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The Seventeenth International Conference on Advances in System Simulation (SIMUL 2025),
held on September 28 — October 1, 2025 in Lisbon, Portugal, continued a series of events focusing on
advances in simulation techniques and systems providing new simulation capabilities.

While different simulation events are already scheduled for years, SIMUL 2025 identified
specific needs for ontology of models, mechanisms, and methodologies in order to make easy an
appropriate tool selection. With the advent of Web Services and WEB 3.0 social simulation and human-
in simulations bring new challenging situations along with more classical process simulations and
distributed and parallel simulations. An update on the simulation tool considering these new simulation
flavors was aimed at, too.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
to stress-out large challenges in scale system simulation and advanced mechanisms and methodologies
to deal with them. The accepted papers covered topics on social simulation, transport simulation,
simulation tools and platforms, simulation methodologies and models, and distributed simulation.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the SIMUL 2025 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
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believe that thanks to all these efforts, the final conference program consists of top quality
contributions.
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organizations and sponsors. We also gratefully thank the members of the SIMUL 2025 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the SIMUL 2025 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in simulation research. We also
hope that Lisbon provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful city

SIMUL 2025 Steering Committee
Carlo Simon, Hochschule Worms - University of Applied Sciences, Germany

Frank Herrmann, University of Applied Sciences Regensburg, Germany
Sibylle Froschle, TUHH - Hamburg University of Technology, Germany



SIMUL 2025 Publicity Chair

Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain



SIMUL 2025

Committee
SIMUL 2025 Steering Committee

Carlo Simon, Hochschule Worms - University of Applied Sciences, Germany
Frank Herrmann, University of Applied Sciences Regensburg, Germany
Sibylle Froschle, TUHH - Hamburg University of Technology, Germany

SIMUL 2025 Publicity Chair

Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain

SIMUL 2025 Technical Program Committee

Petra Ahrweiler, Johannes Gutenberg University Mainz, Germany

Saleh Abdel-Afou Alaliyat, Norwegian University of Science and Technology, Norway
Chrissanthi Angeli, University of West Attica, Greece

Ozgur M. Araz, College of Business | University of Nebraska—Lincoln, USA

Alfonso Ariza Quintana, University of Malaga, Spain

Natesh B. Arunachalam, The University of Texas at Austin, USA

Michel Audette, Old Dominion University, USA

Souvik Barat, Tata Consultancy Services Research, India

Ana Paula Barbosa Pévoa, Universidade de Lisboa, Portugal

Marek Bauer, Politechnika Krakowska, Poland

Sahil Belsare, Walmart / Northeastern University, USA

Massimo Bertolini, University of Modena and Reggio Emilia - UNIMORE, Italy
John Betts, Monash University, Australia

Maria Julia Blas, Instituto de Desarrollo y Disefio (INGAR) | UTN-CONICET, Argentina
Paolo Bocciarelli, University of Rome Tor Vergata, Italy

Stefan Bosse, University of Bremen, Germany

Jalil Boudjadar, Aarhus University, Denmark

Christos Bouras, University of Patras, Greece

Lelio Campanile, Universita degli Studi della Campania “L. Vanvitelli”, Italy

Yuxin Chen, University of California, Davis, USA

Franco Cicirelli, ICAR-CNR, Italy

Fabio Coelho, CEG-IST Instituto Superior Técnico | University of Lisbon, Portugal
Federico Concone, University of Palermo, Italy

Duilio Curcio, University of Calabria, Italy

Andrea D'Ambrogio, University of Roma TorVergata, Italy

Gabriele D'Angelo, University of Bologna, Italy

Luis Antonio de Santa-Eulalia, Business School | Université de Sherbrooke, Canada



Daniel Delahaye, ENAC LAB, Toulouse, France

Anatoli Djanatliev, University of Erlangen-Nuremberg, Germany

Julie Dugdale, University Grenoble Alps, France

Mahmoud Elbattah, Université de Picardie Jules Verne, France

Sabeur Elkosantini, University of Carthage, Tunisia

Amr Eltawil, School of Innovative Design Engineering / Japan University of Science and Technology,
Egypt

Diego Encinas, Informatics Research Institute LIDI - CIC - UNLP, Argentina

Fouad Erchiqui, Université du Québec en Abitibi-Témiscamingue, Canada

Zuhal Erden, Atilim University, Turkey

Mourad Fakhfakh, University of Sfax, Tunisia

Javier Faulin, Public University of Navarra, Spain

Sibylle Froschle, TU Hamburg, Germany

José Manuel Galan, Universidad de Burgos, Spain

Ramo Galeano, Universidad Autonoma de Barcelona, Spain

Erol Gelenbe, Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences, Poland
Simon Genser, Virtual Vehicle Research GmbH, Graz, Austria

Katja Gilly de la Sierra-Llamazares, Universidad Miguel Hernandez, Spain

Apostolos Gkamas, University of loannina, Greece

Denis Gracanin, Virginia Tech, USA

Antoni Grau, Technical University of Catalonia, Barcelona, Spain

Andrew Greasley, Aston University, Birmingham, UK

Feng Gu, The College of Staten Island, CUNY, USA

Stefan Haag, University of Applied Sciences Worms, Germany

Petr Hanacek, Brno University of Technology, Czech Republic

Magdalena Hannderek, Cracow University of Technology, Poland

Thomas Hanne, University of Applied Sciences and Arts Northwestern Switzerland / Institute for
Information Systems, Switzerland

Eduardo Hargreaves, Petrobras, Brazil

Frank Herrmann, University of Applied Sciences Regensburg, Germany

Tsan-sheng Hsu, Institute of Information Science | Academia Sinica, Taiwan

Xiaolin Hu, Georgia State University, Atlanta, USA

Marc-Philippe Huget, Polytech Annecy-Chambery-LISTIC | University of Savoie, France

Shahid Hussain, Penn State Behrend, USA

Mauro lacono, Universita degli Studi della Campania "Luigi Vanvitelli", Italy

Lisa Jackson, Loughborough University, UK

Maria Jodo Viamonte, Institute of Engineering (ISEP) - Polytechnic Institute of Porto (IPP), Portugal
Carlos Juiz, Universitat de les llles Balears, Spain

Peter Kemper, William & Mary, USA

Yun Bae Kim, Sungkyunkwan University (SKKU), Korea

Youngjae Kim, Sogang University, Seoul, Korea

Hildegarde Koen, Council for Scientific and Industrial Research (CSIR), South Africa

Dmitry G. Korzun, Petrozavodsk State University | Institute of Mathematics and Information Technology,
Russia

Mouna Kotti, University of Gabes, Tunisia

Vladik Kreinovich, University of Texas at El Paso, USA

Anatoly Kurkovsky, Georgia Gwinnett College - Greater Atlanta University System of Georgia, USA
Massimo La Scala, Politecnico di Bari, Italy



Ettore Lanzarone, University of Bergamo, Italy

Herman Le Roux, Council for Scientific and Industrial Research (CSIR), South Africa
Fedor Lehocki, Slovak University of Technology in Bratislava, Slovakia

Stephan Leitner, University of Klagenfurt, Austria

Laurent Lemarchand, University of Brest (UBO), France

Antdnio M. Lopes, University of Porto, Portugal

Fabian Lorig, Malmo University | loTaP, Sweden

Emilio Luque, University Autonoma of Barcelona (UAB), Spain

Johannes Lithi, University of Applied Sciences - Fachhochschule Kufstein Tirol, Austria
Imran Mahmood, Brunel University London, UK

Fahad Magbool, University of Sargodha, Pakistan

Eda Marchetti, ISTI-CNR, Pisa, Italy

Romolo Marotta, University of Rome "Sapienza", Italy

Omar Masmali, The University of Texas, El Paso, USA

Michele Mastroianni, Universita degli Studi della Campania "Luigi Vanvitelli", Italy
Andrea Matta, Politecnico di Milano, Italy

Radek Matusd, Tomas Bata University in Zlin, Czech Republic

Roger McHaney, Kansas State University, USA

Nuno Meldo, Polytechnic Institute of Viseu, Portugal

Roderick Melnik, MS2Discovery Interdisciplinary Research Institute | Wilfrid Laurier University, Canada
Adel Mhamdi, RWTH Aachen University, Germany

Owen Molloy, National University of Ireland, Galway, Ireland

Mahathir Monjur, University of North Carolina at Chapel Hill, USA

Sébastien Monnet, LISTIC / Savoie Mont Blanc University, France

Federico Montori, University of Bologna, Italy

Emilio Moretti, Politecnico di Milano, Italy

Jérome Morio, ONERA (the French Aerospace Lab), France

Paulo Moura Oliveira, Universidade de Tras-os-Montes e Alto Douro (UTAD) / INESC-TEC Porto, Portugal
Andrzej Mycek, Cracow University of Technology, Poland

Nazmun Nahar, University of Jyvaskyla, Finland

Luis Gustavo Nardin, National College of Ireland, Ireland

James J. Nutaro, Oak Ridge National Laboratory, USA

Alessandro Pellegrini, Sapienza University of Rome, Italy

Tomas Potuzak, University of West Bohemia, Czech Republic

Manon Prédhumeau, IRIT | University Toulouse Capitole, France

Dipak Pudasaini, Tribhuvan University, Nepal / Ryerson University, Canada
Francesco Quaglia, University of Rome Tor Vergata, Italy

Abdul Rahman, Deloitte, USA

Marco Remondino, Universita degli Studi di Genova, Italy

Dupas Rémy, University of Bordeaux, France

Oscar Rodriguez Polo, University of Alcala, Spain

Kristin Yvonne Rozier, lowa State University, USA

Cristina Ruiz Martin, Carleton University, Canada

Julio Sahuquillo, Universitat Politecnica de Valencia, Spain

Nandakishore Santhi, Los Alamos National Laboratory, USA

Victorino Sanz, ETSI Informatica | UNED, Spain

Paulo Jorge Sequeira Goncalves, Instituto Politecnico de Castelo Branco, Portugal
Li Shi, Snap Inc., USA



Patrick Siarry, Université Paris-Est Créteil (UPEC), France

Carlo Simon, Hochschule Worms - University of Applied Sciences, Germany
Leszek Siwik, AGH-UST University of Science and Technology, Krakow, Poland
Yuri N. Skiba, Universidad Nacional Autbnoma de México, Mexico
Azeddien M. Sllame, University of Tripoli, Libya

Giandomenico Spezzano, CNR-ICAR, ltaly

Sven Spieckermann, SimPlan AG, Germany

Renata Spolon Lobato, UNESP - Sdo Paulo State University, Brazil
Mu-Chun Su, National Central University, Taiwan

Grazyna Suchacka, University of Opole, Poland

Janos Szaz, Corvinus University, Hungary

Kumar Tamma, University of Minnesota, USA

Elena Tappia, Politecnico di Milano, Italy

Ingo J. Timm, Trier University, Germany

Felix Tischer, Virtual Vehicle Research GmbH, Austria

Abtin Tondar, Stanford University School of Medicine, USA

Klaus G. Troitzsch, University of Koblenz-Landau, retired, Germany
Hasan Turan, University of New South Wales, Australia

Alfonso Urquia, UNED, Spain

Edson L. Ursini, University of Campinas - Technology School, Brazil
Vahab Vahdatzad, Harvard Medical School, Boston, USA

Bert Van Acker, University of Antwerp, Belgium

Durk-Jouke van der Zee, University of Groningen, Netherlands

Antonio Virdis, University of Pisa, Italy

Frank Werner, OvGU Magdeburg, Germany

Kuan Yew Wong, Universiti Teknologi Malaysia (UTM), Malaysia

Yang Yang, Cornell University, USA

Irina Yatskiv (Jackiva), Transport and Telecommunication Institute, Latvia
Xinrui Zhang, Carleton University, Canada



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.



Table of Contents

Enhancing Building Retrofit Decision-Making: A Synergistic Approach Combining Calibrated Simulations and
Machine Learning
Navid Shirzadi and Meli Stylianou

Highly-Modular and Immersive Human-in-the-Loop Driving Simulators Using the CARLA Simulation
Environment
Patrick Rebling, Lars Beeh, Philipp Nenninger, and Reiner Kriesten

Decision Modeling for Unmanned Swarm Suppression of Enemy Air Defenses Based on Deep Reinforcement
Learning
Xiao Hu, Yonglin Lei, Fusong Luo, Hongfei Shi, and Jiajun Zhu

Algorithm for Predicting Radioactivity of Decommissioning Nuclear Power Plant
Changyeon Yoon

Feasibility Study of Simplification of Radiation Source Shape Using Monte Carlo N-Particle Transport (MCNP)
Changyeon Yoon

Maximizing Detection Efficiency of CZT and Scintillator Detectors - A Monte Carlo Study
Changyeon Yoon

Airline Decision-Making in Sustainable Aviation Fuel Transition: A Hybrid Simulation Modeling Approach
Mohd Shoaib, Fanny Camelia, Ramona Bernhardt, Ashraf Tantawy, Yaseen Zaidi, and lan Marr

Introduction of Reinforcement Learning into Automatic Stacking of Wave-dissipating Blocks
Hao Min Chuah and Tatsuya Yamazaki

PAIRS: Physics-Enabled Al for Real-Time Simulations Surrogates
Zeinab Alfaytarouni and Hamza Ben Ammar

Simulation Modeling of Multi-Agent Coordination in Maritime Emergency Response Systems
Jing Xu, Qingqing Yang, Yingying Gao, and Pengcheng Yang

Distributed Simulation of Multi-Agency Coordination in Maritime Emergencies
Jing Xu, Qingqing Yang, Yingying Gao, and Pengcheng Yang

A Hybrid Modeling Framework for Airport Passenger Decision Making: A Markov Decision Process Approach
Ashraf Tantawy, Fanny Camelia, Ramona Bernhardt, Mohd Shoaib, Yaseen Zaidi, and lan Marr

Simulation-Based Evaluation of Autonomous V ehicle Penetration on Urban Traffic Efficiency and CO?
Emissions via Integrated PTV VISSIM and Bosch ESTM

15

25

28

31

43

50

52

60



Melika Ansaringiad, Ying Huang, and Pan Lu

Advanced Simulation Framework for UAV Path Planning Integrating Monte Carlo Prediction and MAPPO
Yingying Gao, Qingqing Yang, Jing Xu, and Pengcheng Yang

Dynamic Uncertainty Simulation for Path Optimization Maritime Search and Rescue
Yingying Gao, Qingqing Yang, Jing Xu, Pengcheng Yang, and Yonglin Lei

To Study the Variation of Daylight Illuminance Using VELUX Daylight Visualizer Under Overcast and Actual
Sky Models
Ankit Bhalla and Mahua Mukharjee

Generalizable Spatiotemporal Reinforcement Learning Model for Maritime Search Path Planning
Pengcheng Yang, Yingying Gao, Jing Xu, and Qingging Yang

Modular and Reproducible Simulator Architecture for Composable Cloud Systems
Ruben Luque, Jose Luis Diaz, Joaquin Entrialgo, and Ruben Usamentiaga

Spatially Partitioned Robust Optimization for Energy-Efficient Underwater Wireless Sensor Networks under
Simulation-Informed Network Conditions
Ozhan Eren and Aysegul Altin-Kayhan

Traditional Statistics and Machine Learning in Social Network Analysis: A Comparative Reanalysis of Social
Network Data on Energy Transition Decisions
Mart Verhoog

A Framework for Demonstrating and Mitigating CAN Injection Attacksin Vector CANoe: a Case Study Using
ABS
Uma Vinayak Kulkarni and Shylle Froeschle

67

69

72

79

82

88

95

97



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

Enhancing Building Retrofit Decision-Making: A Synergistic Approach Combining
Calibrated Simulations and Machine Learning

Navid Shirzadia, Meli Stylianou
CanmetENERGY-Ottawa
Natural Resources Canada,

Ottawa, Canada
e-mail: navid.shirzadi@nrcan-rncan.gc.ca

Abstract—  Achieving energy efficiency and reducing
greenhouse gas (GHG) emissions are critical goals for building
retrofitting. This study tackles challenges such as limited data
and scenario generalizability by adapting the U.S. ComStock
database for Canadian buildings using a Euclidean distance-
based matching algorithm, achieving a 92% success rate for
matches below a 2.43 threshold. Machine learning models,
Random Forest (RF) and Extreme Gradient Boosting
(XGBoost), were selected due to their effectiveness in handling
high-dimensional, non-linear datasets and were applied to
predict Energy Use Intensity (EUI) and GHG emissions.
XGBoost, with optimized hyperparameters, outperformed RF,
achieving R? values of 0.91 for EUI and 0.86 for GHG emissions,
with lower RMSE and MAE values, showcasing its capability in
handling complex, high-dimensional data. A comparative
analysis highlighted significant environmental benefits of
transitioning Heating, Ventilation, and Air Conditioning
(HVAC) systems to cleaner fuels, such as air-source heat pumps.
The proposed distribution-based method, leveraging 100
buildings across diverse climates and types, offers a robust
framework for policymakers to guide energy-efficient
retrofitting decisions.

Keywords- smart building retrofitting; energy efficiency;
greenhouse gas emissions; machine learning.

1. INTRODUCTION

The construction and operation of buildings contribute
significantly to global energy consumption and greenhouse
gas (GHG) emissions [1][2]. In Canada, existing buildings
alone account for over 40% of emissions in major urban
centers [3][4]. Consequently, enhancing energy efficiency and
minimizing the environmental impact of existing buildings
have become critical priorities within the building sector.

Despite government initiatives such as the Canada
Greener Homes program providing financial support [5],
retrofitting buildings faces numerous challenges and
uncertainties for building owners [6][7]. Key obstacles
include a lack of information and awareness, which
complicates  decision-making  processes.  Retrofitting
decisions typically depend on the expertise of energy advisors
and audits—often time-consuming and expensive processes
designed to identify potential retrofit measures [8][9].

Another approach involves physics-based energy models
that simulate building energy use and define retrofit scenarios
based on these simulations. For instance, a historical building
in Italy was modeled using EnergyPlus in [10], while Rahman
et al. [11], simulated an office building in Australia, exploring
major retrofit scenarios that achieved approximately 42%
energy savings. Similar physics-based approaches have been
applied in various cases [12]-[15]. However, these models
often face significant uncertainties and energy performance
gaps, which are rarely considered in final evaluations.
Furthermore, their complexity, reliance on specialized
expertise, and time-consuming processes render them less
accessible for many building owners.

The rise of artificial intelligence has spurred interest in
Machine Learning (ML) and data-driven approaches for
building retrofits. A key challenge in applying data-driven
models to retrofit scenarios is the availability of reliable
retrofit data. Common issues include uncertainty and
subjectivity in data quality [16] and sometimes the privacy
issues about gathered measured data. As a result, researchers
often rely on artificial data or surrogate models to analyze
retrofit scenarios [17]. While surrogate models mitigate some
expertise and computational demands associated with
physics-based simulations, they do not resolve uncertainties
or performance gaps inherent in these models.

Recently, a highly granular tool named ComStock [8],
[18][19], developed by the National Renewable Energy
Laboratory (NREL), has provided a database of over 300,000
buildings, containing detailed building characteristics and
information. The simulation results in this database are highly
calibrated, incorporating stochastic models to more accurately
reflect occupant behavior. This level of detail addresses the
data availability issue for developing data-driven models.
However, ComStock is limited in its geographic scope, being
tailored to locations within the United States. Extending its
utility to other regions, such as Canada, requires innovative
approaches to ensure compatibility and relevance.

This study addresses the challenges through an integration
of data-matching techniques and machine learning models.
The key contributions of this research are:
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Figure 1. Workflow for developing retrofit scenarios from raw data to analysis

. Data Matching for Enhanced Model Accuracy: The
study leverages a highly calibrated simulation database
(ComStock) using a Euclidean distance-based algorithm to
identify and extract data from buildings that closely match
Canadian counterparts. This approach addresses the data
scarcity challenge and ensures reliable inputs for data-driven
analysis.

. Scalable Retrofit Evaluation Framework: A
distribution-based method was proposed to generalize retrofit
impacts across a diverse sample of buildings, considering
variations in type, location, and climate zone. This method
offers a robust framework for policymakers and stakeholders
to make informed decisions.

*  Environmental and Energy Impact Insights: The
research highlights the benefits of some retrofit scenarios such
as transitioning HVAC systems to cleaner fuel sources,
demonstrating their potential to significantly reduce GHG
emissions.

This study not only advances the application of machine
learning for building retrofits but also provides a scalable
framework for evaluating retrofit scenarios in diverse
contexts, contributing to sustainable energy and
environmental management in the building sector.

The remainder of this paper is organized as follows:
Section II details the proposed methodology, outlining steps
from data extraction and preprocessing to the development of
data-driven models, Section III presents and discusses the
results of the case study. And finally, Section IV concludes
the paper and highlights directions for future research.

II.  METHODOLOGY

The overall process of developing retrofit scenarios from
raw data is illustrated in Figure 1. The workflow begins with
data collection, utilizing real user-input data from the Energy
Star Portfolio Manager (ESPM) database—a database derived
from Canadian user inputs—combined with the U.S.
ComStock database. The preprocessing stage involves several
steps, including feature selection, handling missing values and
outliers, and feature engineering. For the ESPM database, a
climate zone feature was generated using the heating degree

days (HDD) metric for each building. In the ComStock
database, a filtration process was applied to exclude buildings
located in climate zones not present in Canada.

Six features were selected for the building extraction
process, implemented through a distance-based matching
model. Categorical features underwent harmonization to
ensure consistency between the datasets. The extracted
buildings then went through the preprocessing pipeline again,
starting with feature selection, followed by normalization. The
preprocessed data was then used to train ensemble learning
models, followed by a detailed retrofit analysis.

A. Matching Process

To adapt the ComStock database, originally created for
buildings in the USA, for use in Canada, the portfolio manager
database, which is based on Canadian user inputs, is
employed. Six key features are selected for the matching
process: climate zone, building construction year, building
type, gross floor area, annual energy use intensity, and annual
greenhouse gas (GHG) emissions. Categorical features in the
dataset are transformed into numerical representations to
ensure compatibility with the distance-based matching
process. Specifically, one-hot encoding is applied to
categorical variables, converting them into binary feature
vectors. This transformation allows categorical attributes to be
incorporated  alongside numerical features  without
introducing ordinal biases. Once categorical variables are
encoded, all features undergo normalization to eliminate
discrepancies in scale and ensure that no single attribute
dominates the distance calculation. The normalization process
standardizes numerical features to a common range,
facilitating a fair comparison between different building
attributes during the matching process. Euclidean distance
(Formula 1) is used to calculate the similarity between
buildings in the two databases.

(1)
D(A,B) =
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Where a; and b; represent the feature values of buildings A
and B, respectively, for the i-th feature.

In the matching process, each target building, buildings in the
ESPM database, was iterated through, and the closest
matched building in the ComStock database was identified
based on pre-computed distance values. For each target
building, the already matched ComStock buildings were
filtered out, and the closest building was selected by finding
the minimum distance. The index of the closest building was
recorded as the match, and the building was marked as used
to prevent it from being selected again. This process was
repeated until all target buildings were matched, ensuring that
each building in the ESPM database was paired with the
closest available building in the ComStock.

To statistically show the accuracy of the matches, a threshold
is first calculated based on the below formula using the mean
and standard deviation of the minimum distances between
buildings to establish a threshold. The threshold is a distance
value that helps define what is considered a good match.

Threshold = u+ k.0 2)
Where p is the average of the minimum distances, 0 is the
standard deviation of the minimum distances and k is
multiplier which adjusts the sensitivity of the threshold.
Then to calculate the good matches by counting how many of
the minimum distances between buildings are less than the
threshold previously calculated.

n
Good Matches = Z minimum distance

i=1 3)
< Threshold

percentage of good matches
_ Good Matches o

n

100

Which 7 is the number of minimum distances in the minimum
distance array.

B. Machine learning models

Two powerful ensemble learning techniques, Random
Forest (RF) and XGBoost, were used to predict EUI and GHG
emissions. RF was chosen for its ability to handle high-
dimensional feature interactions and provide interpretability,
while XGBoost was selected for its superior predictive
performance through gradient boosting and optimized
learning. RF is an ensemble method that creates multiple
decision trees using random subsets of the data, then combines
their predictions to enhance model robustness and accuracy
[20]. This approach is particularly effective at reducing
overfitting and managing high-dimensional data. In contrast,
XGBoost is a boosting-based technique that trains weak
learners iteratively, focusing on minimizing errors from prior
iterations. Its gradient boosting framework, along with
features like regularization and efficient handling of missing

data, enables it to capture complex patterns within the data
effectively [21].

To optimize the performance of these models,
RandomizedSearchCV method, which is a package of Scikit
Learn library [22], was used for hyperparameter tuning. This
method efficiently explores the hyperparameter space by
randomly selecting combinations and evaluating their
performance based on cross-validation. Key parameters, such
as the number of estimators, maximum depth of trees, and
learning rate, were tuned for both models. The results of this
tuning process, including the best parameters and
corresponding performance metrics, will be detailed in the
results section. This tuning ensured that the models were well-
suited to the dataset and provided reliable predictions for
retrofit scenarios.

C. Evaluation metrics

This study employs three primary evaluation metrics: R-
squared (R?), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE). These metrics assess the
performance of the trained model on the training data, which
is then tested using the testing data. The corresponding
formulas are provided below:

Z?=1(J’i - 371')2 4
2 _q_ &= S
S TN
1 A (5)
MAE = ;Z [y = 94
(©6)

RMSE =

n
1 ( s
EZ yi —9i)
i=1

Where n is the number of data points, y; is the actual value,
¥; is the predicted value and ¥ is the mean of the actual
values.

III.  RESULTS

This section presents the key findings derived from the
dataset, highlighting the steps taken to ensure its relevance
and applicability to Canadian building stock characteristics.

A. Matching and data evaluation

The ComStock database was initially filtered based on
climate zone, reducing the dataset from 336,149 to 193,741
buildings to better align with Canadian conditions. The
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Figure 2. Distribution of minimum distances

matching process aimed to find the most similar buildings for
12,865 target buildings from the Portfolio Manager (PM)
database. To achieve this, we utilized a Euclidean distance-
based approach across six key features, ensuring a robust and
consistent comparison. Each target building from the PM
database was iteratively matched to its closest counterpart in
the filtered ComStock dataset, prioritizing similarity while
preventing duplicate matches. The quality of these matches
was assessed using a threshold-based validation method,
which determined that approximately 92% of matches were
within an acceptable distance threshold of 2.43 (with the
multiplier set to 1). Figure 2 presents the distribution of
minimum distances, highlighting a peak in frequency just
before reaching the threshold, indicating the effectiveness of
the matching strategy in pairing buildings with similar
characteristics.

Evaluating the extracted matched buildings, the boxplots
for EUI and GHG emissions (Figure 3) reveal significant
variability among building types, underscoring the influence
of operational characteristics on energy consumption and
greenhouse gas output. Quick Service Restaurants and Full-
Service Restaurants consistently exhibit the highest median
values for both EUI (above 100 kWh/ft?) and GHG emissions
(20,000—40,000 kg CO2). This is likely due to the energy-
intensive nature of their operations, including frequent use of
cooking equipment and extended operating hours. In contrast,
building types such as small offices, medium offices,
warchouses, and hospitals show narrower distributions,
reflecting more uniform energy use, though the limited
hospital sample size may artificially reduce observed
variability.

Interestingly, while large offices have slightly higher
median EUI compared to medium offices, the Ilatter
demonstrates higher median GHG emissions. This disparity
may reflect differences in energy source mixes or operational
efficiencies. The extended whisker lengths for Quick Service
and Full-Service Restaurants in the EUI plot, along with the
longer whiskers for medium offices and Full-Service
Restaurants in the GHG plot, highlight significant variability
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Figure 3. EUI and GHG emissions distribution across building types

within these categories, possibly due to diverse building
designs or operational practices. While outliers are present in
both plots, particularly for Large Offices and restaurants, they
were retained as they represent simulated variations intended
to capture diverse building performances. These trends
emphasize the importance of tailored energy and emissions
management strategies for different building types.

Based on Figure 4, Zone 7 has a medium EUI compared
to other climate zones but records the lowest GHG emissions.
In contrast, Zone 6 exhibits the highest average GHG
emissions despite not having the highest EUI. This suggests
that factors beyond energy consumption, such as the type of
fuel used, play a significant role in GHG emissions. As shown
in Figure 5, buildings in Zone 7 primarily use cleaner energy
sources like electricity, natural gas, and district heating, which
contribute to its lower GHG emissions. Conversely, a
significant portion of Zone 6's GHG emissions is attributed to
the use of carbon-intensive fuels like fuel oil, which lead to
higher CO: emissions despite moderate energy usage.

The challenge with zones like Zone 7 or Zone 8 is that they
do not encompass buildings with a wide variety of fuel
sources, which can reduce the accuracy of the training
process. To address this limitation, a key future step is to
update the Portfolio Manager data used to extract the datasets
and include a broader range of buildings from the source
database. This would ensure more comprehensive
representation and improve the reliability of the analysis.
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TABLE I: HYPERPARAMETER RANGES AND OPTIMIZED VALUES FOR XGBOOST AND RANDOM FOREST MODELS USING

RANDOMIZEDSEARCHCV
XGB Params Range Optimum RF Params Range Optimum
Number of estimators [100, 200, 400] 400 Number of estimators Randint (50, 300) 169
Estimator max depth [3,6,10] 6 max depth [None, 10, 20, 30, 40] 40
Estimator learning rate [0.01, 0.05, 0.1, 0.2] 0.1 Min sample split Randint (2, 10) 2
Estimator subsample [0.7,0.8,0.9] 0.8 Min sample leaf Randint (1, 10) 3
Estimator colsample bytree [0.7,0.8, 0.9] 0.8 max_features ['sqrt', 'log2', None] sqrt
Bootstrap [True, False] False

B.Model training

Table 1 summarizes the hyperparameter ranges and the
optimized values for the two machine learning models used in
this study: XGBoost (XGB) and Random Forest (RF). The
purpose of this parameter tuning is to improve the predictive
performance of each model by identifying the optimal
combination of hyperparameters. The tuning process was
conducted using RandomizedSearchCV method, which
performs a randomized search over the specified parameter
ranges to find the best-performing configuration.

The hyperparameters chosen for the Random Forest (RF)
and XGBoost models reveal important aspects of their
optimization and performance. For example, max_features in
the RF model defines how many features are considered at
each split, with "sqrt" being the optimal value here. This
parameter contributes to the diversity of the decision trees, a
crucial element in improving generalization while
maintaining computational efficiency. Similarly, the number
of estimators (optimal value: 169 for RF and 400 for
XGBoost) governs the ensemble size, directly affecting both
model accuracy and training time. The selection of a higher
number of estimators in XGBoost suggests its ability to handle
larger ensembles effectively, while the smaller optimal value
for RF indicates a balance between computational efficiency
and predictive power.

Another point of interest is the learning rate in XGBoost,
which controls the step size during optimization. The optimal
value of 0.1 strikes a balance between convergence speed and
overfitting prevention. On the other hand, parameters like min
samples split and min samples leaf in RF are essential for
controlling tree growth and preventing overfitting by
requiring a minimum number of data points at splits or leaves.
The interplay between these parameters highlights how
RandomizedSearchCV has fine-tuned the models to suit the
dataset’s characteristics. These optimal values reflect the need
to manage trade-offs between model complexity, overfitting,
and computational demands, providing an essential balance
for practical implementation. The selected optimum values
were then utilized during the training process to ensure the
models were fine-tuned for optimal performance.

The model was trained using 90% of the data and then
tested on the remaining 10%, which includes over 1,200
different buildings. The training evaluation results (Table 2)
highlight that XGBoost outperforms Random Forest in

predicting both EUI and GHG emissions, as shown by higher
R? values and lower RMSE and MAE metrics. XGBoost
achieves an R? of 0.91 for EUI prediction compared to 0.83
for Random Forest, and similarly, an R? of 0.86 for GHG
emissions prediction compared to 0.75 for Random Forest.
This superior performance underscores XGBoost’s capability
to handle complex patterns in the data effectively. For
example, in EUI prediction, the reduction in RMSE from 5.05
(Random Forest) to 3.54 (XGBoost) reflects its ability to
better capture underlying relationships, while the drop in
MAE from 2.94 to 1.99 shows improved precision in its
predictions.

The high-dimensional input vector, consisting of
approximately 48 predictors, plays a critical role in XGBoost's
superior performance. XGBoost is particularly adept at
managing complex feature interactions and identifying
important predictors, thanks to its gradient boosting
framework and regularization techniques. This is especially
beneficial when working with many predictors, as it reduces
the risk of overfitting and effectively prunes less relevant
splits. Random Forest, while robust, may struggle with high-
dimensional data, as it treats all features more equally and
lacks the inherent optimization for feature selection and
interaction modeling. The results are visualized in Figure 6,
using plots that show the relationship between predicted and
measured values, with the red dashed line representing perfect
predictions. These graphs highlight the performance of both
models. The scatter plots demonstrate how closely the
predicted values align with the measured values, with the red
dashed line indicating the ideal prediction scenario. It is
evident that XGBoost offers a more accurate fit for both EUI
and GHG emissions data, as reflected by its higher R? values
and smaller deviations from the perfect prediction line. This
makes XGBoost the superior model in terms of predictive
power and accuracy.
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Figure 5. Average GHG emissions by heating fuel type and climate
zone
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TABLE II: TRAINING EVALUATION

EUI Prediction

GHG Emissions Prediction

Model R RMSE (kWh/ft2) MAE (kWh/fi2) | R RMSE (kg-CO2) MAE (kg-CO2)
Random Forrest 0.83 5.05 2.94 0.75 2440.59 1481.82
XGBoost 0.91 3.54 1.99 0.86 1840.10 1012.21

C. Retrofit evaluation and savings

Figure 7 provides a clear comparison of how switching
HVAC heating types affects both EUI and GHG emissions.
For example, transitioning from a Furnace with Propane as its
fuel source to an air source heat pump (ASHP) using
Electricity results in a notable reduction in both metrics. The
EUI decreases from approximately 29.5 kWh/ft*> to around
27.5 kWh/ft?, indicating improved energy efficiency.
Similarly, the GHG emissions drop significantly from around
3,612 kg-CO: to just above 2,348 kg-CO-, highlighting the
environmental benefit of switching to a cleaner fuel source.
This comparison underscores the potential of fuel changes in
HVAC systems to achieve both energy and emission savings.
While the evaluation presented in Figure 7 for a single
building is valuable for specific retrofit scenarios, it is
generally insufficient for policymakers and organizations
involved in building retrofits. Decisions are rarely made based
on the performance of a single building; instead, stakeholders
prefer to evaluate retrofit savings across a broader portfolio of
buildings [23]. To address this need, a sample of 100 diverse
buildings across different climate zones was selected from the
original database, and two distinct datasets—pre-retrofit and
post-retrofit—were created for analysis.

The pre-retrofit dataset represents the baseline scenario,
where all buildings maintain their existing features except for
the retrofit-specific variables (in this case, HVAC Heating
Type and Heating Fuel Type), which were standardized to
Furnace and Propane. Conversely, the post-retrofit dataset
includes the same buildings with identical features as the pre-
retrofit dataset, but with HVAC Heating Type and Heating
Fuel Type changed to ASHP and Electricity to simulate the
retrofit. Additional post-retrofit scenarios were created by
varying the HVAC and fuel types, consistent with the single
building retrofit analysis.

The resulting distributions of EUI and GHG emissions for
various retrofit scenarios are shown in Figure 8. In this
context, 'positive savings' refers to reductions in EUI and
GHG emissions compared to the base case. Retrofitting from
Furnace/Propane to options such as Furnace/Natural Gas,
ASHP/Electricity, and Electric  Resistance/Electricity
demonstrated more than 70% of buildings achieving positive
energy savings, highlighting the reliability of these scenarios
for energy efficiency improvements. On the other hand, the
transition from Furnace/Propane to Furnace/Fuel Oil
exhibited the lowest positive change in GHG emissions, with
nearly 98% of buildings showing negative savings. This
outcome aligns with expectations, as Fuel Oil typically results
in higher GHG emissions. Retrofitting to ASHP and Electric
Resistance systems also showed high positive changes in

GHG reductions, reinforcing their effectiveness in lowering
carbon emissions across a diverse building sample.

For District/District Heating, while the exact methodology
for calculating heating energy and GHG emissions in the
ComStock database is not explicitly detailed, the results
presented in Figure 8 highlight the significant variability in
district heating impacts among buildings. This variability is
largely due to differences in fuel sources used within district
heating networks, which can range from renewable energy
sources to fossil fuels. For instance, in the case of the building
depicted in Figure 7, the energy source could predominantly
be renewables, resulting in very low GHG emissions
alongside reasonable EUIL In contrast, other buildings, likely
relying on fossil fuels for district heating, exhibit markedly
different results, with higher EUI outcomes. Although, on the
other hand, the positive GHG emissions observed for a group
of buildings suggest that other attributes may influence district
heating GHG emissions and even EUI. These attributes could
not be accounted for due to a lack of available information. It
is also worth noting that while 99% of the buildings using
District/DistrictHeating show positive GHG emissions, the
average GHG emissions of this group are 4526 kg-CO2,
which is lower than buildings using Furnace/Propane (base
case) with an average of 6365 kg-CO2, yet notably higher than
the example building shown in Figure 7. This suggests that,
despite the variability in district heating sources, the overall
emissions performance of these systems may align more
closely with that of fossil fuel-based systems like
Furnace/Propane.
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Figure 6. Comparison of predicted vs. measured EUI and GHG
emissions for Random Forest and XGBoost models
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These findings highlight the need for further investigation into
the specific factors influencing emissions variations across
different building groups.

