richer intra-team
interactions. The t-shirt analogy here is that they are all
wearing the same product t-shirt with perhaps an insignia that
identifies their functional competency. On these teams, sense

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 48 / 84

of team is much stronger, thus the language does not refer to
‘them’. All team members are more likely to care about what,
why, and how because there is a stronger sense of collective
ownership for the product, not just their particular contribution
to it. We plan to probe this phenomenon further and look at
definitions of success and how they may be defined similarly
or not across these two models.

The second emerging observation relates to expectation of
mobility which appears to be inversely related to an
individual’s intrinsic connection to the product and, therefore,
the product team. We have observed two pressures that inhibit
an individual’s inclination to be all-in. One pressure is where
there is a high degree of staff turnover impacts product
development team resourcing. After a certain length of time,
people in these environments come to expect they will be
reassigned soon and thus have a certain tentativeness to their
commitment to the product and the product team. The other
pressure is similar, however, more intentional, where there is a
Human Resource department policy that encourages a high
degree of mobility with respect to team assignment, e.g., 20%
of technical staff should change teams every year. This seems
to be rooted in a belief that mobility is healthy for the
individual and/or adds to corporate robustness. A telling quote
from an engineering manager in one of these situations, “I do
not know how a true ‘team’ can emerge this way.”.

IX. CONCLUSION AND FUTURE WORK

Product development is a social process; thus, the
organisational dimension is the elephant in the room, a critical
factor for success or failure of software product teams. The
two observable phenomena surfacing strongly in the analysis
to-date both fall into a category of what an organisation may
do, consciously or otherwise, to support or inhibit, a cross-
functional team to be all it can be. There appears to be a
certain blurring of functional boundaries necessary for a team
to become a true product team rather than a collection of
functional experts assembled around a product.

In the context of requirements engineering, we use the
definition of empathy to be the ability to imaginatively step
into another domain, understand the perspectives of those in
that domain, and use that understanding to guide decisions
[25]. Stepping into that other domain also involves a certain
temporary blurring of the boundaries in order to truly
understand perspectives in that domain. Thus, further inquiry
is needed to determine if this blurring of functional boundaries
is a necessary condition for the team to collectively grok the
target domain.

ACKNOWLEDGMENT

This work is supported in part by the Institute for
Computing, Information and Cognitive Systems (ICICS) at
UBC.

REFERENCES

[1] T. S. Kuhn, The Structure of Scientific Revolutions. 4th ed.
University of Chicago Press, 2012.

[2] M. Polanyi, “The Tacit Dimension,” Knowledge in
Organisations, 1997.

[3] E. Koppen and C. Meinel, “Knowing People: The Empathetic
Designer,” Design Philosophy Papers, vol. 10, no. 1, pp. 35-51,
2012.

[4] H. Van Rijn, F. S. Visser, P. J. Stappers, and A. D. Özakar,
“Achieving empathy with users: the effects of different sources
of information,” CoDesign, vol. 7, February 2015, pp. 65–77,
2011.

[5] C. Postma, E. Zwartkruis-Pelgrim, E. Daemen, and J. Du,
“Challenges of Doing Empathic Design: Experiences from
Industry,” Int. J. Des. Vol 6, No 1, pp. 59-70, 2012.

[6] A. Woodcock, D. McDonagh, J. Osmond, and W. Scott,
“Empathy, Design and Human Factors,” Advances in Usability
and User Experience, pp. 569-579, 2018.

[7] Y. Dong, H. Dong, and S. Yuan, “Empathy in Design: A
Historical and Cross-Disciplinary Perspective,” Advances in
Neuroergonomics and Cognitive Engineering, pp. 295-304,
2018.

[8] M. Kouprie and F. S. Visser, “A framework for empathy in
design: stepping into and out of the user’s life,” Journal of
Engineering Design, vol. 20, no. 5, pp. 437–448, 2009.

[9] J. Kolko, Well-Designed: How to create empathy to create
products people love. Harvard Business Review Press, 2014.

[10] R. Wieringa, Design Science Methodology for Information
Systems and Software Engineering. Springer, Berlin, 2014.

[11] D. Russell and P. Pirolli, “An Overview of Sensemaking: A
View from the Workshop CHI 2009,” Sensemaking Work. CHI,
pp. 1–2, 2009.

[12] C. F. Kurtz and D. Snowden, “The New Dynamics of Strategy:
Sense-making in a Complex-Complicated World,” IBM Syst. J.,
vol. 42, no. 3, pp. 462–483, 2003.

[13] G. Klein, B. Moon, R. Hoffman, and K. Associates, “Making
Sense of Sensemaking 2: A Macrocognitive Model,” IEEE
Intell. Syst., vol. 21, no. 5, pp. 88–92, 2006.

[14] C. Naumer, K. Fisher, and B. Dervin, “Sense-Making: a
methodological perspective,” CHI2008 Work. SenseMaking
Florence, 2008.

[15] J. Kolko, “Sensemaking and Framing: A Theoretical Reflection
on Perspective in Design Synthesis,” 2010 Des. Res. Soc. Conf.,
pp. 1–9, 2010.

[16] B. G. Glaser and A. L. Strauss, The discovery of grounded
theory: Strategies for qualitative research. Piscataway, NJ:
Aldine Transaction, 1967.

[17] K. Charmaz, Constructing grounded theory: a practical guide
through qualitative analysis. London: Sage, 2006.

[18] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical
Software Engineering., vol. 16, no. 4, pp. 487–513, 2011.

[19] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and
J. P. De Vries, “Moving into a New Software Project
Landscape,” in ICSE ’10 Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pp. 275–
284, 2010.

[20] G. Coleman and R. O’Connor, “Using grounded theory to
understand software process improvement: A study of Irish
software product companies,” Information Software
Technology, vol. 49, no. 6, pp. 654–667, 2007.

[21] A. M. Martin, “The Role of Customers in Extreme
Programming Projects,” PhD thesis. Victoria University of
Wellington, New Zealand, 2009.

[22] R. Hoda, “Self-Organizing Agile Teams : A Grounded Theory,”
PhD thesis. Victoria University of Wellington, New Zealand,
2011.

[23] E. W. Eisner, The enlightened eye: Qualitative inquiry and the
enhancement of educational practice. Upper Saddle River, NJ:
Prentice-Hall, 1998.

[24] J. A. Maxwell, Qualitative research design: An interactive
approach. Thousand Oaks, Calif.: SAGE Publications, 2012.

[25] R. Krznaric, Empathy: why it matters, and how to get it. New
York: Penguin Random House, 2014

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 49 / 84

User Characteristics Validation for User Scenario

Based on Use-Case Models in Requirements Analysis

Saeko Matsuura
Graduate School of Engineering and Science Shibaura Institute of Technology

Saitama, Japan
email: matsuura@se.shibaura-it.ac.jp

Abstract—Nonfunctional requirements, such as user
characteristics and system architecture, are factors that make
it difficult to acquire proper requirements when constructing a
system for business improvement by Information and
Communication Technology (ICT) for small-scale companies
that are behind other medium and large-scale companies. This
paper discusses an incremental requirement acquisition and
analysis method of a system based on a use-case model in
Unified Modeling Language (UML) with the experience of
requirements analysis for a small-scale manufacturing
company as a joint lesson at our university.

Keywords—Nonfunctional requirements; Use-case analysis;
UML; validation.

I. INTRODUCTION

It is well known that requirement analysis is a key to
success in developing high-quality systems in an efficient
manner. Requirements specification must determine not
only functional requirements but also nonfunctional
requirements. Nonfunctional requirements include the
system goal, external interfaces with the user, hardware,
software, and communications. Moreover, user
characteristics that are general characteristics of the intended
users of the product, including educational level, experience,
and technical expertise affect not only the system usage but
also the service quality.

As the system architecture and users become diverse, the
initial model of a system often depends on these features
with regard to nonfunctional requirements. These features
restrict the specification and need elaboration by considering
these features step by step at the early stage of system
development, as discussed in the Twin Peaks Model [1].
User characteristics and the system architecture are the
factors that make it difficult to acquire proper requirements
when constructing a system for business improvement by
Information and Communication Technology (ICT) for
small-scale companies that are behind other medium and
large-scale companies.

On the other hand, functional requirements can be
modeled as essential use cases [2] by a semiformal and
widely used language such as the Unified Modeling
Language (UML) [3] in model-driven development. System
usage scenarios can be defined by a combination of these use
cases. However, the abovementioned architectural and
external factors in nonfunctional requirements strongly affect

this combination. Moreover, a change in the need for these
use cases may occur. Although this uncertainty of
requirements is unavoidable at the early stage of system
development, it is important formally to manage the
traceability of requirements related to nonfunctional
requirements in a system.

We have proposed a method for model-driven
requirements analysis [4] [5] using UML. We have also
presented an iterative cycle of analysis and verification in
which the requirements specification of a system was defined
incrementally [6].

If the user does not clearly recognize the effectiveness of
ICT, it is more difficult to acquire their requirements for a
system to improve their business by ICT. In this case, even if
a use-case model is useful to define an expected system, it is
difficult to extract and define suitable use cases. The basis of
a use case is a normal flow that consists of behaviors and
data with preconditions and postconditions. Data has
invariant conditions for a system, so it causes exceptional
flows in a use case. To acquire user-centric useful
requirements, we think the following two things are
important points to specify in fundamental use cases at the
early stage of the requirement analysis phase:

· Essential data required in executing the domain tasks
must be clarified; however, these data often involve
the implicit knowledge of the user. Therefore, we
must obtain these data via a method, such as
ethnography [9] as sufficiently and as far as possible.

· As a system must not obstruct the task process in the
actual work site for the users, the requirements
should specify the behavioral flows by following a
traditional task process.

This paper proposes a method to acquire user-centric
useful requirements incrementally at the early stage of
system development. Fundamental scenario analysis based
on use-case components makes it possible to acquire user-
centric useful requirements by clarifying the confirmation
points on the models. These points can be used in analysis by
requirements elicitation methods such as the ethnography
method.

The rest of this paper is organized as follows. Section II
describes problems in improving the business of a small-
scale company that is behind in introducing ICT technology.
Section III explains how to define a UML requirements
analysis model and a way to validate user satisfaction using
UML models. Section IV explains a case study. Finally,

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 50 / 84

Section V discusses our results, conclusions, and future
research directions.

II. PROBLEMS IN IMPROVING BUSINESS OF SMALL-SCALE

COMPANIES

A. Barriers to Business Improvement by ICT

It is difficult to introduce a basic management system at
work sites, such as small manufacturing industries because
of the work environment, a low number of employees, or
inexperience in ICT. In such work sites, only responsible
people can manage the work process, and they use a
whiteboard and paper notes attached to the product parts for
process management. As a person’s knowledge of process
management is their implicit knowledge, this is not the
explicit and formal knowledge of the company. Forming
implicit knowledge into common specified knowledge is
important for business improvement by the utilization of
information technology; however, it is difficult to acquire
implicit knowledge from the users.

We think that modeling fundamental use cases
contributes to formulating implicit knowledge into common
specified knowledge that is related to the model elements.

B. Outline of Example Subject

In response to overseas industrial policies such as
“Industry 4.0,” in Japan, we make efforts to solve solutions
using the Internet of Things toward the future innovation of
industrial structures. However, in a small-scale
manufacturing company, delays in IT conversion are
obstacles to such efforts.

This study covers issues in nonmetal products
manufacturing companies that are centered on casting
technology and are celebrating their centenary in 2018.
These companies primarily deal with construction hardware
ordered by building material manufacturers, who specialize
in small lots of various kinds. As there are fewer than 20
employees, it is a small factory. By using manufacturing
technology possessed by each cooperating factory scattered
in the area, we provide consistent services from product
manufacturing to processing. Cooperation with a factory
with a useful and a profit is a strength. However, as many
parts move between cooperating factories, leading to various
kinds of commercialization, it is difficult to manage these
work processes.

While manufacturing a product, it is necessary to request
multiple companies to cooperate in order to process many
parts to complete the product. Parts that are to be delivered
between the parent company and the cooperating companies
are placed in returnable boxes that are transported by full-
time drivers. The transmission of information about
processes and products is carried out by telephones,
messages to drivers, and meetings. Although process and
product information are the basis of the work, they are

implicit knowledge possessed only by the responsible person
at the parent company. Sharing such important implicit
knowledge is the goal of introducing a system.

C. Difficulties in Requirements Analysis

Ethnography is a qualitative orientation of research that
emphasizes the detailed observation of people in naturally
occurring settings. It is drawing a considerable amount of
attention because it is useful in marketing. The ethnography
method is used for observation of work sites and in
interviews with the person in the company who is
responsible for requirements acquisition; however, it is
important that the interviews are carried out by whom which
has both domain knowledge and system knowledge. It is
important that the project manager or developer is familiar
with information technology. However, few people are
familiar with both types of knowledge.

We think that modeling fundamental use cases
contributes to extracting useful observations and interview
questions for the person who use the ethnography method.

III. USER CHARACTERISTICS VALIDATION IN USER

SCENARIO

A. Use-Case Component

A use-case analysis is an effective method to clarify
functional requirements. We propose a method for model-
driven requirements analysis using UML. A use-case model
is a fundamental component of the requirements defined
formally by UML. This method is defined based on a
requirements analysis model, as shown in Figure 1.

Figure 1 shows an outline of a requirements analysis
model. The relation between the use cases in the specified
use-case diagram is expressed by an activity diagram that
includes some subactivity nodes corresponding to the use
cases. An activity diagram defines each use case. An activity
diagram specifies not only normal and exceptional action
flows but also data flows that are related to these actions. An
action is defined by an action node, and data is defined by an
object node that is classified as a member of a class that is
defined in a class diagram. Accordingly, these two kinds of
diagrams enable us to specify application process flows in
connection with the data. The interaction between a user and
a system includes requisite flows and data on user input,
conditions, and output to execute a use case correctly.

The second feature of this model is an activity diagram
that has three types of partitions: user, interaction, and
system. These partitions enable ready identification of the
following activities: user input, interaction between a user
and system caused by the conditions for executing a use
case, and the resulting output. Object nodes in the user,
interaction, and system partitions represent input data, output
data, and entity data, respectively. The requirement analysis
model is defined using the modeling tool Astah*[7].

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 51 / 84

Figure 1. UML requirements analysis model

When user requirements are uncertain owing to users
who are unfamiliar with ICT, we must develop a system
from the fundamental use case to improve the business. To
introduce ICT into the company, it is important that
fundamental use cases need to be validated on the benefits.
The user scenario consists of these use-case components, and
we evaluate whether it satisfies the requirements of each
stakeholder by a state machine diagram that represents the
state of user recognition.

B. Use-Case Analysis Process

Based on Chapter 4, “Considerations for Producing Good
Software Requirements Specifications (SRS),” and Chapter
5, “The Parts of an SRS,” in IEEEstd.8300-1998 [8], we
focus on the following parts of nonfunctional requirements
and propose an iterative requirements analysis process, as
shown in Figure 2 [6].

Figure 2. Iterative requirements analysis process

The process indicates that the functional requirements of
a system can be specified by fundamental use cases that

satisfy “the effective and useful scenarios in the system
usage” in order to meet “the goals of the system.” We focus
on the following internal and external factors of the software:

1) Goals of the stakeholders
2) Overall product image based on the following two

external factors:
a) External interfaces with the user, hardware,

software, and communications.
b) User characteristics that are general

characteristics of the intended users of the
product, including educational level, experience,
and technical expertise, which affect the system
usage.

As mentioned in Section II, to solve the problems in a
small-scale company, the first factor is often not concrete,
and the second factor strongly affects the acceptable system.

In contrast to the standpoint of managers or workers, the
goals of stakeholders are significantly different.
Furthermore, if there are parent-child relationships between
companies, the expected goals of the system are also
different. Therefore, first, we set the goals of the manager of
the parent company and build a basic scenario. We extract
use cases and data models for the fundamental goal, and an
activity diagram defines a scenario where all workers
operate their tasks using the target system.

C. Definition of Implicit Information

Based on nondigital information on a whiteboard or
paper notes attached to the product parts for process
management that are given by a responsible person, the
actual used information required for process management
can be defined by a class diagram, as shown in Figure 3.
Figure 3 shows the following things: a product consists of
several parts and a process treats one or more target
returnable boxes and the factory being in charge and the

Actor

System

Usecase1

Usecase2

Usecase3

<<include>>

System

Usecase1 Usecase2

Use case description
• Actor
• Pre-condition
• Normal flow
• Exceptional flow
• Post-condition

Clarify a boundary between a useｒ and a system.
Clarify a role of an action and data. Logic

Data
is referred from an actin

｜is created by an action
｜is deleted by an action
｜is updated by an action

Guard
Is conditioned on data
| is a relational expression

between attributes
| is data invariant

SystemInteractionUser

Action in System
Request Input

Action

Input Action

Output Action

Action in System

[mormal]

[exceptional]

Reference Object : ClassＡ

Created Object : ClassＢ

pre-condition

post-condition

Input Item : Input

Output Item : Output

Input Output

Entity Data

- field3 : String

ClassＢ

- field2 : String
- field1 : Integer

ClassＡ

UI

Use case
is a sequence of actions given each role.

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 52 / 84

eight date managed in the process. A task schedule is a
sequence of processes.

Figure 3. Class diagram

D. Fundamental Scenario

Next, consider a use case that is necessary to satisfy the
goal. The basic information for sharing implicit knowledge
is the process information and product information, as
shown in Figure 3. Based on the fundamental Create, Read,
Delete, and Update (CRDU) functions, a use case is
extracted, as shown in Figure 4. In this case, there are three
actors such as a worker in a parent company and a
cooperative company, and a driver.

Figure 4. Use-case diagram

Based on these use cases, we defined the workflow of
one step of work, as shown in Figure 5. A workflow
expresses a scenario where all workers actually operate their
tasks in the real world using the developed system. Here, we
have not yet assumed the hardware to use. As a premise of

the workflow, it is assumed that both the product
information and process information as a plan are already
registered.

The workflow scenario as shown in Figure 5 is defined
under the conditions that the other use cases are completed,
for example, that the registration is completed by the
“register process information” use case.

The partition represents each worker in this company.
That is, the action within the partition limits the action of
each worker. The action written in the behavior call action
of “read process information” and “update process
information” represents a use case. Colored actions
represent the following tasks:

· Work done by workers in each partition while using
the Process Management System with the use case
in Figure 4.

· Actual work regardless of the system.

