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The Fourteenth International Conference on Smart Cities, Systems, Devices and Technologies

(SMART 2025), held between April 6th, 2025, and April 10th, 2025, in Valencia, Spain, continued a series

of co-located events covering tendencies towards future smart cities, specialized technologies and

devices, environmental sensing, energy optimization, pollution control and socio-cultural aspects.

Digital societies take rapid developments toward smart environments. More and more social services

are digitally available to citizens. The concept of ‘smart cities’ including all devices, services, technologies

and applications associated with the concept sees a large adoption. Ubiquity and mobility added new

dimensions to smart environments. Adoption of smartphones and digital finder maps, as well as

increasing budgets for technical support of services to citizens, settled a new behavioral paradigm of city

inhabitants.

We take here the opportunity to warmly thank all the members of the SMART 2025 technical

program committee, as well as all the reviewers. The creation of such a high-quality conference program

would not have been possible without their involvement. We also kindly thank all the authors who

dedicated much of their time and effort to contribute to SMART 2025. We truly believe that, thanks to

all these efforts, the final conference program consisted of top-quality contributions. We also thank the

members of the SMART 2025 organizing committee for their help in handling the logistics of this event.

We hope that SMART 2025 was a successful international forum for the exchange of ideas and

results between academia and industry for the promotion of progress in the area of smart cities,

systems, devices, and technologies.
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Smart City Road Maintenance: A LiDAR and AI-Driven Approach for Detecting and
Mapping Road Defects

Giovanni Nardini∗, Roberto Nucera∗, Alessandro Ulleri∗, Stefano Cordiner†,
Eugenio Martinelli‡, Arianna Mencattini‡, Iulian Gabriel Coltea∗

∗Key to business s.r.l., Department of †Industrial and ‡Electronic Engineering, University of Rome Tor Vergata
Rome, Italy

∗e-mail: info@key2.it

Abstract—This work is focused on the development of an inte-
grated system designed to detect, map, and analyze road surface
defects, contributing to Smart City infrastructure maintenance.
The system is installed on vehicles and leverages a multi-sensor
approach, combining Light Detection and Range (LiDAR) point
clouds, visual information from Red-Green-Blue (RGB) cameras,
inertial data and Global Navigation Satellite Systems (GNSS)
coordinates. Road defects such as potholes and alligator cracks are
detected in RGB images by a custom deep learning model based
on instance segmentation. The scene understanding is committed
to a second Artificial Intelligence (AI) model based on semantic
segmentation in order to perceive objects locations and the overall
structure of the road. Afterward, all results are processed together
and translated into the 3D domain of LiDAR data. This can be
done through a proper camera calibration procedure and LiDAR-
Camera data alignment with the estimation of intrinsic and
extrinsic parameters. Then, AI segmentation results are projected
to 3D point clouds in order to isolate the detected items from the
rest of the point cloud and obtain three-dimensional models of each
of them, enabling measurements like the affected surface extension,
depth and volumes. GNSS and inertial data are fused together to
obtain the correct orientation and location of the system, enabling
geographic positioning of all detected items on the map. Results
are displayed on a map-based portal, enabling easy access to near
real-time defect data. This approach advances road monitoring
by automating the mapping and analysis of surface conditions,
enhancing urban infrastructure management. In addition, the
strengths of this approach are the possibility of deploying the
pipeline in edge devices enabling real-time computation, the use
of pre-existing training datasets based on RGB images alone, and
good accuracy on the geographical localization and estimation of
defect measurements.

Keywords-cities; road maintenance; LiDAR; AI; computer vision.

I. INTRODUCTION

As urban areas grow the need to monitor road conditions
efficiently becomes crucial for keeping infrastructure intact and
promoting road safety. The conventional methods of inspecting
roads are laborious, time consuming and frequently fall short
of providing the accuracy required for repairs. However, recent
progress in sensor technology, artificial intelligence and data
integration present fresh opportunities for monitoring road
conditions. Over the past few years, many approaches have
been explored. Sometimes using inertial data [1], pure machine
learning and computer vision methods [2][3], sometimes
exploiting more sophisticated deep learning models [4], and
other times combining vision and depth sensing together with
spatial AI [5][6]. The technologies that have been tested for

depth estimation are based on stereoscopy, Red-Green-Blue-
Depth (RGB-D) cameras and LiDAR. However, each has its
own disadvantages: stereoscopy generally does not work with
feature-poor surfaces, RGB-D cameras based on Time of Flight
(ToF) technology, while achieving good accuracy, drop their
performance in outdoor environments and are limited to a
range of few meters, while LiDAR provides the most long-
range and accurate measurements but at the expense of lower
point density and the need for an additional imaging system to
obtain the scene picture. Furthermore, approaches using RGB-D
images as input for AI detection models, while achieving good
performance due to depth information, are strongly affected
by the context, sensor position and framing of the training
data, and therefore require the acquisition of huge amounts
of images from every possible angle and distance, in order to
replicate all possible setups. Our approach, on the other hand,
bases AI inference solely on RGB images and transports the
detection information to the LiDAR domain, via camera-LiDAR
registration, as shown in Figure 1.

Figure 1. Camera-LiDAR Registration.

This allows the use of pre-existing datasets without having to
create a custom dataset and re-labelling all images. This work
suggests a setup (see Figure 2) that utilizes LiDAR technology
along with RGB imaging, inertial and GNSS data within a
framework based on Robot Operating System (ROS), as shown
in Figure 3, in order to identify and pinpoint road surface
issues efficiently.

From an economic standpoint, the system’s adaptability
to city vehicles, including public transport, could potentially
transform routine operations into continuous, cost-effective road
monitoring. Combining this distributed sensing with on-the-
ground human supervision, such as cleaning personnel, creates

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-251-7
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a hybrid model that optimizes resource use and enhances data
accuracy, leading to efficient urban road maintenance.

In Section 2, the methods employed are detailed, including
the hardware components, the software architecture, the design
and training of the AI models. In Section 3, the results
of the system’s validation are presented, focusing on the
performance metrics of the AI models and the accuracy of
defect measurements and positioning. In Section 4, the paper
concludes with a discussion of the system’s contributions and
potential future developments.

II. METHODS

The proposed system integrates the following hardware
components: an Hybrid Solid-State LiDAR with 128-channels
of resolution, a global shutter camera sensor with 4k resolution
at 30 fps, a navigation system with 9-axis accelerometer INS
and dual antenna GNSS and a Nvidia Jetson AGX module
where the software runs. The LiDAR, camera and navigation
system are mounted on the vehicle’s roof, while the Jetson
unit is installed inside the cabin and connected to the vehicle’s
power supply.

Figure 2. Hardware setup.

The software architecture is based on ROS and is made
up of the following nodes: driver nodes to collect data from
each sensor and publish to topics, data processing nodes to
apply AI model inference on images and get results, projection
nodes to map defects from RGB domain into 3D domain and
make measurements and navigation nodes to estimate precise
latitudes and longitudes of each defects. All collected results
are then submitted to the visualization platform.

There are two types of custom trained AI models: an
instance segmentation model based on the You Only Look
Once (YOLOV8-Seg) small architecture [7] and a semantic
segmentation model based on the SegFormerB1 architecture
[8]. The former was trained on the RDD22 dataset [9]: since
it is an object detection dataset, it was necessary to re-label
the annotations with the addition of pothole and alligator crack
segmentation mask. In order to speed up the process, the
Segment Anything Model (SAM) [10] was adopted, enabling a
quick annotation of the images from the bounding boxes using a

Figure 3. Software architecture components in ROS framework.

dedicated tool. The latter was trained on the Cityscapes dataset
[11], which provides over 5000 densely annotated images with
30 segmentation classes. The purpose of the two models is to
identify potholes and alligator cracks in road images captured
by the camera, along with their segmentation masks, and to
verify their placement within the "road" class of the semantic
segmentation model, in order to limit false positives. Qualitative
results for both models are shown in Figure 4.

III. RESULTS & DISCUSSION

The system was rigorously tested on various urban road
sections, demonstrating strong performance in identifying
potholes and alligator cracks. The validation of the AI models
on dedicated test sets yielded key computer vision metrics
that underline their effectiveness. For the YOLO model, a
mean Average Precision (mAP) of 0.56 at thresholds of
Intersection Over Union (IoU) ranging from 0.5 to 0.95 reflects
its robustness in detecting and segmenting defects across
different scales and conditions. The mAP is calculated with

2Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-251-7
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the following equation:

mAP =
1

Nc

Nc∑
c=1

1

NIoU

NIoU∑
i=1

AP(i)
c (1)

where Nc is the total number of classes, NIoU is the number
of IoU thresholds and AP(i)

c is the average precision for class
c at IoU threshold i.

Additionally, an F1-score of 0.57 indicates a balanced
performance in terms of precision (reducing false positives)
and recall (capturing true positives). The formula of F1-score
is the following:

F1 = 2 · P ·R
P +R

(2)

where P is the Precision and R is the Recall value. For
the SegFormerB1 model used in road segmentation, a mean
Intersection over Union (meanIoU) score of 0.43 demonstrates
its capacity to accurately delineate the "road" class, while
an exceptional F1-score of 0.98 highlights its precision and
reliability in avoiding misclassifications. The following for-
mulas provide the way for calculating meanIoU for semantic
segmentation:

IoUc =
|Ac ∩Bc|
|Ac ∪Bc|

(3)

meanIoU =
1

Nc

Nc∑
c=1

IoUc (4)

where Ac is the predicted segmentation for class c, Bc is the
ground truth segmentation for class c and Nc is the number
of classes. These metrics are considered strong, given the
complexity of urban environments and variability in road
textures.

Figure 4. YOLOV8s-Seg results for pothole and crack segmentation (left),
SegFormerB1 road segmentation results (right).

Moreover, the integration of segmentation results with
LiDAR data allowed for accurate 3D reconstruction and spatial
measurements, achieving an error margin of less than 10%
for defect dimensions (surface area and depth). The system’s
navigation module further enhanced functionality, delivering
geolocation with Global Positioning System (GPS) accuracy
suitable for effective road management applications at the
city scale. Finally, deployment on the Nvidia Jetson AGX
64 GB Edge device and model optimization using TensorRT
enabled real-time processing. The YOLO model achieved a
remarkable throughput of 312 Frames-Per-Second (FPS), while
the SegFormer model delivered 18 FPS, ensuring a processing
rate exceeding 10 Hz—well-aligned with the LiDAR’s sampling

rate. This ensures that the system can operate seamlessly in
real-time, offering both efficiency and scalability.

IV. CONCLUSION

Our work presents an advanced, integrated system for detect-
ing and mapping road surface defects, marking a significant
step forward in Smart City infrastructure maintenance. By
leveraging a multi-sensor approach, including LiDAR, RGB
cameras, inertial data, and GNSS, the system achieves precise
localization and accurate measurements of defects like potholes
and alligator cracks. The innovative application of RGB-based
AI models combined with LiDAR domain projection enables
the use of existing datasets, minimizing the need for extensive
retraining. Deployment on an edge device ensures real-time
processing, while the ROS-based framework facilitates seamless
data integration and visualization. The achieved accuracy
in defect detection, spatial measurement, and geolocation
demonstrates the system’s potential for scalable implementation
in urban road management. Future developments could further
enhance adaptability to diverse environments, driving even
greater efficiency in urban infrastructure maintenance.
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Abstract— This article presents the development of an embedded 

system for air quality monitoring in enclosed environments, 

utilizing the ESP8266 microcontroller and the Arduino® IDE. The 

system integrates DHT11 and MQ-4 sensors to measure 

temperature, humidity, and CO₂ concentration, respectively. The 

collected data is displayed on an LCD screen and stored on a 4GB 

microSD card in Comma-Separated Values (CSV) format, 

ensuring easy access for further analysis. A DS3231 real-time clock 

module timestamps each measurement, enhancing data 

organization. Additionally, an alert system is implemented to log 

events when CO₂ levels exceed a predefined threshold. To enable 

remote monitoring, the system transmits data in real-time to the 

ThingSpeak platform using the ESP8266’s WiFi connectivity, 

allowing for interactive visualization and analysis. This 

implementation provides a low-cost, scalable solution for air 

quality assessment, facilitating decision-making in indoor 

environmental management. 

Keywords—Air quality monitoring; ESP8266-embedded system; 

Internet of Things; ThingSpeak. 

 

I.     INTRODUCTION 

Monitoring indoor air quality is essential for protecting 

health and well-being, as prolonged exposure to high carbon 

dioxide levels (CO₂) and other pollutants can cause headaches, 

fatigue, and cognitive impairment. While elevated CO₂ levels 

in classrooms do not pose direct health risks, they indicate 

insufficient ventilation for the number of occupants, as human 

exhalation increases these levels. Therefore, ensuring proper 

ventilation is crucial to maintaining air quality [1], [2]. 

To address this issue, a monitoring system based on the 

ESP8266 microcontroller was designed, incorporating CO₂, 

temperature, and humidity sensors. Measuring temperature and 

humidity helps establish correlations between CO₂ 

concentration and the presence and number of people in the 

monitored space using artificial intelligence techniques, 

although this analysis falls outside the scope of this article. 

 

 

 

 

The electronic device displays the measured variables on 

an LCD screen, records critical CO₂ levels in a local storage 

module, and transmits the data in real-time to MathWorks®' 

ThingSpeak, an Internet of Things (IoT) platform. The system 

is programmed in C/C++, using the Arduino® IDE, which 

allows efficient control of the microcontroller's resources and 

facilitates the integration of essential functionalities to ensure 

optimal system performance. 

This paper is organized as follows: Section 2 – Related 

Work reviews prior research and recent developments in air 

quality monitoring systems and IoT platforms. Section 3 – 

Materials and Methods describes the hardware selection 

process and the algorithmic logic implemented for data 

acquisition and processing. Section 4 – Results and Discussion 

presents the collected IoT data along with a detailed cost 

analysis. Finally, Section 5 – Conclusion and Future Work 

summarizes the key findings and outlines potential 

improvements for future implementations. 

 

II.      RELATED WORK 

Several studies have explored microcontroller- and sensor-

based platforms for environmental monitoring. Chouhan et al. 

[3] found that the MQ-4 sensor effectively detects variations in 

CO₂ concentration. Kadir et al. [4] demonstrated that the 

ThingSpeak platform is well-documented for its capability to 

store and display real-time data, facilitating remote analysis and 

decision-making.  

Srivatsa et al. [5] propose an IoT system comprising three 

main components: a network of wireless sensors to monitor 

CO₂ levels, a wireless access point that transmits data via Wi-

Fi, and a server that processes and stores the information while 

issuing alerts when CO₂ levels rise. Salamone et al. [6] present 

a wireless system for indoor air quality control using an 

Arduino UNO, a K30 CO₂ sensor, an XBee S2 communication 

module, and a DS1307 RTC module.  
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Bhattacharya et al. [7] describe a wireless solution for 

monitoring indoor air quality, measuring temperature, humidity, 

gaseous pollutants, and particulate matter. The system utilizes 

the Air Quality Index to regulate ventilation and air 

conditioning in smart buildings. Similarly, Wang et al. [8] 

investigate the impact of air quality on students' concentration 

during classes by measuring temperature, relative humidity, and 

CO₂ levels using a wireless system with DHT11 and MG-811 

sensors. The system was installed in two classrooms, and the 

results revealed a significant correlation between 

environmental parameters and students' academic performance. 

Beyond indoor applications, Liu et al. [9] developed a 

monitoring system for urban air pollution, consisting of a sensor 

node, a gateway, and a LabVIEW™-controlled platform. This 

system was deployed on major streets in Taipei to measure 

carbon monoxide (CO) levels from vehicle emissions. 

Finally, Kang et al. [10] designed an advanced air quality 

monitoring system integrating multiple communication 

technologies. The system employs Wi-Fi for Internet 

connectivity, Bluetooth for smart device setup, and a Radio 

Frequency (RF) module (IEEE 802.15.4g) for home network 

integration. Based on the TI MSP430 processor, it includes 

sensors for particulate matter, volatile organic compounds, 

carbon monoxide, temperature, and humidity, while supporting 

additional sensors via Universal Asynchronous Receiver-

Transmitter (UART), Serial Peripheral Interface (SPI), and 

Inter-Integrated Circuit (I²C) interfaces. The results 

demonstrated that the system enables real-time air quality 

monitoring with high resolution. 

 

III.      MATERIALS AND METHODS 

Poor Indoor Air Quality (IAQ) poses a significant threat to 

public health, as individuals spend over 90% of their time 

indoors, where pollutants such as tobacco smoke, carbon, CO, 

CO₂, NO₂, and microorganisms can negatively impact health 

[11]. Although temperature and humidity monitoring is 

common, real-time air quality monitoring is rarely implemented 

in most buildings. To address this gap, an IoT-based monitoring 

system was developed to provide a low-cost, easy-to-install 

solution capable of measuring key air pollutants in real-time 

and generating alerts when excessive concentrations are 

detected. 

