
SOFTENG 2018

The Fourth International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-61208-632-3

April 22 - 26, 2018

Athens, Greece

SOFTENG 2018 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Mira Kajko-Mattsson, KTH, School of Electrical Engineering and Computer Science,

Sweden

 1 / 36

SOFTENG 2018

Forward

The Fourth International Conference on Advances and Trends in Software Engineering
(SOFTENG 2018), held between April 22, 2018 and April 26, 2018 in Athens, Greece, focused on
challenging aspects for software development and deployment, across the whole life-cycle.

Software engineering exhibits challenging dimensions in the light of new applications,
devices and services. Mobility, user-centric development, smart-devices, e-services, ambient
environments, e-health and wearable/implantable devices pose specific challenges for
specifying software requirements and developing reliable and safe software. Specific software
interfaces, agile organization and software dependability require particular approaches for
software security, maintainability, and sustainability.

We take here the opportunity to warmly thank all the members of the SOFTENG 2018
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors who dedicated their time and effort to contribute to SOFTENG 2018. We
truly believe that, thanks to all these efforts, the final conference program consisted of top
quality contributions.

We also gratefully thank the members of the SOFTENG 2018 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope that SOFTENG 2018 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the field of
software engineering. We also hope that Athens, Greece, provided a pleasant environment
during the conference and everyone saved some time to enjoy the historic charm of the city.

SOFTENG 2018 Chairs

SOFTENG Steering Committee
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Miroslaw Staron, University of Gothenburg, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, University of Applied Sciences Munich, Germany

SOFTENG Industry/Research Advisory Committee
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Sigrid Eldh, Ericsson AB, Sweden
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

 2 / 36

SOFTENG 2018
Committee

SOFTENG Steering Committee
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Miroslaw Staron, University of Gothenburg, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, University of Applied Sciences Munich, Germany

SOFTENG Industry/Research Advisory Committee
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Sigrid Eldh, Ericsson AB, Sweden
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

SOFTENG 2018 Technical Program Committee
Ibrahim Akman, Atilim University, Turkey
Issam Al-Azzoni, Al Ain University of Science and Technology, UAE
Rafael Alves Paes Oliveira, The Federal University of Technology - Paraná (UTFPR - Dois
Vizinhos-PR), Brazil
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Doo-Hwan Bae, School of Computing - KAIST, South Korea
Alessandra Bagnato, SOFTEAM R&D Department, France
Anna Bobkowska, Gdansk University of Technology, Poland
Luigi Buglione, Engineering SpA, Italy
Azahara Camacho, Universidad Complutense de Madrid, Spain
Pablo C. Cañizares, Universidad Complutense de Madrid, Spain
Byoungju Choi, Ewha Womans University, South Korea
Morshed U. Chowdhury, Deakin University, Australia
Amleto Di Salle, University of L'Aquila, Italy
Cesario Di Sarno, University of Naples "Parthenope", Italy
Sigrid Eldh, Ericsson AB, Sweden
Pål Ellingsen, Høgskulen på Vestlandet, Norway
Faten Fakhfakh, University of Sfax, Tunisia
Fausto Fasano, University of Molise, Italy
Rita Francese, Università di Salerno, Italy
Yanick Fratantonio, EURECOM, France
Barbara Gallina, Mälardalen University, Sweden
Matthias Galster, University of Canterbury, Christchurch, New Zealand
Alessia Garofalo, COSIRE Group, Aversa, Italy

 3 / 36

Pascal Giessler, Karlsruhe Institute of Technology, Germany
Ulrike Hammerschall, University of Applied Sciences Munich, Germany
Noriko Hanakawa, Hannan University, Japan
Rachel Harrison, Oxford Brookes University, UK
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus Group Innovations, Hamburg, Germany
Jang-Eui Hong, Chungbuk National University, South Korea
Fu-Hau Hsu, National Central University, Taiwan
Shinji Inoue, Kansai University, Japan
Ludovico Iovino, Gran Sasso Science Institute, Italy
Janne Järvinen, F-Secure Corporation, Finland
Hermann Kaindl, TU Wien, Austria
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Atsushi Kanai, Hosei University, Japan
Afrina Khatun, University of Dhaka, Bangladesh
Abdelmajid Khelil, Landshut University of Applied Sciences, Germany
Takashi Kitamura, National Institute of Advanced Industrial Science and Technology (AIST),
Japan
Johann Krautlager, Airbus Helicopters Deutschland GmbH, Germany
Herbert Kuchen, Westfälische Wilhelms-Universität Münster, Germany
Dieter Landes, University of Applied Sciences Coburg, Germany
Karl Leung, Hong Kong Institute of Vocational Education (Chai Wan), Hong Kong
Chu-Ti Lin, National Chiayi University, Taiwan
Panos Linos, Butler University, USA
Francesca Lonetti, CNR-ISTI, Pisa, Italy
Ivano Malavolta, Vrije Universiteit Amsterdam, Netherlands
Eda Marchetti, ISTI - CNR, Pisa Italy
Paolo Maresca, Verisign, Switzerland
Alessandro Margara, Politecnico di Milano, Italy
Sanjay Misra, Covenant University, Nigeria
Masahide Nakamura, Kobe (National) University, Japan
Mohammad Reza Nami, TUDelft University of Technology, The Netherlands
Krishna Narasimhan, Itemis AG, Germany
Risto Nevalainen, Finnish Software Measurement Association (FiSMA), Finland
Flavio Oquendo, IRISA - University of South Brittany, France
Fabio Palomba, University of Salerno, Italy
Fabrizio Pastore, University of Milano – Bicocca, Italy
Antonio Pecchia, Federico II University of Naples, Italy
Andréa Pereira Mendonça, Amazonas Federal Institute (IFAM), Brazil
Michael Perscheid, Innovation Center Network, SAP, Germany
Heidar Pirzadeh, SAP SE, Canada
Pasqualina Potena, RISE SICS Västerås, Sweden
Fumin Qi, Wuhan University, China
Zhengrui Qin, Northwest Missouri State University, USA

 4 / 36

Oliviero Riganelli, University of Milano Bicocca, Italy
Michele Risi, University of Salerno, Italy
José Miguel Rojas, The University of Sheffield, UK
Alvaro Rubio-Largo, Universidade NOVA de Lisboa, Portugal
Gunter Saake, Otto-von-Guericke-University of Magdeburg, Germany
Kazi Muheymin Sakib, University of Dhaka, Bangladesh
Rodrigo Salvador Monteiro, Universidade Federal Fluminense, Brazil
Hiroyuki Sato, University of Tokyo, Japan
Daniel Schnetzer Fava, University of Oslo, Norway
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Paulino Silva, ISCAP - IPP, Porto, Portugal
Rocky Slavin, University of Texas at San Antonio, USA
Maria Spichkova, RMIT University, Australia
Praveen Ranjan Srivastava, Indian Institute of Management (IIM), Rohtak, India
Miroslaw Staron, University of Gothenburg, Sweden
Roland Steinegger, Karlsruhe Institute of Technology (KIT), Sweden
Bernard Stepien, University of Ottawa, Canada
Tugkan Tuglular, Izmir Institute of Technology, Turkey
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Sylvain Vauttier, Ecole des Mines d'Alès, France
Miroslav Velev, Aries Design Automation, USA
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences, Hungary
Andreas Vogelsang, Technical University of Berlin, Germany
Song Wang, University of Waterloo, Canada
Yan Wang, The Ohio State University, USA
Hironori Washizaki, Waseda University, Japan
Ralf Wimmer, Albert-Ludwigs-University Freiburg, Germany
Xin Xia, Monash University, Australia
Guowei Yang, Texas State University, USA
Cemal Yilmaz, Sabanci University, Turkey
Mansooreh Zahedi, IT University of Copenhagen, Denmark
Yongjie Zheng, University of Missouri - Kansas City, USA
Peter Zimmerer, Siemens AG, Germany
Alejandro Zunino, ISISTAN-UNICEN-CONICET, Argentina

 5 / 36

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 36

Table of Contents

System Requirements Prioritization Framework
Michel Hogberg, Mira Kajko-Mattsson, Paulina Persson, and Anne Hakansson

1

Data-Driven Testing Using TTCN-3
Bernard Stepien, Liam Peyton, and Mohammad Alhaj

9

The Antecedents and Feedback Loops Contributing to Trust in Agile Scrum Teams
Trish O'Connell and Owen Molloy

16

Client-Side XSS Filtering in Firefox
Pal Ellingsen and Andreas Vikne

24

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 36

System Requirements Prioritization Framework

Michel Högberg, Mira Kajko-Mattsson, Paulina Persson, Anne Håkansson

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology
Stockholm, Sweden

e-mail: {michelh, mekm2, pauper, annehak}@kth.se

Abstract—Prioritization of system requirements is pivotal

for coping with limited project resources. A well-structured
and adequate prioritization method ensures that the most
critical requirements get addressed first. Unfortunately, today,
there are very few methods that are dedicated to requirements
prioritization. This paper suggests a framework for
prioritizing system requirements. The framework is called
System Requirements Prioritization Framework (SRPF). It
consists of eight components each representing a specific angle
of the prioritization effort. Its components are (1) Input, (2)
Stakeholders, (3) Prioritization Criteria, (4) Prioritization
Methods, (5) Environment, (6) Resources, (7) Priority Scales,
and (8) Urgency Levels. Our goal is to create a framework
aiding companies in making structured and objective
prioritization decisions. The theory on the framework’s
constituents and structure got educed in four consecutive
exploration steps within the industry. The framework then got
evaluated within the industry. Altogether, seventeen companies
have been involved in the framework’s exploration and five
companies have been involved in the framework’s evaluation.
The evaluation results show that the framework is highly
relevant and useful to the organizations studied.

Keywords-Software project; development; prioritization
method; decision making; customer benefit; corporate value.

I. INTRODUCTION

Projects have limited resources in terms of staff, time,
and budget. Hence, it is not always possible to implement
all the requirements in the current release or in the next
coming releases [1]. Priorities must be made both by the
stakeholders stating the requirements and the stakeholders
attending to the requirements. Unfortunately, today,
requirements are not always prioritized in an effective
manner or they are not prioritized at all [2].

There are many reasons for the ineffectiveness of the
requirements prioritizations. Stakeholders that state
requirements believe that all their requirements are equally
important. Hence, they are not always willing to prioritize
them [3]. Stakeholders who attend to the requirements, on
the other hand, do not always have adequate support for
making priorities. Many try their best by using whatever
tools they have. Many, however, still conduct prioritization
in an ad hoc manner, often based on the will of some
strongly opinionated individuals [4]. Or, as Stephen Covey
claims, many companies prioritize what is on their schedule,
and they do not schedule their priorities [5].

Lack of prioritization support may lead to many
problems, such as (1) disagreements with respect to
assigning priority [6][7], (2) too strong a subjectivity when

prioritizing [8][9], (3) decisions conducted in uncertain
conditions [10][12], (4) difficulty to reprioritize due to
newly reported acute projects [6], (5) compliance among the
prioritized requirements [7][9], (6) difficulties to implement
all the requirements in the backlog, and many other
problems. At its worst, the resources available will get
quickly consumed on implementing less urgent
requirements thus leaving scarce resources to the
implementation of more urgent, business value adding
requirements.

Priorities are very powerful. Even if companies have
good resources, they may quickly jeopardize their
productivity, if they spend them on requirements that have
little bearing on the financial business health or other form
of revenue or benefit of the software company and/or its
customers. Despite this, requirements prioritization has
been, and still is, one of the most difficult tasks in today’s
strongly chaotic and unpredictable development
environments. Prioritization is also one of the most
neglected research topics. To the knowledge of the authors
of this paper, there is scarce literature about requirements
prioritization [13][15].

This paper suggests a framework for prioritizing system
requirements. The framework is called System Requirements
Prioritization Framework and is referred to as SRPF. It
consists of eight components, each representing a specific
angle of the prioritization process. These components are (1)
Input, (2) Stakeholders, (3) Prioritization Criteria, (4)
Prioritization Methods, (5) Environment, (6) Resources, (7)
Priority Scales, and (8) Urgency Levels. Our goal is to
create an effective support aiding companies in making
structured and objective prioritization decisions.

SRPF is a framework composed of a basic structure of
the constituents required for making requirements priorities.
As a framework, it is open for various kinds of adaptations
and additions to the companies’ own development milieus.
Its mission is to support companies in their objective
prioritization work within system development.

Altogether, seventeen companies were involved in this
study. For confidentiality reasons, we do not disclose their
names. Instead, we use fictitious names, whenever
necessary.

The remainder of this paper is as follows. Section II
describes the research method taken in this study. Section
III presents the results of the exploration phase. Section IV
describes the framework whereas Section V reports on the
results of the framework evaluation. Finally, Section VI
makes final remarks and suggestions for future research.

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 8 / 36

II. RESEARCH METHOD

Our research method was a typical qualitative and
inductive study. It was carried out in four phases. These are
(1) Exploration phase, (2) Design phase, (3) Evaluation
phase, and (4) Fine-Tuning phase.

Since limited research has been done within the area, we
educed as much knowledge as possible about the current
prioritization practice within the literature and industry. This
phase was quite long and extensive. The results of the
Exploration phase gave us enough feedback for designing
the preliminary version of SRPF in the Design phase. The
preliminary version was then evaluated in the Evaluation
phase within the industry. Here, we used six evaluation
criteria for assessing the relevance and usefulness of the
SRPF. Finally, using the results of the Evaluation phase, we
fine-tuned our framework and created its new improved
version. Below, due to space restrictions, we only describe
the Exploration Phase and the evaluation criteria.

A. Exploration Phase

We started our study with a thorough investigation of
the domain of requirements prioritization. Here, we first
made an extensive literature study using the following
keywords: prioritization, system requirements, decision
making, customer benefit, and corporate value.
Unfortunately, this study resulted in very few sources on
which we could base our research. Therefore, we continued
to educe knowledge about the prioritization domain by
studying the industrial practice. We did our exploration in
four consecutive steps via interviews and surveys using the
exploration questionnaires as presented in Figure 1.

First, we conducted a case study within Company 1
using Questionnaires 1 and 2. Using Questionnaire 1, we
interviewed two system development managers. Here, we
focused on finding out (1) what the company’s prioritization
model looked like, (2) what criteria were considered in the
prioritization work and how they were weighed, (3) whether
the company used any predefined priority scales [16][17],
(4) what the communication process looked like, and
finally, (5) how they defined corporate value.

Using Questionnaire 2, we interviewed three business
area managers, one technical manager, and the CEO. Here,
we inquired about (1) what information was used when
communicating on project prioritizations, (2) whether the
business and system managers used any predefined priority
scales, (3) whether any supporting tools were used, (4) what
criteria were considered when prioritizing, (5) whether and
how the company paid heed to the strategic goals, and
finally, (6) how the company defined the expected value or
benefit of attending to the prioritized system requirements.

To further broaden our insights into the prioritization
work, we interviewed another company, Company 2 using
Questionnaire 3. By studying the questions, our reader may
see that in addition to some questions that had already been
asked in Questionnaires 1 and 2, we inquired about the
project prioritization models and processes, their designs
and uses, and the contexts of prioritization. Finally, we

asked our interviewees to point out which of the criteria
were the most important ones when doing prioritizations.

To assure that we have understood the requirements
prioritization domain, we conducted a survey on the web
using Questionnaire 4. Fifteen respondents were involved in
this survey. Here, we first found out whether our
respondents had the right competence for answering our
questions. We also investigated what their companies and
development departments looked like. Regarding
prioritization work, we focused on finding out (1) what the
respondents’ work model looked like, (2) how they made
priorities, (3) whether they used any criteria and methods
for determining priorities, (4) whether any business strategic
priorities were followed, and finally, (5) we inquired about
the roles and responsibilities.

B. Evaluation Criteria

When evaluating SRPF, we used six evaluation criteria.
These were:

1. Appropriateness of the interviewees: Using
Questions 14 in the Evaluation Questionnaire in Figure 1,
we inquired whether our interviewees were suitable for
evaluating our framework.