Figure 5. Fundamental scenario

The part surrounded by a rectangle is the work of the
former and is necessary to determine the hardware
configuration to create merits for the worker by using the

- notice : String

- fablicationTec : String
- number : String
- name : String

Product

- problem : String

Process

- hour : Integer
- day : Integer
- month : Integer

- year : Integer

Date

- telephoneNumber : String
- address : String

- name : String

Factory

- charge

- recieptSchedule- deliverySchdule

- taskStart- taskCompletion

- targwt

1..*1..*

- instruction : String

- quantity : Integer
- label : Integer

ReturnableBox

- number : String
- name : String

Parts
1..*

- transfer

- reciept

- next

- shipping

- delivery

Worker_in_Parent_Company

Driver

Register
Product Record

Delete Product
Record

Register Process

Record

Update Process
Record

Read Process
Record

Worker_in_Cooperative_Company

Update Product

Record

Read Product
Record

Delete Process

Record

Process Management System

Driver Worker_in_Cooperative_CompanyWorker_in_Parent_Company

Read Process Information

Read Process Information

Request shipping

Returnnable box

Transport

Returnnable box

Read Process Information

Working

Update Process Information

Update Process Information

Request shipping

Returnnable box

Read Process Information

Transport

Returnnable box

Check Product

Check Returnnable box

Check Returnnable box

Check Returnnable box

Check Returnnable box

Put parts in
Returnnable box

Pre-conditions : Product information

has been registerd. && Process

information has been registerd.

Check Returnnable box

Read Process Information

Working

Update Process Information

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 53 / 84

system. The merits for workers are their respective goals,
but it is important that the introduction of the system itself
does not harm their tasks. The user characteristics of the
workers need to be sufficiently considered.

Figure 5 shows a workflow in which the process control
function, which uses a computer, is introduced into the
present work done in the real world. The conditions for
satisfying the goals of stakeholders by process control are as
follows:

1) Information required for process information (see
the class diagram in Figure 3) is valid. This means
that the entity in the real world and the information
in the system are consistent with each other.

2) It is required to confirm the degree of satisfaction of
each goal. For example,
a) If responsible people can acquire the dates

related to a process they want to know as
management information, they can “grasp the
work situation” by sharing information with
other workers.

b) The efficiency improvement of information
transmission can be accomplished by sharing
information even without using a telephone so
that the next work can be started and the
instruction content of the work can be known.

c) Regarding the driver’s goal, the responsible
person can confirm with the process chart that
the product was delivered to the correct place.

E. Use-Case Scenario Validation

The grasp of the work situation of the abovementioned
condition 2) in Section III-D is modeled using a state
machine diagram as shown at the upper left of Figure 6.

Figure 6. Relationship between work situation and workflow

An activity diagram and a state machine diagram express
the behavior of a system from different viewpoints. The
former expresses a sequence of actions, and the latter
expresses a graph of the system state. Thus, we can see that

the column of each state in the real world corresponds to
each partition of the workflow.

In the state of the real world at the upper left, we
modeled how we can recognize the work performance of
each worker in the system by the workflow task of each
worker. The part indicated by a red circle represents the state
that the worker of the cooperating company can recognize by
using the system. Considering the user characteristics, if we
do not introduce a system to cooperating companies, they
cannot recognize this achievement state, that is, the model in
the lower left will be understood in the real world when the
parent company uses the system. In the workflow after
introducing the system, by associating information that is
understandable by the user through the system with the state
machine diagram of the actual state arising from the work of
the workflow, it is possible to intuitively grasp the merit of
introducing the system and to evaluate the value of
systemization.

IV. CASE STUDY

We conducted a joint lesson in two master courses of
System Engineering & Science and Engineering
Management at our university over two years. The students
in the Engineering Management course researched the
visualization and sharing method of technology and skill
succession by extracting tasks from an actual situation based
on field observations for small and medium manufacturing
companies.

A subject with a realistic problem was given to students
in the System Engineering & Science course who had some
system development skills with UML. They were given the
subject and the research results that were observed in the
workplace of a small manufacturing company based on the
ethnography method. Then, the students analyzed the
system by ICT to contribute to the improvement of the
business. The purposes of this lesson were as follows:
· To understand that the analyst has to specify a useful

scenario that the user can accomplish by using the
system during the actual work. This is because they
make the users understand the merit of introducing
the system into their work.

· To understand how to check the validity of the
requirements defined using the UML requirements
analysis method based on the use-case components
and the state machine diagrams. This is because it is
difficult for the user to confirm whether the assumed
scenario has satisfied the goal.

· To understand and organize the viewpoints of
various requirements analyses by analyzing the
problems of a small-scale metal manufacturing
company as an example of a real problem.

V. CONCLUSION

This paper presented a method for the user
characteristics validation of a UML requirements analysis
model. Regarding this experience in the master course
lecture, we discussed the problems in acquiring user-centric

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 54 / 84

requirements considering the user characteristics, as
follows:
· If the user cannot master the system convenience,

there are often discrepancies between the information
within the system and the states in the actual
workflow. This causes damage to the effectiveness of
the system. Thus, as there are workers unfamiliar
with the operation of IT equipment, that a suitable
confirmation function should be implemented with
the user characteristics is indispensable.

· Although it seemed to some extent that the
information the users wanted to manage was
gathered through investigation by ethnography, it
was not verified whether this is sufficient for
developing some functions to improve the current
work. This is because, when interviewing or
observing, there are times when the observer does
not see the points that the analyst wants to clarify
from the analyst's point of view.

· As the users may be unfamiliar with the IT
environment, they tend to hesitate when introducing
a system into their work, and it is necessary to
consider the following measures:
* First, present the initial system where the effects

are clear.
* Consider a system configuration that makes the

walls of use as low as possible.
* Although it is necessary to clarify the actual

work process, observation and interview alone
are not sufficient. Measures are needed to clarify
what the users want to achieve in their work, and
we need to develop a prototype that allows the
users to check the scenarios directly.

In this case, a requirements analysis model and
incremental-model-driven development are useful for
generating a prototype efficiently and improving the system
gradually at the early stage of development. A fundamental
scenario is useful to analyze the system behaviors that are
strongly affected by the user characteristics and to present a
suitable usage of input and output devices such as sensors.
We implemented a prototype system according to a
validated UML requirement analysis model, and we are
planning to evaluate this prototype system with the users.

REFERENCES

[1] B. Nuseibeh, “Weaving the Software Development Process Between
Requirements and Architectures”, IEEE Computer, Vol. 34(3), pp.
115–117, 2001.

[2] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, “Object-
Oriented Software Engineering: A Usecase Driven Approach”,
Addison-Wesley Publishing, 1992.

[3] OMG, “Unified Modeling Language”, http://www.uml.org/ (access
2018-11-21).

[4] S. Ogata and S. Matsuura, “A UML-based Requirements Analysis
with Automatic Prototype System Generation”, Communication of
SIWN, Vol. 3, pp. 166–172, 2008.

[5] Y. Aoki, S．Ogata, H．Okuda, and S．Matsuura,“Quality
Improvement of Requirements Specification Using Model Checking
Technique”, Proc of ICEIS 2012, Vol. 2, pp. 401–406,2012.

[6] S. Matsuura, S. Ogata, and Y. Aoki, “Goal-Satisfaction Verification

to Combination of Use Case Component”, ENASE2018, pp. 343–
350, 2018.

[7] ChangeVision, Inc., "Astah professional: Perfect for Software
Development," http://astah.net/, (access 2018-11-21).

[8] IEEE Computer Society, “IEEE Recommended Practice for Software
Requirements Specifications”, IEEE Std 830-1998.

[9] L. Naidoo, “Ethnography: An Introduction to Definition and
Method”, doi: 10.5772/39248, 2012.

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 55 / 84

Analysis of Requirements and Technologies to Migrate Software Development to the
PaaS Model

Fabiano Rosa
NOVA IMS Information Management School

Nova University Lisbon
Lisbon, Portugal

e-mail: M2016507@novaims.unl.pt

Vitor Santos
NOVA IMS Information Management School

Nova University Lisbon
Lisbon, Portugal

e-mail: vsantos@novaims.unl.pt

Abstract—Software development has been evolving during the
last years and, more and more, the software architecture to
support this development has become increasingly complex to
meet the new requirements and new technologies. With the
new Cloud Computing architecture and models, Information
Technology (IT) departments and Independent Software
Vendors (ISVs) are developing new applications and moving
the traditional software architecture to the cloud. In this
context, the Platform as a Service (PaaS) model can provide
software development services and components within a new
architecture for building a new generation of software with all
benefits of the cloud, like scalability and elasticity. We look at
the requirements and technologies for developing software
with the PaaS architecture and present a migration model for
PaaS, based on the main software architectures and
information system types, validated by specialists from
software development and Cloud Computing areas. The results
show the feasibility of our approach and the possibility to have
an initial blueprint for software development in PaaS.

Keywords-Cloud Computing; PaaS; Software Development;
Software Architecture; Migration.

I. INTRODUCTION

Cloud Computing, one of the latest IT innovations, is still
taking shape and gaining maturity, and at this stage, different
people, from the technology area to the sales area, have
divergent views and concepts about it, based on their
interests and how to apply and use Cloud Computing in their
daily lives [1]. Also, Cloud Computing has been modifying
software development and traditional IT and business,
introducing new ways to develop software, with more
scalability and agility with lower costs, allowing companies,
from startups to big corporations, to create new business
models or improve existing ones.

Due to the growth of Cloud Computing adoption,
Platform as a Service (PaaS) has become an important part
of the cloud economy and has been showing the potential of
a service model, with a platform that supports the entire
lifecycle of an application, from development, testing,
deployment and operations, with components, tools and
integrated services [2]. Many organizations are planning and
migrating their on-premise software to the cloud [3], starting
with the Infrastructure as a Service (IaaS) and Software as a
Service (SaaS) models. Nonetheless, they are facing some

challenges and difficulties, mainly in the PaaS model, related
to the complexity in integrating the legacy and internal
systems, from their IT area to the new PaaS architecture
model and services on the cloud.

The remainder of the paper is structured as follows. In
Section 2, we present the background and problem
identification. Section 3 presents the details of the PaaS
service model. Section 4 presents the details of our proposed
migration model. Section 5 discusses existing limitations and
future works. Finally, Section 6 summarizes the discussion
and conclusions of the paper.

II. BACKGROUND AND PROBLEM IDENTIFICATION

PaaS is a cloud service model that provides capabilities
to deploy applications onto the cloud created with languages
and tools supported by the provider and uses and integrates
application infrastructure services in the application to cloud
consumers.

In the PaaS model, the cloud provider manages the
foundational infrastructure (network, servers, operating
systems, storage, etc.), but the cloud consumer has control
over the deployed applications, configurations and lifecycle
[4].

PaaS delivers application infrastructure capabilities
(middleware) to the software development process, such as
runtime and development components, as cloud services
like:

 Application Development, Data, Workflow, etc.
 Security Services (Single Sign-On, Authentication,

etc.).
 Database Management Systems (DBMSs).
 Directory Services.
 Integration middleware.
 Business process management (BPM) platforms.
 Rules engine.
 Complex-event processing (CEP).
 In-memory computing (IMC) platforms.

Cloud Computing and PaaS model architecture bring
new requirements and complexity to the software
development process. These contingencies include the new
technologies, services and tools available in PaaS, to the
adaptation of the traditional software engineering and

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 56 / 84

development process to use new techniques like DevOps,
native cloud application models and hybrid cloud
deployment (on-premise to cloud integration), until new
methodologies, like Agile, used in this new software
development scenario to be considered in the traditional
software project management practices.

In this hypersonic-growth scenario, the ISVs and IT
department of companies need to be able to evaluate the
PaaS model and architecture to adapt their software
development and architecture, usually complex with
countless legacy systems, many integrations and different
technologies to this new software development scenario.

III. PAAS SERVICE MODEL

Considered as the next level of abstraction of the cloud
stack, after IaaS, which targets the basic IT infrastructure,
PaaS provides the functions from the application stack as
services, allowing developers to design and build solutions
using platform services for caching, asynchronous
messaging, database, and much more. In this way,
developers do not need to reinvent the wheel implementing
these “commodity” requirements from scratch and can focus
on the business logic from the system [5].

However, PaaS is the hardest service model to
characterize due to the many ways of building services and
the wide range of offerings of PaaS providers. An additional
layer of services related to development frameworks,
middleware, databases, messaging and queuing is added to
PaaS as an integration layer, so the applications can be built
to the platform with the supported development languages
and tools [6].

Due to the evolution of the Cloud Computing industry
and increased cloud customer adoption, new Cloud
Computing “as a service” models known as XaaS have
emerged, that refer to “anything” or “everything” as a
service. These new service models related with the three
original cloud service models are being deployed by public
cloud providers and into the enterprise private cloud [7].

The PaaS market is growing and becoming segmented
with new extended service models for PaaS, as reported by
Gartner [8], in 2016 there were 20 specialized PaaS
categories from vendors with paying customers, and some
new categories will emerge and others will be integrated into
new PaaS suites in the next years. This growing market of
PaaS solutions reflects the evolution of Cloud Computing
and the search for new solutions in the cloud for software
development. The main PaaS categories reported by Gartner
[8] in 2016 are:

 Application Platform Services (aPaaS): a cloud
service focused on general-purpose business
applications development, deployment, execution,
supporting business logic and data handling for
back-end services, web, and mobile.

 Business Analytics Platform Services (baPaaS):
cloud-based business analytics platforms offering
capabilities to ingest data from different data
sources, prepare data for analysis, visualize and

analyze data, develop and publish dashboards or
other Business Intelligence (BI) outputs.

 Business Process Management Services (bpmPaaS):
The delivery of Business Process Management
(BPM) capabilities as a cloud service including a
graphical business process and rule modeling
capabilities, a process registry and repository to
handle the modeling metadata, a process execution
environment, and rule engine.

 Business Rule Platform Services (brPaaS): also
referred to as decision management PaaS (dmPaaS),
a cloud-based service that aims to support decision
making by the business rules management.

 Communications Platform Services (cPaaS): cloud-
based solutions that enable applications to integrate
or improve communications functionalities, like
telephony calling, SMS, MMS, Speech recognition,
Mobile browsing, Video services, and Conferencing.

 Database Platform Services (dbPaaS): a cloud
service that provides any database management
system (DBMS) or data storage engineered as a
scalable, elastic and multitenant subscription.

 Function Platform Services (fPaaS): cloud-based
service that provides a serverless execution
environment for small and event-triggered functions,
where it is possible to run code without provisioning
or managing servers with support to automatically
scale processes to support increasing and decreasing
load.

 Enterprise Horizontal Portal Services (Portal
PaaS): cloud-based service that provides an
Enterprise Portal with core portal features like
security, personalization, integration, content
aggregation and presentation, with the ability to run
in shared, multitenant environments, including
private and public cloud deployments.

 Integration Platform Services (iPaaS): provides a
platform in the cloud to support application, data and
system-to-system integrations, using a mix of cloud
services, mobile apps, on-premises systems and
Internet of Things (IoT) integrations.

 Message-Oriented Middleware Services
(momPaaS): cloud-based services focused on
provide communication between one part of an
application to another or between different
applications through the internet, in the case of
public cloud momPaaS, and between components in
the same LAN with the private cloud model.

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 57 / 84

IV. MIGRATION MODEL

The proposal and migration model are based on the
concepts and fundamentals related to the following
assumptions:

 There are different PaaS service models specialized
in attending to the different needs of software
development and migration to the cloud.

 Although there are several types of software,
systems, and applications, the migration model was
focused on the main types of information systems
that have business content relevance.

 There are a variety of software architectures to use
in software development, and each one has specific
requirements and characteristics that should be
evaluated according to the needs and requirements
of the system.

 Although software development for PaaS uses the
traditional Software Development Life Cycle
(SDLC), it is critical to consider the characteristics
of Cloud Computing to adapt software
development to PaaS.

 Migration software development to PaaS needs to
have a defined roadmap and process to allow the
migration in phases, although the migration process
may be the same for all software development
migration to the cloud.

Design Science Research (DSR) is one of the
methodologies that allows producing knowledge in a
structured way, focusing on a real problem resolution,
ensuring the attainment of scientific results. The authors used
DSR as a scientific methodology to produce this academic
contribution and the migration model. The approach
involved an analysis of current software development
processes and PaaS software development requirements. We
proposed recommendations based on the study and
interviewed specialists validated the recommendations. The
authors documented the results and discussions.

The migration model for developing and migrating the
software development to the PaaS cloud model, described in
Table I, was constructed based on two dimensions: the
software architecture style and the type of information
system that the software was built or will be built using one
or more PaaS specialized categories.

The software architectures used in the model were
selected based on the relevance and importance in the
software engineering and in the current technologies used in
software development. Also, the types of information
systems [9] were selected based on the focus on business
systems and in most of the legacy software implemented. For
a specific software architecture and type of information
system relation, one or more PaaS specialized models were
recommended based on main PaaS categories and should be
evaluated whether it will be necessary to use a PaaS
specialized model or more than one combined to use PaaS in
software development migration projects.

TABLE I. RECOMMENDATIONS FOR SOFTWARE DEVELOPMENT AND MIGRATION TO PAAS

Software
Architectures

Types of Information Systems

Transaction
Processing

Systems (TPS)

Business
Intelligence (BI)

Enterprise Applications

Enterprise
Resource Planning

(ERP)

Supply Chain
Management

(SCM)

Customer
Relationship
Management

(CRM)

Knowledge Management
Systems (KMS)

Monolithic
aPaaS
iPaaS

(1)

aPaaS
baPaaS
iPaaS

(2)

aPaaS
iPaaS

(1)

aPaaS
iPaaS

(1)

aPaaS
iPaaS

(1)

aPaaS
iPaaS

(1)

Client-Server
dbPaaS
iPaaS

(3)

dbPaaS
iPaaS

(3)

dbPaaS
iPaaS

(3)

dbPaaS
iPaaS

(3)

dbPaaS
iPaaS

(3)

dbPaaS
iPaaS

(3)

N-Tier

aPaaS
dbPaaS
iPaaS

(4)

aPaaS
dbPaaS
iPaaS

(4)

aPaaS
bpmPaaS
dbPaaS
iPaaS

(5)

aPaaS
dbPaaS

Portal PaaS
iPaaS

(6)

aPaaS
cPaaS

dbPaaS
Portal PaaS

iPaaS
(7)

aPaaS
dbPaaS

Portal PaaS
iPaaS

(6)

Microservices

aPaaS
dbPaaS
fPaaS
iPaaS

momPaaS
(8)

aPaaS
baPaaS
dbPaaS
iPaaS

momPaaS
(9)

aPaaS
bpmPaaS
brPaaS
dbPaaS
iPaaS

momPaaS
(10)

aPaaS
brPaaS

Portal PaaS
dbPaaS
iPaaS

momPaaS
(11)

aPaaS
brPaaS
cPaaS

Portal PaaS
dbPaaS
iPaaS

momPaaS
(12)

aPaaS
Portal PaaS

dbPaaS
iPaaS

momPaaS
(13)

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 58 / 84

The recommendations from the migration model in Table
I, resulted from the relation of software architecture style and
the type of information system, can be summarized as
follows:

 Monolithic architecture [10] and TPS, ERP,
SCM, CRM and KMS information systems
[11]: as a monolithic application is built in a
single unit, these types of information systems
can use the Application Platform Services
(aPaaS) model to implement and deploy the
system in the cloud, using an embedded
database and one or more programming
language runtimes to implement the application
(UI, business logic and data access layer)
(Recommendation 1).