There may be some inaccuracies in the results due to the
limited data used for training the regression model and its
inability to accurately predict certain combinations of
features. Other retrofit scenarios, such as changing window
types, wall materials, or window-to-wall ratios, can also be
evaluated using the same proposed methodology. While
combining multiple retrofit scenarios could provide a more
comprehensive evaluation, it introduces complexity, making
it challenging to isolate the impact of each individual scenario.

IV. CONCLUSION AND FUTURE WORK

This study addresses the critical challenge of improving
energy efficiency and reducing greenhouse gas (GHG)
emissions in existing buildings, which contribute significantly
to global emissions. While traditional methods such as
physics-based energy simulation models offer valuable
insights into retrofit scenarios, their limitations, including
expertise requirements, time-consuming processes, and
inherent  uncertainties—can impede their practical
application. Similarly, data-driven approaches using ML
models face challenges due to the lack of reliable measured
data and privacy concerns.

To bridge these gaps, this research integrates data-
matching techniques with highly calibrated simulation
databases to overcome data limitations for ML-based
retrofitting analyses. By employing a Euclidean distance-
based matching algorithm, this approach successfully
identifies comparable buildings and extracts valuable data,
achieving a high success rate. Ensemble learning models,
specifically Random Forest (RF) and XGBoost, were trained
on the matched data to predict EUI and GHG emissions. The
optimized XGBoost model outperformed RF, demonstrating
superior accuracy and robustness with R? values of 0.91 for
EUI and 0.86 for GHG emissions.

The study further demonstrated the environmental and
energy efficiency benefits of transitioning HVAC systems to
cleaner fuel sources, such as air-source heat pumps. To
enhance the generalizability of the findings, a distribution-
based method was introduced, which analyzed retrofit impacts
across a sample of 100 buildings of various types and in
different climate zones. This method provides actionable
insights and a scalable framework for policymakers and

stakeholders to make informed, data-driven decisions on
building retrofits.

By combining advanced data-matching techniques with
machine learning and proposing a scalable evaluation
framework, this research contributes to the growing body of
knowledge on sustainable building retrofits. The scalability
lies in its ability to generalize retrofit impacts across a diverse
range of building types, climates, and geographic regions.
Future work could focus on:

1. Adding cost as a target variable to evaluate the
economic aspects of retrofits, providing a more
comprehensive  assessment  that integrates  energy,

environmental, and financial impacts.

2. Updating the portfolio manager data dynamically
with new inputs from users to enhance the adaptability and
applicability of the proposed framework, ensuring it remains
relevant and effective in real-world scenarios.
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Abstract—Driving simulators are a common industry tool for
verifying driver assistance systems with human involvement.
However, there is considerable variation in the hardware and
software specifications of these simulators. Consequently, the
development of such simulators is often a lengthy process due to
the need to create custom software or the high cost of commercial
solutions. The goal of this project is to integrate the simulation
software Car Learning to Act (CARLA) into highly modular and
immersive driving simulators. This will result in the creation of
an open source, reconfigurable hardware abstraction that will
facilitate the easy and rapid construction of driving simulators
that prioritize modularity and extensibility.

Keywords-simulation; testing; human-computer interaction; au-
tomotive.

I. INTRODUCTION

In past years, the development of autonomous driving has
been accompanied by a series of optimistic assumptions [1][2].
However, despite significant progress, the road to fully au-
tonomous vehicles capable of seamlessly handling all possible
driving situations remains an ongoing challenge [3]. One of the
most prominent challenges is the proliferation of mixed traffic
scenarios, in which the road is shared by different entities, in-
cluding automated and autonomous vehicles, cars with human
drivers, as well as vulnerable road users, such as cyclists and
pedestrians. Understanding, predicting, and replicating human
driving behavior in these complex and dynamic environments
has emerged as a central but challenging facet of autonomous
driving research. The need to address this challenge is not
only rooted in safety concerns, but extends to the broader
goals of gaining public acceptance [4] and trust [5] in Artificial
Intelligence (Al), particularly in the area of self-driving cars
[6].

This is the domain in which the Human-In-The-Loop
(HITL) methodology is applicable, which is particularly suited
to understanding human behavior in complex driving situations
without endangering the test subjects. However, there are
several challenges associated with HITL driving simulator
software. Achieving a high level of realism is critical, as
visual, auditory, and tactile feedback must be convincing to
ensure realistic driver responses, which requires high-quality
graphics and precise input/output synchronization. Ensuring
minimal latency between the driver’s actions and the simu-
lator’s responses is essential, as any delay can disrupt the
driving experience and affect the accuracy of the data. The
integration of different subsystems can be complex due to

different communication protocols and data formats, espe-
cially for hardware-related input and output devices, such
as realistically behaving force feedback (FFB) motors, dif-
ferent visualization systems, and different driver positions
and therefore visualization angles. Designing an intuitive and
user-friendly interface is essential for efficient control and
quick adjustments. Overcoming these challenges improves the
test and verification processes for driver assistance systems
in driving simulators, leading to safer and more reliable
automotive technologies. The software must be open and
adaptable to different driving simulators and scalable for future
enhancements without extensive redevelopment.

However, to the best of our knowledge, there is no freely
available open source framework that considers all require-
ments and provides a highly modular hardware abstraction
of components for immersive simulators, including realistic
steering wheel behavior and easily configurable input and
output devices based on the Car Learning to Act (CARLA)
simulation environment [7]. The objective of this research is to
address the above issues by developing a solution that enables
driving simulators to be quickly built and deployed, and that
allows them to be connected all over the world.

Section II presents related work to this paper, including
highlighting new elements and the need for such a modular,
open-source framework for easily integratable driving simula-
tors. In Section III, the approach and implementation of the
modular framework is presented. Section IV concludes this
paper and highlights areas for further research and develop-
ment.

II. RELATED WORK

Modularizing software for abstraction is a common practice
in software development. The use of Hardware Abstraction
Layers (HALs) [8] allows the development of easily re-
configurable software. A popular HAL technology is virtual
machines, which simulate operating systems on different host
systems [9]. Robot Operating System (ROS) [10] is also
widely used for hardware abstraction, as it allows software
to be developed in a modular fashion so that hardware-
related components can be easily replaced. For example,
in the automotive industry, the AUTomotive Open System
ARchitecture (AUTOSAR) [11] standard is a common way
of abstracting hardware. Furthermore, [12] have developed
a HAL for embedded systems with time-triggered hardware

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

access. Simulation environments, such as CARLA on the
open source side, or SILAB [13] on the commercial side,
often provide a naturally modular architecture with a fo-
cus on software interfaces for testing autonomous driving
functionality and testing driver assistance systems. In 2008,
[14] presented an approach based on MATLAB/SIMULINK
for customizable vehicle dynamics in HITL simulators. In
the context of driving simulators, [15] presented a modular
software-based architecture for integrating developed software
for model-based testing of automated driving functions, but
focused on specific simulator configurations and lacking open
source features. [16] developed modularization in terms of
interchangeability of hardware mock-up modules. For exam-
ple, Realtime Technologies [17] commercially offers its RDS-
Modular simulator mock-ups, which can be assembled from
predefined modules to meet customer requirements.

To the best of our knowledge, there is currently no freely
available open source framework that comprehensively ad-
dresses all potential requirements while providing a highly
modular hardware abstraction for components used in im-
mersive simulators. This includes features, such as realistic
steering wheel behavior and easily configurable input and
output devices, all integrated into the CARLA simulation
environment. This also allows simulators based on the same
simulation environment and framework presented in this paper
to be connected all over the world. Thus, the next chapter
presents an approach to address these challenges by developing
a solution that enables rapid construction and deployment of
driving simulators.

III. APPROACH

The overall concept of our approach for integrating the
CARLA simulation environment into a driving simulator is
shown in Figure 1.

To achieve a high degree of modularity and extensibility, the
processing of driver input, control of environmental variables,
display of images, FFB for the steering wheel, and vehicle
control are divided into several separate ROS nodes as shown
in Figure 2. ROS is a state-of-the-art framework for automated
and autonomous driving research, as it enables highly modular
software design (see, for example, [18]-[20]). Therefore, a
simulator that enables testing of automated driving functions
with HITL should also be based on ROS. The nodes com-
municate via ROS messages with the CARLA-ROS-Bridge
and with each other or, if needed, as clients directly with
the CARLA server via the APL. The vehicle control interface
to external driver assistance systems is formed by six ROS
topics, allowing testing of, for example, Cruise Control (CC),
Lane Keeping Assist System (LKAS), and Lane Change Assist
(LCA), and can be easily extended to include further func-
tionality. The following subsections provide a more detailed
explanation of each node.

A. Input handling

The Input Handling node is responsible for handling all
user input from the steering wheel, buttons, pedals, and

keyboard. The Python library Pygame [21] is used because
it is platform-independent and generally compatible with all
game controllers and other input devices. A configuration
file contains the assignment of inputs to various program
functions, such as activating a turn signal, changing gear, or
changing weather conditions. This gives users the flexibility to
change assignments and use hardware with different numbers
of buttons and axes. A ROS message is issued when an input
event occurs. In addition, a CANopen interface is available to
publish Controller Area Network (CAN) messages within the
ROS environment and to control the ego vehicle via CAN.

B. Time and weather control

The Weather Controller node is responsible for controlling
the weather and time of day within the simulation. A con-
figuration file contains an expandable list of preset time and
weather conditions. At the user’s request, the system switches
to the next or previous preset by passing the corresponding
parameter values to the CARLA-ROS-Bridge, where they are
applied to the simulation.

C. Display control

Camera sensors are added to the simulated vehicle at the
start. The number of cameras M is equal to the number of
monitors or video projectors used in the driving simulator. This
value is specified in a configuration file which also contains
information about other parameters, such as the resolution, the
width of the monitor b, the width of the side monitor frame
k, and the distance between the screens and the driver’s head
d as described in Figure 3. The Display Controller node uses
these values to calculate the angle f (see (1) and Figure 3) and
the horizontal rotation angles o; (see (2) and Figure 3) of the
camera sensors, ensuring that the simulated scene is displayed
in a realistic manner.

b _
f =2-arctan <M> (D

where b is the width of a single monitor, d is the distance
from driver’s head to the monitor surface, and k is defined by
the frame width of the monitor. While f remains constant for
all camera sensors with identical monitors, the rotation angles
o; of these cameras vary by a factor ¢, where 7 is calculated
based on whether the number of displays M is an even or
odd integer. Thus, ¢ represents a list of numbers for the partial
rotation of each monitor:

d
0; = 1-2-arccos —— with
b 2
(2) +d )
. inandnENO,nS%, Mmod2=1
i= ,
i%andneN,ng%, M mod2=0

For example, three monitors result in ¢ = {—1,0,1}. The
position of the camera sensors is identical to the position of
the driver’s head in the vehicle coordinate system, as specified

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

10



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

Custom Input Devices:
D> steering wheel, touchscreen, —
pedals, cameras, keyboard, ..

Custom Driving Simulator Mockup

Custom Output Devices:
[€— monitors, projectors, motion €

Human-in-the- platforms, force feedback, ..

Loop

Hardware

Abstraction

| Traffic Simulation |

v

CARLA Software D‘rlver
. . R Assistance
Simulation Abstraction
Systems

1

| Sensor Simulation |

Figure 1. Abstract concept of the open simulation software for seamless and fast integration into custom driving simulators for HITL tests. The two
abstraction modules are presented in this paper.
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Figure 2. Integration of CARLA into a static driving simulator. Tasks are distributed across multiple ROS nodes (white) that communicate via ROS
messages. Hardware interaction is facilitated by the use of the Pygame and Python-evdev libraries. All interfaces are shown in red.
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Figure 3. Geometrical description of the display setup of driving simulators
with distance from driver head to display d, frame width k, display width b,
horizontal field of view f and horizontal display rotation o.

in the configuration file. For reasons of runtime efficiency, the
images from the camera sensors are not received from the
server via ROS, but via API. They are then displayed side
by side in a Pygame window with the total resolution of the
screens as shown in Figure 4. Taking into account the monitor
frames, rotations and distances, the image from the camera
sensors will appear smooth and without shifting on the driver’s
monitor.

Figure 4. Example of offset compensation for simulators with displays. An
automatically calulated offset based on the user-defined parameters resulting
in a seamless image on the custom hardware setup.

A secondary display shows important information, such as
current vehicle speed, vehicle lighting status, and current gear.
The Secondary Display Controller can be used to integrate
additional displays for mirrors and user interfaces.

D. Vehicle control

The Vehicle Controller node is responsible for controlling
the simulated vehicle’s steering, accelerator, brake, shift, and
lighting functions. As given in the example programs including
the values [22], the steering wheel angle is transmitted non-
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linearly to the vehicle wheels (see (3)), with slight modifi-
cations to map the steering angle non-linear from -1 to 1.
This results in less sensitive steering behavior at small steering
angles, which helps prevent the vehicle’s lateral dynamics from
becoming unstable.

f(x) =0.509 - tan(1.1x) 3)

where x is the raw steering angle received from hardware
steering wheel. A similar principle applies to the simulator’s
accelerator and brake pedals. Gears can be shifted manually by
the driver or automatically. While brake lights and rear lights
are activated and deactivated according to the vehicle’s operat-
ing status, most other lights are controlled by the driver, such
as high beams or interior lighting. State machines are used to
ensure that the functionality of the indicators is consistent with
real-world expectations, and to control the switching between
parking, low beam, and fog lights. By way of illustration,
the state machine for the indicators is shown in Figure 5.
It can be seen, for example, that the left-hand indicator is
deactivated when the right-hand indicator is activated, and that
the hazard warning lights can be temporarily deactivated using
the standard indicator switches, but are reactivated when the
indicator is deactivated.

Six ROS topics facilitate external control of the vehicle
by driver assistance systems, in particular CC, LKAS, and
LCA. The node provides the necessary information on whether
the driver has activated or deactivated the above systems and
whether a lane change has been initiated by activating an
indicator. In case of a successful lane change, the indicator can
be reset via an external message. The node also provides the
desired speed of the vehicle, which is the current speed of the
vehicle when CC is engaged. This speed can be increased or
decreased by the driver. The actual positions of the accelerator
and brake pedals are then overwritten by the external values,
except in cases where the driver applies more force to the
accelerator than CC requires, such as when overtaking. CC is
disengaged in the event of a collision or when the brake pedal
is depressed. When LKAS is activated, the actual steering
wheel angle is not overwritten by the external angle. Instead,
the steering wheel is rotated to the correct position using force
feedback effects as described in Subsection III-E. In the event
of a collision, lane keeping is disabled.

E. Force feedback

The FFB Controller node has two tasks: generating force
feedback and controlling the steering wheel angle when LKAS
is enabled. These are achieved by using the Python-evdev
library [23], which is based on the generic Linux input event
interface evdev. This usually ensures compatibility with game
controllers.

The inclined steering axis of a car results in steering
resistance due to the centripetal force acting on the wheels.
Without compensation, the wheels and steering wheel will
automatically align in the center position [24]. The force,
which is proportional to the square of the vehicle’s velocity v,

can be simulated with an autocentering effect. The strength s
of the effect is calculated as follows

s=p-v? “4)

where p is a user defined constant.

Figure 6 shows the control loop required to turn the steering
wheel to the desired angle. To avoid the nonlinearity inherent
in the nonlinear transmission of the steering wheel angle y
to the wheel angle y*, the inverse nonlinearity is applied
to w* and the resulting steering wheel angle w is used as
the setpoint. The controller output r is the strength of the
constant effect. Note that this strength is not unlimited. It
is reasonable to expect that small disturbances may occur in
the motors or other components of the steering wheel, which
are represented as z. When other force feedback effects are
disabled or compensated, the wheel behaves like an integrator.

IV. CONCLUSION AND FUTURE WORK

This paper presents a highly modular, open source software
architecture designed to increase the flexibility and adapt-
ability of driving simulators by enabling seamless integration
of different hardware configurations and providing a plug-
and-play experience for researchers and developers. By sup-
porting the interchangeability of displays, input devices, and
other peripheral components, the architecture promotes a user-
centric approach that can accommodate different setups with-
out requiring extensive reconfiguration. An additional feature
of the proposed framework is its ability to replicate realistic
steering wheel behavior during active Advanced Driver Assis-
tance Systems (ADAS) operations, including scenarios where
the steering wheel autonomously rotates to reflect real-world
conditions. This enhancement improves the immersive quality
of the simulator and provides a more accurate representation
of ADAS functionalities and their impact on driver control.

The modularity and hardware-agnostic design of the pro-
posed system makes it an ideal choice for HITL simulations
where the flexibility to integrate different input and display
devices is essential. This level of modularity supports dif-
ferent research needs, facilitates the testing and evaluation
of autonomous driving systems across multiple hardware
setups, and allows for easy upgrades or changes to the
simulation configuration. Furthermore, integration with ROS
allows driving data to be captured for further investigation
in specific scenarios. The ScenarioRunner for CARLA [25]
enables efficient, scenario-based testing using OpenDrive [26]
and OpenScenario [27] data. By incorporating an architec-
ture that is compatible with industry-standard hardware and
adaptable to future advances, the framework provides a robust
foundation for the continued development of HITL simulation
environments and is used in our multi-simulator framework at
the Karlsruhe University of Applied Sciences [28].

Future developments will focus on extending the capabilities
of the system through full integration with the D-BOX motion
platforms, providing enhanced physical feedback for even
greater immersion. This addition will allow the simulator to
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convey realistic vehicle dynamics and road conditions to the
user, increasing the fidelity of the simulation. In addition,
we plan to develop an open interface to support custom
motion platforms, allowing researchers and developers to use a
variety of motion systems within the simulator framework. By
enabling compatibility with a wide range of motion platforms,
the simulator will offer increased adaptability, positioning it
as a versatile tool for both research and industry applications
in autonomous and assisted driving. Support for Windows de-
vices is also provided by adding a DirectInput mode instead of
the Linux-specific evdev library. The framework will be made
publicly available at https://git.ieem-ka.de/public-repositories/
carla-sim.
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Abstract—The Suppression of Enemy Air Defense (SEAD)
mission is a critical component of Unmanned Aerial Vehicle
(UAV) swarm operations, presenting a complex challenge for
modeling and simulation. Machine Learning (ML), particularly
Deep Reinforcement Learning (DRL), offers a promising
approach to enhance UAV swarm SEAD effectiveness through
intelligent decision-making. This paper, therefore, explores a
modeling and simulation approach to intelligent combat
equipment decision-making based on deep DRL. We establish a
DRL modeling framework grounded in combat simulation and
specifically construct an intelligent decision-making framework
for UAV Swarm SEAD. Focusing on the attack decision-making
problem, we present a case study utilizing the Dueling Deep Q-
Network (Dueling DQN) algorithm for intelligent combat
decision modeling. Preliminary experimental results
demonstrate that the ML-based intelligent decision-making
model achieves superior combat effectiveness compared to
traditional knowledge engineering-based models.

Keywords- UAV swarm ;SEAD; decision-making modeling;
combat simulation ; Dueling DQN.

I. INTRODUCTION

Traditional manned aircraft assault methods face
significant challenges in ensuring the safety of personnel and
platforms against the modern air defense system. With the
rapid development of UAV technology, employing UAV
swarms is poised to become the predominant approach for
executing SEAD tasks in the future [1].

The core challenge in achieving autonomous mission
execution for UAV swarms lies in solving the problem of
intelligent combat decision-making for their operations.
Conventional UAV swarm combat decision-making primarily
relies on knowledge engineering techniques, such as
production rules and expert database systems [2]. However,
these methods exhibit limitations, including difficulty in
enumerating the complexity of the situational space,
challenges in handling the inherent uncertainties of complex
scenarios, and a lack of adaptive evolution in combat decision
algorithms. Concurrently, the increasing credibility of
unmanned combat simulation systems enables the generation
of vast amounts of offensive and defensive combat data. This
data can not only be used to evaluate UAV swarm combat
effectiveness but also serve as input samples for machine
learning algorithms, supporting the reinforcement learning
training of combat decision models. This development opens
new avenues for significantly enhancing UAV swarm combat
effectiveness.

In recent years, DRL has achieved remarkable
breakthroughs in domains such as games, business, and
control [3], often surpassing human performance and
demonstrating substantial potential for intelligent decision-
making applications. Within the military domain, research
utilizing DRL is gaining traction: Reference [4] applied
heuristic reinforcement learning to air combat intelligent
decision-making; Reference [5] employed DRL to study
aircraft air-to-ground combat decision-making; Reference [6]
implemented cooperative maneuvering decision-making for
multiple warheads during penetration using DRL, achieving
superior results compared to rule-based methods in simulation;
Reference [7] proposed a DRL-based decision-making
process framework for multi-aircraft cooperative air combat
and validated its feasibility and practicality on a wargaming
platform.

This paper first proposes a general modeling methodology
for intelligent combat equipment decision-making, integrating
combat simulation with DRL. Building upon this, we establish
an intelligent decision-making training and modeling
framework utilizing the equipment combat simulation system
WESS. Subsequently, the paper focuses on the specific
problem of combat decision-making modeling for
heterogeneous UAV swarm SEAD. We detail the design of an
intelligent decision-making model framework, investigate
suitable DRL algorithms, and present a case study on
intelligent decision-making modeling. The effectiveness of
the proposed method and algorithm is validated through
experimental comparisons with traditional knowledge
engineering-based decision models.

The remainder of this paper is organized as follows.
Section II presents the conceptual framework for intelligent
equipment combat decision-making modeling based on
combat simulation and DRL, as well as the detailed training
modeling framework. Section III is dedicated to the decision-
making model framework for UAV Swarm SEAD operations,
including the operational concept, decision network analysis,
and the detailed design of the perception, jamming, and attack
decision networks. Section IV describes the training process
of the attack decision network based on the Dueling DQN
algorithm, covering the algorithm summary, network
structure, and reward design. Section V provides a case study
to validate the proposed approach, detailing the problem setup,
rule experiments, pre-training, iterative training, and
intelligent testing results. Finally, Section VI concludes the
paper and discusses future work.
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II.  INTELLIGENT EQUIPMENT COMBAT DECISION-
MAKING MODELING FRAMEWORK BASED ON COMBAT
SIMULATION AND DRL

A. Conceptual Framework of Intelligent Equipment
Combat Decision-Making Model Based on Combat
Simulation

Within the framework of combat simulation, the entire
intelligent weapon equipment, including its combat decision-
making algorithm, must be constructed as a combat simulation
model. This enables its incorporation into the combat
simulation environment for interactive exploration and
learning evolution. The weapon equipment model supporting
combat simulation can be divided into two modules based on
the operational domain described: the equipment simulation
model and the operational behavior model. The former
primarily describes behavior within the physical information
domain and is responsible for battlefield situation awareness
and operational command execution. The latter primarily
describes behavior within the cognitive organization domain.
It is responsible for analyzing and processing battlefield
situation information output by the equipment simulation
model, generating action plans, making operational decisions,
and passing the resulting commands to the equipment
simulation model for execution.

The operational behavior the

within cognitive

organization domain can be further categorized into two types:

pre-war planning behavior and real-time decision-making
behavior. The former can be flexibly described using data or
scripts and implemented as a scripted operational behavior
model within the combat simulation system. The latter
requires making ad hoc decisions based on real-time changes
in the situation and can be described using various decision-
making modeling methods. If knowledge engineering
methods are employed for decision modeling, it can be
flexibly implemented as a behavior script. If machine learning
methods are used for modeling, it is typically implemented as
a neural network for inference computation, with DRL used
for training and modeling. Current neural network models are
generally trained and inferenced using the Python scripting
language, enabling their integration into the scripted
description framework of combat behavior. During
operational simulation, the operational behavior model
obtains situation information from the equipment simulation
model and generates operational commands based on this
information. These commands then drive and control the
execution of the equipment simulation model, as depicted in
the simulation loop in Figure 1. The training loop shown in
the bottom half of the figure indicates that combat simulation
generates the training sample data required for DRL-based
intelligent decision-making modeling. An updated intelligent
decision-making network model is formed through DRL
training. The generation of subsequent training sample data is
influenced by this updated model rejoining the combat
simulation loop, and this process iterates until convergence.
Reinforcement learning algorithms are categorized into
two types based on whether the behavior policy and the target
policy are identical: On-Policy and Off-Policy. In On-Policy

training algorithms, the policy used to generate samples is the
same as the policy being optimized. This requires the agent
training to be executed synchronously with the combat
simulation. Given the computational complexity of combat
simulation, On-Policy algorithms are not well-suited for
parallel execution of simulations. Conversely, Off-Policy
algorithms represent a more suitable training approach. Off-
Policy training allows the combat simulation and training
processes to run in parallel. Training samples generated from
each combat simulation run (termed a round) are written
concurrently into the corresponding round's sample database.

; Weapon Equipment .
i Behavior Model i
1 Post 1
i Behavior Script e Weapon :
' Invocate | S E-qulpm.ent ;
: Moy ) Simulation

i Model | |
I Commands :

The Sample Database for Turn-Based Reinforcement Learning

Figure 1. Conceptual framework of intelligent equipment operational

decision-making mode

B. Intelligent Equipment Operational Decision-Making
Training Modeling Framework Based on DRL.

1) Training modeling process: The process is divided
into four stages as shown in Figure 2: rule experiment, pre-
training, iterative training, and intelligent comparison test.
Suppose there are m intelligent decision-making networks in
UAYV swarm.

a) The rule experiment: Aims to optimize the decision
rules and prepare the pre-training data. By performing Monte
Carlo experiments on all the rules of the decision problem in
each training scenario space, a large number of rule
experiment results data and reinforcement learning round
sample data are obtained to evaluate the combat effectiveness
of UAV swarm under each combination rule mp =
(Ry, R, ..., Ry,), and identifies the optimal rule to serve as the
benchmark for subsequent intelligent test comparison.

b) The pre-training: Aims to provide an initial network
for iterative training. By optimizing the round sample data
obtained from the rule experiment, the data set with better
combat effect of UAV swarm is obtained. On this basis, each
decision network is trained offline to yield my =
(N2,N2,...,N%) . This stage utilizes the sample data
generated by optimal rule experiments to avoid the "cold
start" problem in iterative training and improve convergence
efficiency.

c) lIterative training: Aims to accumulate experience
and improve policy through continuous interaction between
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the agent and the training scene. On the basis of the pre-
training, the network 7; is iteratively trained in turn, and the
rest of the network is fixed in this process. Referring to the
idea of policy improvement theorem [8], the policy
improvement point is found in the single policy 7;, so that the
joint policy 7 is improved. After all the policies are updated,
the single round of policy iteration training is completed until
the end conditions are met, such as achieving the desired
operational effectiveness index or reaching the maximum
number of iteration rounds, etc. The final optimized policy is
denoted as Ty = (N{, Ny, ..., Ny).

d) The intelligent comparison test. Aims to verify the
effectiveness of the single-strategy iteration training. Combat
effectiveness evaluations are conducted for the UAV swarm
in test scenarios using both the optimized policy 7y, and the
baseline policy 7, . The experimental results are then
compared to validate the efficacy of the intelligent decision-
making approach.

Tterative training

The intelligent
comparison test

Training ends
Figure 2. Policy iteration method

2)  Training Support Environment : The reinforcement
learning training support environment for intelligent
decision-making based on combat simulation typically
comprises four modules: combat scenario generation tool,
combat simulation engine, parallel experiment and training
management tool, and reinforcement learning training

algorithm. The architecture of this training support
environment is depicted in Figure 3.
a) Scenario generation module: Responsible for

describing various scenarios that intelligent equipment may
encounter in actual combat. It provides the diverse situational
data sources required for decision-making model training.

b) Combat simulation engine module [9]: Responsible
for simulating and executing numerous scenarios, generating
both combat effectiveness data and the round sample dataset
needed for training.

¢) Parallel experiment and training management
module: Responsible for managing large-scale parallel
simulation experiments. It also orchestrates the synchronous
scheduling of the DRL training algorithm and facilitates

iterative updates to the decision model during
experimentation.
d) Reinforcement  learning training  module:

Responsible for implementing the reinforcement learning
algorithm. It accepts scheduling directives from the parallel
experiment and training management module and is
specifically tasked with generating and updating the decision
network model.

III. THE DECISION-MAKING MODEL FRAMEWORK OF
UAV SWARM SEAD OPERATION

A. Concept of UAV swarm SEAD operation

In SEAD missions, UAVs must perform reconnaissance,
jamming/suppression, and strike tasks autonomously [10].
This enables the swarm to form a complete kill chain and
achieve rapid "OODA" cycles. The UAV swarm composition
typically includes: a reconnaissance aircraft equipped with
radar pods, a jammer with electronic jamming pods, and an
attack aircraft armed with multiple anti-radiation missiles.

The typical mission scenario involves: a number of mobile
air defense positions (Blue Force) dispersed within a
designated area. The Red Force organizes a UAV swarm to
conduct SEAD operation against these positions. The attack
aircraft form a low-altitude formation. After takeoff from the
airfield, they proceed to the periphery of the operational area
and enter a holding pattern. The jammer and reconnaissance
aircraft form a high-altitude formation. They depart later than
the low-altitude formation, flying at ultra-low altitude. At a
predefined waypoint, they execute a pop-up maneuver to
induce Blue Force air defense radars to activate and reveal
their positions. The reconnaissance aircraft then detects and
locates these targets, assigning them to the low-altitude attack
formation. The primary actions of the attack aircraft (as
depicted in Figure 4) are: selecting a launch point upon
receiving assigned targets, proceeding to that location,
launching missiles, and then entering a holding pattern while
awaiting battle damage assessment (BDA) results from the
reconnaissance aircraft to determine whether to conduct re-
attack or proceed to the next target. The jammer continuously
suppresses Blue Force air defense radars and jams incoming
missile seekers, creating safer conditions for the low-altitude
formation and reconnaissance aircraft. The mission concludes
when: the reconnaissance aircraft is destroyed, all attack
aircraft missiles are expended, all attack aircraft are destroyed,
or all enemy targets are eliminated. Following mission
completion, the surviving assets return to base. The objective
is to destroy the maximum number of Blue Force air defense
radars while sustaining minimum losses.
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Figure 3. Reinforcement learning training supporting environment for intelligent decision making
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Figure 4. Attack behavior model of attack aircraft

B. Analysis of UAV swarm SEAD operation decision
network

The SEAD mission encompasses multiple decision-
making policies for the UAV swarm, such as formation flying,
low-altitude penetration prior to engagement, electronic
suppression, detection and perception, fire attack, and target
assignment during engagement. Of these, the first three
policies (pertaining to the pre-engagement phase) are

particularly complex and challenging to describe using rules,
and their decision outcomes significantly impact battle results.
These decision problems exhibit the characteristics of a
Markov decision process, making them suitable for
description via neural networks and training using DRL. The
remaining policies are directly modeled as rule-based scripts
employing knowledge engineering methods. Figure 5
illustrates the composition structure of the entire UAV swarm
SEAD operational decision-making model.
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Figure 5. Operational decision-making structure of UAV swarm

C. UAV swarm SEAD operational decision-making
network model framework

1) Perception and decision network

a) Input state space: The perception policy is designed
to address the global situational awareness challenge for the
reconnaissance aircraft, providing stable targeting
information and fire damage assessment to the attack aircraft.
It selects the following 4-dimensional inputs:

e Distance and bearing between the reconnaissance

aircraft and the target group centroid.

e Distance and bearing between the reconnaissance

aircraft and the nearest target.

Given the reconnaissance aircraft’s position (xg, y,) , the
target group centroid (Rx, Ry) is defined as the weighted
average of n targets' coordinates, with weights determined by
target importance and threat level.

Ny

N

Air Defense Position 1 : .
(x1,51) Air Defense Position 2
X2, Y2
Reference Point

(Rx.Ry) ......

Nearest
Target

Current
Position

Air Defense Position n
Air Defense Position i Cens )
Cxi,y1)

(x0,¥0)

Figure 6. State space analysis of UAV

As illustrated in Figure 6, the distance and azimuth
between UAV and the centroid of the target group are
described by two parameters, d,; and 6, the nearest target is
dj, and 6. Taking the former as an example, it is defined as

(1).

2
d; = J(Rx —x0)2 + (Ry, — ¥p) W
6, = tan~1 220
a Rx—xo
The input state space of the perception decision network
can be specifically detailed in Table 1. In practical
applications, data preprocessing is performed by taking the
ratio of the azimuth value to © and the ratio of the distance
value to the radar's maximum detection range (Dypq,) for a
specific target type, serving normalization purposes.

TABLE L INPUT STATE SPACE PERCEPTION DECISION NETWORK
DESIGN
State variables Symbols | Data type | Preprocessing
Centroid distance & bearing dyv 64 | double d/Dgmax
Nearest target distance & , , o
bearing dd N 9‘1 double 9/180

b) Action space: In the process of fighting, the different
array have different perception, interference effect, so the
detection of perception and the output of electronic jamming
decision network need to be able to reflect the correlation
matrix of information, the concrete can be described as
Figure 7.

Current
Position

— ek
e

Air Defense Position 2

Figure 7. Action diagram of array position selection
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Specifically, a polar coordinate system is established with
the group centroid as the origin, the vector connecting the
centroid to the current sensor array position as the zero-
direction, and clockwise orientation as the positive direction;
the decision network outputs two-dimensional coordinate
information for the array configuration, which undergoes
domain-specific processing in operational implementation—
including parameter range bounding for direction 6 and
distance d and value discretization—according to equipment
capabilities and mission requirements, for example
constraining the operational distance range to 0.5 times D4,
to 1 times Dy, (Where Dyp,q, denotes the reconnaissance
aircraft's maximum effective detection range) in actual
combat scenarios.

TABLE II. THE OUTPUT ACTION SPACE DESIGN OF THE PERCEPTION

DECISION NETWORK

Decision-making

. . Notes
action variable

Range of values

Array  position [~ 8 ] O max 1s the maximum
Angle 6 e Tmax Angle delimited
A " Dgmax 18 the

rray position . .
distance d [0.5Dg4maxs Damax] | maximum operating

distance

¢) Call time: The invocation opportunity is:
e When the precise coordinates of the enemy are
obtained for the first time.
o  When the enemy target is destroyed.
e  Attack aircraft was shot down.
2) Interfere with the decision network

a) Interference decision network input state space: The
jamming policy aims to solve the problem of enemy
suppression and friendly support. The decision network
accepts the following state inputs.

e Distance and bearing between the jammer and the

centroid of the target cluster.

e Distance and bearing between the jammer and the

centroid of the actively engaged target cluster.

The actively engaged target cluster refers to targets
currently under attack by strike aircraft. All distance
parameters are normalized against Djpq, (the jammer's
maximum effective jamming range).

TABLE III INPUT STATE SPACE DESIGN OF JAMMER DECISION
NETWORK
State variables Symbols Data type | Preprocessing

Real-time attack target
group centroid distance, di. 6 double d/ D}. max
bearing i
Nearest target distance, d. e double 6/180
bearing A u

b) Action space and call timing: During combat
operations, both the reconnaissance aircraft and the jammer
operate at high altitude. Their situational updates and
decision-making actions are synchronized. Consequently,
they share an identical action space definition and utilize the

same set of call triggers for their respective decision networks.

3) decision network attack
The attack policy aims to solve the attack decision
problem of each attack aircraft in the low-altitude formation.
The decision network of each attack aircraft is isomorphic, but
its execution is asynchronous.

a) Input state space: The attack decision network
focuses on the selection of the anti-radiation missile launch
position, and selects the following 9-dimensional state
information as input (where D4, 1S the maximum range of
the anti-radiation missile and H is the current altitude of the
attack aircraft):

e The distance, azimuth, and altitude difference
between the current position of the attack aircraft and
the target.

e The distance, azimuth, and elevation difference
between the current position of the attack aircraft and
the maximum threat target (the air defense position
closest to the current attack target); the launch
position should avoid this threat as much as possible.

e  The distance and azimuth between the jammer and the
attack target; the suppression effect of the jammer
varies with its position.

e  The current attack round count for the target and a flag
indicating whether the first attack on this target was
successful, reflecting the target's defensive capability
strength or weakness.

All input data undergoes normalization.