2. Roles: With Questions 13, we tried to find out
what roles were involved in the prioritization work. We also
asked our interviewees to express their opinions on the
relevancy of the roles as suggested in our framework.

3. Project: One of the terms used in our framework is
“project”. To avoid misunderstanding with respect to its
meaning, we inquired how the interviewees defined
prioritization projects and whether our definition agreed
with theirs. Here, we used Questions 14.

4. Context: Using Questions 14, we inquired
whether the framework’s context was (1) relevant, (2)
whether anything was missing, (3) whether there were any
resources or restrictions one should consider when
prioritizing, and finally, (4) whether our framework could
be adjusted to other contexts.

5. Prioritization Criteria: Using Questions 13, we
wished to find out whether the framework’s criteria were
relevant or redundant, and whether any other criteria were
missing.

6. Prioritization Methods: With Questions 14, we
inquired whether the framework’s prioritization methods
were relevant, appropriate and useful for the interviewees’
respective organizations. We also wished to hear their
opinions about the number of grading levels to be used.

Other questions: Using Questions 111, we wished to
hear the opinions of the interviewees about SRPF, how
much it differed from their prioritization methods, and
whether our framework missed any important components.

III. EXPLORATION RESULTS

In this section, we describe the results of the four
Exploration phases. Due to space restrictions, we only
provide additional feedback that got elicited during each
consecutive phase.

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 9 / 36

Figure 1 Questionnaires used in our study

A. Results of Exploration Step 1

Exploration Step 1 in Company 1 revealed that none of
the two interviewees used any predefined prioritization
model. They neither used any predefined criteria nor any
priority scales. All project prioritization was conducted in a
merely ad hoc manner and varied among the two individuals
being interviewed. Despite this, we received some insight
into the company’s prioritization work.

Typical evidence for lack of common prioritization
method is their individual understanding of corporate value.
Interviewee 1 defines it as profit, satisfied employees and

satisfied customers whereas Interviewee 2 excludes
customer satisfaction. This already automatically provides a
basis for non-uniformity of their prioritization efforts.

Prioritization in Company 1 is conducted on three levels:
(1) system level implying development of a new system, (2)
functionality level implying major change, and (3) minor
change level. The predefined budget always constrains all
prioritizations.

There is a very poor communication on setting priorities
between business and system development managers.
Business managers always set priorities first. System
development managers then either accept or change them.

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 10 / 36

Very seldom do they provide feedback on the changes to the
business managers.

The fact that Company 1 does not have any predefined
prioritization criteria implies that Interviewee 2 follows his
own subjective prioritization and project effort estimations.
It happens that his prioritization choices are not always well
motivated. Interviewee 1, on the other hand, uses the
Information Technology Infrastructure Library´s four
priority levels [18] subdivided into 99 sublevels.

B. Exploration Step 2

Just because Exploration 1 did not provide us with much
feedback, we once again interviewed individuals in
Company 1, this time however, using Questionnaire 2. We
interviewed five people and one of them (Interviewee 1 in
Exploration 1) was interviewed anew for confirming that we
had understood him right.

The results of Exploration 2 confirmed the results of
Exploration 1. In addition, we found out that Company 1
was strongly controlled by customers, not always in an
orderly manner. The customers “shouting the loudest get
their wills easily satisfied”. This puts system development
management in a very difficult position when trying to
balance customer satisfaction and company’s strategic
goals. In some cases, the prioritization requests escalate to
high-level management.

Regarding communication on the already prioritized
projects, prioritizations and re-prioritizations of their
individual requirements are being made on almost a daily
basis. Here, project teams know the best how to prioritize
them in the most effective manner.

None of the five interviewees uses any prioritization
tools. Only two out of five interviewees use one common
criterion when prioritizing, which is company strategy. This
criterion is only used if conflicts arise. Finally, only one
interviewee was able to state the expected value/benefit of
attending to the prioritized system requirements. The value
concerned savings in time and money.

C. Exploration Step 3

The results of Exploration Step 3 reveal that even
Company 2 does not follow any predefined prioritization
models. Our interviewees use their own individual models
instead. The models are simple. They imply either regular
meetings with follow ups or budget-controlled models. In
any of the cases, the models include a strong interplay
among many roles.

Irrespective of the models, all development in Company
2 follows the Phase-Gate process model [19], which is the
context of all its prioritization efforts. Just as in Company 1,
big focus is being put on more important customers. In
addition, the company has defined severity levels for each
project to be prioritized. The priority is then defined based
on severity value and the revenue to be gained. In cases,
however, when several projects compete, the criterion that
wins is the “customer bigness”. When short of resources, the
projects that hurt the least get the lowest priority.

When making priority decisions, Company 2 regards
areas such as (1) corporate value, (2) increased profit, and

(3) customer use. Especially important is the customer use
of the product. Big effort is being made to understand how
the product is being used for the purpose of understanding
the needs of the customers and the value of customer
demands, and for making correct prioritizations.

D. Exploration Step 4

Altogether, fifteen people were involved in the survey in
Exploration Step 4. They had the following roles: (1) six
system developers, (2) three project leaders, (3) two
managers, (4) two product owners, (5) one Unix
administrator, and (6) one undefined. Three respondents
came from very large companies with more than 500
employees, another three from large companies with more
than 100 employees, and the remaining ones came from
companies having more or less ten employees. The
industries involved were banking and insurance, e-
commerce, public services and various branches, such as
general tech, gaming, farming, and amusement parks.

All except for one respondent could identify their work
models as agile and lean related. In their respective
companies, product prioritization is conducted by product
owners (8 responses), project leaders (5 responses), and
project teams (1 response).

Only two respondents could claim that they had a
prioritization method. The prioritization criteria, as
mentioned by the respondents, concerned ROI, customer
impact, technical debt, emergency status, and the cost.

Regarding the roles responsible for prioritization, the
following was provided: (1) business manager (2 responses)
and product/system owners (10 responses) could influence
the prioritization process, and finally, product/system
owners (7 responses) and CTO or CEO (2 responses) had
the uttermost responsibility for the prioritization.

E. Exploration Phase in Summary

The exploration phase taught us that prioritization was
very complex and included several aspects. These are
method, roles, context, prioritization criteria and resources.

Although many companies and roles are involved in
prioritization, there are still companies who do not have a
proper prioritization method. Lack of the method and lack
of mutual criteria steering the prioritization effort imply
great risk for subjective prioritization that may not always
be aligned with the strategic goals.

IV. SRPF FRAMEWORK

In this section, we describe SRPF. We first provide an
overall description of all its components. We then describe
in detail the SRPF prioritization methods.

A. Components in SRPF

The preliminary SPRF consists of eight parts. As
illustrated in Figure 2, these are (1) Input, (2) Stakeholders,
(3) Prioritization Criteria, (4) Prioritization Methods, (5)
Environment, (6) Resources, (7) Priority Scales, and (8)
Urgency Levels. Below, we briefly describe the parts.

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 11 / 36

The SRPF Input stands for projects to be prioritized.
Here, we include all projects that have not been prioritized
and projects that need to be reprioritized for various reasons.

Figure 2. Outline of SRPF. Dots imply that the SRPF users are free to

extend the framework parts with their own suggestions

The SRPF definition of a project is a set of requirements
to be attended to. A set may consist of at least one
requirement. Regarding the term requirement, SRPF defines
it as a description of a need to get attended to. This need
may either concern an implementation of a new
functionality, minor improvement, a corrective or
preventive change, and the like.

The SRPF Stakeholders correspond to a role or a group
of roles that has interest or concern in a prioritization
process. Stakeholders can affect or be affected by the
prioritization process. Some examples are system managers,
product owners, project managers, acquirers, business area
managers, users, customers, and the like.

An important component in SRPF are Prioritization
Criteria. To ensure achievement of strategic goals, the
organizations must define criteria that help them identify the
most urgent projects at a given point in time. SRPF leaves it
open to its users to define their own criteria which they feel
are the most suitable ones for their business operation and
prioritization contexts. It, however, lists three criteria that
are common to most of the organizations. These are (1)
corporate value, (2) increased profit, and (3) customer
satisfaction. To assure full commitment, the criteria should
be well motivated and communicated to all the parties
involved. It is only in this way, companies may assure the
effectiveness of their prioritization efforts.

Prioritization Methods are the core of our framework.
SRPF suggests two methods. These are (1) pair-wise and (2)
reference methods. The pair-wise method compares projects
pair-wise with all other projects meanwhile the reference
method, which is a simplified version of the pair-wise
method, compares all projects with one neutrally chosen
reference project. The two methods are described in Section
IV.A. As marked with dots in Figure 2, the SRPF users are
free to extend the framework with their own methods.

A very important SRPF part is Context. It shapes the
overall prioritization process. Context is very often
neglected in many prioritization efforts or, for some reason,
the stakeholders involved do not always attempt to
explicitly communicate it.

Lack of a common understanding of a context may lead
to many problems. For instance, information communicated
by one stakeholder having his/her subjective understanding
of a context may be easily misunderstood by some other
stakeholder having his/her own subjective understanding.
Hence, context must be explicitly identified by the
company. Context describes what the organization looks
like; where in the organization are decisions made, who has
the authority to do prioritizations, whether there is a steering
model, corporate values, backlog, and other important issues
that are relevant for a specific organization. SRPF suggests
the following contextual constituents:

 Control model describing the decision making
authorities and points in time when decisions are to be
made.

 Management by Objectives aiming at decision making
directed towards specific goals.

 Backlog listing all pending projects.

 Values referring to the organizational values to be
considered in prioritization.

Finally, the SRPF Resources are sources of supply and
support that are needed for conducting prioritization. Here,
we include the following:

 Tools assisting the prioritization efforts, such as
software, hardware and the like.

 Personnel referring to the individuals performing both
development and prioritization.

 Time assigned to both prioritization and
implementation of the pending projects.

 Competence standing for the collected organizational
capability of attending to the prioritized projects.

 Budget referring to the amount of financial resources
available for attending to the prioritization.

The SRPF Priority defines the urgency level for
corrective action. It should be stated both by the customer
and developer. The priority value as stated by the customers
indicates how important it is for the customers to get the
requirements attended to. Different customers, however,
have different needs, different environments, and different
safety and security requirements. The development
organization cannot consider them all. They must define
their own priority values that provide a basis for making
their own priorities among the pending projects.

The SRPF Severity measures the effect of the disruption
caused by a problem. Severity influences priority. For
instance, a problem that could represent danger to human
life or could cause failure of a company is most severe, and
hence, its resolution should have the highest urgency. The
value of priority, however, does not always influence the
value of severity. High priority can be assigned even to less
severe problems. Less severe yet frequent problems can be
very costly and may lead to lowered credibility of the
software organization [20][21]. Hence, they should be
prioritized.

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 12 / 36

Figure 3. Illustrating pairwise method

B. Prioritization Methods

The pair-wise and reference methods are almost similar
in their designs. In this section, we first describe the pair-
wise method. We then describe the reference method.
Finally, we discuss their similarities and differences.

Pair-wise method is a well-known process of comparing
various entities in pairs with the purpose of deciding which
of them is better. It has been used in various domains such
as education, engineering, energy and water resources,
management, and environmental applications [22][24]. It
has also been used within requirements engineering,
however, mainly from the cost perspective. In contrast, the
SRPF pair-wise method considers all kinds of criteria to be
used in comparison, not only the cost.

The choice of the comparison criteria is to be decided by
the company using SRPF. Below, we provide an example
based on three values: (1) corporate value, (2) profit, and
(3) customer satisfaction. Projects get assessed pairwise
using only three numerical values. These are (1) zero
standing for “has lower value”, (2) five standing for “no
difference” and (3) ten standing for “has higher value”.

Subfigures A-C of Figure 3 show pair-wise evaluation of
the projects with respect to corporate value, profit and
customer satisfaction respectively using the values specified
in Subfigure D of Figure 3. These values are then summed
up for all the comparison criteria. As shown in Subfigure E
of Figure 3, the project called Gemini gained the highest
score which is 120 points. This project should get the
highest priority. If the criteria have different mutually
important weights, typically 1 to 3, then each score can be
multiplied with the weight before summarization. Then the
criterion with the highest weight will be more important in
the final sum.

Reference method is also a comparison method. To the
knowledge of the authors of this paper, no one has used it in
within requirements engineering. SRPF suggests that all
competing projects are compared to only one neutral
project. As illustrated in the third column in Subfigure A of
Figure 4, this neutral project is called reference project. All
other projects that are to be compared are given a value
depending on how similar or different they are to/from the
reference project.

Five values are assigned to the competing projects.
These are (1) ‘+’ better, (2) ‘++’ much better, (3) ‘S’
similar, (4) ‘-‘ lower, (5) ‘- -‘ much lower. When a project is
better than the reference project, a plus (+) is assigned to the
project. If the difference is judged enormously bigger, then
two plusses (++) are assigned. If the project is equal, then an
‘S’ is given standing for the same value. If the project is
worse or much worse, then a minus (-) or two minuses (- -)
are assigned.

Just as in the pair-wise method, the reference method
may use different criteria. Their score may then be summed
giving total scores of the projects. An example comparison
is illustrated in Subfigure B of Figure 4.

Adding a weight to each criterion is possible. When all
projects are compared, a summarization of the respective
grading values are made adding the weight and then a total
sorting of the points gives the priority value.

C. Comparing the two methods

When comparing the methods, reference method is like
the pair-wise method. There are however some differences.
These are:
 Pair-wise method uses several matrices whereas

reference method only uses one for comparison
regardless of how many criteria are being compared.

 Pair-wise method does not use any reference project. If
the reference project is not a good choice, then the
whole prioritization effort is at risk.

 Pair-wise method compares all projects with one
another whereas reference method compares all other

Figure 4. Illustrating reference method ((1) ‘+’ better, (2) ‘++’ much
better, (3) ‘S’ similar, (4) ‘-‘ lower, (5) ‘- -‘ much lower)

projects to the reference project. This implies that in the
reference method, the number of comparisons is linear to

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 13 / 36

the number of projects, while it is quadratic in the pair-wise
method.

When using SRPF, companies are free to choose any of
the two methods, or use the two methods, or add their own
methods. SRPF suggests that reference method be used first
for quick filtering of less important projects and then pair-
wise method be used for more meticulous comparisons.

V. RESULTS OF THE EVALUATION INTERVIEW

In this section, we report on the results of the evaluation
phase following the evaluation criteria as defined in Section
II and the evaluation questionnaire.

All our seven interviewees were suitable for evaluating
SRPF. Five of them have more than ten years and two of
them have more than five years of experience of prioritizing
within system development. All seven are managers
involved in system development.

The roles that have been mentioned as active within
prioritization were project leaders, system architects,
product managers, product/system owners, line managers,
technology managers, functional managers, quality
managers, system development managers, business area
managers, users, boards of directors, CEOs, and developers.

All the interviewees agreed with the SRPF project
definition. However, they all had their own variants.
Important is to say that they pointed out that the SRPF
definition missed the concept of goal, scope, time and
resource constraints and quality requirements. Also, there
have been suggestions for differentiating between projects
as temporary created for fulfilling some specific goal and
permanent dealing with continuous improvements and
defect corrections.

All seven interviewees agree that SRPF’s context is
relevant. Five interviewees find the context very general and
all seven interviewees agree that SRPF is useful in almost
any prioritization effort. Three interviewees came with
highly valuable suggestions. One of them claimed that the
technological context was missing and another one
suggested that the methodological context should include
the identification of the development method used and the
placement of projects within its phases. Certain projects
could only be placed at the beginning of a development
method whereas others could be placed anywhere within the
lifecycle. Finally, the third interviewee mentioned the
business context for considering business strategic goals.

All the interviewees agreed that the prioritization criteria
in SRPF were relevant and that no criteria were redundant.
They however pointed out new criteria that were highly
relevant. These are cultural value, politics, customer,
business value, customer value, focus on new markets, risks,
time, and competence.