The embedded system consists of an ESP8266 

microcontroller module for Wi-Fi communication, a sensor unit 

integrating an MQ-4 sensor for CO₂ measurement and a DHT11 

sensor for temperature and humidity monitoring, a DS3231 

Real-Time Clock (RTC) module for precise timestamping of 

data, and a 4GB microSD module for local data storage. The 

recorded data is stored in CSV format, ensuring compatibility 

with text editors and advanced analysis software such as 

Microsoft Excel and IBM SPSS Statistics, among others. This 

electronic system was developed as a final project for the 

Microcontrollers Course (Semester II-2024) at the School of 

Electronic Engineering of the Pedagogical and Technological 

University of Colombia, Tunja Campus. The project was 

conducted following the Project-Based Learning (PBL) 

methodology.  

While the current implementation measures a single gas, 

the system can be expanded by integrating additional MQ-

series sensors to enhance its monitoring capabilities. The 

collected data is stored on the ThingSpeak platform (See Fig. 

1), allowing remote access via a website or mobile application. 

The system’s software is structured following a flowchart-

based design, ensuring continuous measurement of 

environmental variables, real-time visualization, and data 

transmission to the cloud at 15-second intervals.  

 

 
Figure 1. Embedded system block diagram. 

 

Additionally, an alert mechanism was implemented to 

notify users when CO₂ levels exceed 700 ppm for more than 10 

seconds, with this information being stored in Electrical 

Erasable Programmable Read-Only Memory (EEPROM) 

memory for future reference. 

Once the block diagram was structured, the flowchart was 

developed, incorporating the main program logic and interrupt 

routines. This design ensures the orderly execution of the 

system, optimizes process integration, and facilitates 

interaction between the sensors, real-time clock module, LCD, 

and communication with the ThingSpeak IoT platform.  

A critical component of the system is the CONSULT 

interrupt routine, which allows the user to display on the LCD 

screen the latest alert events related to exposure to excessive 

gas levels. According to NTC 6199 [12], the permissible CO₂ 

concentration is set at 700 ppm for an exposure time ranging 

from 1 to 8 hours. In real-time applications, as shown in Fig. 2, 

the use of interrupts to manage high-priority events is essential, 

as it enables immediate system response without disrupting the 

execution of the main algorithm. 

To validate the system’s functionality, preliminary testing 

was conducted using ISIS Proteus 8.17 SP2 simulation software 

[13], as shown in Fig. 3. The simulation included the Tensilica 

L106 microcontroller integrated into the ESP8266 module, 

which provides Wi-Fi connectivity for transmitting data to the 

ThingSpeak platform. 
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Figure 2. Flowchart and system interrupt routine for indoor air quality 

monitoring. 

 
 

 
Figure 3. Simulation of monitoring system in ISIS Proteus. 

 

The simulation integrates the DHT11 temperature and 

humidity sensor, the MQ-4 sensor for CO₂ concentration 

detection, the DS3231 RTC digital calendar module to label the 

data with date and time, and a 16x2 LCD with I2C adapter. In 

addition, there is a button to display on the screen the latest 

events recorded when CO2 levels exceed the established limit. 

The Schematic Capture and Printed Circuit Board (PCB) 

Layout functionalities of the ISIS Proteus software were used 

to design and generate the system’s PCB (See Fig. 4).  

These tools enable seamless integration between the 

schematic and the physical layout, facilitating the organization 

of components and the routing of connections essential for the 

device’s proper operation. 

 

 
Figure 4. PCB design of the monitoring device in ISIS Proteus. 

 

IV.     RESULTS AND DISCUSSION 

The developed system enables data retrieval in multiple 

formats: as numerical values displayed on the LCD screen, as 

graphical representations via the ThingSpeak IoT platform, and 

optionally through a smartphone interface using ThingView – 

ThingSpeak Viewer, available on the Google Play Store for 

Android devices. Sample data collected by the system are 

presented in Fig. 5 and Fig. 6, demonstrating its capability to 

effectively monitor and visualize environmental conditions. 

 

 
Figure 5. Humidity and temperature were recorded during testing. 

 

 
 

Figure 6. Concentration of Carbon Dioxide (CO2) obtained in the tests. 
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To conduct the tests, environmental conditions in the 

Digital Electronics Laboratory of the School of Electronic 

Engineering at the Pedagogical and Technological University 

of Colombia, Tunja campus, were monitored. To modify CO₂ 

levels in a controlled manner, the device was exposed to a 

lighter or briquette, which contains gases such as butane (C₄H₁₀), 

propane (C₃H₈), and methane (CH₄). When burned, these gases 

generate carbon dioxide (CO₂) and small amounts of Volatile 

Organic Compounds (VOCs).  

For a rapid evaluation of the alert system, a critical 

exposure time of 10 seconds was configured, differing from the 

NTC 6199 standard [14], which establishes maximum exposure 

times of 1 hour and 8 hours based on permissible levels. The 

exposure time parameter can be adjusted in the algorithm to 

ensure compliance with regulatory requirements in real-world 

applications. Fig. 7 illustrates some of the alert events recorded 

during testing.  

Alarm events are logged on a 4GB microSD card in *.txt 

format, structured for compatibility with CSV files to facilitate 

further analysis. A sample of the recorded alarm logs is shown 

in Fig. 7, illustrating the comparison between these records and 

the data transmitted to ThingSpeak, resulting in an accuracy of 

87%. The observed discrepancy in timestamp synchronization 

is attributed to the 30-second latency inherent to the free version 

of ThingSpeak. 
 

 

 
Figure 7. Alarm log stored in CSV-compliant TXT file. 

 

The system systematically stores alert events on the 

microSD card, building a database for future applications 

involving Artificial Intelligence IA-based analysis. Although 

email or SMS notifications were not implemented, these 

functionalities are available through ThingSpeak, and their 

configuration can be referenced in the MathWorks® Help 

Center. 

Finally, the IoT-based air quality monitoring system is a 

cost-effective solution, with a total development cost of 26.64 

USD. Fig. 8 and Table I provide detailed cost breakdowns. The 

component prices were obtained from the Mouser Electronics 

website [18]. 

The proposed system improves upon previous air quality 

monitoring approaches by integrating real-time IoT capabilities 

and efficient data storage. Chouhan et al. [3] employed the MQ-

4 sensor for CO₂ detection; however, their system lacked cloud 

connectivity, limiting remote monitoring capabilities. Similarly, 

Bhattacharya et al. [7] implemented a wireless sensor network 

for comprehensive indoor air quality assessment, but its 

complexity and cost reduce its accessibility. 

 

 
Figure 8. Implementation of the IoT air quality monitoring system. 

TABLE I. COST OF AIR QUALITY MONITORING IOT SYSTEM. 

Component Cost 

ESP32 8.0 USD 

MQ-4 2.17 USD 

DHT11 1.83 USD 

DS3231 4.35 USD 

MicroSD Module 4GB 4.57 USD 

Cables and box 5.72 USD 

Total 26.64 USD 

 

In contrast, the system presented in this work employs the 

MQ-135 sensor for multi-gas detection, systematically logs 

alarm events on a microSD card, and supports future AI-based 

analysis. The total development cost of the proposed system 

was 26.64 USD, substantially lower than the USD 122 required 

for the Klein Tools ET120 [15] gas detector and the USD 485 

for the AR8900 Smart Sensor [16], underscoring its economic 

feasibility compared to commercial alternatives. Although the 

current implementation focuses on CO₂ monitoring, the system 

is designed to be scalable, enabling the integration of additional 

MQ-X series sensors for multi-gas detection and broader 

environmental monitoring capabilities. 

 

V. CONCLUSION AND FUTURE WORK 

Systems for monitoring and controlling environmental 

variables—such as temperature, humidity, and gas 

concentrations—are essential in critical environments such as 

laboratories and offices, where sudden fluctuations can pose 

health and safety risks. These systems enable early warning 

mechanisms, enhance occupational health and safety, and 

ensure compliance with regulations such as [14] and ASHRAE 

62-2001 [17], which define critical gas concentration limits in 

enclosed spaces. By adhering to air quality standards, these 

systems contribute to maintaining a healthy and safe indoor 

environment. 

The ESP8266 board is well-suited for IoT applications due 

to its versatility, integrated Wi-Fi™ module, and compatibility 

with serial communication protocols. Its seamless integration 
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with the Arduino IDE and extensive library support simplifies 

its implementation in complex projects, offering efficient and 

flexible connectivity. Additionally, for more demanding 

applications, the ESP32 board presents a superior alternative, 

featuring increased RAM capacity (from 64 KB to 512 KB), 

higher processing speed (from 80 MHz to 240 MHz), and 

improved Analog-Digital Converter (ADC) resolution from 10 

bits to 12 bits, among other enhancements. 

However, a key limitation of the current prototype is its 

dependence on the free tier of ThingSpeak, which introduces a 

30-second latency in data updates. Additionally, the absence of 

real-time notifications via email or SMS may delay critical 

alerts in emergencies. Future research could address these 

limitations by integrating IoT platforms with lower latency, 

implementing edge computing for local decision-making, and 

incorporating artificial intelligence algorithms for predictive air 

quality analysis. These enhancements would significantly 

improve system performance, responsiveness, and reliability in 

real-world applications. 
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Abstract - Hydrogen is a clean energy source that is 
essential for responding to climate change and ensuring energy 
security. Typically, hydrogen storage vessels are exposed to 
high pressure environments, which can pose an immediate risk 
of explosion in the event of failure. Therefore, technologies are 
needed to detect and resolve failures early through diagnostics 
of hydrogen storage vessels. In this paper, we propose a deep 
learning-based multimodal failure detection technique to 
ensure the safety of hydrogen storage vessels. To develop the 
failure detection technique, we first performed tensile tests on 
the storage vessel material to collect Acoustic Emission (AE) 
signals, and also collected failure and normal data based on 
tensile load graphs. The Synthetic Minority Over-sampling 
Technique (SMOTE) method was applied to solve the data 
imbalance. Finally, we developed a multimodal deep learning 
model using time-domain waveforms and frequency spectra 
for failure detection, and the proposed method achieved an 
accuracy of 99.19% and an F1 score of 0.9733, demonstrating 
excellent failure detection performance. Furthermore, we 
confirmed that the proposed method shows better performance 
than using only time-domain waveforms or frequency spectra, 
and we expect that this research will contribute to the safety 
diagnosis and maintenance of hydrogen storage vessels. 

Keywords - Hydrogen Storage Vessels; Acoustic Emission; 
Multimodal; Deep-learning. 

I. INTRODUCTION 
Hydrogen is a clean energy source that emits no 

greenhouse gases when burned, and is essential for 
responding to climate change and ensuring energy security. 
However, hydrogen exists as a gas at room temperature and 
is highly flammable and bulky, requiring advanced storage 
and transport technologies. Therefore, high-pressure vessels 
for compressed hydrogen storage are essential for hydrogen 
mobility and infrastructure development [1]. 

In general, hydrogen storage vessels are classified into 
types 1 to 4 according to their materials and structures, as 
shown in Figure 1. Type 1 vessels, made entirely of metals 
such as aluminum or steel, are cost-effective and ideal for 
transporting hydrogen at low pressures of 200 bar [2]. Type 
2 vessels consist of a metal liner reinforced with an outer 
layer of Glass Fiber  Reinforced Plastic (GFRP), allowing a 
maximum pressure limit of 300 bar. Type 3 vessels enhance 
this design by using Carbon Fiber  Reinforced Plastic 
(CFRP) as the outer layer, significantly increasing the 
pressure limit to 700 bar. Unlike Type 2, which does not 
fully wrap the liner with fibers, Type 3 uses a fully wrapped 

structure, providing superior reinforcement. Type 4 vessels, 
on the other hand, use a resin liner as the inner layer and 
CFRP as the outer layer, achieving a lightweight design 
while maintaining the same pressure rating as Type 3. 

 

 
Figure 1.  Types of hydrogen gas storages: (a) Type 1, (b) Type 2, (c) 

Type 3, (d) Type 4. 

The metallic composition of Type 1 hydrogen storage 
vessels makes them susceptible to fatigue, corrosion and 
cracking, increasing the risk of hydrogen leakage or 
explosion. Periodic inspection and failure detection are 
therefore essential for safety. Traditional diagnostics often 
require disassembly of the vessel, which is not feasible 
during operation. Failure of a high-pressure vessel poses an 
immediate risk of explosion, emphasizing the need for in-
service diagnostics to detect and resolve failures early, while 
maintaining reliability and efficiency. Non-Destructive 
Testing (NDT) technologies are therefore essential. NDT 
technologies, such as ultrasonic, radiographic and Acoustic 
Emission Testing (AET) provide real-time in-service safety 
diagnostics. AET is particularly effective because it analyses 
acoustic signals generated during failure, making it ideal for 
high-pressure vessel diagnostics. These methods can ensure 
safety while preventing catastrophic events such as 
explosions. However, previous research has focused on 
specific materials or single failure modes, and in particular 
on Type 2 and Type 3 vessels.  

Therefore, this paper proposes a deep learning based 
multimodal failure detection technique to ensure the safety of 
Type 1 hydrogen storage vessels. To do so, we first perform 
tensile tests on specimens made of aluminum, stainless steel 
and steel to collect AE signals during failures, and construct 
a dataset of AE signals using tensile load plots. A 
multimodal deep learning model using time-domain 
waveform and frequency spectrum data is developed to 
improve detection accuracy and reliability. As a result, the 
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multimodal model achieved an accuracy of 99.19% and an 
F1 score of 0.9733, demonstrating excellent performance.  

II. BACKGROUNDS 

A. Failure Modes of Hydrogen Storage Vessels 
Failures in hydrogen storage vessels refer to structural 

deformations caused by external impacts, exceeding 
allowable pressure limits or material durability issues. The 
high temperature and high pressure conditions resulting from 
repeated loading and unloading cycles lead to fatigue-related 
failures, and Type 1 vessels are particularly susceptible due 
to their lower allowable pressure limits. 

As Type 1 vessels are made entirely of metal, any 
potential failures are also limited to metal failures. Metals 
have a single molecule structure and failures occur 
sequentially depending on the fatigue level of the material. 
Failures in metals are classified into elasticity, plasticity and 
fracture. Elasticity occurs when the stress exceeds the yield 
strength, i.e., a deformation that is reversible when the stress 
is removed. Plasticity, on the other hand, refers to the 
permanent deformation that occurs even after the stress is 
removed [3]. Fracture refers to cracks and ultimate fracture 
caused by excessive stress. Figure 2 shows examples of the 
three failure modes in Type 1 hydrogen storage vessels. 

 
 

Figure 2.  Failure modes of Type 1 vessel: (a) Elasticity, (b) Plasticity, (c) 
Fracture. 

 

B. AET-Based Non-Destructive Testing 
NDT inspects objects without damage, enabling real-time 

failure detection in hydrogen storage tanks. AET evaluates 
material failure by analyzing the elastic waves generated 
during deformation. AET systems consist of AE sensors for 
signal detection, Data Acquisition (DAQ) systems for digital 
signal conversion, and analysis for interpretation. Figure 3 
shows an example of an AET system. 

 

Figure 3.  An Example of an AET system. 

Accurate AE data acquisition requires appropriate 
sampling rates. Hits are defined using parameters such as 
preamplifier gain, threshold and Hit Definition Time (HDT). 

Noise is filtered with High Pass Filters (HPF) and Low Pass 
Filters (LPF), and signal features are extracted in the time 
domain (e.g. maximum amplitude, rise time) and frequency 
domain (e.g. peak frequency, average frequency). Figure 4 
illustrates the AE waveform and the DAQ parameters used to 
define hits. To collect accurate data from AE sensors, an 
appropriate sampling rate must be set. Event occurrences, or 
hits, are defined using parameters such as preamplifier gain, 
threshold, Peak Definition Time (PDT), Hit Definition Time 
(HDT), Maximum Hit Duration (MHD) and Hit Lockout 
Time (HLT). 
 

Figure 4.  Example of DAQ parameters for defining hits. 

C. Tensile Testing 
Tensile testing involves pulling customized specimens 

using a Universal Testing Machine (UTM) to apply stress 
until failure occurs. Figure 5 shows an example of an AET-
based tensile test and a tensile stress graph. When a 
specimen reaches failure, its properties change, resulting in 
variations in the applied stress. Generally, failures appear as 
inflection points on the tensile load graph. By analyzing 
these inflection points, changes in the specimen properties 
can be identified. 
 

Figure 5.  (a) Tensile testing, (b) Tensile-load graph and inflection point. 

III. RELATED WORKS 
Research on hydrogen storage failure is divided into 

Finite Element Model (FEM)-based approaches and AE 
signal analysis methods. FEM simulates stress and fatigue 
under operational conditions and analyses potential failures 
experimentally [4]. However, FEM studies primarily focus 
on correlations between failure phenomena and fatigue levels, 
limiting their application for real-time detection during 
operation. In contrast, AET-based research is simpler as it 
avoids detailed numerical analysis and relies on acoustic 
signals generated during failures. This allows for real-time 
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failure detection. However, AET studies have mainly 
focused on composite materials, such as CFRP in Type 2, 3 
and 4 vessels, and there is a lack of research on Type 1 
vessels, despite their widespread use and advantages. 