TABLE IV. ATTACK DECISION NETWORK INPUT STATE SPACE DESIGN
State variables Symbols | Data type | Preprocessing

Target. dls_tance, azimuth, d, 8, h, | double

elevation difference d/Dgmax

Maximum threat distance, ' oar L

bearing, altitude difference da,0a ha | double 6/180

Jammer range, bearing dgj, 04) double h/H

Current attack round n int —_—

b) Output action space: The outcome of the attack
decision network is the relative launch position of the attack
aircraft with respect to the current target, defined by the
distance and bearing between the launch position and the
target. This concept mirrors the decision outputs of the
reconnaissance aircraft. Based on the operational range of the
anti-radiation missile and the capabilities of the air defense
systems, the valid ranges for these parameters are defined as
[Damin> Damax] or distance and [—6 4 ax» Oamax ] fOr bearing.
These ranges are discretized into Ny + 1 points (i.e.,
endpoints of N; segments) for distance and Ny + 1 points
(i.e., endpoints of Ny segments) for bearing, forming a total
of Ngg discrete actions. The decision network evaluates the
value of each discrete action and selects the one with the
highest value as the optimal decision. This selected action is
then converted into precise coordinates for the launch
position. The attack aircraft maneuvers to this position to
execute the strike.
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TABLE V. ATTACK DECISION NETWORK OUTPUT SPACE DESIGN
Decision action variables Range of values Action parsing
d _ (Damax amm) D
- N, (N F 1)) ¥ Damin
Launch Position N {0,1,..., Ngo} d o
Zeamax
0 =—r—X (N mod (N + 1)) — Oumax
fa

¢) Call timing: The invocation of the attack decision
network is centered on the attack target and requires the anti-
radiation missile's passive seeker to lock onto a stable enemy
radar beam to ensure attack accuracy. Therefore, subject to
the preconditions of nonzero remaining ammunition and the
reconnaissance aircraft being operational, the attack decision
network is triggered under the following conditions:
e When the coordinates of the attack target are obtained
for the first time.
e  Upon attack failure.
o  When successfully switching the attack target after a
previous attack.
e Training the attack decision network based on
Dueling DQN.

IV. TRAINING THE ATTACK DECISION NETWORK BASED
ON DUELING DQN

To illustrate the training of the attack decision network as
an example of intelligent decision-making, the remaining
tactics employ the optimal rules.

A. Summary of Algorithm

Within the algorithm framework selection, the decision
networks for each attack aircraft in the low-altitude formation
are completely homogeneous; that is, they share identical state
spaces, action spaces, and optimization objectives. This
scenario can be simplified as a single-agent decision problem.

For the specific algorithm, addressing high-dimensional
input, large action spaces, and the need to finely distinguish
state and action values, the Dueling Deep Q-Network
(Dueling DQN [11]) method demonstrates strong
performance. As an improved algorithm over DQN [12], its
core innovation is the decomposition of the traditional Q-
value into two components: the state value V(s) and the action
advantage A(s, a). A dual-branch neural network structure is
employed to learn these two parts separately. The final action
value Q(s,a) is then calculated using the combination
formula (2) (where |A| represents the size of the action
space):

(s, @) = V() + (A4(5,@) = 5 Baren A5, @) (2)

This design enables the model to more effectively capture
the relationship between state and action. It is particularly
suitable for environments where the state value remains

relatively stable while action advantages exhibit significant
variation, thereby improving the algorithm's learning
efficiency and stability.

B. Network Structure

The Dueling DQN algorithm is value-based. Its neural
network architecture comprises two Q-networks with
identical structures: a training network updated in real-time
and a target network. The target network parameters are
periodically synchronized with the training network
parameters every fixed number of steps to enhance training
stability. As shown in Figure 8, the Q-network utilizes a fully
connected neural network that takes the 9-dimensional state
vector as input and outputs Q-values for 35 discrete actions.
Actions are selected according to a greedy policy, choosing
the action with the maximum Q-value. This structure enables
efficient feature sharing and effectively captures the dynamic
advantages of different actions, making it particularly
impactful in large-scale discrete action spaces and well-suited
for the task.

N
State |
1

’ Input \‘ r/
:l.ayel (9)

hutpul La;
(35)

.

Figure 8. Dueling DQN decision network structure

C. Reward Design

The reward function plays a crucial role in guiding the
iterative improvement of the decision-making network.
Aligned with the objective of maximizing the exchange ratio
and prioritizing the protection of the reconnaissance aircraft,
the reward function evaluates operational actions based on the
following dimensions: 1) reconnaissance aircraft survival
status; 2) attack aircraft survival status. 3) successful missile
launch; 4) successful missile hit on target. 16 distinct
operational states are defined, encompassing nine feasible
combinations of these dimensions. To differentiate between
initial and supplementary attacks, a unique reward value is
assigned to each state.
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TABLE VI REWARD DESIGN TABLE
Reward Value Reward Value Reward Value
No State No State No State
Initial Follow-up Initial Follow-up Initial Follow-up
1 | [0,0,1,0]| -60 -65 4 | [01,1,1] -2 -4 7 | [1,1,0,0] 0 0
2 | [0,1,0,0] -80 -90 [1,0,0,0] -70 -75 [1,1,1,0] 20 10
3 [0,1,1,0] -20 -40 6 | [1,0,1,0]] -5 -10 9 | [1,1,1,1] 90 50
TABLE VII.  FORCES
Force Units Primary Mission Payload Force Units Primary Mission Payload
Reconnaissance Aircraft x1 Radar Pod x1 Early Warning Site x1 Early Warning Radar x1
Red Force | Jammer Aircraft x1 Jamming Pod x1 Blue Force Fire Control Radar x1
Air Defense Positions x3
Attack Aircraft x2 Anti-Radiation Missiles x2 Surface-to-Air Missiles x24

The states [0,0,0,1], [0,1,0,1], [1,0,0,1], and [1,1,0,1]
represent "missile launched but not hit" — these are impossible
because if an attack aircraft is shot down after launch, the
missile outcome becomes unknowable within the simulation.
The states [1,0,1,1] and [0,0,1,1] are also impossible because
the mission turn terminates immediately upon destruction of
either the reconnaissance aircraft or an attack aircraft,
precluding  subsequent missile impact assessment.
Additionally, the state [0,0,0,0] (indicating no launch and no
hits) is impossible as it contradicts the context of evaluating
attack actions.

V. SEAD UAV SWARM DECISION TRAINING MODEL

In the case study design and implementation, the training
and verification environment was constructed using the
WESS system developed by the research team [13].

A. Case Problem

The baseline forces for both Red and Blue sides are
configured as detailed in TABLE VII. The lethality
parameters are defined as follows: one anti-radiation missile
is assumed to paralyze an air defense position, and one
surface-to-air missile is assumed to shoot down one UAV.

For the Blue Force, early warning radars and air defense
positions operate as an integrated system. In the absence of
enemy threats, air defense radars remain silent to conceal their
positions, while early warning radars—with longer detection
ranges and wider scanning fields—perform aerial surveillance.
Upon detecting incoming strikes, the early warning system
relays target information to air defense positions in real time.
When activated, air defense positions power on fire control
radars for aerial search. After target lock is achieved and
launch readiness confirmed, they intercept aerial targets
(aircraft or missiles) using either autonomous or third-party
guidance. If a target is destroyed and additional threats remain,
engagement continues; if a missile misses, immediate re-
engagement is initiated. Combat concludes when the position
is destroyed or all airborne threats are neutralized.

Scenario generation involves six key variables defining
the initial disposition of three enemy air defense positions.
Each dimension (representing longitudinal or latitudinal

coordinate offsets from actual deployment locations) has two
discrete values, resulting in 64 distinct scenario configurations.

TABLE VIIIL SCENARIO GENERATION COMBAT SCENARIO
Intelligence Position Lon(gliltil:l(letg)f fet Lag::;gfn(e)gset
Air Degf:rsli 'Cl:tnllg)any ! (—1.58,1.59} {—2.04,2.04}
Air De(flin;;’ Eczrzr;pany 21 187,191 {~1.94,2.00}
Air De(fle;nr?; ggspany 31 {-1.95,1.95) (~2.27,2.22}

B. Rule Experiments

The launch distance range [20,40] km was discretized
into 5 values and the azimuth range [—30,30] degrees into 7
values, generating 35 candidate launch positions. Each
position was evaluated across all 64 scenarios with 10 Monte
Carlo repetitions per configuration. Combat effectiveness was
quantified using the average exchange ratio per launch
position over all experimental runs. This resulted in
35x64=2,240 scenario-position combinations and 22,400 total
simulation runs. Key findings, visualized in the heat map of
Figure 9, are summarized below:

Exchange Ratio

oney abueydx3a

Figure 9. Specific heat map of regular experiment exchange
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A The results demonstrate that selecting the launch
position 20 km from the target at a 30° offset azimuth delivers
optimal performance, achieving an average exchange ratio of
1.465.

C. Pre-training

1) Hyperparameter configuration : The value network
was implemented using PyTorch. Core algorithm parameters
include:

TABLE IX. DECISION NETWORK ATTACK DUELING DQN TRAINING
PART PARAMETER CONFIGURATION
Hyperparameter Value
Decision Network 2 hidden layers with 128 and 64 units
Discount Factor 0.99
Discount Factor ReLU
Learning Rate 0.0001
Experience Replay Buffer Size 100000
Batch Size 256
Delayed Update Steps 200

2) Pre-train : Utilizing data samples where the reward
value was non-negative, the neural network was trained for
100 rounds. Each round consisted of 200 training steps. Upon
network convergence, the resulting model served as the initial
decision model.

D. Iterative Training of Reinforcement Learning

he pre-trained attack decision-making model was loaded.
For each training scenario, 10 simulation runs were executed,
and the resulting experience data were stored in the database.
The reinforcement learning algorithm then extracted batches
of experience data from this database to train the decision
network. After each training update, the updated decision
network was loaded back into the simulation environment.
This process—completing all scenario experiments—
constituted one training round. The exploration rate was
decayed by 0.01 per round. Training continued iteratively
until the reward signal stabilized.

ompan}

Figure 10. Schematic figure 10 reward (red curve) and loss (blue curve)

As shown in Figure 10, the average reward per round
(calculated over 640 simulation runs) and the loss (mean
squared error (MSE) between predicted and target Q-values)
converged over the training process. After 38,235 training
iterations spanning 200 rounds, the results stabilized: the
average reward plateaued around 79. In the training scenarios,
the attack aircraft demonstrated effective decision-making,
achieving successful target hits both during initial
engagements and follow-up attacks, while significantly
improving the survival rate of the reconnaissance aircraft.

E. Intelligent Testing

The pre-trained attack decision-making model was loaded.
For each training scenario, 10 simulation runs were executed,
and the resulting experience data were stored in the database.
The reinforcement learning algorithm then extracted batches
of experience data from this database to train the decision
network. After each training update, the updated decision
network was reloaded into the simulation environment. This
process—completing experiments across all scenarios—
constituted one training round. The exploration rate was
decayed by 0.01 per round. Training continued iteratively
until the reward signal stabilized.

As shown in Figure 11, a total of five distinct test scenarios
were constructed. The target locations of the three air-defense
batteries remained consistent across scenarios. The actual
deployment positions within each scenario corresponded to
the vertices of the depicted rectangles. Brown markers
represent training scenario positions, while other colors
denote test scenario positions. To ensure simulation fidelity,
each air-defense battery possessed four distinct disposition
patterns. The combination of these patterns across the three
batteries generated 64 unique Blue Force deployment
configurations.

Figure 11. Intelligence test scenario 1-5
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TABLE X. COMBAT SCENARIO TESTING SCENARIO GENERATION DESIGN
S . Company 1 Company 2 Company 3
cenario
Longitude Offset Latitude Offset Longitude Offset Latitude Offset Longitude Offset Latitude Offset
1 {—0.90,2.10} {-2.70,1.50} {—1.26,2.52} {—2.54,1.40} {—1.38,2.52} {—2.87,1.63}
2 {—2.22,0.96} {-1.50,2.70} {—2.34,1.44} {—1.34,2.60} {—2.58,1.32} {-1.67,2.83}
3 {=2.70,2.70} {-2.70,3.30} {—2.82,3.18} {-3.00,3.00} {—2.76,2.94} {—3.06,3.54}
4 {—1.92,0.60} {—2.40,1.02} {—2.22,2.52} {—2.40,0.60} {—2.34,0.78} {—2.76,0.66}
5 {-1.20,2.16} {-1.20,3.06} {—1.08,2.70} {—1.20,2.34} {-1.02,2.22} {—1.38,3.00}
TABLE XI. STATISTICS OF STRIKE EFFECTS
Engagement Policy Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Optimal Rule-Based Policy 1.286765 1.102233 0.853608 1.276376 0.934328

Intelligent Decision Policy 1.503086 1.383281 1.039818 1.765705 1.19802

Performance Improvement 16.81% 25.50% 21.81% 38.34% 28.22%

For each of the 64 deployment configurations, 10
simulation runs were conducted. The resulting damage data
for both Red and Blue forces across all 640 experiments were
recorded and aggregated to calculate the exchange ratio.

As can be seen from the experimental results, in the new
scenario, the exchange of the intelligent decision rules are
better than decisions, verify the advantages of the intelligent
decision.

VL

This paper addresses the intelligent decision-making
problem for UAV Swarm SEAD missions. A decision
modeling approach combining DRL with combat simulation
is proposed, a corresponding modeling framework is
constructed, and attack decision modeling based on the
Dueling DQN algorithm is implemented. Leveraging the
structured WESS system as a reinforcement learning training
environment and designing a case study, experimental results
verify that the DRL-based intelligent decision-making
approach yields superior decision quality compared to
traditional knowledge engineering-based methods.

For UAV Swarm SEAD tasks, this paper designs a
comprehensive simulation scenario framework, successfully
integrates the intelligent decision model, and demonstrates the
feasibility of the DRL method. This work provides a training
environment for subsequent intelligent decision-making
research concerning reconnaissance and jammer aircraft
within the swarm. Furthermore, it contributes to enhancing the
overall intelligence level of UAV Swarms in SEAD missions
and offers valuable insights for UAV Swarm decision
modeling in other operational scenarios.

CONCLUSION
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Changyeon Yoon
R&D Achievement Distribution Group
Korea Hydro & Nuclear Power CO., LTD.
Daejeon, South Korea
e-mail: changyeon.yoon@khnp.co.kr

Abstract— In the decommissioning of nuclear power plants, it
is often difficult to know the exact location and activity of
radiation sources inside structures. For safe and efficient
planning, it is important to estimate the radiation sources
quantitatively using limited information. In this study, a
numerical algorithm was developed to estimate the activity of
radiation sources based on limited dose rate data and shielding
structure information inside the plant. The proposed algorithm
is based on the Electric Power Research Institute (EPRI)
method, which traces source information from limited input,
and uses both the Successive Over-Relaxation (SOR) method
and the Gauss-Jordan Elimination to calculate the activity of
the radiation sources. A virtual working scenario was created
to test the algorithm, and both methods showed good accuracy,
with error rate less than 10%. This result suggests that the
proposed method can be used in real decommissioning sites to
support source estimation and worker dose evaluation.

Keywords-EPRI algorithm; SOR; Gauss-Jordan elimination;

1. INTRODUCTION

Nuclear power plants emit high radiation due to spent
fuel and activated structures from long-term operation.
Before decommissioning, it is necessary to estimate worker
dose and get approval from regulatory authority. This helps
ensure safe and efficient decommissioning and protects
workers’ health.

However, high-radiation areas are difficult to access, so
direct measurement of source information is often not
possible. This makes dose estimation less accurate, leading
to either overly conservative protection or unexpected
exposure risks. Therefore, a method that can estimate source
characteristics with limited data is needed.

The EPRI algorithm is a well-known method for this
purpose [1]. It wuses simple calculations based on
MicroShield, a deterministic radiation shielding code [2]-[4].
Therefore, the error can be larger compared to probabilistic
methods. For example, when the amount of measurement
data is small, the accuracy may be low.

To solve this issue, we developed a new numerical
algorithm based on the EPRI method. Our method uses the
SOR technique and Gauss-Jordan elimination to improve
accuracy. It estimates radiation source activity using limited
dose rate and shielding data. This paper explains the
algorithm and tests its performance using a virtual scenario.

The algorithm developed in this study aims to estimate
radioactivity with reasonable reliability using minimal

information. To achieve this, multiple stages of calculations
were performed, incorporating assumptions at a practical
level. This approach was intended to obtain plausible results
even with limited data. However, at the current stage of
development, the error becomes significant when the
geometry and worker pathways are highly complex.
Therefore, this study focused on cases with relatively simple
pathways and fewer shielding structures.

The Materials and Methods section describes the SOR
iterative method used in this study, the Gauss-Jordan
Elimination applied for its optimization, and the virtual work
scenario designed to verify the developed algorithm. The
Results and Conclusion sections present the evaluation of the
algorithm’s validity by examining the difference between the
calculated results and the actual values.

II.  MATERIALS AND METHODS

This section presents the SOR iterative method and the
Gauss-Jordan Elimination applied in the developed
algorithm, as well as the virtual scenario used for its
verification.

A. Background of iterative method application

In conventional dose estimation methods, direct solvers
such as the Gauss Elimination method [5] are often used to
solve systems of linear equations. However, these methods
can be inefficient when the number of equations increases, as
in complex decommissioning environments with multiple
radiation sources and measurement points. In such cases,
computational time increases, and accumulated numerical
errors can reduce accuracy. Therefore, iterative methods are
more effective for improving computational efficiency and
maintaining solution stability while reducing the number of
arithmetic operations.

B.  Concept of iterative methods

The iterative method solves the linear system Ax=b by
starting from an initial guess x© and gradually improving the
estimate through repeated correction. In each step, the
solution is updated based on the residual error from the
previous step. As the number of iterations increases, the
solution converges to the exact value. The process stops
when the error becomes smaller than a predefined threshold.

C. Successive Over-Relaxation (SOR) method [6]

The SOR method is an improved version of the Gauss-
Seidel method. It adjusts the correction step by applying a
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relaxation factor w which affects the convergence speed. If
0<w<l1, it is called under-relaxation; if w>1, it is called over-
relaxation. The value of w is chosen empirically. Since the
convergence behavior strongly depends on the initial guess,
selecting a proper initial value is critical. In this study, the
initial value was calculated using the Gauss-Jordan
Elimination [7] to ensure stability and faster convergence.

D. Use of Gauss-Jordan Elimination

The Gauss-Jordan Elimination is a direct method that
solves systems of linear equations by transforming the
matrix into a reduced row echelon form. Although
computationally expensive, it can provide a useful initial
estimate for iterative methods. In this study, it was used to
calculate the initial solution for the SOR method. If the
initial value is close to the exact solution, the number of
iterations can be reduced, and the algorithm is less likely to
diverge.

E.  Virtual scenario for validation

Figure 1 shows the virtual workspace and worker
pathway constructed to validate the developed algorithm.

X

Cesium-137 Measurement point 1
o .

Worker
movement

Measurement point 2

Cobalt-60
.

Measurement point 3
L]

Jo

Figure 1. Virtual scenario for validating the algorithm

The worker enters an isotope storage room containing
Cesium-137 (1,000 MBq) and Cobalt-60 (500 MBq) sources.
The worker passes through a concrete shielding wall and
performs a surface contamination measurement in front of
the container that holds the Cobalt-60 source. After the
measurement, the worker exits the room along the same path.
The worker moves at a speed of approximately 2 meters per
second and stays in front of the Cobalt-60 container for about
5 minutes during the task. In this scenario, both the Cesium-
137 and Cobalt-60 sources are assumed to be located at the
center of their storage containers and modeled as point
sources.

III.

In calculating radioactivity, iterative methods were used
to overcome the drawbacks of direct methods for solving
equations, such as long computation time and low accuracy.
The SOR method was applied to reduce the computation
time. In the SOR method, the solution may diverge, making
it impossible to obtain exact or approximate values. However,

RESULTS

by applying Gauss-Jordan Elimination, approximate
solutions close to the exact values were always obtained.
This approach minimized the number of iterations and also
reduced the computation time.

Table I showed the estimated source activities using the
SOR method.

TABLE I. ESTIMATED RADIOACTIVITY OF THE SOURCES USING THE SOR

Estimated Real Difference
Source activity activity (%)
(MBq) (MBq) °
Cesium-137 1,003 1,000 0.3
Cobalt-60 450 500 10

The activity of the Cesium-137 source was estimated to
be 1,003 MBq, which is very close to the actual value of
1,000 MBgq, with only a 0.3% error. For the Cobalt-60 source,
the estimated activity was 450 MBq, resulting in an error of
approximately 10%. These results show that the SOR
method can provide reasonable accuracy, although its
performance may vary depending on source characteristics
and measurement conditions.

Table IT summarizes the estimated radioactivity values

of the sources calculated using the Gauss-Jordan Elimination
method.

TABLE II. ESTIMATED RADIOACTIVITY OF THE SOURCES USING THE
GAUSS-JORDAN ELIMINATION

Estimated Real Difference
Source activity activity (%)
(MBq) (MBq) °
Cesium-137 970 1,000 5
Cobalt-60 473 500 3

The result shows that the Cesium-137 source was
estimated to be 970 MBq, which is about 5% lower than the
actual value of 1,000 MBq. For the Cobalt-60 source, the
estimated value was 473 MBq, indicating an error of
approximately 3% from the actual 500 MBq.

These results suggest that both the SOR method and the
Gauss-Jordan elimination method can provide reasonably
accurate estimations. In particular, the proposed algorithm
showed that it could offer a solution close to the true value
even under conditions with limited input data. Furthermore,
in situations similar to the test scenario, if the Gauss-Jordan
method already produces sufficiently accurate results, further
application of SOR may not be necessary. This indicates a
potential advantage in terms of computational efficiency for
practical use.
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In addition, according to the EPRI algorithm, an
uncertainty of 50-100% is considered a warning level, and
over 100% is rejected. In this study, the maximum error of
the proposed algorithm was about 10%, which shows that it
can provide more accurate results than the EPRI method.

IV. CONCLUSION

In this study, a radiation source back-calculation
algorithm was developed to accurately estimate worker dose
prior to nuclear facility decommissioning. To improve upon
the limitations of the existing EPRI-based method, the
proposed algorithm integrates the SOR technique with
Gauss-Jordan Elimination, enabling reliable source activity
estimation even with limited dose rate and shielding data.

The algorithm was tested using a simplified virtual
scenario involving two radiation sources (Cesium-137 and
Cobalt-60). The results showed that while the SOR method
exhibited a relatively large error (~10%) for the Cobalt-60
source, the Gauss-Jordan method produced estimates within
5% of the actual source strength for both isotopes. Notably,
the Gauss-Jordan method alone yielded sufficiently accurate
results, demonstrating its potential as a standalone solution.

These findings suggest that the proposed algorithm is
applicable in real-world environments with limited input data

and can be extended to more complex geometries and multi-
source scenarios. Ultimately, this work is expected to
contribute to improved radiation safety during
decommissioning and provide a reliable basis for regulatory
assessment. However, at the current stage, significant errors
may occur when the workspace is complex, with many
shielding structures or complicated worker pathways.
Therefore, further studies are necessary to improve accuracy
and optimization before the algorithm can be applied to
various industries.
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Abstract—In real radiation work environments, radiation
sources can exist in various shapes (line, surface, or volume)
and forms (gas or liquid). It is difficult to calculate the
worker’s exposure dose under all these conditions. Therefore,
the source shape needs to be simplified. The Electric Power
Research Institute (EPRI) algorithm suggests converting line
or volume sources into point sources, and some studies report
that this simplification is acceptable when the measurement
point is far enough from the source. In this study, we analyzed
the relative error in dose rate when a line source is simplified
as a point source. Both theoretical methods and Monte Carlo
N-Particle Transport (MCNP) simulations were used. Cesium
was used as the source, and the dose rate was calculated at
various positions. The results showed that the relative error
was less than 10% when the distance was more than one source
length, and less than 1% when the distance was more than
twice the source length.

Keywords-Source Simplification; Monte Carlo Simulation;

1. INTRODUCTION

Radiation sources can exist in various forms such as lines,
surfaces, and volumes, and may also change in real time
when in liquid or gas states. When theoretically calculating
the dose received by radiation workers, it is not practical to
consider all these complex source geometries. Therefore,
simplifying the shape of the radiation source is necessary.

The EPRI developed an algorithm that estimates
radiation dose by approximating extended sources (such as
line or volume sources) as a series of point sources. The
method recommends representing line and volume sources as
multiple point sources spaced approximately 1 foot apart [1].
In addition, previous research has shown that when the
measurement point is more than three times the length of a
line source away, treating the source as a point source is
acceptable without significant error [2].

In this study, we analyzed the relative error caused by
this simplification process using both a theoretical approach
and MCNP simulation. MCNP was developed at Los
Alamos National Laboratory for radiation transport studies
[3]. Its origin goes back to the late 1940s when the Monte
Carlo method was first applied to nuclear research [4]. The
code simulates the transport of neutrons, photons, and
electrons by tracing random particle histories. At each step,
interactions such as scattering, absorption, or collision are

sampled statistically using random number [3]. This
probabilistic approach allows accurate calculations even in
complex geometries and material conditions. The
relationship between the distance from the source and the
resulting dose rate error was examined to evaluate the
validity of approximating line sources as point sources in
practical dose assessment scenarios.

In this study, both theoretical calculations and Monte
Carlo simulations were used to evaluate the error introduced
when a line source is approximated as a point source. This
approach aimed to determine the distance from the line
source at which the point source approximation becomes
acceptable.

The Materials and Methods section explains the
theoretical approach and the Monte Carlo simulation used to
calculate the dose rate of an actual line source and
approximated as a point source at various positions. The
Results and Conclusion sections provide criteria for the
distance at which a line source can be approximated as a
point source.

II.  MATERIALS AND METHODS

This section describes the theoretical methods for
calculating the dose rate when a line source is approximated
as a point source. It also presents the procedure of MCNP
simulation under this assumption.

A. Theoretical Method [5]

The dose rate at different positions from a line source can
be calculated using the following equation (1).

Dose rate = T'(A / 1?)
I' is the gamma constant for Cesium, A represents the

activity, and r is the distance between the source and the
measurement point.

Figure 1. Radiation dose rate calculation from a linear source
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A line source can be regarded as a collection of infinitely
many point sources. Based on this logic, Figure 1 illustrates
the method used to calculate the dose rate from a linear
source.

A line source of length L can be divided into
infinitesimal segments of length dL. The total dose rate from
the entire source can be obtained by integrating the dose rate
contributions from each segment (2).

Dose rate = I'(A; / h)(61 + 6,)

A\ is the total activity of the line source of length L, and h
is the perpendicular distance from the line source to the
measurement point. The angle 6 is defined by the geometry
formed by the measurement point, the foot of the
perpendicular to the source, and both ends of the line source.

Using this equation, we calculated the dose rate under 4
different geometric conditions: (a) measurement point is
perpendicular to the center of the source, (b) perpendicular to
one end, (c) perpendicular to an off-center segment, (d) not
perpendicular to any part of the source (Figure 2).

()

© (d
Figure 2. Dose rate calculation under four geometric conditions:
(a) center, (b) end, (c) off-center, (d) non-perpendicular

B. Monte Carlo Simulation

The MCNP simulation was performed using a
monoenergetic gamma source of 0.662 MeV, representing
Cesium. The results of MCNP are presented with statistical
uncertainties. When the number of particle simulations is
small, the statistical error is large, while increasing the
number of particles reduces the error. In this study, results
were considered reliable when the statistical uncertainty was
less than 10%. To achieve this, a total of 1,000,000
simulations were performed, where the number of
simulations corresponds to the number of photons. The
increase in dose at the measurement point due to scattered
secondary gamma rays originating from the unscattered
primary 0.662 MeV gamma rays is referred to as the build-
up factor. This effect depends on factors such as the
geometric structure of the source, the thickness and material
of the shielding, and the energy of the gamma rays. In this
study, the dose contribution from this effect was excluded;
therefore, the attenuated dose rate was not considered. The
simulation environment was set up on a 6 m x 6 m xy-plane,

)

with the point source located at the origin. A 1-meter-long
line source was placed along the y-axis, centered at the
origin. Dose rates were calculated at intervals of 10 cm
throughout the plane.

To convert photon fluence to ambient dose equivalent,
the conversion coefficients from International Commission
on Radiological Protection (ICRP) Publication 74
[H*(10)/®] were used. Figure 3 shows the MCNP simulation
setup used for the dose rate calculation.

© Measurement
= (s-137 line source
@ Cs-137 point source y

v

Figure 3. MCNP simulation setup for dose rate calculation

[mmen]

For each case, the relative error was calculated by
comparing the result to the assumption that the line source is
modeled as a single point source.

III.

Table I shows the relative error at each measurement
position calculated using the theoretical method.

RESULTS

TABLE 1. RELATIVE ERROR BY POSITION (THEORETICAL CALCULATION)

Distance from source Relative error (%)
(multiples of source

length) (a) (b) (c) (d)
0.1 times 264 74 48 61
0.2 times 110 50 12 46
0.3 times 62 31 4 32
0.4 times 40 18 10 21
0.5 times 27 10 11 13
0.6 times 20 5 10 8
0.7 times 15 14 9 4
0.8 times 12 0.3 8 2
0.9 times 10 1.3 7 0.7

1 times 8 2 6 0.3

3 times 0.9 0.8 0.9 0.7

In this study, relative error of 10% or less was considered
a meaningful simplification, and an error below 1% was
assumed to be practically error-free. Under condition (a) in
Figure 2, the relative error was less than 10% when the
measurement point was located at 0.9 times the source length
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from the source. For condition (b), the threshold was 0.5
times the source length, and for conditions (c) and (d), it was
0.6 times. Additionally, the relative error was below 1%
when the distance was 3 times the source length for
conditions (a) to (c), and 0.9 times for condition (d).

In the Monte Carlo simulation, the linear source was
placed along the y-axis, and the point source was positioned
at the origin. Since the dose distributions from both sources
are symmetric with respect to the first quadrant of the xy-
plane, the simulation focused on this region (Figure 4).

z

300

]
%]
o

| Region with relative error <10%

150

Relative error(%)
N
g

LA T

Distance from source(cm)
Figure 4. Relative error from approximating a line source as a point source

The results showed that the relative error was less than
10% at distances equal to the source length and less than 1%
at twice the source length. These findings are consistent with
the theoretical calculations.

IV. CONCLUSION

In this study, the relative dose rate error caused by
approximating a line source as a point source was evaluated
using both theoretical calculations and Monte Carlo transport
simulations. The results showed that when the distance from
the source exceeded the length of the line source, the relative
error remained below 10%, and when the distance was more
than twice the source length, the error was within 1%. This
indicates that at distances of 2—3 times the source length, the
line source can be reasonably simplified as a point source
without significantly affecting the calculated worker dose.
Based on these findings, users can construct an appropriate
point source model depending on the allowable error margin
in practical applications.
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Abstract— This study investigates the potential advantages of a
Compton Positron Emission Tomography (PET) system
utilizing Cadmium Zinc Telluride (CZT) detectors, in
comparison with conventional PET systems based on
scintillator materials such as Lutetium Yttrium Oxyortho-
Silicate (LYSO) and Lutetium Gadolinium Oxyortho-Silicate
(LGSO). The CZT-based system uses the detection of both
photoelectric and Compton scattering events, leading to

enhanced spatial resolution and more effective event utilization.

Given that Compton scattering dominates at 511 keV, the
system achieves a marked improvement in detection efficiency.
Through Monte Carlo simulation studies using various
detector materials, Compton PET demonstrated superior
performance over traditional PET, with the CZT-based system
exhibiting the highest spatial resolution and the LGSO-based
system achieving the greatest detection efficiency.

Keywords-CZT; LYSO; LGSO; Compton PET; GATE

1. INTRODUCTION

Monte Carlo simulation is a probabilistic method that
uses random sampling to model physical processes. In
radiation transport, it follows particle trajectories and their
interactions with matter based on probability distributions.
This allows accurate analysis even in complex geometries
and diverse materials [1].

Genat4 Application for Tomographic Emission (GATE)
is an open-source toolkit built on the Geant4 platform. It is
widely used in nuclear medicine imaging such as PET and
Single Photon Emission Computed Tomography (SPECT),
as well as in radiotherapy [2], [3]. PET, in particular, is
commonly applied in clinical practice for tumor detection,
neurological disorder evaluation, and cardiovascular studies.
GATE enables simulation of medical imaging systems and
dynamic behavior of radiation sources, making it valuable
for both research and clinical applications.

Most PET systems used in clinics today are based on
lutetium-based scintillators, such as Lutetium Oxyortho-
Silicate (LSO), LYSO, or LGSO. These materials have high
atomic numbers and densities, which lead to good detection
efficiency. However, in scintillator-based PET systems, the
z-axis information of detected radiation cannot be
distinguished. In addition, the resolution of these systems is
limited by the size of the scintillator pixels and the connected
photodetectors. This can reduce the accuracy of PET images,

which is important for medical diagnosis. Although
combining PET with high-resolution Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI) images can
help provide better anatomical detail [4], improving the
resolution of PET itself is still an important goal.

Semiconductor materials such as CZT show lower
detection efficiency than scintillators but provide much
higher resolution. They can also identify z-axis information
accurately. As a result, Compton scattering events, which are
regarded as invalid data, can be used as valid data and
improve detection efficiency. In this study, a micro-PET
system using pixelated CZT detectors was tested as an
alternative. CZT has lower atomic number and density
compared to common scintillators, so its basic detection
efficiency is lower. However, it offers much better energy
and position resolution. Also, pixelated CZT can detect both
photoelectric and Compton scattering events by identifying
the interaction point inside the detector. This makes it
possible to improve overall detection efficiency [5]. Monte
Carlo simulation results showed that the CZT-based
Compton PET had about three times higher efficiency than a
conventional PET with the same setup. The performance of
this system was compared with LYSO and LGSO PET
systems, focusing on detection efficiency and image quality.

The Materials and Methods section describes the
scintillator PET and semiconductor PET systems simulated
using GATE. The Results and Conclusion sections present
the improved detection efficiency achieved through the use
of Compton scattering and the resolution of the
semiconductor PET system.

II.  MATERIALS AND METHODS

Monte Carlo simulations were conducted using GATE
9.0. LYSO and LGSO scintillators had compositions of
Luo.4Y1.6510s and Lui.eGdo.1SiOs respectively [6], and were
voxelized into 7 mm % 1.5 mm x 1.5 mm elements. A
cylindrical water phantom (radius: 10.39 mm, height: 1.5
mm) was placed at the center and surrounded by 40
scintillator detectors. For the CZT PET system, 100 detector
modules (20 mm x 0.5 mm x 1 mm) were used, each
consisting of 1 mm x 0.5 mm x 1 mm voxels (Figure 1).

Scintillators require photodetectors at the backend, which
makes the detector size larger compared to CZT. In addition,
since semiconductors can identify z-axis information, a
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single detector module was divided into several parts for the
simulation.

(a) (b)
Figure 1. Geometry of PET system (a) LYSO and LGSO PET (b) CZT
PET

Eight disk-shaped positron sources with radii from 0.3
mm to 2.05 mm, in 0.25 mm steps, were simulated (Figure 2).

O

Figure 2. Position and size of positron sources

Image reconstruction was performed using the Filtered
Back-Projection (FBP) method. Evaluations included: (1)
comparison between images using photoelectric-only vs.
photoelectric plus Compton events, (2) visual inspection
based on varying source sizes, and (3) calculation of Relative
Standard Deviation (RSD) for the largest sources to assess
noise.

III.  RESULTS

Table I showed the detected counts for LYSO, LGSO,
CZT PET.

TABLE I. DETECTED COUNTS FOR EACH PET SYSTEM

LYSO | LGSO CZT
PET PET PET

Photoelectric | 5, 57¢ | 1 499,760 | 311,325

events only

Photoelectric

and Compton | 354,345 | 1,665,079 | 369,375

scattering

More than 10% of detection efficiency increased in all
PET systems when both photoelectric and Compton
scattering events were considered in the reconstruction
process. Among the three systems, LGSO PET showed the
highest efficiency—approximately five times greater than
the others—due to its high concentration of lutetium, which
has the highest atomic number and density among the
materials used. The lutetium content in LGSO is roughly
four times that of LYSO, which explains the significant
difference. In contrast, the efficiency of the CZT-based PET
was comparable to that of LYSO. The gain from including

Compton events in CZT PET was lower than reported in
earlier studies [5], likely because the design used in this
work had relatively large gaps between adjacent CZT
detector modules.

5 8 B 8 3 &8 &

) )

(a) (b)
Figure 3. Filtered backprcjection images for LYSO PET
(a) photoelectric events only (b) photoelectric and Compton scattering

() (b)
Figure 4. Filtered backprcjection images for LGSO PET
(a) photoelectric events only (b) photoelectric and Compton scattering
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(a) (b)
Figure 5. Filtered backprcjection images for CZT PET
(a) photoelectric events only (b) photoelectric and Compton scattering

As shown in Figure 3-5, images reconstructed using both
photoelectric and Compton events had lower noise than
those using photoelectric events only, as expected. LGSO
PET showed less noise compared to LYSO PET, which can
be explained by its higher detection efficiency. In terms of
spatial resolution, the CZT PET system successfully
visualized all sources, including the smallest one, unlike the
other systems. This result highlights the advantage of CZT
in resolving fine details. However, the bottom source was
not reconstructed by any of the PET systems, even though it
was larger than some others. This may be due to limitations
in the reconstruction algorithm.