All the interviewees agreed that the SRPF prioritization
methods (pair-wise and reference) were relevant,
appropriate and useful and that they contributed to the
objective prioritization. Neither of the interviewees found
the methods to be redundant. Some comments were made
regarding the reference method. Two interviewees were of
the opinion that the method was difficult. The difficulty lied
in the choice of a reference project. Regarding the used

scale in the method, five interviewees would choose the
five-grade scale as suggested by SRPF, one interviewee
would rather use a four-grade scale whereas one interviewee
claimed that six grades would be the best.

Regarding the answers to the batch of the remaining
questions, the results are as follows. All seven interviewees
do filter some projects before prioritization. One
interviewee knows about a framework similar to SRPF as
conducted within the industry.

When prioritizing, the interviewees encounter many
problems. In addition to the problems as listed in Section I,
the problems that have been mentioned are (1) difficulties in
down-prioritizing projects, (2) agreeing on common criteria
to base prioritizations on, (3) inability to prioritize all
projects in the backlog, and finally, (4) lack of time for
making prioritizations.

When being asked about the overall impression of
SRPF, all seven interviewees found it interesting and good.
Five of them claimed that they did work in a similar way as
suggested in the framework. None of the interviewees found
anything redundant in SRPF.

VI. FINAL REMARKS

This paper suggests System Requirements Prioritization
Framework. Our goal was to create an effective support
aiding companies in making structured and objective
decisions when prioritizing requirements.

As a framework, SRPF is open for various kinds of
adaptations and additions to the companies’ own
development milieus. Its mission is to support companies in
their objective prioritization work within system
development. Right now, it only outlines the most important
prioritization components. Hence, we suggest it be an initial
version for both the industry and the academia. We also
propose to further evolve it.

Even if SRPF is in its initial phase, it is already more
advanced than the existing prioritization methods [8][25].
These methods are very simple in their designs. They
mainly state that requirements should be prioritized and, at
its most, suggest priority grades. Hence, they are
incomparable to SRPF

During the evaluation phase, we discovered that our
definition of a project was too broad. For this reason, we
broaden it with project goal, scope, and constraints. The
new definition of a project is a set of requirements to be
attended to that has a clearly specified goal and scope, and
that is bounded by a set of clearly specified constraints. A
set consists of at least one requirement.

When evolving the framework, we suggest the following
issues to be further researched on. Priorities and urgencies
are complex issues, and little has been done to identify
scales and/or variances of scales to reflect their levels and
relationships. We suggest that more effort be put into ways
of defining priorities and urgencies.

Regarding the context, we must admit that we have
forgotten one very important criterion concerning the ethics.
Ethics has not been explicitly mentioned during the
evaluation interviews. However, by studying the interview
results, we understood that it was implicitly hidden behind

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 14 / 36

many answers. We suggest that this criterion be considered
and researched on in the context of prioritization. Also,
methodological and technological contexts should be
considered in the framework.

Considering the roles, we have noticed that prioritization
involved a multitude of roles. SRPF has only identified a
subset of them. We believe that more research should be
conducted on identifying the roles involved and their
responsibility portfolios so that each role may contribute to
the prioritization efforts in its best possible way.

So far, SRPF has been explored and evaluated via
interviews and surveys. Even if industrial professionals
accepted the framework, it would be good if the framework
were used in an industrial context. Therefore, we warmly
welcome anybody to use SRPF and provide feedback from
its real-life usage.

REFERENCES

[1] A. Purnus and C.-N. Bodea, ”Project Prioritization and
Portfolio Performance Measurement in Project Oriented
Organizations,” Procedia - Social and Behavioral Sciences,
vol. 119, pp. 339-348, 2014.

[2] M. Alexander, ”CIO from IDG,” IDG Communications, Inc.,
23 11 2015. [Online]. Available from:
https://www.cio.com/article/3007575/project-management/6-
proven-strategies-for-evaluating-and-prioritizing-it-
projects.html 2018.3.16

[3] M. Schedlbauer, ”Corporate Education Group,” 2017.
[Online]. Available from:
http://www.corpedgroup.com/resources/ba/ReqsPrioritization
.asp 2018.3.16

[4] Sweden, ” World-class foreign affairs: final report”, The
governments official investigations, ”Utrikesförvaltning i
världsklass : slutbetänkande,” Statens offentliga utredningar
SOU 2011:21, Stockholm, Offentliga Förlaget : Publit, 2011,
pp. 457-459.

[5] S. R. Covey, ”Goodreads,” Goodreads Inc, 2017. [Online].
Available from: https://www.goodreads.com/quotes/706652-
the-key-is-not-to-prioritize-what-s-on-your-schedule
2018.3.16

[6] O. Maassen and J. Sonnevelt, "Kanban at an Insurance
Company (Are You Sure?)," in Agile Processes, Trondheim,
Norway, 2010.

[7] B. Nuseibeh and S. Easterbrook, "Requirements engineering:
a roadmap," in Proceedings of the Conference on The Future
of Software Engineering, Limerick, Ireland, 2000.

[8] E. T. Game, P. Kareiva, and H. P. Possingham, ”Six
Common Mistakes in Conservation Priority Setting,”
Conservation Biology, vol. 27, nr 3, p. 480–485, 2013.

[9] I. Sommerville and P. Sawyer, ”Viewpoints: principles,
problems and a practical approach to requirements
engineering,” Annals of Software Engineering, vol. 3, nr 1,
pp. 101-130, 1997.

[10] C. C. Chou, ”A fuzzy MCDM method for solving marine
transshipment container port selection problems,” Applied
Mathematics and Computation, vol. 186, nr 1, pp. 435-444,
2007.

[11] S. L. Chang, R. C. Wang, and S. Y. Wang, ”Applying fuzzy
linguistic quantifier to select supply chain partners at
different phases of product life cycle,” International Journal
of Production Economics, vol. 100, nr 2, pp. 348-359, 2006.

[12] X. D. Luo, J. H. M. Lee, H. F. Leung, and N. R. Jennings,
”Prioritised fuzzy constraint satisfaction problems: axioms,
instantiation and validation,” Fuzzy Sets and Systems, vol.
136, nr 2, pp. 151-188, 2003.

[13] J. Vähänitty and K. T. Rautiainen, ”Towards a conceptual
framework and tool support for linking long-term product
and business planning with agile software development,”
Association for computing Machinery, pp. 25-28, 2008.

[14] J. Karlsson, C. Wohlin, and B. Regnell, ”An evaluation of
methods for prioritizing software requirements,” Information
and Software Technology, vol. 39, no 14-15, pp. 939-947,
1998.

[15] M. Kajko-Mattsson, ”Corrective maintenance maturity
model : problem management,” Stockholm, 2001.

[16] M. Kajko-Mattsson, "Conceptual model of software
maintenance," Forging New Links, Proceedings of the 1998
International Conference on Software Engineering (ICSE 98)
Apr. 1998, pp. 422-425, ISBN:0-8186-8368-6

[17] M. Kajko-Mattsson, ” Experience Paper: Maintenance at
ABB (I): software problem administration processes,” 1999
International Conference on Software Maintenance (ICSM
1999), Sep. 1999, pp. 167-176, ISSN: 1063-6773, ISBN: 0-
7695-0016-1

[20] B. Beizer, Software System Testing and Quality Assurance,
Van Nostrand Reinhold Company, 1984.

[21] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer
Software, John Wiley & Sons, Inc., 1999.

[22] L. Dias, M. Pirlot, P. Meyer, R. Bisdorff, and V. Mousseau,
International handbooks on information systems. Evaluation
and decision models with multiple criteria, Berlin: Springer,
2015.

[23] J. Wallenius, J. Dyer, P. Fishburn, R. Steuer, S. Zionts, and
K. Deb, ”Multiple criteria decision making, multiattribute
utility theory: recent accomplishments and what lies ahead,”
Management Science, vol. 54, nr 7, pp. 1336-1349, 2008.

[24] C. Zopounidis and P. Pardalos, Handbook of multicriteria
analysis, Berlin: Springer, 2010.

[25] V. Ahl, ”An Experimental Comparison of Five Prioritization
Methods,” Blekinge Sweden, 2005.

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 15 / 36

Data-Driven Testing using TTCN-3

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: {bstepien | lpeyton}@uottawa.ca

Mohamed Alhaj
Computer Engineering Department

Al-Ahliyya Amman University
Amman, Jordan

Email: m.alhaj@ammanu.edu.jo

Abstract—Complex software systems orchestrate interactions
between components of the system. Integration testing of such
systems involves making individual unit tests for individual
components that work together to test the interactions between
components. Unit tests for different components often consist
of heterogeneous representations of test data and test behavior
written in various implementation languages. As a result, in
integration testing it is an advantage to use a single formal
testing language like TTCN-3 (Testing and Test Control
Notation Version 3). We propose a transformation tool for
Data-Driven Testing to generate TTCN-3 test suites that
include data types, templates and test behavior from tables.
This process is relatively straightforward for relational data
bases and XML (eXtensible Markup Language) because they
are based on well-defined data models. Excel is more complex
because it has no such data models. We have developed a tool
that assists the tester in extracting TTCN-3 typing information
from Excel tables to produce TTCN-3 templates and test
behaviors and optimize their re-usability.

Keywords: Data-driven Testing; Testing; TTCN-3; re-
usability.

I. INTRODUCTION
Complex software systems orchestrate interactions

between components of the system. Integration testing
involves making individual unit tests for individual
components that work together to test the interactions
between components. Unit testing alone does not guarantee
that components interact correctly. Unit tests for different
components often consist of heterogeneous representations
of test data and test behavior written in various
implementation languages. Ideally, integration testing would
use a single formal testing language like TTCN-3 (Testing
and Test Control Notation Version 3).

Data-Driven Testing (DDT) is well known in industry.
There are a variety of industry-oriented definitions online
and the concept is discussed and explained in detail in Web
sites [4][6], user forums [5][11], frameworks [9][12],
patents [13][14], application domains [10] and linked with
other testing models [3][15]. The basic principle consists of
separating test data (inputs and expected outputs) from test
scripts (test behavior) as shown in Figure 1. The test data is
stored as tables in relational databases, XML (eXtensible
Markup Language) documents or Excel spreadsheets. More
advanced test technologies such as TTCN-3 [3] allow a
flexible separation of concerns between an abstract layer

that consists of test data and test logic and a concrete layer
that consists of codecs to encode and decode data into the
specific format and protocol needed to test a component. In
particular, the TTCN-3 concept of template to represent test
data and expected responses is reusable whereas simple
DDT is not, and TTCN-3 strong typing enables early
detection of errors in test data.

Figure 1. DDT separation model

Thus, we propose a transformation tool to generate

TTCN-3 test suites that include data types, templates and
test behavior, from DDT tables. This process is relatively
straightforward for relational data bases and XML because
they are based on well-defined data models. However, the
case of Excel [1] is more complex because such data models
do not exist. We have developed a tool that assists the tester
in extracting TTCN-3 typing information from Excel tables
to produce TTCN-3 templates and test behavior and
optimize their re-usability.

The rest of the paper is structured as follows. In section
II we present an overview of data-driven testing and TTCN-
3. In section III, we present our approach for transforming
data-driven test tables into TTCN-3 test suites. In section
IV, we present our tool implementation and evaluation. And
finally, in section V, we present the conclusion.

II. DATA-DRIVEN TESTING AND TTCN-3
The main goal of DDT is to allow application domain

experts without programming skills to prepare test data and
to reduce maintenance costs. Test data is commonly stored
in tables using one of the following three mechanisms:

 Relational databases
 XML documents
 Excel tables

While the two first approaches provide data models
(table column descriptions for relational databases and XML
schema for XML documents) and are thus unambiguous,
Excel spreadsheets do not. The data models are absent

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 16 / 36

because tables contain only data with column headings.
Although one can set data types for the cells of a column
mostly to specify the display format for numeric types
(number of decimal digits for numbers), the default data
type is the general data type. Also, there is no explicit
definition of field names. Only column headings hint at
what the fields in a structured data type could be.

Another challenge in DDT is that tests are strictly
sequential as it is impossible to describe alternatives easily
with tables only. Thus, a test step consists of reading a row
of data, performing the test by either sending a message to
the system under test (SUT) or invoking a function with
parameters and checking the response message of the SUT
or the return value of the function against a test oracle
(expected response). It is the responsibility of the
programmer of the test script to determine the exact location
of the various pieces of data in the table to transfer them to
the fields of some structured type variable and distinguish
what is test data from what is a test oracle.

The test scripting language TTCN-3 has been used for
model-driven testing in general, and has many features that
make it an effective tool for DDT. TTCN-3 is based on a
separation of concerns between an abstract layer and a
concrete layer. The basic elements of an abstract layer
consist mainly in the following components:

 Data typing definitions
 Templates definitions
 Behavior definitions

As shown in Figure 2, separate template definitions for
Test Data, and separate test behavior definitions for test
scripts means that TTCN-3 has the same separation model
that DDT has (as shown in Figure1).

Figure 2. TTCN-3 separation model

A TTCN-3 template defines test data (stimuli or test

oracle). Each template has a name that can be referred to in
behavior definitions or reused in further template definitions
like a variable. For test oracles, that variable contains
program code used to verify that a response corresponds to
the test oracle. The concrete layer consists of codecs that
translate abstract into concrete data and vice versa and
communicates with the SUT. We present three examples
next.

Data type definition example for a structured type

The main difference with Excel-based DDT is that in
TTCN-3 we define data types as shown in Figure 3 to be
able to define templates. This is because in TTCN-3, the
matching of test oracles is achieved at once for all test data

as opposed to the DDT approach of using an atomic
assertion mechanism for each individual piece of data .
 type record MyCarRequestType {
 integer nbDoors,
 charstring model,
 charstring brand }

type record MyCarResponseType {
 charstring model,
 charstring brand,
 float listPrice }

Figure 3. TTCN-3 Data Typing Example

XML or Database [16] based DDT is handled via a
built-in mechanism of TTCN-3 tools that translates for
example an XML schema directly into TTCN-3 data types.

Template definition example

A TTCN-3 template as show in Figure 4 resembles a
structured type variable assignment but in essence it is very
different from a typical programming language variable.
The values being assigned to the fields of this structured
data type have two different meanings depending of the
direction of a message in the communication system. When
using the template for sending data, they are plain data that
is either encoded to be sent in the case of messages or
values of parameters for a function being invoked. When
using the template as a test oracle, the values mean that the
response message or return value must match the values
given in the template. The matching mechanism itself is a
built-in feature of TTCN-3 execution tools and thus does
not need to be programmed by the users. Thus, a TTCN-3
template is more like an implicit program.
 template MyCarRequestType
 myTiguanRequest := {
 nbDoors := 5,
 model := “Tiguan”,
 brand := “VW”

}

 template MyCarResponseType
 myTiguanResponse := {
 model := “Tiguan”,
 brand := “VW”,
 listPrice := 35000.00

}
Figure 4. TTCN-3 Template Example

Behavior definition example

Behavior definitions as shown on Figure 5 consist in
sending data to the SUT and trying to match a response or
return value to a test oracle. The TTCN-3 send and receive
commands use template names where data or test oracles are
defined. TTCN-3 receive statements are usually contained
in an alt statement (alternative). This is to handle various
potential responses and assign a corresponding verdict (pass
or fail). The generic receive without parameters means

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 17 / 36

receive any value and tester typically assign a fail verdict
with such a construct.
 myPort.send(myTiguanRequest);
 timer myTimer = 5.0;
 alt {
 [] myPort.receive(myTiguanResponse)

{ setverdict (pass)}
[] myPort.receive
 {setverdict(fail)}
[] myTimer.timeout
 {setverdict(inconc)}

 }

Figure 5. TTCN-3 Test Behavior Example

TTCN-3 also has timers that can be set and timeouts are
part of an alternative. If any of the receive statements in the
alternative do not match the response, eventually the timer
will time out and a corresponding verdict can be set. Also,
the receive statement is not fully equivalent to an assertion.
When a receive statement fails, TTCN-3 merely tries the
next alternative. This is similar to a rule based system.