Type 1 vessels are made from a variety of metals such as 
steel, stainless steel and aluminum and require extensive 
failure analysis. Recent AET and deep learning studies have 
analyzed failures in metallic vessels, but have been limited to 
4130X steel [5]. Therefore, this study addresses this gap by 
collecting AE signals from steel, stainless steel, and 
aluminum through tensile testing and constructing an 
accurate dataset. A multimodal classification model was also 
developed using time domain waveforms and frequency 
spectrum data. 

IV. DATA PROCESSING 
For safety reasons, it is impractical to directly charge and 

discharge Type 1 hydrogen storage vessels or to apply 
destructive pressure. Instead, AE failure signals have been 
obtained by performing tensile tests on specimens of 
container materials under predetermined parameters. 

A. Data Acquisition 
In this study, the specimens included stainless steel 

(SUS304), steel (SS400) and aluminum (AL6106-T6), all of 
which are widely used in hydrogen storage vessels [6][7]. 
These specimens were fabricated in accordance with Korean 
standard KS B 0801 No. 5, and Table Ⅰ shows example 
images of each specimen. 

TABLE I.  EXAMPLE IMAGES OF SPECIMENS 

Material Standard Example Images 

Stainless steel SUS304  

Steel SS400  

Aluminum AL6106-T6  

 
The specimens were subjected to tensile testing to induce 

material specific failures. Tensile loads were applied using 
the Sintech 30/G model (MTS system) and AE signals were 
recorded using the IDK-AES-H150 resonant sensor at 1 
MHz. Failures typically occur below 500 kHz, while signals 
below 10 kHz are often noise or equipment vibration, so a 
digital filter was applied to remove noise. Hit detection 
parameters were set to accurately capture peak values and 
event intervals. Table Ⅱ summarizes the DAQ settings used 
in the experiment. 

Tensile tests were performed on three specimen types to 
collect AE waveform data. Specimens were loaded to failure 
and only event waveform data was collected based on the 
sensor settings. Normal data was also collected by attaching 
AE sensors to Type 1 vessels operated within allowable 
pressure limits. Figure 6 shows the test environment and 
failed specimens, while Table Ⅲ lists the number of samples 
collected. 
 

Figure 6.  (a) Tensile testing environment, (b) Specimens after testing. 

 

TABLE II.  DAQ PARAMETERS CONFIGURED TO DEFINE HITS 

Parameter Type Parameters Value Unit 

Sensor 

Sampling Rate 1 MHz 

Pre-Amp Gain 40 dBae 

Threshold 30 dB 

Digital Filter 
High Pass Filter (HPF) 10 kHz 

Low Pass Filter (LPF) 500 kHz 

Hit Detection 

Peak Definition Time (PDT) 200 μs 

Hit Definition Time (HDT) 400 μs 

Maximum Hit Duration (MHD) 1 ms 

Hit Lock-out Time (HLT) 10 ms 

TABLE III.  NUMBER OF COLLECTED DATA 

Specimen Number of data 

Stainless steel 333 

Aluminum 2,056 

Steel 44,792 

Type 1 Storage 
(Normal) 69,243 

 

B. Data Labeling  
Metal failure occurs when the tensile load exceeds the 

yield strength, changing atomic arrangements and material 
properties. These changes vary with the rate of load increase, 
allowing failure regions to be identified using a time 
dependent load curve. The elastic region occurs when 
stresses remain below the yield point, causing minimal 
deformation and a continuous increase in load. Plasticity 
begins when the stress exceeds the yield point, resulting in 
significant deformation and slower load increase. An 
inflection point marks the transition from elasticity to 
plasticity. Fracture occurs when the material can no longer 
support the stress, causing the load to drop rapidly to zero, 
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creating another inflection point. These points divide failure 
regions and matching their times to the event waveforms 
allows failure labelling. Figure 7 illustrates tensile load 
graphs and failure region subdivisions, summarized in Table 
Ⅳ. 

 

C. Data Preprocessing 
The dataset was pre-processed for deep learning training, 

incorporating frequency domain information to improve 
performance. 

 
1) Unify Waveform Lengths and Min-Max Scaling 

All waveform lengths were unified to 1024 samples. AE 
waveforms vary in length depending on event duration, but 
consistent input sizes are required for deep learning. This 
study determined the optimal length to minimize information 
loss and computational load. Waveform lengths were 
statistically analyzed and outlier information segments were 
identified to set the unified length to 1024, as shown in the 
histogram in Figure 8. 

 
 

Figure 8.  Histogram of  waveform lengths.  

Second, the amplitude of the waveform was scaled to [-1, 
1] using min-max scaling. Without scaling, data values could 

vary widely, causing instability and inefficiency during the 
weight update process. Scaling creates a uniform distribution, 
reducing variability and stabilizing training. Since waveform 
data includes negative values, the scaling range was set to [-1, 
1], as expressed below: 

                   (1) 

where max(x) and min(x) is: 

                   (2) 

            (3) 

For x, the baseline is 0, but x' maps the maximum and 
minimum of x to 1 and -1 respectively. If their absolute 
values differ, the centers of the waveforms can vary, 
increasing the variance of the data. To overcome this, the 
larger absolute value is mapped to 1 and the smaller to -1, 
centering the waveform at 0. Figure 9 shows the original 
waveforms after min-max scaling and alignment to 1024 
length, comparing standard scaling and the adapted method. 
 
 

Figure 9.  Plot a waveform after preprocessing: (a) General min-max, 
scaling (b) Ours. 

 
2) Construction of Frequency Spectrum Dataset 

Understanding both intrinsic and frequency 
characteristics is essential in waveform analysis. Frequency 
characteristics minimize the effect of sensor type and 
placement, facilitating generalized classification methods. To 
incorporate this, the frequency domain data was constructed 
using the Fourier Transform (FT). As the signals were digital 
and discrete, the Discrete Fourier Transform (DFT) was 
applied using the Fast Fourier Transform (FFT) algorithm 
for computational efficiency. 

Figure 7.  Tensile-load graph and failure region of each material 
specimens: (a) Stainless steel, (b) Steel, (c) Aluminum. 

 

Figure 1.   

 

 

TABLE IV.  TIME AND NUMBER OF ACQUIRED WAVEFORMS ACCORDING TO FAILURE REGIONS IN EACH SPECIMEN 

Specimen 
Time by Region (Seconds) Number of Waveforms 

Total 
Experiment Elasticity Plasticity Fracture Elasticity Plasticity Fracture 

Aluminum 100.54 0 ~ 57.21 57.2 ~ 100.4 100.4 ~ 100.5 1,583 467 6 

Steel 379.85 0 ~ 37.47 37.4 ~ 365.9 366.7 ~ 379.8 4,093 40,621 78 

Stainless steel 728.94 0 ~ 33.94 34.6 ~ 706.7 706.5 ~ 728.9 184 107 42 

Total 5,860 41,195 126 
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The FFT transformation produced discrete frequency 
spectrum graphs as line plots of the frequency distribution. 
Unlike the waveform data, the frequency spectrum lacks 
negative values and was scaled to [0, 1]. Each FFT result 
contained 1024 samples, corresponding to the length of the 
waveform. Due to y-axis symmetry, only positive 
frequencies were retained, reducing the length to 512. 
Table Ⅴ shows examples of the original waveform, the 
pre-processed waveform and the scaled spectrum data after 
FFT transformation. 
 

TABLE V.  EXAMPLE OF PREPROCESSED WAVEFORM AND 
FREQUECY SPECTRUM 

Data Type Specimen Example 

Wavefor
m 

Stainless 
steel 

 

Aluminum 

 

Steel 

 

Frequency 
Spectrum 

Stainless 
steel 

 

Aluminum 

 

Steel 

 
  

 

V. CLASSIFICATION MODEL FOR FAILURE DETECTION 
A deep learning model was developed using the 

constructed dataset to classify type 1 storage failures. 
Fracture, which indicates material rupture and explosion, 
was excluded as it is irrelevant to safety diagnostics. Only 
elasticity, plasticity and normal data were used to 
distinguish these states. The data set was divided into 
training, validation and test sets in a ratio of 60:20:20. 
However, there is a significant imbalance between 
elasticity and plasticity data. To address this, the SMOTE 
method was used to balance the training data [8]. Table Ⅵ 
shows the number of training, validation and test data 
augmented by SMOTE.  

A binary failure and normal classification model was 
trained and tested using the collected dataset. The model, 
designed as a one-dimensional convolutional neural 

network (1D-CNN), extracted features from both 
waveforms and frequency spectra for classification. To 
better capture temporal characteristics, an extended causal 
1D-CNN architecture was used. Figure 10 shows the 
structure of the diluted causal 1D CNN. 

TABLE VI.  NUMBER OF TRAIN/VALID/TEST DATASET 

Failure 
Mode 

Train 
Validation Test Before 

Augmentation 
After 

Augmentation 
Elasticity 3,516 41,545 1,172 1,172 
Plasticity 24,717 41,545 8,239 8,239 
Normal 41,545 41,545 13,849 13,849 
Total 69,778 124,635 23,260 23,260 
 
 

Figure 10.  Dilated Causal 1D-CNN 

Convolution, batch normalization and max-pooling 
(size: 2) layers were used to process the input data to 
extract features, which were then transformed into a 1-
dimensional vector with 3 outputs using global average 
pooling, bypassing the need for a fully connected layer. 
The outputs were passed through the softmax activation 
function to compute the final probabilities for each failure 
type. The Nadam optimizer was used to train the model. 
This study evaluated the classification performance under 
three input scenarios: waveform data only, frequency 
spectrum data only, and combined features of both. In 
addition, the ResNet-50 architecture was used as the 
feature extractor to evaluate the performance 
improvements from a deeper network design.  

Table Ⅶ shows the experimental results for models 
using different inputs and architectures. The result shows 
that the 12-layer multimodal model achieved the best 
performance with 99.19% and an F1 score of 0.9733. The 
superior results of the flatter model compared to ResNet 
suggest that a more complex architecture is not necessary 
for this classification task. Furthermore, the higher 
performance of the multimodal model compared to single 
input models (waveform or frequency spectrum) indicates 
that the two types of data are complementary for this 
classification problem. Figure 11 shows the structure of 
the best performing model, i.e. the 12-layer 1D CNN 
multimodal model. 
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VI. CONCLUSION 
This paper proposes a deep learning-based multimodal 

fault detection technique to ensure the safety of hydrogen 
storage vessels. To this end, we first collected AE signals 
from Type 1 hydrogen storage vessels by tensile testing 
and constructed data sets for elastic, plastic and normal 
regions. We then developed a multimodal deep learning 
fault detection model using waveform and frequency 
spectral data. From the experimental results, we confirmed 
that the proposed multimodal model achieved an accuracy 
of 99.19% and an F1 score of 0.9733, demonstrating 
excellent failure detection performance. In the future, the 
proposed method is expected to enable real-time fault 
detection of Type 1 vessels, contributing to efficient and 
reliable safety diagnostics. 
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TABLE VII.  CLASSIFICATION PERFORMANCE 

Input Data Type Model Structure Accuracy Precision Recall F1-Score 

Waveform Only 
12-Layer 1D-CNN 98.87% 0.9603 0.9622 0.9613 

ResNet-50 1D-CNN 98.83% 0.9602 0.9655 0.9628 

Frequency 
Spectrum Only 

12-Layer 1D-CNN 98.94% 0.9599 0.9712 0.9654 

ResNet-50 1D-CNN 98.93% 0.9604 0.9624 0.9614 

Multimodal 
12-Layer 1D-CNN 99.19% 0.9723 0.9743 0.9733 

ResNet 1D-CNN 98.89% 0.9590 0.9686 0.9637 

 
 
 
 

 
Figure 11.  Proposed 1D-CNN multimodal model. 
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Abstract— Disaster detection is vital for smart city resilience 

and public safety. This paper presents a framework for 

detecting fire and flood incidents using the You Only Look 

Once version 8 (YOLOv8) algorithm on a Raspberry Pi 

Internet of Things (IoT) device, which transmits data to IoT 

operation center. An initial experiment using a laptop and 

mobile phone demonstrated the effectiveness of machine 

learning in fire detection. 

Keywords-Smart Cities; Disaster Detection; Fire Detection; 

Flood Detection; IoT; YOLOv8; Artificial Intelligence (AI);  

Machine Learning (ML); Raspberry Pi. 

I.  INTRODUCTION  

The rapid expansion of urban populations has placed 
increasing pressure on city infrastructure, requiring 
innovative solutions to enhance resilience and disaster 
preparedness. Smart cities leverage technology to mitigate 
risks posed by natural and man-made disasters, integrating 
AI, IoT devices, and real-time data processing to improve 
urban safety. The goal of smart cities is to leverage 
technology and data analytics to improve the quality of life 
in urban areas [1]. There are several ongoing research efforts 
focused on using technology to monitor and manage in-city 
disasters, either at the macro level or for specific types of 
disasters [2]. 

This paper presents a comprehensive disaster detection 
framework that integrates IoT-based environmental sensing, 
AI-driven image processing, and real-time data transmission 
to an IoT operations center. The framework is designed to 
detect and respond to disasters such as fires and floods using 
a combination of Closed-Circuit Television )CCTV ( 
surveillance, edge AI processing on Raspberry Pi devices, 
and automated alerts to emergency responders. 

The core contribution of this work is the implementation 
and validation of an AI-based disaster detection system 
within the proposed smart city framework. Specifically, we 
evaluate the effectiveness of YOLOv8, a state-of-the-art 
object detection algorithm, in identifying fire hazards using 
real-time image analysis. Additionally, we discuss the 
potential for extending the system to flood detection. 

The remainder of the document is organised as follows: 
Section II discusses the challenges in traditional disaster 
detection systems, emphasizing the need for real-time AI-
based solutions. Section III introduces the proposed disaster 
detection framework, outlining its key components and role 
in smart city resilience. Section IV details the system 
implementation, explaining how YOLOv8 and IoT 

components work together for fire and flood detection. 
Section V presents experimental results, highlighting the 
effectiveness of the proposed system in identifying fire 
incidents. Finally, Section VI discusses the broader 
implications, including potential improvements for flood 
detection and integration into smart city infrastructure. 

II. CHALLENGES IN TRADITIONAL DISASTER DETECTION 

SYSTEMS 

Conventional disaster detection systems deploy various 
types of sensing devices, which can be categorized into 
different groups. Static sensing devices are permanently 
located at a specific geographical site, cumulating data over 
time. Examples include seismometers and weather sensors. 
On the other hand, mobile sensing devices are portable and 
can be strategically deployed at various locations or moved 
over time. Such devices include smart phones and 
Unmanned Aerial Vehicles UAVs [3].  

Despite the technological advancements in disaster 
sensing and detection devices, the currently deployed 
disaster detection systems face several challenges in 
effectively detecting disasters [4]. These challenges can be 
categorized into three groups: technological challenges, 
operational challenges, and situational challenges [5]. 

The first technological challenge is slow disaster 
response time. The disaster response time consists of three     
time delays: sensing time, processing time, and 
communication time. The traditional disaster detection 
systems take considerable time to detect disasters due to their 
reliance on fixed and static sensors. These sensors must first 
sense the arrival of a disaster. Then, the cumulative data are 
sent to a centralized location for processing, which results in 
significant communication delays. The second technological 
challenge is a lack of integration. Currently, the disaster 
detection systems in developed countries do not integrate 
with one another, even though multiple disasters are detected 
by using different devices on numerous occasions. As a 
result, significant time delays occur in detecting and 
preventing disasters. It is vital that systems be developed that 
can share disaster information in real time. The third 
technological challenge is a lack of high-resolution data. 
Currently, most of the data used in the detection systems are 
remotely gathered data, which restrict the detection systems 
from generating high-resolution data  [6]. This limitation 
results in difficulties in precisely locating the site of a 
disaster.  

The first operational challenge is the lack of trained 
human resources [7]. Most of the developing countries’ 
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governments have limited resources to employ. The second 
operational challenge is maintenance costs [8]. The structural 
deterioration of the sensing devices is a key reason for 
inoperable disaster detection systems. The third operational 
challenge is community engagement [9]. A lack of 
community awareness and participation can lead to ignored 
emergency alerts, delaying evacuation and reducing disaster 
response effectiveness. While many disaster detection 
systems have been successfully implemented in developing 
countries, the local community remains largely uninterested. 
As a result, several systems are rendered useless because the 
community does not provide adequate resources for 
operating the systems.                                                      

III. KEY COMPONENTS OF SMART CITIES FRAMEWORKS 

In recent years, numerous cities have adopted smart city 
frameworks, which outline principles, policies, and goals for 
smart city development [10]. The foundation for the 
frameworks is a definition of the essential components of 
smart city systems, describing what needs to be integrated 
and how this integration works [11]. 

The comprehensive framework for establishing advanced 
smart city systems is fundamentally centered around six key 
and crucial Smart City Pillars: Smart Governance & 
Education, Smart Living, Smart Healthcare, Smart 
Transportation, Smart Economy, and Smart Environment 
[12]. These vital pillars serve as the essential focus areas, 
meticulously aimed at significantly enhancing urban life, 
fostering community engagement, and ensuring a sustainable 
future for all residents. Each of these pillars plays a unique 
and impactful role in fostering innovation while improving 
overall quality of life within metropolitan areas. By 
integrating these pillars effectively, cities can promote 
technological advancement and create a conducive environ- 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

ment for growth and development. Furthermore, the 
interconnectedness of these pillars increases the potential for 
synergies, enabling cities to tackle complex urban challenges 
more efficiently and sustainably. The holistic approach of the 
framework ensures that every aspect of city living is 
considered, providing a comprehensive strategy for modern 
urban management and planning, thereby encouraging a 
well-rounded development that benefits everyone. 