 Monolithic architecture [10] and BI
information system [11]: To implement BI
information systems in the cloud as a monolithic
application, Application Platform Services
(aPaaS) can be used to build an application with
BI capabilities from scratch or the Business
Analytics Platform Services (baPaaS) model can
be used to prepare data for analysis, visualize
and analyze data, develop and publish
dashboards or other Business Intelligence (BI)
outputs (Recommendation 2).

 Client-server architecture [10] and TPS, BI,
ERP, SCM, CRM and KMS information
systems [11]: Database Platform Services
(dbPaaS) can be used to host the server logic
and data for client-server applications and the
respective information systems types, but as the
application logic is implemented with database
stored procedures and database triggers, the
dbPaaS vendors and products offer needs to be
analyzed and evaluated, before any
implementation or migration, to attend these
requirements (Recommendation 3).

 N-tier architecture [10] and TPS/BI
information systems [11]: Application
Platform Services (aPaaS) and Database
Platform Services (dbPaaS) can be used to
implement an n-tier application for TPS and BI
information systems, where the data layer can
be hosted in dbPaaS and the presentation and
business logic layer (and other layers if needed)
can be implemented and deployed in an aPaaS
as separated applications/modules
(Recommendation 4).

 N-tier architecture [10] and ERP information
system [11]: Like recommendation 4,
Application Platform Services (aPaaS) and

Database Platform Services (dbPaaS) can be
used to implement an ERP information system.
Additionally, Business Process Management
Services (bpmPaaS) can be used to model and
execute the business process related with the
functional areas in ERP, such as manufacturing
and production, finance and accounting, sales
and marketing, and human resources
(Recommendation 5).

 N-tier architecture [10] and SCM/KMS
information systems [11]: Like
recommendation 4, Application Platform
Services (aPaaS) and Database Platform
Services (dbPaaS) can be used to implement an
SCM and KMS information systems. Also, an
Enterprise Horizontal Portal Services (Portal
PaaS) can be used to provide a corporate portal
with the enterprise knowledge base for KMS
systems and a Business-to-Business (B2B)
portal for the interaction between the company
and the suppliers, purchasing firms, distributors
and logistics companies (Recommendation 6).

 N-tier architecture [10] and CRM
information system [11]: Like
recommendation 6, Application Platform
Services (aPaaS), Database Platform Services
(dbPaaS) and Enterprise Horizontal Portal
Services (Portal PaaS) can be used to implement
a CRM information system. Besides, a
Communications Platform Services (cPaaS) can
be used to provide communications
functionalities to enhance the communication
and interaction with customers
(Recommendation 7).

 Microservices architecture [12]-[14] and TPS
information system [11]: In the case of a TPS
information system, it can be implemented in
microservices architecture using: Application
Platform Services (aPaaS) to implement each
microservice application, Database Platform
Services (dbPaaS) to be used by each
microservice and encapsulate the business data
domain, and Function Platform Services (fPaaS)
to implement small functions and procedures to
be executed as a microservice by the system
(Recommendation 8).

 Microservices architecture [12]-[14] and BI
information system [11]: Application Platform
Services (aPaaS) and Database Platform
Services (dbPaaS) can be used to implement
each microservice of BI information systems
and a Business Analytics Platform Services
(baPaaS) can be used together with the

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 59 / 84

microservices to provide analytical reports and
dashboards (Recommendation 9).

 Microservices architecture [12]-[14] and ERP
information system [11]: Application Platform
Services (aPaaS) and Database Platform
Services (dbPaaS) can be used to implement
each ERP information system microservice, and
can additionally use a Business Process
Management Services (bpmPaaS) for modeling
and executing the business process and Business
Rule Platform Services (brPaaS) to encapsulate
some business rules to be executed by the
microservices in the system (Recommendation
10).

 Microservices [12]-[14] architecture and
SCM information system [11]: Application
Platform Services (aPaaS) and Database
Platform Services (dbPaaS) can be used to
implement each SCM information system
microservice and Business Rule Platform
Services (brPaaS) to encapsulate the business
rules that can be consumed by the
microservices. Additionally, Enterprise
Horizontal Portal Services (Portal PaaS) can be
used to provide a B2B portal that is integrated
with the microservices layer (Recommendation
11).

 Microservices architecture [12]-[14] and
CRM information system [11]: Like
recommendation 11, a CRM information system
can be implemented in microservices
architecture using Application Platform Services
(aPaaS), Database Platform Services (dbPaaS),
Business Rule Platform Services (brPaaS) and
Enterprise Horizontal Portal Services (Portal
PaaS). Also, Communications Platform Services
(cPaaS) can be used by the microservices to
provide communications functionalities to
customers (Recommendation 12).

 Microservices architecture [12]-[14] and
KMS information system [11]: KMS
Information system types can be implemented
in a microservice architecture using Application
Platform Services (aPaaS) and Database
Platform Services (dbPaaS) to build each
system microservice, and Enterprise Horizontal
Portal Services (Portal PaaS) can be used to
provide a knowledge base portal that is
integrated with the microservices layer
(Recommendation 13).

For all the recommended scenarios in the migration
model (Table I), Integration Platform Services (iPaaS) was
recommended for situations when the integration and

exchange of information between cloud applications and on-
premise and legacy applications are required.

In the recommendations related to Microservices
Architecture (8, 9, 10, 11, 12 and 13), a Message-Oriented
Middleware Services (momPaaS) was proposed to support
the communication and integration between the different
microservices implemented in the respective system, thus
supporting the message exchange with different protocols.

The proposed migration model and respective
recommendations were validated through interviews, where
the objective of the interviews was to validate the migration
model with specialists in Cloud Computing and Software
Development from academic institutions and IT companies.

The following three questions and the identification of
each interviewee were considered fundamental in the
interview step and aim to validate the study, validate and
improve the model and the work.

1. Does it make sense to propose a model that
systematizes the different specializations of
PaaS for software development?

2. Do you agree with the strategy followed in the
presented migration model (Software
Architecture/Information System
Type/Recommendations)?

3. Do you have suggestions to improve the
migration model proposed?

Based on the interview answers collected from the
specialists, it was possible to verify that the migration model
proposed in this work is valid and the recommendations
presented in the model can be applied in software
development scenarios with PaaS, according to what has
been proposed in the migration model.

Regarding question 1, which aimed to validate if it makes
sense to propose the model presented, all interviewees
agreed that the proposed model makes sense and the
importance of having precise definitions of PaaS specialized
models was highlighted, thus avoiding overlaps of concepts.

The strategy followed in the model was agreed by all
interviewees, according to the answers from question 2, and
it was suggested that some examples of the application of
recommendations to enrich the work should be described.

In question 3 answers, the interviewees collaborated with
interesting suggestions for improvements in the model, but
there did not agree on how to evolve the model, since one
interviewee suggested keeping it as simple as possible and
not include new types of information systems and new
software architectures, while another interviewee suggested
exactly the opposite, evolving the model to consider new
types of information systems and new software architectures.

Thus, analyzing the results of the validation of the
proposed model by the specialists through interviews, it was
clear that it can add value to the software development
process for PaaS and thus support decision makers, managers
and technical specialists in trying to choose the most

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 60 / 84

appropriate PaaS models for the needs and requirements of
their projects.

V. LIMITATIONS AND FUTURE WORK

Although Cloud Computing is not a recent technology,
Platform as a Service has been gaining attention in the IT
market in the last years, and consequently, the platform has
been evolving. Even though the migration model presented
tries to address the main aspects of PaaS, there are still open
challenges remaining which can be worked on in future
projects and studies.

An exhaustive investigation was necessary in different
sources of information, like research and advisory companies
in IT, academic papers and theses, books related with Cloud
Computing and software development, producing this
scientific contribution with more impartiality and objectivity
and contributing to the scientific community. Gathering
experts in the Cloud Computing area and getting an agenda
for the interviews was difficult too, so the focus was on
selecting at least one specialist from the university, one from
a software consulting company and one from a software
technology company, thus allowing to validate the migration
model with different perspectives and experiences.

Currently, we can notice that Cloud Computing has been
revolutionizing the IT market and the way we build
applications and solutions, and if we analyze the conclusions
of this study, it is evident that there is a need to study and
explore the PaaS cloud model and its specializations further,
also the changes and adaptations required in the software
development arising from this “new way” to build software.

VI. DISCUSSION AND CONCLUSIONS

Every day, agility and innovation have become key
factors for organizations to continue to grow and be
competitive in the local and globalized market. Cloud
Computing is increasingly playing a key role to support IT
departments and ISV to drive organizations to achieve these
goals, supporting new software and hardware technologies,
and new software development methodologies and software
architectures. More and more users are deploying strategical
business applications in IaaS, PaaS, and SaaS, thus making
platform capabilities the center of the cloud innovation. PaaS
has been evolving and specializing in specific platforms to
attend the different software development needs and the IT
market trends, like Big Data, Internet of Things, Mobility,
Cloud Native and others.

However, with continuous PaaS specialization and new
software development technologies that come up every day,
migrating legacy systems or developing new systems in the
cloud becomes complex and challenging in some situations.
The migration model presented originated because of the
previously mentioned scenarios and built based on the study
of the concepts and technologies related to PaaS. We tried to
give recommendations and solutions, to help IT departments
and ISV to start entering in PaaS software development with
an initial blueprint. We validated our proposal with a model
mediating to specialists in Cloud Computing and Software
Development from academic institutions and IT companies.

REFERENCES

[1] N. B. Ruparelia, Cloud Computing, First Edit. MIT Press,
2016.

[2] D. Beimborn, T. Miletzki, and S. Wenzel, “Platform as a
Service (PaaS),” Bus. Inf. Syst. Eng., vol. 3, no. 6, pp. 381–
384, 2011.

[3] C. Pahl and H. Xiong, “Migration to PaaS clouds - Migration
process and architectural concerns,” in 2013 IEEE 7th
International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems, 2013, pp. 86–
91.

[4] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing Recommendations of the National Institute of
Standards and Technology,” Nist Spec. Publ., vol. 145, p. 7,
2011.

[5] M. J. Kavis, Architecting the Cloud: Design Decisions for
Cloud Computing Service Models (SaaS, PaaS, and IaaS).
Wiley; 1 edition (January 28, 2014), 2014.

[6] R. Mogull et al., “The Security Guidance for Critical Areas
of Focus in Cloud Computing v4.0 (‘Guidance v4.0’),”
Cloud Secur. Alliance, vol. 4.0, p. 152, 2017.

[7] J. Bond, The Enterprise Cloud, First Edit. O’Reilly Media,
2015.

[8] Y. V. Natis et al., “Platform as a Service: Definition,
Taxonomy and Vendor Landscape, 2016,” Gartner, 2016.
[Online]. Available:
https://www.gartner.com/doc/3334517/platform-service-
definition-taxonomy-vendor. [retrieved: Feb, 2018].

[9] J. O’Brien and G. Marakas, Management Information
Systems, 10th Editi. McGraw-Hill Education, 2010.

[10] J. Ingeno, Software Architect’s Handbook Become a
Successful Software Architect by Implementing Effective
Architecture Concepts. Packt Publishing Ltd, 2018.

[11] K. C. Laudon and J. P. Laudon, Management information
systems: Managing The Digital Firm, 15th Editi. Pearson
Education Limited, 2018.

[12] B. Burns, Designing Distributed Systems - Patterns and
Paradigms for Scalable, Reliable Services. 2018.

[13] C. Posta, Microservices for Java Developers, First Edit.
O’Reilly Media, Inc., 2016.

[14] Microsoft, “Cloud Application Architecture Guide,”
Microsoft Press, 2017.

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 61 / 84

Methodology for Splitting Business Capabilities into a Microservice Architecture:
Design and Maintenance Using a Domain-Driven Approach

Benjamin Hippchen, Michael Schneider, Iris Landerer, Pascal Giessler
Sebastian Abeck

Cooperation & Management (C&M), Institute for Telematics
Karlsruhe Institute of Technology

Karlsruhe, Germany
{benjamin.hippchen, michael.schneider, iris.landerer9, pascal.giessler, abeck}@kit.edu

Abstract—The ongoing digital transformation is forcing orga-
nizations to rethink not only their business domains but also
their (often monolithic) application landscapes. A more flexible
architecture is needed: microservice architecture. Migrating,
developing and operating such a flexible architecture requires
predetermined architectural decisions. Because splitting the busi-
ness domain into a more distributed software architecture is chal-
lenging, a methodology must be created that supports software
architects by designing and systematically maintaining this kind
of architecture. During our research, we discovered that there
are only a few publications in this field that ignore the business
domain and omit the maintenance of the architecture. Therefore,
we provide a methodology for splitting business capabilities into
a microservice architecture based on concepts of domain-driven
design, which was proved over a longer time and continuously
incorporated with new results. Our results indicate that we
established a systematic and comprehensible creation process for
microservice architecture, which also has a verifiable positive
effect on the organization’s application landscape.

Keywords–Microservice; Microservice Architecture; Domain-
Driven Design; Context Map; Bounded Context.

I. INTRODUCTION

The digital transformation is in progress and organizations
must participate; otherwise, they will be left behind. Existing
business models need to be rethought and new ones created.
Tightly coupled to the business model is the organization’s
application landscape. Thus, this landscape also has to be
reimagined. Meanwhile, microservice architectures have es-
tablished themselves as an important architectural style and
can be considered enablers of the digital transformation [1].
Therefore, one major step towards a digital organization is
the migration of legacy applications into a microservice ar-
chitecture. Afterwards, the architecture must be maintained to
provide long-lived software systems. However, neither the mi-
gration, design and development of a microservice architecture
nor its maintenance are easy to achieve.

The structure of the new microservice-based application
seems straightforward for the development team. Some mi-
croservices communicate with each other and deliver business-
related functionalities over web application interfaces (web
APIs). However, at this point, the corresponding development
team must ask itself decisive questions: How many microser-
vices do we need? In which microservice do we put which
functionality? Do we interact with third party applications?
Domain-driven design (DDD) by Evans [2] can provides
important concepts which help answering this questions. As

a software engineering approach, DDD focuses on the cus-
tomer’s domain and wants to reflect this structure into the
intended application. The business and its business objects are
the focus of each developing activity. Technical details, like the
deployment environment or technology decisions, are omitted
and do not appear in design artifacts. Domain-driven design
emphasizes the use of a domain model as a main development
artifact: all relevant information about the domain, or business,
is stored in it.

For microservice architecture, DDD helps structuring the
application along business boundaries. Likely, these bound-
aries match the customer’s domain boundaries. In his book
Domain-Driven Design: Tackling Complexity in the Heart of
Software, Evans introduces the “context map” diagram. This
diagram’s main purpose is to explore the customer’s domain
and state it as visual elements. The context map focuses on
the macro structure of the domain, sub domains, departments
and so on instead of micro elements like business objects.
A further essential DDD element and pattern is the “bounded
context,” which represents a container for domain information.
This container is filled with the mentioned domain’s micro
structure, creating a domain model. The name bounded context
is derived from its explicit boundary. Through this boundary,
the container’s content is only valid inside of the bounded
context. From the strategic point of view, a bounded context
is a candidate for a microservice. Thus, the context map could
display the organisation’s microservice architecture.

Like most DDD concepts, creating a context map is
challenging and the tasks are not straightforward. The vague
definitions and lack of process description create problems.
The following example illustrates the problem. A development
team wants to establish a microservice architecture at Karl-
sruhe Institute of Technology (KIT) for the administration of
students. Typically, for this purpose, universities introduce Stu-
dent Information Systems (SIS) to support the business process
execution for their employees. There are several problems with
those SIS: (1) in the hands of software companies, (2) little
to no understanding of the university’s domain, (3) primarily
monolithic architecture, and, (4) little to no insights for third
parties. Because the development team has no affect on the
SIS and its architecture, the goal is to advance the SIS with
social media aspects to support interaction between students. A
microservice architecture is planned for the new functionality.
Starting with the development and using DDD, the team must
gather information about the domain and create a domain
model and a context map. The first uncertainty is the artifacts

53Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 62 / 84

creation order. Both artifacts rely on information from each
other. While creating the domain model, the development team
needs to know where to look for specific domain information,
which is stated in the context map. When creating the context
map, several bounded contexts are needed, which contain
a domain model. In addition to this problem, the content
of a context map is not precisely defined. The literature
states that the context map contains bounded contexts and
relationships but does not state how to elicit them or even
what they represent in the real world. This lack of real-world
representation is especially a problem for development teams,
who need to interact with an existing application. On the one
hand, it is necessary to provide the third party application
in the context map, because the context map can capture
the information transferred between the third-party and the
university. On the other hand, it is unclear how to represent the
third-party application in the context map. A bounded context
needs a domain model, and there is no domain model in this
case. These are only two problems with the application of the
context map, but they illustrate how import it is to enhance
usability. In the following sections, we discuss these and other
problems in more detail.

In this paper, we provide the following contributions to
enhance the application of the context map and support the
design and maintenance of a microservice-based application:

• Context Map Foundations: One major problem of
DDD is the lack of integration and placement in
existing software development processes. It is unclear
in which phases the context map must be created and
in which phases it supports the development. There-
fore, in Section III, we provide the first integration
and placement of this map. In addition, we discuss
the foundations of the context map and define the
elements in this section.

• Context Choreography: While applying DDD for the
development of microservice-based applications, we
realized the existing artifacts did not capture all rele-
vant information. Thus, in Section II and Section III,
we introduce a new type of diagram, the “context
choreography”. This diagram’s purpose is to display
the choreography between multiple microservices for
the application.

• Artifact Creating Order: As mentioned, it is unclear
in which order the DDD artifacts must be created.
Therefore, in Section III, we also provide a detailed
order with an emphasis on the context map. The
application of the order is presented in our case study
in Section IV.

II. PLACEMENT AND INTEGRATION OF THE CONTEXT
MAP

One main problem of DDD is its lack of placement in
the field of software development. Neither its models nor its
patterns, including the context map, are placed in common
software development processes. For our placement, we focus
on the context of microservices. Because the context map has
some weakness in development, a new diagram is introduced
to close the gap.

A. Placement
As mentioned in Section I, the use of the context map

is not straightforward. The development team must analyze
the domain, create a domain model, and develop a context
map. On the one hand, the context map has a great benefit for
microservice architectures. On the other hand, applying the
map correctly is difficult.

Each DDD practice should be performed with the focus on
an intended application [2]. This ensures the “perfect fit” of the
gathered information, called “domain knowledge,” for the ap-
plication. Domain knowledge is captured in domain models. At
this point, the pattern “bounded context” becomes important.
An application consists of multiple bounded contexts, which
all have their own domain models. With respect to the com-
plexity of the domain knowledge, it makes sense to split the
domain knowledge into multiple domain models. The validity
of each domain model is limited through the bounded context.
Furthermore, each bounded context has its own “ubiquitous
language,” which is based on the domain knowledge and acts
as a contract for communication between project members
and stakeholders. For the development of microservice-based
applications especially, the multiple bounded contexts support
the idea of a microservice architecture. Through connections
between the bounded contexts, the domain knowledge is
joined together in the application. The arising relationships are
application-specific and differ from application to application.
There are several types of relationships [3]. Modeling the
bounded contexts and their relationships is the purpose of a
context map.