Because a template is like a variable, it is fully re-usable
either in different tests but also in the definition of other
templates where a field is of the data type of the re-usable
template. Another interesting aspect of templates is that
since templates are referenced by name, when performing
tests with the same data, it doesn’t need to be redefined or
read for each test like in DDT. More important is the feature
that allows deriving a template from another existing
template by specifying only the delta, thus avoiding
specifying portions of the same data several times.
 template MyType myGolfRequest
 modifies myTiguanRequest := {

 model:= “Golf” }

Figure 6. TTCN-3 template modification Example

Transforming DDT into TTCN-3 has several benefits.
From a language point of view, TTCN-3 is based on strong
typing. Strong typing allows one to restrict the usage of data
by type. In other constructs, such as templates data, being
sent or received can be set to a precise type. In loose table
formats such as Excel, there is no way to specify such
restrictions which inevitably leads to undetectable errors at
design time. Relational databases or XML documents are
typed but not always strongly. For example in relation
databases there is no way to specify exactly which values
are allowed in a specific data type. In our
MyCarRequestType, we could have further refined this type
definition by restricting the brand field type. Instead of
using the generic charstring type, we could have defined a
brandType as follows:

type charstring brandType
(“VW”, “Mercedes”, “Renault”, “Fiat”,
“Ford”, “Chrysler”);

Figure 7. TTCN-3 type Restriction Example

Then this brandType could have been used in the
MyCarRequestType as follows:

type record MyCarRequestType { integer
nbDoors, charstring model, brandType
brand }

Figure 8. TTCN-3 data sub-typing Example

The use of a brand name, other than the one found in the
list of the data type brandType, would cause a compile
error. In DDT, the same error would be detected only at run
time. The following example would trigger a compile error.
 template MyCarRequestType
 myToyotaRequest := {
 nbDoors := 5,
 model := “Corolla”,
 brand := “Toyota”

}

Figure 9. TTCN-3 template with Restricted sub-type Example

The other benefit of TTCN-3 is in its test results display.
Each test event (send or receive) is displayed and TTCN-3
tools allow for inspection of the results by providing a
comparison between the response data received and the test
oracle as shown in Figure 10 where the expected listPrice of
$35000.00 did not match the response value of $15000.00.

Figure 10. TTCN-3 tools results inspection feature

Transforming relational data bases into TTCN-3 have

already been handled by Stepien et al. [7, 8]. They are also
supported by most TTCN-3 tools. However, until now, the
conversion of Excel tables into TTCN-3 has not been
addressed in TTCN-3 or the academic literature.

III. TRANSFORMING TABLES INTO TTCN-3 TEST SUITES
Transforming Excel tables into TTCN-3 test suites

consists of determining data types which include field
names of the implicit structured type that a table represents
and the type of each such field. Also, we need to distinguish
what is data to be sent from data that represents a test oracle.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 18 / 36

For example, in the Excel table shown in Figure 11, we can
find two sub-tables, one for stimuli test data and one for
response test oracles. The stimuli sub-table is a simple
structured type while the response test oracle table is a
complex structured type where the observations field is
itself a structured type.

Figure 11. Excel table to be converted example

The problem is how to automate the process of

determining the data types and location where to read data
and then transforming them into TTCN-3. While there have
been cases of Excel tables converted to TTCN-3 in some
industrial projects, there are no publications about the
process because typically each Excel spreadsheet was
handled manually on an ad hoc basis to determine data type
and where to read the appropriate data.

We have approached this conversion problem in two
different ways: first we considered a fully automated
conversion using principles of artificial intelligence where
the system would locate the table of data automatically by
for example discovering that a column contains data of the
same data type, then consider the data found in the rows
preceding the data as headings and any other loose and
isolated row as comments. However, one major problem
with this approach is that there is no indication in Excel
tables as to what a stimulus is and what a response is. This
results in inconsistencies. In a second approach we have
used an interactive mock-up of the Excel table for the tester
to delimit the portions of the table that corresponds to either
column heading, stimuli data and response data. This gives
the tester control over the specification of stimuli and
responses.

Such a tool is more efficient than the traditional
approach of hard coding the locations of data in test logic
and creating the data type definitions manually. Also, this
process is of value when considering economies of scale
with large numbers of Excel tables. It large projects with
extensive use of DDT there could be tens of thousands of
such tables.

This is a fundamental choice based on the principle of
strong typing. Effectively, if we would follow the DDT
model of reading data from tables and applying them to the
test script directly, we would detect errors in tables at run

time only. This inevitably increases the testing cycle where
tests have to be run several times and test results analyzed.
By comparison, the TTCN-3 template approach would
detect a number of errors already at compile time when the
converted templates are compiled.

Also, if the process is fully automated, the user, in this
case the application domain expert, not the programmer, can
correct the errors in the Excel table and the TTCN-3 test
suite can be automatically re-generated and thus re-
compiled without any additional efforts from the
programmer. It has to be noted that the original DDT Excel
table approach is not completely eliminated because it is
still a benefit to have a non-programmer domain expert to
code test data. Actually, with this automated Excel table
conversion process, the coding effort of the programmer is
quasi null. The only task for the TTCN-3 programmer is to
direct the application domain expert to the elements in the
Excel table which have errors.

A. Extracting TTCN-3 Typing from Excel Spreadsheets
TTCN-3 typing can be derived from the tables quasi

automatically. The data can be scanned to determine their
type (alphanumeric, numeric or boolean). Also, the field
names of a structured data type can be derived from the
headings of the columns as for example in the range of
row/column B5 to J6 in Figure 11. Complex data types
containing fields that are themselves of a structured sub-
type can be derived using the indication of Excel spans of a
cell, here in cell H5 for the observation field that covers the
range H6 to J6 for the field names of this sub-type. The
generated data types contain comments that indicate their
origin on the table to improve traceability.

type record StimuliType {
 charstring city, // cell C5
 charstring country // cell D5
}

type record ResponseType{
 charstring city, // cell F5
 charstring country, // cell G5
 ObservationType observations

// cell H5
}

type record ObservationType {
 float temperature, // cell H6
 charstring sky, // cell I6
 integer precipitation // cell J6
}

Figure 12. TTCN-3 Generated Datatypes Example

B. Generating TTCN-3 templates
Each piece of data of a table is assigned the value of a

field of a template. Each row of the table generates separate
templates in addition to separate templates for stimuli and
response test oracles as follows:

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 19 / 36

template StimuliType ottawa_test_stimuli
:= {

city := “Ottawa”, // cell C7
 country := “Canada” // cell D7
}

template ResponseType
 ottawa_test_response := {

city := "Ottawa", // cell F7
country := "Canada", // cell G7
observations := {

temperature := -20,// cell H7
sky := "cloudy", // cell I7
precipitation := 0 // cell J7

} }

Figure 13. TTCN-3 Generated Templates Example

C. Generating test behavior
Finally, DDT tables can be interpreted as behavior of the

sequential form unless indicated as shown in Figure 14.

testcase weather_service_test()
runs on MTCType system SystemType {
 timer myTimer :=5.0;
 map(mtc:myPort, system:systemPort)
 // row 7
 myPort.send(ottawa_test_stimuli);
 alt {
 [] myPort.receive
 (ottawa_test_response){
 setverdict (pass) }
 [] myPort.receive
 {setverdict(fail)}
 [] myTimer.timeout
 {setverdict(inconc)}
 }
 // row 8
 myPort.send(paris_test_stimuli);
 alt {
 [] myPort.receive
 (paris_test_response){
 setverdict (pass)}
 [] myPort.receive
 {setverdict(fail)}
 [] myTimer.timeout
 {setverdict(inconc)}
 }
 // row 9
 myPort.send(NYC_test_stimuli);
 alt {
 [] myPort.receive
 (NYC_test_response){
 setverdict (pass) }
 [] myPort.receive
 {setverdict(fail)}
 [] myTimer.timeout
 {setverdict(inconc)}
 }
 unmap(mtc:myPort, system:systemPort);
}

Figure 14. TTCN-3 Generated Test Behavior Example

Thus, each row can produce a stimuli being sent and an
alternative of a response test oracle with both any value and
timeout alternatives. Here again for traceability reasons, we
show the row number in the table that corresponds to the
test step. If we generate templates with names found in the
column with the heading test like ottawa_test, the table
shown in Figure 11 would generate the test behavior shown
in Figure 14. The advantage of a TTCN-3 template
approach for conducting DDT is that everything is clearly
defined and thus is easily traceable at run time without
having to go through trace stacks.

IV. TOOL IMPLEMENTATION AND EVALUATION
We have developed and validated these techniques in the

testing of an avionics software system. In particular, we
implemented a tool to automate the transformation of the
tables into a TTCN-3 test suite. As can be seen in Table [15]
and, the tool provides an interactive marking mechanism.
Each portion of the table can be highlighted and a pull down
menu provides categories to choose from in order to indicate
how to use the selected portion of cells to the tool. There are
three categories of markings required to generate a correct
TTCN-3 test suite:

 Delimiting column headings to be used as field
names for structured data types code generation

 Delimiting the two sub-tables of stimuli and
response test oracles for templates code
generation

 Delimiting the test names column if present to
generate template names.

Our marking tool is a mock-up of the Excel spread-sheet
in that it shows the rows and columns with the content of
the cells as placed in the spread sheet. However, these cells
are used for only one purpose, delimiting each zone
according to their functionality in the TTCN-3 code
generation. No other functionality, like calculations
provided by the Excel sheets, can be performed. Also, the
code generation makes use mostly of combinations of such
markings.

Figure 15. Delimiting column headings

For example, the marking of column headings shown in

Figure 15 is not enough for generating data types because
there are two separate groups of data types to be defined,
one for stimuli and one for response test oracles. Thus, one
must separate the table, shown in Figure 16, and select the
portions of the table that belong to either stimuli or

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 20 / 36

responses. This includes the column headings since both
data types and test data need to be separated into stimuli and
responses.

Figure 16. Delimiting the stimuli sub-table

Manual creation of test scripts in TTCN-3 to execute the

tables before the tool was implemented took on average one
day per test script. With the tool a complete suite of test
scripts was created in one hour. As well, the manual
process was error-prone and inconsistent whereas the
automated scripts were standardized and needed far less
maintenance.

From an implementation point of view, it might have
been ideal to use Excel for the highlighting and subsequent
export to TTCN-3. However, the export would depend on
what commercial tool is available. Thus, we decided on a
model to convert the table into a two dimensional array or
more precisely different parallel arrays, one containing the
data itself and others containing properties such as data
types or formatting instructions such as spans that are
important to detect sub-structured data types.

Finally, our tool produces only the abstract test suite in
TTCN-3. The concrete layer of codecs and communication
software specific to the application domain needs to be in
place. This is built once (based on TTCN-3 abstract data
types) and is reusable by any test suite generated by our
tool. This provides a structured approach with a clean
separation of concerns (abstract tests vs domain-specific
coding/encoding) enabling full re-usability. Traditional
unit-testing, by comparison tends to mix test event checking
with coding/decoding and communication activity in an ad
hoc manner that does not facilitate re-use.

V. CONCLUSION
DDT is an important testing approach for generation and

automation of test campaigns. For such benefits to scale it
is important that such generation and automation be
systematic and strongly-typed. It is also important that the
full complexity of parallel test scripts be supported. TTCN-
3 provides strong features to support such an approach to
TTCN-3 and we have demonstrated how it can be integrated
and applied even when the approach to DDT specifications
is relatively low-tech and ad hoc through the use of Excel
tables. Our approach and tool prototype greatly reduced the
manual effort in generating test campaigns, allowed flexible
support of Excel for non-technical testers while integrating

standardization, strong type and parallel text execution with
TTCN-3.

 ACKNOWLEDGMENT
The authors would like to thank the Spirent company for

providing us the necessary tool TTworkbench to carry out
this research as well as funding from CRIAQ, MITACS and
ISONEO SOLUTIONS for which this research has been
conducted.

REFERENCES
[1] Microsoft Excel, 2018. Accessed March 2018 at

https://support.office.com/en-us/excel
[2] ETSI ES 201 873-1, The Testing and Test Control Notation version 3

Part 1: TTCN-3 Core Language, May 2017. Accessed March 2018 at
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.09.
01_60/es_20187301v040901p.pdf

[3] P. Shinde and A. Sathe, Data-Driven Software Testing for Agile
Development, in PhUSE 2011, Brighton, United Kingdom, June,
2011. Accesed March 2018 at
https://www.lexjansen.com/phuse/2011/ts/TS08.pdf

[4] Microsoft Corporation, How To: Create a Data-Driven Unit Test in
Visual Studio, 2015. Accessed March 2018 at
https://msdn.microsoft.com/en-us/library/ms182527.aspx

[5] StackExchange, What are some good approaches to separating test
data from test scripts, 2013. Accessed March 2018 at
https://sqa.stackexchange.com/questions/6678/what-are-some-good-
approaches-to-separating-test-data-from-test-scripts

[6] Smartbear, Introduction to Data-Driven Testing, 2018. Accessed
March 2018 at https://smartbear.com/learn/automated-
testing/introduction-to-data-driven-testing

[7] I. Schieferdecker and B. Stepien, Automated Testing of XML/SOAP
Based Web Services. In: Irmscher K., Fähnrich KP. (eds)
Kommunikation in Verteilten Systemen (KiVS). Informatik aktuell.
Springer, Berlin, Heidelberg, 2003. https://doi.org/10.1007/978-3-
642-55569-5_4

[8] B. Stepien and L. Peyton, Integration Testing of Web Applications
and Databases Using TTCN-3. In: Babin G., Kropf P., Weiss M. (eds)
E-Technologies: Innovation in an Open World. MCETECH 2009.
Lecture Notes in Business Information Processing, vol 26. Springer,
Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-642-01187-
0_26

[9] Chandrapabha, A. Kumar and S. Saxena, Data Driven Testing
Framework using Selenium WebDriver, in International Journal of
Computer Applications (0975-8887) vol. 118-No. 18, May 2015.
Accessed March 2018 at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.9076&
rep=rep1&type=pdf

[10] E. G. Gomez, M. Casado, M. Stanka and S. Korner, Automated
Regression Testing of Complex Mission Control Applications,
SpaceOps 2010, Huntsville, Alabama, April 2010. Accessed March
2018 at https://arc.aiaa.org/doi/pdf/10.2514/6.2010-2289

[11] D. Cheney, Writing Table Driven Tests in Go, 2013. Accessed
March 2018 at https://dave.cheney.net/2013/06/09/writing-table-
driven-tests-in-go

[12] N. Daley, D. Hoffman and P. Strooper, A framework for table driven
testing of Java classes. Softw: Pract. Exper., 32: 465–493, 2002.
doi:10.1002/spe.452. Accessed March 2018 at
http://onlinelibrary.wiley.com/doi/10.1002/spe.452/full

[13] J. S. Schaefer, Systems and methods for table driven automation
testing of software programs, Capital One Financial Corporation,
2006. U.S. Patent 6,993,748. Accessed March 2018 at
https://patents.google.com/patent/US6993748B2/en

[14] J. J. Haswell, R. J. Young, and K. Schramm, System, method and
article of manufacture for a table-driven automated scripting

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 21 / 36

architecture, Accenture Llp, 2002. U.S. Patent 6,502,102. Accessed
March 2018 at https://patents.google.com/patent/US6502102B1/en

[15] J. Zander, Z. R. Dai, I. Schieferdecker and G. Din, From U2TP
Models to Executable Tests with TTCN-3 - An Approach to Model
Driven Testing -. In: Khendek F., Dssouli R. (eds) Testing of
Communicating Systems. TestCom 2005. Lecture Notes in Computer

Science, vol 3502. Springer, Berlin, Heidelberg, 2005.
https://doi.org/10.1007/11430230_20

[16] G. Adamis, A. Wu-Hen-Chang, G. Németh, L. Eros and G. Kovacs,
Data Flow Testing in TTCN-3 with a relational Database Schema, in
International SDL Forum, SDL 2013: Model-Driven Dependability
Engineering pp 1-18, Springer Verlag

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 22 / 36

The Antecedents and Feedback Loops Contributing to Trust in Agile Scrum Teams

Trish O’Connell

School of Science & Computing

Galway-Mayo Institute of Technology

Galway, Ireland

trish.oconnell@gmit.ie

Owen Molloy

Dept. of Information Technology

National University of Ireland

Galway, Ireland

owen.molloy@nuigalway.ie

Abstract— Scrum has become the dominant Agile way of

developing software products and systems. To ensure the team

achieves the goals of the Sprint, the team needs to collaborate

effectively and share knowledge optimally. To do this,

McHugh, Conboy and Lang, amongst others, have claimed

that trust is “of increased importance” to the Agile Scrum

team. This paper describes the contributions to the academic

discourse on trust and subsequently hypothesizes how these

may apply to the Scrum team. Whilst some of the antecedents

are straightforward contributors to building trust, others may

function as reinforcing feedback loops. A preliminary

conceptual model is presented, and further research is

underway to refine and validate the model.