The proposed framework consists of three core layers, 
each playing a distinct role in disaster detection: 

1. IoT Sensor and Camera Layer – This includes 
Raspberry Pi-based edge AI devices, CCTV cameras, and 
environmental sensors deployed across the city. These 
devices capture real-time visual and environmental data. 

2. AI Processing and Detection Layer – The captured 
data is analyzed using YOLOv8 running on Raspberry Pi to 
detect fire or flood incidents. This edge computing approach 
ensures faster detection and reduces reliance on cloud 
processing. 

3. IoT Operations Center and Response Layer – 
Detected events are transmitted via wireless or wired 
networks to a central operations center, where emergency 
services are notified. Alerts can also be sent to residents via 
mobile applications or warning systems. 

By structuring the solution within this framework, we 
ensure that the proposed system is scalable, adaptable, and 
aligned with existing smart city initiatives. 

IV.        SMART CITY FRAMEWORK 

A plethora of smart city frameworks can be unearthed 
through a wide-ranging investigation of publicly accessible 
smart city features, models, methodologies, scaffolds, 
architectures, and pilot schemes [13] . 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
      

Figure 1.  Smart City Framework  [14] .  
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     The smart city framework in Figure 1 is an adaptive 
model that integrates key components of smart city 
development, combining core pillars, specialized domains, 
advanced technologies, and social impacts. When focusing 
on a specific activity—such as waste management or smart 
healthcare—only relevant elements are retained, streamlining 
efforts and emphasizing expected social benefits like public 
health, sustainability, and economic growth. 

Structured around six central pillars, the framework 
aligns targeted domains such as smart homes, traffic 
optimization, and waste management with data-driven 
decisions and robust infrastructure. It highlights cutting-edge 
technologies, including IoT, AI, blockchain, and renewable 
energy, ensuring seamless operation through a strong 
network infrastructure. 

By linking domains and technologies to tangible 
outcomes, the framework offers a focused, efficient, and 
socially impactful roadmap for smart city initiatives. it is 
important to address data security, particularly in data 
transmission. Ensuring the authenticity and integrity of 
transmitted data can prevent cyber threats, misinformation, 
and unauthorized access. Implementing encryption, secure 
communication protocols, and blockchain-based verification 
could strengthen the system against tampering or data 
manipulation, enhancing trust and reliability in disaster 
response operations. 

V. PRPOSESD DISASTER DETECTION SMART CITY 

FRAMEWORK 

A Disaster Detection Framework (DDF) for smart cities, 

as shown in Figure 2, integrates  advanced technologies and 

smart city components to enhance fire prevention, detection, 

and response while promoting sustainability. IoT sensors, 

Geographic Information System (GIS), and weather 

monitoring systems are deployed to track fire risks and 

detect incidents in real time, while AI and edge computing 

analyze data for early detection and predictive modeling. 

Operations centers coordinate responses, leveraging 

adaptive traffic systems for evacuation routes and notifying 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

communities through automated alerts. Smart buildings and 

resilient infrastructure are equipped with automated safety 

measures, and waste management systems handle post-fire 

debris sustainably. 
Community engagement and public safety initiatives 

educate citizens on fire prevention, while renewable energy 
sources power detection systems, ensuring sustainability. 
This holistic approach combines technology, smart city 
domains, and proactive strategies to minimize fire risks and 
enhance safety in urban environments. 

VI.  AI & ML ROLE IN DDF 

 The advancements of AI and ML have made urban 
centers smarter and more self-sufficient [15]. However, the 
sustainable development of smart cities is still an ongoing 
challenge, especially in disaster-prone areas. These 
technologies can monitor and identify a disaster, as well as 
estimate the resources needed to handle it. 

AI and ML offer data analysis tools that can enhance 
performance beyond traditional methods, fostering 
innovation in diverse fields. Natural and man-made disasters 
significantly affect societal development, underscoring the 
importance of early detection to reduce risks, economic 
losses, and casualties [16]. 

Despite great interest in using artificial intelligence and 
machine learning for disaster detection, several obstacles 
must be overcome to ensure successful implementation. 
Primarily, the quality and availability of data pose significant 
challenges. While many cities provide access to public data, 
such datasets are often not collected with the same 
parameters or standards, limiting their comparability. 
Moreover, the implementation of smart city technologies is 
frequently hindered by privacy concerns, particularly 
regarding the use of personal data. 

In modern smart cities, disaster detection systems are 
crucial for safety. Urbanization has increased flood and fire 
vulnerabilities. The object detection technology has evolved 
significantly in recent years, driven by its successful 
applications in various domains. The development of these 
detectors follows a “model zoo” approach, where different 

Figure 2. Proposed Disaster Detection Smart City Framework.    
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models trained using varying methodologies are made 
publicly available [17]. 

The YOLO series is one of the most well-known object 
detector families. In particular, YOLO version 8 (YOLOv8) 
is a complete object detection and instance segmentation 
model that overtakes its predecessors [18]. It uses the 
framework for model implementation, training, evaluation, 
and inference. The YOLO family of models has played a 
pioneering role in advancing real-time object detection, 
owing to their unique architecture that integrates model 
training and inference on a single neural network. YOLOv8 
excels as a real-time object detection model, quickly 
identifying and classifying objects within diverse classes in 
images and videos. It utilizes a single convolutional neural 
network to simultaneously predict bounding boxes, class 
probabilities, and object counts for detected classes [19]. 
YOLOv8 architecture consists of five key stages: image 
preprocessing and augmentation, backbone, neck, detector, 
and postprocessing [20]. 

VII. FIRE AND FLOOD DETECTION IN SMART CITIES USING 

YOLOV8 

Fire is one of the disasters that poses a significant threat 
to human life in urbanized areas. This is compounded by 
other potential hindrances based on the infrastructure. Fire 
detection in cities is particularly difficult as they are typically 
crowded spaces, leading to obstructions in the view field of 
the cameras. Furthermore, flames in general spread rapidly, 
leading to the idea of having an early detection mechanism 
[21].    

Based on the above, integrating the algorithm with 
preexisting CCTV cameras on the roads would be an 
efficient alternative. Currently, most detection systems rely 
on either thermal cameras or a combination of both thermal 
and visual cameras. This necessitates the need for a separate 
camera system installed in addition to the standard CCTV 
cameras on roadways. Consequently, a new detection 
framework that makes use of road surveillance CCTV 
cameras for fire detection is presented. Recent advancements 
in the YOLO family, namely YOLOv8, are utilized to train a 
model that can detect fires. There are various approaches to 
integrating this model, either with an already preexisting 
detection system based on image processing techniques or 
outside detection systems based on just monitoring the 
images. 

The urban environment poses an additional challenge for 
fire detection since fires are anticipated to be detected at a 
greater distance as opposed to other environments like 
industrial complexes. Hence, it is critical to have cameras 
that can cover a wider area. Empirical results with real-world 
implementation to monitor and detect fire in the 
surroundings of a highway are provided. Detection systems 
of this nature are necessary, particularly in high-speed 
roadways, as the response time for vehicles approaching an 
accident is crucial. Since the detection system is based on 
image processing techniques, the data can be processed in 
real-time on the edge to ensure rapid detection and a timely 
response. A thorough discussion of the framework is 
provided, along with case studies and examples where 

YOLOv8 has been useful in detecting fires [22]. This aims to 
provide effective implementations of such technologies and 
inspire the future and current endeavors in this field. 

Flooding is one of the most serious calamities in urban 
settings that arise due to sudden and massive downpour 
events with gradual drainage of the platform. A flood is a 
complex catastrophe that involves many crucial and 
complicated occurrences, which happen concurrently. 

There are many cataclysmic events that create flooding in 
a city, such as storms, tsunamis, dam breaking, heavy rain, 
melting snow, landslides, etc. Though there are many 
elements accountable for a flood catastrophe, urbanization is 
found to be the most evident one [23]. 

The real-time image processing-based flood detection is 
designed to detect flooding swiftly using the video stream 
taken from the camera placed on the roadside. The 
framework for flood detection in smart cities is implemented 
using YOLOv8. Flood can be detected using infrared, 
visible, or depth images taken from the camera installed in 
public places like traffic signals, malls, parking areas, etc. 
The video stream from the camera is processed using 
YOLOv8 to detect the flood situation. When flood is 
detected, it generates an alert which can be sent to the control 
room or concerned authority. The framework can be 
integrated with other sensors like rainfall, water depth, 
temperature, humidity etc. to take precautionary measures. 
The framework can also be used with the GIS system to view 
the flood affected area on the city map. The flood detection 
using YOLOv8 is tested with various videos taken from real 
urban flood scenarios during heavy downpour. The 
framework is successfully able to detect the flood condition. 

Fire detection can benefit from CCTV cameras, even if 
they are not infrared, due to their widespread installation in 
urban areas, reducing the need for additional infrastructure. 
Leveraging existing CCTV networks allows for cost-
effective fire monitoring, real-time surveillance, and 
integration with AI-based detection systems like YOLOv8, 
enabling early detection and response without requiring 
specialized thermal imaging cameras. 

VIII. IOT ROLE IN THE DETECTION 

      Raspberry, as shown in Figure 3, can serve as a 

powerful IoT edge device capable of running advanced AI 

models such as YOLOv8 to detect fire and flood incidents 

in real time. Equipped with camera modules and 

environmental sensors, the Raspberry Pi can analyze visual 

and sensor data locally, leveraging its processing power to 

identify potential hazards with high accuracy. Once a threat 

is detected, the device can connect to the country's Internet 
 

 
Figure 3.  Raspberry with Camera. 
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network via Wi-Fi, Ethernet, or cellular modules to transmit 

critical data, including alerts and images, to a centralized 

IoT operation center. This seamless integration enables 

authorities to respond swiftly to emergencies, enhancing 

disaster management efforts with a cost-effective and 

scalable solution. 

      Local processing with YOLO could enhance disaster 

detection by reducing latency and reliance on network 

connectivity, enabling faster responses. However, back-end 

processing allows for centralized analysis, resource 

optimization, and integration with larger datasets, making it 

more scalable. A hybrid approach, combining local edge 

processing for real-time detection with back-end 

verification, could improve efficiency and reliability. 

 

 
Figure 4. YOLO Model. 

 

      Figure 4 represents the architecture of object detection 

models. The one-stage detector processes input through a 

backbone for feature extraction, a neck to refine features, 

and a dense prediction layer to detect objects directly. The 

two-stage detector refines detection by using a sparse 

prediction layer, improving accuracy by first generating 

region proposals before classification.  

IX. THE PROPOSED MODEL ALGORITHM  

      Figure 5 presents the solutions architecture for an IoT-

enabled fire detection and response system, integrating 

UAVs and cameras. The system utilizes the YOLOv8 

algorithm for real-time fire detection by analyzing visual 

data from UAVs and surveillance cameras. An IoT network 

facilitates communication, with the IoT operation center 

managing data processing and response coordination. 

Continuous model training and feedback loops enhance 

detection accuracy and system performance. The network 

infrastructure ensures reliable connectivity, enabling rapid 

UAV deployment for fire suppression. This architecture 

demonstrates the integration of AI, IoT, and UAV 

technologies to improve fire safety in smart city 

environments. 

 
Figure 5. The Proposed Solutions Architecture. 

      Although YOLOv8 is used in different works, the 

authors only focus on one detection, either fire or flood [23] 

[24] [25]. Detecting fire and flood events in real time is a 

critical task for mitigating potential disasters and protecting 

people and property. This algorithm is proposed as a 

solution to the problem of automated fire and flood 

detection using the YOLO deep learning framework. By 

leveraging a single multi-class model, we can efficiently 

identify both threats within the same scene, simplifying the 

deployment process and reducing the computational 

overhead. 

      High-quality data is the foundation of any successful 

detection model. We begin by gathering a wide range of 

images showing fire and flood scenarios under various 

conditions (different lighting, angles, scales). We include 

some negative examples (images without fire or flood) to 

help the model learn what backgrounds typically look like. 

We use a labeling tool—such as LabelImg, Roboflow, or 

CVAT—to draw bounding boxes around the areas 

containing fire or flood. Each bounding box should be 

labeled with the appropriate class name: fire or flood. Once 

labeled, we split the data into training and validation sets, 

maintaining a similar distribution of classes in both sets. 

The directory structure typically follows YOLO’s expected 

format, and we will need a data.yaml file that specifies paths 

to images, the number of classes, and their names. 

      By developing and training a unified multi-class YOLO 

model with meticulously labeled datasets encompassing 

both fire and flood scenarios, the proposed algorithm 

effectively facilitates simultaneous real-time detection of 

these two critical hazards. The process begins with the 

collection and annotation of diverse images representing 

fire, flood, and non-threatening environments, which are 

subsequently organized into training and validation subsets 

adhering to YOLO’s standardized format. Utilizing the 

Ultralytics YOLO framework, the model undergoes 

extensive training to learn distinguishing features of each 

class, resulting in a robust best.pt weight file capable of 

identifying both fire and flood instances with high accuracy.  

 

 
Figure 6. Overview of The Proposed Solutions. 

 

      The main Python script integrates OpenCV to capture 

live video streams, wherein each frame is processed by the 

trained YOLO model to perform detections based on 
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predefined confidence and Intersection over Union (IoU) 

thresholds. Detected objects are annotated with bounding 

boxes and class labels directly on the video feed, enabling 

immediate visualization and potential activation of alert 

mechanisms. This streamlined approach not only enhances 

computational efficiency by employing a single model for 

dual-class detection but also ensures prompt and reliable 

identification of fire and flood events, thereby contributing 

significantly to automated disaster monitoring and 

mitigation systems. 

      Figure 6 presents the proposed solution, which 

integrates a Raspberry Pi running the YOLOv8 algorithm to 

detect fire and flood, transmitting real-time data to an IoT 

operation center. Additionally, UAVs are deployed to 

respond rapidly and assist in firefighting efforts. It also 

highlights the role of geographic distribution in detecting 

and tracking spreading disasters. By using IoT sensors and 

AI, the system enables real-time monitoring across urban 

areas, improving early detection and response efficiency to 

ensure that the framework is not just theoretical, but directly 

supports the proposed system, Table I clarifies how each 

framework component integrates with the disaster detection 

model. 

 
TABLE I.    PROPOSED FRAMEWORK COMPONENTS AND THEIR 

ROLES IN DISASTER DETECTION  

 

X. EXAMINATION OF THE ALGORITHM 

In our experiment, we utilized the YOLOv8 model - and 

algorithm as in Figure 7 - with a picture from [24] (see 

Figure 8) to detect fire as a potential hazard within a given 

environment. Initially, the model was employed without 

incorporating fire-specific learning, resulting in the 

detection of various objects present in the scene, but failing 

to identify fire accurately, as shown in Figures 9 and 10. 

However, after integrating fire learning detection into the 

model, it successfully recognized fire occurrences with 

improved precision. The experiment was conducted using a 

standard laptop for processing and presenting the fire 

images situations while a mobile phone is used as a real-

time camera to capture live video streams, demonstrating 

the feasibility of implementing fire detection in practical 

scenarios, as shown in Figures 11 and 12. 

 

Figure 7. The Proposed Python Script. 
 

 
 

Figure 8. Test Picture from [24]. 
 

 
 

Figure 9. Screenshot from the Laptop - No Fire Detection. 
 

  
 

Figure 10. Experiment on the Laptop - No Fire Detection. 
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Figure 11. Screenshot from the Laptop - Fire Detection. 
 

 
 

Figure 12. Experiment on the Laptop - Fire Detection. 

XI. CONCLUSION AND FUTURE WORK 

Smart city disaster detection is a critical topic that 

requires innovative solutions to enhance urban resilience 

and safety. In this work, we presented a comprehensive 

framework for disaster detection, focusing on fire and flood 

scenarios. We proposed a solution leveraging the YOLOv8 

algorithm for real-time fire and flood detection, 

demonstrating its potential for effective disaster response. 

To validate our approach, we conducted an experiment 

using a laptop and a mobile phone, which successfully 

proved the effectiveness of machine learning in detecting 

fire incidents. As part of our future work, we aim to extend 

the validation to flood detection and conduct further tests 

under various flood scenarios to ensure the robustness and 

reliability of our solution.  

In this study, we tested the fire detection capabilities of 

the YOLOv8 algorithm using laptop connected to mobile 

camera as a simulation of camera in a rural environment. 

The choice of a rural test setting was intentional, as 

wildfires are a major threat to smart cities. In many cases, 

early detection of wildfires in forests and suburban areas can 

prevent fires from spreading into urban zones, which lack 

sufficient open-space fire barriers. 

While urban areas typically use CCTV-based fire detection, 

the proposed system is also designed for deployment in 

forests and highways where traditional fire detection is 

limited. Our initial tests in rural environments demonstrate 

the feasibility of detecting fire hazards before they reach 

populated areas. 