Considering a microservice architecture, the purpose of a
context map is not only to elicit domain knowledge. Orga-
nizations that introduce microsevices need to manage their
application landscape to maintain the microservice architec-
ture. Without the knowledge about which microservices are
available and who is in charge of them, the microservice
architecture loses its advantages. Existing microservices are
simply not used, even the domain knowledge they provide
is required, due to the fact that other development teams
could not find it, oversee it or forgot about it. The required
domain knowledge is redeveloped in new microservices and
the existing microservices become legacy. Sustaining the ad-
vantages of a microservice architecture is therefore important
for organizations and the context map is one tool which helps
to achieve this. In addition, the aspect that DDD focus its
development artifacts on the customer’s domain, supports the
maintenance of the microservice architecture. Aligning the
context map to the customer’s domain leads to a natural-
looking architecture [4]. Conway’s Law [5] also supports
the idea behind a natural-looking microservice architecture.
The organizational structure is adapted in the microservice
architecture and vice versa. Looking at concepts like Martin
Fowler’s “HumaneRegistry” [6] or API management products
like “apigee” [7], the idea and approach of the context map
is required and furthermore it supports such concepts and
products.

Using the context map as a tool for maintaining the
microservice architecture is contrary to one DDD aspect:
focus always on an application. The mentioned maintenance
does not require any kind of application-specific information.
A microservice is firstly an application-independent software
building block [8] and needs to be treated as such while main-

54Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 63 / 84

taining the microservice architecture. Even if the development
of a microservice is motivated through the development of an
application. Thus, we see the context map as an application-
independent diagram.

Application

Presentation

Backend
-For-

Frontend (BFF)

Application

Domain

Infrastructure

Application

Domain

Infrastructure

Microservice Microservice

Context
Choreography

Context
Map

Figure 1. Placement of context mapping artifacts regarding the software
building blocks from [8]

According to [8], for microservice-based applications,
microservices are choreographed in applications through a
backend-for-frontend (BFF) pattern. This is where application-
specific information comes into play. Fig. 1 depicts the soft-
ware architecture, including the application’s BFF. To capture
the choreography in the BFF, a new type of diagram is needed.
The “context choreography” provides a view of the bounded
context necessary for the application. Furthermore, the context
choreography indicates which domain knowledge the bounded
context transfers.

The context map can also be placed into software devel-
opment activities. In [8], the first steps to place DDD into
the software development activities from Brügge et al. [9]
were taken. However, the context map itself was omitted.
We built on these results for our placement of the context
map. Domain-driven design introduces two types of “design
activities” [2]. The first is the “strategic design,” with tasks in
modeling and structuring the domain’s macroarchitecture (e.g.,
departments are used to define boundaries). This macroarchi-
tecture is captured in the context map. Secondly, the “tactical
design” further refines the macroarchitecture and enriches
the bounded contexts with domain knowledge. This activity
represents the microarchitecture of the domain and therefore
of the microservice. Both activities rely on creating diagrams.
Considering the software development activities from Brügge
et al., Evans’ designation as strategic and tactical “design”
is misleading. Those focus more on the analysis than on
the design phase. Many DDD practices and principles, such
as “knowledge crunching,” aim to analyze the domain. The
development team explores the customer’s domain and should
simultaneously create the context map and domain model.
Thus, the strategic and tactical designs are completed out,
which is why the context map must be integrated at this point.

As mentioned, the content of the context map depends
on its purpose. This is even the case for the relationships
between the bounded contexts. Developing a monolithic ap-
plication requires a different viewpoint on these relationships
than a microservice-based application requires. A microser-
vice architecture has many different microservices, which are
managed by different development teams. By choreographing
microservices in applications, development teams are auto-
matically interdependent. This dependency is illustrated in the
relationships in the context map. They could also be seen as
communication paths between those development teams.

Our placement indicates that the context map has several
possibilities to support the development of microservice archi-
tectures and microservice-based applications. We distinguish
between a microservice architecture and the development of a
microservice-based application. With regard to the microser-
vice architecture style, the context map provides an overview
of all in the application landscape existing microservices
and further the dependencies of the responsible development
teams—which are also necessary information for maintain-
ing the microservice architecture. Due to the application-
independence of these information, the context map is an
application-independent diagram. Additionally, we saw a lack
of the context map while specifying microservice-based ap-
plications. Information transferred between microservices was
missing a specification, which is necessary for choreograph-
ing the BFF of the application. Thus, we introduced the
context choreography, which displays the application-specific
dependencies between the microservices and their transferred
domain knowledge. With this placement, we make a first step
in advancing the use of the context map.

III. FOUNDATIONS AND ARTIFACT ORDER

In addition to the placement, we see a high need for clear
definitions and guidance in creating the context choreography
and context map. Therefore, this section provides definitions
for terms regarding both artifacts. Afterward, we explain how
the artifacts could be created.

A. Foundations
We found that, in addition to the development process,

terminology around the context map is not clearly defined.
This also leads to difficult application. Therefore, we want to
provide some basics.

1) Bounded Context: The bounded context is the main
element for the context map and is an explicit boundary for
limiting the validity of domain knowledge [2]. Thus, within
this context, there is a domain model and its ubiquitous
language. A bounded context does not represent an application.
This is based on the layered architecture of DDD, which
consists of four layers: (1) presentation, (2) application, (3)
domain, and (4) infrastructure. Domain-driven design and
its artifacts focus only on the domain layer and omit the
others. Therefore, without any application logic in a domain
model, a bounded context cannot represent an application.
This definition is necessary, when creating a context map.
An intended application is usually integrated into an existing
application landscape.

When developing a microservice-based application, a
bounded context initially only represents a candidate for a
microservice [4]. Thus, a bounded context is either large

55Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 64 / 84

enough that two or more microservices are necessary or small
enough that they are included in one microservice. The best
practice, however, should be the one-to-one relationship. This
relationship eases the maintenance of the architecture through
a clearer mapping between bounded contexts, microservices,
and the responsible development teams. Reconsidering the size
of the bounded context helps achieve this mapping. Therefore,
we have collected several indicators, or more precisely possible
influence factors, for the size of bounded contexts from our
experiences in research and practice. This list should not be
considered complete or verified with an empirical study but
should rather be seen as an aid. A bounded context (1) has a
high cohesion and low coupling, (2) can be managed by one
development team, (3) has ideally a high autonomy to reduce
the communication/coordination effort between development
teams, (4) has a unique language that is not (necessarily)
shared, and (5) represents a meaningful excerpt of the domain.

2) Context choreography: As mentioned (see Section II),
the specification of a microservice-based application was
lacking some information. Thus, we introduced the context
choreography as a new diagram.

For microservice-based application development, it is im-
portant to state the other needed microservices—and thus
the bounded context also. Furthermore, the exchanged data
between those microservices are important information. As
a microservice-based application is developed, existing mi-
croservices could still be used, while new ones are developed.
In both cases, the context choreography is supportive. Regard-
ing the application itself, the context choreography states all
necessary microservices and the transferred domain knowledge
between them, literally displaying the choreography of the mi-
croservices to achieve the application functionality. According
to the software architecture provided by [8], the application’s
BFF is specified. Independent from the application, the con-
text choreography states the microservice interfaces. Both the
consumed and the provided interfaces of the microservice are
provided. Thus, while developing the application, the first hints
of the API can be derived. With regard to the subsequent
maintenance of the microservice, development teams are able
to identify the microservices that rely on them and vice versa.

3) Context Map: The DDD’s original purpose for the
context map differs from the one provided in this paper. In
the context of microservice architecture, the context map is a
useful diagram for maintaining the architecture and supporting
application development.

One major advantage is the comprehensive overview of
existing microservices. According to the best practice from
Section III-A1, each bounded context in the context map rep-
resents a microservice. Further, in software architecture, social
and organization aspects have to be considered [10]. Therefore,
dependencies between microservices, and thus development
teams, are stated. When development teams want to evolve
their microservices, it is important to ask who depends on
these microservices. At this point, the dependencies on other
teams must be considered because any change could affect the
stability of the other microservices. Thus, changes have to be
communicated.

Also, for the development of a microservice-based ap-
plication, the context map is advantageous. Regarding the
context choreography, existing microservices are used to com-
pose functionality for the intended application. Using existing

microservices is only possible if they are traceable in the
microservice architecture. This is where the context map comes
into play. After developing a microservice, it is placed as a
bounded context into the model. While the application is in
development, the development team can use the context map
as a tool to locate the needed microservices.

4) Domain Experts and other Target Groups: The interac-
tion between domain experts and developers is one principle of
DDD [2]. Each artifact is created for and with domain experts.
Thus, the artifacts should be understandable without a software
development background.

The context map according to DDD’s definition is also
relevant for domain experts [11]. However, according to our
definition, we do not see any advantages for domain experts
since the context map provides an overview of bounded con-
texts and communication paths between development teams.
Furthermore, the context choreography is irrelevant. Only
the subdomains, which represent the organization’s structure,
contain helpful information.

B. Process for Establishing a Context Map
To develop a microservice-based application, it is necessary

to establish the bounded contexts needed for the application.
The developed application also may reuse existing microser-
vices, which should be integrated into the application land-
scape. To obtain an overview of the microservice landscape,
the context map is useful. In this section, we focus on the
establishment of the bounded contexts, the context choreog-
raphy, and the context map. For developing an application,
we build on a development process based on behavior-driven
development (BDD) [12] and DDD [2] introduced in [8]. We
omit the steps in [8] and focus on the creation of context chore-
ography and a context map. Therefore, this section describes
how the context map is established and enhanced within the
development process.

1) Forming the Initial Domain Model: Forming the initial
domain model occurs in the analysis and design phases. Before
developing an application, the requirements are specified with
BDD in the form of features. As Fig. 2 illustrates, a tactical
diagram is derived from the features (e.g., the domain objects
and their relationships). If a domain model already exists
(e.g., from an existing microservice), this should be taken into
account. The resulting diagram represents the initial domain
model, which contains the application’s business logic. Thus,
the domain model provides the semantic foundation for all the
specified features. The resulting diagram is comparable to a
Unified Modeling Language (UML) class diagram and displays
the structural aspects of the domain objects. If the domain
structure is still vague when the number of features is satisfied,
more features are considered until the domain model appears
to be meaningful. Afterward, as presented in Fig. 2, this initial
domain model is examined and structured into several bounded
contexts.

2) Forming the Bounded Contexts: The model is strate-
gical analyzed and separated based on the business and its
functionality. This step depends on the domain knowledge and
the structure of the business. Therefore, knowledge crunching
from DDD [2] is applied to gather that knowledge. Often, a
business’s domain knowledge is scattered through the whole
business. Therefore, analyzing the business is important to

56Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 65 / 84

Bounded Contexts

Tactical Diagrams

Context Choreography

Context Map

Specifying features

Extracting Domain
Knowledge from Various

Sources

Deriving Data Exchange
Between Bounded Contexts

Summarizing of all Context
Choreographies and

Applying Communication
Patterns

Artifact OrderActivities

forms

input for

leads to

establishes

Figure 2. Creating order for artifacts their and impacting activities

understand the business processes and the interaction of differ-
ent departments. By default, each department knows its tasks
the best. To extract the domain knowledge, various sources
should be considered. These sources include domain experts
who are part of a department, as well as documents and
organizational aspects. This domain knowledge provides hints
for structuring the domain and has to be considered while
forming the bounded contexts. Considering the application
analysis and the business analysis from [8] leads to the
bounded contexts, as illustrated in Figure 2. If a context map
has been established, then the context map is searched for the
required domain knowledge of the application. If a bounded
context representing the domain knowledge already exists, then
this bounded context is taken into account. A new bounded
context is established if the context map does not contain
the required domain knowledge. For example, we integrated
a profile context into an existing context map of the campus
management domain.

3) Toward the Context Choreography: Forming the
bounded contexts is only the first step towards a working
application. Each previously established bounded context is
considered a microservice and requires or offers a unique
interface for communication that can be based on REST or
other architectural styles. Without interfaces, a microservice-
based application would not work. The microservices are
choreographed with the BFF. To allow choreography, the data
exchange between the bounded contexts is considered next.
The required data exchange is modeled in the context chore-
ography. For each bounded context, a context choreography
diagram is modeled. Domain objects that need to be shared or
consumed from other bounded contexts are modeled as shared
entities. The considered bounded context can either share the
domain object itself or consume the domain object. This model
also provides hints for the API of a bounded context if the
bounded context shares entities.

4) Toward the Context Map: In microservice architectures,
each established bounded context represents a microservice
and is implemented by autonomous development teams. Thus,
for relating bounded contexts, teams may need to communicate
with each other. Therefore, the communication effort between
the teams should be considered. The communication effort
indicates how much communication between the teams is
required. Clear communication paths are necessary, because
a team needs to know which other team is responsible for

TABLE I. Overview of communication patterns and their impact

Comm. pattern Description Effort
Partnership Cooperation between bounded contexts

to avoid failure
Very high

Shared Kernel Explicit shared functionality between
different development teams

Medium to
high

Customer/
Supplier

Supplier provides required functionality
for the customer. The customer has in-
fluence on the supplier’s design deci-
sions

High to
very high

Conformist Similar to customer/supplier but with no
influence on design decisions.

Low to
medium

Separate Ways No cooperation between development
teams

Low

Anticorruption
Layer

Additional layer that transforms one
context into another

Low

Open Host Ser-
vice

Uniform interface for accessing the
bounded context

Low

Published
Language

Information exchange is achieved using
the ubiquitous language of the bounded
context

Low

relating bounded contexts. Therefore, dependencies and com-
munication channels between teams are defined. Depending
on the teams and the possible communication effort, a com-
munication pattern is chosen based on [2] [3] (see Table
I). The last three communication patterns listed in Table I
are special patterns designed to reduce the communication
between different teams, as well as the impact on interface
changes. Other benefits and drawbacks of particular patterns
exist but they are out of the scope for the current discussion.
The context map illustrates the determined communication
path between the bounded contexts. For example, when the
communication between teams is not possible, such as when
foreign services are adopted, DDD patterns need to be applied.
For foreign services, the ACL pattern should be applied. In the
last step, as depicted in Figure 2, the relationships (including
the pattern) and the bounded contexts are added to the context
map diagram.

Adding those bounded contexts and communication rela-
tionships is an essential part of the context map. This concludes
the first cycle of the analysis and design phases.

5) Adjustments of the models: After the design phase,
the implementation phase follows. In this phase, the models
are implemented and tested. Afterward, specific parts of the
application are developed. Following the iterative process, new
features are implemented into the next cycle. These features
need to be analyzed and may change the domain model. In
addition, this may lead to the establishment of new bounded
contexts. Thus, the models, including the tactical diagrams,
the context choreography, and the context map, are refined
according to the features and the knowledge crunching process
in the previous steps.

IV. CASE STUDY: CAMPUS MANAGEMENT

In our case study, we illustrate our approach of establishing
a new bounded context and integrating it into an existing
context map. The case study orientates itself on the process as
described in Section III. Over three semesters, we expanded the
campus management system of KIT with microservice-based
applications. The case study represents our recent project in
this field and adds a social media component to the campus
management system.

57Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 66 / 84

A. Project Scope
Our vision is to simply and efficiently support the exchange

of information and facilitate cooperation between students. For
this purpose, we wanted to introduce a profile service in the
campus management system. This profile service should allow
students to create custom profiles to display information about
their studies, like currently visited lectures and future exams.
The purpose of this service is to assist students with their
studies and their search for learning partners. For example,
students can find learning partners with the help of the profile
service when other students share the lectures they attend.

B. Requirement Elicitation
In our process, we began by eliciting the requirements with

BDD and formulating them as features. Fig. 3 presents one of
the main features that enables students to edit their profile.

1. Feature: Providing student profiles
2. As a student
3. I can provide relevant information about myself
4. So that others can see my interests and study information

5. Scenario: Publish profile
6. Given I was never logged in to the ProfileService
7. When I log in to the ProfileService for the first time
8. Then my study account is linked to the ProfileService
9. And I choose which profile information I want to publish

Figure 3. Example of a BDD feature for publishing an user profile

C. Initial Domain Model
Analyzing the features leads to the initial domain model

by deriving domain objects and their relationships. In our
previously defined feature (see Section IV-B), we identified,
the terms “Profile,” “Examination,” and “Student” and added
them to the initial domain model. By repeating this procedure
with all features, the domain model is enriched with the
business logic. The result of the initial tactical diagram is
presented in Fig. 4.

«entity»
Profile

«entity»
CourseOfStudy

«entity»
Examination

«entity»
Student

«value object»
ExaminationDate

«entity»
Lecture

contains

has

contains has

contains

Figure 4. Initial domain model derived from BDD features and other sources

D. Bounded Contexts and Context Choreography
While we analyzed the domain, we also considered

the existing context map of the campus management do-
main. We noticed that the bounded contexts “StudentMan-
agement,” “ExaminationManagement,” “ModuleManagement,”
and “CourseMapping” already offered the required functional-
ity. Only “ProfileManagement” had to be established as a new
bounded context. Therefore, we considered the data exchange

between the bounded contexts and created the context chore-
ography on that basis. The result is illustrated in Fig. 5. The
existing bounded contexts provide the required data as shared
entities. The new bounded context “Profiles” adapts the shared

«bounded context»
ProfileManagement

«bounded context»
ModuleManagement

Student
«shared entity»
Lecture

«bounded context»
ExaminationManagement

«bounded context»
StudentManagement

ExaminationCourseOfStudy

«bounded context»
CourseMapping

«uses» «uses»

«shares» «shares»

«shares»

«uses»

«shares»

«uses»
«shared entity»

«shared entity»

«shared entity»

Figure 5. New bounded context “ProfileManagement” in a context
choreography

entities and delivers the data required from the profile service.
Last, the microservices are choreographed in the BFF of the
intended application, to achieve the required application logic.

E. Integrating in Context Map
After we had established the bounded contexts and the

context choreography, we needed to add the profile manage-
ment context to the context map. Therefore, we determined the
dependencies and communication channels between bounded
contexts based on the context choreography. We found our
development team did not influence any other bounded context.
Thus, we applied the conformist as communication pattern. As
a result, the context map depicted in Figure 6 was enhanced
with the “Profiles” context. Afterward, we started the first

«subdomain»
CourseManagement

«bounded context»
CourseMapping

«bounded context»
ModuleManagement

«subdomain»
CampusSocialMedia

«bounded context»
ProfileManagement

«subdomain»
StudentManagement

«bounded context»
StudentManagement

«subdomain»
ExamManagement

«bounded context»
Examination-
Management

«bounded context»
Grades

«conformist»

«customer/
supplier»

«conformist»

«customer/supplier»

«partnership»

«conformist»

«conformist»

«customer/supplier»

Figure 6. “ProfileManagement” context integrated into context map

implementation cycle.