Keywords-Agile; Scrum; Team; Trust; Collaboration;

Knowledge-sharing.

I. INTRODUCTION

Software development has always been a task-oriented

activity. With the advent of Agile, it has become a task-

oriented, social activity. Moe, Dingsøyr and Dybå state, “the

basic work unit in innovative software organizations is the

team rather than the individual [1].” In Scrum (an Agile

framework for managing the development process often

referred to as a methodology), software development can be

considered as a collective team effort, where teamwork

requires cooperation and therefore, social interaction. A

fundamental characteristic of a good team is that the team

members collaborate well. The co-creators of the Agile

Manifesto [2] referred to the fact that Agile teams are

characterized by “intense collaboration” where collaboration

refers to “actively working together to deliver a work

product or make a decision.” It is through collaboration and

knowledge-sharing that software development tasks may be

accomplished successfully. Nerur concurs, “A cooperative

social process characterized by communication and

collaboration between a community of members who value

and trust each other is critical for the success of agile

methodologies [3].”

Whereas cooperation between team members involves

the “smooth transfer of work in progress, work products,

and information from one member to another [4],”

collaboration, by contrast, “elevates groups beyond

cooperation, adding an essential ingredient for emergent,

innovative, and creative thinking [4].”

A. Collaboration

To increase collaboration and facilitate knowledge

sharing, Agile methods such as Scrum rely heavily on face-

to-face communication and a high degree of interaction

between the team. The Agile Manifesto advocates

“Individuals and interactions over processes and tools [2].”

Highsmith states “Most traditional ‘methodologies’ place 80

percent of their emphasis on processes, activities, tools,

roles, and documents. Agile approaches place 80 percent of

their emphasis on ecosystems—people, personalities,

collaboration, conversations, and relationships [5].”

Whilst the Agile software development framework

referred to as XP promotes developers working together in a

technique known as ‘pair programming’ to achieve this face-

to-face communication, the Scrum approach relies on the

three key practices which McHugh, Conboy and Lang

describe as “sprint/ iteration planning, daily stand-up, and

sprint/iteration retrospective [6].”

The iteration planning session is where the team

collectively plans and agrees on what will be delivered at the

end of the Sprint.

The daily stand-up is a team status meeting where team

members describe progress and obstacles (if any) to meeting

commitments.

The sprint retrospective is effectively a post-partum

review of the sprint that has been completed. It is supposed

to allow the team to collectively review what went well and

what did not, during the sprint. It should serve as the

baseline for improvement. [7]

Ghobadi and Mathiassen posit, “Software development

is a collaborative process where success depends on

effective knowledge sharing [8].”

B. Knowledge sharing

 Liu and Phillips expound that trust and collaboration

are “essential for effective knowledge sharing to occur [9].”

It is essential that the Scrum team shares knowledge during

all phases of the Sprint. Park and Lee postulate, “The time

spent on problem solving can be reduced significantly

because the project participants' benefit from the shared and

accumulated knowledge [10].” The three Agile practices

which are used in Scrum all involve communication and

sharing information, to varying degrees. Following their

research study McHugh, Conboy and Lang conclude “All

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 23 / 36

three practices provide an open forum for sharing

knowledge and obtaining feedback [7].” The purpose of

knowledge sharing in Scrum is that it moves the

development process along. The team members do not need

to pause in their development efforts due to obstacles. As

Park and Lee explain, “more frequent communication

creates opportunities to develop and enhance knowledge

sharing. 10]” This “frequent communication” is the

hallmark of Agile with the Agile Manifesto recommending.

“Individuals and interactions over processes and tools [2].”

For collaboration to be successful a climate of trust

needs to exist in the team Ceschi, Sillitti, Succi, and De

Panfilis, highlight the fact that “Knowledge sharing through

communication requires a high level of mutual trust among

team members and frequent interactions [11].” Indeed, it

may be argued that trust is a vital component, and

“important supporting mechanism of teamwork [12],”

according to Weimar, Nugroho, Visser, Plaat and

Goudbeek.

Many authors have cited trust as being important to

collaboration, with Mishra claiming, “trust has been found

to be a critical factor facilitating collaboration [13].”

 Park and Lee also see trust as imperative for knowledge

transfer and successful team performance asserting, “the

sharing of knowledge in an IS project has become a

requirement for the completion of a successful IS project

[10].”

Whilst much has been written about the importance and

need for trust in Agile teams, e.g. Mayer, Davis and

Schoorman posit, “The emergence of self-directed teams

and a reliance on empowered workers greatly increase the

importance of the concept of trust, as control mechanisms

are reduced or removed, and interaction increases [14],”

there has been little to no direct research into trust in Agile

teams. As, McHugh, Conboy and Lang state, “Agile

methods have been the subject of much research, as has

trust, but the impact of trust on agile teams has not [6].”

This paper attempts to fill this void in the trust construct

as applied to Agile Scrum teams.

The remainder of this paper is organized as follows:

Section II of this paper briefly considers team formation and

the development of interpersonal trust. Section III examines

the notion of trust as presented in the academic discourse.

Section IV addresses the application to the Scrum team and

presents a conceptual model of how trust can be depicted in

a Scrum team setting. Finally, the paper concludes with a

brief discussion and plans for future work.

II. TEAM FORMATION

Depending on the context, there are many

characterizations of trust. In terms of a team, the most crucial

type of trust is likely to be interpersonal which facilitates and

fosters collaboration and knowledge sharing between team

members. Rotter defines interpersonal trust as, “an

expectancy held by an individual or a group that the word,

promise, verbal or written statement of another individual or

group can be relied upon [15].” From a Scrum team

perspective, it is imperative that a team member fulfils his

commitment which is made at the Scrum Daily standup

meeting. Another oft-quoted definition of trust is attributed

to Mishra, “Trust is one party's willingness to be vulnerable

to another party based on the belief that the latter party is 1)

competent, 2) open, 3) concerned, and 4) reliable [13].”

Interpersonal trust does not tend to just ‘happen’ in a

team. The preeminent treatise on team formation was

proposed by Tuckman in 1965. He proposed that teams

progress through four distinct phases: “Forming, Storming,

Norming and Performing [16].”

“Forming” is the phase where team members are first

brought together and whilst they may agree on goals they are

predominantly working as individuals with no sense of the

common purpose. Individuals assess each other’s boundaries

in what Tuckman refers to as “testing”. In addition,

Tuckman expounds, “Coincident with testing in the

interpersonal realm is the establishment of dependency

relationships with leaders, other group members, or

preexisting standards [16].”

The second developmental phase in team development is

termed “Storming” and it is often characterized by “conflict

and polarization around interpersonal issues, with

concomitant emotional responding in the task sphere. These

behaviors serve as resistance to group influence and task

requirements [16].” At this stage, trust is predominantly

invested in the team leader.

On exiting the preceding phase, the team comes to the

realization that they have a common goal. Tuckman

describes how “in-group feeling, and cohesiveness develop,

new standards evolve, and new roles are adopted. In the task

realm, intimate, personal opinions are expressed [16].” At

this stage, referred to as “Norming,” interpersonal trust is

beginning to develop. Once the team norms are understood

the team begins to develop trust in the process.

“Performing” is the final and most crucial stage for the

team. As Tuckman explains, “group energy is channeled into

the task. Structural issues have been resolved, and structure

can now become supportive of task performance [16].” At

this stage, the team members should be sufficiently

comfortable with each other that a degree of interpersonal

trust is established.

In Scrum, teams are often pulled together based on the

projects requirements, the domain expertise needed, the

availability and experience of personnel. Scrum teams will

inevitably progress through the four phases as described

above.

Scrum teams are self-managing. Moe, Dingsøyr and Dybå

describe how “a Scrum team is given significant authority

and responsibility for many aspects of their work, such as

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 24 / 36

planning, scheduling, assigning tasks to members, and

making decisions [1].”

It would not be possible for the team to function

effectively, in pursuance of the above, without trust.

III. TRUST IN THE ACADEMIC DISCOURSE

Whilst many have written about trust it would still

appear to be confusing, predominantly because much of the

research has been context specific, ranging from

sociological (Simmel [17], Luhmann [18], Barber [19],

Lewis and Weigert [20], Mayer et al. [14], Dirks and Ferrin

[21]) to psychological (Rotter [15], Rempel, Holmes and

Zanna [22], McKnight and Chervany [23]). Confusing, also,

because for there to be trust between team members there

must be conditions, which facilitate this trust to grow.

Some authors refer to these as the antecedents of trust

(Costa, [24]), but trust also gives rise to consequences. In

this authors opinion, some of the consequences also function

as reinforcing feedback mechanisms for enhancing trust in a

team.

Whilst Simmel [17] referred to trust as a mysterious

“faith” of man in man. Deutsch [25] equated trust to a

reciprocal, cooperative, relationship between people who

make the decision to trust. By this he means that a person

will meet the expectations of another, and in return, expect

his/her expectations to also be fulfilled. Furthermore,

Deutsch expounds that fulfilling another’s expectations also

involves the notion of competence. There is nothing to be

gained from trusting someone to do something in which

they have no competence to succeed.

Once a degree of mutual trust has been established,

knowledge sharing and collaboration should follow. Zand

concurs that persons who trust one another “will provide

relevant, comprehensive, accurate, and timely information,

and thereby contribute realistic data for problem-solving

efforts [26].”

Granovetter [27] refers to relationships between two

individuals as “dyadic ties” and defines the strength of a tie

as “a (probably linear) combination of the amount of time,

the emotional intensity, the intimacy (mutual confiding),

and the reciprocal services which characterize the tie. Each

of these is somewhat independent of the other, though the

set is obviously highly intracorrelated [27].” Gabarro

highlighted the importance of “openness about task

problems or task related issues [28]” as being highly

influential in the development of trust. Moreover, Gabarro

echoes Deutsch [25] in that he posits “competence,

reliability and openness more than compensated for a lack

of initial liking [28].”

Furthermore, Gabarro listed integrity and judgement as

being equally as important as competence in the perception

one forms of another when considering whether to trust

them [28].

Working from the premise that one trusts people with

whom one is familiar, Luhmann [18] argued that familiarity

serves as the “prerequisite for trust.” Another train of

thought expounded by Luhmann concerns the motivations

of the trustee in the trust situation. It seems to be the first

mention of a rational calculation on which to base trust

since Luhmann refers to “motivational structures” which

can be focused on when we do not “know the future actions

of the other party[18].” He postulates that “on the one hand

he (the trustor) will find it worthwhile to ask himself with

what prospects for gain and loss his partner (the trustee) can

reckon, if he is trusted[18].” This harks back to Deutsch

who referred to “behavior which the individual perceives to

have greater negative motivational consequences if the

expectation is not confirmed than positive motivational

consequences if it is confirmed [25].”

Ultimately, Luhmann acknowledges the situation in

which trust is required and he further expounds on the role

of uncertainty and ambiguity in building trust.

Undoubtedly, this encompasses the realm of software

development.
 “There has to be defined some

situation in which the person

trusting is dependent on his

partner; otherwise the problem

doesn’t arise. His behaviour must

then commit him to the situation and

make him run the risk of his trust

being betrayed. In other words, he

must invest in... a ‘risky

investment’. One fundamental

condition is that it must be

possible for the partner to abuse

the trust; indeed, it must not

merely be possible for him to do so

but he must also have a considerable

interest in doing so. It must not be

that he will toe the line on his own

account – in the light of his

interests. In his subsequent

behaviour the trust put in him must

be honoured and his own interests

put to one side [18].”

From this description, it is evident that trust occurs when

there is an element of uncertainty in the relationship or task.

The trust process as described by Luhmann evidences a two-

way street in terms of firstly the trustor must confer trust

and then the trustee accepts and fulfils the trust proposition.

Luhmann concludes that the process “demands mutual

commitment and can only be put to the test by both sides

becoming involved in it, in a fixed order, first the truster and

then the trustee [18].”

Barber reiterates Deutsch’s [25] position on the need for

competence but goes further by including an expectation

that “partners in interaction will carry out their fiduciary

obligations and responsibilities [19].”

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 25 / 36

In 1991, Butler postulated that trust is “multidimensional

as a construct as well as being activated by a

multidimensional set of conditions [29].” By reviewing the

work of those that had contributed to the academic discourse

on trust, Butler was able to develop and publish his content

theory “consisting of a multidimensional set of conditions

that activate and sustain trust in a specific person [29].” In

1994, Butler and Cantrell ranked the conditions of trust in

the following order of importance: “competence (technical

and interpersonal skills required for one’s job), integrity

(honesty and truthfulness), consistency (reliability,

predictability, and good judgement), loyalty (having motives

for protecting and making the target person look good, and

openness (freely sharing ideas and information) [30].”

Further research led to the identification of ten categories

and from these ten conditions of trust were inferred:

“availability, competence, consistency, discreetness,

fairness, integrity, loyalty, openness, promise fulfilment, and

receptivity.[30]” As Butler commented, “the inferred

conditions were conceptually similar to most of the trust

conditions identified by Jennings (1971) and Gabarro

(1978) [29].” However, it should be noted that whilst

promise fulfilment, fairness and receptivity were not

specifically listed by the authors above they arose from

either inferred/implied comments from respondents or from

direct mention.

Building on the work of Simmel [17], Luhmann [18],

and Barber [19], Lewis and Weigert present trust as “a

property of collective unit, not of isolated individuals [20].”

These authors perceive trust as an attribute which is

“applicable to the relations among people.” In this sense the

academic discourse is moving closer to the social

relationships present in teams.

Similar to Butler [29], Lewis and Weigert acknowledge

the “multifaceted character” of trust. However, they differ

insofar as they describe the facets as “distinct cognitive,

emotional, and behavioural dimensions that are merged into

a unitary social experience [20].” They explain the cognitive

aspect of trust as discriminating “among persons and

institutions that are trustworthy, distrusted, and unknown. In

this sense, we cognitively choose whom we will trust in

which respects and under which circumstances and we base

the choice on what we take to be ‘good reasons’,

constituting evidence of trustworthiness [20].”

Deutsch hypothesizes that an increase in communication

will increase ‘trust’ and also that “we can expect that there

will be some tendency for trustworthiness to increase with

trust [25].”

Gabarro deviates from the academic discourse by

theorizing that trust may be “better understood as a result

rather than a precondition of cooperation [28].” Trust,

according to Gabarro [28] would thus exist in groups simply

because the group is successful and able to cooperate. It

should be noted that Gabarro lays the foundation for much

of the theory of trust that comes next when he states, “There

is a sense in which trust may be a by-product, typically of

familiarity and friendship, both of which imply that those

involved have some knowledge of each other and some

respect for each other’s welfare [28].”