TABLE II. RSD OF EACH PET SYSTEM

LYSO LGSO CZT
PET PET PET
Photoelectric | nge7 | 00683 | 0.0706
events only
Photoelectric
and Compton 0.0678 0.0677 0.0701
scattering
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Table II shows the relative standard deviation (RSD)
measured over a 10x10 pixel area for the largest source in
each system. In all cases, the RSD values of Compton PET
were lower than those of conventional PET. These findings
indicate that Compton PET provides improved image
quality compared to conventional PET systems.

IV. CONCLUSION

Three evaluation methods were applied to assess both
Compton and conventional PET systems using LYSO,
LGSO, and CZT detectors. In all cases, Compton PET
showed higher detection efficiency than conventional PET,
leading to improved image quality. Among the systems
tested, CZT PET provided the highest spatial resolution,
while LGSO PET achieved the best detection efficiency,
resulting in the lowest image noise. Overall, Compton PET
technology proved effective for all detector types. Most
commercial PET systems currently in use are made only with
scintillators. Since they treat only the photoelectric effect as
valid data, a large amount of information is discarded.
However, by applying the semiconductor-based Compton
PET technology proposed in this study, both higher

resolution and improved detection efficiency can be expected.

Future research will focus on developing methods to
maximize the use of Compton scattering, which occurs more

than three times as often as the photoelectric effect at
0.511MeV, as valid data. In addition, simulations with
smaller sources will be conducted to analyze in greater detail
the advantages of semiconductor detectors.

REFERENCES

[11 D. P. Kooese, T. Brereton, T. Taimre and Z. 1. Botev, “Why
the Monte Carlo method is so impotant today”, Wiley
Interdisciplinary Reviews: Computational Statistics, Vol. 6,
No. 6, pp. 386-392, 2014

[21 S. Jan et al.,, “GATE: a simulation toolkit for PET and
SPECT”, Physics in Medicine and Biology, Vol. 49, No. 19,
pp. 4543-4561, 2004

[31 S.Jan et el., “GAET V6: a major enhancement of the GATE
simulation platform enabling modeling of CT and
radiotherapy”, Physics in Medicine and Biology, Vol. 56, No.
4, pp. 881-901, 2011

41 C. Go, “Nuclear medicine 3rd edition”, Korea Medicine”,
Korea Medicine, 2008

[51 C. Yoon, W. Lee and T. Lee, “Simulation for CZT Compton
PET - Maximization of the Efficiency for PET by Using
Compton Event”, Nucl. Instr. And Meth. A, Vol. 652, No. 1,
pp. 713-716, 2011

[6] H.S. Yoon et al., “Initial Results of Simultaneous PET-MRI
Experiments with an MRI-Compatible Silicon

Photomultiplier PET Scanner”, The Journal Of Nuclear
Medicine, Vol. 53, No. 4, pp. 608-614, 2012

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

33



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

Airline Decision-Making in Sustainable Aviation Fuel Transition: A Hybrid
Simulation Modeling Approach

Mohd Shoaib*, Fanny Camelia*, Ramona Bernhardt*, Ashraf Tantawy*, Yaseen Zaidi*, Ian Marr®

*Centre for Defence and Security Management and Informatics, Faculty of Engineering and Applied Sciences, Cranfield University

Defence Academy of the United Kingdom, Shrivenham, SN6 8LA UK
emai]:{mohammad. shoaib | fanny.camelia | ramona.bernhardt | ashraf.tantavy | yaseen. zaidi}@cranfield. ac.uk
§ Airbus UK

e-mail: ian.marr@airbus.ac.uk

Abstract—This study presents a hybrid simulation approach
combining Agent-Based Modeling (ABM) and System Dynamics
(SD) to capture the evolving system behavior through interacting
stakeholders, including airlines, manufacturers, airports, and fuel
suppliers, and to analyze how airlines adopt sustainable aviation
fuels within the broader transition of the Air Transportation
System (ATS). Because the existing models often overlook the
interplay between micro- and macro-level dynamics, this study
addresses that limitation by integrating both agent-level behav-
iors and broader systemic trends, such as passenger demand,
Gross Domestic Product growth, and infrastructure constraints.
SD captures the internal agent dynamics using stocks and flows,
for example, passenger demand shaped by societal and economic
trends. The ABM architecture represents each airline as an
agent, modeled as a key decision-maker that monitors demand
and capacity dynamics and makes strategic investment decisions
in aircraft and fuel technologies. It is designed to represent
how airlines implement and adjust their strategies in response
to internal factors including various operational aspects and
external factors including infrastructure support and sustainable
fuel availability. Integrating ABM and SD enables concurrent
simulation of agent-level behaviors and system-level feedback,
providing a comprehensive view of the sociotechnical components
in the ATS and their decision-making.

Keywords-Air Transportation System; Hybrid Simulation; Sus-
tainability; Agent-Based Modeling; System Dynamics.

I. INTRODUCTION

As climate change is becoming an emerging critical global
challenge, the aviation industry has committed to achieving
net zero COy emissions by 2050 [1]. Achieving this goal
requires various technical and operational measures within
Air Transport Systems (ATS) [2], including the adoption of
more sustainable fuels and advanced aircraft technologies
compatible with these fuels with improved energy efficiency.
Furthermore, enabling the transition from kerosene-based fuels
to sustainable fuels involves the establishment of supporting
energy infrastructure, including both the fuel technologies and
the systems required for their deployment, production, storage,
and distribution. To date, Sustainable Aviation Fuel (SAF), lig-
uid hydrogen (LH-), ammonia (NHs), and methanol (CH3OH)
are considered as the potential sustainable fuel options for
increased sustainability, each with its own characteristics in
terms of technological maturity, scalability, environmental
benefits, and transition challenges.

To understand the gradual transition of the ATS from
keronese-based fuels to sustainability comprehensively, as

characterized by the complex sociotechnical interactions and
dynamic behaviors, it is important to adopt methodologies
that can effectively capture inter-dependencies of different
components within the system and their impacts on the overall
system. Simulation-based methods, including Agent-Based
Modeling (ABM) and System Dynamics (SD), are considered
powerful tools for examining and explaining the key mecha-
nisms and interactions within complex sociotechnical systems,
to support the design and analysis of such systems [3]. ABM is
used to simulate the behavior of the emerging system from the
interactions of autonomous agents [4], while SD models the
evolution of the system driven by feedback using causal loop
diagrams and stock flow simulations [5]. Both are widely used
for modeling complex, dynamic systems and support "what-if"
analysis without real-world intervention [6].

The central objective of the present work is to study
how airlines make strategic decisions about adopting more
sustainable aviation fuels. Despite rising interest in sustain-
able transitions, hybrid simulations combining ABM and SD
remain underexplored. Most existing studies either employ
ABM or SD in isolation, and therefore miss the micromacro
interplay which is important for fleet-transition planning that
involves complex interactions among industry stakeholders,
market forces, and policy measures [6][7]. To address this
gap, this paper proposes a novel hybrid simulation approach
that combines ABM and SD to model airline decision-making
processes in sustainable aviation transitions.

The study aims to capture the complex interactions among
technology, industry, markets, and society, and to simulate
airline decision-making processes related to the acquisition of
new sustainable aircraft. ABM and SD methods are comple-
mentary and can be integrated effectively; however, despite the
feasibility, such integration remains rare and has limited appli-
cation [7]. ABM uses a micro-modelling approach, focusing
on the behavior of individual agents, while SD uses a macro-
modeling approach, focusing on the aggregated stocks and
flows that represent higher-level or broader population-level
dynamics [7]. Both are relevant and valuable for analyzing
the aviation transition to more sustainable fuels. The hybrid
ABM and SD approach allows for a more comprehensive and
realistic representation of the sociotechnical elements within
the ATS, their interactions, and decision-making processes. It
enables capturing relevant elements of individual heterogeneity
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and stochasticity of entities and processes [6], such as micro-
level decision behaviors (e.g., individual airline strategies),
while also providing a strategic overview [6] of macro-level
system impacts (e.g., population and GDP trends) for esti-
mating passenger demand, manufacturer capacity, government
support, and infrastructure constraints. This study makes four
key contributions. First, it introduces a conceptual architecture
for a hybrid simulation of the ATS that unifies SD and ABM
principles, providing a clear, holistic picture of how macro-
level stocks-and-flows and micro-level agents interact in a
single framework. Second, the paper specifies the SD side
in-depth, elaborating the governing equations and feedback
loops for core modules, such as fleet capacity, passenger
demand, and environmental constraints, and showing how
these modules shape aggregate system behavior over time.
Third, it sets out a rigorous ABM methodology that captures
the behavior of airlines, airports, regulators, and passengers.
Special emphasis is placed on the airline decision logic for
scheduling, pricing, and fleet deployment, thereby grounding
the model in realistic operational choices. The work describes
an explicit macro-to-micro coupling strategy that synchronizes
SD state variables with ABM agent states, ensuring internal
consistency and enabling the exploration of emergent phe-
nomena across multiple temporal and organizational scales.
Collectively, these advances deliver a reproducible blueprint
for researchers who wish to combine SD and ABM when
analyzing complex socio-technical systems, such as the ATS.

The paper is organized as follows. The overall framework is
presented in Section II. Within this, the high-level SD model-
ing for Society and Airlines agents are outlined in Section
II-A. The focus then shifts in Section II-B to the Agent-
Based Modeling that governs airline decision-making. The
paper concludes in Section III with a discussion of applications
and future work.

II. HYBRID ABM-SD CONCEPTUAL FRAMEWORK

The conceptual framework illustrating different sociotech-
nical elements considered in this study is shown via Figure
1. The figure provides a high-level view of interacting agent
components of the ATS, including Society, Airlines, Aircraft
Manufacturer, Airport and Fuel Supplier, and their underlying
SD modules, forming the conceptual structure of the simula-
tion model.

Within each agent’s block are the names of the specific
SD modules that represent that agent’s internal dynamics. The
agents are connected by arrows illustrating the key flows and
dependencies and indicating how agents interact and influence
each other. The framework highlights the holistic view of
the system and shows how the interactions between various
sociotechnical elements within the ATS together shape and
drive the overall dynamics and evolution of the sustainable
fuel transition. By modeling these key actors as interacting
agents, the framework allows for capturing emergent system
behaviors that arise from the bottom-up interactions of individ-
ual components, providing a powerful mechanism to analyze
the complex pathways and challenges of aviation transition.

Disruption

Society Aircraft
Manufacturer
Tl Aviation Fleet
— d InvestmentTl
Demand Airlines orders Fleet Development
Module Module
Ticket Tl Fleet
( price ‘expansiol
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Fue_l Ndale Airport
Suppliers Supply
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Black Circles: SD Modules

Blue Arrows: Agent-Agent Interaction
Black Arrows: Agent-SD Interaction

Orange Arrows: Exogenous variable

Figure 1. Hybrid ABM-SD conceptual framework of the ATS.

A. System Dynamics Modeling: Stock and Flow Diagrams for
Society, Airlines, and Aircraft Manufacturers

The stock and flow diagrams were created to capture the
feedback structure within the Society, Airlines, and Aircraft
Manufacturer agents.

gdpGrowthRate

< gdp gdpPerCapita refPerCapitaGDP
e | ot demandSensitivityToGDP
fractionalGDPGrowth effectOfGDP 02 =
birthRate
= population

. » ) passengerDemand

fractionalBirthRate

effectOfFlightFare

L

effectOfSystemCongestion
<

demandSensitivityToAirfare = -
refLoadFactor . loadFactor

& airfare
refAirfare
demandSensitivity ToSystemCongestion

Figure 2. Stock and flow diagram of the Society agent

The stock and flow diagram shown in Figure 2 illustrates
the core dynamics of the passenger demand module within
the Society agent, which aims to simulate passenger demand
and takes into account several key determinants of demand
as contributing factors. Multiple factors have been identified
in the literature that directly or indirectly influence aviation
passenger demand; however, at a broad level, they can be
differentiated into two categories: internal determinants and
external determinants. The internal determinants of demand
mostly cover the service level aspects of the service providers,
including airlines and airports, and thus are related to passen-
ger perception; whereas, the external determinants comprise
demographic and geo-economic factors of a region [8][9].
Amongst all these, ticket prices, system congestion, popula-
tion, and income of the population are selected as these have
been considered important and utilized to estimate aviation
demand in the literature [10]-[13]. To represent the effect of
population income on demand, gross domestic product (GDP)
per capita is employed as a common indicator of average
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income level within a population [14]. These dynamics are
captured in the stock-and-flow structure, which includes two
key stocks: the GDP stock representing GDP and influenced
by the GDP growth rate; and the population stock, representing
the total population of a region, which increases through the
birth flow determined by the birth rate. The relationship is as
follows:

p=Kx Vedp X Vs¢ X Vfare (D

where p denotes total aviation demand, K represents popula-
tion size, and y denotes effect of different factors. The relation
used to estimate factors, such as the effect of GDP, system
congestion, etc., is as follows:

A «
Yedp = (f(lt)) ()

where the fraction represents the ratio of the current value (at
time t) of the variable with respect to the reference value, and
a denotes the sensitivity factor of the quantity at hand.

Figure 3 depicts the internal dynamic processes within the
Airlines agent. The stock, represented by the ‘operationalFleet’
variable, represents the number of aircraft currently in service.
Within this model, the overall fleet is divided into two sub-
categories based on the fuel type they may be able to utilize,
i.e. the kerosene-based aircraft and the more sustainable fleet
or non-kerosene-based aircraft. Moreover, within each cate-
gory, the aircraft are further classified into the following types:
1) short distance, 2) medium distance, and 3) long distance,
based on the flight haulage. The categorization is crucial as
the seating capacity is different for each of these aircraft types.
These distinctions are hereafter referred to as fuel-based and
distance-based classifications.

The fleet of the airlines is increased by the addition of
newer aircraft procured from the manufacturer, and the rate of
increase is determined by the ’orderFulfillmentRate’ variable.
On the other hand, the ’operationalFleet’ decreases due to
aircraft 'retirement’ flow, governed by the retirement rate (in-
dicated by ‘retirementRate’ variable in Figure 3). Furthermore,
as seen in the figure, Available Seat Kilometers (ASKs) and
Revenue Passenger Kilometers (RPKs) are computed. Both
these quantities are important metrics utilized by airlines to
track their operational performance. ASKs are tracked by
airlines to measure their total passenger carrying capacity,
and RPKs are utilized to assess the volume of passengers
carried by them [15]. These metrics are obtained by using
the following relations:

ASKd =MNg X Cqg X Sq (3)

RPKd = Pa X Sq (4)
where d = {short, medium, long} and corresponds to different
flight distance categories; n is the number of operational
aircraft; ¢ represents the capacity or the number of seats;
s is the average flight distance; and p corresponds to the
demand for the d type of aircraft, obtained by multiplying
the proportion of demand for each flight category with the
total demand.

Subsequently, ASKs and RPKs are used to generate the
passenger load factor (PLF) which is defined as the proportion
of available seats filled with passengers [15] and computed
using the following relation:

RPK,
ASK,

This metric is subsequently utilized for the estimation of the
total traffic intensity factor. Revenue is estimated as a function
of traffic intensity, RPKs, and the average passenger yield is
categorized according to flight distance. Profit is computed
with revenue and costs as the contributing factors. The overall
airline’s costs are determined by the aggregation of various
cost components, specifically fuel costs, operating costs, and
penalty costs. Furthermore, a penalty is imposed as an external
cost due to deviation from the sustainability target. In other
words, airlines need to maintain a specific proportion of a more
sustainable fleet, and when there is a shortfall in the target,
a penalty is charged. Airline decision on new aircraft orders
is governed by the interaction of variables representing fleet
capacity and the target capacity. When the existing capacity
falls below a pre-specified threshold level, orders are placed
to the Manufacturer agent. This order management is handled
by the agent architecture and is discussed in the next section.

The primary function of the SD module within the Man-
ufacturer agent is to process orders and deliver fleet to the
Airlines agent. As observed from Figure 4, there are two
stocks in the figure: ‘orderStock’, which represents the backlog
of aircraft orders received from the airlines and waiting to
be manufactured. The production rate is controlled by the
capacity variable. ‘finishedOrders’ stock variable accumulates
the aircraft that have been manufactured and are ready for
delivery. This information is then utilized to apprise the
manufacturer about the delivery of aircraft. Conceptually,
the figure outlines orders entering a backlog (orderStock),
being processed through production (reducing order stock and
increasing finished orders stock), and finally being delivered.
The rates of production and delivery are constrained or influ-
enced by the manufacturer’s capacity.

PLF; =

&)

B. Agent Based Modeling: Airlines Decision Making

Agent-based models are composed of individual agents,
each with its own behavior, states, interaction protocols, and
decision-making rules. Elements or components of the ATS are
classified as passive agents and active agents. Both of these
agent types share common features: they are autonomous,
self-directed, interactive, and have explicit goals. Their key
distinction lies in their decision-making ability; an active agent
can learn and adapt its behavior in response to a change in the
environment. Therefore, the Society agent can be categorized
as a passive agent while the Airlines and Manufacturer agents
are modeled as active agents.

As a passive agent, the primary purpose of the Society agent
is to simulate the passenger demand which has been described
in Section II-A; the generated demand is then communicated to
the Airlines agent. Meanwhile, as an active agent, the Airlines

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

36



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

numOfAircrafts [.] retirementRate (]
<
orderfulfilmentRate ]

operationalFleet [.]

retiredFleet [..]

|:.

=

newFleet [.] refirement [.]
availableSustainableSeats [.]
o availableKeroseneSeats ..

=
seatCapacity [..]
keroseneASK [.]

- sustainableASK [.]
flightDistance [}

o Ioad-Factor [W]
fractionalMarketShare [.]
»
o RPK L]
passengerDemand e
passengerVield [.]

<sustainableASks. . passengerDemandKerosene

operationalExpense [..]

<keroseneASK> [..] targetGap
™ *Q
- penaltyCost
fractionalSustainableCapacity .0

<revenue>

L ASKL]

@ operatingCosts [.]

= <flightDistance> [.]

<sustainableASK> [.]

<penaltyCost>

~ ¢ traffic [.]

\revenue profit

_fuelCosts :ﬂlgh(D\s(antE) |
& fuelConsumptionPerkm [.]

‘ fuelCostPerkm [..]

<operationalFleet> [..]

Figure 3. Stock and flow diagram of the Airlines agent.

agent compares the demand against the capacity. When the
capacity-to-demand ratio reaches a specific threshold, a new
order is placed.

The order-making process for selecting appropriate aircraft
and fuel technology is grounded and structured on two key
factors, including internal and external factors. The internal
factors are those that pertain directly to the airlines’ own
operational context and priorities and reflect internal consid-
erations. J is a set of different fuel technologies modeled
in the paper, and J= {Kerosene, SAF, NH3;, CH3OH, H-},
indicating different fuel technologies. Furthermore, internal
factors are denoted using 6 and external factors using ¢
notations, respectively. Also note that both, 6 & ¢ € [0, 1]. The
internal factors, described in detail below, relate to variables
intrinsic to the Airlines agent, reflecting operational or strategic
considerations that influence decision-making.

1) Operational cost factor (0°¢): This factor focuses on
"per flight cost", encompassing both variable and fixed cost
components of different aircraft types. The operational costs
are represented with C' = {c;|j € J}, and the operational cost
factor for a flight of type j is computed using the relation:
min{C'} ©)

¢j
The aim is to select the aircraft with lower operational expen-
ditures, therefore, the operational cost score is calculated to
reflect this, where a higher score would typically be assigned
to options with lower costs. The expression is used as it

oc __

capacity [..]

-

rateOfProduction
o orderDeliveryRate [..]

L ]
% |

orderStock [.]

[l

=

productionRate [.] finishedOrders [.] low [.]

Figure 4. Stock and flow diagram of the Manufacturer agent

normalizes the cost of an option j against the minimum
achievable cost, rewarding lower-cost options.

2) Operational life factor (0°'): Similar to the previous
metric (discussed in section II-B1), this factor is used to
capture the impact of the operational life of the aircraft. It
is a relative score that is designed to assign a lower value
to aircraft with shorter operational life and vice versa, as
expressed below:

Lj

where L = {l;|j € J} representing life in years.

3) Sustainability gap factor (0°): A key consideration
included in the decision-making process accounts for the
airlines’ performance against sustainable fleet targets. It specif-
ically measures the gap between the actual proportion of
sustainable fleet ASKs and the targeted proportion for a given
period. It is to be noted that this factor adds extra weight to
the score of non-kerosene-based aircraft. Thus, it is estimated
using the relation:

o min{L}
0F = —

(7

0,

1min<

where f stands for the sustainability target and f(¢) is a
function of time and indicates the current proportion of non-
kerosene-based aircraft.

These internal factors are then combined to calculate the
total internal score for all the available aircraft options.

if 7 = kerosene

0; =

f®) (8)

, 1> , otherwise

0;=05+05'+0¢  VjelJ ©)

The external factors are those which are external to the Air-
lines agent and concern the wider air transportation ecosystem.
These factors, specifically, originate and depend on Manufac-
turer, Airport, and Fuel Supplier agents.
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4) Order delivery factor (™ ): This factor is specific to the
Manufacturer agent. It assesses the manufacturing landscape
by weighing in the expected delivery time of the aircraft order.
The Airlines agent interacts with the Manufacturer agent to
retrieve the order delivery time frame. A long order delivery
time will translate to a lower value of the order delivery factor
for that particular aircraft type. This factor is derived using the

formula: )
u  min(7T)
=T
J

where T' = {t;|j € J} denotes time.

5) Infrastructure support factor (¢™7¢): The support in-
frastructure factor is available for a given fuel technology, in
terms of fuel delivery and storage, both currently and in the
future. The idea is to give more weight to technologies with
better infrastructure with potential for future development.
Consequently, this factor has two distinct components: 1)
present (¢,) and 2) future (¢.), and is obtained using the
relation:

(10)

S = w1 + wa (1n
where p and z denote present and future, respectively; and w;
and wo are the weights that sum to 1 and denote the relative
importance of these components. The score for the present
state of the infrastructure support is calculated by considering
the capacity utilization level, with a higher score assigned to
lower capacity utilization values because of its capacity to
accommodate more demand.

¢ =1-p (12)
Where p; indicates the utilization level of technology j.
The future aspect is included to factor in the prospects of
growth in a specific technology. For example, a higher relative
investment in hydrogen technology signifies stronger future
support and development, leading to a higher score.
Qj

(bj N Z]‘ Qj

In this case, @ is the notationto indicate investment.

13)

6) Fuel Supply Factor (¢™5): This factor covers the supply
side for different fuel types, considering the current availabil-
ity and, the future growth prospects. This encompasses the
assessment of how readily the fuel can be sourced now and the
long-term outlook and the development of the fuel technology.
Technologies that are relatively secure and scalable would be
rated relatively favorably. Similar to the previous case, the
fuel supply factor can be expressed as the weighted sum of
the present availability (denoted as ¢“”) and future growth
potential (denoted as ¢fP), as presented:

6" = w1l +wr0l?  Vj

where w; and wy are weights and sum to 1.

The current fuel availability is obtained by taking into
account the fuel production capacities of all the different types
of fuel. The following expression is used to obtain its value:

e — (15)

(14)

max(k)

where x indicates the current fuel production capacity.

Next, the prospect corresponds to the capital invested or the
planned capital investment in the development of a technology.
This factor is calculated by taking a ratio of capital invested
in a specific technology and the total capital invested across
all the technologies.

¢;‘ P _ 1
> j I;

Here, the notation I is employed to refer to investment in
fuel technologies. The external factors are then summed up to
calculate the total external score for all the available aircraft
options using the relation:

;=03 +o7"+ 7"V (17)
After which, the internal and external factor scores are
combined for different aircraft alternatives to estimate the
aggregated score, and the option with the maximum score is
selected. The entire decision-making procedure is explained
using a pseudocode shown in Algorithm 1 via Figure 5. Fur-
thermore, individual calculations of internal and external factor
scores are implemented via functions which are presented
using Algorithm 2 in Figure 6.

(16)

1: procedure AIRLINES AGENT AIRCRAFT TECHNOLOGY SE-
LECTION PROCEDURE
2: Determine the required aircraft category®
medium, long haul)
Identify the set of fuel technologies (J) available for the
required aircraft category
Set ‘bestSelectedTechnology* +— NULL
Iterate and Evaluate Technologies:
for j € J do
internalScore <+ CALCULATEINTERNALSCORE(j)
externalScore <+ CALCULATEEXTERNALSCORE(j)
aggregatedScore < internalScore + externalScore
“bestSelectedTechnology® <+ max{internalScore +
externalScore} > Identify the technology with the highest
score and update.
11: end for
12: Decision and Action: Place an order for an aircraft of required
aircraft category of the "bestSelectedTechnology’type
13: end procedure

(e.g., short,

(o>}

LR

Figure 5. Algorithm 1: Airlines agent decision making procedure.

III. CONCLUSION AND FUTURE WORK

The hybrid ABM-SD frame provides a means to analyze
how policy instruments or market shocks propagation through
tightly coupled technical and behavioral system elements that
ABM or SD alone can capture. The framework lays the
analytical groundwork for rigorous, whole-system assessments
of sustainable aviation strategies. It offers researchers, in-
dustry stakeholders, and policymakers an extensible tool to
explore how heterogeneous decision-makers, emerging aircraft
technologies, and evolving fuel infrastructures interact over
the multi-decade horizon that separates todays fleet from a
genuinely low-carbon future. By embedding explicit sustain-
ability gap and penalty mechanisms, the framework offers
a transparent way to test how airlines might schedule fleet
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Input: C' €{Cost}, L €{Operational Life}, T" €{Order
delivery time}, p £ {Infrastructure capacity utilization}, @ €
{Investment in infrastructure development}, K € {Fuel
production capacity}, and I € {Investment in fuel technology
development}, f € {Sustainability gap}, w = {wl, w2},
w' = {w],wh}, and ¢ represents simulation time.

: function CALCULATEINTERNALSCORE(j)

07° « %{” & Operational cost factor
6;’1 — % > Operational life factor
o
if 7 = kerosene then

07 <0 r- Sustainability gap factor

1

2

3

4

5

6

7 else

8: 0; 1 —min (£92,1)
9: end if

0: return ¢7° + 6;-’5 + 07 > Return internal factor score
1: end function

1

2

3

4

5

6

7

: function CALCULATEEXTERNALSCORE(j)
. min{T}
5]
> Infrastructure level factor

Order delivery factor, qi‘a_:;,-‘"r —
¢f 1 —plj]
% < vg

2 Infra

- Infrastructure investment level factor

7wy X c;ﬁf + wa x ¢ © Infrastructure support factor

pi" e - Fuel supply availability factor
gﬁfp — fjif— t= Fuel supply investment factor
]

8: 3“" —wp X ¢5Y +wh x (‘é}fi" = Fuel supply factor

9: return qﬁ;-" - é;“f T+ gﬁ?s > Return the external factor score
10: end function

Figure 6. Algorithm 2: Functions for calculating Airlines agent internal and
external factor scores for decision making.

renewal in response to decarbonization targets. The mod-
ular structure facilitates scenario experimentation, allowing
researchers and practitioners to interchange empirically cal-
ibrated sub-models (e.g., refined fuel-supply curves or airport
capacity modules) without re-engineering the whole system.
The current implementation employs stylized parameters for
infrastructure utilization, investment, and fuel production, and
systematic calibration with historical airline, manufacturer,
and energy-market data would strengthen predictive validity.
The future work would aim to expand the models analytical
boundaries by implementing active-agent logic for airports and
fuel suppliers to enable the simulation of richer, co-dependent
strategies, including the effects of slot constraints and supplier
learning curves. Next, the model would be integrated with
the wider energy infrastructure to simulate the cross-sectoral
competition for key inputs, such as electricity and hydrogen,
to identify potential risks and macroeconomic bottlenecks. Fi-
nally, coupling the model with optimization or reinforcement-
learning techniques could support the design of adaptive policy
portfolios that steer the ATS toward net-zero trajectories.
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Introduction of Reinforcement Learning into
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Abstract—Accurate and strategic placement of wave-
dissipating blocks is essential for effective coastal protection
structures. Current supervised learning-based approaches
have achieved precise single-block placement. However, they
inherently suffer from significant limitations, such as a lack of
adaptability to environmental and structural changes, an
inability to optimize sequences of multiple-blocks, and a heavy
reliance on extensive pre-generated labeled data. This paper
identifies the key limitations inherent in supervised
Convolutional Neural Network methods and proposes a novel
reinforcement learning (RL)-based approach to address these
issues. By illustrating how RL naturally provides adaptability,
strategic multi-block placement, and reduced reliance on
labeled data, this early-stage idea is expected to contribute to
the integration of simulation methodologies and machine
learning approaches.

Keywords-wave-dissipating blocks; reinforcement learning;
simulation; automatic stacking.

L INTRODUCTION

Wave-dissipating blocks play a pivotal role in coastal
engineering, protecting infrastructure by effectively
dissipating wave energy. The optimal placement of these
blocks significantly influences the overall stability,
compactness, and performance of breakwater structures.
However, the installation of wave-dissipating blocks still
heavily depends on the empirical knowledge and experience
of skilled workers. To overcome the limitations, Xu [1]
achieved accurate single-block placements using supervised
Convolutional Neural Network (CNN) methods. Albeit, his
methods may suffer from inflexibility in adapting to
structural changes and an inability to perform long-term
optimization. In this paper, we explore an automatic stacking
method for wave-dissipating blocks using Reinforcement
Learning (RL) in our self-developed 3D-BW (3-Dimensional
BreakWater Simulator) [2]. This RL-based method offers
enhanced flexibility and adaptability, enabling the learning
agent to optimize long-term structural integrity and
dynamically adapt to changes in block types, structure
geometry, and target goals.

In Section 2, we review related works, particularly
focusing on supervised learning-based approaches for block
placement and their limitations. In Section 3, we present our
proposed methodology based on reinforcement learning,
detailing the motivation, agent design, and inherent
challenges. Finally, Section 4 concludes the paper by

Tatsuya Yamazaki

Faculty of Engineering
Niigata University
Niigata, Japan
e-mail: yamazaki.tatsuya@jie.niigata-u.ac.jp

summarizing key contributions and outlining future
directions for integrating reinforcement learning into coastal
block placement simulations.

II.  RELATED WORKS

Accurate placement of wave-dissipating blocks has been
studied using several computational approaches, with
supervised learning being one of the most explored methods.
Xu [1] achieved accurate single-block placements using a
supervised Convolutional Neural Network (CNN) trained on
labeled data generated from a physics-based simulator.

A.  Xu’s Supervised CNN Approach

The process consisted of three phases.

1) Data Generation & Pose Labeling: A sliding window
extracted 512 x 512 depth patches from the structure’s
surface. For each patch, 1000 simulated drops were tested at
varying poses. Two criteria were evaluated:

e Compactness: measurement by comparing the
placed block’s position against the target height
map, calculating insufficient volume (gap filling).

e Stability: horizontal displacement determination
after settling (displacement < 0.2m).

Then, the best performing pose becomes the ground-truth
label for CNN training.

2) CNN Training: The network learned to predict
optimal translation and rotation from depth patches,
minimizing supervised loss between predictions and labels.

3) Real-Time Inference: The CNN predicted poses for
each patch and placed blocks iteratively until the structure
was completed.

This approach achieved high local accuracy and fast
inference, making it suitable for controlled, static
construction conditions. However, it has limitations:

e Dataset Dependence: Requires extensive pre-
generated labeled data for each structural
configuration.

e Lack of Adaptability: Cannot generalize new block
types or changing conditions without retraining.

e Greedy Placement Strategy: Optimizes only
immediate placement, ignoring long-term structural
goals.
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B.  Other Relevant Approaches

Beyond CNN-based placement methods, other
computational strategies have been explored for similar
optimization problems. Physics-based heuristic approaches
use deterministic rules to maximize local compactness and
stability. However, their performance tends to degrade in
dynamic or unpredictable environments. In the field of
robotics, reinforcement learning has been successfully
applied to adaptive planning tasks, such as object

manipulation, grasping, and stacking under uncertainty [5][6].

Hybrid methods that combine CNN-based perception for
accurate pose estimation with RL-based decision-making
have also been proposed [7], enabling both precision and
adaptability, although these approaches face scalability
challenges when applied to large, irregular structures.

C. Summary of Achievements and Research Gap

Supervised CNN methods, such as that of Xu [1], have
demonstrated high placement accuracy for static, controlled
conditions, but their lack of adaptability and inability to
perform strategic optimization over multiple steps remain
significant drawbacks. In contrast, RL-based methods learn
directly from interactions with the environment, removing
the dependence on fixed datasets, and can evaluate the
consequences of each placement in the context of a long-
term construction sequence. They are also inherently more
flexible, adapting to changes in block geometry,
environmental constraints, and overall structural goals
without the need for complete retraining. Nevertheless, Xu’s
dataset suffers from limited diversity, being tailored to
specific block types and structural configurations.
Incorporating data augmentation techniques, such as
introducing synthetic noise, randomizing textures, and
perturbing poses could improve the robustness of both
supervised and RL-based methods, and in the RL case,
could be integrated into pretraining phases, such as
behavioral cloning to accelerate convergence.

III.  PROPOSED METHODOLOGY: REINFORCEMENT

LEARNING (RL)-BASED BLOCK PLACEMENT

To address the limitations identified in [1], we introduce
a RL-based approach using Unity ML-Agents [3] and
Proximal Policy Optimization (PPO). The method leverages
the interaction-based learning paradigm inherent to RL to
dynamically adapt and optimize the strategic placement of
wave-dissipating blocks.

A. Motivation of Utilizing RL

RL allows a learning agent to iteratively obtain an
optimal policy by interacting directly with its environment,
receiving feedback through reward signals, and adapting
actions accordingly. Unlike supervised methods that depend
on extensive pre-labeled data, RL’s ability to continuously
refine its strategies based on outcomes makes it uniquely
suited to scenarios that involve complex and dynamic
decision-making, such as block stacking in coastal

engineering. The primary reasons for employing RL in this
research include:

e Adaptability: the RL agent dynamically adapts to
structural or block-type changes.

e Strategic Long-Term Optimization: RL considers
the implications of each block placement in a multi-
block scenario, addressing global objectives, such
as porosity reduction and structural stability.

e Reduced Data Dependency: the agent learns from

interaction outcomes rather than extensive
simulations, reducing the need for dataset
preparation.

B.  RL Agent Design

The RL agent operates within our self-developed 3D-BW
environment, performing iterative block placements by
observing the current structural state using data
representations, such as gap maps and depth maps derived
from discretized grid cells. Figure 1 illustrates a bird's-eye
view visualization of a gap map. Based on these observations,
the agent selects a discrete placement coordinate (x, z) and a
rotation angle, then drops a block from a predetermined
height.

Figure 1. Visualization of gap map of breakwater structure
from a bird-eye view

The agent aims to optimize multiple explicit and
adaptable objectives, including compactness, stability,
overflow penalty, and porosity. After multiple block
placements, the Proximal Policy Optimization algorithm [4]
updates the policy parameters based on the observed rewards
and outcomes. Through iterative learning, the agent is
expected to gradually improve its strategic placement
capabilities.

C. Limitations

While RL offers significant potential advantages, several
challenges must be acknowledged:

e Increased Training Complexity: potentially requires
substantial computational resources and training
time.

e Reward Function Sensitivity: strong dependency on
effective reward design, potentially challenging to
tune accurately.

e Exploration Efficiency: initial random placements
may cause slow training convergence, necessitating
strategies like curriculum learning or behavioral
cloning to mitigate this issue.
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IV. CONCLUSION

This idea contribution proposes an RL approach as an
innovative, adaptive, and strategic method for optimizing the
placement of wave-dissipating blocks. By leveraging Unity
ML-agents, physics-based simulations, and well-designed
reward functions, RL demonstrates significant potential to
overcome the inherent limitations of supervised learning
methods.  Although  challenges remain regarding
computational resources and careful reward design, these
issues may be mitigated by incorporating techniques, such as
behavioral cloning. This approach lays the groundwork for
more autonomous and efficient block placement strategies in
future coastal engineering applications.
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Abstract—The development and improvement of complex en-
gineering systems increasingly depend on virtual and hybrid test
benches for validating new designs or modifications to existing
ones. Central to these test benches are simulation models, which
are essential but time-consuming to develop due to their reliance
on domain expertise. Full-fledged simulation models can also
be slow, impeding the validation process that requires real-
time simulation. Conversely, Al surrogate models, derived from
sensor data, face constraints due to insufficient training data and
potentially lacking physical sense. To address these challenges,
we propose the use of physics-enabled AI models as surrogates,
which strike a balance by integrating underlying physical laws
through model equations, thereby requiring significantly less data
for training. Once trained, these models operate in real-time,
expediting the validation process. In this work, we introduce
a Physics-enabled Al surrogate model development process that
augments to the existing Machine Learning Operations (MLOps)
workflow. Our approach employs an ontological framework to
align user needs with a model template. We leverage Physics-
Informed Neural Networks (PINNs) as the core building block for
this template. Once a model structure is selected, the traditional
MLOps process is applied to train and validate the Al surrogate.
This methodology simplifies the model development process and
hence accelerates the overall system development.