F. Context Map as Template for a Deployment Map
The resulting context map provides an overview of the

microservices that need to be deployed. Assuming that each
bounded context represents one microservice, we can enhance
the context map with technical information that is needed for

58Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 67 / 84

the deployment in a secure manner. For instance, we can define
which ports listen for incoming or are allowed for outgoing
requests. By following such an approach each microservice is
initially considered in isolation. We enforce this by defining
default policies on the execution environment that need to
be taken into account during deployment. The enhancement
with technical information is transferred into a new diagram
called a deployment map. For the modeling, we use a UML
deployment diagram. In addition to a general overview of the
deployment, it can also be used for an upfront security audit.
We are planning to present the derivation rules in an upcoming
publication.

For testing purpose, we have used a hosted Kubernetes
[13] cluster on a cloud provider. Kubernetes is an open source
system for provisioning and management of container-based
applications and aroused from the collected experience behind
Omega and Borg. First of all, we have defined policies to deny
all ingress and egress traffic to all running Pods by default.
A Pod groups one or more container and can be seen as the
central brick of Kubernetes when deploying applications. Each
bounded context will be represented by a microservice running
in a container (Docker or rkt). Depending on their relation to
each other (see TABLE I), we put them in corresponding Pods.
Next, we have used the ports for incoming and outgoing traffic
to derive the network policies. Finally, we have defined the
services that wrap the Pods and offer a central access point
for interaction. The application shows us that the underlying
context map can be used as a basic scaffolding for deriving
the deployment map but need to be enhanced with technical
information as well as information from the development teams
that realize the microservices. For instance, a persistent storage
is missing in a context map due to its domain orientation but
is needed for the deployment map.

V. RELATED WORK

During our research, we searched for works comparable
to the context map and its purpose. We encountered several
inspiring works regarding different aspects of the context map.
Especially, the focus on the microservice architecture is an
important part of this paper.

A. Microservice Architecture
A microservice should concentrate on the fulfilment of one

task and should be small, so a team of five to seven developers
can be responsible for the microservice’s implementation [4].
A microservice itself is not an application, but rather a software
building block [8]. In microservice architecture, applications
are realized through choreography of these building blocks. A
central aspect of microservice architecture is the autonomy of
the single microservices [14]. Each microservice is developed
and released independently to achieve continuous integration.

B. Approaches for Designing a Microservice Architecture
The objective of microservice architectures is to subdivide

large components into smaller ones to reduce complexity
and create more clarity in the single elements of the system
[14]. In this paper, we described our approach of designing
microservice architecture with a context map from DDD.
However, there are further strategies to identify microservices,
which we considered in this paper.

One possible approach is event storming, as introduced
by Alberto Brandolini in the context of DDD [15]. Event
storming is a workshop-based group technique to quickly
determine the domain of a software program. The group starts
with the workshop by “storming out” all domain events. A
domain event covers every topic of interest to a domain
expert. Afterward, the group adds the commands that cause
these events. Then, the group detects aggregates, which ac-
cept commands and accomplish events, and begins to cluster
them together into bounded contexts. Finally, the relationships
between bounded contexts are considered to create a context
map. Like our approach, this strategy is based on DDD and
results in a context map displaying the bounded contexts.
Instead of a workshop for exploring the domain and defining
domain events, we develop our bounded contexts through an
iterative analysis and design phase. Furthermore, we enhanced
the context map with maintenance aspect for microservice
discovery and dependencies between development teams. The
purpose of the resulting context map from [15] is comparable
to the context choreography. Both focusing on the interactions
between bounded context and identify the transferred domain
knowledge.

Another method for approaching a microservice architec-
ture is described in [16]. First, required system operations
and state variables are identified based on use case speci-
fications of software requirements. System operations define
public operations, which comprise the system’s API, and state
variables contain information that system operations read or
write. The relationships between these systems operations and
state variables are detected and then are visualized as a graph.
The visualization enables developers to build clusters of dense
relationships, which are weakly connected to other clusters.
Each cluster is considered a candidate for a microservice. This
bears a resemblance to our approach because we also begin by
focusing on the software requirements and take visualization
for better understanding the domain.

A further widely used illustration of partitioning monolithic
applications is a scaling cube, which uses a three-dimensional
approach as described in [17]. Here, Y-axis scaling is important
because it splits a monolithic application into a set of services.
Each service implements a set of related functionalities. There
are different ways to decompose the application which differ
from our domain-driven approach. One approach is to use
verb-based decomposition and define services that implement
a single use case. The other possibility is to partition the appli-
cation by nouns and establish services liable for all operations
related to a specific entity. An application might use a com-
bination of verb-based and noun-based decomposition. X-axis
and Z-axis regards the operation of the microservices. The X-
axis describes the horizontal scaling which means cloning and
load balancing the same microservice into multiple instances.
Meanwhile, the Z-axis denotes the degree of data separation.
Both axis are important for microservice architectures and
currently omitted in our context map approach.

C. Software Development Approaches
The development process we apply is based on BDD and

DDD. As a method of agile software development, BDD
should specify a software system by referencing its behavior.
The basic artifact of BDD is the feature, which describes a
functionality of the application. The use of natural language

59Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 68 / 84

and predefined keywords allows the developer to create fea-
tures directly with the customer [18]. During our analysis
phase, we used BDD for requirement elicitation.
In our design phase, we applied DDD based on the features
we defined with BDD. DDD’s main focus is the domain
and the domain’s functionality, rather than technical aspects
[11]. The central design artifact is the domain model, which
represents the target domain. In his book Domain Driven
Design - Tackling Complexity in the Heart of Software, Eric
Evans describes patterns, principles, and activities that support
the process of software development [2]. Although DDD is
not tied to a specific software development process, it is
orientated toward agile software development. In particular,
DDD requires iterative software development and a close
collaboration between developers and domain experts.

D. Application of the Context Map
The goal of a context map, which Evans describes as one

main activity of DDD, is to structure the target domain [2].
For this purpose, the domain is classified into subdomains,
and in those subdomains, the boarders and interfaces of
possible bounded contexts are defined. A bounded context is a
candidate for a microservice, and one team is responsible for
its development and operations [4]. Moreover, the relationships
between bounded contexts are defined in a context map. Both
the technical relationships and the organizational dependencies
between different teams are considered.
A further aspect of the context map involves the maintenance
of the miscroservice architecture. Without managing the ap-
plication (or service) landscape, existing microservices are not
used, even if they provide needed domain knowledge. The
usage of a context map helps concepts like humane registry
or API management products which tries to achieve mainte-
nance goals. Martin Fowler introduced humane registry as a
place, where both developers and users can record information
about a particular service in a wiki [6]. In addition, some
information can be collected automatically, e.g., by evaluating
data from source code control and issue tracking systems.
API management products like “apigee” [7] reach maintenance
by pre-defining API guidelines such as key validation, quota
management, transformation, authorization, and access control.

VI. LIMITATIONS AND CONCLUSION

The concepts we provide in this in paper have some
limitations. These are addressed in the next section. Afterward,
we provide a short conclusion discussing our results.

A. Limitations
Domain-driven design has no special application or ar-

chitectural style in mind. The concepts should be applied
to DDD’s layered architecture but could be applied to dif-
ferent architectural styles. For a better fit while developing
microservice-based applications, we always had the microser-
vice architecture in mind. Therefore, our provided concepts are
only valid when developing a microservice-based application.

The concepts provided by this paper are built from our
experiences which we gathered in various projects. Most of
our projects were in the academic branch, but we also worked
with industrial partners. For the context map, we developed
and proved our concepts over a longer time. The case study
describes our last project. Project members and partners gave

us useful feedback about the concepts when they applied them.
In addition, the feedback also included points we had not
yet addressed, like a modeling language for context mapping.
Nevertheless, evidence of our concepts in large microservice
architectures, such as 50 or more microservices, still lacks. Our
goal is to obtain prove for large microservice architectures in
such projects.

Another limitation to our concepts is we only applied them
in “clean” microservice architectures. However, in the real
world, there are also legacy applications in the application
landscapes of organizations. Typically, a legacy application is
not a microservice-based one; often, it is a monolithic archi-
tecture. In future work, we must determine how to integrate
legacy applications into the context choreography and context
map.

B. Conclusion
During our research, we found many different studies that

consider model-driven approaches for developing microser-
vices. Using these approaches for microservices is common.
In domain-driven design, especially, the approaches focus on
the development itself but omit the design and maintenance
phases. Therefore, we wanted to provide details on the design
and maintenance of a microservice architecture using DDD’s
context map.

The context map has great potential to aid in develop-
ing and maintaining applications and is more useful when
considering a microservice architecture. However, the context
map shares a problem with most DDD concepts: its lacking
placement in software engineering, foundations and concrete
guidelines. Therefore, we first provided placement for the con-
text map. Next, we clarified its foundations with a focus on the
bounded context, the main concept of the context map. After
the foundations were clear, we could develop a systematic
approach for creating the context map. This approach began in
the analysis phase with an initial domain model, separating the
domain knowledge into bounded contexts, stating relationships
between them, and putting the bounded contexts into a context
map. The separation of bounded contexts and their relation-
ships are stated in our new diagram, the “context choreogra-
phy.” This diagram’s purpose is to illustrate necessary bounded
contexts for microservice-based applications.

This paper’s contributions are the first step in making the
use of the context map, and now the context choreography,
more efficient. Nevertheless, we see more opportunities for
research, like a modeling language for the context map. Such
a modeling language could be UML.

ACKNOWLEDGMENT

We want to give special thanks to Chris Irrgang and
Tobias Hülsken for always providing their opinions and useful
feedback on our concepts. Furthermore, we would like to thank
the following development team, which provided the results
in our case study: Alessa Radkohl, Nico Peter, and Stefan
Throner.

REFERENCES

[1] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the Digital
Transformation in Software Engineering,” ICSEA 2016, p. 149, 2016.

[2] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2004.

60Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 69 / 84

[3] V. Vernon, Ed., Implementing Domain-Driven Design. Addison-
Wesley, 2013.

[4] S. Newman, Building Microservices: Designing Fine-grained Systems.
" O’Reilly Media, Inc.", 2015.

[5] M. E. Conway, “How do Committees Invent,” Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[6] M. Fowler, “HumaneRegistry,” URL:
https://martinfowler.com/bliki/HumaneRegistry.html [retrieved: 02,
2019].

[7] Google, “apigee, API management,” https://apigee.com/api-
management/ [retrieved: 02, 2019].

[8] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck,
“Designing Microservice-Based Applications by Using a Domain-
Driven Design Approach,” in International Journal on Advances in
Software, Vol. 10, No. 3&4, pp. 432–445, 2017.

[9] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[10] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, Software Architecture:
A Comprehensive Framework and Guide for Practitioners. Springer
Science & Business Media, 2011.

[11] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[12] J. F. Smart, BDD in Action: Behavior-Driven Development for the
Whole Software Lifecycle. Manning, 2015.

[13] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running:
Dive Into the Future of Infrastructure. O’Reilly Media, 2017.

[14] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture. " O’Reilly
Media, Inc.", 2016.

[15] A. Brandolini, “Introducing Event Storming,”
blog, Ziobrando’s Lair, vol. 18, 2013, URL:
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
[retrieved: 02, 2019].

[16] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying Microser-
vices Using Functional Decomposition,” pp. 50–65, 2018.

[17] N. Dmitry and S.-S. Manfred, “On Micro-Services Architecture,” In-
ternational Journal of Open Information Technologies, vol. 2, no. 9,
2014.

[18] M. Wynne, A. Hellesoy, and S. Tooke, The Cucumber Book: Behaviour-
Driven Development for Testers and Developers. Pragmatic Bookshelf,
2017.

61Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 70 / 84

Improving Code Smell Predictions in Continuous Integration
by Differentiating Organic from Cumulative Measures

Md Abdullah Al Mamun, Miroslaw Staron
Christian Berger, Regina Hebig

Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden
Email: abdullah.mamun@chalmers.se,

[miroslaw.staron, christian.berger,
regina.hebig]@cse.gu.se

Jörgen Hansson
School of Informatics
University of Skövde

Skövde, Sweden
Email: jorgen.hansson@his.se

Abstract—Continuous integration and deployment are enablers
of quick innovation cycles of software and systems through
incremental releases of a product within short periods of time. If
software qualities can be predicted for the next release, quality
managers can plan ahead with resource allocation for concerning
issues. Cumulative metrics are observed to have much higher cor-
relation coefficients compared to non-cumulative metrics. Given
the difference in correlation coefficients of cumulative and non-
cumulative metrics, this study investigates the difference between
metrics of these two categories concerning the correctness of pre-
dicting code smell which is internal software quality. This study
considers 12 metrics from each measurement category, and 35
code smells collected from 36,217 software revisions (commits) of
242 open source Java projects. We build 8,190 predictive models
and evaluate them to determine how measurement categories of
predictors and targets affect model accuracies predicting code
smells. To further validate our approach, we compared our
results with Principal Component Analysis (PCA), a statistical
procedure for dimensionality reduction. Results of the study show
that within the context of continuous integration, non-cumulative
metrics as predictors build better predictive models with respect
to model accuracy compared to cumulative metrics. When the
results are compared with models built from extracted PCA
components, we found better results using our approach.

Keywords–Software metrics; code smells; effects of measure-
ment types; cumulative metrics; organic metrics; random for-
est; training-test-split cross-validation; time-series cross-validation;
principal component analysis; interactions.

I. INTRODUCTION

Continuous integration and deployment shorten the release
cycles and speed up the innovation cycles [1]. Fortunately,
Agile software development can support continuous integration
and deployment through sprints, time-boxes of one to four
weeks, during which a releasable product increment is created
[2]. As the release cycles are becoming shorter, it would
be helpful for quality managers if they can predict internal
and external software quality within a short span of time.
For example, if quality managers have tools to predict the
maintainability of code base at the end of the current sprint,
they can already start allocating hours on the maintainability
issue or plan for the next sprint. With the introduction of
modern version control systems, we can address the problem
of how to predict internal quality changes between different
revisions of software code base? A version control system
stores every revision or commit of a project; such commit-
level data are much fine-grained with the possibility to reflect

actual software development within a short span of time. Now
we ask the question: can such refined-level data explain or
predict software qualities at a short time span better compared
to the traditionally counted cumulative way of measures?

Software metrics can be measured in various ways, or
they have different measurement types. By organic or non-
cumulative metrics, we refer to delta measures or code churn
measures. If we take the example of Lines Of Code (LOC),
the organic measure of LOC for a software revision or commit
is the actual number of LOC written since the previous
commit. On the other hand, cumulative measurement is the
most commonly used technique in software engineering. The
cumulative-way of measuring LOC for a commit would be to
sum the organic measure of LOC for a specific commit with
the cumulative measure of LOC from the previous commit.
Therefore, cumulative measures develop as a moving sum. If
ten new LOC are added for a commit, the organic measure
of LOC for that specific commit would be ten, reflecting the
actual change of LOC. However, when measured cumulatively,
the value of LOC should be ten plus the total LOC from the
previous commit. For each cumulative metric, a corresponding
organic metric can be constructed. These measurement types
are explained in Section II. A recent study [3] exclusively
targeting cumulative and organic measures confirms that cor-
relations of cumulative metrics are much higher than their
corresponding organic metrics. Since that study [3] is still in
the final minor review round, we are reporting the relevant
part of the results in Table I. In addition, in a previous study
[4], we had indications that correlations between cumulative
metrics are higher than their corresponding organic metrics.

High correlation coefficients between metrics imply high
collinearity between them. If the correlation coefficient is as
high as 0.9, it can be considered as very strong [5]. Thus, cor-
responding metrics can be considered collinear meaning they
are redundant. Non-collinearity is mentioned as a validation
criterion for software metrics [6]. However, some methods
for predictive analyses, such as multiple linear regression,
rely on the assumption that input features are non-collinear.
Thus, it is to be expected that combinations of cumulative
metrics (which have higher collinearity) are less fit to be used
in predictive models compared to their corresponding organic
metrics. However, to our knowledge, to this day no studies
have investigated whether organic metrics can lead to better
predictions of aspects, such as code smells or bugs compared
to their corresponding cumulative metrics. Therefore, we want

62Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 71 / 84

Day-wise changed Written so far
Day Lines of Code Lines of Code

(Organic Measure) (Cumulative Measure)
1 10 10
2 15 25
3 30 55
4 0 55
5 50 105
6 5 110
7 10 120
8 8 128
9 75 203

10 47 250
11 39 289
12 61 350
13 34 384
14 7 391
15 0 391
16 0 391
17 12 403
18 35 438
19 23 461
20 20 481

(a) Textual Representation

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Li
n

e
s

o
f

co
d

e

Time

Day-wise Written Code (Organic Measure)

So Far Written Code (Cumulative Measure)

(b) Equivalent Graphical Representation

Figure 1. Organic and Cumulative Measures.

to investigate this. Code smells are internal software qualities
that are associated with code maintainability [7] [8] and using
code smells has significantly less internal validity threat in
the context of this research because unlike the bugs, we can
precisely determine which code smells are originated from
which revisions. Thus, code smell is a good candidate as a
target for this study. Note that we are using code smell as an
interesting example to validate whether there is any difference
between the two measurement categories, our objective is not
to build the best predictive model for code smells. This study
has the following research question:

• RQ: What is the difference between organic and
cumulative measures with respect to the correctness
of predicting code smells within the context of con-
tinuous integration?

In this paper, we analyzed 36,217 revisions of 242 open
source Java projects to mine various measures and code
smells. Our results show that measurement types of metrics
have a significant impact on model accuracies. The findings
will help to build predictive models specifically targeted to
predict software artifacts within a short period of time. Our
findings are also significant to clearly understand the difference
between cumulative and organic measures of software artifacts.

Section II of this paper describes the ideas of cumulative
and organic measures, followed by related work in Section. III.
The design of this study including project selection (IV-A),
data collection (IV-B), analysis procedure (IV-C) and threats
to validity (IV-D) are discussed in Section IV.

II. CUMULATIVE AND ORGANIC MEASURES

In this section, we explain cumulative and organic measures
with a simple example, as illustrated in Fig. 1. The figure
illustrates the change of the measure lines of code of a fictional
example system developed over 20 days with daily commits.
Considering LOC as a measure, the actual changes in values
of LOC from each day compared to the day before reflects
the organic measurement of LOC. However, if we calculate

the total LOC written up to a day by summing up the changes
of LOC from day one up to that day, we get the cumulative
measurement of LOC. In this example, we have considered
“daily commits” or “day” as a unit of time, but it can also be
week, sprint, or release.

Correlation of various size and complexity metrics of type
cumulative result in high coefficients, which is observed by
many studies [9]–[13]. Correlations between organic metrics
are significantly lower than their corresponding cumulative
metrics. We have observed this phenomenon in earlier research
[4] and in a recent study (in submission) specific to this topic,
the result of which is presented in Table I. The reported
correlation coefficients (τb) in Table I are mean values of
Kendall τb from 11,874 software revisions of 21 open source
Java projects. In Table I, if a τb value is greater than or
equal to 0.9 (i.e., with very strong correlation coefficient),
we can consider the corresponding two metrics of the τb as
collinear, meaning they are redundant and either of them can
represent the other. Because their r2 (coefficient of determi-
nation) becomes minimum 0.81, meaning one metric can at
minimum explain 81% variability in the other. Based on this,
eight metrics out of 12 metrics in the cumulative category
in Table I become redundant. On the other hand, from the
corresponding organic metrics, we do not see a single pair of
metrics for which the correlation coefficient is greater than 0.9.
Thus, we can expect that combinations of organic metrics can
bring added value to predict code smells. This observation is
one of the key motivations for this study where we want to
see how these two groups of measures, i.e., cumulative and
organic, perform predicting code smells.