     Planned Urban Testing: Future work will integrate the 

same YOLOv8-based detection system with CCTV feeds 

from city surveillance cameras, allowing detection of street 

fires, car fires, and industrial fires in real-time. 

The system is designed to complement existing fire 

detection methods by focusing on early wildfire detection in 

rural and peri-urban areas, where traditional fire alarms are 

not available. While urban buildings have smoke detectors 

and suppression systems, wildfires pose a greater risk to city 

outskirts, requiring AI-powered monitoring. The proposed 

approach leverages image-based detection using Raspberry 

Pi and UAVs, ensuring early intervention before fires spread 

to cities. Given recent events like the LA wildfires, this use 

case is both timely and necessary. 

Flood detection is planned as future work, with efforts 

focused on training YOLOv8 on flood datasets and 

integrating IoT water level sensors for real-world validation. 
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Abstract—This work introduces a next-generation smart city
platform using a novel embedded vision system. i.e., HAura. The
HAura system integrates a dual camera and other sensors with
a powerful embedded computing unit. The powerful perception
stack, based on robust deep learning and computer vision
techniques, provides a perfect baseline for implementing a variety
of security, traffic management and urban planning policies.
Choosing to process images directly on the device and transmit
only metadata ensures compliance with privacy and security, as
well as bandwidth efficiency. The next evolution of the vision stack
will finally improve capabilities by introducing a new multi-task
perception model.

Keywords-smart-city; edge inference; safety; privacy-preserving
AI.

I. INTRODUCTION

Increasing urbanization brings several challenges regarding
public safety, congestion control, and the search for more
efficient infrastructure. More urban centers are turning to
camera-based smart-city solutions, which use computer vision,
machine learning, and built-in data anonymization techniques
to monitor public areas in real time, detecting and recognizing
vehicles and pedestrians. These technologies are potentially
the way to enable a new level of situational awareness and
decision-making. In this paper, we present a comprehensive
solution for smart-city infrastructure implementation, within
the mentioned context. The designed system includes cameras
and other sensors, in addition to communications systems.
A powerful but efficient embedded computing unit performs
local image analysis, leveraging a modern computer vision
stack based on deep learning techniques. Running the vision
stack on the edge device, instead of on a central compute
server, provides all the flexibility and scalability of a fully
decentralized architecture. In addition, the images are never
transmitted, which makes the system effective in protecting the
privacy of citizens. The next chapter discusses the technical
hardware and software details of the developed system. In
the following one, the details of the current vision stacks are
presented. In the end, the development of a next-generation
vision stack is introduced, which will largely improve the
abilities of the system without overburdening the computa-
tional capabilities. The remainder of this paper is structured
as follows:

• In Section II, we discuss the smart city application
scenario in which we operate the proposed HAura system.

• In Section III, we detail the hardware and software
technical characteristics of the HAura system, including
the execution stack and data representation format.

• In Section IV, we delve in the details of the proposed
preception stack, based on powerful and efficient deep
models. We also anticipate ongoing work on the devel-
opment of a next-generation perception model.

• Section V summarizes this overview and provides addi-
tional insights.

II. OUTLINE

A. Motivation

In accordance with projections, it is anticipated that 68% of
the global population is expected to live in urban areas by 2050
[1]. Consequently, there is an imperative need for improved
city management, particularly in terms of security and safety
measures. An urban monitoring system is implemented using
a connected camera infrastructure, with several technological
and non-technological challenges involved. As pointed out by
[2], human monitoring operators are easily overwhelmed by
simultaneous monitoring of multiple screens. Therefore, there
is a prevailing need for automated and accurate monitoring
systems. Current computer vision systems are already used to
implement sophisticated systems for traffic monitoring [3][4],
road safety, emergency detection [4][5] and urban planning
[6]. However, the algorithmic scenario is constrained by the
ability to comply with privacy regulations and technological
limitations dictated by available economic resources.

The HAura system processes footage on the local edge
computing unit, sending only the resulting metadata over a
dedicated low-latency network (bypassing the public Internet),
achieving an end-to-end latency below 150 ms. In contrast,
conventional IP camera setups rely on the Internet, introducing
hundreds of milliseconds—or even seconds—of delay. Low-
latency is essential to enable the interaction between the smart
city and connected vehicles, enhancing vehicle perception by
providing critical information.

B. HAura embedded system

The HAura embedded kit, shown in Figure 1, is composed
of a dual camera, computing board, and software, and enables
real-time identification, geolocalization, and tracking of ve-
hicles, pedestrians, and various road users. HAura computes
all the data onboard. The metadata produced by the device is
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Cameras

HAura Enclosure

Figure 1. Haura hardware installed at the Modena Automotive Smart Area
(MASA) [7]. Modena, Italy.

seamlessly transmitted to a server. Depending on the munici-
pality or the private entity, the server, leveraging the metadata
produced by the HAura infrastructure, implements different
applications to monitor road users and execute smart urban
strategies. At the time of writing, HAura is being implemented
in several Italian cities to improve public safety and optimize
traffic flow, including Modena, Reggio Emilia, and Torino.

III. TECHNICAL DESCRIPTION

A. HAura Technology stack

The proposed device, named HAura, is a smart road side
unit designed for safety management and data analysis in
smart cities and industrial contexts. Specifically, the system
processes data from two cameras continuously, with an image
transmission frequency of 10Hz. The metadata produced is
sent to a server that can implement any urban monitoring
policy utilizing the produced data.

a) Hardware Description: Enclosed in a rugged water-
proof case, the HAura’s computing heart is based on the
Nvidia Orin Nano embedded platform. This choice is popular
in the embedded computer vision domain because of the
performance of the Nvidia Graphics Processing Unit (GPU)
included in the Orin System on Chip (SoC).

• Computing: Specifically, the Orin Nano SoC is based on a
6-core Arm Cortex A78A Central Processing Unit (CPU),
an Ampere-based Nvidia GPU with 1024 Cuda cores and
32 Tensor cores. It is also equipped with 8Gb of unified
Low-Power Double Data Rate 5 (LPDDR5) memory.

• Sensors: The sensor set comprises two Red-Green-
Blue (RGB) cameras. These cameras offer a wide 120°
field of view, ensuring comprehensive coverage of the
surveillance area. The system supports a resolution from
640x480 to 1920x1080

• Connectivity: Mainly the device is designed for low-
latency 5G connectivity. The system also supports Wi-
Fi (2.4GHz and 5GHz) and Ethernet. To complement
this, it is equipped with a Global Positioning System

(GPS) antenna, which is useful for automating the post-
installation operations, ensuring accurate localization.

Figure 2. Diagram of the HAura’s hardware, processing pipeline, and data
produced.

b) Software Description: The full software suite is ready
to power a full-fledged smart city infrastructure. At the base of
the software stack, we have a custom Linux-based operating
system (OS), boasting essential capabilities of remote per-
formance assessment and over-the-air (OTA) updates. A key
component, the HAura’s perception stack depicted in Figure 2,
facilitates real-time object detection and tracking over time.
The upcoming frames from both cameras are processed in
parallel using the powerful computer vision infrastructure
detailed at Section IV-A. The obtained detections include
pedestrians and different vehicles (cars, bicycles, vans, buses
and motorcycles). The output is processed to recover GPS
coordinates of detected objects and perform tracking of detec-
tions over time. The resulting JSON, exemplified in Figure 3,
includes categorized information represented by numeric IDs
(e.g., 0 for a person), latitude, longitude, tracking ID, device
ID, and detection timestamp.

1 {

2 "camIdx ": 0,

3 "nObjects ": 1,

4 "objects ": [

5 {

6 "latitude ": 45.06582260131836 ,

7 "longitude ": 7.662070274353027 ,

8 "speed": 0.0,

9 "orientation ": 0,

10 "id": 1089,

11 "cl": 2

12 }

13 ]

14 }

Figure 3. Example json snippet with object data.

Only this metadata is transmitted, leveraging the Message
Queuing Telemetry Transport (MQTT) protocol. No images of
any kind are included (faces, license plates etc.). This choice is
an important factor in preserving citizens’ privacy and assuring
compatibility with the strictest regulations.
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(a) Object Detection (b) Panoptic Segmentation (c) Depth Estimation (d) Keypoint Detection

Figure 4. Visual representation of the different tasks implemented.

IV. COMPUTER VISION STACK

A. HAura perception stack
The current version of the HAura perception stack follows

a conservative approach based on known techniques that have
been proven to stand the test of time The core of the vision
system is based on the object detection task, which involves
identifying and localizing objects of interest.
Overall, the current perception stack is structured as follows:

• Self Diagnostic: A small Resnet-18 [8] model, trained on
a specialized proprietary dataset, is capable of classifying
incoming images to detect abnormal conditions such as
intense dirt or occlusion sources. This model is run
sporadically (every several minutes) and is therefore not
relevant to the overall latency.

• Object Detection: The core of the vision system is based
on the YoLo-V4 [9] object detector, trained on the 80-
classes MS COCO dataset [10]. YoLo-V4 is preferred
to newer models because of its good balance between
performance and low inference cost. Of the 80 classes,
we select 6 of interest (person, car, bike, bicycle, truck,
bus).

• Mullti-object tracking: We use an extremely efficient
tracker based on ByteTrack [11]. This tracker works by
associating the detections of successive frames and does
not require additional deep models, ensuring excellent
execution performance.

• Mapping to GPS: Using calibrated camera extrinsic, the
object detections are mapped to GPS coordinates using
the inverse perspective mapping technique.

The vision stack runs entirely on NVidia embedded hard-
ware. Model inference is accelerated using the proprietary
TensorRT framework, currently version 8.6.1.

TABLE I. PERFORMANCE METRICS FOR DIFFERENT NUMBERS OF
CAMERAS. THE REPORTED LATENCY (MILLISECONDS) OBTAINED

BY AVERAGING OVER 1000 FRAMES.

Stage 1 Camera 2 Cameras 4 Cameras

Detection 19.98 32.41 64.85
GeoTracking 0.77 0.78 0.85
End2End 21.15 33.63 66.96

In Table I, we report an analysis of inference performance.
Detection only replays the inference time of YoLo-V4 net-
work. GeoTracking refers to the combination of Bytetrack
tracker and Inverse Perspective Mapping (IPM) in GPS co-
ordinates. End2End latency in the end includes the complete

execution cycle, including decoding the image and processing
of the results in the desired format. From a performance
standpoint, for precise identification, the system guarantees
the following recognition ranges: 40 meters for pedestrians,
45 meters for cyclists, and 50 meters for cars.

B. Future Multi-Task perception model
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Figure 5. Outline of a multi-task learning architecture.

The current development effort is focused on the next gen-
eration of the perception stack. The underlying deep learning
model is based on a multi-task learning paradigm [12]. A
multi-task approach involves a single model being able to
produce detection for multiple distinct tasks in a single forward
pass. Compared with a classical approach, in which a specific
and separate model is trained for each task, the multi-task
approach has several advantages. Typically, as exemplified in
Figure 5, a single backbone is used for feature extraction
from the image. Only a shallow decoder is added for each
task. This implies that the computational cost introduced by
each additional task is marginal to the overall computational
cost. In addition, in a positive-transfer effect, simultaneous
learning of related tasks introduces a regularization effect that
can potentially boost performance and generalization ability
compared with single-task learning.

We are currently developing the model to include the fol-
lowing tasks, depicted in Figure 4, that presents an immediate
application for numerous downstream applications.

• Object Detection: This is the same task underlying the
current stack. Accurate prediction of bounding boxes
remains a crucial element. The new enhanced model will
lead to improved detection performance.
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• Panoptic Segmentation: This task extends beyond object
detection by assigning a semantic class label to each pixel
while simultaneously assigning a unique label to each
object instance (e.g., individual vehicles or pedestrians).
Panoptic segmentation will enable a more comprehensive
understanding of the urban scene.

• Depth Estimation: This task involves predicting per-
pixel depth values to reconstruct the three-dimensional
structure of the scene. This task is essential for estimat-
ing distances to objects and understanding their spatial
relationship in the real world. Accurate depth data will
enhance functionalities such as collision detection, and
more precise GPS localization.

• Keypoint estimation: This task focuses on identifying
and localizing critical points on objects, such as human
body joints for pedestrians. This task enables fine-grained
analysis of movement patterns of pedestrian, essential for
advanced techniques of for behavior prediction.

The tasks of object detection, segmentation and keypoint es-
timation are all trainable on the MS COCO dataset, which pro-
vides the required annotations. The depth estimation ground-
truth is not included, although there are dedicated datasets such
as NYU Depth V2 [13] or KITTI [14], training a multi-task
dataset on heterogeneous datasets is non-trivial. To overcome
this limitation, we are considering leveraging pseudo labels for
COCO images obtained using a powerful foundation model
like DepthAnything [15].

C. Foundation Backbone

A second innovation, in addition to the multi-task paradigm,
is to base the feature extractor of the new model on a pow-
erful foundation model. In vision, a backbone foundation is
obtained by pre-training the model with special techniques on
a large scale, millions or even billions of images. A prominent
example is Dino-V2 [16]. This backbone has been trained on
a large dataset of 142 million images using a self-supervised
learning approach derived from [17]. With the large-scale pre-
training, the foundation models learn strong feature extraction
ability, when fine-tuning on downstream tasks therefore the
final model will show exceptional performances and strong
generalization ability. The main disadvantage is that it is not
possible to replicate pretraining on a large scale because of the
huge costs and lack of proprietary training data. Therefore, we
must start from the pretrained models released by the authors
and keep the same model architecture. In particular, Dino-V2
is based on the Vision Transformer (ViT) family of models
[18], which are generally considered expensive in terms of
computational resources. For this reason, a crucial phase of
the work is focused on reducing the computational cost of ViT
models while maintaining compatibility with the pretrained
weights of Dino-V2.

D. Computing cost reduction

Reducing computational cost, hence inference time, with-
out degrading performance is a key goal for inference on
edge devices. The TensorRT inference framework provided by

NVIDIA already implements a large set of generic techniques
to accelerate inference: the proprietary TensorRT compiler
is capable of optimizing the inference graph, performing
complex fusion of operations and carefully selecting inference
kernels to maximize performance. In addition, different tools
are provided to implement techniques such as quantization
and pruning [19]. In addition, there is extensive scientific
literature of techniques to mitigate the inefficiencies of specific
categories of models. Our current work includes developing a
specific novel technique to further accelerate the inference of
the ViT models on which DinoV2 is based that we use as the
backbone for the multi-task model.

V. CONCLUSION

In this paper, we introduced the HAura hardware and
software stack, a generic platform for smart city infrastructure.
Our design leverages on-edge inference, ensuring privacy pro-
tection by transmitting only data that complies with existing
regulations, thereby reducing the risk of exposing sensitive
information. The platform allows adopters to develop front-
end applications that utilize aggregated metadata for a variety
of purposes, from real-time traffic monitoring to long-term
urban planning. While our initial evaluations are promising,
we recognize that further work is needed to thoroughly assess
privacy guarantees and regulatory compliance in diverse set-
tings. Future efforts will focus on developing a comprehensive
front-end platform with the most requested functionalities and
on evaluating the use of Large Language Models to sim-
plify aggregate data querying. Although specialized systems
are available for individual applications, to the best of our
knowledge our platform represents a unique step toward a
universal, upgradeable, and reconfigurable solution for smart
city infrastructure.
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Abstract- As cities transition into smart urban environments, 

managing industrial waste, especially from semiconductor 

manufacturing essential for smart technologies, becomes 

paramount. This study assesses the anaerobic treatment of 

semiconductor industry wastewater, which is laden with heavy 

metals and organic solvents. Our research focuses on the 

acclimation of anaerobic biomass and its effectiveness in 

treating these complex wastewaters over a 132-day period using 

semi-continuous reactors. We employed a phased approach 

starting with an initial stimulation using sucrose to boost 

microbial activity, followed by gradual increases in effluent 

concentration. The process culminated in stabilization phases 

where effluent mixtures were managed to evaluate adaptation 

and efficiency. Throughout these phases, we monitored 

methanization and Chemical Oxygen Demand (COD) removal, 

achieving average efficiencies of 61% and 79% respectively. 

Our findings underscore the complex dynamics between 

microbial communities and the unique constituents of 

semiconductor wastewater. While the presence of inhibitory 

substances challenged methanogenic activity, particularly in the 

latter stages with higher contaminant loads, the treatment 

system demonstrated significant resilience. This suggests that 

while the core anaerobic processes are effective, supplementary 

pre- and post-treatments could be necessary to handle the high 

concentrations of contaminants typical in semiconductor 

wastewater. The study confirms the feasibility of using 

anaerobic processes to manage the demanding effluents of 

semiconductor manufacturing, a critical component in smart 

cities. By enhancing wastewater treatment strategies, this 

research contributes to the sustainability of smart urban 

environments, reducing environmental impacts and supporting 

the continued development of essential smart technologies. 

Keywords- smart cities; Sustainable urban development; 

Semiconductor wastewater; Anaerobic digestion; Biomass 

acclimation; Methane production; Chemical oxygen demand. 