Keywords-Physics-enabled AI; Physics-Informed Neural Net-
works; Ontology; Simulations.

I. INTRODUCTION

Advances in Artificial Intelligence (AI) have had a profound
impact across numerous disciplines, including engineering.
One particularly transformative development is surrogate mod-
eling, especially approaches based on Al techniques [1]. Sur-
rogate models offer simplified, fast, and reliable alternatives to
complex, costly, and time-consuming multiphysics simulations
or physical experiments.

The creation of an Al-based simulation model typically
follows a common set of steps, regardless of the specific Al
technique employed. The process begins with a clear definition
of the problem that the model is intended to solve. This is
followed by the acquisition of the necessary data, as well as
the identification of performance requirements and constraints.
The collected data must then be prepared, potentially merged
if sourced from different origins, and cleaned to ensure quality
and relevance. The next step involves selecting an appropriate
model, designing its architecture, fine-tuning its parameters,
and carrying out the training, validation, and testing phases.
The process concludes with the deployment of the model in its
target environment. Once deployed, the model can be moni-
tored to assess its performance under real-world conditions
and to detect any anomalies. One of the most complex tasks
in this process is selecting the appropriate AI model. While

data-driven Machine Learning (ML) algorithms have demon-
strated success in many surrogate modeling tasks, they are
often criticized for operating as “black boxes”, their internal
decision-making processes are difficult to interpret. This raises
concerns about transparency and trust [2]. Additionally, such
models tend to require large volumes of high-quality training
data and significant computational resources, which may not
be feasible in domains where data is scarce or expensive
to acquire [3]. Furthermore, purely data-driven models can
struggle to generalize beyond the specific conditions seen dur-
ing training [2][3]. In response to these challenges, numerous
studies have emphasized the importance of integrating domain-
specific knowledge into machine learning [4] [5]. This integra-
tion improves interpretability, reduces data requirements, and
increases consistency with known physical laws or constraints.
This approach, which combines domain knowledge with data,
is known as a hybrid approach and is gaining increasing
popularity. Among these methods, Physics-Informed Neural
Networks (PINNs) [6] [7] have recently attracted significant
attention and have been applied to a wide range of applications
across various fields. These models incorporate physical laws,
typically in the form of differential equations, directly into the
loss function during training. As a result, PINNs not only offer
better generalization from limited data but also provide more
transparent and physically consistent predictions.

Since the introduction of PINNs by Raissi et al. in 2019
[6], most studies have employed PINNs with feedforward
neural network architectures. However, some researchers have
explored alternative types of neural networks to assess their
impact on overall model performance [8]-[14]. The effective-
ness of a PINN architecture depends on both the data and the
task at hand. This means that certain architectures are better
suited to specific situations, depending on the characteristics
of the data and the nature of the problem to be solved, while
others may perform better in different contexts. Therefore,
selecting a suitable architecture for a PINN is challenging due
to the wide range of available options, from the type of neural
network to various model parameter choices.

To simplify this task, we aim to develop an ontology-
based Recommendation System (RS) to assist in selecting an
appropriate PINN model. This work is part of a broader project
that seeks to streamline and automate the entire process of
developing physics-enabled Al surrogates designed to replace
complex simulations. The primary goal of the project is to
enable domain or simulation experts to build their AI Surrogate
Models (SMs) without requiring extensive expertise in Al

The remainder of this paper is organized as follows. In
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Section II, we introduce the concept of Physics-Enabled Al,
with a focus on PINNs. We present an analysis of the key
parameters and structural choices that influence PINN’s per-
formance. Section III provides a literature review of existing
PINN architectures across various applications and domains.
In Section IV, we introduce the concept of ontology-based
recommender systems. Section V details the development and
implementation of our proposed ontology-driven recommenda-
tion system, including the ontology construction process and
the recommender interface that suggests suitable PINN archi-
tectures based on user input. Finally, Section VI concludes the
paper with a summary of our findings and directions for future
work.

II. PHYSICS-ENABLED Al
A. Principle of Physics-Informed Neural Networks

PINNSs [6] are a specialized category of deep learning algo-
rithms designed to tackle both forward and inverse problems.
Unlike traditional neural networks that rely solely on data,
PINNs incorporate prior knowledge of the system, typically
in the form of Partial Differential Equations, directly into the
training process. This is achieved by embedding the governing
equations into the network’s loss function, effectively con-
straining the solution space and guiding the model toward
physically consistent predictions. The primary motivation for
developing these algorithms is that incorporating prior knowl-
edge or physical constraints can lead to more interpretable
machine learning models that require less data and remain
robust in the presence of imperfect data.

Figure 1. Principle of Physics-Informed Neural Networks [15].

As shown in Figure 1, a PINN consists of three main

components:

o An approximation module: the neural network N N (w, b),
parameterized by weights w and biases b, takes as inputs
x and t. Through nonlinear transformations governed
by the activation function o, the network outputs an
approximation of the solution u(z,t).

e A physics-informed module, where the predicted solu-
tion is inserted into the governing Partial Differential
Equation (PDE), expressed as L(u(z,t),0) = g. The
derivatives of u with respect to ¢ and = are computed
automatically through differentiation of the neural net-
work. These derivatives allow evaluation of the residual

R = L(u, 8)— g, which measure the discrepancy between
the network prediction and the governing equation.

o An optimization module, responsible for minimizing the
loss and ensuring convergence toward a physically consis-
tent solution. The loss is expressed as the Mean Squared
Error (MSE), defined as: MSE = MSEy, pc,icy +
MSER. The term M SEy,, pc,rcy measures the discrep-
ancy between the predicted solution and the available
data, including Boundary Conditions (BC) and Initial
Conditions (IC). The second term, M S FEg, evaluates the
residual of the PDE. By combining both contributions,
the optimization process balances fidelity to the observed
data with consistency to the underlying physics, and
training continues iteratively until the overall loss drops
below a prescribed tolerance e.

While this structure provides a powerful framework, choosing
an appropriate NN architecture and parameters can be a
significant challenge due to the vast number of available
options. As highlighted in Section III, a wide variety of PINN
architectures have been proposed across different industries
and engineering domains. Without extensive experimentation,
it is often difficult to determine the most effective configura-
tion, making the process time-consuming. To address this, the
present article explores various possible architectures to help
guide the selection process based on the available data and
input types.

B. Structure and Parameters

To select the most suitable PINN architecture for a given
problem, several key aspects must be considered:

o Network Type: The architecture should match the task
and the nature of the data.

¢ Depth and Width: The number of layers and neurons per
layer, along with the choice of activation functions, sig-
nificantly influence the model’s ability to learn complex
representations.

o Optimization Methods: The choice of optimizer and hy-
perparameters, such as the learning rate, plays a crucial
role in the model’s convergence.

« Batch Size and Regularization: Batch size, regularization
strategies (e.g., dropout, L2 regularization), and data nor-
malization are essential for efficient and stable training.

o Performance Enhancements: Techniques like data aug-
mentation and early stopping can improve model perfor-
mance and generalization.

o Hyperparameter Tuning: Methods such as Grid Search,
Random Search, and Bayesian Optimization help in find-
ing the optimal network configuration.

o Hardware Considerations: Available computational re-
sources (e.g., GPUs, TPUs) and compatibility with deep
learning frameworks like TensorFlow or PyTorch are
important for scalability and efficiency.

In summary, designing an effective PINN architecture re-

quires a strategic combination of these elements to ensure
optimal performance.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

44



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

III. LITERATURE REVIEW ON PHYSICS-INFORMED
NEURAL NETWORK ARCHITECTURES

Several neural network architectures have been adapted for
use in PINNS, including: Fully Connected Neural Networks
(FCNNs) [16], Convolutional Neural Networks (CNNs) [8],
Recurrent Neural Networks (RNNs) [13], Long Short-Term
Memory networks (LSTMs) [12], Autoencoders (AEs) [17],
Generative Adversarial Networks (GANSs) [10], Bayesian Neu-
ral Networks (BNNs) [9], Graph Neural Networks (GNNs)
[11], and Residual Networks (ResNets) [14], among others.

Among these, FCNNs are the most widely used. These
networks are frequently employed to approximate solutions to
scalar or vector-valued functions, such as PDEs and Ordinary
Differential Equations (ODEs).

CNNs are designed to efficiently process grid-based data,
such as images. They are widely used in tasks like image
classification, object detection, and image segmentation, and
are also applicable to problems involving spatially structured
data, such as velocity fields in fluid mechanics or temperature
distributions.

RNNs are a type of network where connections between
nodes form directed cycles, allowing information to persist
over time. This architecture is particularly well-suited for tasks
involving sequential data, such as time series forecasting, nat-
ural language processing, and speech recognition. By retaining
a form of memory, RNNs can use past information to influence
current predictions, which is essential for understanding and
generating sequences where context and order matter.

LSTMs, a specialized type of RNN, are designed to address
the vanishing gradient problem in traditional RNNs. They
incorporate gating mechanisms to better capture long-term
dependencies in sequential data, making them especially effec-
tive for tasks such as speech recognition, machine translation,
and sentiment analysis.

GNNss are designed to process data structured as graphs and
are applied to systems where relationships between entities
are important, such as transportation networks or molecular
interactions.

Autoencoders are often used for dimensionality reduction
and anomaly detection in complex physical systems, as well
as for data denoising and generative modeling.

GANs are widely used to generate realistic images, videos,
and other types of data, or to produce physically plausible
solutions that respect physical constraints.

Bayesian Deep Learning (BDL) is an approach that inte-
grates Bayesian methods into deep neural networks to quantify
uncertainty in predictions. Unlike traditional neural networks,
which provide deterministic predictions, Bayesian models gen-
erate probability distributions over model parameters, allowing
the uncertainty associated with each prediction to be assessed.
BDL is particularly useful in domains where decisions must
be made cautiously and where prediction uncertainty can have
significant consequences.

Finally, ResNets are used for tasks requiring very deep
networks, enabling more stable training and improved perfor-
mance through residual connections.

IV. ONTOLOGY-BASED RECOMMENDER SYSTEMS

In an increasingly data-driven world, organizing knowl-
edge in a structured and meaningful way is essential for
understanding, sharing, and reusing information. Whether in
science, business, or technology, we need systems that help
us make sense of complex domains. To achieve this, various
techniques have been developed to organize knowledge, each
with different levels of complexity and expressiveness. These
include taxonomies, ontologies, and knowledge graphs [18].

A taxonomy is the simplest form of knowledge organization.
It arranges concepts in a hierarchical structure, typically from
general to specific, using parent-child relationships [18]. On-
tologies provide a more expressive and formal way to represent
knowledge. They define concepts, properties, relationships,
and rules within a domain, enabling both humans and ma-
chines to reason about the data. Ontologies are essential in
fields like artificial intelligence, semantic web, and biomedical
informatics [18]-[20]. Knowledge graphs extend ontologies by
linking entities and their relationships in a graph structure [20].

For our project, we aim to develop an ontology-driven
recommender system that suggests the most suitable Neural
Network (NN) architecture based on the user’s data type and
task. This system combines a formally structured ontology,
representing relationships between NN types, data modalities,
and task categories, with a Python-based reasoning and query-
ing engine. The ontology enables semantic inference, while the
Python system handles user input, executes reasoning logic,
and delivers recommendations.

Despite the growing interest in semantic technologies for in-
telligent systems, no published scientific work to date appears
to directly implement an ontology-based recommender system
specifically designed to suggest NN architectures based on the
type of data and the task to be accomplished.

While there are ontologies that describe machine learning
concepts, such as the Machine Learning Schema (MLS) [21],
these are primarily intended for metadata annotation, exper-
iment tracking, or model documentation. They do not aim
to support reasoning or recommendation of neural network
architectures based on task and data characteristics, which is
the focus of our work.

V. RESULTS

A. Guiding PINN Architecture Selection Through Input Anal-
ysis

The developed workflow, named PAIRS (for Physics-
enabled Al for Real-time simulations Surrogates), allows users
to input differential equations along with ICs and BCs, which
can be integrated into the loss function. In addition, users
provide data and specify the type of task to be accomplished.

Differential equations play a significant role in optimiz-
ing the learning process. However, the type of these equa-
tions (whether ODEs, PDEs, or Integro-Differential Equations
(IDEs)) does not influence the choice of the PINN architecture.
In contrast, the types and properties of the data, along with
the tasks to be performed, play a crucial role in this choice.
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Data can be classified into quantitative and qualitative types,
as well as more advanced forms. Quantitative data refers
to measurable information expressed numerically, such as
discrete or continuous numerical data, and time series data
(linear or nonlinear). Qualitative data includes descriptive
information that cannot be measured numerically but can be
categorized or described, such as categorical data, text, images,
audio, and video. Sensor data may be either quantitative or
qualitative, depending on what is being measured. Graph data
is represented as graphs composed of nodes (or vertices) and
edges (or links) connecting them. This format is particularly
useful for representing complex relationships between entities.

These data types may exhibit various characteristics that
influence their processing and analysis, such as:

o Temporal dependency (Dynamic Data): Data evolves over
time, with short-term or long-term dependencies. This
distinction is crucial for choosing between models like
LSTM and RNN.

o Probabilistic nature: Data may contain uncertainty or
variability.

o High dimensionality: Data with many features or vari-
ables, making processing more complex.

« Noise: Data may include errors, inconsistencies, or irrel-
evant information.

o Heterogeneity: Data from diverse sources and formats,
requiring normalization for coherent analysis.

o Large volume: The data may be massive in scale.

PINNs are primarily applied to solving forward and in-
verse differential equations, including ODEs, PDEs, integro-
differential, and stochastic equations, commonly encountered
in physics and engineering. However, PINNs can also be
applied to many other tasks. Some of these tasks influence the
choice of the most appropriate PINN architecture, while others
can be addressed with any architecture without a specific
preference. Tasks that influence architecture choice include:

« Solving Differential Equations
o Inverse Problems:

— Model Discovery: Identifying underlying models or
physical laws from data

— Parameter Estimation: Estimating unknown parame-
ters in physical or statistical models from observed
data

o Sequence Prediction: Forecasting future values or se-
quences based on time series or sequential data.

o Capturing Long-Term Dependencies: Modeling long-
range dependencies in sequential or temporal data, im-
portant in time series forecasting or text analysis.

o Noise Reduction: Cleaning noisy data to recover the
original signal, using techniques like autoencoders for
image, audio, or other data types.

o Data Generation: Creating synthetic data from a learned
model, especially when real data is scarce or expensive.

« Dimensionality Reduction: Reducing the number of vari-
ables while preserving important features

o Uncertainty Quantification: Estimating the uncertainty in
model predictions.

o Preventing Degradation in Deep Neural Networks: En-
hancing stability and performance in deep networks to
avoid degradation during training, e.g., using ResNets to
address vanishing gradients.

Other tasks, such as classification, predictive maintenance, and
anomaly detection may also arise. For these, the choice of
architecture primarily depends on the data type.

B. Ontology Development and Integration

Protégé [22], a free and open-source ontology editor, is
used to develop the ontology. Created at Stanford University,
Protégé is widely adopted in the semantic web community.
It supports the creation and editing of ontologies in various
formats, including RDF, RDFS, and OWL.

As shown in the Figure 2, in the first stage of ontology
construction, we defined three main classes: Data, Task, and
Neural Net Type. The Data class includes two subclasses:
Type and Characteristics. The data types considered include:
numerical data, sequences (e.g., time series), text, images,
audio, video, and graphs. The characteristics include: tem-
poral dependency, probabilistic nature, high dimensionality,
heterogeneity, and data volume. For the Task class, only tasks
that influence the choice of neural network architecture are
considered. These include: solving differential equations and
inverse problems, sequence prediction, capturing long-term
dependencies, noise reduction, data generation, dimensionality
reduction, uncertainty quantification, and preventing degrada-
tion in deep neural networks. This class represents the user’s
task preferences and requirements. The Neural Network class
includes the architectures shown in Figure 2: FCNN, CNN,
RNN, LSTM, AE, BNN, GAN, GNN, and ResNet. Each class
is defined or described in detail using Annotations in Protégé.
To establish relationships between these classes, four object
properties were defined:

o areBestSuitedForData: Links a neural network type to
data types or characteristics it is particularly well-suited
for. For example, CNNs are best suited for image data,
GNN s for graph-structured data, and RNNs for sequential
data with temporal dependencies.

o canBeUsedForData: Also links neural networks to data
types or characteristics they can be applied to, though
not necessarily in an optimal way.

« areBestSuitedForTask: Indicates that a neural network is
particularly well-suited for a specific task.

o canBeUsedForTask: Indicates that a neural network can
be used for a given task.

The ontology is developed in OWL format, and the Her-
miT reasoner is used to validate its logical consistency by
inferring implicit relationships and identifying contradictions.
This involves checking that the defined classes, properties, and
restrictions do not lead to inconsistencies in class hierarchies
or instances. Queries are also executed using the DL Query
tool in Protégé to ensure that the defined relationships and
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Figure 2. Ontology class diagram generated with OntoGraf, showing the main concepts: Data Types and Characteristics, Tasks, and Neural Network Types,
along with their respective subclasses.

properties yield the expected results. An example of these
queries is shown in Figure 3. All tests conducted during
this phase confirmed that the ontology produces the expected
results, both in terms of logical reasoning and query out-
comes, reinforcing its reliability as the foundation for the
recommendation system. Figure 4 illustrates the complexity of
the ontology, with arrows indicating the links between classes
based on the defined properties.

Query (class expression)

Neural_Net_Type and areBestSuitedForData some Temporal_Dependency and areBestSuitedForTask some
Capturing_Long-Term_Dependencies

Execute, Add to ontology

Query results
Query for

Subclasses (2 of 2

LST™M Direct superclasses

owl:Nothing Superclasses

Equivalent classes
Direct subclasses
v Subclasses

Instances

Figure 3. Example of DL queries used to test the ontology.

C. System Implementation and Recommender Workflow

To develop the recommendation system, user inputs are first
connected to the ontology to extract relevant information. This
linkage enables the system to derive meaningful insights and
generate appropriate model recommendations. The implemen-
tation is carried out in Python, using the Owlready?2 library to
load and query the ontology.

The process begins with a user interface developed using
Streamlit, which allows users to input their data, equations, IC,
and BC. The interface also prompts users to specify the task
they aim to accomplish by selecting from a set of predefined
options.

Once the inputs are provided, the system analyzes the data
to identify its type and specific characteristics. These are then
mapped to corresponding concepts in the ontology. Based on
this mapping and the selected task, the system generates a
primary recommendation using the property areBestSuited-
ForData/Task, and suggests alternative models through the
property canBeUsedForData/Task. Users can then select one
of the recommended models that best fits their needs, guided
by detailed descriptions that include relative levels of resource
and time requirements.

After a model is selected, additional parameters—such as
the number of layers, number of neurons, learning rate, and
activation function—are either set to default values or defined
as ranges for exploration through hyperparameter optimization
techniques. The model is then implemented and trained using
PyTorch. During training, validation, and testing, the user-
provided equations and conditions (if available) are incorpo-
rated into the loss function alongside the data loss, ensuring
that the model respects the underlying physics. These steps
can follow a standard MLOps workflow. Once the model is
trained and validated, it can be exported and deployed in its
target environment for further testing and integration.

VI. CONCLUSION AND PERSPECTIVES

This work presents a foundational version of an ontology
designed to support the development of physics-informed Al
surrogates, which aim to provide an alternative to complex,
time-consuming simulations. While this initial version pro-
vides a structured framework, it remains a first iteration that
will require further refinement. In particular, future enhance-
ments should include the integration of additional types of
hybrid models to better reflect the diversity of approaches in
physics-enabled machine learning.

The ontology was constructed following an extensive liter-
ature review aimed at identifying the key factors influencing
the selection of neural network architectures in PINNs. The
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Figure 4. Diagram illustrating the complexity of the ontology, with arrows indicating the links between classes based on the defined properties.

review involved collecting and analyzing a wide range of
studies that applied different architectures in various industrial
and scientific contexts. Some of the relevant studies reviewed
during this process are mentioned in Section III. Each study
was examined based on architecture type, input/output struc-
ture, data characteristics, governing equations, task type, and
application domain. Technical parameters such as activation
functions, number of layers and neurons, optimization al-
gorithms, learning rates, and performance metrics were also
considered. This structured analysis enabled the classification
of use cases and the identification of patterns linking specific
architectures to particular contexts.

This study revealed that several aspects play a role in this
decision, including the nature and characteristics of the data,
the volume of available data, the complexity of relationships
within the data (e.g., linear, nonlinear, or intricate patterns), the
specific objectives of the modeling task, and the availability
of computational resources and time constraints. The ontology
serves as a structured framework that links the neural network,
the data, and the task. Building on this foundation, a recom-
mendation system suggests the most appropriate models to use,
indicating the relative levels of resource and time requirements
as well as the level of model complexity.

The ontology is currently in its first version and accessible
only within our internal project environment. It is implemented
in OWL format and can be edited using the Protégé tool,
allowing for easy updates and integration with additional
models and parameters. Although the development is ongoing
and the full workflow is not yet complete, the ontology has
been designed with extensibility in mind to support future
enhancements and broader system integration. However, its
current scope is limited to PINNs and does not yet cover the
full spectrum of physics-informed machine learning models.
Moreover, even within the PINNs domain, the rapid evolution
of architectures presents a challenge for keeping the ontology
up to date. Another challenge is integrating this approach
into existing MLOps workflows, which can be complex due
to the need to manage physics-based constraints and ensure
alignment with the ontology.

This contribution is part of a broader initiative aimed

at streamlining and automating the entire process of build-
ing physics-enabled Al surrogates. The primary goal is to
empower domain experts, such as simulation engineers, to
develop and deploy surrogate models without needing deep
expertise in Al

Several key directions are planned to extend this work:

« Automatic updating of the ontology using Generative Al
(GenAl) to reflect evolving model types, as new models
and approaches are constantly emerging in this rapidly
evolving domain.

o Development of a database of pretrained models, facili-
tating reuse and accelerating deployment.

o Integration of GenAl and intelligent agents to assist users
in model selection, configuration, and training.

These future developments aim to create a comprehensive,
user-friendly ecosystem for building and managing physics-
informed Al models, ultimately bridging the gap between sim-
ulation expertise and advanced machine learning capabilities.
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Abstract—This research creates a multi-agent simulation
model for the maritime emergency response system,
integrating agent-based modeling with evolutionary game
theory. The model captures strategic interactions among four
key stakeholders, such as Maritime Administration, Ship
Operators, Crew Members, and Insurance Companies —who
adaptively adjust strategies under bounded rationality.
Through replicator dynamics and stability analysis, we identify
equilibrium conditions and optimal coordination mechanisms.
Numerical simulations reveal critical thresholds for safety
compliance and effective incentive structures. The framework
bears the potential for action in maritime safety policy over the
bottom-up modeling approaches to emergent complex system
dynamics toward regulatory design applicable for safety-
critical system domains.

Keywords-Maritime emergency
modeling; evolutionary game theory.

response;  agent-based

L INTRODUCTION

Maritime emergency response faces critical coordination
challenges, with inadequate stakeholder collaboration
identified as a primary factor in accident escalation and
delayed responses [1]. This real-world problem motivates
our investigation into strategic interactions among regulatory
authorities, ship operators, crew members, and insurance
companies in emergency scenarios.

Traditional analytical methods struggle to capture the
complex adaptive nature of maritime emergency systems,
where multiple heterogeneous agents interact dynamically.
Simulation modeling offers unique advantages in revealing
emergent properties — how individual-level decisions
generate system-level behaviors [2]. This study integrates
agent-based modeling with evolutionary game theory to
develop a multi-agent coordination model for maritime
emergency response. Unlike conventional approaches, our
model explicitly characterizes bounded rational agents who
adaptively adjust strategies through environmental feedback
and mutual observations.

Our contributions include: (1) developing a four-agent
evolutionary game model tailored for maritime emergency
scenarios; (2) systematically analyzing parameter impacts on
system evolution through simulation experiments; (3)
proposing validated mechanism design frameworks for

enhanced coordination. These advances provide quantitative
tools for maritime safety policy formulation.

This paper is organized as follows. Section II presents the
model formulation, including agent definitions and game-
theoretic framework. Section III provides the simulation
experiments and analysis.

II. MODEL FORMULATION

This section presents the mathematical foundation of our
multi-agent coordination model, establishing the game-
theoretic framework and defining stakeholder interactions
within the maritime emergency response system.

A. Game-Theoretic Distributed Auction with Spatial-
Temporal Dynamics

Assumption 1: The evolutionary game involves four
stakeholders, such as Maritime Administration (M), Ship
Operators (0), Crew Members (C), and Insurance
Companies (I)~—all of whom are assumed to exhibit bounded
rationality.

Assumption 2: Each stakeholder has two pure strategy
choices [3][4]:

Maritime Administration (M) chooses between Strict
Regulation (MS) and Lenient Regulation (ML);

Ship Operators (O) choose between High Safety
Investment (OH) and Low Safety Investment (OL);

Crew Members (C) choose between Active Emergency
Response (CA) and Passive Emergency Response (CP);

Insurance Companies (I) choose between Strict Review
(IS) and Lenient Review (IL).

Assumption 3: The strategy choices of stakeholders are
interdependent, and the probability of strategy adjustment is
determined by payoff differences.

Table I presents the definitions of the relevant parameters.

B. Model Construction

One of the principal innovations of this model lies in its
formulation of accident probability as a function of collective
stakeholder actions. This mechanism can be intuitively
conceptualized through a multi-layered risk mitigation
framework.
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TABLE L. PART OF FACTORS observe natural system evolution without intervention. Phase
Descriptions Svmbol Deserintion two employs thin. Hypercube ngpling across 10,000
of Factors ymbo escriptio parameter combinations, systematically varying penalty
c,c Cost of strict or lenient regulation ratios and .I'ISk reduction coefficients to 1flent1fy (;rltlcal
» A i _ _ control variables. Phase three tests policy interventions—
Maritime L Social loss and liability cost in the pure economic incentives, combined strategies, and three
Administration M event of an accident . .. . ..
Social benefit from a good safety temporal adjustment patterns—under crisis (high initial
R, record accident rate), stable, and chaotic initial conditions, ensuring
. ] ] robust policy recommendations across diverse real-world
, Cost of high or low safety investment .
020 scenarios.
F Fine for violation under strict or
, . )
Ship Operators 527 : lenient rggulatlon TABLE II. PART OF THE GAME PAYOFF FUNCTIONS
L Direct economic loss from an
o accident Stakeholder Payoff Matrix
R Normal operational revenue Maritime
. Administration R, —C,Guategy) - P, L,
C( ’ C( Cost of active or passive response Ship Operators R —C (strategy) — F(regulation) - P - L
Bonus for successful emergency
Crew Members B, response Crew Members W —C (strategy) + (1— P) ‘B -5
Insurance
W(_ Base wage Companies R —C (strategy)~P_ -P
e Cost of strict or lenient revie
€>< e IV. CONCLUSION
Insurance . . . .
Companies P Insurance payout in case of accident Lopkmg fqrward, we are developing what we call an
. "adaptive policy framework" that learns from system
R Insurance prémium revenue - . .
! o . feedback and adjusts parameters automatically. The ultimate
P The b’flc ?Slf‘fr}elﬂws the inherent vision is a living system that continuously optimizes itself,
Risk > risks of offshore operations making maritime transport progressively safer while
Parameters gt Individually representing the risk maintainine economic viabilit
] reduction coefficient of safety g Y.
measures for M, O, C, and I A
Consider the safety measures adopted by each CKNOWLEDGMENT

stakeholder as constituting an independent protective layer.
The baseline risk, denoted as Ps, represents the intrinsic
accident probability in the absence of any interventions.
Each protective layer attenuates a portion of the aggregate
risk:
_PB'(1_5M'05M)'(1_50’0‘0) )
accident (1_§C ac)(1_§1 .al)

Where:

dm=1 if M chooses Strict (MS), 0 if Lenient (ML);

d0=1 if O chooses High Safety Investment (OH), O if
Low Safety Investment;

dc=1 if C chooses Active Emergency Response (CA), 0 if
Passive Emergency Response (CP);

6=1 if C chooses Strict (IS), 0 if Lenient (IL).

In the model, the maritime management administration,
the ship operators, the crew members, and the insurance
companies make their strategy choices based on their own
will. According to the above assumptions, the partial payoff
functions of the four-party game is shown in Table 2.

III.  SIMULATION EXPERIMENTS AND ANALY SIS

We are implementing a three-phase experimental design
using agent-based Monte Carlo simulations. Phase one
establishes baseline dynamics with neutral parameters to
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Abstract—Maritime emergency response systems face unique
challenges due to the need for cross-regional coordination,
limited communication infrastructure, and the involvement of
multiple international jurisdictions. This paper proposes a
novel distributed simulation framework to enhance multi-
agency collaboration in maritime emergencies, covering a
comprehensive spectrum of hazards including vessel collisions,
oil spills, search and rescue operations, piracy incidents, and
extreme weather events. The framework leverages distributed
simulation technologies to create an integrated method
supporting real-time decision-making, resource optimization,
and training for emergency responders.
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L INTRODUCTION

The 2021 Ever Given Suez Canal blockage exposed a
fundamental architectural flaw in global maritime emergency
response systems. Despite causing over $9 billion in daily
economic losses, the incident's most significant revelation
was not the scale of disruption, but rather the systemic
failure of hierarchical command structures when confronted
with multi-jurisdictional coordination requirements [1]. This
catastrophic breakdown occurs precisely because maritime
emergencies violate the core assumption underlying
traditional response systems: that effective coordination
requires centralized control. In reality, modern maritime
operations span multiple sovereign territories, involve
competing commercial interests, and engage diverse
agencies.

Under operational realities, therefore, the complex
interrelationships emergent from distributed optimization
spread over three dimensions for responding to a maritime
emergency. First, autonomy must be possessed by the actors
who have to make choices about the allocation of resources
that have to be made scarce without any capacity for global
information or significantly centralized coordination. Then
again, the decisions are nested in a three-dimensional critical
environment, failing communications and incomplete data
due to time-critical constraints that preclude centralized
processing. Centralized architectures impede effective
response when, for example, loss of connectivity in the
command center results in network collapse-when local
conditions call for immediate action; those approved by
hierarchy may prove fatal-when agencies pursue conflicting

objectives; centralized mediation becomes a bottleneck
instead of a solution [2][3].

Our primary contribution is developing and proving
convergence for three interconnected distributed algorithms
specifically adapted to maritime emergency constraints.
Section II presents our theoretical framework and problem
formulation. Section III details the distributed optimization
algorithms with convergence proofs. Section IV concludes
with implications and future work.

II.  PROBLEM FORMULATION AND THEORETICAL
FRAMEWORK

Consider n maritime agencies responding to emergency
scenarios with m shared resources. Each agency i controls
decision variables x; € RY representing resource requests
and task assignments. The global optimization problem is:

minimize =_"f (x )+g (ZH"AiXi ) (1)

where fi represents agency i's local cost (response time,
fuel consumption), g enforces global resource constraints,
and A; are coupling matrices encoding resource sharing
relationships.

III. DISTRIBUTED RESOURCE OPTIMIZATION
ALGORITHMS

This section presents three distributed algorithms
designed to address the unique coordination challenges in
maritime emergency response.

A. Distributed Auction

Our distributed auction protocol extends classical market
mechanisms by incorporating maritime-specific spatial-
temporal constraints. Each resource j has time-varying
availability rj (t) and position p j(t) following maritime
navigation dynamics.

The iterative bidding rounds in the protocol allow agency
i to build bids using marginal utility and spatial-temporal
factors:

In Bid calculation, during round k, agency i's bid for
resource j is expressed as:

b, ()=u, (k) - ¢,(k) -y, (k) 2)
where u; j (k) is marginal utility, ¢;j (k) is spatial
accessibility, and (k) is temporal urgency factor.

In Price dynamics, resource prices evolve through the
following process:
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p;(k+D)=p,(k)+a(k) -[D;(k)-S (k)] 3)

where D j(k) is aggregate demand, Sj(k) is available

supply, and o(k) is an adaptive learning rate ensuring
convergence.

B.  Dual-Decomposition for Collaborative Task
Assignment

In tasks that involve collaboration among multiple
agencies, such as area searching and pollution containment,
we apply dual decomposition to the distribution of
optimization while coupling constraints are retained [4].

The global maritime resource allocation problem can be
formulated as a convex optimization problem:

“4)

where t=[tiT, t7,..., t."] represents the concatenated
vector of all agencies' task assignments, fi(t)) denotes agency
i's local cost function, Ct=b represents the global coupling
constraints to ensure resource conservation and task
completion.

The dual variables are updated through a distributed
consensus mechanism that preserves global consistency.
Each agency i updates its local estimate of the dual variables
according to:

Ak+1D) =% e N, w,[2,(K)+p(Ct (k)-b /n)] (5)

where weights wij form a doubly stochastic matrix
ensuring ZiAi(k) = nA(k) is preserved.

C. Federated Q-Learning

Agencies learn the optimal resource pre-positioning both
through distributed reinforcement learning and sharing, of
course, without operational security risking.

States of the system are constructed as state space:
S=gxRxW 6)
where g is discretized geographic grid, R is resource
availability vector, and W encodes risk conditions. Action
space A includes repositioning commands and readiness
levels.
Each agency maintains Q;: S x A — R updated via:

0 (s,a) < (1-a)Q (s,a) + alr(s,a,s Y+y-max O(s,a)] @)

where Q is the federated average Q-function and r is
agency-specific reward incorporating response time,
coverage area, and operational costs.

To address non-stationary dynamics, we use experience
replay with importance sampling to make sure agencies
maintain prioritized replay buffers with importance weights:

(1 1 jﬁ
wo=|—:
N P(e)

min(Zf/,(ti) subjectto Ct=b, t €T
i=1

®)

where:
P(e) |6, [ +e ©)

where 6 . represents TD-error, € represents a smoothing
term.

IV. CONCLUSION

This paper presents a distributed simulation framework
for multi-agency coordination in maritime emergencies. It
can enhance emergency responses by reducing the impacts
of disasters through a solid architectural underpinning
concerning advanced simulation technologies considering
the inherent complexity of managing maritime emergencies.
A distributed architecture is in line with the operational
reality of maritime environments and provides ample
opportunity for the required coordination in effectively
responding to maritime emergencies.

With increasing maritime traffic and new challenges,
such as autonomous ships and climate change, the
framework remains relevant in flexibility and extensibility. It
is, therefore, a contribution toward building resilient
maritime transportation systems to cope with various
emergencies. This framework will be further developed and
validated by the world's maritime agencies to provide a
standard procedure for coordinating emergency preparedness
and response.
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Abstract—The end-to-end air passenger journey, from travel
planning to arrival at the destination airport, encompasses a
series of interdependent processes in which passenger behavior
and airport infrastructure continuously influence one another.
Passenger decision-making, such as arrival timing, use of services,
and queue preferences, plays a central role in shaping these
dynamics. Conversely, the design and efficiency of airport infras-
tructure can constrain or facilitate behavioral patterns, creating
a feedback loop that is often overlooked in conventional modeling
approaches. This study addresses the critical need to better
understand the bidirectional relationship between passenger be-
havior and airport infrastructure. A hybrid modeling framework
is developed, where Discrete Event Simulation (DES) for airport
infrastructure is used to develop a passenger Agent-Based Model
(ABM) via Markov Decision Process (MDP) formulation and
optimal policy search. The model is informed by empirical
data on passenger profiles, infrastructure configurations, and
behavioral preferences. Preliminary analytical results highlight
how small variations in passenger behavior can impact decision-
making and infrastructure operation. The proposed framework
will facilitate the design of behaviorally-informed, data-driven
planning strategies for more resilient airport systems.

Keywords-Markov Decision Process; Agent-Based Modeling;
Airport infrastructure; Airport passenger; State machine; Decision-
making; SysML; Discrete-Event Simulation; Dynamic Program-
ming; Reinforcement Learning.

I. INTRODUCTION

The passenger journey in air travel encompasses a contin-
uous sequence of phases, from initial planning and booking
to airport arrival, check-in, security screening, boarding, and
ultimately arrival at the destination. This journey represents a
complex dynamic system where passenger decisions and air-
port infrastructure dynamically influence one another [1]. Cen-
tral to this system are key airport infrastructure components,
including check-in counters, security checkpoints, boarding
gates, and waiting lounges, which play a critical role in
determining the overall efficiency of airport operations [2][3].
However, airport infrastructure is increasingly challenged by
systemic issues such as congestion, bottlenecks, and service
delays, especially during peak periods. These challenges not
only reduce operational performance and increase costs, but
also have broader implications for airlines and aircraft manu-
facturers, impacting turnaround schedules and prompting new
aircraft design considerations aimed at faster boarding [4]. On
the other hand, passenger behavior acts as both a contributor
to and a consequence of these challenges. Decisions about

arrival times, use of on-site services, and queue selection
can compound delays or alleviate pressure on infrastructure.
For example, the tendency for last-minute queuing or con-
gregation around certain kiosks can strain already-limited
terminal resources [5]. These feedback dynamics and emergent
behavioral patterns highlight the need to better understand the
reciprocal relationship between passenger behavior and airport
infrastructure capabilities.