III. RELATED WORK

After Fowler et al. [15] first introduced the term bad
code smells, there have been many studies investigating this
subject. Zhang et al. [16] report on a systematic literature
review on code smells and find that most of the studies in
this area are focused on the identification or detection of code
smells. Automated detection of code smells has become an

63Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 72 / 84

TABLE I. KENDALL’S τ [14] CORRELATION COEFFICIENTS (τb) FOR CUMULATIVE AND ORGANIC METRICS.
The whole range of τb (−0.1 6 τb 6 +1.0) is labeled into four levels according to strength. Three gray-scale cell colors indicate three levels of τb (Very

Strong: 0.9 6 abs(τb) 6 +1.0, Strong: 0.7 6 abs(τb) < 0.9, and Moderate: 0.4 6 abs(τb) < 0.7). Weak τb (0 6 abs(τb) < 0.9) is indicated with red font
color. A dot (.) in a cell indicates zero value. All cells in the diagonal represent correlation of a metric with itself (always having τb = 1) are left blank.

n
cl
o
c

fu
n
ct
io
n
s

st
at
em

en
ts

co
m
p
le
xi
ty

cl
as
se
s

fi
le
s

p
u
b
lic
_a

p
i

p
u
b
_
u
n
d
o
c_
ap

i

co
m
m
en

t_
ln

d
ir
ec
to
ri
es

d
u
p
_
lin

es

d
u
p
_b

lo
ck
s

d
u
p
_f
ile
s

_n
cl
o
c

_f
u
n
ct
io
n
s

_s
ta
te
m
en

ts

_c
o
m
p
le
xi
ty

_c
la
ss
es

_f
ile
s

_p
u
b
lic
_a

p
i

_
p
u
b
_
u
n
d
o
c_
ap

i

_c
o
m
m
en

t_
ln

_d
ir
ec
to
ri
es

_
d
u
p
_l
in
e
s

_d
u
p
_b

lo
ck
s

_d
u
p
_f
ile
s

ncloc .97 .98 .97 .93 .93 .94 .87 .86 .71 .63 .64 .64 .03 . .01 .01 . . .01 .02 .01 . .02 .02 .01

functions .97 .96 .98 .93 .92 .94 .88 .86 .71 .64 .65 .65 .03 .01 .02 .01 .01 . .01 .02 .01 . .02 .02 .01

statements .98 .96 .97 .92 .91 .94 .87 .86 .7 .63 .65 .64 .03 . .02 .01 . . .01 .02 .02 . .02 .02 .01

complexity .97 .98 .97 .92 .91 .93 .87 .86 .71 .63 .65 .65 .03 . .02 .01 . . .01 .02 .01 . .02 .02 .01

classes .93 .93 .92 .92 .98 .92 .86 .84 .73 .63 .63 .64 .03 . .02 .01 .01 .01 .02 .02 .01 . .02 .02 .01

files .93 .92 .91 .91 .98 .91 .85 .84 .73 .62 .63 .63 .03 . .02 .02 .01 .01 .03 .03 .01 . .02 .02 .01

public_api .94 .94 .94 .93 .92 .91 .91 .85 .7 .64 .64 .64 .01 .01 .01 .01 . . .03 .02 .02 . .02 .01 .01

pub_undoc_api .87 .88 .87 .87 .86 .85 .91 .77 .66 .62 .61 .62 .01 . . .01 ‐.01 . .02 .02 . .01 . .01 .

comment_ln .86 .86 .86 .86 .84 .84 .85 .77 .71 .55 .56 .59 .01 . .01 .01 . . .02 .01 .02 . .02 .02 .02

directories .71 .71 .7 .71 .73 .73 .7 .66 .71 .57 .59 .62 .01 ‐.01 .01 .01 ‐.01 .01 . .01 . .01 .02 .02 .02

dup_lines .63 .64 .63 .63 .63 .62 .64 .62 .55 .57 .86 .84 .02 .01 .02 .02 ‐.01 . .01 .01 .02 .01 .03 .03 .02

dup_blocks .64 .65 .65 .65 .63 .63 .64 .61 .56 .59 .86 .85 .02 .01 .02 .02 . . .01 .01 .02 . .03 .03 .02

dup_files .64 .65 .64 .65 .64 .63 .64 .62 .59 .62 .84 .85 .02 . .02 .03 . .01 .02 .01 .02 .01 .03 .03 .04

_ncloc .03 .03 .03 .03 .03 .03 .01 .01 .01 .01 .02 .02 .02 .75 .89 .82 .55 .52 .68 .64 .49 .24 .25 .25 .26

_functions . .0101 . . ‐.01 .01 .01 . .75 .75 .81 .65 .59 .82 .76 .54 .26 .26 .28 .28

_statements .01 .02 .02 .02 .02 .02 .01 . .01 .01 .02 .02 .02 .89 .75 .85 .54 .51 .69 .65 .49 .23 .26 .27 .27

_complexity .01 .01 .01 .01 .01 .02 .01 .01 .01 .01 .02 .02 .03 .82 .81 .85 .56 .53 .7 .66 .52 .23 .25 .26 .27

_classes . .01 . . .01 .01 . ‐.01 . ‐.01 ‐.01 . . .55 .65 .54 .56 .88 .67 .64 .46 .4 .25 .27 .29

_files01 .0101 . . .01 .52 .59 .51 .53 .88 .65 .6 .45 .44 .26 .29 .32

_public_api .01 .01 .01 .01 .02 .03 .03 .02 .02 . .01 .01 .02 .68 .82 .69 .7 .67 .65 .89 .51 .31 .24 .26 .26

_pub_undoc_api .02 .02 .02 .02 .02 .03 .02 .02 .01 .01 .01 .01 .01 .64 .76 .65 .66 .64 .6 .89 .4 .29 .24 .27 .26

_comment_ln .01 .01 .02 .01 .01 .01 .02 . .02 . .02 .02 .02 .49 .54 .49 .52 .46 .45 .51 .4 .25 .23 .22 .23

_directories01 . .01 .01 . .01 .24 .26 .23 .23 .4 .44 .31 .29 .25 .14 .15 .17

_dup_lines .02 .02 .02 .02 .02 .02 .02 . .02 .02 .03 .03 .03 .25 .26 .26 .25 .25 .26 .24 .24 .23 .14 .84 .75

_dup_blocks .02 .02 .02 .02 .02 .02 .01 .01 .02 .02 .03 .03 .03 .25 .28 .27 .26 .27 .29 .26 .27 .22 .15 .84 .81

_dup_files .01 .01 .01 .01 .01 .01 .01 . .02 .02 .02 .02 .04 .26 .28 .27 .27 .29 .32 .26 .26 .23 .17 .75 .81

O
rg
an

ic

Cumulative Organic

C
u
m
u
la
ti
ve

integral part of many static analysis tools, e.g., SonarQube
[17], SpotBugs [18], Jtest [19], JArchitect [20], PMD [21], etc.
In a proposed method to identify two code smells (lazy class
and temporary field), Munro [22] used five code metrics (LOC,
number of methods, weighted methods per class, coupling, and
depth of inheritance tree). He used a programmatic approach,
meaning studying the characteristics of the code smells he
devised rules using the metrics to identify the code smells.
Fontana et al. [23] performed an empirical investigation to
code smells detection and how frequent certain code smells
are in various application domains. They also investigated
the Spearman ranks correlations between software metrics
and code smells. In an extensive study, Fontana et al. [24]
experimented with 16 machine learning algorithms to detect
four code smells. They worked on 74 software systems with
1986 validated code smells and found Random Forest and J48
as the best performing algorithms. While some of these studies
have used code metrics to detect code smells, we are using
code metrics to predict code smells in the future software
revisions.

Few studies have focused on the impact of code smells.
Monden et al. [7] performed a quantitative study on a legacy
system to assess the impact of duplicated code smells on soft-

ware reliability and maintainability. Yamashita and Moonen
[25] identified various factors that affect software maintain-
ability and investigated to what extent code smells reflect those
factors. Kapser and Godfrey [26] also studied duplication on
software quality. Other studies [27], [28] attempted to reveal
relations between code smells and software faults. Another
study [29] investigated whether source code files with code
smells are more prone to change and found that classes with
code smells are more change-prone.

Maneerat and Muenchaisri [30] possibly made the first
attempt to predict code smells. They used seven machine
learning algorithms to predict seven code smells. However,
they used K-folds cross-validation, which is inappropriate
for time-series data. According to our experience, the high
accuracy of their predictive models is due to the wrong choice
of cross-validation technique. When we evaluated our models
using K-folds, we get model accuracies greater than 90%.
However, we have avoided it as K-folds is methodologically
wrong to validate time-series data. A recent study by Gupta et
al. [31] build entropy based statistical model to predict six code
smells on different versions of Apache Abdera project. Among
the three selected entropies, Shannon performed best with a r2
value 0.567. This study differs from their research in different

64Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 73 / 84

ways. First, we have taken a machine learning based approach.
Seconds, we are focusing on code smells prediction in the
continuous integration environment where the release cycle is
very short. Their measure of code smells is cumulative whereas
we focus on only new code smells that might be added to the
future revisions. Moreover, we have a focus on the difference
between cumulative and organic predictors, and our study is
based on a large number of randomly selected projects.

IV. METHODOLOGY

This empirical study is designed as a case study. We follow
the compiled guideline of software engineering case studies by
Runeson and Höst [32]. Research design related terminologies
used in this study is also adopted from the same guideline
[32]. This case study is “explanatory” according to the classi-
fication of Robson [33] which Runeson and Höst interpreted
as similar to the type “confirmatory” by Easterbrook et al.
[34]. Collected data of this case study is quantitative, and the
design of the study is more fixed than flexible, meaning we
have a defined set of measurement categories, independent
and dependent measures, machine learning algorithm, and
cross-validation techniques that we are particularly interested
in answering the research question. Triangulation is essential
because it increases the precision of empirical research. For
studies with quantitative data, triangulation is important as
it can compensate for measurement or modeling errors [32].
For triangulation, we have considered data source triangula-
tion [35], meaning, more than one data source or project is
used in this case study. Runeson and Höst mentioned three
major research methods that are related to case studies and
experiment is one of them. Since this study is involved with
quantitative data, it has some overlap with experiments, e.g.,
we have identified independent and dependent variables, and
have carefully worked with the instrumentation. Runeson and
Höst [32] have also mentioned that quasi-experiments have
many characteristics that are common with case studies. Quasi-
experiments and controlled experiments are similar except that
in quasi-experiment subjects are not randomly assigned to
treatments. However, since we have randomly selected the
projects and exhaustively created all possible models, like
a full factorial design, this study is more of a controlled
experiment than a quasi-experiment.

A. Project Selection
Open source software projects on GitHub serve as the

data source for this study. There are millions of Java projects
on GitHub. GitHub provides REST API for users through
which meta-data about projects can be collected. However, it
is very limited considering the massive number of projects.
Therefore, we have used the GHTorrent [36], a project that
gathers meta-data of publicly hosted projects on GitHub.
We downloaded GHTorrent’s database dumps of size about
300GB and extracted on a local MySQL database because,
GHTorrent’s free online database queries have limitations.

We initially selected 2,188,033 candidate GitHub Java
projects from GHTorrent’s database. We selected them in such
a way that there are no forked projects to avoid partial dupli-
cations. We also exclude projects that are marked as deleted
by GHTorrent. Fig. 2 shows the distribution of the 145,980
projects from the 2.2 million candidate projects between 50-
500 commits. Since the actual distribution consisting all the

projects is exponential, projects with commits less than 50 are
not shown for better visual presentation. About 1.3 million of
the 2.2 million projects have 5 or fewer commits.

We have randomly selected 1000 projects from the 2.2 mil-
lion candidate projects. Among them, we found 232 projects
that have zero or one commit. In case a project has multiple
commits from the same day, we consider the latest commit
and ignore others, meaning one commit from a day. We have
ignored any project that results in less than 10 commits.
Because when computing correlations between metrics using
Kendall’s τ , the minimum sample size should be 10, which
still has some bias and for an unbiased result the sample size
should be 50 [37]. We also found some projects that were no
more publicly accessible or lack the GIT master branch, which
we ignored. Finally, we have 242 projects that are considered
for this study.

B. Data Collection
Software revisions in the Git version control system is a

form of archival data, which Lethbridge et al. [39] described
as a third-degree technique for data collection. In our case,
the source of data is of third-degree. However, we have used
the SonarQube [17] tool to process the archival data and
generate measures of our interest. For data collection, we have
considered the entire commits or revision history in the master
branch of a project’s Git repository. However, if there are
multiple commits from a single day, we analyzed the latest
commit of a day using SonarQube. Therefore, for a project,
we have collected data from everyday that has at least a single
commit.

Table II shows metrics used for this study. Descriptions of
these metrics are taken from the SonarQube’s database and
metric definition page [40]. Of them, cumulative metrics are
measured by the SonarQube tool, and the organic metrics are
calculated from the difference of two consecutive values of
the cumulative metrics. In this paper, we refer to an organic
version of a cumulative metric, by adding an underscore sign

at the start of the metric name, e.g., the organic form of the
cumulative metric statements is statements.

SonarQube’s Java plugin has more than 300 code smells
classified into different categories. We have skipped all code
smells from minor and info categories because these code
smells are less severe and the probability of worst things

Figure 2. Histogram of candidate GitHub projects from 50 to 500 commits.

65Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 74 / 84

TABLE II. COLLECTED CODE METRICS. ALL THE 12 METRICS IN THE INDEPENDENT SECTION ARE CUMULATIVE. WE ALSO HAVE
CORRESPONDING ORGANIC METRICS OF THESE 12 CUMULATIVE METRICS. THIS PAPER INDICATES AN ORGANIC METRIC WITH A

SIGN AT THE BEGINNING OF THE METRIC NAME. INTEGER IS THE DATA TYPE OF ALL THESE METRICS.

Variable Type Metric Name Description Short Name

Independent

ncloc Number of physical lines of code that are not comments ncloc
(line only containing space, tab, and carriage return are ignored)

classes Number of classes (including nested classes, interfaces, enums, and annotations) cls

files Number of files fil

directories Number of directories dir

functions Number of methods func

statements Number of statements according to Java language specifications stmt

comment lines Number of lines containing either comment or commented-out code com ln
(Empty comment lines and comment lines containing only special characters are ignored)

cognitive complexity A complexity measure of understandability of code [38] cgn cmplx

complexity Cyclomatic complexity (else, default, and finally keywords are ignored) cmplx

duplicated lines Number of duplicated lines dp ln

duplicated blocks Number of duplicated blocks. To count a block, at least 10 successive dp blk
duplicated statements are needed. Indentation & string literals are ignored

duplicated files Number of duplicated files dp fil

Dependant code smells Organic measure of identified code smells (named new code smells by SonarQube) cs
(Total count of code smells identified for the first time since the last analyzed commit)

happening due to such code smells is low. We have also
ignored code smells that seem to have an obvious linear
relation with the single predictors, e.g., a code smell reporting
cases when the complexity of a class or method reaches a
certain limit, has a high linear relation with the complexity
measures. We reviewed the rest of the code smells and selected
35 code smells from the “blocker” and “critical” categories, as
listed in Table V in the Appendix.

SonarQube calculates the metric new code smells (which
we have denoted as code smells) and saves the measure
into the database but automatically deletes measures from
the earlier runs, if there is any. We have instrumented the
database with triggers to automatically retrieve this metric
when deleted. Among all metrics, code smells is used as the
dependent variable and rest of the metrics in Table II are used
as independent variables or predictors.

C. Analysis Procedure
In Section II, we have discussed the idea, cumulative

measures have high collinearity among themselves. Therefore,
there is a reason to believe that cumulative measures are
collectively weaker as input features for predictive models
compared to their corresponding organic measures. Thus, we
are interested in investigating whether it makes a difference to
use organic measures instead of their cumulative counterparts
to predict code smells. Thus, when building our models,
we do not combine predictors or measures from both cate-
gories. Therefore, we can denote predictors of a model either
cumulative or organic since they always come from the same
category because we will not mix them. On the other hand,
our target variables code smells is from the measurement
category organic. Therefore, we will denote code smells as
organic.

For prediction, we use random forest regression for this
study. Random forest is an ensemble algorithm. It consists of

multiple decision trees making a forest where the accuracy of a
model is calculated by averaging the accuracies of every single
tree in the forest. While a decision tree algorithm generally
suffers from overfitting, a random forest prevents overfitting
by design. The random forest algorithm is suitable in our case
as it can better handle non-normal data compared to many
machine-learning algorithms. Moreover, the random forest is
known for its quick training time given its effectiveness.

Figure 3. Split of a single dataset in different iterations in a
TimeSeriesSplit cross-validation technique.

For validation of models, we like to use cross-validation
techniques from the popular Scikit-Learn Python li-
brary. Since, the collected data from the revision history is
time-bound, TimeSeriesSplit cross-validation from the
Scikit-Learn library is appropriate in our case. We use
the default number of splits (n_splits = 3) for our data.
In TimeSeriesSplit cross-validation, the order of data is
important, and unlike general cross-validation, randomization
is avoided because, if data is randomized, the training datasets
shall have a rough idea about the trend of the future already
based on the random data assigned from the later parts of
the projects. In our case, we are interested in predicting the
future based on the available data (and there is no point in
predicting the past). In TimeSeriesSplit cross-validation,
data is split without disordering time, as shown in Fig. 3.

66Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 75 / 84

TABLE III. PCA COMPONENTS. HERE, WE USED SHORT NAMES FOR METRICS, AS MENTIONED IN TABLE. II.