I.  INTRODUCTION  

In today's urban landscapes, where the concept of smart 

cities is becoming increasingly integral to sustainable 

development, semiconductors play a pivotal role. With a 

robust market value of $543 billion [1], semiconductors are 

fundamental to the evolution and functionality of smart city 

technologies. These materials, known for their specific 

conductivity properties that can be tailored through doping 

processes [2], are crucial in determining the performance of 

electronic circuits and systems. 

Silicon, the predominant material used in semiconductor 

manufacturing, along with other metalloids, forms the 

backbone of countless smart city applications. From traffic 

management systems that rely on sensors to public safety 

solutions empowered by smart surveillance technologies, 

semiconductors are at the heart of these innovations. They 

enable the development and efficient operation of LED 

lighting systems, advanced public transport networks, and 

integrated communication systems—all essential 

components of the smart city infrastructure. The production 

of semiconductors thus underpins not only traditional 

electronics like smartphones and LED TVs but also the 

sophisticated microelectronics that drive the smart cities of 

the future. This interconnection highlights the indispensable 

role of semiconductor technology in building urban 

environments that are more connected, sustainable, and 

responsive to the needs of their inhabitants. 

In the evolving landscape of smart cities, the 

semiconductor manufacturing process plays a pivotal role, 

requiring high levels of purity to ensure the optimal 

performance of smart technologies. The complex 

manufacturing process involves multiple stages including 

wafer fabrication, oxidation, photolithography, etching, ion 

deposition and implantation, metallization, and electrical 

matrix sorting and packaging [3]. These processes use a 

broad spectrum of chemicals such as metals, solvents, and 

acids, necessitating extensive cleaning with ultrapure water. 

In 2022, the consumption of ultrapure water by the 

semiconductor industries globally was estimated at 

approximately 5.51 x 108 m³ [4]. 

The usage of such significant amounts of ultrapure water 

results in the production of complex WasteWater (WW), 

characterized by various pollutants like 

TetraMethylAmmonium Hydroxide (TMAH), phosphoric 

acid, ammonia, surfactants, organic solvents, and heavy 

metals [5]. These contaminants, often recalcitrant and 

environmentally harmful, predominantly exhibit organic 

characteristics, offering opportunities for biological 

treatment processes. Anaerobic digestion emerges as a 

promising method for treating semiconductor WW. Previous 

researchs  validated the effectiveness of anaerobic processes 

in breaking down chemicals like DiMethyl SulfOxide 

(DMSO) and TMAH commonly found in these effluents 

[6][7].  
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For smart cities, the advantages of anaerobic treatment, 

such as minimal sludge production, energy recovery via 

methane production, and the feasibility of compact design, 

align well with the sustainability goals of reducing 

operational costs and enhancing energy efficiency [8]. 

However, the efficiency of anaerobic digestion is contingent 

upon the concentration of pollutants, as there is a threshold to 

the degradation capabilities of anaerobic microorganisms. 

 This study aims to conduct a preliminary analysis to 

assess the potential of anaerobic biomass for treating 

recalcitrant effluents produced in the semiconductor industry, 

underscoring its relevance in supporting sustainable urban 

development within smart cities. The Materials and Methods 

(Section II) details the origin and characteristics of the 

anaerobic inoculum and semiconductor WW (A. Materials), 

followed by the B. Experimental Setup and Operation, which 

outlines system configuration, operational parameters, 

maintenance, and assay duration. The Analytical Methods 

subsection C, specifies the primary analyses and 

methodologies employed. In the Results and Discussion 

(Section III), the complexity and variability of semiconductor 

WW are examined, highlighting its treatment potential 

through anaerobic digestion. Tables summarize WW 

characteristics before and after treatment, with comparative 

analysis against existing studies. Future research directions 

and treatment optimizations are also proposed. The 

Conclusion (Section VI) synthesizes key findings, 

emphasizing anaerobic digestion’s effectiveness and 

prospects for further study. The paper concludes with 

Acknowledgments recognizing key contributors and a 

References section listing all cited sources. 

II. MATERIALS AND METHODS 

This section describes the materials used and the methods 
employed in this study. 

A. Materials 

Two types of effluent were obtained from a semiconductor 

industry located in northern Portugal, one with chemicals and 

diluted acid mixture (E1) and the other with a mixture of E1 

and strong acids (E2). More specifically, it was also 

confirmed through the processes carried out by the industry 

that TMAH, isopropanol, a non-ionic surfactant, sodium 

persulfate, copper sulfate, citric acid, acetic acid, sulfuric 

acid, hydrofluoric acid and phosphoric acid were utilized in 

varying concentrations depending on the needs of production. 

The tanks from where the effluent was collected contained a 

mixture resulting from different processes, mainly 

lithography, packaging, plating, dicing, grinding and laser 

grooving and the many steps of washing and cleaning. To 

avoid any setbacks with the strong acidic content in the 

effluent E2, it was collected after the pH control step. 

Anaerobic inoculum was obtained from a local MWTP 

treating both domestic and industrial WW.  

B. Experimental setup and operatiom 

The experiments were performed on a laboratory scale, in 

four separate phases, lasting for a total of 132 days, as 

follows. In the Stimulation phase (36 days) the biomass was 

only fed with sucrose to enhance the metabolic activity and 

establish a baseline. The Acclimation phase (30 days) the 

biomass was fed with a continuous step-increase (10%) in 

effluent concentration, summing up 10 moments (10%, 

13.3%, 17.7%, 23.6%, 31.4%, 41.8%, 55.6%, 74%, 98.5% 

and 100%). Stabilization 1 phase (15 days) consisted in 

feeding on 100% effluent. Finally, in Stabilization 2 (51 days) 

the biomass was fed with a mixture of effluents collected 

from different periods of the industrial operation, to evaluate 

a broader and more complex effluent. This phase was also 

incremented with a Simulated Wastewater (SW) solution 

made with sodium acetate (representing dissolved acetic acid, a 

common acid heavily used by this industry) and TMAH with a COD 

of 145 g L -1. 

The anaerobic assays were carried out in four glass 

reactors, two with a working volume of 5 L and two with 

working volume of 2 L. A fifth 2 L reactor was used as a 

control for growing inoculum fed only with sucrose. All 

assays started with a biomass concentration of 7 g VSS L -1. 

Neutralized effluent was fed, and samples were collected 

every three days, with reactors maintained at 35°C. At each 

phase, nutrients and sodium bicarbonate were added to 

support digestion [9]. Biomass sludge samples were taken 

every six days to assess biomass concentration. 

C. Analytical methods  

Effluent characterization before and after anaerobic 

treatment followed Standard Methods [10], assessing COD, 

Biochemical Oxygen Demand (BOD, 5 days, Oxitop®), pH, 

Electrical Conductivity (EC), Alkalinity, and Total Volatile 

Acids (TVA). Anaerobic biomass concentration and activity 

were evaluated via Volatile Suspended Solids (VSS) and 

Specific Methanogenic Activity (SMA). Methane was 

purified by NaOH (20% w/w) gas washing [11] and 

quantified using a syringe [12]. 

III. RESULTS AND DISCUSSION 

The management of wastewater from semiconductor 

manufacturing is a significant challenge, directly impacting 

urban sustainability and smart infrastructure. The complexity 

and variability of semiconductor WW are attributed to the 

diverse production techniques employed, the mixing of 

effluents from various processes, and particularly the dilution 

effects from cleaning operations, as previously highlighted 

[13]. These factors contribute to the broad range of 

characteristics observed in semiconductor WW, making it 

difficult to standardize treatment approaches. The WW 

samples used in this study are not different, and although they 

are from the same tank, the difference on collection day is 

enough to demonstrate high variability in all parameters, as 
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can be observed in Table I. Despite the variations, the 

characteristics are still within the WW profile of this type of 

industry [13]. 

TABLE I. AVERAGE PHYSICAL-CHEMICAL VALUES FOR THE 

SEMICONDUCTOR WASTEWATER USED IN THIS WORK 

Parameters 
Diluted 

Acids 

tank (E1) 

Lowest -

Highest 

values 

Effluent 

Mixture 

tank (E2) 

Lowest - 

Highest 

values 

pH 6.06 
4.74 - 

9.10 
9.47 

5.48 - 

11.50 

EC (mS cm-1) 3.93 
0.27 - 
11.6 

4.43 
3.49 - 
6.20 

Alkalinity (mg L-1 

of CaCO3) 
98.18 

68.75 - 

125 
283.33 150 - 425 

TVA (mg L-1) 245.84 
100 - 

365.63 
233.34 

159.38 - 

375 

Kjeldahl Nitrogen 

(mg L-1) 
13.16 

11.20 - 

14.84 
13.72 

10.36 - 

17.08 

Total Phosphorus 

(mg L-1) 
1.03 

0.27 - 

1.64 
0.42 

0.29 - 

0.50 

COD (mgO2 L
-1) 749.91 

270.4 - 
1,245.4 

757.19 
504.1 - 
1,114.1 

BOD (mg L-1) 259.94 
162 - 

411.1 
281.43 

184.89 - 

353.6 

Biodegradable 

COD fraction (%) 
34.66 

19.83 - 

82.90 
37.17 

25.39 - 

66.3 

Total Solids (g L-

1) 
5.63 

1.85 - 

11.76 
3.55 

1.93 - 

4.39 

Dissolved Solids 

(g L-1) 
5.35 

1.76 - 

11.32 
3.29 

1.63 - 

4.32 

Suspended Solids 
(g L-1) 

0.21 
0.03 - 
0.54 

0.26 
0.06 - 
0.34 

Volatile Solids (g 

L-1) 
0.11 

0.01 - 

0.18 
0.13 

0.05 - 

0.18 

 The overarching goal of this study was to conduct a 

preliminary analysis and demonstrate the effectiveness of 

anaerobic processes for treatment of this WW with high 

variability in its composition, as has been proposed in 

previous studies [7][14]. By analyzing the characteristics of 

the WW, it is possible to determine that it has a considerable 

biodegradable content, with the presence of macronutrients 

nitrogen and phosphorus which are essential for microbial 

metabolism. In addition, most of the solids, and the organics, 

are dissolved. It is important to note that these favorable 

conditions for anaerobic processes are not always found for 

this type of WW [8]. Therefore, it is essential to emphasize 

the advantages of the application of a cost-effective method 

capable of WW treatment that enables energy and water 

recovery. Despite the various favorable conditions, it is 

important to highlight the presence of highly recalcitrant and 

inhibitory compounds for microorganisms, such as fluoride 

[15], copper [16], surfactants [17] and TMAH itself [14], 

potentially leading to metabolism disruption, but adaptation 

of the anaerobic microbiota is expected. Table II depicts the 

results of the treated effluent after 132 days of operation. 

 

TABLE II. AVERAGE PHYSICAL-CHEMICAL VALUES OF FEED 

AND EFFLUENT FROM ANAEROBIC DIGESTION TREATMENT 

Parameters 

Diluted 

Acids tank 

(E1) 

Lowest - 

Highest 

values 

Effluent 

Mixture 

tank (E2) 

Lowest - 

Highest 

values 

Feed COD 
(mgO2 L

-1)a 
1,113.9 

837.6 - 
1,390.7 

1,211.7 
901.3 - 
1,433.2 

Final COD 

(mgO2 L
-1)a 

230.4 
130.1 - 

393.8 
238.4 

163.7 - 

370.6 

COD Removed 
(%) 

79 71 - 84 80 74 - 81 

Final pHa 8.04 
7.45 - 

8.54 
8.07 

7.53 - 

8.66 

Final 

Alkalinitya 1,262.90 
543.75 - 

2,262.50 
1,356.78 

612.50 - 

2,337.50 

Final EC (mS 
cm-1)a 3.97 

2.77 - 
4.60 

4.42 
3.24 - 
5.36 

Final Total 

Volatile Acids 

(mg L-1)a 

58.77 
27.50 - 

140.62 
62.53 

33.75 - 

126.06 

CH4 Produced 

(mL)a 131.68 12 - 412 111.50 2 - 442 

Methanisation 
Efficiency (%)a 66 46 - 83 53 27 - 69 

SMA (g CH4-

COD g-1 VSS d-

1)a 

0.009 
0.002 - 

0.028 
0.011 

0.003 - 

0.038 

a. Global average for each feeding run 

It is worth mentioning that methane production remained 

constant despite the different stages. COD removal was on 

average 79% for both types of WW, and although the values 

are lower when compared with other investigations, such 

amount of degradation is in accordance with other studies that 

reported COD removal ranging 70-90% with a influent COD 

of 1,800 mg/L, but when the organic load was increased to 

8,000 mg/L the microbial culture was inhibited and COD 

removal dropped to values  below 70% [6]. Another 

investigation reported a COD removal rate of 50% for a WW 

containing 1500 mg/L of COD before the acclimation of 

biomass to TMAH degradation and achieving COD removals 

of 90% on average after acclimation despite being operated 

in psychrophilic temperatures [18]. Following studies in such 

conditions, reported a removal of 96% of COD [7]. It is 

important to emphasize that in the studies cited, synthetic or 

diluted WW were used, thus reducing the impact of other 

contaminants in a real WW. 

The methanisation efficiency obtained values ranged 

between 66% and 56% based on the input gCOD and 

produced gCOD.CH4. However, SMA had low values when 

compared to other works, resembling SMA from reactors 

with a notable presence of sulfidogenic microbiota [19]. A 

low SMA and high conversion of COD to CH4 may indicate 

that there is little substrate available for all microorganisms, 

indicating that there is the possibility of generating even more 

methane when at higher loads. Even considering the potential 

presence of sulfidogenic microbiota competing for resources, 

there was no significant impact on methane production, as a 

high consumption of TVA confirms that there was no 
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accumulation of volatile acids, demonstrating stability in the 

system. The constant production of volatile acids from 

acidogenesis was confirmed through the alkalinity reduction 

throughout the experiment. It is also possible to verify from 

Figure 1 that there was no accumulation of organic 

compounds over the different phases, confirming its 

degradation even when higher loads were added with 

different mixtures of WW. 

 
Figure 1. Mean COD concentration for feed and treated effluents, from 

Acclimation to Stabilization 2 phases. 

Stabilization 1 achieved the highest COD removal and 

methanization, with SMA increasing from 0.0061 to 0.0137, 

indicating microbial adaptation to the effluent’s composition 

and organic load. In contrast, Stabilization 2, with a mixed 

effluent containing higher contaminant concentrations, 

caused system destabilization, confirmed by the SMA 

decrease to 0.0070, suggesting inhibition. While complex 

effluents with harmful compounds like heavy metals or 

TMAH can be treated, their effectiveness is reduced. Other 

works also experienced a drop in overall treatment efficiency, 

by presence of heavy metals [20], especially copper [16] and 

high concentrations of TMAH [13]. Not only the compounds 

in the effluent can cause inhibitions, but also the degraded 

products of the digestion can also be inhibitory, such as the 

case with the degradation of TMAH, where its final product 

is ammonia which in high concentrations can destabilize the 

anaerobic system [21]. 

One study observed that not only the methanogens are 

responsible for the degradation of TMAH in semiconductor 

WW, corroborating that a reactor with greater diversity of 

microorganisms is more capable of degrading complex 

compounds [22]. Although sulfidogenic microorganisms can 

destabilize the anaerobic system due to competition for 

resources with methanogenic, other studies demonstrated that 

they are capable of mineralizing copper ions, thus being an 

alternative for reducing this metal in the final effluent and as 

a form to reduce the impacts generated by toxicity [23]. The 

presence of sulfidogenic microorganisms can also be 

effective in degrading other compounds that are not suitable 

for methanogenic archaea such as surfactants [24]. 

The experimental design and execution, characterized by 

semi-continuous feeding, inherently promotes the 

accumulation of inorganic compounds and other substances 

that are non-biodegradable by anaerobic microorganisms, 

such as copper, fluoride, and ammonia, within the reactor. 

Over time, as these compounds progressively accumulate, the 

efficiency of the anaerobic treatment is expected to decline, 

despite the system's adaptation to the WW. This context is 

possible to occur even in other types of reactors and in 

continuous systems due to a greater flow of effluent to the 

reactors, therefore, it is necessary to consider strategies such 

as pre and post treatments for this type of WW. Numerous 

studies have already sought the combination of treatments to 

increase the treatment efficiency of these effluents. 

Considering the increase of biodegradation to improve the 

degradation of organics, different authors proposed the use of 

oxidative systems as a pre-treatment to achieve this, either by 

using ozone [25], Fenton [26] or anodic oxidation [27] with 

varying degrees of efficiency. As a post-treatment for the 

removal of anaerobic degradation products, such as 

ammonia, authors have studied the use of aerobic and anoxic 

systems [28] reaching a maximum removal of nitrogen of 

63% along with a TMAH reduction between 70 and 100%. 

One study combined a crystallization reactor filled with 

quartz salt and a sulfate reducing bioreactor to remove 

copper, reaching 99% and 70% removal of copper and COD, 

respectively [23]. Alternatively, electrochemical processes 

can complement anaerobic treatment by facilitating the 

removal of solids, including heavy metals by electro 

flotation, or promoting the degradation of complex 

compounds by electrooxidation [29]. 

 

IV. CONCLUSIONS  

This study demonstrated that semicontinuous bioreactors 

inoculated with anaerobic microorganisms from a MWTP 

can effectively treat WW from the semiconductor industry. 