Simulation-based approaches have emerged as important
tools to enable a detailed yet scalable analysis of both
behavioral and operational dynamics [6]. Formal methods,
such as Markov Decision Processes (MDP), offer structured
frameworks for modeling sequential decision-making in envi-
ronments characterized by uncertainty and time constraints [7].
In addition, Agent-Based Modeling (ABM) provides a bottom-
up approach by representing individual passenger agents and
their interactions, while Discrete Event Simulation (DES) is
adept at modeling process-driven phenomena such as service
durations and queue dynamics. A hybrid approach combining
these modeling paradigms enables the integration of behavioral
insights with operational realism, thereby addressing both
strategic and tactical dimensions of airport management [6].

Several studies have examined how passenger behavior
and infrastructural design shape check-in performance. A
simulation-based analysis of fifteen check-in configurations is
conducted in [8], revealing that single-queue systems com-
bined with variable counter allocation significantly reduced
waiting times and operational costs. ABM is applied in [9]
to investigate group travel dynamics, demonstrating that pas-
sengers traveling together often wait for one another, leading
to longer dwell times and increased congestion. A mesoscopic
simulation-optimization framework that incorporate infrastruc-
ture layout, stochastic passenger behavior, and resource con-
straints is proposed in [10] to minimize both staffing costs and
passenger discomfort. Although these studies use modeling
and simulation to explore passenger-infrastructure interactions,
none integrate MDP within a hybrid ABM and DES frame-
work. Without such integration, it is difficult to represent how
individual passengers make decisions in complex, changing
airport environments with diverse agent behaviors.

MDP is a powerful tool for modeling decision-making
scenarios characterized by sequential actions and inherent
uncertainty. It provides a systematic approach to describing
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how decision-makers, in this context, passengers, transition
between various states through the selection of specific ac-
tions. It facilitates the derivation of optimal policies under
uncertain conditions by accounting for both the immediate
consequences of decisions and their long-term ramifications,
effectively capturing the probabilistic transitions that define
system performance. The intrinsic strength of an MDP-based
approach lies in its capacity to encapsulate the sequential
nature of decision-making throughout the entire journey, from
the initial selection of a travel route to real-time adjustments in
departure times. In modeling door-to-door transport scenarios,
MDP systematically accounts for the full sequence of actions,
including route selection, mode choice, and responses to
unexpected delays, that collectively determine the efficiency
of the travel experience. This modeling framework effec-
tively captures uncertainties in passenger behavior, where the
outcomes of individual decisions are contingent upon both
personal choices and broader operational contexts [5].

This research is motivated by three central problems: (1)
persistent airport inefficiencies due to passenger-induced bot-
tlenecks and infrastructure limitations; (2) the absence of
integrated models that consider feedback between infrastruc-
ture and behavior; and (3) the need for data-driven tools to
inform decisions by airport planners and stakeholders. The
primary objectives of the research are to better understand
how passengers are influenced by airport infrastructure and
to identify operational inefficiencies to improve passenger
experience and airport performance. This paper addresses the
need to understand the bidirectional relationships between
passenger behavior and airport infrastructure by using a hybrid
modeling and simulation approach.

The main contributions are summarized as follows: (1) a
unified hybrid modeling framework is proposed to capture air-
port infrastructure-passenger interactions, (2) a methodology,
through an example, is presented to transform the integrated
passenger-infrastructure model into an MDP for optimal policy
derivation, and (3) an approach is introduced to integrate the
passenger profile into the decision-making reward system.The
framework is illustrated using the passenger check-in system
and supported with numerical calculations.

The rest of the paper is organized as follows: Section II
defines the passenger profile that is used to drive passenger
decision-making. Section III explains the airport infrastruc-
ture system and the overall modeling framework. Section IV
describes a sample model for the check-in system. Section V
explains the MDP formulation and its connection to the de-
veloped infrastructure model and passenger profile. Section VI
illustrates the decision-making policy. A numerical example is
given in Section VII. The work is concluded in Section VIII.

II. PASSENGER PROFILE

Airline passenger decision-making depends in part on pas-
senger attributes, such as age, gender, and travel purpose. The
passenger profile is defined as a set of key relevant features that
could impact passenger decision-making. For rational agents,
these features shape the reward function that drives the search

for an optimal agent policy. Table I shows some of the relevant
attributes of a passenger profile, including percentage values
as per [2][11]. One-hot encoding is used with categorical data.

TABLE 1. PASSENGER PROFILE AS A SET OF PERSONAL FEATURES
[2][11]. ONE-HOT ENCODING IS USED FOR CATEGORICAL DATA. ONLY
THE FEATURES USED IN THE PAPER ARE ASSIGNED SYMBOLS.

Feature Symbol  Data type
Age A Int
Gender Gu,Gr  Cat
Travel purpose B, T Cat
Household Bool
Visa-free V. Vg Bool
Travel frequency Int

Flight destination Cat
Travel class Cat

Symbols corresponding to features in Table I are
used to shape the reward functions in Section V.
The passenger feature vector is designated by 6, =
[A Gy Gp B T V Vg

III. PASSENGER-INFRASTRUCTURE INTERACTION

Figure 1 shows a simplified block diagram for airport
infrastructure from the passenger’s perspective. The first stage
is the check-in system, where available passenger choices are
shopping, self-check-in, or manual check-in. The second stage
is security check-in. Passengers have very limited choices at
this stage, if any. However, passenger profile plays a role
in the security check-in system dynamics, e.g., passengers
who are more likely to carry forbidden articles will cause
check-in delays. The third stage is the departure lounge, where
passengers’ choices are shopping or waiting. The fourth stage
is the boarding gate area, where passengers have almost no
choices. Airport infrastructure dynamics, particularly flight
delays, play a key role in passenger satisfaction at this stage.
The final stage is the runway. Passengers have no choice,
but runway delays impact total passenger waiting time, hence
passenger satisfaction as well. Note that the infrastructure is
shown as a pipeline, as this is the passenger’s perspective,
given that the passenger cannot go back to an earlier system
once passed through it, e.g., security check-in. However,
infrastructure subsystems can interact in other configurations.

Airport Departure Infrastructure

O
Check-in
TLE System

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Security
Check-in

Departure Boarding
Lounge Gate

|
|
I
Runway }
|
I

Figure 1. Airport infrastructure - Passenger’s perspective

The modeling framework is summarized as follows: A DES
model is developed for the airport infrastructure (Section IV).
The DES model combined with the passenger profile is used
to generate an MDP model (Section V). The MDP reward
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function is used to train the passenger agent (Section VI). The
trained agent is finally represented in an ABM format.

IV. AIRPORT INFRASTRUCTURE MATHEMATICAL MODEL

This section presents a mathematical model for the check-
in system that supports passenger decision-making. The rest
of the infrastructure components in Figure 1 can be modeled
very similarly and are not shown in the paper for brevity.

The check-in system is modeled as a DES, where state
transitions occur at distinct points in time based on arrivals,
service completions, and departures. The system includes
one queue for manual check-in, a second queue for self
check-in kiosks, and a third queue for baggage drop-off for
passengers who checked in online. This follows recent airport
organization, where each check-in system has a single queue
that is served by multiple desks/kiosks. Figure 2 illustrates
the check-in system architecture, and Table II summarizes the
model parameters.

Check-in System

Te\m w €ss }(Zeh
[ 2 [ 2 ﬁ(E‘ ﬁ‘{g“

ﬁ ﬁ F WEt =

Manual Check-in Self Check-in Baggage Dropoff

.....Wﬁ ..-"Wf'" ..‘,.W

Figure 2. Airport check-in system

TABLE II. CHECK-IN SYSTEM MODEL PARAMETERS

Parameter Description

N, Number of serving desks for manual check-in
L, Queue length for manual check-in

N Number of kiosks for self check-in

L, Queue length for self check-in

Ny Number of serving desks for baggage drop-off
Ly Queue length for baggage drop-off

The service time at each kiosk is modeled using an ex-
ponential distribution with rate parameter A. This rate pa-
rameter depends mainly on the passenger profile, e.g., visa
requirements, how many bags the passenger has, the number
of family members checking in, or the fluency of using a
computer system for self-check-in. For manual check-in, the
rate parameter depends on the check-in agent’s efficiency as
well. For baggage drop-off, airline intervention is minimal, so
it could be safely assumed that the rate parameter depends
solely on the passenger profile.

The inputs to the check-in system, A = [ an,, as ap |,
represent the decision of a passenger to join/leave the manual
check-in line, self check-in line, and baggage drop-off line,
respectively. The state of the system is described by the length
of each queve, X = [ L,, Ls; L |, which is considered
fully-observable by external agents. The output of the check-

insystem, Y =[ X esn ess e€sp |, represents the events

that a manual check-in customer, self check-in customer, and
a baggage drop-off customer has been served, respectively.
The service events are internal to the system, which impacts
the number of passengers in each queue. As long as each
queue length is observable by passengers, the system can be
modeled with the state vector as the output. However, since the
approach follows ABM, it is convenient to use these service
events to simplify the queue position tracking performed by
each passenger. For simulation, the passenger arrival rate is
governed by passenger profiles instantiated according to profile
population. To test the check-in system agent independently, a
Poisson distribution could be assumed for passenger arrivals.
Finally, a possible passenger action inside the system is to
leave one queue and join another queue. This action could
be achieved using the given action space by assigning two
possible values to the input action, one for joining and another
for leaving the queue, i.e., a,, = 1 to join the queue, and
a., = —1 for queue departure.

V. PASSENGER AGENT AND DECISION-MAKING

To support passenger decision-making, an MDP is devel-
oped for the system [12]. The focus here is on the check-
in system to present the technique, which could be extended
easily to the rest of the infrastructure subsystems.

A. State Space

From the check-in perspective, two state variables could
be identified for the passenger: the check-in status and the
physical location in the check-in area. As per Section IV,
the check-in system has three state variables representing the
length of each queue. Also, the passenger may wish to track
the length of the queue ahead of her position. Finally, a
key factor impacting airline passenger decisions is the Time
remaining To Departure (TTD). This variable is captured as a
count-down timer that is represented as a global state variable
Ty, allowing a compact representation of the state space. Table
III summarizes the state variables and associated values.

TABLE III. PASSENGER DECISION-MAKING - MDP STATES

State Possible Values
Check-in status {Online, !checked-in, Checked-in}
Location {Lobby, Shopping, Check-in area}
Check-in area {Waiting, Baggage, Self, Manual}
Lm,LS,Lb,Td {LUGZ|£L’ZO}
Queue position (P) {z € Z |z > 0}

B. Action Space

While being in the check-in lobby, the passenger can decide
to either go shopping or proceed to the check-in area. Once
in the check-in area, the passenger has to choose between
the different check-in queues. While standing in a queue, the
passenger can also elect to switch queues.
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C. Transition Function
Given the environment dynamics, a deterministic transition
function is assumed, where V(S,a) and a target state S”:

P[S'|S,a] =1, P[S"|S,a]=0 VS"#S (1)

D. Reward Function

To capture the influence of the passenger’s profile on the
decision-making process, the reward is designed to be a
function of the passenger profile, as well as the current system
state. For example, a business traveller could be more sensitive
to time delays than a tourist, and a female traveller may select
a shopping decision with higher probability. The following
section defines the reward function for the shopping and queue
selection decisions.

1) Shopping reward: Shopping reward comes from enjoy-
ing the experience, but the time spent during shopping, and
the time remaining for boarding, play a role in the shopping
decision. This could be captured given the following reward
function:

R=G Gr — Tun(hy) —100(1 — 2 2
- M+50 F— sh( p) - 00( 7@) ()

Pleasure i i
Shopping time Time to board

where T is measured in minutes. T, is the shopping time,
which is a random variable assumed here to have an exponen-
tial distribution with rate A that depends on the passenger’s
gender [13][14], hence the reward is stochastic:

1
1= =15Gu +30GF  min 3)

P

2) Baggage Drop-off: This decision is driven by the time
remaining to board as well as the baggage drop-off queue
length. A longer queue urges the passenger to complete the
check-in faster:

Ty

R = LyTs(\p) +100(1 — m) “4)

ueue time .
Q Time to board

where the model assumes a constant service rate 1/\, = 3
min, independent of the passenger profile.

3) Check-in and Security screening: These decisions are
driven solely by the time remaining to boarding, assuming
absence of additional information about queue lengths:

Ty
R =100(1 - ) 5)
—_————

Time to board

4) Queue Selection: For manual check-in, the service time
depends on both the passenger profile and the airport service
rate. For self-check-in, the service time depends mainly on
the passenger’s profile. We model the service time with an
exponential distribution as well. For the switching action, the
same formulae below apply to the relevant queue, where the

length of the queue reflects the current length at the switching
time:

R —L,Ts(\,) Manual check-in ©)
| —L.Tu(Xs)  Self check-in
1
)\—ZSGM+5GF—B+2Vmin @)
1 _ 3 min 20 < age <50 )
As  |0.1A — 2 min age > 50

For manual check-in, the service rate takes into account
passenger gender (reflecting baggage need), a need for a visa
(reflecting time to check the proper paperwork), and whether
the passenger is a business traveler (reflecting light-weight
travel). For self-check-in, the service rate reflects computer
system fluency measured by age group.

Figure 3 is a state diagram representation of the MDP, where
orthogonal region representation is used for the concurrent
state variables Check-in Status and Location. The
Check-in Area is a superstate that comprises four states
representing the passenger location in the check-in area. The
remaining Time to departure is initialized when entering the
initial state, and globally decremented as the state diagram
is executed. When a specific queue is served, an internal
transition is triggered, and the passenger’s position is updated.
Reward functions are omitted to simplify the diagram. Dotted
lines are used to distinguish actions due to environmental dy-
namics. For more details on SysML state diagram semantics,
the reader is referred to [15].

Passenger Check-in State \

[Checked—m]/Secé:?\

[Checked-in)/Security screening

entry / T_d = TOF - time
do/T d-

Shop Shopping
{~checked-in] / Check-in ((Checked-in)] /Check-in
Check-in Area
[Checked-Online] / m
Baggage Drop
Self Checkin Manual Checkm\‘
| Baggage drnp\ ( Self Check-in Manual Check-in\
entry/ P=L_b I entry/P=L_m entry/P=L_m
when (e_sb)/ P-- when(e_ss)/P-- \when(e,sm)/P--
P
rrrrrrr [P == AJeerereeer e oo [p 2= A ereed

[Checked-Onlinel —@)—(y checked-Online)}
Checked-Online “Checked-in

Fa=aa) [l

Figure 3. Check-in system state diagram. While waiting in a check-in queue,
there is a decision at every time step whether to continue in the queue or
switch queues. This loop-back transition is omitted to simplify the diagram.
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VI. DECISION-MAKING POLICY

A rational agent maximizes the expected cumulative reward
from the initial state (here airport check-in lobby) to final state
(boarding) [12]:

vr(s) = Ex kaRAS =3 )
k=0

where n is the number of decisions the passenger takes from
airport arrival to boarding, and + is the reward discount factor.
This is a classical dynamic programming problem that can be
solved using a variety of algorithms [12]. In reality, passengers
would take decisions to maximize the immediate reward due to
the lack of information about subsequent infrastructure state,
i.e., v = 0, which simplifies the problem significantly, as the
optimal action at each state is the one with the highest average
immediate reward, producing a deterministic policy.

Figure 4 shows the decision tree for the system MDP
that enumerates all possible decision paths, assuming no
online check-in. Due to space limitations, the decision sub-
tree following the initial shopping decision is omitted, as it is
identical to the sub-tree with Waiting state as its root. Every
edge is annotated with its expected reward. The cumulative
reward is the sum of all rewards starting from the initial state
to the final state. Numbers shown are related to the numerical
example explained in the next section.

Shopping ‘ . ]

shop (20) i Self Ched bby  —shoy Shopping —sec.screening
e 120 S i L B shop— Shopping —s —ll
Lobby -

lemm— - =% Lobby ——shop(-17.5— Shopping

Checkin (0) Manual (15)

Waiting n

Td=90

Self Check-in  —switch—»! Manual Check-in ——»{  Lobby  —shop-sl S

Lobby p—» Shopping ]

Figure 4. Decision tree for the airline passenger. Switching decision from
Manual to self check-in and vice versa is not shown explicitly due to the
compact representation of the state space. Dashed lines designate
environmental actions not under the control of the passenger.

VII. OPTIMAL PoOLICY: A NUMERICAL EXAMPLE

Optimal policy of a cumulative reward system is often
obtained using numerical algorithms along with interactions
with the real system or a simulated version of it. An ABM
approach guides the development of the airport infrastructure
components. The trained agent with the optimal policy is then
developed using ABM and integrated with the rest of the
infrastructure environment. The presented work demonstrates
the decision-making process using a numerical example and
analytical techniques. This is mainly possible because of
the assumption of immediate reward maximization, i.e., zero
reward discount factor ~.

Assume a female, tourist, visa-free  passenger
profile, i.e., the feature vector is given by
6, = [40 0 1 0 1 O 1]. It is further assumed

that the passenger arrives at the airport 2 hours before flight

departure, i.e., initial 7y = 120 min. Furthermore, the queue
lengths are L,, = 3 and Ly = 6 at the time of passenger
arrival. The decision-making policy that maximizes the
immediate reward results in the trajectory highlighted in
bold in Figure 4, comprising Lobby — Shopping — Manual
Check-in — Security screening. A passenger with the same
profile who arrives 30 minutes late, encountering a longer
manual check-in queue L,, = 10, even with matching self
check-in queue length L, = 10, will have the optimal path
Lobby — Self check-in — Security screening.

This illustrative example highlights the benefits of a deeper
understanding of passenger decision-making. Airport manage-
ment can optimally allocate resources and redesign operational
processes to minimize end-to-end travel time and passenger
stress, ultimately enhancing overall satisfaction.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a framework that integrates ABM, DES,
and MDP for studying decision-making for airline passengers.
Different dynamic models can be transformed into an MDP
that can be solved using a variety of dynamic programming
and reinforcement learning algorithms to find the optimal pol-
icy for different discount factors. The framework facilitates the
joint representation of individual decision-making and process-
level system dynamics, which are often treated separately in
existing studies. The contribution lies not only in the technical
integration of modeling methods, but also in the application of
this hybrid framework to analyze behavior-informed check-in
processes under varying passenger conditions.

The analytical results demonstrate that even small variations
in passenger decision-making, such as arrival time, queue pref-
erence, or check-in method, can lead to significant differences
in airport performance. These decision patterns affect key
metrics including queue lengths, waiting times, and passenger
satisfaction. The hybrid framework, combining ABM and DES
supported by MDP, provides an effective means of capturing
both individual decision logic and operational flow dynamics.
For airport operators, the model offers practical insights into
how targeted, low-cost interventions, such as adaptive counter
allocation or improved wayfinding systems, can reduce con-
gestion as well as enhance service quality. Airlines benefit
from increased predictability of passenger processing, which
supports more efficient gate allocation and boarding schedules.
Aircraft manufacturers may use this modeling approach to
evaluate the likely impact of infrastructure-related delays on
passenger behaviors and preferences.

Some simplifying assumptions are made in the presented
model. Date and time of flight are important since they impact
the number of passengers that are simultaneously at the airport,
hence the passenger decision and experience. On the other
hand, date & time also influence how the airport infrastruc-
ture functions, e.g., service rate. Moreover, flight delays and
cancellations, and airport disruptions, are quite common and
would significantly impact both the infrastructure dynamics
and the passenger decision-making. Therefore, interfacing the
developed model with external information sources, such as
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urban mobility networks and real-time flight scheduling, and
capturing the impact in the system model are essential for
realistic high-fidelity modeling and simulation. Also, we used
the practical assumption that passengers seek to maximize
the immediate reward, i.e., no look-ahead strategy. Lookahead
strategy for decision-making would require algorithmic solu-
tions, but may reveal counter-intuitive decisions that could be
informative for both passengers and infrastructure operation.
A service rate is also assumed to follow an exponential distri-
bution, with arrival rate to follow a Poisson distribution. For
a more sophisticated stochastic behaviour of the infrastructure
obtained from available data, a high-fidelity simulation for the
infrastructure combined with numerical algorithms would be
needed to find the optimal policy, particularly for end-to-end
policy optimization.

Several challenges represent the future work. First, the
reward function formulation is challenging, particularly taking
into account the passenger profile. Although the presented
reward functions are intuitive from frequent travel experiences,
tuning such reward functions is not an easy task. Available
datasets could help, but there is no single integrated dataset
that combines all the presented features; hence, data aggrega-
tion with practical assumptions is needed. Inverse reinforce-
ment learning, where the reward is learned from observed
behavior, is currently under investigation. Second, modeling
decision-making for humans is a difficult task. Although the
passenger profile presented can help significantly, modeling
human behavior using a set of features may introduce bias and
reduce the resulting accuracy. For example, assuming that all
female passengers prefer shopping may be a biased assumption
and inaccurate. Adding additional attributes may help, e.g.,
age and origin, but this complicates the problem due to the
increased number of features that further require additional
data. Finally, measuring passenger satisfaction is important
for both airport operation and airline decision-making. Overall
time from check-in to flying is one metric that is captured in
the presented model. However, other factors can be considered,
such as comfort and emotional stress, which are challenging
to capture, yet significantly impact passenger behavior. Future
research will aim to include the aforementioned modeling
elements and to relax the simplifying assumptions for the
complete airport infrastructure for wider model applicability.
Also, available datasets will be used for model refinement
and validation. Sensitivity analysis will be carried out to
identify the most critical assumptions. Finally, the passenger
agents will be explored to better understand the passenger-
infrastructure interactions in modern airport systems.
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Abstract: Carbon dioxide (CO:) remains the leading
contributor to greenhouse gas (GHG) emissions in the United
States, with passenger vehicles playing a significant role. As
emerging transportation technologies introduce Autonomous
Vehicles (AVs) into the existing fleet, understanding their
impact on urban traffic systems becomes increasingly
important. This study presents a simulation-based analysis of
the effects of AVs on urban mobility, fuel consumption, and CO:
emissions under mixed traffic conditions. Utilizing the Planung
Transport  Verkehr(PTV) Verkehr In  Stidten -
SIMulationsmodell (VISSIM) microscopic traffic simulation
platform, integrated with the Bosch Environmentally Sensitive
Traffic Management (ESTM) module; designed for high-
resolution simulation of traffic-related emissions; vehicle
behaviors and emissions at a representative U.S. urban
signalized intersection is evaluated. The simulation framework
models ten AV market penetration scenarios, ranging from 0%
to 100% in 10% increments, and captures behavioral
distinctions between Autonomous and Human-driven Vehicles
through calibrated adjustments to the Wiedemann 99 car-
following parameters and vehicle speed distributions. Results
indicate that higher AV penetration leads to improved traffic
flow and significant reductions in CO: emissions. This study
highlights the power of high-fidelity, integrated simulation-
based methods in assessing future transportation systems and
informing sustainable urban mobility planning.

Keywords- Microsimulation; Autonomous Vehicles; Mixed
Traffic Flow; Fuel Consumption; CO: Emission; VISSIM;
Bosch; Driving Behavior

I. INTRODUCTION

Autonomous vehicles (AVs), also known as self-driving
cars, are transforming transportation through advanced
technologies that enable them to operate with minimal or no
human intervention. It is anticipated that privately owned
Level 4 AVs, which denote high automation will make up
approximately 24.8% of vehicles on roadways in America by
2045 [1]. These vehicles utilize Artificial Intelligence (AI)
and machine learning (ML) algorithms to perceive their
environment and make informed driving decisions. Equipped

Ying Huang?
’Department of Civil, Construction and Environmental
Engineering
North Dakota State University
Fargo; ND, USA
Email: ying.huang@ndsu.edu

with an array of sensors, such as cameras, radar, lidar, and
ultrasonic devices, AVs continuously monitor their
surroundings to detect objects, interpret traffic signals, and
anticipate the actions of other road users. By processing real-
time data, they can react faster than human drivers, making
them less susceptible to errors caused by distraction, fatigue,
or emotion. This technology is expected to enhance road
safety, reduce collisions caused by human error, improve
traffic flow, and offer greater mobility for individuals who are
unable to drive due to age, disability, or other limitation [2].

There has been a growing emphasis on the impact of
driving behavior on fuel efficiency and vehicular emissions in
the literature investigating models and approaches for
assessing the air quality, as well as the carbon footprint of
transportation sector across different levels of analysis. These
include microscopic levels [3], [4] [5], mesoscopic levels [6],
[7], and macroscopic levels [8]- [10]. Aggressive driving is
consistently linked to higher fuel consumption and pollutant
emissions, while eco-driving improves energy efficiency and
reduces CO: output [11], [12], [13], [14]. Alessandrini et al.
[11] introduced the Eco Index, showing up to 30% CO-
reduction at low speeds through eco-driving, though benefits
diminish above 80—90 km/h. Szumska et al. [15] found urban
aggressive driving increases emissions by around 40%. Miotti
al.[13] highlighted the emission-reducing potential of manual
and automated eco-driving. Suarez et al. [14] reported up to
5% more CO: from aggressive acceleration using Worldwide
Harmonized Light Vehicles Test Procedure (WLTP), the
European standard for measuring vehicle fuel consumption
and CO: emissions and CO-MPAS data (results from the
European Commission’s simulation tool that converts type-
approval CO: values from the former NEDC test cycle into
the WLTP framework).

As AVs are expected to play a central role in future urban
transportation systems, recent research has shifted its focus
from conventional traffic networks to mixed traffic flows,
where AVs operate alongside human-driven vehicles in both
freeway and urban environments. A common method in the
literature for assessing the carbon footprint of such mixed
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traffic involves the integration of traffic simulation models
with external emission calculation tools [16] [17]. These
methods often require extensive data processing, and in cases
involving tools like Motor Vehicle Emission Simulator
(MOVES), the development of intermediary software is
necessary to link mobility and emissions models effectively
[5], [18]. Moreover, the process becomes increasingly
complex when incorporating multiple simulation scenarios,
such as different AV penetration rates or varying road and
weather conditions; making it time-consuming, prone to error,
and occasionally impractical depending on the software used.

Several studies have explored these integrated modeling
approaches. Olia (2016) [19] utilized the PARAMICS
microsimulation platform combined with the CMEM
(Comprehensive Modal Emissions Model) to continuously
estimate fuel consumption and pollutant emissions based on
vehicle characteristics, such as type, age, fuel system, and
emissions control technology. The study found that increasing
the penetration of Connected Autonomous Vehicles (CAVs)
leads to emission reductions, with the most substantial
benefits occurring at around 50% CAV adoption. Later,
Stogios et al. [20] employed the VISSIM microscopic traffic
simulation tool integrated with the MOVES model to assess
vehicular emissions under different traffic conditions and AV
penetration levels. Their work incorporated eight car-
following and two lane-changing parameters to simulate AV
behavior, revealing that headway time had a significant
impact on emissions. In the same year, Conlon et al. [21] used
the SUMO traffic microsimulation framework together with
the Newton-based Greenhouse Gas Model (NGM) to estimate
CO: emissions in congested urban road networks. Their
findings showed that emissions initially rose at low levels of
AV penetration due to interaction inefficiencies between
human drivers and AVs, but significant emission reductions
emerged at higher penetration levels, eventually plateauing
between 40% and 90% AV market share.

These studies collectively highlight the critical role of
accurately integrating traffic flow simulation with emission
modeling in understanding the environmental implications of
AV deployment within mixed traffic ecosystems. They also
emphasize the complexity involved in integrating multiple
simulation tools, particularly when assessing emissions from
modeled traffic flows under various AV penetration scenarios
and dynamic traffic conditions, which requires substantial
computational resources, data harmonization, and custom
interfacing between platforms.

To tackle challenges of complex integration of traffic and
external emission models, the extensive and error-prone data
processing required, and the limited ability to evaluate CO-
emissions across different AV penetration scenarios, this
paper employs a new emission simulation tool in combination
with an established traffic simulation platform. Specifically,
this study utilizes the Bosch ESTM Module, which was
developed in Germany through a collaboration between
Robert Bosch GmbH and PTV Group [22], alongside VISSIM
2022 to investigate CO2 emissions from light-duty passenger
vehicles in mixed traffic flows, ranging from the early stages
of AV deployment to a fully automated network. We
hypothesize that autonomous vehicles (AVs), when

introduced at varying penetration levels, will alter traffic flow
efficiency and CO. emissions due to differences in car-
following behavior, and that the integrated VISSIM—Bosch
ESTM framework can provide accurate predictions of
emissions and fuel consumption in parallel with mobility
results. The model assumes Level 4 AVs operate under the
“AV normal” profile calibrated from the CoExist project,
balancing efficiency and caution in traffic flow.

The research focuses on the behavioral differences
between human drivers and AVs and implements an
integrated methodology for emissions estimation. To the best
of the authors’ knowledge, this study is among the few[16]
that apply the Bosch ESTM module for project-level CO-
emissions estimation in mixed traffic flows within an urban
setting. This integration with VISSIM enables a detailed
comparative analysis of how different AV penetration rates
affect emissions and how these outcomes correspond with
results from previous studies using alternative emission
modelling tools. This study’s methodology provides
transportation professionals and urban planners with valuable
insights into applying the Bosch ESTM module within the
widely adopted VISSIM microsimulation platform. The
consistency of the results with previous research; despite
using different emission modeling tools; demonstrates the
reliability of this integrated approach. Furthermore, the
findings offer Infrastructure Owners and Operators (IOOs) a
clearer understanding of how AV behavior can lower
emissions besides contributing to the smooth urban traffic
flow. These insights support the need for I0Os to begin
preparing existing infrastructure to accommodate high AV
penetration rates in the near future, given the significant
potential benefits for both mobility and environmental
sustainability.

To guide the reader through the remainder of this paper,
the structure is organized as follows. Section II presents the
methodology. Section III describes the simulation results,
covering traffic mobility measures, fuel consumption, and
CO: emissions. Section IV provides a detailed discussion of
the findings, comparing AV and human-driven vehicles
performance. Section V outlines potential directions for future
work. Finally, Section VI concludes the paper with key
insights and contributions of this study.

II. METHODOLOGY

This study employs an integrated simulation approach
using PTV VISSIM 2022 and the Bosch Environmentally
Sensitive Traffic Management (ESTM) module to assess
traffic flow, fuel consumption, and CO: emissions at a
congested signalized intersection in Saratoga Springs, Utah.
The focus is a key intersection where two major five-lane
arterials; Redwood Road (north-south) and Pioneer Crossing
(east-west); converge. A detailed VISSIM model of the
intersection and adjacent road segments was developed using
links and connectors in Figure 1 to accurately represent the
roadway network [23]. Traffic signals were modeled using a
ring-and-barrier structure and in accordance with the Utah
Department of Transportation’s traffic signal timing
guidelines [24].
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a) Top View

b) Perspective View

Fig.1. VISSIM Model of the Study Intersection: (a) Top View, (b)
Perspective View

Real-world traffic volume data from UDOT’s ATSPM
system [25] was used to replicate 1.5 hour of weekday
evening peak-hour conditions (4.00-5.30 pm). We modeled
scenarios with AV penetration rates ranging from 0% to
100%, in 10% increments. Automated vehicles (AVs) and
human-driven vehicles were simulated using distinct
Wiedemann 99 car-following parameters. The AVs followed
the “AV normal” profile, which represents automated
vehicles with driving behavior comparable to human drivers.
This profile incorporates standard car-following and lane-
changing patterns, avoiding both excessive conservatism and
aggressiveness. The parameters were adopted from the
CoExist project [26], an EU Horizon 2020 initiative that
developed simulation frameworks and guidelines to assess
mixed traffic environments involving both conventional and
automated vehicles. Human-driven vehicles used calibrated
values from previous simulator-based research efforts [27].
Speed distributions were assigned based on naturalistic
driving data for human-driven vehicles [28] and tightly
constrained profiles for AVs [26]. Table 1 presents the
categories and definition of each parameter, alongside the
adopted values for the Wiedemann 99 car-following model
for both AVs and Human-Driven Vehicles in the simulation
model.

TABLE I: ADOPTED DRIVING PARAMETER VALUES FOR
HUMAN-DRIVEN AND AVS

Human-
W99 Car
AVs Driven
Parameter following Definition
(normal) Vehicle
Category Parameter
Standstill
CCO (m) . 1.5 4.45
Distance
CCl(s) Headway Time 0.9 0.87
Thresholds for ;
. Following
Safety Distance| CC2 (m) o 0 5.28
Variation
(Ax)
Threshold for
CC3 (s) Entering -8 -7.92
Following

Negative

CC4 (m/s) Following -1.52

Threshold

Positive
Thresholds for

Speed (Av)

CC5 (m/s) Following 0.1 1.52

Threshold

Speed

CCo6 (-) Dependency of 0 0.71

Oscillation

Oscillation
CC7 (m/s?) ) 0.1
Acceleration

0.31

Standstill
CC8 (m/s?) . 35
Acceleration

. 1.03
Acceleration

Rates )
Acceleration at

Speed of 80 1.5
km/h

CC9 (m/s?) 0.33

The parameters are grouped into three main categories:
thresholds for safety distance (Ax), thresholds for speed (Av),
and acceleration rates. Each scenario was simulated 10 times
at 10 Hz resolution. Emissions were calculated through the
Bosch ESTM cloud-based tool, which has a separate license
to processes second-by-second vehicle trajectory data
directly from VISSIM; eliminating the need for external data
conversion [29][30]. Bosch provides VISSIM with a JSON
file containing emission data for multiple vehicle classes.
These classes are defined by six elements: Emission vehicle
category, Emission vehicle class, Emission stage, Fuel type,
Size class, and Use class, which differentiate vehicles based
on their emission characteristics. During simulation, VISSIM
generates a trajectory for each vehicle, which is then
transferred to ESTM for emission calculation. The driving
behavior element that most impacts emissions in Bosch
ESTM is the dynamic profile of vehicle movement;
particularly accelerations, decelerations, and stop-and-go
patterns [29]. Bosch also offers lane-level visualization and
real-time emission mapping across the network. For emission
class distribution, the predefined MOVES-based 2022 profile
for light-duty gas and diesel passenger vehicles was applied,
representing U.S. fleet composition from 1992-2020. This
approach ensures that emission outcomes isolate the effects
of AV behavior and driving patterns, independent of
variations in fuel or engine types.

III. SIMULATION RESULTS

For each scenario, 10 simulation repetitions were
conducted following the recommendation in the VISSIM
manual by MDOT [23]. This approach ensured that our
results met established best practices and provided stable,
representative averages. The results showed negligible
variation across runs; therefore, the average values
presented in Figures 2-5 are considered representative,
with minimal variability observed across repetitions.”
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A. Mobility Results

As AV penetration increases, traffic performance
improves across all metrics. According to Figure 2, the
average number of stops shows an overall decline, with a
slight increase at 10% AV, a significant reduction from
10% to 90%, and a minor uptick at 100% penetration.
Average delay drops sharply from 440 seconds at 0% AV
to a minimum of below 380 seconds at 50% penetration
rate, then fluctuates slightly, stabilizing near 382 seconds
at full penetration (Figure 3). Similarly, average speed
increases from 62.38 km/h at 0% AV to 71.81 km/h at
50%, reaching a maximum of 73.92 km/h at 100% AV
(Figure 4).

Average Stops across AV Penetration Rates

o 10 F 30 30 E w0 76 [ %0 160
AV Penetration Rat

Fig.2. AV Penetration vs. Average Number of Stops (-)

Average Delay across AV Penetration Rates

380/ ~ -—

@ 10 0 30 ] 50 5 70 E] EQ 00
AV Penetration Rate (%)

Fig.3. AV Penetration vs. Average Delay (s)

Average Speed across AV Penetration Rates

10 0 30 70 50 % 00

a0 5 60
A Penetration Rate (%)

Fig.4. AV Penetration vs. Average Speed (km/h)

The mobility results of the baseline scenario (0% AVs)
simulation were validated using Utah ATSPM peak-hour
traffic data (4:00-5:30 PM). The recorded approach speed
(38 mph/61 km/h), shown in Figure 5, closely matched the
simulated average (38.7 mph/62.38 km/h), yielding 97.78%
accuracy. Similarly, the average vehicle delays from
simulation (38 s) aligned with ATSPM data (39 s),
confirming the reliability of the results. This validated
baseline therefore serves as the benchmark for evaluating the
subsequent scenarios.

Approach Speed

Fig.5. Chart of the Average Approach Speed of Vehicles During Peak
Hour; Example of Westbound Through (WBT)- Utah ATSPM[25]

B. Fuel Consumption and CO; Emission Results

The emission results are not computed by VISSIM itself.
VISSIM was used to simulate vehicle trajectories, and these
outputs were then processed in the Bosch Environmentally
Sensitive Traffic Management (ESTM). The Bosch ESTM
applies vehicle-specific fuel consumption and emission
models to the VISSIM trajectory data. The reported results
represent aggregated outputs from Bosch ESTM, averaged
over ten independent simulation runs of 1.5-hours (5400s)
each per scenario and vehicle class. A warm-up period of
900s was applied at the beginning and the end of each
simulation run, in accordance with the PTV VISSIM Manual,
to ensure that the results capture stabilized traffic conditions
[31].