Cumulative Metrics Organic Metrics
ncloc func stmt cmplx cgn cmplx cls fil com ln dir dp ln dp blk dp fil ncloc func stmt cmplx cgn cmplx cls fil com ln dir dp ln dp blk dp fil

PC 1 .79 .09 .32 .14 .08 .01 .01 .32 .00 .36 .01 .00 -.89 -.14 -.31 -.16 -.07 -.02 -.02 -.24 .00 -.09 .00 .00

PC 2 -.38 .02 -.29 -.04 -.09 -.01 .00 .40 .00 .77 .01 .00 -.20 .08 -.01 .01 -.09 -.01 .01 .42 .01 .88 .02 .01

PC 3 -.21 -.04 .19 .02 .04 -.02 -.01 .84 .00 -.46 -.01 .00 -.24 .25 .04 .14 -.07 -.01 .01 .80 .00 -.47 -.01 .00

PC 4 .41 .02 -.82 -.16 -.21 .06 .04 .18 .01 -.23 -.01 .00 .33 -.02 -.85 -.25 -.27 .09 .03 .15 .00 -.03 -.01 .00

PC 5 -.05 .14 -.31 .49 .79 -.01 -.02 .00 -.01 -.03 .09 .00 .04 -.67 -.11 -.09 .65 -.09 -.12 .29 -.05 -.01 -.02 -.02

PC 6 .09 -.76 -.01 -.48 .43 -.03 -.03 .02 .01 .07 -.01 .01 .04 -.40 .40 -.63 -.50 .02 -.01 .15 .03 -.06 -.01 .00

PC 7 .00 -.30 -.04 .40 -.11 -.05 .10 -.01 .02 .01 -.85 -.02 .05 -.26 -.06 .40 -.38 -.57 -.47 -.01 -.17 -.01 .22 .00

PC 8 .02 -.52 -.05 .54 -.33 -.24 -.08 -.01 -.04 -.01 .49 .12 .01 .42 .01 -.51 .29 -.32 -.25 -.01 -.04 .00 .55 -.02

PC 9 -.04 -.16 .04 .13 -.03 .78 .55 .01 .14 .01 .14 .03 -.02 -.25 .00 .23 -.09 .34 .33 .02 .10 -.02 .80 .03

PC 10 .00 .08 .00 -.09 .05 -.56 .75 .00 .28 .00 .04 .16 .02 -.03 -.03 -.02 .01 -.66 .70 .00 .26 .00 -.04 .09

PC 11 .00 .04 .00 -.01 .01 .10 -.30 .00 .58 .00 -.06 .74 .00 .01 .02 -.04 -.01 -.04 .34 .00 -.90 .00 .01 -.27

PC 12 .00 -.04 .00 .05 -.03 -.03 -.16 .00 .75 .00 .06 -.64 .00 -.01 .00 .03 -.02 -.03 -.01 .00 .28 .01 .01 -.96

Figure 4. The overall process of model evaluation. At least one sub-level
process is expanded from each horizontally highlighted level (i.e., projects,

predictors, targets, etc.) Unexpanded sub-processes are indicated with
open-ended vertical lines or connectors (e.g., the small vertical lines

connected to Random Forest (RF) at Level 4). Any unexpanded or
open-ended vertical connector contains the same expanded sub-process tree

from the same level.

A simpler cross-validation technique compared to
TimeSeriesSplit is training_test_split, where
the dataset is split only once. For training_test_split
cross-validation for time-series data, if we avoid randomization
when splitting the training and the test sets, we get a coarse-
level cross-validation compared to TimeSeriesSplit,
which is still valid. For training_test_split, we
will use 70% data for training set and 30% data for test
set. K-folds is another popular cross-validation technique,
which is similar to time-series cross-validation. However, the
k-folds technique has no strict ordering of time, meaning
older data corresponding to the earlier commits can be in
the test sets and newer data corresponding to the recent
commits can appear in the training set. Due to this, it is
methodologically wrong to evaluate time-series data with

k-folds cross-validation. Therefore, we have avoided it.
The overall process of model evaluation is pictured in

Fig. 4. This figure shows how the selected machine learn-
ing regressor with two cross-validation methods are used to
process the data from the selected projects and calculate the
accuracies of regression models. Since, this study has a strong
focus to understand the impact of using multiple features
from different measurement categories (i.e., cumulative and
organic) when predicting the target measures, we want to
exhaustively check all possible combinations of the predictors
while building machine learning models to predict the target
measures. In Level 2 of Fig. 4, we can select one or multiple
predictors to predict the metric in Level 3. Then, in Level
4, machine learning models are built based on the selections
from the prior two levels. Table IV shows all possible number
of models that can be generated based on the process shown
in Fig. 4, considering all possible lengths of predictors and
all possible number of evaluations of such a number of total
possible models.

TABLE IV. NUMBER OF MODELS AND EVALUATIONS BASED ON
THE STUDY DESIGN.

‘Combination length’ No. of prediction No. of r2 No. of aggregated
of predictors (k) models (nopm) values r2 values

1 24 168 48
2 132 924 264
3 440 3,080 880
4 990 6,930 1,980
5 1,584 11,088 3,168
6 1,848 12,936 3,696
7 1,584 11,088 3,168
8 990 6,930 1,980
9 440 3,080 880

10 132 924 264
11 24 168 48
12 2 14 4

Total 8,190 57,330 16,380

Accuracies of the predictive models are calculated as r2,
which is also known as the coefficient of determination. It
expresses the proportion of the variance in the dependent
measure or target, predictable from the independent measures
or predictors. The maximum value of r2 is +1, which implies
100% variability of the target measure has been accounted. It

67Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 76 / 84

can also be negative suggesting the model has even a worse
fit than a horizontal line on the x-axis.

Within the context of this study, ‘no. of predictor’ (n) =
12, ‘no. of category of predictors’ (pc) = 2, ‘no. of target’ (t)
= 1, ‘no. of regressor’ (r) = 1, and ‘no. of cross-validation’
(cv) = 2. This study has considered generating all possible
models and all possible evaluations of the models, as shown in
Table IV. Therefore, we build in total 8,190 predictive models
and this numerical figure is calculated as total nopm =∑12

k=1(
(
n
k

)
× pc × t × r). Then, we evaluate these models

57,330 times and generate the same number of r2 values by
total norv =

∑12
k=1(

(
n
k

)
× pc× t× r × 4). In this equation,

the numerical term four comes as we have one r2 value
from training_test_split and three r2 values from
TimeSeriesSplit cross-validations. Then, aggregating r2
values for TimeSeriesSplit, we have the total 16,380 r2
values calculated by total noarv =

∑12
k=1(

(
n
k

)
×pc× t× r×

cv) that will be used for results of this study. All evaluations
are based on test data sets while models are built with training
data sets. The whole model training and evaluation process is
automated using Python scripts and MySQL database. When
reporting the results, we select the best r2 value (which means
the associated predictive model is best) for each combination
length of predictors (k).

To validate our model building and prediction approach,
we have performed PCA on both sets of metrics and extracted
the maximum possible components, i.e., the total number of
metrics in each category, which is 12. The details of the
extracted components are shown in Table III. For cumulative
metrics, the first two components explain about 98.3% and
for cumulative metrics 97.6% variability. Therefore, it would
be enough to consider these two components to build models.
However, as we have exhaustively built models in the first
approach, we want to develop models using PCA by using
all the components. For each measurement category, we will
build 12 prediction models where the first model would only
use the first PCA component and the last model would use all
12 components.

D. Threats to Validity

A general weakness of case study research is generalizabil-
ity due to the reason that samples are not randomly selected
from the population. However, this study has randomly se-
lected the projects from the population.

According to GitHub’s statistics for 2017 [41], 6.7 million
new users joined the platform, of them 48% are students,
45% are entirely new to programming, and 4.1 million people
created their first repository. This means, there are a lot of
classroom projects or projects that have little or no code base.
Here, we have a trade-off, we want to be inclusive by equally
letting all projects the same chance to appear as subjects. But
we do not want to include meaningless projects. As we have
disregarded all projects that result in less than 10 commits, a
lot of such unwanted projects was removed.

Programming languages have different constructs. There-
fore, measures of code metrics may vary due to programming
languages. To minimize the effects of programming languages,
we have selected projects that are mainly labeled as Java
projects.

We have selected 35 code smells for this study. This
could be seen as a threat as not all code smells are equally
severe and we have not tracked which code smells are more
present than the others. To minimize this threat, we selected
code smells from the top two severity-levels (“blocker” and
“critical”). We have removed code smells that are subjective
to projects (e.g., code smells related to coding conventions)
and that seem to have obvious correlations with the input
feature metrics. Since we have collectively predicted the code
smells, it would not be possible to differentiate which code
smells are more predictable than others. From our results, we
have an overall understanding of predictability of the selected
code smells as a whole. Therefore, it was important that
the severity of the selected code smells do not vary much.
From another point of view, since our research question is
specific to the context of prediction accuracies between organic
and cumulative measures, our approach of not differentiating
between the selected code smells do not pose any significant
threat to the validity of this study.

V. RESULTS AND DISCUSSIONS

We are interested in distinguishing the difference between
cumulative and organic measures predicting code smells in
the continuous integration environment where we want to
predict quality change within a short period. Results from our
predictions are reported in Fig. 5. All sub-figures in this figure
have 12 data points each depicting the best found r2 value for
that specific length and choice of predictor category, target,
regressor, and cross-validation from the total available 16,380
r2 values.

When we look at the model performance from cumulative
predictors to code smells in Fig. 5b, all r2 values for both
cross-validations result in negative values. The maximum r2

values of -0.25 (for training_test_split) and -0.88
(for TimeSeriesSplit) come from the single predictor
duplicated files. Since we have all negative r2 in Fig. 5b,
results from such models are not useful in practice but we can
still interpret the results relatively in comparison to Fig. 5a
to understand how prediction accuracies vary when predictor
types are different.

For organic metrics predicting code smells, we see pos-
itive prediction accuracies in Fig. 5a. Here, both cross-
validation methods yield positive results (r2 ≥ 0). It is
clear from this sub-figure that the model accuracy in-
creases as the number of predictor increases. In Fig. 5a for
training_test_split, we see that the maximum r2

value is 0.25 for a combination of six predictors; then the
model accuracy gradually decreases as the number of predictor
increases. The six predictors are ncloc, statements, classes,

comment lines, duplicated lines, and duplicated blocks.
For training_test_split cross-validation, the maxi-
mum model accuracy r2 = 0.18 is found for four predic-
tors, which are ncloc, directories, duplicated lines, and
duplicated blocks.

We see that TimeSeriesSplit cross-validation
results in lower model performance compared to
training_test_split. This is most likely because
the r2 value of TimeSeriesSplit comes from three r2

values or three models where the first model is trained with
only 25% of the data to evaluate 25% of the data, which is
‘Split 1’ in Fig. 3. Models corresponding to ‘Split 1’ not only

68Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 77 / 84

(a) Predictor: Organic metrics, Target: code smells (b) Predictor: Cumulative metrics, Target: code smells

Figure 5. Prediction Accuracies using Random Forest Regressor.

have less portion of training data but also the split between
training and test is equal. Still, the r2 graphs corresponding to
both cross-validation techniques in two sub-figures in Fig. 5
roughly follow a similar trend concerning shape or slope.

The interactions among predictors are more
visible in the TimeSeriesSplit graphs than
training_test_split in both sub-figures in Fig. 5.
For example, in Fig. 5a, if we carefully look at the
TimeSeriesSplit graph, we see that combination
lengths 5 and 6 yield lower accuracies than combination
lengths 4 and 7. Similar observations are seen for
training_test_split, e.g., model accuracy for
combination length 4 is lower than accuracies for combination
lengths 3 and 5. Such observations could most likely be due
to the interactions among the predictors. Interactions among
predictors are interesting. However, we have not investigated
them further, as it falls beyond the scope of this study.

Results from the 24 prediction models where features are
extracted through PCA, are presented in Fig. 6. Since we
evaluated these models only using training_test_split
cross-validation technique, we would compare these results
with training_test_split graphs in Fig. 5a and 5b.
We see that our approach outperformed PCA in both cases.
For organic metrics predicting code smells, we get the best r2
value 0.10 when eight components are used together. However,
if we had used maximum two components, we could have
achieved 0.05 as the maximum accuracy which is half of 0.10.
For cumulative metrics predicting code smells, all r2 values
are negative. However, the best r2 is -1.96 compared to -0.25
in Fig. 5b. Interestingly, for PCA, we have similar observations
as seen for Random Forest in Fig. 5, i.e., when we use more
organic metrics to build predictive models the model accuracy
increases. Six metrics for Random Forest in Fig. 5a and 8
components for PCA in Fig. 6 produce the best results.

Based on the observations, we can answer the RQ as
organic metrics can better predict code smells compared to
cumulative metrics. Furthermore, as more organic measures
are combined to form sets of predictors, the accuracies of
the models increase as seen in Fig. 5a. Compared to this,
cumulative measures do not contribute to the model accuracies
as observed in Fig. 5b. This could be an indication that organic

Figure 6. Prediction accuracies of Random Forest Regressors evaluated with
training_test_split where features are extracted through PCA.

measures collectively contribute more to the predictive models
than their corresponding cumulative measures. This could
potentially be due to the multicollinearity of the cumulative
metrics.

Among the 12 organic metrics used in this study, a combi-
nation of six metrics gives the best prediction accuracy (r2
= 0.25) concerning training_test_split as seen in
Fig. 5a. Concerning TimeSeriesSplit in the same figure,
a set of four metrics gives the best prediction accuracy (r2
= 0.18). The model accuracies are not that high and it can
be noted that finding the best predictive model was not an
objective of this study. Nevertheless, organic metrics better
predict code smells in the continuous integration environment
compared to their corresponding cumulative metrics which is
the main focus of this study.

69Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 78 / 84

Results of this study would help the practitioners, tool
developers, and researchers to be aware of the potential of
organic metrics to predict code smells in the continuous
integration environment. Our results are particularly interesting
for the researchers to focus on building improved predictive
models for code smells in the continuous integration environ-
ment involving more metrics.

VI. CONCLUSIONS AND OUTLOOK

This empirical study set out to investigate whether organic
measures perform better in predicting software artifacts than
their corresponding cumulative measures and whether there
exists any relationship between measurement types of pre-
dictors and a target. Considering code smells as the desired
target, we have found that measurement categories play a
vital role regarding the accuracies of random forest regression
models. Organic measures are found to be much better predict-
ing organic code smells than their corresponding cumulative
predictors. Furthermore, organic measures exhibit increased
model accuracies when more than one organic measures are
combined to form the set of predictors compared to their
corresponding cumulative measures. We think, this happens
due to the high multicollinearity of the cumulative measures
or due to the high correlation among the cumulative measures.
We validated our model building and prediction approach by
performing PCA to extract components to build models. Using
PCA, we have observed similar results but our approach to
build models with cumulative and organic metrics as predictors
outperformed PCA.

The results of this study are expected to be general within
the context of Java projects since it is based on randomly
selected projects. Therefore, this study is essential to generally
understand the difference between cumulative and organic
measures predicting code smells within this context. Further
studies are required to understand how model accuracies
differ when projects with specific criteria are considered,
e.g., size (small vs. large), duration (short vs. long-lived),
type (classroom vs. real), programming languages, etc. Our
results indicate possible interactions among various predictors
which is important knowledge to understand the software
metrics better. Therefore, more research can be conducted to
investigate the interactions between software metrics. More
importantly, further research should be carried out primarily
focusing on building improved models to predict code smells
in the continuous integration environment using more metrics.

ACKNOWLEDGMENT

The authors would like to thank Dr. Miroslaw Ochodek, Dr.
Bartosz Walter, and Dr. Cigdem Gencel for their feedback.

REFERENCES
[1] J. Bosch, “Speed, Data, and Ecosystems: The Future of Software

Engineering,” IEEE Software, vol. 33, no. 1, Jan. 2016, pp. 82–88.
[2] L. Rising and N. S. Janoff, “The scrum software development process

for small teams,” IEEE Software, vol. 17, no. 4, Jul 2000, pp. 26–32.
[3] M. A. A. Mamun, C. Berger, and J. Hansson, “Effects of measure-

ments on correlations of software code metrics,” Empirical Software
Engineering, 2019.

[4] ——, “Correlations of software code metrics: An empirical study,”
in Proceedings of the 27th International Workshop on Software
Measurement and 12th International Conference on Software Process
and Product Measurement, ser. IWSM Mensura ’17. New York, NY,
USA: ACM, 2017, pp. 255–266, [retrieved: Feb, 2019]. [Online].
Available: http://doi.acm.org/10.1145/3143434.3143445

[5] R. Taylor, “Interpretation of the correlation coefficient: a basic review,”
Journal of diagnostic medical sonography, vol. 6, no. 1, 1990, pp. 35–
39.

[6] K. El Emam and N. F. Schneidewind, “Methodology
for Validating Software Product Metrics,” National Research
Council of Canada, Ottawa, Ontario, Canada, Technical Report
NCR/ERC-1076, 2000, [retrieved: Feb, 2019]. [Online]. Available:
http://nick.adjective.com/work/ElEmam2000.pdf

[7] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto,
“Software quality analysis by code clones in industrial legacy software,”
in Proceedings Eighth IEEE Symposium on Software Metrics, 2002, pp.
87–94.

[8] M. A. A. Mamun, C. Berger, and J. Hansson, “Explicating, under-
standing, and managing technical debt from self-driving miniature car
projects,” in Managing Technical Debt (MTD), 2014 Sixth International
Workshop on. IEEE, 2014, pp. 11–18.

[9] S. Henry, D. Kafura, and K. Harris, “On the Relationships
Among Three Software Metrics,” in Proceedings of the 1981 ACM
Workshop/Symposium on Measurement and Evaluation of Software
Quality. New York, NY, USA: ACM, 1981, pp. 81–88. [Online].
Available: http://doi.acm.org/10.1145/800003.807911

[10] Y. Tashtoush, M. Al-Maolegi, and B. Arkok, “The Correlation
among Software Complexity Metrics with Case Study,”
arXiv:1408.4523 [cs], Aug. 2014, arXiv: 1408.4523. [Online].
Available: http://arxiv.org/abs/1408.4523

[11] S. Saini, S. Sharma, and R. Singh, “Better utilization of correlation
between metrics using Principal Component Analysis (PCA),” in 2015
Annual IEEE India Conference (INDICON), Dec. 2015, pp. 1–6.

[12] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward,
“Cyclomatic Complexity and Lines of Code: Empirical Evidence of
a Stable Linear Relationship,” Journal of Software Engineering and
Applications, vol. 02, no. 03, Oct. 2009, p. 137.

[13] M. J. P. v. d. Meulen and M. A. Revilla, “Correlations between Internal
Software Metrics and Software Dependability in a Large Population of
Small C/C++ Programs,” in The 18th IEEE International Symposium
on Software Reliability (ISSRE ’07), Nov. 2007, pp. 203–208.

[14] M. G. Kendall, “A new measure of rank correlation,” Biometrika,
vol. 30, no. 1/2, 1938, pp. 81–93. [Online]. Available:
http://www.jstor.org/stable/2332226

[15] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. Addison-Wesley Professional,
1999.

[16] M. Zhang, T. Hall, and N. Baddoo, “Code Bad Smells: a review of
current knowledge,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, 2010, pp. 179–202. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.521

[17] “SonarQube | Continuous Inspection,” [retrieved: Feb, 2019]. [Online].
Available: https://www.sonarqube.org/

[18] “SpotBugs | Find bugs in Java Programs,” [retrieved: Mar, 2019].
[Online]. Available: https://spotbugs.github.io/

[19] “Jtest | Java Development Testing for the Enterprise
| Parasoft,” [retrieved: Mar, 2019]. [Online]. Available:
https://www.parasoft.com/products/jtest

[20] “JArchitect :: Achieve Higher Java code quality,” [retrieved: Mar,
2019]. [Online]. Available: https://www.jarchitect.com

[21] “PMD | Source Code Analyzer,” [retrieved: Mar, 2019]. [Online].
Available: https://pmd.github.io/

[22] M. J. Munro, “Product metrics for automatic identification of ”bad
smell” design problems in java source-code,” in 11th IEEE International
Software Metrics Symposium (METRICS’05), Sept 2005, p. 15.