Shapiro, Sheppard and Cheraskin argue that “the

benefits associated with establishing trust in the right

conditions should result in increased quality of output,

greater efficiency of process, more flexibility, and an

enhanced strategic focus [31].” The authors promulgate

three bases of trust as follows: deterrence based trust,

knowledge based trust and identification-based trust. In

situations where monitoring and control are used to ensure

compliance, these form the basis of deterrence based trust.

Knowledge based trust is also based on Deutsch’s [25]

belief that trust is the underpinning or foundation of

cooperative behaviour. Shapiro, Sheppard and Cheraskin

postulate that if we know a person and how they will act or

respond we have an element of predictability upon which

we have a “basis of trust” since as the authors state “At its

core, trust is simply dependability. The benefits of

dependability are reduced uncertainty and less need for

contingent planning [31].” Unsurprisingly, Shapiro et al.

advocate regular communication as a method of achieving

knowledge-based trust.

The third base of trust according to the authors is

identification based trust. This is explained as “the highest

order of trust assumes that one party has fully internalized

the other's preferences [31].” It is often mentioned in the

literature on successful teams that having a shared goal or

vision is crucial to success.

Lewicki and Bunker expand on the theories of Shapiro et

al. [26] by positing that “the three types of trust are probably

linked and sequential [32].” Whereas Shapiro et al. identify

the three types of trust as separate and independent. Lewicki

and Bunker propose that this linkage is sequential and

iterative, “achievement of trust at one level enables the

development of trust at the next level [32].”

Additionally, Lewicki and Bunker describe the process

of trust beginning with calculus based trust. The authors

describe how calculus based trust is arrived at in a stepwise

process with each trusting endeavour being used as the basis

for the next level. In this sense it is described as “tactical

climbing [32].” Once a certain level of understanding has

been achieved, it is possibly for knowledge based trust to

evolve in that, having ‘tested the waters’ so to speak, the

trustor has knowledge of the trustee and can reasonably

predict their behaviour vis à vis a given expectation. Once

this level of trust has been attained, slight breaches of trust

may even be tolerated. Finally, the highest level of trust,

identification based trust, occurs when the parties involved

share the same wants and needs, what Lewicki and Bunker

refer to as a “collective identity develops [32].” At this point

a healthy degree of synergy has developed which facilitates

cooperative and productive teamwork.

The model of organizational trust proposed by Mayer,

Davis and Schoorman in 1995 is one of the most cited

models of trust in the literature. In their research, the authors

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 26 / 36

examined “why a trustor would trust a trustee.” The authors

view trust as “a trait that leads to a generalized expectation

about the trustworthiness of others [14].” Mayer et al. refer

to this trait as “propensity to trust [14].” Continuing in this

vein the authors’ state “People differ in their inherent

propensity to trust. Propensity might be thought of as the

general willingness to trust others. Propensity will influence

how much trust one has for a trustee prior to data on that

particular party being available [14].” Thus, whilst Deutsch

[25], Lewicki and Bunker [32] and Shapiro et al. [31] argue

for the existence of a calculated decision to trust Mayer et

al. [14] introduce the concept of a propensity to trust which

the trustor may or may not have. According to Mayer et al.

[14] the propensity to trust cannot be taken in isolation. As

if describing two sides of the same coin, the authors also

argue for the trustee to possess the characteristic of

trustworthiness. The trustee must show themselves as

meriting or warranting trust being placed in them. Mayer et

al. describe three characteristics of a trustee as: “ability,

benevolence and integrity [14].” Ability has already been

introduced by Deutsch [25] but this time Mayer et al. argue

that an individual may not have competence in all areas but

often a specific area. In addition to this Mayer et al.

introduced the ideas of a “willingness to be vulnerable to the

actions of another [14]” and furthermore a trustee must have

benevolence towards the individual who is trusting. The

Mayer et al. model of trust is one of the first that clearly

discriminates between trust and its antecedents.

However, the authors themselves note that this particular

model is limited to a unidirectional treatment of trust

between a trustor and a trustee. Consequently, there is no

mention of reciprocity in this model as it was not explicitly

designed to examine trust relationships in a team context.

Watson [33] describes McAllister’s work as

“influential.” His work on trust recognises the importance of

“developing and maintaining trust relationships [34].”

Basing his theories on the work of the sociological

researchers on trust (Barber, [19]; Lewis and Weigert, [20];

Luhmann, [18]; Shapiro et al. [31]; Mayer et al. [14];)

McAllister distinguishes two principal forms of

interpersonal trust “cognition-based trust, grounded in

individual beliefs about peer reliability and dependability,

and affect-based trust, grounded in reciprocated

interpersonal care and concern [34].” The introduction of

an affective or emotional component to the trust model

proposed by McAllister was ground-breaking.

Whilst Mayer et al. see trust as unidimensional and

largely cognitive, based in so far as they advocate that one

would judge the ability, benevolence and integrity of the

person upon whom they would confer trust. McAllister, by

contrast, whilst conceding the cognitive aspect and its

antecedents argues also for an affective basis on which to

confer trust stating “emotional ties linking individuals can

provide the basis for trust[34].” This reiterates Lewis and

Weigert in their conclusion that trust is multifaceted with

“distinct cognitive, emotional and behavioural dimensions

that are merged into a unitary social experience [20].”

Similarly, Johnson-George and Swap [35] referred to two

dimensions of trust “Reliableness” and “Emotional Trust.”

From having worked and led teams it is the author’s

opinion that there is merit in all of the antecedents as listed.

The next section reviews these antecedents with specific

focus on Agile Scrum teams. Building on the work of

Gabarro [28] it is hypothesized that the antecedents of trust

effectively form a reinforcing feedback loop.

IV. SCRUM TEAM TRUST

Whilst the antecedents of trust have been described in

Section III, it is somewhat surprising that there is a dearth of

research in the domain of Agile Scrum teams. McHugh et

al. clarify, “While there have been many studies of trust in

software development teams few have examined trust in an

agile context [6].” Although many authors cite trust as

necessary, Moe et al. explain succinctly the rationale for this

“without sufficient trust, team members will expend time

and energy protecting, checking, and inspecting each other

as opposed to collaborating to provide value-added ideas

[1].” What follows attempts to explain how the antecedents

of trust might function in a Scrum team. This is shown in

Figure 1. At this point in the author’s research, Figure 1

represents a first stage conceptual model of trust in the

Scrum team.

A. Perception

In a team setting trust is initially most likely to be based

on perception. How a new team member comports himself

on day one will lead the rest of the team to make a

calculated judgement based largely on observation. What

the new team member says and also how he says it is all

used to form a perception and consequently an initial

judgement of the individual. This initial phase closely

resembles Tuckman’s seminal work on stages of group

development. Tuckman describes how in the ‘Forming’

phase members engage in “ritual sniffing” in order to get to

know a new member and make a preliminary determination

of their credibility [16].

B. Reputation

The new team member’s reputation, if this is known to

the team, will also be brought to bear in forming an opinion

as to whether the individual can be trusted. Stemming from

this a degree of what Lewicki and Bunker [32] refer to as

“calculus based trust” comes into play. This type of trust is

predominantly what Lewicki and Bunker [32] describe as

“deterrence based trust” in which the team member is

effectively being evaluated to ascertain if they will do what

they say they will do. The authors argue that an individual

will comply not only because of the fear of “punishment for

violating the trust” but also due to the “rewards to be

derived from preserving it [32].” Acceptance or rejection by

the Scrum team would be of paramount importance to a new

team member.

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 27 / 36

Figure 1. Conceptual Model of Trust

C. Integrity

As time passes, the team member’s credibility is tested

and retested during Sprints. If the team member keeps his

commitments his integrity is acknowledged by the team. He

becomes predictable insofar as he is known to keep his word

on what he says he can deliver [25].

D. Competence

It should be noted, however that a team member’s

technical competence in their team role is crucial to the

Scrum team’s performance and success [19]. A competent

Scrum team will succeed in delivering the Sprint backlog.

As time passes and the new team member is proving/has

proved himself as being trustworthy it is envisaged that the

first reinforcing feedback loop becomes operational. A

team member who has proven himself to act with

competence and integrity will find that both his reputation

and his team mates’ perception of him and his ability to

deliver is enhanced and they he trusted more than he was

initially.

By the time the team has progressed through Tuckman’s

stage of ‘storming, norming and performing’ the Scrum

team has hopefully learned to work well together.

E. Familiarity

Once team members have developed a good rapport, the

team can move beyond calculus based trust to where they

have developed what might be thought of as an emotional

bond between each other. Santos et al. explain, “Agile

values and principles foster changes in team members’

attitudes and strengthen their relationships. These changes

happen as a result of greater trust and better communication

and transparency in the relationships among team members

[36].” Ideas may be shared without fear of ridicule and the

team should be set for a degree of knowledge sharing and

collaboration.

Moving from working cooperatively to collaboratively is

a key milestone for a Scrum team. Scrum teams work

closely together and are frequently co-located. Given the

emotional intensity involved in keeping commitments,

delivering on time and helping each other to deliver

artefacts from the Product backlog it is unsurprising that

strong dyadic ties begin to develop among the team [27].

Team members become interdependent in order to realize

the goals of the Sprint and rely on each other to a high

degree. The familiarity that results reinforces the trust

within the team.

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 28 / 36

F. Openness

As a consequence of this familiarity, Scrum team

members tend to be open and act with integrity in their

dealings with each other. This level of “trusting behaviour

invites the attributes of trustworthiness [29]” according to

Butler.

Allied to this level of familiarity and openness it is

unsurprising that an affective bond begins to develop

between the Scrum team members. They begin to know

each other, and a degree of predictability ensues. This

“knowledge based trust [32]” is the core of the second

reinforcing feedback loop. As team members come to know

each other better, trust is enhanced.

The benefit of moving into this phase is postulated by

Shapiro and Sheppard as the “primary advantage of

knowing that a partner is reliable, i.e., will keep his/her

word, is that it shifts one’s focus from monitoring to

problem solving [31].”

G. Reciprocity

DeVries, Van Den Hooff and Ridder describe “a cycle of

reciprocity, in which team members are more likely to

exchange (i.e., both donate and collect) knowledge with

each other [37].” As the team bonds become deeper, it

would be expected that a Scrum team member would not

feel exposed in asking for assistance on an aspect of the

development with which difficulty was being experienced.

In similar vein the team member who receives help would

most likely be happy to help the individual who had given

help. As a highly functioning team it is the team goal that is

of paramount importance and the degree of benevolence

(Mayer et al. [14]) that team members feel towards each

other would ensure that help is both given and received in

equal measure as required.

In this stage yet more positive reinforcing feedback

occurs. The team members can set aside the cognitive

approach to trust and opt rather for an emotional connection

between each other. McAllister, [34], Martin, [38], Lewicki

and Wiethoff [39] have referred to this as “Identification

based trust.”

Once the team has moved into the ‘Identification based

trust’ realm the team members fully identify with each other

and with the common goals of the Sprint.

V. CONCLUSION AND FUTURE WORK

The academic literature on trust is vast as many studies

have examined it from a variety of contexts. This paper has

presented the findings of the main contributors to the

academic discourse on trust and has attempted to apply their

contributions to the Agile Scrum team in the form of a

preliminary conceptual model.

The next step in the research is to ascertain using a

constructivist grounded theory methodology if this

hypothesis is, indeed, valid or whether there are other

elements of the trust equation which lead to successful

Sprints.

REFERENCES

[1] N. B. Moe, T. Dingsøyr, and T. Dybå, “Overcoming

barriers to self-management in software teams,” IEEE
software, vol. 26, no.6, pp.20-26, 2009.

[2] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, and J. Kern, Manifesto for agile
software development, 2001.

[3] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges
of migrating to agile methodologies,” Communications of
the ACM, vol. 48 no.5, pp.72-78, 2005.

[4] K. Collier, Agile analytics: A value-driven approach to
business intelligence and data warehousing. Addison-
Wesley, 2012.

[5] J. Highsmith, Adaptive Software Development
Ecosystems. Boston, MA: Pearson Education Inc, pp.
244-245, 2002.

[6] O. McHugh, K. Conboy and M. Lang, “Agile practices:
The impact on trust in software project teams,” IEEE
Software, vol. 29, no. 3, pp. 71-76, 2012.

[7] O. McHugh, K. Conboy, and M. Lang, “Using agile
practices to influence motivation within IT project
teams,” Scandinavian Journal of Information Systems
vol. 23, no. 2, pp. 85–110 (Special Issue on IT Project
Management), 2012.

[8] S. Ghobadi, and L. Mathiassen, “Perceived barriers to
effective knowledge sharing in agile software
teams,” Information Systems Journal, vol. 2, no. 2, pp.95-
125, 2016.

[9] Y. Liu, and J. S. Phillips, “Examining the antecedents of
knowledge sharing in facilitating team innovativeness
from a multilevel perspective.” International Journal of
Information Management, vol. 31, no. 1, pp. 44-52, 2011.

[10] J. G. Park, and J. Lee, “Knowledge sharing in
information systems development projects: Explicating
the role of dependence and trust.” International Journal of
Project Management, vol.32, no. 1, pp. 153-165, 2014.

[11] M. Ceschi, A. Sillitti., G. Succi, and S. De Panfilis,
“Project management in plan-based and agile companies,”
IEEE software, vol. 22, no.3, pp. 21-27, 2005.

[12] E. Weimar, A. Nugroho, J. Visser, A. Plaat, M.
Goudbeek, and A. P. Schouten, “The Influence of
Teamwork Quality on Software Team Performance,”
Proc. 17th International Conference on Evaluation and
Assessment, 2017.

[13] A. Mishra,.”Organizational response to crisis: The
centrality of trust,” In. R.Kramer, and T. Tyler, (Eds.),
Trust in organizations: Frontiers of theory and research,
pp. 261-287, 1996.

[14] R. C. Mayer, J. H. Davis. and F. D. Schoorman, The
Academy of Management Review, Vol. 20, No. 3, pp.
709-734,1995.

[15] J. B. Rotter, “A new scale for the measurement of
interpersonal trust,” Journal of Personality, vol. 35, no. 4,
pp. 651-665, 1967.

[16] B. W. Tuckman, “Developmental sequence in small
groups,” Psychological bulletin, vol. 63, no. 6, pp. 384-
399, 1965.

[17] G. Simmel, “The Sociology of Georg Simmel”. K.H.
Wolff (trans., ed. and intr.). New York: Free Press, 1950.

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 29 / 36

[18] N. Luhmann, “Familiarity, Confidence, Trust: Problems
and Alternatives”, in D. Gambetta, (ed.) Trust: Making
and Breaking Cooperative Relations, electronic edition,
Department of Sociology, University of Oxford, chapter
6, pp. 94-107, 2000.

[19] B. Barber, The logic and limits of Trust, Rutgers
University press, 1983.

[20] J. Lewis, and A. Weigert,, “Trust As a Social Reality,”
Social Forces, Vol. 63, No. 4, pp. 967-985, 1985.

[21] K. Dirks, and D. Ferrin, “The Role of Trust in
Organizational Settings,” Organization Science, vol. 12,
no. 4, pp. 450-467, 2001.

[22] J. K. Rempel, J. G. Holmes, and M. P. Zanna, “Trust in
close relationships,” Journal of personality and social
psychology, vol. 49, no.1, pp. 95-98, 1985.

[23] D. H. McKnight, and N. L. Chervany, “The Meanings of
Trust,” Technical Report MISRC Working Paper Series
96-04, University of Minnesota, Management Information
Systems Research Center, 1996.

[24] A. C. Costa, “ Understanding the nature and the
antecedents of trust within work teams”, in B. Noteboom,
(Ed.), The Trust Process in Organizations, Cheltenham
und Northhampton, pp. 105‐24, 2003.

[25] M. Deutsch, “Trust and suspicion,” Journal of conflict
resolution, pp. 265-279, 1958.

[26] D. E. Zand,“Trust and Managerial Problem Solving,”
Administrative Science Quarterly, pp. 229-239, 1972.