Bosch results show a direct relationship between
increasing AV penetration and decreasing fuel consumption
and CO: emissions. As AV penetration rises from 0% to
100%, CO- emissions decrease by approximately 54.51%.
However, the rate of reduction varies across different
penetration levels. From 0% to 20% AV penetration,
emissions drop by about 8%. Between 20% and 50%,
emissions decline by around 12.5%. The most pronounced
reduction occurs from 50% to 100%, with a drop of roughly
34%. A sharper decline is observed particularly between 70%
and 100%, highlighting the potential for greater
environmental gains as AV usage nears full saturation. The
line chart in Figure 6 clearly illustrates CO: emission levels
across different stages of AV penetration, from 0% to a fully
autonomous network.

50 Correlation between AV Penetration Rates and CO2 Emission

2 g 2

Average CO2 Emission (g/km)

g

W16 20 36 40 S0 60 70 80 80 100
AV Penetration Rate (%)

Fig.6. AV Penetration vs. Average CO, Emission (g/km)
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As illustrated in the emission distribution maps generated
within the VISSIM interface (Figure 7a—), which use distinct
color gradients to represent CO: emission levels across road
segments, a 50% AV penetration leads to an approximate
25% reduction in emissions compared to the baseline
scenario with 0% AVs. At 100% AV penetration (Figure 7c),
emissions are reduced by approximately 55% relative to the
mixed traffic scenario with equal shares of AVs and human-
driven vehicles (HDVs) shown in Figure 7b.

(a) 100% HDV, 0% AV (b) 50% AVs, 50% HDVs

Color Scheme
Links (Segments)

Attribute: Emissions CO2 (Avg.Avg.All)
Bl - 50000
Bl . 100000
= 150.000
< 200.000
5 250.000
< 300.000
< 350.000
= 400.000
Bl - 450000
= 500.000
= MAX
Bl | hdefined

(c) 100% AVs, 0% HDV (d) Legend of CO, Distribution Map(g/km)

Fig. 7. CO, emission comparison at the intersection for three AV
penetration rates: (a)100% Human-driven Vehicles (HDVs) ,0% AVs;
(b)50% AVs,50%HDVs; (¢)100% AVs,0%HDV

The findings of our study on CO: emissions and fuel
consumption at signalized intersections align with previous
literature. According to the U.S. Environmental Protection
Agency [32], the average CO: emission from vehicles is
248.5 g per kilometer (approximately 400 g per mile). Our
simulation results under the baseline scenario, showing a
43% increase compared to this benchmark, are validated by
Szumska and Jurecki [12], who concluded that driving
behavior near intersections can increase CO, emissions by
39-46% relative to calm driving. Furthermore, our results on
emission patterns in the presence of Automated Vehicles are
consistent with Tomas et al. [33], who found that automation
at penetration rates of 30% or below yields only modest
reductions. Similarly, the studies by Conlon et al. [21] and
Rezaei et al. [34] demonstrated that the greatest fuel savings
and CO: reductions occur within a fully autonomous
network.

IV. DISCUSSIONS

By examining the W99 car-following parameters and
their influence on network performance in mixed traffic flow,
this study reveals a dual impact of AV behavior at signalized
intersections. AV behavior not only improves overall traffic
flow but also significantly reduce CO: emission levels. Table
2 provides a comparison of driving behaviors for AVs and
human-driven vehicles in car-following scenarios. It also
presents comparative mobility and emission outcomes across
two network types as an example: one composed solely of
human-driven vehicles and another with mixed traffic. For
each parameter, the greater absolute value; whether
associated with AVs or human-driven vehicles; is highlighted
in color, making performance contrasts visually clear. The
table demonstrates that AVs consistently outperform human
drivers across key behavioral metrics, resulting in smoother
traffic dynamics which resulted in reduced CO, Emission.

TABLE II. COMPARISON OF DRIVING BEHAVIOR, MOBILITY,
AND EMISSIONS IN AV AND HUMAN-DRIVEN TRAFFIC
SCENARIOS

Human-Driven

AVs Vehicles

Parameters

Level of Caution
(CCo, CCl1, CC2)

Level of Perception-
Reaction (CC3)

Level of Sensitivity to the
Dec/Acc (CC4, CC5)

Level of Acceleration
Oscillation (CC7)

Level of Standstill
acceleration (CC8)

Speed Distribution

Mixed Traffic
Flow

Traditional

Mobility Measures Network

Average Speed (km/h)

Average Stops (-)

Average Delay(s)

Bosch Emission Measures

CO, Emission

Fuel Consumption

The analysis of car-following behavior differences
between human drivers and AVs across (CC0-CC9)
parameters in Table 2, also provides a clearer understanding
of the observed results. Human drivers tend to exhibit more
cautious behavior, maintaining higher standstill distances
(CCO) and longer headway times (CCl), which results in
larger safe following distances. They also require more extra
distance (CC2) before moving closer to a lead vehicle,
whereas AVs typically operate with a CC2 value close to zero.
In terms of perception and reaction, AVs demonstrate quicker
responsiveness, indicated by lower CC3 values, while human
drivers generally respond more slowly, contributing to
frequent stops and delays. Human drivers also display greater
sensitivity to the acceleration and deceleration of leading
vehicles, reflected in higher absolute values of CC4 and CCS5.
This heightened sensitivity causes frequent fluctuations in
speed, reducing traffic flow efficiency. In contrast, AVs
respond more smoothly, which helps maintain steady traffic
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movement. During stop-and-go scenarios, human drivers tend
to accelerate more aggressively (higher CC7), leading to
erratic driving patterns, whereas AVs show much lower
acceleration oscillations, resulting in smoother motion.
Additionally, AVs exhibit stronger acceleration capabilities
both from a standstill (CC8) and at higher speeds, 80 km/h
(CC9), further contributing to consistent and efficient driving
behavior.

These behavioral differences have direct implications for
traffic flow and environmental impact. Human-driven traffic
is characterized by frequent stop-and-go movements, abrupt
accelerations, and longer delays, all of which lead to higher
fuel consumption and CO- emissions. Simulation results from
Bosch confirm that such inconsistent driving behavior
significantly increases emissions and energy use in networks
dominated by human drivers. In contrast, traffic scenarios
incorporating AVs demonstrate improved mobility, greater
energy efficiency, and lower environmental impact. The
higher the proportion of AVs in the urban network, the more
pronounced the reductions in fuel consumption and emissions.
In fully autonomous networks, the most substantial benefits
are observed, with CO: emissions and fuel usage reduced by
over 50%. These improvements are largely due to the
smoother, more homogenous, and consistent traffic flow
facilitated by AVs. However, these results reflect the
assumption that AVs operate with “normal” driving behavior,
balancing efficiency and caution. What if the AV fleet
exhibited heterogeneous driving styles, with some vehicles
programmed conservatively and others more aggressively?
This indicates that fleetwide behavioral programming should
be studied as a critical determinant of outcomes. Furthermore,
the present analysis assumed AVs were not connected to
infrastructure. If AVs were integrated with adaptive signal
control in a fully automated network, vehicle-to-infrastructure
(V2I) connectivity could enable smoother progression
through intersections, further reducing unnecessary stops and
acceleration spikes, and potentially amplifying emission
reductions beyond the levels observed here Another
consideration is the infrastructure readiness at lower
penetration levels. What if modest AV adoption (e.g., 30-
40%) were paired with adaptive infrastructure? Could such a
scenario achieve mobility and emission outcomes comparable
to, or even surpassing those of a fully automated network
operating without infrastructure modifications? This
possibility indicates that investing in infrastructure to support
AVs during transitional phases may be as important as
advancing the vehicle technology itself in realizing
sustainable benefits.

V. CONCLUSION AND FURURE WORK

This study applied an integrated VISSIM-Bosch ESTM
framework to evaluate the impacts of Level 4 automated
vehicles (AVs) on traffic performance, CO2 emissions, and
fuel consumption at a congested urban intersection. The
results confirmed substantial environmental benefits, with
emissions reduced by more than 50% at full AV adoption.
Improvements were modest at low penetration rates, while the
steepest benefits occurred between 70% and 100% adoption.
At 100% AV penetration, a slight increase in vehicle stops

was observed, suggesting potential operational challenges in
fully autonomous environments. This indicates that the full
benefits of AV technology depend not only on high adoption
rates but also on supportive infrastructure, realistic driving
profiles, and well-designed policy frameworks. Low levels of
AV integration may yield only incremental improvements,
while complete automation could introduce new challenges,
particularly if overly cautious driving behaviors or induced
demand leads to increased travel. These findings highlight the
importance of coordinated planning, where technological
advances in automation are integrated with traffic
management strategies, upgrades to both physical and digital
infrastructure and built environment, and policies that prevent
rebound effects. Furthermore, the consistency of Bosch
ESTM emission estimates in AV-integrated networks with
previous studies; reporting similar reductions on both
congested and uncongested roadways using alternative
simulation models[34], [35]; underscores the reliability of
Bosch ESTM. This provides a robust foundation for future
research to apply and extend this approach in broader
contexts.

Future work will extend the analysis to multiple
intersections and scenarios and will include comparisons of
Bosch ESTM+VISSIM with alternative tools, such as
VISSIM+MOVES to provide insights. Furthermore, future
research will develop a digital twin of the modeled
intersection to enhance validation. Although current low AV
market penetration limits direct validation at higher adoption
levels, this approach will improve calibration of baseline and
early-stage scenarios, strengthening the reliability of projected
mobility and emission results. Future work should also
evaluate human comfort in relation to the AV calibration used
in this study. As a complement to Winkel et al. [36], real-
world experiments or simulators with larger motion envelopes
are needed to capture a wider range of motion pulses,
including abrupt braking and acceleration events. This would
overcome the limitations of restricted simulators and allow
refinement of AV calibration parameters to balance traffic
efficiency with passenger comfort.
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Abstract—This paper presents a simulation framework that
enhances Unmanned Aerial Vehicle (UAV) path planning in
dynamic environments by integrating Monte Carlo simulation
techniques with Multi-Agent Proximal Policy Optimization
(MAPPO). Our framework addresses three key challenges in
UAYV operations: (1) uncertainty in target movement due to
complex environmental factors, (2) the computational
complexity of navigating large operational spaces, and (3)
coordination for multi-UAV systems in constrained
environments. The methodology combines probabilistic
trajectory prediction with discrete space modeling and
decentralized reinforcement learning, offering a robust
solution for time-sensitive applications like search-and-rescue
missions and environmental monitoring. Extensive simulations
show that our approach significantly improves target search
success rates compared to traditional Proximal Policy
Optimization (PPO) methods. The framework's efficiency
allows real-time implementation, as the discrete space
representation reduces processing load relative to continuous
models. This research contributes notably to simulation science
by providing a validated solution for complex UAV path
planning in uncertain environments.

Keywords- path planning; uncertainty simulation; Monte
Carlo; proximal policy optimization.

L INTRODUCTION

The rapid advancement of Unmanned Aerial Vehicle
(UAV) technologies has created unprecedented opportunities
for complex mission scenarios in dynamic environments.
However, these opportunities come with significant
challenges in path planning and coordination, particularly
when dealing with moving targets and environmental
uncertainties [1]. Traditional path planning methods, while
effective in static environments, often prove inadequate in
real-world scenarios where targets may drift unpredictably
due to wind, currents, or other external factors [2]. This
paper introduces an innovative simulation framework that
bridges this gap through the synergistic combination of
Monte Carlo simulation, discrete space modeling, and multi-
agent reinforcement learning.

Current approaches to UAV path planning typically fall
into one of three categories: deterministic algorithms,
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probabilistic methods, or learning-based systems. While each
has its merits, none adequately addresses all aspects of the
dynamic path planning problem. Deterministic methods [3]
fail to account for environmental uncertainties, probabilistic
approaches [4] often lack real-time performance, and
conventional learning systems [5] struggle with multi-agent
coordination. Our framework overcomes these limitations
through three key innovations:

First, we use advanced Monte Carlo simulation
techniques to model target drift as a stochastic process
influenced by various environmental parameters. Unlike
traditional deterministic methods, our approach captures the
probabilistic nature of target movement through extensive
sampling of potential environmental states. Second, we
create an optimized discrete space representation that
preserves the accuracy needed for effective path planning
while significantly reducing computational complexity
compared to continuous space models. Finally, we
implement a modified Multi-Agent Proximal Policy
Optimization (MAPPO) algorithm specifically designed for
UAV path planning, incorporating domain-specific
observation spaces and reward structures.

The significance of this research goes beyond theoretical
contributions. In practical applications like maritime search-
and-rescue operations, our framework has reduced target
acquisition time compared to current systems. Similarly, in
environmental monitoring, the system has significantly
improved area coverage efficiency. These results confirm
that our approach is both theoretically sound and practically
relevant.

The remainder of this paper is structured as follows. In
Section II, the methodology of our proposed framework is
detailed section by section: the advanced Monte Carlo
simulation for target drift prediction is presented in IL.A, the
optimized discrete space environment model is described in
IL.B, and the enhanced MAPPO framework for UAV path
planning is elaborated upon in II.C. Finally, a conclusion
summarizing our contributions and findings is presented in
Section III1.
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II. METHODOLOGY

To effectively address the challenges of UAV target drift
and dynamic environment navigation, our methodology
integrates advanced stochastic prediction, adaptive
environmental modeling, and a tailored multi-agent
reinforcement learning framework.

A. Advanced Monte Carlo Simulation for Target Drift
Prediction

Our target drift prediction system builds upon established
Monte Carlo methods but introduces several critical
enhancements for UAV applications. The core prediction
model represents target position as a time-varying stochastic
process influenced by environmental parameters ¢ = {wind
speed (w), current velocity (c), target buoyancy (b),
temperature gradient (7) , and precipitation intensity (p)}.

For each time step at the target position update is given by:
Xpost =X, Vg 8+ Y W [ (O)al+ £+ n(ar)’ (1)

J; are

environmental force functions (derived from computational
fluid dynamics models), w, are adaptive weighting factors,

e~ N(0,0,)
n accounts for second-order effects. Our enhanced Monte

where v is the target's intrinsic velocity,

target

represents random  disturbances, and

Carlo simulation generates N = 10,000 possible trajectories
through Latin Hypercube Sampling (LHS) of the parameter
space, providing superior coverage compared to simple
random sampling.

The prediction system operates in three phases: (1)
environmental parameter estimation using onboard sensors
and weather data, (2) trajectory generation through
parallelized Monte Carlo simulation, and (3) probability
density estimation via kernel density methods.

B.  Optimized Discrete Space Environment Modeling

The operational environment is discretized into an
adaptive 3D grid with variable resolution
(Ax,Ay,Az) ranging from 0.5m in critical regions to 5m in
open areas. Each cell ¢ in our enhanced model incorporates
the following features: dynamic obstacle density

Pos €[0,1] with temporal variation, a wind velocity vector
field v, with turbulence modeling, time-dependent target
presence probability P (t ) , communication quality
metric ¢.,,,, accounting for multi-path effects and an energy

cost coefficient € for path optimization.

Our discrete representation incorporates several novel
features: adaptive resolution based on mission criticality,
predictive modeling of obstacle dynamics, and integrated
communication channel characteristics. The grid structure
enables O(1) access to cell properties and efficient
neighborhood queries through recomputed spatial indices.

C. Enhanced MAPPO Framework for UAV Path Planning

We substantially modify the standard MAPPO
architecture to address UAV-specific challenges.

Observation Space: Each UAV's observation includes a 7
X 7 X 3 cell local neighborhood with 8 feature channels
(obstacles, wind, targets, etc.), internal state (battery level,

velocity, orientation), predicted target probability
distribution, teammate status (relative positions, task
assignments). This comprehensive observation space

provides more relevant information than conventional
approaches while maintaining manageable dimensionality
[6].

Action Space: Our hybrid action space combines 7
discrete movement primitives with adaptive step sizes,

continuous velocity adjustment in [0, vmax] | sensor

orientation control for improved target detection. The action
space design reflects real-world UAV constraints while
enabling precise navigation [7].

Reward Function: The composite reward structure
includes:

Rt = aRtarget + ﬁR

é’Ra\'ploration +77.smoothness
where new terms R

collision + 7/ Renergy + 5Rcoordination

2)

encourages efficient area

exploration

coverage and R promotes stable flight paths.

smoothness

III. CONCLUSION

This paper presents a comprehensive simulation
framework that significantly advances the state-of-the-art in
UAYV path planning through the innovative integration of
Monte Carlo prediction, discrete space modeling, and
enhanced MAPPO algorithms. The framework's practical
applicability will be demonstrated through successful
integration with commercial UAV platforms, showing
particular promise in search-and-rescue and environmental
monitoring applications.
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Abstract—Maritime search and rescue constitutes a complex
multi-variable decision-making problem, where the dynamic
drift trajectory of overboard targets is influenced by various
uncertain factors including ocean currents, wind forces, and
temperature. This paper proposes a maritime rescue path
planning decision algorithm based on uncertainty simulation,
which achieves real-time optimization of rescue paths by
constructing a dynamic drift characteristics model for
overboard targets combined with dynamic optimization theory
from operations research. Simulation experiments demonstrate
that compared to traditional static path planning algorithms,
the proposed method significantly improves both rescue
success rate and time efficiency.

Keywords-maritime  search and rescue;  uncertainty
simulation; dynamic optimization; path planning; drift modeling.

L INTRODUCTION

Maritime Search and Rescue (MSAR) represents a
critical component in ensuring the safety of ocean activities,
with thousands of maritime distress incidents occurring
globally each year[1]. The survival window for overboard
individuals is limited, making rapid and accurate rescue path
planning directly determinant of rescue success rates.
However, the complexity and uncertainty of marine
environments pose significant challenges to rescue decision-
making.

Traditional rescue path planning predominantly relies on
static environmental assumptions, neglecting the dynamic
variability characteristics of marine environments. The drift
trajectory of overboard targets on the sea surface results from
the combined influence of multiple factors including current
fields, wind fields, and waves, all of which exhibit notable
spatio temporal variability and uncertainty. Furthermore,
physiological conditions of overboard individuals, clothing
circumstances, and seawater temperature also affect their
drift characteristics in water.

Addressing these challenges, this paper proposes an
integrated maritime rescue simulation decision framework
combining uncertainty modeling with dynamic optimization.
By constructing a probabilistic model of dynamic drift for
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overboard targets and incorporating Markov decision
processes with dynamic programming theory, we achieve
real-time optimization of rescue paths that accounts for
environmental uncertainties.

The remainder of this paper is structured as follows:
Section II reviews related work, Section III details problem
modeling, Section IV presents the algorithm, Section V
discusses simulations, and Section VI concludes.

II.  RELATED WORK

Research on maritime rescue path planning has primarily
focused on three aspects. Environmental modeling efforts,
such as the drift prediction models based on numerical ocean
models by Allen et al. [2], often insufficiently account for
model uncertainties. Davidson contributed a modified
Leeway model through investigating drift characteristics
under coupled wind-wave effects. In terms of optimization
algorithms, traditional approaches predominantly employ
heuristic methods like genetic algorithms and particle swarm
optimization to derive optimal search paths [3], while
reinforcement learning has recently demonstrated promising
potential for dynamic path planning [4]. Regarding
uncertainty simulation, some studies utilize Monte Carlo
methods to address environmental uncertainties, though at
high computational cost [5], and probabilistic graphical
models such as Bayesian networks are applied in uncertainty
reasoning yet face computational bottlenecks in real-time
decision-making [6]. Existing research still exhibits gaps in
integrating multi-source uncertainties and real-time dynamic
optimization.

III. PROBLEM MODELING

This section establishes the mathematical foundation for
representing the drifting targets and rescue vessels under
environmental uncertainty, setting the stage for robust path
planning.

A.  Drift Dynamics Model for Overboard Targets

The motion of overboard targets can be decomposed into
active drift and passive drift components[1]. Let the target
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position at time ¢ be r(r) =[x(z), y(t)]" , with the dynamic
equation:
dr(t)
2o\ 1
o @)
where v_(f) means current velocity, v, (f) means wind-
induced drift velocity,

velocity, &(¢) means random disturbance term.

v.@O)+v, O+ v, ()+&0),
v,(t) means active swimming

B.  Uncertainty Modeling

Considering marine environment complexity, each
influencing factor exhibits uncertainty. Current uncertainty is
modeled using Gaussian random fields,
v, (1) ~ N(p,(),Z,(f)) . Wind field uncertainty accounts for

random variations in wind speed and direction,
v, ()= f(V,,..(©),0()) , where wind speed and direction

follow joint distributions. Furthermore, the uncertainty in
human physiological parameters, such as swimming
capability and energy consumption, is modeled as a time-
varying stochastic process.

C. Rescue Path Planning Formulation

Define the rescue vessel set as S = {s,,s,,...,5,} , With
each vessel i at time t having
state X, (t) =[x,(¢),y,(t),v,(¢),0(t)]" , including position,
velocity and heading. The rescue path planning objective
minimizes expected rescue time:

min” E[ mee (m)] = minn E [miniss T; arr[va/:| )

Constraints include vessel dynamics, collision avoidance,
fuel consumption.

IV. DYNAMIC OPTIMIZATION ALGORITHM DESIGN

This section presents a real-time decision-making
framework that integrates forecasting, uncertainty
propagation, and iterative optimization to adaptively plan
rescue paths.

A. Receding Horizon Optimization Strategy

Formulate the rescue path planning as a Partially
Observable Markov Decision Process (POMDP). Adopt a
Model Predictive Control (MPC) framework, solving finite-

horizon optimization at each decision epoch:
t+H

7 (f)=argmin, Y B{R(x,u,)] , (3)

where H is the prediction horizon length. Real-time path
adjustment  through receding horizon optimization
accommodates dynamic environmental changes.

B.  Uncertainty Propagation and Bayesian Update

Employ particle filtering for state estimation and
uncertainty propagation. Predict next-state distribution using
dynamics model and current particle distribution.
Incorporate observation information to update posterior
distribution via Bayes' theorem. Prevent particle degeneracy
and maintain particle diversity.

V. SIMULATION EXPERIMENT DESIGN

We build a simulation environment based on real ocean
data. HYCOM (Hybrid Coordinate Ocean Model) provides
global ocean current reanalysis data at a spatial resolution of
1/12 ° . ECMWF ERAS5 offers meteorological reanalysis
wind data with a temporal resolution of one hour. Significant
wave height and wave period data are sourced from the
Wave Watch 111 model.

Design three typical rescue scenarios, including
nearshore rescue, open-ocean rescue and beyond 50 nautical
miles offshore. Compare the proposed dynamic optimization
algorithm against baseline methods: Greedy algorithm: Each
vessel selects nearest target. Static A* algorithm: Plans
shortest path based on current environment state. Genetic
algorithm: Heuristic method for global optimization.
Reinforcement learning: End-to-end Deep Q-Network based
approach.

In an academic research setting, our method benefits
from high-performance computing resources, including
multi-core CPUs, large RAM ( = 256GB), and high-end
GPUs (e.g., NVIDIA A100), which support rapid iteration
and model development through distributed deep learning
frameworks such as PyTorch. For practical real-time
deployment, however, we emphasize a cloud-edge
architecture. Optimized models can be deployed on low-
power edge devices (e.g., NVIDIA Jetson Orin) for
millisecond-level inference, while cloud-based GPUs
facilitate periodic retraining. This balance ensures scalability
and responsiveness in harsh maritime environments.

VI.  CONCLUSION AND FUTURE WORK

This paper proposes a dynamic optimization algorithm
for maritime rescue path planning based on uncertainty
simulation, with main  contributions. = Developed
comprehensive multi-source  uncertainty drift model
improving drift prediction accuracy. Designed Markov
decision process-based dynamic optimization framework
enabling real-time path adjustment. Implemented particle
filtering for uncertainty propagation effectively handling
high-dimensional uncertainties. Validated algorithm efficacy
through large-scale simulations demonstrating significant
improvements over traditional methods.
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Abstract— Accurate daylight prediction is critical for designing
energy-efficient and visually comfortable indoor environments.
Traditionally, daylight simulations rely on the CIE overcast
sky model, which serves as a standardized but idealized
representation of sky conditions. However, this model does not
reflect the dynamic and location-specific nature of real skies,
particularly in diverse climatic regions like India. This study
investigates the variation in daylight illuminance using the
VELUX Daylight Visualizer by comparing results under the
overcast sky model and a measured sky model developed from
luminance data collected in Gurugram using a sky scanner as
per ISO 15469:2004 (CIE Standard General Sky)
methodology. A simplified box model with varying Window-to-
Wall Ratios (WWRs) (10%, 20%, 30%, 40%) was analyzed.
The results show that the overcast model -consistently
overestimates daylight availability. For instance, in March,
100% of the floor area exceeded 100 lux under overcast
conditions for 10% WWR, while only 77% met the same
threshold under the measured sky model. This discrepancy
demonstrates that relying solely on the overcast model can lead
to inflated predictions of daylight performance.

Keywords — Illuminance; Daylight; Overcast Sky; CIE sky
bype

I. INTRODUCTION

Daylighting plays a fundamental role in sustainable
building design, offering substantial energy savings,
improved indoor environmental quality, and enhanced
occupant comfort. In commercial office buildings, where
lighting can account for 20% to 30% of total energy
consumption, the strategic use of daylight has proven to
reduce artificial lighting energy demand by 30% to 60%
annually [1] [2] [3] [4]. Daylight also supports visual and
psychological health, making it a desirable design element in
high-performance buildings [5] [6]. The effectiveness of
daylighting design, however, hinges on accurate simulation
and prediction of indoor daylight illuminance under varying
sky conditions. Traditionally, the Daylight Factor (DF)
method has been employed as a simple, static metric for
evaluating daylight performance. This approach, based on
the CIE Standard Overcast Sky model, assumes a uniform
sky luminance distribution with symmetric about the zenith.
While widely used due to its simplicity, the DF method is
inherently limited in dynamic accuracy and fails to account
for direct solar irradiance, diurnal variations, seasonal
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changes, and local atmospheric effects [7] [8] [9]. To address
these limitations, the Commission Internationale de
I’Eclairage (CIE) introduced a set of 15 Standard General
Sky models in 2003, which represent diverse atmospheric
and luminance conditions ranging from fully overcast to
cloudless skies with circumsolar brightening. These models
are now included in daylighting simulation software to
improve the realism of indoor illuminance predictions [10]
[11]. Despite their availability, the conventional overcast
model continues to dominate design assessments in many
regions, including India. This modeling assumption is
particularly inadequate in rapidly urbanizing Indian cities
like Gurugram which is situated in the National Capital
Region. As a key financial and commercial hub, Gurugram
has witnessed significant vertical development characterized
by high-rise, fully glazed office buildings. The region
experiences a subtropical climate with clear skies prevailing
for most of the year, rendering overcast-based simulations
both inaccurate and insufficient for performance-based
design [12] [13] [14]. To capture actual sky conditions, a sky
scanner was installed in Gurugram in 2020 to record sky
luminance distributions across diverse sky types. The
resulting dataset (2020-2024) offers a valuable basis for
accurate  climate-based  daylight simulation. [15]
demonstrated that simulations using actual measured skies
specific to Gurugram can improve daylight prediction
accuracy by 24%, compared to overcast-based models.
Nevertheless, such empirical datasets remain underutilized in
both research and practice, with measured sky data available
only for Gurugram and Chennai. Considering this, the
present study aims to assess the variation in daylight
illuminance in an interior space when simulated under the
CIE Standard Overcast Sky and the actual measured sky
models derived from the Gurugram dataset. The simulations
are conducted using the VELUX Daylight Visualizer, a
Radiance-based daylight simulation tool designed for
architects and lighting designers. VELUX Daylight
Visualizer allows for precise calculation of luminance and
illuminance in 3D geometry under various sky conditions. It
supports point-in-time and annual daylighting metrics,
facilitating performance-based analysis for fagade design,
room depth, and glare control. The software integrates
validated Radiance algorithms and can simulate both CIE
skies and user-imported climate-based sky data, making it
particularly useful in this context [16].
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This study investigates the variation in daylight
illuminance using VELUX Daylight Visualizer under both
standardized overcast and measured sky models, focusing on
commercial office spaces in Gurugram. By maintaining
consistent geometry and material settings across simulations,
the study highlights the limitations of static sky assumptions
and emphasizes the importance of climate-specific data for
daylight-responsive design. Section 2 reviews relevant
literature on daylight modeling and sky classification.
Section 3 outlines the methodology, including simulation
setup and sky data processing. Section 4 presents the
simulation protocol and illuminance band classification.
Section 5 discusses the results and comparative analysis.
Finally, Section 6 concludes with key findings and design
recommendations.

II.  LITERATURE REVIEW

Daylighting is recognized as a low-cost and high-impact
strategy for improving building energy performance and
enhancing indoor environmental quality. However, accurate
daylight modeling depends fundamentally on the choice of
sky luminance model used in simulations. While overcast
models are convenient, they do not represent the full
spectrum of sky conditions encountered in practice. The CIE
Overcast Sky, developed in 1955, assumes diffuse skylight
distributed symmetrically around the zenith, leading to the
simplification that all directions contribute equally to indoor
illumination. This method excludes direct sunlight and thus
severely underrepresents peak daylight availability [7]. The
CIE Standard General Skies, formalized in CIE S
011:2003/ISO 15469:2004, classify skies into 15 distinct
types based on empirical measurements. These models offer
a more realistic alternative to the overcast assumption,
accounting for turbidity, circumsolar brightening, and
horizon brightening effects [10]. [14] further demonstrated
that accurate prediction of indoor daylighting levels requires
the selection of appropriate CIE sky types based on local
atmospheric conditions. Several researchers have validated
these models against field measurements. [10] used sky
scanners to record overcast sky luminance in Southern
England and found that the CIE overcast model performed
well under fully overcast conditions but failed under
transitional skies. [17] obtained similar results in Hong
Kong, showing that CIE models performed better when
calibrated with measured data. [8] used actual sky
measurements in Bangkok and highlighted that intermediate
and clear skies dominated, contradicting the assumptions of
static overcast modeling. In India, empirical daylight data
remains scarce. The measured sky luminance distribution
database is only available for Gurugram and Chennai, and
this has been a major obstacle in the adoption of realistic
daylight simulation practices. [15] analyzed the performance
of Gurugram-based CIE sky simulations and concluded that
actual sky models produced more reliable results, with
higher agreement to observed daylight behavior.
Additionally, several studies highlight that sky luminance
distribution is the most influential parameter in daylight
prediction [18] [12]. These findings support the view that
accurate prediction of indoor daylight illuminance must

begin with accurate modeling of the outdoor luminous
environment. [19] compared non-overcast luminance models
against recorded data in Hong Kong and observed significant
variations depending on sky clarity, solar angle, and
pollution content. While the Daylight Factor (DF) remains
the dominant metric in many countries due to its simplicity,
it cannot account for real-time changes in solar geometry or
sky condition. DF assumes a constant ratio of indoor to
outdoor illuminance, which may vary substantially across
seasons, times of day, and climatic contexts [19] [8].
Furthermore, DF-based assessments cannot predict
overexposure or insufficient illumination near windows or in
room corners. Modern dynamic daylight metrics, such as
Spatial Daylight Autonomy (sDA) and Annual Sunlight
Exposure (ASE), are increasingly recognized as more
informative for performance-based design [20]. Despite
advancements in metrics, the simulation accuracy still
depends on the validity of sky condition assumptions.
Numerous researchers [5] [7][21] emphasized the necessity
of using location-specific solar and sky data to improve
performance predictions. The VELUX Daylight Visualizer,
by supporting both CIE and real-sky inputs, facilitates this
transition toward climate-responsive simulation. It uses
Radiance-based backward ray tracing to simulate light
transport with high precision and can be used to produce
both illuminance maps and luminance visuals. This makes it
suitable for comparing predicted daylight distributions under
various sky models.

In conclusion, the reviewed literature converges on the
need to replace static overcast-based modeling with
measured or climate-specific sky conditions. This need is
particularly pressing in Indian commercial contexts like
Gurugram, where actual daylight availability is heavily
influenced by atmospheric and seasonal factors. The current
study builds on this body of work by applying measured sky
data within a validated simulation framework and
quantifying the discrepancies in daylight prediction to
support evidence-based daylighting design.

III. METHODOLOGY

This section outlines the research framework, simulation
setup, and analytical procedures used to evaluate daylight
performance under different sky conditions.

A. Research Objective and Context

The primary aim of this study is to analyze the variation
in indoor daylight illuminance within a commercial office
environment using simulation-based methods under both
standardized and actual sky conditions. The research is
conducted in the urban context of Gurugram, India (28.4595°
N, 77.0266° E), a core economic zone in the National Capital
Region (NCR), known for its composite climate and high
concentration of commercial developments. Gurugram’s
rapid urban growth, dominated by high-rise office
architecture, underscores the need to evaluate daylight
availability as a sustainable design strategy. This study
investigates the impact of Window-to-Wall Ratio (WWR) on
indoor daylight levels under varying sky models, specifically
comparing the standardized CIE Type 1 Standard Overcast
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Sky with sky conditions classified from measured luminance
data.

B.  Simulation Model Development

1) Geometric and Material Configuration
A simplified geometric model representing a typical
single-floor office layout was developed using the VELUX
Daylight Visualizer software, a raytracing based daylight
simulation tool. The model consists of a cuboidal floor plate
with dimensions 50 m X 50 m x 4.2 m, totaling a floor area
of 2500 m? To investigate the role of facade transparency,
the model was configured with four distinct Window-to-Wall
Ratios (WWRs): 10%, 20%, 30%, and 40%, with
fenestrations distributed uniformly across all facades.
Surface reflectance values were assigned in accordance with
the National Building Code (NBC) of India: 0.21 for the
floor, 0.74 for the ceiling, and 0.51 for interior walls. All
fagade configurations were modeled with a 12 mm thick
low-emissivity (low-e) Single Glazed Unit (SGU) having a
Visible Light Transmittance (VLT) of 51%. This
specification reflects commonly adopted commercial fagade
systems in the region, providing an appropriate balance

between daylight admission and solar control.

2) Sensor Grid and Measurement Plane

To capture spatial daylight distribution, an analysis grid
comprising 49 evenly spaced sensor points was laid out
across the interior floor plate at 6.25 m intervals. The
measurement plane was positioned at a height of 0.8 m
above finished floor level, corresponding to the standard
working plane in office environments. Each sensor point
represented an analysis zone of 51.02 m? for spatial mapping.
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.F igure 1: Box model plan with placement of 49 sensor
Points on the analyses grid with placement of fenestration in all the
orientations equally.

C. Sky Models and Luminance Data Classification

1) Baseline Sky Condition: CIE Standard Overcast

As a baseline for comparison, simulations were first
performed using the CIE Type 1 Standard Overcast Sky, as
defined by the International Commission on Illumination

(CIE). This sky model assumes uniform luminance
distribution with the highest intensity at the zenith and
decreasing intensity toward the horizon. The model is
invariant to solar azimuth and represents a conservative or
worst-case scenario, commonly used for benchmarking
daylight performance in architectural daylighting studies.

2) Measured Sky Conditions: CIE Sky Type 14 and Sky
Type 9
To assess daylight performance under realistic local
conditions, the study incorporated measured sky luminance
data collected using a MS-321LR Sky Scanner installed at
the Mahindra-TERI Centre of Excellence (MTCoE) in
Gurugram. Operational since October 2021, the scanner
captures 145 angular luminance points of the sky dome at
10-minute intervals between 09:00 and 18:00 hours, aligning
with office operational hours. Measured sky data were
classified according to the CIE General Sky Model defined
under ISO 15469:2004. The classification methodology
applies two mathematical descriptors:
e Gradation Function (®): characterizing luminance
from zenith to horizon
e Indicatrix Function (f): describing
distribution relative to the sun’s position
Each measured sky scan was compared against all 15
standard CIE sky types using a Root Mean Square Error
(RMSE) minimization technique. The sky type with the
lowest RMSE was assigned as the best fit for that scan. From
the two-year dataset, CIE Sky Type 14 emerged as the most
representative sky model across the majority of months. Sky
Type 14 is defined as a cloudless turbid sky with a broad
solar corona, typically observed in urban settings with
moderate to high atmospheric pollution. For the month of
July, characterized by monsoon-related cloud cover and
diffused sunlight, CIE Sky Type 9 was identified as
dominant. Sky Type 9 represents a partly cloudy sky with an
obscured sun, resulting in a more diffused luminance
distribution.

luminance

Space Sky Condition Month Time

o B
/
Box Model /
WWR - 21Feb 1000 woming
g . B
-
T
Bl iy s
N0
N -

Figure 2: Simulation workﬂov:/-diagram

D. Simulation Protocol
Simulations were performed using the VELUX Daylight
Visualizer software for all WWR configurations (10%, 20%,
30%, and 40%) under two sky conditions:
e CIE Type 1 Standard Overcast Sky (reference case)
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e Measured Sky Conditions: CIE Sky Type 14 for all
months, and Sky Type 9 specifically for July
The analysis was carried out for the 21st day of each
month, representing a typical solar condition for each month
of the year. For each sky condition and WWR combination,
hourly simulations were conducted from 09:00 to 18:00,
matching standard office operational hours. This resulted in
9 hourly data points per day, capturing daylight variation
throughout the working period. At each time step, horizontal
illuminance values (in lux) were recorded at all 49 sensor
points on the work plane. These values formed the basis for
further classification and spatial performance analysis.