[23] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka,
“Investigating the Impact of Code Smells on System’s Quality: An
Empirical Study on Systems of Different Application Domains,” in
2013 IEEE International Conference on Software Maintenance, Sep.
2013, pp. 260–269.

[24] F. Arcelli Fontana, M. V. Mntyl, M. Zanoni, and A. Marino, “Comparing
and experimenting machine learning techniques for code smell
detection,” Empirical Software Engineering, vol. 21, no. 3, Jun. 2016,
pp. 1143–1191. [Online]. Available: https://doi.org/10.1007/s10664-
015-9378-4

70Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 79 / 84

[25] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM), Sep. 2012, pp. 306–315.

[26] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful”
considered harmful: patterns of cloning in software,” Empirical
Software Engineering, vol. 13, no. 6, Jul 2008, p. 645. [Online].
Available: https://doi.org/10.1007/s10664-008-9076-6

[27] R. Shatnawi and W. Li, “An Investigation of Bad Smells in Object-
Oriented Design,” in Third International Conference on Information
Technology: New Generations (ITNG’06), Apr. 2006, pp. 161–165.

[28] W. Li and R. Shatnawi, “An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution,” Journal of Systems and Software,
vol. 80, no. 7, Jul. 2007, pp. 1120–1128. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/ S0164121206002780

[29] F. Khomh, M. D. Penta, and Y. G. Gueheneuc, “An Exploratory Study
of the Impact of Code Smells on Software Change-proneness,” in 2009
16th Working Conference on Reverse Engineering, Oct. 2009, pp. 75–
84.

[30] N. Maneerat and P. Muenchaisri, “Bad-smell prediction from software
design model using machine learning techniques,” in 2011 Eighth
International Joint Conference on Computer Science and Software
Engineering (JCSSE), May 2011, pp. 331–336.

[31] A. Gupta, B. Suri, V. Kumar, S. Misra, T. Blaauskas, and R. Damaeviius,
“Software Code Smell Prediction Model Using Shannon, Rnyi and
Tsallis Entropies,” Entropy, vol. 20, no. 5, May 2018, p. 372. [Online].
Available: https://www.mdpi.com/1099-4300/20/5/372

[32] P. Runeson and M. Höst, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” Empirical Software
Engineering, vol. 14, no. 2, Dec. 2008, pp. 131–164. [Online].
Available: http://link.springer.com/10.1007/s10664-008-9102-8

[33] C. Robson, “Real world research. 2nd,” Edition. Blackwell Publishing.
Malden, 2002.

[34] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian,
Selecting Empirical Methods for Software Engineering Research.
London: Springer London, 2008, pp. 285–311. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5 11

[35] R. E. Stake, The Art of Case Study Research. California, USA: SAGE
Publications, Apr. 1995, google-Books-ID: ApGdBx76b9kC.

[36] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data from a
firehose,” in MSR ’12: Proceedings of the 9th Working Conference
on Mining Software Repositories, M. W. Godfrey and J. Whitehead,
Eds. IEEE, Jun. 2012, pp. 12–21. [Online]. Available: /pub/ghtorrent-
githubs-data-from-a-firehose.pdf

[37] J. D. Long and N. Cliff, “Confidence intervals for
Kendall’s tau,” British Journal of Mathematical and Statistical
Psychology, vol. 50, no. 1, May 1997, pp. 31–41. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-
8317.1997.tb01100.x

[38] G. A. Campbell, “Cognitive complexity: An overview and evaluation,”
in Proceedings of the 2018 International Conference on Technical Debt,
ser. TechDebt ’18. New York, NY, USA: ACM, 2018, pp. 57–58.
[Online]. Available: http://doi.acm.org/10.1145/3194164.3194186

[39] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software
engineers: Data collection techniques for software field studies,”
Empirical Software Engineering, vol. 10, no. 3, Jul 2005, pp. 311–341.
[Online]. Available: https://doi.org/10.1007/s10664-005-1290-x

[40] “SonarQube Metric Definitions,” [retrieved: Feb, 2019]. [Online]. Avail-
able: https://docs.sonarqube.org/latest/user-guide/metric-definitions/

[41] “GitHub Octoverse 2017 | Highlights from the
last twelve months,” [retrieved: Feb, 2019]. [On-
line]. Available: https://web.archive.org/web/20180602170102/
https://octoverse.github.com/

APPENDIX

TABLE V. LIST OF CODE SMELLS USED IN THIS STUDY.

“main” should not “throw” anything
Class names should not shadow interfaces or superclasses
Short-circuit logic should be used in boolean contexts
Future keywords should not be used as names
String literals should not be duplicated
Modulus results should not be checked for direct equality
“readResolve” methods should be inheritable
Methods & field names should not be the same or differ only by
capitalization
Switch cases should end with an unconditional ”break” statement
“if ... else if” constructs should end with “else” clauses
“switch” statements should not be nested
Fields in a “Serializable” class should either be transient or
serializable
The Object.finalize() method should not be overriden
Execution of the Garbage Collector should be triggered only by
the JVM
Constructors should only call non-overridable methods
Methods returns should not be invariant
“switch” statements should not contain non-case labels
“clone” should not be overridden
Assertions should be complete
“for” loop increment clauses should modify the loops’ counters
Method overrides should not change contracts
Exceptions should not be thrown in finally blocks
Classes should not access their own subclasses during initialization
“Object.wait()” and “Condition.await()” should be called inside a
“while” loop
“Cloneables” should implement “clone”
“Object.finalize()” should remain protected (versus public) when
overriding
Child class fields should not shadow parent class fields
Factory method injection should be used in “@Configuration”
classes
Threads should not be started in constructors
“indexOf” checks should not be for positive numbers
Instance methods should not write to “static” fields
Tests should include assertions
Null should not be returned from a “Boolean” method
Lazy initialization of “static” fields should be “synchronized”
IllegalMonitorStateException should not be caught

71Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 80 / 84

Using SPICE Models for Flexible and Scalable Assessments

Tomas Schweigert
SQS Software Quality Systems AG Köln

Köln, Germany
Email: Tomas.schweigert@sqs.com

Gizem Kemaneci
Kemaneci Consultancy

Ankara, Turkey
Email: gizem@kemaneci.com

Abstract— System and software development and testing have
become more and more complex on the one hand and cost and
time sensitive on the other. The capability to execute processes
in an organized manner, as well as to be flexible and customer
responsive, is key to business success. One challenge for those
who want to manage the capabilities of their processes is that
lots of capability and maturity models are in the market. This
makes it hard to understand their business value and the
impacts of improvement campaigns. This paper describes an
approach how to deal with this problem.

Keywords-Measurement Framework; Automotive SPICE;
TestSPICE; SPI Manifesto; ISO/IEC 33020;ISO/IEC 33003;
Process Capability; Capability Model; Process Improvement;
Process Integration; ISO/IEC 15504 Part 5; ISO/IEC 15504 Part
6.

I. INTRODUCTION

Software Process Improvement and Capability
dEtermination (SPICE) has been an Information Technology
(IT) topic for over 20 Years. With the exception of
Automotive SPICE [1] in the automotive domain and
ISO/IEC (International Organization for Standardization/
International Electrotechnical Commission) 15504 Part 6 in
the Dutch infrastructure industry [2], it does not seem like
ISO/IEC 15504 / ISO/IEC 330## (SPICE) and Capability
Maturity Model Integration (CMMI) have a lot of visible
impact in modern system, software and testing businesses.
One observable key point is that, by focusing on formal
points and capability levels, the original message got lost.
Process improvement drives business success. The influence
might be direct, e.g., change of effort structure by reducing
budgets and capacity for error correction and expanding the
budget and capability to deliver new features. Or the
influence may be indirect, by reducing business risks rising
from poor quality of deliverables or delay of the delivery
itself.

As the benefits are so clear, why are SPICE Assessments
not as common as it could be expected? The answer is that,
often, process knowledge is concentrated in so called
Software Process Engineering Groups (SEPG), which have
an observable tendency to create an ivory tower. These ivory
towers have the tendency to create complete, cumbersome
process models which are frustrating practitioners and are
not maintainable or adaptable at all. These models were
always criticized [3].

Another challenge is the cost consuming approach of
capability analysis. As there are lots of models on the
market, an organization might try to extract the building
blocks of the relevant models and recombine them to define

the individual analysis and improvement approach [4], but
this approach might create a constant research program that
will never pay back on individual organization level. Or, an
organization might run lots of uncoordinated assessment and
improvement campaigns which might create misalignments
and disorganization at working and management level.

One of the drivers behind this challenge is that lots of
SPICE Models like ISO/IEC 15504 Part 6, Automotive
SPICE and TestSPICE [5] are very focused on a defined
topic. As a consequence, an organization might have to pay
for many assessments which have overlapping topics and
overlapping findings.

One of the proposed benefits of every capability
measurement framework is that the capability of processes
will be measured in a comparable way, allowing
organizations to define targets for process capability that
support business benefits.

By using the original ideas of the SPICE model, to
abstract process content from capability measurement, an
approach can be created that combines the business relevant
processes of all models and brings them into one complete
model. To safe cost and to focus on the real important points,
the approach also contains scalability features.

The rest of the paper si structured as follows.

II. SETTING THE CONTEXT

In 2010, the SPI Manifesto [6] was launched. It shows
the modern thinking of Process Improvement (PI) describing
core values and principles, as indicated in Figure 1.

Figure 1. The values of the SPI Manifesto

72Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 81 / 84

These values are explained by a set of principles (see
Figure 2.) that give guidance to improve the achievement of
these values. Each principle is explained in detail in a later
section of the SPI Manifesto.

Figure 2. SPI Manifesto Principles

The presented approach is based mostly on the principle
“use dynamic and adaptable models as needed”. By doing
this, the approach also contributes to the principle “support
the organisations vision and objectives”.

III. TAKING THE SOURCES OF THE APPROACH:
INCORPORATED MODELS AND CAPABILITY FRAMEWORKS

The presented approach incorporates the following
models as a source:

1) ISO/IEC 15504 Part 5 [7]
2) ISO/IEC 15504 Part 6
3) Automotive SPICE 3.1
4) TestSPICE 4.0
It also incorporates ISO/IEC 33020 [8] as capability

measurement framework

A. ISO/IEC 15504 Part 6

ISO/IEC 15504 Part 6 (Systems Engineering) was
developed with a strong view on the organisations capacity
to deliver large scale projects. Therefore, this model always
had a strong focus on the business environment. The
assessment model is based on ISO/IEC 15288 [9] as process
reference model and incorporates the ISO/IEC 15504 Part 2
[10] as measurement framework. Due to the architecture of
the whole SPICE approach, this can be easily replaced by
ISO/IEC 33020.

The model shows the typical structure of process groups
and processes. This structure makes it easier to understand
the model and to set the right scope for process assessments.

The model contains the following process groups:
 Organisational Project Enabling Processes
 Agreement processes
 Project Processes
 Technical Processes
 Tailoring Processes

The whole model is presented in Figure 3.

Figure 3. The process model of ISO/IEC 15504 Part 6

Reviewing modern literature about business agility,
portfolio management is reported as one cornerstone of
success [11].

B. ISO/IEC 15504 Part 5

ISO/IEC 15504 Part 5 (Software Engineering) was
developed with a strong view on the capacity to deliver
software projects of all types. Therefore, this model always
had a strong focus on the software development lifecycle.
The assessment model is based on ISO/IEC 12207 as process
reference model and incorporates the ISO/IEC 15504 Part 2
as measurement framework. Due to the architecture of the
whole SPICE approach, this can be easily replaced by
ISO/IEC 33020.

The model has the highest level of completeness
regarding systems and software development.

The whole model is presented in Figure 4.

Figure 4. The process model of ISO/IEC 15504 Part 5

The model is -as ISO/IEC 15504 Part 6- Departed in
Process groups and processes.

The following process groups are included:
 Agreement Processes
 Organizational Project Enabling Processes
 Project Processes
 Technical Processes

73Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 82 / 84

 Software Implementation Process
 Software Support Process
 Software Reuse Process.

C. Automotive SPICE (3.1)

Automotive SPICE (newest version 3.1) is the process
assessment model of the German automotive industry. While
having incorporated the system and software development
processes of ISO/IEC 15504 Part 6, the model has a strong
emphasis on the acquisition processes. They are much more
detailed than in ISO/IEC 15504 Part 5 or Part 6. In addition,
the German Verband der Automobilindustrie, Qualitäts
Management Center (VDA QMC) developed a rating
guideline for Automotive SPICE which highlights many
interdependencies between the process components of each
level.

Automotive SPICE uses the ISO/IEC 33020 as capability
measurement framework. Earlier versions used ISO/IEC
15504 Part 2.

The whole model is presented in Figure 5.

Figure 5. The process model of Automotive SPICE 3.1

The structure of the model consists of processes and
process groups. The following process groups are defined:

 Acquisition Process Group
 Supply Process Group
 System Engineering Process Group
 Software Engineering Process Group
 Supporting Process Group
 Management Process Group
 Reuse Process Group
 Process Improvement Process Group.

D. TestSPICE (4.0)

TestSPICE (newest version 4.0) is an independently
developed process assessment model for testing processes,
based on the ISTQB Syllabus and the ISO/IEC 29119
process model.

TestSPICE is completely focused on the testing
processes, designed to plug in to other SPICE based process
assessment models.

TestSPICE incorporates the ISO/IEC 15504 Part 2 as
measurement framework. Due to the architecture of the

whole SPICE approach, this can be easily replaced by
ISO/IEC 33020.

TestSPICE also includes an agile extension to support the
assessment of agile capabilities.

The whole model is presented Figure 6.

Figure 6. The process model of TestSPICE 4.0

E. The capability measurement framework ISO/IEC 33020

The capability measurement framework of ISO/IEC
33020 consists of 6 Levels divided in 9 process attributes.

Figure 7. Capability levels and process attributes of ISO/IEC 33020

IV. COMMON COMPONENTS OF SPICE PROCESS

ASSESSMENT MODELS

To create a combined approach of several SPICE models,
a set of common building blocks is needed that supports
adaptability and scalability.

The following components are common in all SPICE
models:

• 1 Process Assessment Model
o 1 Process Reference Model

 1-n process groups
• 1-n processes (Specific / Overarching)

74Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 83 / 84

o 1 purpose
o 1-n outcomes
o 1-n process related indicators

 Base practices
 Input/Output Workproducts

o 1-n levels
 0-n Process Attributes

• 1 Indicator set
o 1-n generic practices
o 1-n generic work products
o 1-n generic resources

ISO/IEC 15504 Part 5 or TestSPICE 4.0 use overarching
processes. An overarching process summarizes a complete
process group by using the processes of the group as base
practices (or an equivalent mapping). As an example, there is
an acquisition process, and there are sub-processes that are
linked to the overarching process by name (AGR.1 BP.3
“Select Supplier” to AGR.1C Supplier selection) or by
content base practices of the overarching process map to
base practices of the sub-processes, but sub-processes
provide more details.

V. USING COMMON COMPONENTS TO ALIGN ASSESSMENT

MODELS WITH BUSINESS NEEDS

These common set of components allows several levels
of adoption combined into one approach:

1) Combine processes of several models (e.g.
acquisition processes of automotive SPICE and
organisational management of ISO/IEC 15504 Part 6) to
have the right set of processes at hand.

2) Define the target capabilities of the selected
processes in order to achieve the necessary or expected
business support (a standardized process supports fast acting
teams and allows to quickly reconfigure teams, but its
development might require some budget and its deployment
might restrict creative ad hoc solutions).

3) Define if overarching or detailed processes will be
assessed.

4) Define the in depth of process assessments. It
makes a huge difference in cost and effort if an assessment
team just checks if the process purpose is met and quickly
gathers strengths and weaknesses, or if the team has to
deliver an in-depth report reflecting purpose, outcomes and
all types of indicators.

This approach supports the way of process improvement
as described in ISO/IEC 15504 Part 4 or ISO/IEC 33014.
Both standards recommend to 1st check influences on the

business as given from the business ecosystem or from
technological innovations, and next define a target profile.
The profile can be expressed in capability levels, as
described in ISO/IEC 33020.

Having the targets set, an assessment team will analyse to
what degree the targets are met and if gaps create immediate
business impact or business-related risks.

VI. CONCLUSION

Using SPICE Assessments in an inflexible and
bureaucratic manner was on potential cause of decrease of
usage of assessments. Consequently, binding SPI to business
success and using a very flexible way to plan and execute
assessments might be the first steps for a comeback.

REFERENCES

[1] VDA QMC Working Group 13 / Automotive SIG Automotive SPICE
Process Assessment / Reference Model, Version 3.1, 2017-11-01

[2] D. T. Schweigert and P. Hendriks, Using SPICE in the Real World: A
Large Infrastructural Project Example, Software Quality Professional,
Volume Twenty, Issue two, March 2018, p 27 ff.

[3] I. Jacobsen, P. Wei Ng and I. Spence, Enough of Processes – Let’s do
Practices, Journal of Object Technology, vol. 6, no. 6, July-August
2007.

[4] S. Jeners, H. Lichter: Smart Integration of Process Improvement
Reference Models Based on an Automated Comparison Approach.in
F. McCaffery, R. V. O’Connor, R. Messnarz (Eds.) Proceedings of
the 20th Europea Conference EuroSPI 2013, Heidelberg, New York,
Dordrecht, London (Springer), 2013 ISBN 978-3-642-39178-1;
PP143-154

[5] K. Dussa-Zieger, M. Ekssir-Monfared, T. Schweigert, M. Philipp, and
M. Blaschke: The Current Status of the TestSPICE® Project. in J.
Stolfa, S. Stolfa, R. V. O’Connor, R. Messnarz (Eds.) Proceedings of
the 24th Europea Conference EuroSPI 2017, Heidelberg, New York,
Dordrecht, London (Springer), 2013 ISBN 978-3-319-64287-8; PP
589-598

[6] J. Pries-Heje and J. Johansen, eds. MANIFESTO Software Process
Improvement eurospi.net, Alcala, Spain, 1010,
http://www.iscn.com/Images/SPI_Manifesto_A.1.2.2010.pdf

[7] ISO/IEC 15504 Part 5:2012 Information technology - Process
assessment - Part 5: An exemplar software life cycle process
assessment model

[8] ISO/IEC 33020: 2014 - Information technology - Process assessment
- Process measurement framework for assessment of process
capability

[9] ISO/IEC 15288: 2008 - Systems and software engineering — System
life cycle processes

[10] ISO/IEC 15504 Part 2 - Software engineering — Process assessment
— Part 2: Performing an assessment

[11] K. Leopold, Agilität neu denken, Wien 1918, ISBN 978-3-903205-
50-5

75Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 84 / 84

http://www.tcpdf.org