On average, methanization and COD removal efficiency 

were 61% and 79%, respectively, with methane production 

of 0.1 mL of CH4 per mg of COD. The continuous production 

of methane, TVA consumption, alkaline decline and the 

absence of COD accumulation confirmed system stability. 

Low SMA and high methanization suggest limited carbon 

sources for microorganisms. The potential presence of 

sulfidogenic biota may help remove inhibitory compounds 

like copper and surfactants. The increased organic load and 

effluent complexity reduced treatment efficiency, 

highlighting the need for pre-treatment to improve 

biodegradability and post-treatment to remove inhibitory 

byproducts. Further research at larger scales is needed to 

validate these findings in industrial settings. 
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Abstract—	 The Erasmus+ project TeleTraining in Crisis 
Management is a collaborative initiative among the University 
of Gothenburg, the University of South-Eastern Norway, and 
the University College Copenhagen, aiming to enhance 
emergency management training through digital solutions. 
This paper explores the potential of Artificial Intelligence (AI) 
to improve training programs by generating realistic crisis 
scenarios and situational updates. Using a simulated 
emergency water landing of a passenger flight in international 
waters, the study demonstrates how AI-driven tools, such as 
ChatGPT, can create dynamic training environments for cross-
border emergency response teams. The scenario emphasizes 
the need for standardized protocols, digital communication 
platforms, and AI-assisted decision-making in multinational 
crisis management. The paper further discusses the integration 
of AI within customized Learning Management Systems 
(LMS) to facilitate real-time exercises, improve coordination 
among emergency responders, and enhance crisis 
preparedness through adaptive and data-driven simulations. 

Keywords-artificial intelligence; emergency management 
training; crisis management training; proof-of-concept; 
scenarios; ChatGPT. 

I.  INTRODUCTION 
The Erasmus+ project TeleTraining in Crisis 

Management is a joint effort between the University of 
Gothenburg, the University of South-Eastern Norway, and 
the University College Copenhagen to explore new methods 
for crisis and emergency management training, with a focus 
on collaboration between different emergency services and 
management levels, both on national and transnational 
levels. 

This paper explores the opportunities to use Artificial 
Intelligence (AI) to enhance training programs by effectively 
creating realistic training scenarios. We use ChatGPT to 
establish an initial scenario and then create situation reports 
as the scenario unfolds. The aim is to show that ChatGPT 
and similar tools can add value to emergency training 
exercises.  

Eide, Lund-Kordahl, and Bakken [5] discussed how AI 
changes crisis management training and exercises. Their 
discussion is conceptual. Karinshak [3] promotes the idea of 
using simulation without going into details. A couple of 
papers discuss the use of ChatGPT in simulations in nursing 
training [1][8]. 

For this paper, we will use the following scenario: 
A passenger flight from Oslo to Copenhagen performed 

an emergency landing in water 100 kilometers northwest of 
Gothenburg, Sweden. The incident occurred in international 
waters and required immediate cooperation between Danish, 
Norwegian, and Swedish emergency authorities and response 
units. The situation escalated quickly, with passengers and 
crew in distress, necessitating rapid and well-coordinated 
intervention. Sweden was closest to the scene of the incident, 
but as the flight originated in Norway and was on its way to 
Denmark, all three countries got involved. Given the 
international scope of the crisis, a tri-nation emergency 
response coordination team was established. This team used 
digital communication tools and real-time situational 
awareness platforms to ensure seamless collaboration. 

This scenario highlights the critical need for cross-border 
emergency management training. Effective response requires 
standardized protocols, digital training platforms, and 
simulations that enable responders to practice coordinated 
decision-making under pressure. The operation's complexity 
demonstrates the importance of continuous, realistic training 
programs that bridge national and organizational differences 
in crisis management. 

The Erasmus+ project TeleTraining aims to develop a 
learning management system for providing these kinds of 
training exercises. The project will also introduce new ideas 
for handling the specific problems of emergency 
management training. This paper shows an experiment to 
highlight the feasibility of using AI in crisis management 
training. 

The following section discusses the various forms of 
digital training and learning management support. Section III 
discusses the particularities of emergency management 
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training. Section VI proposes some extensions to existing 
learning management systems to handle these particularities. 
Section V elaborates on extending the learning management 
system with AI to create better training scenarios. Section VI 
discusses our findings, and Section VII concludes our paper. 

II. ONLINE LEARNING 
A traditional learning management system operates in an 

asynchronous manner where students get access to training 
material and can study at their own pace. 

Online training can be asynchronous, synchronous, or 
blended [6]. A Learning Management System (LMS) 
supports these three types of learning. 

A. Asynchronous learning 
Asynchronous learning allows learners to access 

materials at their convenience without real-time interaction. 
It includes pre-recorded lectures, discussion forums, and 
LMS like Moodle and Coursera. Table I analyzes the 
Strengths, Weaknesses, Opportunities, and Threats (SWOT) 
of asynchronous learning [4]. 

TABLE I.  SWOT ANALYSIS OF ASYNCHRONOUS LEARNING 

Strengths  
High flexibility 
Scalable for large audiences 
Cost-effective 
Allows learners to progress at 
their own pace. 

Weaknesses:  
Lack of immediate feedback 
Potential for learner isolation 
Requires strong self-
motivation and discipline. 

 
Opportunities:  
Integration of AI for personalized 
learning paths 
Expansion into underserved 
regions,  
Use of mobile learning 
applications. 

Threats:  
Reduced engagement 
compared to live sessions 
Digital literacy gaps 
Risk of outdated content if 
not regularly updated. 

 
 

B. Synchronous learning 
Synchronous training involves real-time instruction 

through virtual platforms such as Zoom, Microsoft Teams, 
and Google Meet. It also includes live webinars, virtual 
classrooms, and Instructor-Led Training (ILT). Table II 
analyzes the SWOT of synchronous learning [4]. 

TABLE II.  SWOT ANALYSIS OF SYNCHRONOUS LEARNING 

Strengths 
Immediate feedback 
Interactive learning 
Increased engagement 
Real-time discussions 

 

Weaknesses 
Requires stable internet 
connection 
Scheduling difficulties 
Potential technical issues 
Dependency on instructor 
availability. 

Opportunities 
Expansion of global learning 
communities 
Integration of AI-driven 
engagement tools Real-time 
collaboration across geographies 

Threats 
Cybersecurity risks 
Digital fatigue 
Potential technological 
barriers for learners with 
limited access. 

C. Blended learning 
Blended learning [6] combines online and in-person 

instruction to provide flexible and personalized learning 
experiences. This approach can boost student engagement 
and offer access to a wide range of resources. However, it 
also comes with challenges, including technological hurdles, 
increased workload for teachers, reduced direct social 
interaction, and the need for students to have strong self-
discipline to succeed in the online parts. 

III. EMERGENCY MANAGEMENT TRAINING 
Teams are multidisciplinary, coming from the police, fire 

and rescue, health, and military. The participants are not first 
responders; they are not out in the field. They are 
coordinators and managers who need to allocate resources 
and make decisions. 

Taber [7] proposed active critical learning as an 
approach to learning how to act and make decisions in 
dynamic, unpredictable situations where incidents without 
precedence escalate rapidly. Active critical learning based on 
realistic scenarios entails engaging in the learning process, a 
progression of difficulty, access to peers, experts, and 
resources, a multimodal design, multiple routing, feedback, 
working through errors, and debriefing.  

The TeleTraining program focuses on incidents involving 
more than one nation, which introduces some additional 
challenges due to differences in work practices and culture. 

In most cases, emergency management is hierarchical, 
with a coordinator and team members from different sectors 
coordinating their contributions. Figure 1 shows the different 
contributors coordinated by the Joint Rescue Coordination 
Centre (an example from Norway). 

 

 
Figure 1.  Coordination and Responders. 

Emergency management differs from traditional 
management in several ways. First, the situation is often 
elusive, and decisions frequently need to be made based on 
uncertain information. Data is also high volume, high 
velocity, and in different formats (audio, video). Spatial data 
is of particular interest, visualized in a Geographic 
Information System (GIS). 

Virtual teams may coordinate emergency management 
operations. Ad hoc teams will be formed for cross-border 
incidents. Team members will be in their parent 
organization, but teamwork will be done through online 
collaboration. 

Berlin and Carlström [2] investigated collaboration 
among organizations at the accident scene. They found that 
collaboration is avoided due to uncertainty and lack of 
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incentives. Training together on scenarios is a way to reduce 
uncertainty and see the advantages of close collaborations. 

IV. CUSTOMIZED LEARNING MANAGEMENT SYSTEM 
The TeleTraining program will offer an emergency 

training course with participants from different groups of 
stakeholders. 

The learning management system will provide study 
material and assignments for asynchronous studies. Study 
material includes video lectures, podcasts, textbooks, and 
research papers. Since synchronous training sessions are an 
essential part of online emergency training where 
collaboration is in focus, the learning management system 
needs to be extended by the possibility for one-to-one and 
group communication.  

We also need a shared workspace where announcements, 
incoming messages, and tasks are displayed. Tasks should be 
triaged based on priority. This shared workspace will be the 
topic of another paper. 

Finally, we propose extending the learning management 
system with an AI-based plug-in to provide operational 
support and create incoming alerts for the emergency 
management team. This is the focus of the rest of this paper. 
Figure 2 shows the customized learning management system. 

 

 
Figure 2.  Customized Learning Management System. 

A customized Learning Management System (LMS) is a 
platform uniquely designed to meet an organization's specific 
needs, differing from standard, pre-built LMS solutions. It 
offers functionalities, user experiences, branding, and 
scalability that match the organization's workflows and 
learning objectives. This customization often includes 
adding, modifying, or removing features, personalizing 
interfaces and learning paths, incorporating specific branding 
elements, ensuring seamless integration with other software, 
and addressing specialized training requirements. Ultimately, 
it creates a flexible and adaptable learning environment 
tailored to precise organizational needs. 

V. INTEGRATION WITH AI TECHNOLOGY 
Part of the training project involves conducting online 

synchronous training exercises. However, the participants 

receive incomplete information about the incident. AI can 
help exercise planners improve the quality of simulations. 

AI can be used to: 
• Develop scenarios 
• Provide situation reports and updates 
• Create evaluation questions 

 
ChatGPT was asked to create an initial scenario: 
Please help create a scenario for emergency 

management training. A flight from Oslo to Copenhagen was 
forced to land on the water around 100 km northwest of 
Gothenburg. There are fresh breezes and rain, and the sea 
temperature is around 15 degrees Celsius. The extent of the 
damage is unknown. A Mayday signal was sent at 14:15. 
There is no more information at the present time. 

 
Output from ChatGPT is shown in the frames with a grey 

background. 
 
Emergency Management Training Scenario: Flight Emergency 
Water Landing 

Scenario Overview: 
At 14:15, a Mayday signal was received from a commercial flight 
en route from Oslo (OSL) to Copenhagen (CPH), indicating an 
emergency situation requiring an immediate water landing. The 
aircraft went down approximately 100 km northwest of 
Gothenburg, in open waters. 

Weather conditions at the time of the incident: 

• Wind: Fresh breezes (approx. 30–40 km/h) 
• Rain: Moderate to heavy rainfall 
• Sea Temperature: 15°C 
• Visibility: Limited due to weather conditions 

Initial Status: 

• The extent of damage to the aircraft is unknown. 
• The number of survivors is unknown. 
• Communication with the flight ceased after the Mayday call. 
• Search and Rescue (SAR) operations need to be initiated 

immediately. 
 
 

ChatGPT provides the following emergency response 
activities: 

 
Emergency Response Objectives: 

Activate Search and Rescue (SAR) Operations: 

• Dispatch Coast Guard, SAR helicopters, and maritime rescue 
units to the last known coordinates. 

• Mobilize available NATO or Swedish Air Force resources if 
necessary. 

• Deploy civilian and military vessels for search and recovery. 

Assess and Prioritize Survival Factors: 

• Time-sensitive rescue: The sea temperature (15°C) presents 
a high risk of hypothermia within 1-2 hours. 
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• Strong winds and rainfall may complicate rescue efforts. 
• Life rafts & floating debris may assist survivors—coordinate 

aerial surveillance to locate them. 

Establish a Unified Command & Communication Strategy: 

• Coordinate efforts between Swedish, Norwegian, and Danish 
emergency services. 

• Use emergency radio frequencies, satellite data, and air 
traffic control logs to track the plane’s last movements. 

• Deploy marine and aerial units with thermal imaging and 
sonar to locate wreckage and survivors. 

Medical & Logistical Preparedness: 

• Hospitals in Gothenburg, Oslo, and Copenhagen placed 
on high alert for mass casualty incidents. 

• Evacuation procedures for survivors—triage on ships and 
helicopters before hospital transport. 

• Contingency plans for handling fatalities and missing 
passengers. 

Media and Public Communication Strategy: 

• Prevent misinformation—designate a spokesperson for 
coordinated press releases. 

• Inform families of passengers and establish emergency 
helplines. 

• Monitor social media and aviation forums for additional 
insights or passenger communications. 

 
 
The training exercise will consist of four phases: 
 

• Initial response 
• Search and Recovery 
• Operational Expansion 
• Post-incident Management 

 

A. Initial response 
The initial response occurs within the first hour. The 

Mayday signal is received, the joint rescue coordination 
centers are alerted, search-and-rescue assets are mobilized in 
all three countries, cross-border communication between 
national coordinators is established, and the first 
reconnaissance flight is dispatched. 

 
A participant asks: Where should the first reconnaissance 
aircraft be dispatched from? (Only show primary option) 

 
Primary Dispatch Location: 
Save Air Base (Säve Flygplats, ESGP, Gothenburg, Sweden) 
Reason: Closest operational base with Swedish Coast Guard SAR 
aircraft, ensuring the fastest response time (~12–15 minutes to 
the crash site). 
 
Another participant asked about the estimated time to get the 
aircraft airborne:  

 

Immediate Standby (Best Case): 5–10 minutes 
• If a Swedish Coast Guard Dash-8 Q300 is on standby and 

ready for rapid deployment. 
Standard Readiness (Likely Case): 15–20 minutes 
• Time for crew briefing, pre-flight checks, and taxiing. 
• Assumes aircraft is fueled and prepared for emergency 

deployment. 
Delayed Readiness (Worst Case):  30+ minutes 
• If the aircraft is not immediately available or requires 

maintenance checks before takeoff. 

B. Search and recovery 
The search and recovery phase begins 1 to 4 hours after 

the incident. This phase includes identifying debris and 
establishing potential survivor locations. Search and rescue 
helicopters and vessels then move in to pick up victims. 
Survivors receive stabilizing treatment before being 
forwarded to the appropriate medical facility. 
 
SITUATION REPORT – 14:40 CET 
From: Swedish Coast Guard SAR Aircraft (Dash-8 Q300) 
Callsign: SE-SAR 1 
To: Joint Rescue Coordination Center (JRCC) Gothenburg 

Current Status: 
The aircraft reached the search area at 14:38 CET (~100 km NW 
of Gothenburg). 
Weather conditions: 
• Wind: Fresh breeze (~30–40 km/h) 
• Rain: Moderate, reducing visibility 
• Sea state: Rough, waves approx. 1.5–2 meters 
• Sea temperature: 15°C 
Observations: 
• Debris field spotted: Approximately 2 NM south of last 

known coordinates. 
• No sign of the main fuselage yet. 
• Possible life rafts sighted: Infrared imaging detects multiple 

heat signatures in the water. 
• No visible fire or smoke. 
Next Actions: 
• Conducting low-altitude pass for detailed assessment. 
• Deploying emergency survival pods to survivors. 
• Relaying coordinates to SAR helicopters & naval units. 
Urgent: Survivors in water—immediate extraction required. Risk 
of hypothermia within 1-2 hours. 

 
The accident with the location was confirmed. Additional 

search and rescue resources need to be activated.  
 
A participant asked for additional search and rescue 

resources with a situation update. 
 

SITUATION UPDATE – REQUEST FOR ADDITIONAL 
SAR RESOURCES – 14:45 CET 
From: Joint Rescue Coordination Center (JRCC) Gothenburg 
To: All SAR Units & Authorities Involved 
Request for Additional SAR Assets: 
1. Air Support (Urgent) 
Swedish and Norwegian SAR Helicopters 
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Request immediate dispatch of 2–4 SAR helicopters from: 
• Swedish Air Force (F7 Såtenäs) – Nearest base (~20 min 

ETA). 
• Norwegian 330 Squadron (Sola Air Base) – (~40 min ETA). 
• Danish EH101 SAR Helicopters (Skrydstrup) – If needed 

(~50 min ETA). 
Task: Immediate extraction of survivors from water. 
 
2. Maritime Response 
• Rescue Vessels & Coast Guard Ships 
• Deploy high-speed rescue boats from Gothenburg & nearby 

coastal stations. 
• Request support from Swedish Navy (Karlskrona Base) for 

larger assets if needed. 
 
3. Fixed-Wing Support 
Additional Reconnaissance & Support Aircraft 
• Request Swedish Air Force Gulfstream IV (SIGINT) to assist 

in debris tracking. 
• Request Norwegian P-8 Poseidon maritime patrol aircraft (if 

available). 
 