[27] M. S. Granovetter, “The Strength of Weak Ties,”
American Journal of Sociology, pp. 1360-1380, 1973.

[28] J. J. Gabarro, “The Development of Trust, Influence, and
Expectations,” Interpersonal behavior: Communication
and Understanding in Relationships, edited by Anthony
Athos and John J. Gabarro. Englewood Cliffs: Prentice
Hall, pp.290, 303,1978.

[29] J. K. Butler, “Toward Understanding and Measuring
Conditions of Trust: Evolution of a conditions of trust
inventory,” Journal of Management, vol. 17, pp. 643-663,
1991.

[30] J. K. Butler Jr, and R. S. Cantrell, “A behavioral decision
theory approach to modeling dyadic trust in superiors and

subordinates,” Psychological reports, vol. 55, no. 1, pp.
19-28, 1984.

[31] D. L. Shapiro, B. H. Sheppard, and L. Cheraskin,
“Business on a handshake,” Negotiation Journal, vol. 8,
no. 4, pp. 365-377, 1992.

[32] R. J. Lewicki, and B. B. Bunker, “Trust in Relationships,
Proc. 19th Australian Conference on Software
Engineering, IEEE 2008 pp. 76-84, 1995.

[33] M. L. Watson, “Can there be just one trust? A cross-
disciplinary identification of trust definitions and
measurement,” The Institute for Public Relations,
Gainesville, Florida, pp. 1-25, 2005.

[34] D. J. McAllister, Affect-and cognition-based trust as
foundations for interpersonal cooperation in
organizations. Academy of management journal, vol. 38,
no. 1, pp. 24-59, 1995.

[35] C. Johnson-George, and W. C. Swap, Measurement of
specific interpersonal trust: Construction and validation of
a scale to assess trust in a specific other. Journal of
personality and social psychology, vol. 43, no. 6), p.
130,1982.

[36] V. Santos, A. Goldman, and C. R. De Souza, “Fostering
effective inter-team knowledge sharing in agile software
development,” Empirical Software Engineering, vol. 20,
no. 4, pp.1006-1051, 2015.

[37] R. E. De Vries, B. Van den Hooff, and J. A. Ridder,
Explaining knowledge sharing: The role of team
communication styles, job satisfaction, and performance
beliefs. Communication research, vol. 33 no. 2, pp. 115-
135, 2006.

[38] D. Martin, “Towards a model of trust,” Journal of
Business Strategy, vol. 35, no.4, pp. 45–51, 2014.

[39] R. J. Lewicki, and C. Wiethoff, “Trust, trust
development, and trust repair,” The handbook of conflict
resolution: Theory and practice, vol. 1 no. 1, pp.86-107,
2000.

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 30 / 36

Client-Side XSS Filtering in Firefox

Andreas Vikne and Pål Ellingsen
Department of Computing, Mathematics and Physics

Western Norway University of Applied Sciences
Bergen, Norway

Email: andreas.svardal.vikne@stud.hvl.no, pal.ellingsen@hvl.no

Abstract—One of the most dominant threats against Web appli-
cations is the class of script injection attacks, also called cross-
site scripting. This class of attacks affects the client-side of a
Web application, and is a critical vulnerability that is difficult to
both detect and remediate for website owners, often leading to
insufficient server-side protection, which is why the end-users
need an extra layer of protection at the client-side, utilizing
the defense in depth principle. In this paper, a client-side filter
for Mozilla Firefox is presented, with the goal of protecting
against reflected cross-site scripting attacks while maintaining
high performance. By conducting tests on our implemented
solution, although still in an early phase, we can conclude that
our filter does provide more protection than the original Firefox
browser, at the same time achieving high performance, which with
further development would become an effective option for end-
users of Web applications to protect themselves against reflected
cross-site scripting attacks.

Keywords–cross-site scripting; client-side filtering; Web browser
protection.

I. INTRODUCTION

Cross-site scripting has for long been among the top
threats against Internet security as defined in the Open Web
Application Security Project (OWASP) Top 10 report, which
presents the 10 most common security vulnerabilities found
in Web applications [1]. Even if cross-site scripting has fallen
to 7th place in the OWASP Top 10 2017 report [1], cross-
site scripting remains one of the most serious attack forms.
Another report being published annually for the past 12 years
by WhiteHat Security, WhiteHat Security Application Security
Statistics Report [2], also identifies that cross-site scripting
is among the top two most critical Web vulnerabilities. An
interesting observation made in this report is that even though
cross-site scripting is considered one of the most critical
vulnerabilities, it is not being prioritized for remediation by
websites. The statistics being presented suggest that the vul-
nerabilities receiving most remediation are vulnerabilities that
are easy to fix, which is not the case for cross-site scripting. It
is suggested organizations must adopt a risk-based remediation
process, to prioritize the most critical vulnerabilities first,
like cross-site scripting. A report [3] published by Bugcrowd
Inc., a Web-based platform that uses crowdsourced security
for companies to identify vulnerabilities in their applications,
analyze data from their platform, including information about
the most common vulnerabilities found. The data in this report
is based on all Bugcrowd data from January 2013 through
March 2017, which contains of over 96 000 submissions,
where the most reported vulnerability is cross-site scripting
with a submission rate of 25%. They also have data on the
most critical vulnerabilities by type, where cross-site scripting

is considered the second most critical, which is the same
result found in WhiteHat Security’s report. These are some
of the most recent numbers regarding cross-site scripting, but
there have been published numerous of studies done on XSS
vulnerabilities and attacks. One study [4] from 2014 conducted
a systematic literature review were they reviewed a total of
115 studies related to cross-site-scripting. They concluded
that XSS still remains a big problem for Web applications,
despite all the proposed research and solutions provided so
far. As seen from the recent numbers from OWASP, WhiteHat
and BugCrowd, this conclusion still holds true, that XSS
vulnerabilities remains to be at large. With the observation
about how prevalent this type of attack is, and the fact that it
is not prioritized nor easy for websites to fix and remediate it,
it becomes clear that the user needs some means of protecting
themselves at the client-side, since it is mainly the end-users
of vulnerable Web applications that are affected by potential
attacks.

A. Cross-Site Scripting Attacks

Cross-site scripting vulnerabilities are caused by insuffi-
cient validation/sanitation of user submitted data that is used
and returned by the website in the response, which could com-
promise the user of the site. An attacker could potentially use
this vulnerability to steal users’ sensitive information, hijack
user sessions or rewrite whole website contents displaying fake
login forms. The end-users of websites are the main victims
of these attacks, but the actual websites are also affected, as
the attacks might negatively impact the reputation of the site,
which again could lead to fewer visitors. There exist three
main types of cross-site scripting attacks, which is one of the
reasons why remediation for such vulnerabilities is not an easy
task, as each of the different types operate differently and thus
require small differences in how to properly handle and secure
them. All three types rely on insecure handling of JavaScript
code, and are called Reflected, Stored and Document Oject
Model (DOM) Based Cross-Site Scripting (XSS) attacks [5]:

Stored XSS occurs when user input attack code is stored on
a publicly accessible area of a website, typically in a comment
section, message board post, visitor log or in chat rooms.
When a user visits a page where such an attack is stored,
the browser will retrieve the data and render it, which in turn
will execute the stored XSS attack in the browser’s context.
This type of XSS is very difficult to protect against on the
client-side, as the client have no means to identify whether the
JavaScript code coming from a website is legitimate, or if it
is malicious JavaScript code injected by an attacker. From the
client’s perspective, all JavaScript code coming from a website
is legitimate and should be rendered accordingly.

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 31 / 36

Reflected XSS occurs when the user input data is sent
in a request to a website, which immediately returns data in
the response to the browser, without the site first making the
data safe. Reflected XSS attacks are performed by entering
data into search fields, creating an error message or by other
means where the response use data from the request. In a
reflected XSS attack, the JavaScript attack code is not stored
on the website itself. For this attack to work, a user needs to
visit a specially crafted URL, containing the exploit code, for
the attack to be successfully done, executing the attack in the
user’s browser. A Reflected XSS attack thus contains a request
to and response from a website, where the code inserted in
the request is being used in the response. Client-side filters
can, therefore, compare the contents of the request with the
response, to identify a potential attack. The proposed filter in
this paper utilizes this technique, which means it focuses on
primarily stopping Reflected XSS attacks.

DOM Based XSS is a type of XSS attack where the
malicious data that exploits a flaw never leaves the browser.
This means that from an attacker inputs malicious data to a
website until the code is executed in the browser, the malicious
data is not part of neither the request or the response of the
website, but rather part of the DOM of the Web-page. This
is because DOM based attacks rely solely on flaws using
JavaScript code.

B. Counter-Measures for XSS Attacks

Counter-measures for XSS attacks can be achieved in sev-
eral ways. The first step would be to properly identify and map
the attack surface of the Web application, before implementing
the desired option for protection, ideally a combination of
several of the following methods:

Validation/Sanitization of all untrusted data input to a
Web application makes sure that malicious input is either
being rejected or manipulated into being safe for usage in the
output. It might be difficult to implement this properly as it
can be challenging to know what a malicious input looks like,
considering all the possible attack vectors that use advanced
obscuration techniques.

Output encoding is the most effective remediation for
cross-site scripting attacks when done properly. It is important
to implement the output encoding according to the context
it is being used in, because different encodings are needed
depending if HTML or JavaScript code is being used.

Content Security Policy (CSP) is another common way
for preventing cross-site scripting attacks, which is a declar-
ative policy that let Web application owners create rules for
what sources the client is expecting the application to load
resources from. As stated in the World Wide Web Consortium
(W3C) Recommendation [6], CSP is not meant as a first line
of defense mechanism, but rather an element in a defense-in-
depth strategy.

Disabling JavaScript is also a possibility that would
totally stop XSS, since these attacks rely on a JavaScript
environment for execution. This solution can be effective for
simple static websites, but most dynamic websites require
some sort of JavaScript support for basic functionality, which
means this remediation would not be suited as an overall
solution.

In the following Section II, different filter techniques are
being discussed before presenting a client-side filter implemen-
tation for the Mozilla Firefox browser in Section II-A. Then,
in Section III, the presented filter is analyzed, and finally, we
end the article in Section IV with the conclusion and further
work.

II. CLIENT-SIDE XSS FILTERING

When a website is vulnerable to cross-site scripting attacks,
an attacker could exploit this vulnerability and possibly steal
sensitive information or hijack sessions of the users accessing
the exploited website. Filters try to stop these attacks by
utilizing a set of rules to detect potential malicious input
data, before either blocking it or sanitizing it for safe usage.
There exists many XSS filter implementations, with varying
focus on the different areas such as security, performance, low
false-positives and usability. All of these areas are in focus
of most filters, but it is not common for a filter to be best
in all categories, as they do not necessarily compensate each
other. There is, however, one clear way to differentiate between
filters, by dividing them into two groups, server-side and client-
side filters:

Server-side filters are implemented on the server side of a
website, which means it can only detect input data that are sent
via the server. The DOM based XSS attack, as discussed in
Section I, is an attack only relying on client-side code, which
means a server-side filter would not be able to detect the attack
at all, which implies it would not be able to stop the attack.
This is one of the reasons why only relying on server-side
protection is not enough, and why we need client-side filters.

Client-side filters are located in the client, which typically
would be the Internet browser used to access the website.
Client-side filtering would be able to detect DOM based
XSS attacks, providing the extra protection server-side filters
are missing. However, even though client-side filters could
possibly detect all types of XSS attacks, it should not be
used alone, without server-side filtering. By placing the filter
on the client-side, it means that the user might be able to
modify it to circumvent the filtering. It is, therefore, strongly
recommended to utilize both server- and client-side filtering,
to be able to detect all attack types and achieving defense in
depth protection.

Filtering techniques: There exist several implementations
for cross-site scripting filters both on the client-side and server-
side of Web applications, which use many different techniques,
but where most also contain some limitations [7]. This paper
focuses on client-side filtering, where some of the most used
techniques will be discussed here. A popular technique is to
use regular expressions, which has been proved to contain
several flaws in its design [8]. A popular client-side XSS filter
using regular expressions is NoScript [9] for Mozilla Firefox,
first released in 2005 and actively updated by the maker
Giorgio Maone. The filter is matching HTML code for injected
JavaScript in the request by utilizing regular expression rules
for simulating the HTML parser, which would potentially lead
to false-positives, as it is better to over-approximate these rules
than to let an attack bypass the filter [8]. Another method
for client-side XSS filtering is string-matching, used by the
filter in the Google Chrome browser, XSS Auditor [8]. Auditor

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 32 / 36

works by matching the HTML code for injected JavaScript
code for the request with the response from the website after it
is been parsed by the browser’s HTML parser, see [8] for more
details. This means that Auditor does not need to approximate
any of the HTML parser rules, since the parsing is already
done when the matching algorithm starts. This is achieved by
the location of Auditor, which is between the HTML parser
and the JavaScript engine, which makes it possible to block
scripts after parsing, by blocking them from being sent to the
JavaScript engine for execution.

Regular expressions and string matching is among the
techniques being implemented in the top five most used
Web browsers for desktop, which according to the online
measurements from StatCounter [10] are Chrome, Firefox,
Internet Explorer/Edge and Safari. Both Chrome and Safari use
the mentioned string matching based XSS Auditor filter. XSS
Auditor was first build into the browser engine WebKit, which
Safari uses, before also being integrated into a fork of WebKit
called Blink, which Chrome uses. Internet Explorer and Edge
both have a filter implemented based on the regular expression
technique, first introduced in Internet Explorer 8 [11]. Firefox
however, being the second most used Web browser, does not
have a built-in filter, but rather relies solely on CSP support,
which again relies on websites to properly define the CSP
rules. By not having a client-side filter the defense in depth
principle is also lost, where a potential filter would provide an
extra layer of security for the end-users of the application. In
this paper we present an implementation for a built-in client-
side filter for this extra layer of security.

A. Implementation of Client-Side Filter in Firefox

The client-side XSS filter for Firefox proposed in this paper
is based on the Google Chrome browser’s XSS Auditor, but
with some design modifications. Due to various differences
in Chrome’s and Firefox’s internal architecture, the proposed
filter in this paper is tightly coupled to Firefox and is, hence,
not meant to be a copy of XSS Auditor. The basis of the filter
is to first get the input data to the website, before checking
if any of this data is considered dangerous, in which case a
matching comparison is done for all the scripts before they
are sent to the browser for execution. Both filters are doing
the filtering after the HTML parser, but the proposed Firefox
filter is doing the actual matching later in the rendering process
than Auditor. Whereas Auditor is doing the matching before
the JavaScript engine, by examining all the DOM tree nodes,
the proposed Firefox filter is not doing the matching before
it is actually prepared to be sent to the JavaScript engine,
in Firefox’s internal ScriptLoader.cpp class, as seen in
Figure 1 below. This means that the Firefox filter is only doing
matching on the scripts sent to Firefox’s internal script handler,
and not the whole DOM tree.

The implementation of the proposed filter is focusing on
the most common way to inject and execute JavaScript on a
webpage, by using the HTML script tag. The rules for filtering
are based on different ways of making JavaScript code from
script tags execute in the browser. OWASP’s guidelines XSS
Filter Evasion Cheat Sheet [12], which contains many attack
vectors trying to circumvent typical XSS filtering techniques,
provided a lot of examples for the creation of this paper’s
filtering rules.

The filter is implemented as its own class, which could
then be used in parts of Firefox requiring filtering protection.
This class contains several methods for detecting potential
attacks, as inline scripts and external scripts needs to be
processed differently. When using the filter, it start by fetching
all the input data to the website in form of GET- and POST-
parameters, before checking each of these parameters if they
contain any potential malicious code that can be used for
executing a cross-site scripting attack. In this case, the filter
checks for opening HTML script tag, <script. If there are
any occurrences of this tag in any of the input parameters,
the filter will continue its examination of the input. There are
now two cases in which the input data will be considered and
marked as dangerous. Either if the script tag is non-empty
or it contains a non-empty attribute src. If any of these
two conditions are being fulfilled, the filter marks the input
parameter as dangerous before a matching algorithm is started
to try and find the input data in any of the JavaScript code
sent to Firefox for execution. This is done by comparing the
actual string representation of the parameter with the string
representation of all JavaScript code entered through Firefox.
If this matching algorithm does find a match, the whole script
that contains the input data will be blocked from execution in
the browser, stopping a potential attack. If no match is found,
the webpage and all its contents will load and function without
any intervention from the filter.

B. Mozilla Firefox Architecture

For implementing this filter into Firefox, it is important
to know how the source code is built up and how the scripts
are being evaluated. Mozilla Firefox source code has a layered
architecture where the code is organized as separate modular
components. Firefox is multi-threaded and follows the rules of
object-oriented programming, where access to internal data is
achieved through public interfaces of the classes [13]. One
of the primary requirements of Firefox is that it must be
entirely cross-platform, which is why the browser consists
of several components focusing on this area, like making
sure the operation system dependent logic is hidden from the
application logic. The main components can be divided up
into the user interface XML User Interface Language (XUL)
[14] and the browser and the rendering engine Gecko [15].
XUL is Mozilla’s own language for building portable user
interfaces, which is an XML language. Gecko is Mozilla’s
browser engine built to support many different Internet stan-
dards, including HTML 5, CSS 3, DOM, XML, JavaScript
and others. Gecko contains many different components for
document parsing (HTML and XML), layout engine, style
system (CSS), JavaScript engine called SpiderMonkey, image
library, networking, security, as well as other components. The
implementation of the proposed filter is located in Gecko,
right before JavaScript code from a site is being sent to
SpiderMonkey for processing. Both inline and external scripts
from HTML script tags are being loaded into the class
ScriptLoader.cpp, where they are passed on to the
JavaScript engine for compiling and execution. Because all
scripts from script tags pass through this class, this is the
main area where the filter will be used. The flow of such
scripts through the application is shown in Figure 1. This
makes sure that all scripts are caught and can be effectively
stopped from executing by simply not sending them to the

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 33 / 36

Server HTML parser

nsHtml5Parser.cpp

All <script>’s X enter here
For every script X:
Call XSSFilter with script X

Execute JavaScript
Block script X
X could currently be a
whole .js file

Is parameter
contained
inside any
script(X)?

Loop through all GET params
Loop through all POST params
Check if params could be harmful

Response
<script> tag

content

Send script X to XSSFilter Found
paramParam not found

Possible dangerous parameter

Safe param

ScriptLoader.cpp

XSSFilter.cpp

Firefox

Figure 1: Information flow in application

JavaScript engine at all. Even though all script content from
script tags enter through the class ScriptLoader.cpp, not
all input that should be interpreted as JavaScript’s gets sent
here. Gecko handles scripts differently based on where they
originate from. HTML event handlers are being processed in
another class EventListenerManager.cpp, before sent
to the JavaScript engine. This means that for the proposed
filter to work on all possible scripts from a website, it would
be necessary to also use the filter in this location.

III. ANALYSIS

A main challenge during the implementation was to prop-
erly understand the application architecture. Depending on
how JavaScript code is inserted into a website, Firefox is
processing the input in different modules in the application,
which proved challenging to identify. The proposed filter for
Firefox presented in this paper is as described in the previous
section only focusing on the HTML script tag, which means
all the script processing could be done in the same place in
the Firefox source. However, by neglecting other means of
injecting JavaScript code into a website, the filter is not capable
of detecting all possible XSS attacks. Some other common
HTML tags used for cross-site scripting attacks are tags like
’svg’, ’object’ and the usage of event handlers. It is however
very possible to locate where in the Firefox source JavaScript
code from other HTML tags is being processed, and to add
filtering capabilities to those areas in a similar fashion done
with the ’script’ tag. A similar limitation is the fact that the
filter only considers GET- and POST- parameters for the input.
It is possible to use other input entry points like cookies,
local storage, or HTTP header fields for executing cross-site
scripting attacks. Neglecting support for these alternative attack
vectors is also a limitation in XSS Auditor [16], but since they
are valid attack vectors, they should at least be considered for
improving the proposed filter in this paper.

A. Attack mitigation efficiency

When testing the implemented filter in practice,
Firefox was able to successfully detect and block
simple cross-site scripting attacks using the script

tag for the injection point. Simple attack vectors like
<script>alert(xss)</script> and <script
src=http://xss.rocks/xss.js></script> both
were successfully blocked by the filter when injected into
a sample vulnerable website. Other more advanced attack
vectors from the OWASP XSS Filter Evasion Cheat Sheet
[12], like embedding spaces or tabs within the injected input,
neglecting to include closing tags or substituting space with a
non-alpha character were also tested, which were successfully
detected and blocked by the filter. However, there is a case
where the filter only was able to block parts of the injected
input using only the script tags: when the input contains more
than one occurrence of the script tag. An example would be
the input
<script>alert(1)</script>
<script>alert(2)</script>.
In this case, the first script tag sequence containing the
alert(1) would be blocked, at which point the filter would
stop examination and hence the alert(2) from the second
script tag would be executed, which could effectively be used
to launch a successful cross-site scripting attack. This is due
to the filter being limited to only detect and block the first
script tag found.

As seen with the implemented filter, there is a lack of
filtering rules and conditions, which makes it quite ineffective
in its current form. Even with a case of only using the script
tag, the filter was unable to detect all injected attacks. Not
to mention all the other ways attack vectors using different
HTML tags an attacker could use. By studying the OWASP’s
XSS Filter Evasion Cheat Sheet, where a lot of these different
attack vectors are shown, with the purpose of evading common
filters, the cheat sheet is effectively showing that for every
attack vector, it is possible to properly detect and block the
attack by using the correct rules and conditions. This also
applies to the proposed filter in this paper, that it is possible
to implement all these rules and their variations to be able to
filter away most cross-site scripting attacks.

Another property of the implemented filter is how it
handles a detected injected script, and how that affects its
functionality. When the filter detects that a script from the

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 34 / 36

input is found in any script loaded into the browser engine
for processing, the whole script loaded for processing is being
stopped before it is executed. The rest of the scripts on the
website would still be loaded and executed as usual. There
is however also another approach that is common for XSS
filters, which is to block loading the entire website where a
potential XSS attack was discovered. There are advantages
and disadvantages to each of these methods. An advantage
to only block specific parts of a website is that the user is still
able to browse and view the other parts of the website not
affected by the injection, making it a better user experience
with less disruptions in case of an attack. In cases of false-
positives, where there are no real attacks, this technique is
more forgiving by not blocking all the website’s content. A
disadvantage of only blocking parts of the webpage is that in
the case of a detected attack, it is not unlikely that an attacker
would probably try to use different advanced attack vectors,
which could trick the filter like the case described above, using
double script tags. Therefore in regards of security, it is best to
block the whole webpage when a potential injection attack is
detected. By utilizing blocking of the whole website instead of
only the parts where the script was detected would effectively
allow the implemented filter described to successfully block
the attack with double script tags, making the filter much more
secure by just this single modification to its design. There
are however negative effects by blocking the whole webpage,
which is the user experience would greatly be affected by
a lot of discovered attacks, which would disrupt the user
from normal browsing activities and where the user ultimately
maybe choose to disable the filter altogether. This is especially
the case with false-positives, where there actually is no attack,
but the filter still blocks the entire page from loading.

There is no simple answer to which of these techniques to
use, but there are ways that websites themselves can choose
what to do. By setting the HTTP header X-XSS-Protection,
webpages could choose to either allow, sanitize or block de-
tected cross-site scripting attacks [17]. This header is currently
supported by other major Internet browser, but not Firefox,
as Firefox does not supply built-in XSS filtering. By adding
support for this header in Firefox and the implementation of
the proposed filter in this paper, it would be possible also
for Firefox to let the webpages themselves choose how to
deal with detected cross-site scripting attacks, either allowing
everything, only blocking assumed affected content, or block
the whole webpage from loading.

An additional limitation of the implemented filter is the
support for different input encodings. When receiving input
into a webpage, the input might be encoded with different
encodings, like hex encoding, which is not currently supported
by the filter. This is however easily fixed by first adding a check
for what encoding is used, if any, before properly decoding the
input. This is a very important feature that needs to be taken
into consideration, as using different character encodings is a
common way to obscure cross-site scripting attacks.

B. Performance

The performance of the implemented filter is an important
factor for its usefulness. We followed Mozilla’s own methodol-
ogy for comparing page load times across browsers [18], using
popular websites to load in the browser, repeated several times,

while measuring the loading time for each page. We chose 10
of the most popular news websites from Alexa [19], knowing
that news sites typically contain a lot of scripts for ads and
tracking. To make sure the modified browser actually ran the
code for our implemented filter, we used the search function on
each of the websites and tested with two different parameters,
one safe and one unsafe, which would activate the filtering. We
also wanted to conduct a performance test for actual vulnerable
Web applications. From a website containing a list of Web
applications vulnerable to XSS attacks [20], even though it was
an old archive, we collected four different websites all vulner-
able to XSS attacks, and then injecting them with the sim-
ple script <script>console.log(1)</script>. This
simple script injection was chosen because it makes it easy
to compare the load time between the modified Firefox and
original Firefox, as this simple script would not alter the
rendering of the page itself, but still be a valid cross-site
scripting attack. As we also injected the 10 chosen news site
with a script input, we did not expect any big different in
performance between these sites and the acutual vulnerable
sites, as the filter would run the same matching algorithm on
all sites. As expected, even though the filter from this paper
successfully detected and blocked this injection on all these
vulnerable websites, there were no overhead compared to the
news sites. For the full performance test, a total of 1040 page
loads were performed for each browser, including both the 10
news sites and the four vulnerable sites. This resulted in an
average difference of only 32.1 ms for each page load, which
equals a performance overhead for the modified browser of
about 0.7 % compared to the average loading times for the
original Firefox browser, which is an insignificant overhead. As
there are several limitations with the current implementation of
the filter, a more complete version addressing these limitations
would probably incur a higher overhead, but at a starting point
at 0.7 % it is reason to believe the added overhead would not
be of any significance. This was however a test with several
limitations, as there might have been too few total page loads
for each browser, the visitor traffic to the tested websites might
be different and there might have been small interferences in
the Internet connection when performing the test. Although
there these factors might have affected the results, it is worth
noting the the two browsers were tested in the same time span,
which should not incur too much variation. After taking the
average of the 1040 page loads for each browser, the achieved
results do highly indicate that the modified browser do not
incur any significant performance overhead.

IV. CONCLUSION AND FUTURE WORK

Information flow vulnerabilities can occur when applica-
tions handle untrusted data. When this happens, users of the
application might be negatively affected, without any means
of protecting themselves. By utilizing client-side filtering,
like proposed in this paper, the user do have a means to
protect themselves from malicious attackers. By default, the
Firefox browser have no such protection mechanism built
in, which this paper has a proposal for adding. As seen in
the analysis in Section III, there are still many important
additions to be done before the filter is ready for everyday
usage, but the filter do work for basic cases, which already
provides more protection than the default Firefox browser,
proving a solution efficient enough to work, achieving high

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

 35 / 36

performance with almost no overhead. When the rest of the
presented additions is implemented, this filter would work as
an important extra protection for the end-users of vulnerable
Web applications, efficiently protecting against reflected cross-
site scripting attacks.

A reasonable next step would be to further expand the
filtering capabilities of the filter. This would be achieved
by implementing the proposed improvements from Section
III, covering all attack vectors from all possible injection
points, adding more rules and conditions for the filtering,
have proper decoding of input and adding support for the
X-XSS-Protection header. After making these improvements,
it is also necessary to do further testing, for both loading
speeds and focus on security, with specially crafted attack
vectors, and to make sure the filter is as robust and secure
as desired, making it an effective way for protecting the
end-users of websites from cross-site scripting attacks on the
client-side.

REFERENCES

[1] OWASP Foundation, “Owasp top 10 - 2017 the ten most critical
web application security risks,” accessed: 2017-12-27. [Online].
Available: https://www.owasp.org/images/7/72/OWASP Top 10-2017
(en).pdf.pdf

[2] WhiteHat Security, Inc., “2017 whitehat security application
security statistics report,” 2017, accessed: 2017-12-21. [On-
line]. Available: https://info.whitehatsec.com/rs/675-YBI-674/images/
WHS 2017 Application Security Report FINAL.pdf

[3] Bugcrowd Inc., “2017 state of bug bounty report,” 2017, accessed:
2018-01-09. [Online]. Available: https://pages.bugcrowd.com/hubfs/
Bugcrowd-2017-State-of-Bug-Bounty-Report.pdf

[4] Hydara, Isatou and Sultan, Abu Bakar Md and Zulzalil, Hazura and
Admodisastro, Novia, “Current state of research on cross-site script-
ing (XSS)–A systematic literature review,” Information and Software
Technology, vol. 58, 2015, pp. 170–186.

[5] OWASP Foundation, “Types of cross-site scripting,” March 2017,
accessed: 2018-03-05. [Online]. Available: https://www.owasp.org/
index.php/Types of Cross-Site Scripting

[6] The World Wide Web Consortium, W3C, “Content security policy
level 2,” December 2016, accessed: 2018-01-11. [Online]. Available:
https://www.w3.org/TR/2016/REC-CSP2-20161215/

[7] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks and
defense mechanisms: classification and state-of-the-art,” International
Journal of System Assurance Engineering and Management, vol. 8,
no. 1, 2017, pp. 512–530.

[8] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered
harmful in client-side xss filters,” in Proceedings of the 19th interna-
tional conference on World wide web. ACM, 2010, pp. 91–100.

[9] G. Maone, “NoScript - JavaScript/Java/Flash blocker for a safer
Firefox experience! - features - InformAction,” accessed: 2017-12-28.
[Online]. Available: https://noscript.net/features

[10] StatCounter, “Desktop browser market share worldwide dec 2016 -
dec 2017,” December 2017, accessed: 2018-01-11. [Online]. Available:
http://gs.statcounter.com/browser-market-share/desktop/worldwide

[11] D. Ross, “Ie8 security part iv: The xss filter,” July 2008, accessed:
2018-01-11. [Online]. Available: https://blogs.msdn.microsoft.com/ie/
2008/07/02/ie8-security-part-iv-the-xss-filter/

[12] OWASP Foundation, “Xss filter evasion cheat sheet,” October 2017,
accessed: 2017-12-27. [Online]. Available: https://www.owasp.org/
index.php/XSS Filter Evasion Cheat Sheet

[13] Mozilla Developer Network, “An introduction to hacking mozilla,”
Mars 2017, accessed: 2017-12-28. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Mozilla/An introduction to hacking Mozilla

[14] ——, “Introduction,” September 2014, accessed: 2017-12-28. [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/
Tutorial/Introduction

[15] ——, “Gecko faq,” September 2015, accessed: 2017-12-28. [Online].
Available: https://developer.mozilla.org/en-US/docs/Gecko/FAQ

[16] Stock, Ben and Lekies, Sebastian and Mueller, Tobias and Spiegel,
Patrick and Johns, Martin, “Precise Client-side Protection against DOM-
based Cross-Site Scripting.” in USENIX Security Symposium, 2014, pp.
655–670.

[17] Mozilla Developer Network, “X-xss-protection,” October 2017,
accessed: 2017-12-28. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

[18] D. Strohmeier, P. Dolanjski, “Comparing browser page load time:
An introduction to methodology,” November 2017, accessed:
2018-01-15. [Online]. Available: https://hacks.mozilla.org/2017/11/
comparing-browser-page-load-time-an-introduction-to-methodology/

[19] Alexa Internet, Inc., “The top 500 sites on the web,” January
2018, accessed: 2018-01-15. [Online]. Available: https://www.alexa.
com/topsites

[20] “Xss archive,” accessed: 2018-03-05. [Online]. Available: http:
//www.xssed.com/archive

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 36 / 36

http://www.tcpdf.org