Immediate Actions: 
• Directing first SAR helicopter to survivor location (~ETA 

14:55). 
• Marking survivor locations with emergency beacon drops. 
• Relaying coordinates for coast guard and navy vessels. 
• Critical: Survivors are exposed to 15°C water—risk of 

hypothermia within 1–2 hours. Immediate extraction is top 
priority. 

C. Operational Expansion 
After the search and recovery phase, a full-scale maritime 

and aerial search continues to identify additional survivors. 
Survivors are brought to appropriate medical facilities, and 
new resources arriving are used in search and rescue 
operations. 

 
A participant asked for a situation report. 
 

SITUATION REPORT – 16:15 CET 
From: Joint Rescue Coordination Center (JRCC) Gothenburg 
To: All SAR Units & Authorities Involved 

 
1. Current Status of the Search and Rescue Operation 
Incident: Commercial aircraft forced water landing ~100 km NW 
of Gothenburg. 
Initial Mayday received: 14:15 CET. 
First SAR aircraft on scene: 14:38 CET (Swedish Coast Guard 
Dash-8 Q300). 
Weather conditions: 
Winds: 35-40 km/h (fresh breeze) 
Sea state: Rough, waves 2–2.5 meters 
Rain: Intermittent, reducing visibility 
Sea temperature: 15°C (risk of hypothermia within 1–2 hours) 

 
2. Assets Deployed and Actions Taken 
Airborne SAR Assets: 
• Swedish Coast Guard Dash-8 Q300 (SE-SAR 1) – Overwatch 

& Coordination 

• Swedish Air Force SAR Helicopters (2 UH-60 Black Hawks) 
– Ongoing Rescue 

• Norwegian EH101 SAR Helicopter (Sola Air Base) – En 
Route (ETA 16:25) 

• Danish EH101 SAR Helicopter (Skrydstrup) – En Route 
(ETA 16:40) 

• Norwegian P-8 Poseidon (Maritime Patrol Aircraft) – 
Deployed for Wreckage Location 

Maritime SAR Assets: 
• Swedish Coast Guard Vessel (KBV 001 Poseidon) – En 

Route, ETA 17:00 
• High-Speed Rescue Boats from Gothenburg – Arriving at 

Search Area 
• Civilian Ships (Diverted Commercial Vessels in Vicinity) – 

Assisting SAR 
 

3. Current Findings and Rescue Efforts 
Debris Field Confirmed: 
Located approx. 2–3 NM from last known aircraft position. 
Floating wreckage includes aircraft parts, luggage, and life jackets. 
Survivors Located & Rescued: 
Confirmed Survivors: 23 individuals recovered (some in life rafts, 
others in open water). 
Condition: Several cases of moderate hypothermia, no critical 
injuries reported yet. 
First rescues by Swedish SAR helicopters – transported to 
Gothenburg hospitals. 
Missing Persons: 
Estimated ~70+ passengers and crew still unaccounted for. 
Search extended to 10 NM radius from initial crash site. 
No Sign of Main Wreckage (Fuselage): 
Wreckage may have submerged. 
Norwegian P-8 Poseidon conducting sonar scans for underwater 
debris. 

 
4. Next Steps & Immediate Priorities 
Continue Helicopter Rescue Operations 
Priority: Recover survivors from life rafts and open water before 
hypothermia sets in. 
Deploy More Naval Assets for Survivor Recovery & Wreckage 
Location 
Swedish and Norwegian navy divers on standby for underwater 
search. 
Civilian ships instructed to assist in search & survivor recovery. 
Expand Search Area 
Given wind & current drift, survivors and debris may have moved 
further away. 
Reconnaissance flights expanding search to a 15 NM radius. 
Establish Emergency Response Centers in Gothenburg & Oslo 
Coordination of survivor medical treatment & family notifications. 
Swedish & Norwegian authorities managing public 
communication. 

 
5. Key Challenges 
Weather conditions deteriorating – rough sea impacting rescue ops. 
Limited daylight – sunset approaching (~17:30 CET), night SAR 
ops needed. 
Time-sensitive – Risk of hypothermia increasing for those still in 
the water. 

 
6. Summary 
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23 survivors rescued, 70+ still missing 
Helicopter & naval rescues ongoing 
No sign of main fuselage – P-8 Poseidon scanning for underwater 
wreckage 
Search area expanding as wind & currents move debris and 
survivors 
SAR operations remain in full emergency mode – Additional 
resources may be requested. 
 
Later, a second participant asked for a situation update. 
 
SITUATION REPORT – 18:15 CET 
From: Joint Rescue Coordination Center (JRCC) Gothenburg 
To: All SAR Units & Authorities Involved 

 
1. Current Status of the Search and Rescue Operation 
Incident: Commercial aircraft forced water landing ~100 km NW 
of Gothenburg. 
Initial Mayday received: 14:15 CET. 
First SAR aircraft on scene: 14:38 CET. 
Weather conditions worsening: 
Winds: 40–45 km/h (strong breeze) 
Sea state: Rough, waves reaching 3 meters 
Rain: Heavy, further reducing visibility 
Sea temperature: 15°C (survival time in open water estimated at 1–
2 hours) 
**Nightfall approaching (~17:30 CET) – SAR operations now 
in low-visibility conditions. 

 
2. SAR Assets Deployed and Actions Taken 
Airborne SAR Assets: 
• Swedish Coast Guard Dash-8 Q300 (SE-SAR 1) – Aerial 

Coordination (Returning to Base for Refuel at 18:30) 
• Swedish Air Force UH-60 Black Hawks (2) – Rescuing 

Survivors 
• Norwegian EH101 SAR Helicopter (Sola) – Recovering 

Survivors, Low on Fuel (RTB at 18:45) 
• Danish EH101 SAR Helicopter (Skrydstrup) – Ongoing 

Search for Survivors 
• Norwegian P-8 Poseidon (Maritime Patrol Aircraft) – 

Conducting Sonar Scan for Wreckage 
Maritime SAR Assets: 
• Swedish Coast Guard Vessel (KBV 001 Poseidon) – Arrived 

at Scene, Recovering Survivors 
• High-Speed Rescue Boats (Gothenburg) – Multiple Survivors 

Recovered 
• Civilian Ships (Diverted Vessels) – Assisting SAR, 2 Ships 

Actively Rescuing Survivors 
• Swedish Navy Corvette (HMS Nyköping) – En Route, ETA 

19:00 for Night Operations 
 

3. Current Findings and Rescue Efforts 
Debris Field Widened: 
Floating wreckage spread over 5–6 NM radius, increasing search 
difficulty. 
No large fuselage sections found. 
Survivors Rescued (Confirmed): 
41 individuals recovered (some in life rafts, others in open water). 
Condition: 
13 survivors suffering from severe hypothermia, airlifted to 
Gothenburg hospitals. 

28 others in moderate or mild condition, receiving medical 
treatment on rescue vessels. 
Survivor statements confirm aircraft broke apart upon impact with 
the water. 
Missing Persons: 
Estimated ~50+ passengers and crew still unaccounted for. 
Increased risk of fatalities due to cold exposure. 
No Sign of Main Wreckage (Fuselage): 
Norwegian P-8 Poseidon continuing sonar scan – no submerged 
wreckage located yet. 
Swedish Navy divers preparing for underwater search upon 
daylight. 

 
4. Next Steps & Immediate Priorities 
Continue Helicopter Rescue Operations Until Fuel Limits Require 
Rotation 
Focus on recovering survivors from drifting rafts and open water. 
Danish EH101 to take over aerial overwatch as 
Swedish/Norwegian helicopters rotate out. 
Expand Maritime Search Efforts 
Additional vessels arriving for overnight search & recovery. 
Request possible assistance from Norwegian or Danish naval 
assets. 
Nighttime Search Operations Initiated 
Thermal imaging cameras being deployed. 
Civilian ships equipped with spotlights assisting SAR. 
Family Assistance & Crisis Response Centers Activated 
Survivor medical triage ongoing in Gothenburg. 
Swedish & Norwegian authorities coordinating passenger family 
notifications. 

 
5. Key Challenges 
• Weather conditions worsening – strong wind & high waves 

impacting SAR efforts. 
• Nightfall reducing visibility – thermal imaging and sonar 

required. 
• Cold exposure risk rising – immediate survivor recovery still 

top priority. 
• SAR helicopters reaching fuel limits – rotations required to 

maintain coverage. 
 

6. Summary 
• 41 survivors rescued, 50+ still missing 
• Night SAR operations initiated 
• No sign of main fuselage – Norwegian P-8 continuing sonar 

scans 
• Search area expanded to ~10 NM as wind & currents push 

debris and survivors further 
SAR operations remain in full emergency mode – Additional 
assets may be requested. 

 

D. Post-incident Management 
During the first three phases, the focus is on life-saving 

efforts. When the life-saving efforts are finished, there are 
still things to be done. Survivors and non-survivors need to 
be recorded together with missing persons. 

Aircraft recovery operations need to start (e.g., recovery 
of black boxes containing vital information about what 
happened. An incident investigation needs to be launched. 

 

39Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-251-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SMART 2025 : The Fourteenth International Conference on Smart Cities, Systems, Devices and Technologies

                            45 / 47



A participant asks for a post-incident report summary. 
 

POST-INCIDENT REPORT SUMMARY 
Incident: Emergency Water Landing – Commercial Flight from 
Oslo to Copenhagen 
Date: [Insert Date] 
Time of Mayday: 14:15 CET 
Location: ~100 km NW of Gothenburg, Sweden (North Sea) 
Weather Conditions: 
Winds: 40–45 km/h (strong breeze) 
Sea state: Rough (waves 2.5–3 meters) 
Rain: Heavy at times, reducing visibility 
Sea temperature: 15°C 

 
1. Incident Overview 
At 14:15 CET, air traffic control received a Mayday distress 
signal from a commercial aircraft en route from Oslo (OSL) to 
Copenhagen (CPH), reporting an emergency requiring an 
immediate water landing. Contact was lost shortly thereafter. 
At 14:38 CET, a Swedish Coast Guard reconnaissance 
aircraft arrived at the scene and confirmed a debris field in the 
water approximately 2 NM from the last known coordinates. 
Multiple life rafts and individuals in the water were detected using 
thermal imaging. 

 
2. Search and Rescue (SAR) Response 
2.1 Deployed SAR Assets 
• Airborne Assets: 

Swedish Coast Guard Dash-8 Q300 – Aerial reconnaissance 
and coordination 

• Swedish Air Force UH-60 Black Hawks (2) – Survivor 
extraction 

• Norwegian EH101 SAR Helicopter (Sola Air Base) – 
Survivor extraction 

• Danish EH101 SAR Helicopter (Skrydstrup Air Base) – Night 
SAR operations 

• Norwegian P-8 Poseidon (Maritime Patrol Aircraft) – Sonar 
search for submerged wreckage 

Maritime Assets: 
• Swedish Coast Guard Vessel (KBV 001 Poseidon) – Survivor 

recovery and medical assistance 
• Multiple high-speed rescue boats from Gothenburg and 

nearby stations 
• Civilian vessels diverted from nearby shipping lanes 
• Swedish Navy Corvette (HMS Nyköping) – Arrived for night 

SAR and debris recovery 
 

3. Incident Outcome 
3.1 Survivor Recovery 
Total survivors recovered: 47 
Medical conditions: 
18 cases of severe hypothermia, requiring intensive care 
29 cases of moderate to mild injuries, treated on scene or at local 
hospitals 
Survivors reported that the aircraft broke apart on impact with the 
water. 
3.2 Fatalities and Missing Persons 
Confirmed fatalities: 19 (bodies recovered from the water) 
Missing persons: 23 (presumed deceased, search efforts ended) 
3.3 Wreckage & Investigation 

No large fuselage sections located during initial SAR operations. 
Norwegian P-8 Poseidon sonar scans detected submerged 
wreckage at approximately 60 meters depth. 
 
Swedish and Norwegian Navy dive teams scheduled for a 
detailed wreckage recovery operation. 
Investigation agencies (Swedish SHK & European Aviation 
Authorities) coordinating recovery for black box retrieval and 
forensic examination. 

 
4. Challenges Encountered 
• Severe weather conditions (strong wind, rain, and high waves) 

delayed rescue efforts. 
• Nightfall significantly reduced visibility, requiring thermal 

imaging and sonar assistance. 
• SAR helicopters had to rotate frequently due to fuel 

limitations and poor weather conditions. 
• Cold exposure risk was a critical factor—survival time in 

open water was estimated at 1–2 hours. 
 

5. Recommendations for Future Response 
• Enhanced Rapid Deployment of SAR Helicopters: Faster 

coordination with multiple agencies for immediate launch. 
• Prepositioning of Maritime SAR Assets: Increase readiness 

of naval and coast guard vessels in high-risk areas. 
• Cross-Border SAR Coordination Improvements: Improved 

protocols between Swedish, Norwegian, and Danish 
authorities. 

• Weather-Adapted Search Techniques: Expand use of drift 
analysis modeling to predict survivor locations more 
accurately. 

• Underwater Recovery Capabilities: Strengthen rapid 
deployment of navy dive teams and remotely operated 
vehicles (ROVs) for submerged wreckage. 

 
6. Conclusion 
The combined efforts of Swedish, Norwegian, and Danish SAR 
teams resulted in the successful rescue of 47 survivors. 
However, 42 lives were lost due to the severity of the crash, 
weather conditions, and time required for rescue. Aviation and 
maritime authorities continue investigations to determine the cause 
of the incident and ensure improved emergency preparedness in 
the future. 

Status: SAR operations concluded – Incident investigation 
ongoing. 

VI. DISCUSSION 
One objective of this paper was to investigate whether 

ChatGPT could deliver realistic content for scenarios and 
situation reports. We have presented one scenario but have 
also used it for other transnational incidents, including a 
cross-border wildfire, a solar storm, a pandemic, and a fire 
aboard a passenger ferry. In these cases, ChatGPT has helped 
create more realistic scenarios. 

Experts have verified the answers from ChatGPT. The 
airborne and maritime SAR resources are correctly identified 
and located. The Norwegian got the P8 Poseidon naval patrol 
aircraft, and the Swedish used the Dash 8, as shown. The 
Swedish also use Black Hawk helicopters, and the KV 
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Poseidon is a real resource. Flight times and times to be 
airborne seem realistic. Estimations of cold exposure risk 
have been verified.  

In some cases, ChatGPT was asked to elaborate on 
answers. For example, why did you suggest Sola Air Base 
instead of Rygge Air Base (which is closer)? 

 
While Rygge Air Base (ENRY) is geographically closer to the 
search area than Sola Air Base (ENZV), there are a few key 
reasons why Sola is prioritized for SAR helicopter dispatch: 
 
1. Dedicated Search and Rescue (SAR) Squadron at Sola 
• 330 Squadron of the Royal Norwegian Air 

Force operates Westland AW101 (EH101) SAR 
helicopters from Sola Air Base. 

• These helicopters are specialized in long-range maritime 
rescue and are equipped with winches, medical capabilities, 
and thermal imaging systems, making them the best choice 
for this type of operation. 

 
2. Rygge’s Primary Focus is Military Operations 
• Rygge (ENRY) is mainly a military base with F-35 fighter 

operations and limited SAR assets. 
• There may be some SAR availability, but Sola remains 

the primary Norwegian SAR hub for maritime operations. 
 
3. Faster Mobilization and Response Time 
• Sola is already on high readiness for North Sea SAR 

operations. 
• Sola’s EH101s are better suited for rough weather conditions 

and long-range maritime missions. 
• Despite a slightly longer flight time (~40 min from Sola vs. 

~30 min from Rygge), Sola's helicopters are likely to be 
mission-ready faster. 

 
Conclusion 
Sola Air Base is the best choice for Norwegian SAR helicopter 
support due to its dedicated 330 Squadron, specialized aircraft, and 
high readiness for maritime rescues. 
If additional assets are required, Rygge or Danish EH101s from 
Skrydstrup can be requested as backup. 

VII. CONCLUSION 
This paper has explored the potential of AI, specifically 

ChatGPT, in enhancing emergency management training 
through realistic scenario generation and adaptive situational 
updates. By integrating AI-driven simulations into a 
customized learning management system, training exercises 
can become more dynamic, data-driven, and reflective of 
real-world challenges. Our case study on a transnational air 
emergency demonstrated the capability of AI to generate 
coherent, contextually relevant crisis scenarios and support 
decision-making processes. 

The AI tool can function both as a resource for the 
players and as an adversary controlled by the exercise leader. 
The player can provide adequate suggestions regarding 
status, risk assessments, and appropriate actions if the 
participants formulate the right questions. An AI opponent 

can generate new challenges during an exercise, such as 
escalating crises, the need for reinforcement measures, and 
collaboration. A trained AI can also create an evaluation of 
the players' abilities, such as analysis, decision-making skills, 
and redundancy. 

The results suggest that AI can significantly improve 
emergency training by facilitating cross-border coordination, 
refining decision-making processes, and enhancing real-time 
situational awareness. However, human oversight remains 
critical to validate AI-generated content and ensure 
alignment with established emergency protocols. Future 
work will focus on refining AI-assisted scenario 
development, integrating real-time data feeds, and further 
adapting AI tools for emergency response training across 
diverse crisis types. 
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