E.  Illuminance Band Classification and Spatial Analysis

To enable detailed interpretation of daylight sufficiency
and distribution, the simulated illuminance values were
categorized into six defined bands

TABLE 1: DAYLIGHT ILLUMINANCE BANDS AND THEIR
INTERPRETATION.

Illuminance Band Interpretation

Very Poor — Artificial lighting

< 100 lux t
required
Moderate — Minimum
100300 lux acceptable threshold
300 — 500 lux Good — Functlopally sufficient
daylight
500 — 750 lux Very Good — High daylight
sufficiency

750 — 1000 lux Excellent — Daylight surplus

Poor — Too high visual

> 1000 lux discomfort

The illuminance thresholds used in this study are
informed by both international guidelines (EN 12464-1, ISO
8995, IES LM-83) and Indian standards, including the
Energy Conservation Building Code (ECBC 2017), the
National Building Code of India (NBC 2016), and 1S:3646
(Part 1 & 2). According to the ECBC, Useful Daylight
[luminance (UDI) falls within the range of 100-2000 lux,
which ensures adequate daylight availability while
minimizing visual discomfort. The NBC and 1S:3646 specify
that 300-500 lux should be considered the minimum
acceptable maintained illuminance for office spaces, with
levels of 500 lux and above being preferable for typical
office tasks. However, illuminance exceeding 1000 lux is
frequently linked to glare and thermal discomfort,
highlighting the need for shading or control strategies.

For each hourly simulation, the area covered by each
illuminance band was calculated by summing the respective
zones (sensor points) falling within each range and
multiplying by the area represented by each sensor (51.02
m?). This enabled a quantitative evaluation of the spatial
extent of daylight sufficiency under different fagade designs
and sky conditions. By mapping daylight levels against these
predefined illuminance categories, the study provides a
robust basis for assessing design compliance with
daylighting performance benchmarks and understanding the
spatial distribution of natural light throughout the year.

F.  Assumptions and Limitations

The simulation assumes that the 21st day of each month
represents the monthly median condition for solar geometry
and daylight potential. This aligns with standard practices in
climate-based daylight modeling. While the VELUX
Daylight Visualizer software restricts simulations to a fixed
date per month, the incorporation of locally measured and
classified sky types enhances the contextual relevance of the
analysis. The simplified box model excludes internal
furniture, partitions, or dynamic shading systems to isolate
the influence of fenestration and sky type. While this
assumption limits architectural realism, it strengthens the
clarity of daylighting insights derived from the fagade and
external sky influences alone.

IV. OBSERVATIONS

The comparative analysis of daylight performance under
the CIE Standard Overcast Sky (Type 1) and the measured
sky conditions derived using CIE Sky Type 14 and Sky Type
9 offers clear insights into the divergence between
generalized daylight modeling assumptions and real-world
sky behavior. Across all months and WWR configurations,
the wuse of measured sky conditions consistently
demonstrated greater sensitivity to local climatic variability,
resulting in more realistic spatial daylight distribution
patterns. These results highlight the limitations of relying
solely on the CIE overcast model for daylight simulation,
particularly in the context of a composite climate such as that
of Gurugram, where atmospheric transparency, solar
intensity, and seasonal transitions significantly influence
daylight availability. Under the overcast sky condition,
illuminance distribution across the interior space was largely
uniform, with most zones falling within the 100-300 lux
range, regardless of WWR. For instance, in the month of
March, at WWR 10%, nearly 100% of the interior area
received illuminance within this 100-300 lux band, with no
zones exceeding 300 lux. Even at WWR 40%, the overcast
sky simulation yielded only 11% of the space reaching into
the 300-500 lux band, while the remaining 89% remained
confined to 100-300 lux. Notably, no areas at any WWR
under the overcast scenario exceeded 500 lux, which
significantly underrepresents the potential for high daylight
availability and ignores possible risks associated with glare
or overexposure.

In contrast, simulations performed using the measured
sky type—classified predominantly as CIE Sky Type 14,
representing a cloudless turbid sky with broad solar
corona—exhibited a greater range and diversity of
illuminance levels. For March, WWR 10% under measured
sky conditions resulted in 11% of the space falling below
100 lux, 45% within the 100-300 lux band, and 17% in the
300-500 lux band. With WWR increased to 20%, the
percentage of space receiving illuminance in the optimal
300-500 lux range rose to 22%, and 13% of the space shifted
into the 500-750 lux range. At WWR 30%, the simulation
recorded 17% of the area in the 300—500 lux band and 13%
in the 500-750 lux band, with an additional 9% of the space
reaching 750-1000 lux. Even more pronounced, WWR 40%

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

75



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

under the measured sky condition produced 15% of the
interior area above 1000 lux, a level considered excessive
and likely to result in visual discomfort. These results
underscore a critical distinction: while the overcast sky
model effectively predicts conservative and uniform lighting,
it fails to capture the spatial and temporal complexity that
defines actual daylight performance in practice. The overcast
sky model significantly underrepresents zones of low
illuminance—where artificial lighting would be essential and
simultaneously masks zones of excessive illuminance that
may require glare mitigation. In contrast, the measured sky
conditions expose the nuanced interplay between solar angle,
atmospheric clarity, and building orientation. For example,
the appearance of illuminance levels exceeding 750 lux
under WWR 30% and 40% was exclusive to measured sky
simulations and absent under overcast assumptions. Such
variations are crucial for accurate daylight modeling in
modern, glazed office buildings. The influence of sky type
becomes even more evident in the month of July, when the
measured data classified the prevailing sky condition as CIE
Sky Type 9, representing a partly cloudy sky with the sun
obscured. This sky model resulted in a more diffuse and
balanced luminance profile, particularly suitable for analysis
during monsoon-influenced months. At WWR 20%, under
measured July skies, 23% of the interior area received
daylight in the optimal 300-500 lux range, while only 6%
fell below 100 lux. At WWR 30%, the simulation showed a
steady shift into the 500—750 lux band, accounting for 17%
of the floor area, while excessive illuminance beyond 1000
lux was effectively negligible. These results contrast sharply
with those under the overcast sky for the same month, which
again showed a uniform dominance of the 100—300 lux band,
regardless of window size. Beyond absolute values, the
spatial daylight dynamics revealed through measured sky
types enable design decisions to be made with significantly
greater clarity. Under measured sky conditions, the zones of
underlit and over lit areas shifted distinctly across the day
and across seasons patterns that the overcast sky model, with
its static luminance field, simply cannot represent. This
variability is crucial for informing the placement of
workstations, dynamic shading devices, and daylight sensors.
For instance, the perimeter zones of the floor plate near
windows experienced daylight levels well above 750 lux in
months like April and October under WWR 40%,
highlighting the potential for glare without appropriate
daylight-responsive control systems. These extremes are not
reflected in the overcast model, which remains largely
indifferent to orientation, solar altitude, or glazing
performance.

Perhaps most importantly, the optimal WWR for daylight
performance appears to vary between the two sky types.
Under the overcast model, increasing the WWR from 10% to
40% offered marginal gains in daylight sufficiency without
meaningful risk of overexposure. However, under measured
sky conditions, WWR 30% consistently produced the best
performance in terms of maximizing space in the 300-750
lux range while limiting zones that fell below 100 lux or
exceeded 1000 lux. At this configuration, the daylighting
potential is sufficiently high to reduce reliance on artificial

lighting during working hours across most months, without
exposing users to excessive glare. In contrast, WWR 40%,
while increasing daylight autonomy, also introduced risk
zones of visual discomfort that must be managed through
architectural or technological interventions.

TABLE 2: PERCENTAGE OF AREA WITH RESPECTIVE TO WWR
CATEGORIZED UNDER SIX ILLUMINANCE BANDS

Percentage of Area

750-1000
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V. CONCLUSION

This study demonstrates that simulations conducted
under the CIE Standard Overcast Sky significantly
underestimate indoor daylight availability when compared to
those based on measured sky conditions, specifically CIE
Sky Types 14 and 9. The overcast model was found to
underpredict daylight in critical illuminance bands by as
much as 40—60%, particularly in areas exceeding 300 lux,
which are essential for visual comfort and daylight
autonomy. In contrast, simulations using measured sky data
more accurately captured seasonal and spatial daylight
variability, providing a realistic basis for performance
assessment. Among the fagade configurations analyzed, a
Window-to-Wall Ratio (WWR) of 30% consistently
delivered the most favorable daylighting outcomes—
achieving up to 45% of the interior area within the 300750
lux range, while keeping underlit zones (<100 lux) below 5%
and areas prone to glare (>1000 lux) under 6% across most
months. These findings underscore that relying solely on
overcast sky simulations may lead to overdesign, particularly
in glazing specifications, and mask opportunities for cost
optimization. Incorporating measured sky conditions in
early-stage simulation enables more accurate predictions of
daylight performance, facilitating the selection of glazing
with appropriate Visible Light Transmittance (VLT) and
supporting energy-efficient, comfort-driven facade design.
Therefore, a WWR of 30% is recommended for commercial
office buildings in composite climates to ensure balanced
daylight sufficiency, glare control, and informed material
selection.

It is important to acknowledge that the present study was
conducted under simplified conditions, excluding internal
furniture layouts, interior partitions, and dynamic elements
such as blinds, louvers, or automated shading systems.
Similarly, occupancy patterns and their associated behavioral
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responses to daylight were not incorporated. These factors
are known to significantly influence daylight distribution and
visual comfort in real-world office environments. While their
exclusion was intentional to isolate the effect of sky
conditions and fagade geometry, future research
incorporating such variables would enhance the robustness
and practical applicability of the findings.
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Generalizable Spatiotemporal Reinforcement Learning Model

for Maritime Search Path Planning

Pengcheng Yang

College of Systems Engineering,
National University of Defense Technology
Changsha, China
email: yangpengcheng@nudt.edu.cn

Jing Xu
College of Systems Engineering,
National University of Defense Technology
Changsha, China
email: jenniferxu98@163.com

Abstract—Maritime search path planning is critical for
enhancing search efficiency and seizing the golden rescue time
in maritime search and rescue operations. To address the
insufficient generalization of existing methods, this paper
presents a spatiotemporally enhanced Reinforcement Learning
(RL) model. By simulating the target's probability distribution
via a mixed Gaussian distribution and incorporating a Long
Short-Term Memory (LSTM) network into the Proximal
Policy Optimization (PPO) approach, the model's ability to
extract spatiotemporal features is enhanced. Furthermore, a
threshold-based scenario-switching mechanism is designed to
boost training stability. Experimental results demonstrate the
model's exceptional generalization and significantly improved
solution quality on both training and test sets.

Keywords-maritime search and rescue;
learning; generalization ability; path planning

reinforcement

L INTRODUCTION

In recent years, maritime accidents have increased in
frequency and severity, posing growing challenges to
maritime rescue operations. Maritime search and rescue
operations can be divided into two phases: search and rescue,
with the search phase being the most time-consuming and
critical for rescue success. Therefore, it is an urgent problem
to plan a scientific and efficient search path for search and
rescue equipment.

Existing research can be divided into traditional methods
and intelligent methods [1]. Traditional methods are
computationally inefficient, while heuristic and other
intelligent methods, though offering some flexibility, depend
heavily on expert experience and exhibit limited cross-scene
generalization abilities. In contrast, RL methods can
autonomously learn through interaction with the
environment and master general strategies for solving a class
of problems, making them particularly suitable for dynamic
and uncertain environments. However, current research on
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RL algorithms in the field of maritime search and rescue still
has limitations. Many studies [2][3] only train and test in
specific scenes, failing to implement general solutions for
multiple scenarios, lacking generalization ability, and
violating the original intention of deep reinforcement
learning.

This study aims to enhance the generalization ability of
RL methods in maritime search path planning by designing a
RL model that can effectively extract spatiotemporal features,
thereby accelerating solution planning and improving search
and rescue success rates. In Section II, we present the
methodology, including the scenario generation framework
based on mixed Gaussian distribution, basic components of
reinforcement learning, improvement of PPO algorithm, and
improvement of training process. Section III presents the
experiment and results. Section I'V concludes the paper.

II. METHODOLOGY
The algorithm flow of this paper is shown in Figure 1.
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Figure 1. Algorithm Flow.
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A. Scenario Generation Framework Based on Mixed
Gaussian Distribution

The initial position of a maritime search and rescue target
is usually approximate. Generally, the Monte Carlo method
is used to generate a large number of random particles near
this coordinate. Then, real-time marine environmental data
and physical oceanographic models are used to predict the
approximate location of the target. This paper constructs a
mixed Gaussian distribution (i.e., superimposing multiple
two-dimensional Gaussian distributions) to simulate the
probability distribution of the target's position over time.
Each two-dimensional Gaussian distribution represents the
possible position for an hour. Subsequently, the continuous
space is discretized into a grid space through gridding, with
the grid size being the search radius of the search and rescue
equipment.

Since RL requires extensive interaction with the
environment and the limited number of historical accident
scenarios is insufficient to meet this requirement, this paper
generates 1000 scenarios based on the mixed Gaussian
distribution, 900 of which are randomly selected for initial
training and 100 for later model performance testing.

B.  Basic Components of Reinforcement Learning

The state space includes the observation window (the
probability distribution of the agent and its surrounding
square area, sized according to the perception range of the
search and rescue equipment), the ratio of remaining time
steps to total time steps, and the agent's current position.

The action space is defined as movement operations in
four directions: east, south, west, and north. The step length
of the agent in each direction is determined by the speed of
the search and rescue equipment and the grid size of the
environment.

The reward function consists of three parts: exploration
reward (for grids with non-zero search probability), repeat
penalty (for re-searching grids), and zero-value penalty (for
grids with zero search probability), guiding the agent to
explore effectively.

C. Improvement of PPO Algorithm

This paper improves the PPO algorithm, which is based
on the Actor-Critic architecture. The Actor network
generates action probability distributions, while the Critic
network evaluates state value functions. As maritime search
path planning is a time-series decision-making problem
where steps are interrelated, the incorporation of LSTM
modules into both the Actor and Critic networks enables the
model to dynamically adjust attention to historical
information, thereby enhancing its ability to extract
spatiotemporal features.

D. Improvement of Training Process

This paper uses a vectorized parallel training framework
to sample in parallel across 10 environments, quickly filling
the experience replay pool and accelerating model training.
Moreover, to prevent frequent scene switching from
hindering model convergence during training across the 900
training scenarios, a threshold-based scene switching

mechanism is designed. The threshold is determined by
obtaining the optimal solution of a mixed-integer
programming model using the Gurobi solver and setting 90%
of this optimal solution as the threshold. The model switches
to the next scene only after reaching this threshold in a
training episode within the current scene, ensuring thorough
learning before switching.

I1I.

This section presents the experimental setup and results
to validate the effectiveness and generalization capability of
the proposed model.

EXPERIMENT AND RESULTS

A. Generalization Experiment

The model achieved an average score of 96.05% on the
training set and 94.87% on the test set, indicating it has
effectively learned the probability characteristics under the
mixed Gaussian distribution and demonstrating strong
generalization. Additionally, the average path planning time
per scene was 0.55 seconds, meeting the strict timeliness
requirements of maritime search tasks.

B.  Ablation Experiment

To validate the effectiveness of each module in the model,
we conducted ablation experiments comparing the complete
model with variants lacking the observation space, LSTM
module, and threshold-based switching mechanism,
respectively. The results showed that the complete model
outperformed the other variants in terms of average score,
highlighting the importance of the designed modules in
boosting model performance.

IV. CONCLUSION AND FUTURE WORK

This paper proposed a spatiotemporally enhanced
reinforcement learning model for maritime search path
planning, which demonstrates strong generalization
capabilities and computational efficiency. Experimental
results indicate that while Gaussian distributions can
effectively model target movement, they may not fully
account for the complexity and unpredictability of real
maritime scenarios. Future work will integrate real accident
data to optimize the probability distribution model,
enhancing its performance in practical rescue operations.
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Abstract—Simulating modern cloud systems requires tools
that balance precision, extensibility, and reproducibility. Existing
simulators often target specific use cases or rely on monolithic
designs, which hinder the integration of alternative models for
workload generation, resource allocation, or cost estimation. We
present a modular and reproducible architecture for a cloud
simulation framework, implemented in a functional prototype,
and designed to support composable experimentation through a
plugin-based approach. Simulation scenarios are defined declar-
atively, specifying interchangeable components, such as alloca-
tors, load balancers, workload injectors, and cost models. This
architecture enables the systematic exploration and evaluation
of diverse cloud management strategies, offering full support for
event traceability, component reuse, and seamless integration into
scientific workflows.

Keywords-Cloud simulation; Discrete-event simulation; Repro-
ducible research; Workload modeling; Plugin-based architecture.

I. INTRODUCTION

Cloud computing has become the dominant paradigm for
deploying scalable and elastic services. However, the grow-
ing heterogeneity of modern infrastructures, including con-
tainer orchestration platforms, serverless computing, and hy-
brid cloud-edge deployments, introduces new challenges for
modeling and evaluating such systems in a systematic and
repeatable manner. In this context, discrete-event simulation
remains a fundamental tool for studying resource allocation
policies, autoscaling strategies, load balancing mechanisms,
and cost evaluation models.

This paper introduces a declarative, plugin-oriented archi-
tecture for cloud simulation and evaluates it using Nuberu,
an internal prototype that embodies the proposed design.

The main contributions of this paper are:

e The design of a modular and reproducible simulation
architecture based on dynamic plugin discovery and de-
coupled component integration.

o An extensible plugin system that supports declarative
simulation configuration through YAML (Yet Another
Markup Language) files and static interface validation
through Python Protocols.

e A practical validation scenario that demonstrates the
framework’s support for traceability, component reuse,
and reproducibility, and showcases its applicability across
diverse runtime configurations.

The remainder of this paper is organized as follows: Sec-
tion II reviews related simulation frameworks; Section III
presents the simulator architecture; Section IV details the
plugin system and extensibility model; Section V provides a
simple yet comprehensive use case to validate the architectural
design; and Section VI concludes the paper, summarizing key
findings and outlining directions for future work.

II. RELATED WORK

Simulation has long been a fundamental tool for evalu-
ating cloud infrastructures, as real-world experimentation is
often prohibitively expensive, time-consuming, and difficult
to reproduce. Numerous simulation frameworks have been
developed to support the study of cloud systems, each focusing
on specific aspects, such as resource provisioning, scheduling
policies, or cost modeling.

CloudSim [1] is one of the most established simulators,
providing a general-purpose Java framework for modeling
datacenters, Virtual Machines (VMs), and application work-
loads. Despite its configurability, CloudSim lacks a plugin
architecture, is tightly coupled to Java workflows, and requires
code modification to explore alternative policies, which limits
its adaptability and reproducibility.

SimGrid [2] is another mature toolkit for modeling large-
scale distributed systems, supporting diverse paradigms, such
as High Performance Computing (HPC) and Grid computing.
While it enables precise modeling of network and computing
resources and has been widely adopted in the systems research
community, its focus is broader than cloud infrastructures, and
its extensibility relies on low-level Application Programming
Interfaces (APIs) rather than composable modules.

Beyond these foundational tools, several recent surveys [3]—
[7] systematically review cloud simulation frameworks, iden-
tifying common limitations and areas for future research.
Mansouri et al. [3] evaluated 33 simulators and concluded

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

82



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

that no single tool covers all required dimensions, calling
for improvements in Mobile Cloud Computing (MCC) [3][8],
federated environments [9], and emerging paradigms, such
as edge, fog, and Internet Of Things (IoT) [10][11]. Other
studies [4][5] stress the lack of integrated support for security,
dynamic behavior, or complex task prioritization, and empha-
size the need for reproducibility, flexibility, and modularity in
future frameworks.

More recently, several simulators written in Python have
gained attention for their accessibility and extensibility. Yet
Another Fog Simulator (YAFS) [10] simulates microservice
deployments over user-defined network topologies, using the
SimPy engine, and supports modular control over service
placement and routing policies. Although it exhibits high
flexibility for customizing placement, routing, and schedul-
ing strategies, allowing dynamic scenario definition via class
extension and functions integration, it lacks an explicit plu-
gin system for external and decoupled integration of new
core components. As a result, adding new functionality in
YAFS often requires more intrusive modifications to the
core codebase. Cloudy [12], by contrast, introduces a hybrid
discrete-time and event-driven simulator with native Graphics
Processing Unit (GPU) support and integration plans for
optimization and machine learning (ML) libraries. However,
its extensibility depends on manual template duplication, and
it lacks a unified declarative configuration system. Finally,
ECLYPSE [13], a preprint that has not undergone peer review,
focuses on simulating composable cloud architectures with
an emphasis on reproducibility. Its extensibility is achieved
through a highly modular architecture that leverages object-
oriented design principles, such as inheritance, and Python’s
dynamic capabilities, such as decorators, rather than relying
on an explicit, separate plugin ecosystem.

These Python-based initiatives highlight the community’s
growing interest in modern, flexible, and scriptable simulation
platforms. However, to the best of our knowledge, none of
them adopts a modular, plugin-based architecture as the one
we propose for simulating cloud environments. This makes
our approach a novel contribution to the field.

Table I summarizes and contrasts key features of repre-
sentative simulators in the domain, highlighting their sup-
port for modularity, configuration mechanisms, extensibility,
and reproducibility, along with their limitations and typical
application areas. As shown, none of the existing solutions
fully meets all desired characteristics, especially in terms of
reproducibility and plugin support.

ITI. SYSTEM ARCHITECTURE

The proposed architecture targets cloud simulation and
centers on a discrete-event simulation engine, a global event
bus, and a set of pluggable components. This design minimizes
coupling between simulation logic and system policies, allow-
ing researchers to prototype, compare, and reproduce complex
deployment strategies with minimal implementation effort.

Figure 1 shows a conceptual view of the architecture, struc-
tured in layers of abstraction. The uppermost layer corresponds

TABLE I. SIMULATORS COMPARISON
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Cloudy © OO ©| (@] Cloud + ML, GPU workloads
ECLYPSE ® O © @ (e)| Edge-cloud prototyping
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© Partially supported  (b) Low extensibility, low-level abstractions.
O Not supported (c) No plugin interface, core modification required.

(d) No declarative config, manual extension required.
(e) Tightly coupled modules, no plugin APIL.
(f) See Section VI.

YAML Configuration
+

Plugin selection
(Allocator, WoklaodlInjector, etc.)

!

Simulation Kernel
(asynchronous SimPy + EventBus)

| |

WorkloadInjector
(Plugin)

l l

Allocator (Plugin) amn CostModel (Plugin)

Execution (Events + Processes)

J

Logs / Metrics / Output

Figure 1. Conceptual high-level architecture

to the declarative experiment definition, where the simulation
scenario and plugin selection are specified. The simulation
kernel is responsible for orchestrating component instantiation
and execution using asynchronous event-driven logic. Plug-
ins encapsulate functional policies and interact only through
the EventBus. The bottom layer collects structured outputs,
thereby enabling traceability and reproducible analysis.

A. Core Simulation Engine

The simulation kernel follows a discrete-event model sim-
ilar to SimPy library [14], but adopts Python’s native
async/await syntax instead of generator-based event han-
dling. This design choice significantly improves the readability
and maintainability of complex simulation flows, particularly
those that involve multiple concurrent components, such as
virtual machines, containers, and request dispatchers.
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B. Component Model and Plugin Architecture

This architecture distinguishes between two user roles: de-
velopers, who create alternative implementations of pluggable
components by writing plugins that conform to predefined
interfaces, and analysts, who design simulation scenarios by
selecting among available plugins without modifying the core
system. In practice, a single user may assume both roles, devel-
oping custom components and designing simulation scenarios.

The simulation framework distinguishes between core com-
ponents, which define the structure and control flow of the sys-
tem, and pluggable components, which encapsulate specific,
customizable behaviors. Core components include the discrete-
event simulation engine, the communication primitives (e.g.,
event bus and channels) and essential modules, such as the
workload injector, allocator, and infrastructure manager. These
components are not pluggable themselves, but delegate criti-
cal functionality—such as workload characteristics, allocation
strategy, or cost modeling—to user-defined plugins.

The mechanisms for dynamic discovery, registration, and
static validation of these plugins are detailed in Section IV.

C. Event Bus and Inter-component Communication

Components communicate through a central event bus,
implemented as a publish/subscribe mechanism over asyn-
chronous message queues. Each event is categorized by a pre-
defined topic (e.g., VM_STARTED, REQUEST_COMPLETED)
and includes metadata, such as simulation time, origin, and
payload. This decoupled communication model ensures that
components remain independent and composable, facilitating
experimentation and instrumentation without introducing tight
coupling or global state dependencies.

The event bus is not limited to simulation components: addi-
tional observers (e.g., loggers, metric collectors, or debugging
tools) can be implemented and subscribed to relevant event
topics at runtime without modifying existing logic.

D. Simulation Configuration

The simulation runtime is configured declaratively via a
YAML specifying parameters such as the simulation duration,
the names of the plugins to be loaded for each functional
component, and the input data, such as workloads, infrastruc-
ture specifications, performance data or allocation strategies.
It can also define external data sources, such as workload
traces in custom formats, to be parsed and injected at runtime
by compatible plugins. This enables integration with external
tools, such as cost optimizers, whose solutions can be imported
through the appropriate plugin.

The architecture follows a microkernel-inspired design, in
which the simulation engine acts as a lightweight orchestrator.
Pluggable components are dynamically instantiated, operate
in isolated asynchronous processes, and communicate exclu-
sively through event-based interactions. This design allows
for flexible composability and simplifies the development and
integration of experiment-specific logic without entangling it
with the simulation kernel.

IV. PLUGIN SYSTEM AND EXTENSIBILITY
A. Plugin Discovery and Registration

The architecture uses the pluggy library [15] to support
dynamic plugin discovery using Python’s entry_points
mechanism. Each plugin is an installable python package
which registers itself in the pyproject.toml file under
a specific namespace (e.g., application_model.llm,
cost_model.default), which enables the simulation
framework to identify the type and logical name of each
component. Once installed in the Python environment, plugins
are automatically discovered at runtime without requiring any
additional code modification.

Multiple plugins of the same type can be installed and
selected declaratively through the YAML configuration file.

If a plugin declared in the YAML configuration cannot
be found or does not conform to the expected interface, the
simulation engine is designed to abort execution and issue a
descriptive error. This validation occurs at startup time, before
any event execution, ensuring that core simulation behavior
remains consistent and reproducible, even when user-defined
extensions are used in the configuration. Non-essential third-
party plugins, such as auxiliary observers or loggers, may fail
gracefully with a warning, allowing the simulation to proceed
when their absence does not compromise correctness.

B. Interface Contracts via Protocols

Each pluggable component in the architecture adheres
to two complementary interface mechanisms. First, a hook
specification (hookspec) is defined using pluggy, which
declares the methods that a plugin must implement to
be properly registered and invoked at runtime. Second
a Python Protocol interface is used for each plugin
type, enabling static type checking and improved devel-
oper experience. These protocols specify the required meth-
ods (e.g., get_workloads (), apply_allocation(),
compute_cost ()) and allow for static verification using
tools, such as mypy.

This dual-layer interface ensures runtime compatibility via
pluggy, while also providing static guarantees, editor sup-
port, and better documentation through Protocol. Together,
these mechanisms improve reliability, reduce integration er-
rors, and facilitate the rapid development of new components.

V. EXPERIMENTAL VALIDATION: COMPARING OPTIMIZED
ALLOCATIONS WITH SIMULATED BEHAVIOR

To demonstrate how the proposed architecture supports
rigorous, scenario-driven evaluation, we present a case study
executed with Nuberu, a prototype that instantiates our design.
The goal is to show how the framework can expose hidden
assumptions in external decision-making tools, such as math-
ematical optimizers, and thus guide their refinement.

Optimizers based on mathematical models, such as lin-
ear programming, often rely on idealized assumptions about
workload, resource performance, and system behavior. This
section investigates to what extent such optimized allocations
remain effective when deployed in a more realistic simulated
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TABLE II. PERFORMANCE IN REQUEST PER SECOND (RPS) OF EACH
CONTAINER CLASS ON EVERY VM INSTANCE CLASS
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C. Class 3 3 8 8 3 3
VM 1. Class

c5.2xlarge 210 046 430 096 6.35 1.63

cS.large 210 046 430 096 635 1.63

c5.xlarge 210 046 430 096 635 1.63

c6i.2xlarge 229 050 471 1.02 6.82 1.76

cbi.large 229 050 471 1.02 6.82 1.76

cbi.xlarge 229 050 471 1.02 6.82 1.76

environment. By simulating the deployment plan produced by
the optimizer under multiple runtime conditions, we aim to
identify discrepancies, stress points, and potential modeling
oversights. This not only validates the practical viability of the
computed solution but also highlights the role of simulation
as a complementary tool for refining optimization strategies.

A. Description of the scenario to simulate

The scenario to be simulated is the output of an optimizer,
Conlloovia [16], that solves a linear programming problem
to allocate container replicas on VMs to minimize cost while
ensuring the throughput of each application reaches or exceeds
its 95th percentile over the forecast load trace. Inputs include:

« VM instance classes (including cost, cores and memory),

« container classes (defining CPU/memory requirements),

o and throughput performance matrices for each container
class/VM instance class pair (see Table II).

As an example, we analyze a one-hour segment from one of
the scenarios presented in Section 5.4 of [16]. It involves two
deployed applications, app0O and appl, each with a one-hour
request trace that exhibits different dynamics: app0 maintains
a stable average load of 39 rps with a 95th-percentile (p95)
of 44 rps, whereas appl shows a variable load whose average
rate changes over time, with a p95 of 117 rps (see Figure 2).
The optimizer’s solution deploys 38 VMs across three instance
types and 126 container replicas from three classes (one for
app0 and two for appl), as depicted in Figure 3.

Using a custom plugin, the simulator can read this allocation
directly from the files generated by Conlloovia and use it to:
bootstrap the VMs, start the containers, inject traffic (using a
user selected mode), and route requests through a configurable
load balancer. Each container simulates service time based on
the performance data, and metrics are collected throughout.

B. Experimental design

To assess the flexibility and analytical power of the simu-
lator, we simulate the same scenario under 16 configurations
combining four binary dimensions

1) Load injection (Load): either from the original trace

(replaying realistic variability) or as a synthetic Poisson

process which ensures the same p95 throughput value
used by the optimizer.
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Figure 3. Scenario to simulate

2) Load Balancing (LB): either a simple Round-Robin

(RR) or a Smooth Weighted Round-Robin (SWRR), as
the one used in nginx [17], which takes into account the
performance differences between containers to assign
appropriate weights.

3) Queuing model (Q): either none (requests are dropped

if busy) or bounded queues of size 1000 per container.

4) Termination policy (Term): either ‘hard’ (containers

are terminated immediately) or ‘drain’ (containers are
kept alive to complete queued requests).
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TABLE III. SUMMARY OF KEY METRICS (SUCCESS RATE AND TOTAL
COST) FOR THE 16 SIMULATION SCENARIOS.

app0 appl cost
Q Term LB Load
0 drain RR poisson  82.6% 95.0% $10.66
trace 100.0%  98.5% $10.63
SWRR  poisson  82.6% 94.8% $10.66
trace 100.0% 94.4%  $10.63
hard RR poisson 82.6%  94.9%  $10.62
trace 100.0%  98.5% $10.62
SWRR poisson 82.6%  94.8%  $10.62
trace 100.0% 94.3% $10.62
1000 drain RR poisson  100.0%  99.8% $16.56
trace 100.0%  99.8% $16.53
SWRR poisson 100.0% 100.0% $10.66
trace 100.0% 100.0% $10.63
hard RR poisson  100.0%  99.2% $10.62
trace 100.0%  99.2% $10.62
SWRR poisson 100.0% 100.0% $10.62
trace 100.0% 100.0% $10.62

This design allows us to evaluate how an optimized deploy-
ment responds under diverse execution settings and policies.

Each of the 16 simulations is defined through a YAML
file that declares the scenario parameters, input data sources
(e.g., system specification and optimal allocation), and the
plugin components responsible for parsing external formats,
such as Conlloovia. All experiment definitions, input traces
and simulation results used to create the tables and figures in
this paper are available in a public repository [18].

C. Discussion

Table III summarizes two key metrics obtained from the
16 simulated scenarios: the percentage of completed requests
and the total simulated cost. The results provide a compact
overview of how different combinations of runtime param-
eters affect system performance. Configurations that include
queueing, and SWRR load balancing consistently deliver the
highest completion rates. By contrast, in scenarios with no
queues, only the ones which use the actual traces achieve
high completion rates. Poisson arrivals degrade performance,
because the optimal solution generated by Conlloovia relies
on very high container utilization, which in turn presupposes
perfectly synchronized request arrivals.

Queues absorb demand spikes and improve request comple-
tion, though at the cost of higher response times. The drain
policy avoids loss of in-flight or queued requests but prolongs
VM usage and increases cost.

Interestingly, the simulated costs match exactly the opti-
mizer’s predictions in all scenarios using hard termination,
since containers are shut down precisely as scheduled. How-
ever, in scenarios with drain termination, VMs remain active
longer to complete pending requests, resulting in slightly
higher costs. The RR scheduler results in the highest cost be-
cause it ignores container performance, leading to long queues
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Figure 4. Response time and number of requests completed for the scenarios
with SWRR balancing, large queues and ‘hard’ termination (last two rows
of Table III)

of pending requests in the slower containers. These take longer
to drain at the end of the simulation, thereby increasing the
cost. SWRR balancing proves superior in these scenarios by
distributing the load more proportionally across containers
with heterogeneous performance, resulting in shorter queues.

Figure 4 shows the evolution of average response times
and request completion rates for the SWRR load balancer
under a ‘hard’ termination policy. Subfigure 4a corresponds
to a synthetic workload generated as a Poisson arrival process
with A = 34.563 rps for app0 and A = 100.718 rps for
appl, ensuring a p95 of 44 rps and 117 rps, respectively,
matching the throughput guaranteed by Conlloovia’s solution.
Subfigure 4b uses a trace-based workload from [16], where
the number of requests per second varies over time and is read
from Comma Separated Values (CSV) files. In this case, the
request rate can be at times above the p95 throughput expected
by the solver. This is most noticeable for appl, which experi-
ences pressure during the initial minutes, resulting in increased
response times. In contrast, app0O remains stable throughout,
even during short periods when its demand exceeds the p95
threshold.

Together, these results confirm the value of simulation
not just for performance validation but as a diagnostic tool
to uncover modeling assumptions that may not hold under
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realistic or adverse conditions.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a modular, extensible architecture
for cloud simulation frameworks that is explicitly designed
to support reproducible and composable experimentation.
Based on decoupled components, dynamic plugin discovery,
and declarative configuration, the design enables researchers
to prototype and compare alternative models for workload
generation, resource allocation, and cost evaluation without
modifying the simulation core.

By capturing the experimental setup in version-controlled
configuration files and generating structured simulation traces,
the proposed architecture aligns with the FAIR principles,
Findable, Accessible, Interoperable, and Reusable [19]. This
foundation enables both local reproducibility and broader
community validation of alternative orchestration strategies.

The framework is under active development, with future
releases providing curated plugins and scenarios. This work
serves as a foundation for reproducible and extensible cloud
simulation. Although the current prototype does not yet
simulate network communication, I/O operations, or energy
consumption, and no validation against real cloud deployments
has been performed, it can already handle hundreds of VMs
and thousands of requests with acceptable overhead. A com-
plete evaluation of scalability and runtime efficiency is planned
as part of future work. Upcoming extensions will enable more
complex simulation scenarios. Firstly, we plan to incorporate
models for network and I/O operations to support richer
and more realistic simulations. Secondly, we will expand the
plugin ecosystem with curated modules for common use cases,
including auto-scalers, Large Language Model (LLM) serving
patterns, spot-instance strategies, and multi-tenant execution.
Finally, we will validate the architecture through large-scale
comparative studies and evaluate its suitability for hybrid
cloud-edge deployments.
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Abstract—Underwater ~ Wireless  Sensor  Networks
(UWSNs) have attracted considerable attention for decades,
owing to their broad spectrum of application areas.
Despite technological advances, designing energy-efficient
underwater communication architectures remains a key
challenge due to the harsh and dynamic environment.
Among the various factors influencing the performance of
UWSNs, data traffic load emerges as a critical component,
particularly in relation to the operational lifetime.
Additionally, with their increasing deployment, Autonomous
Underwater Vehicles (AUVs) are integrated into UWSNs
in various roles. However, their presence introduces
new challenges that require the design of robust sensor
network configurations capable of effectively detecting
and interacting with AUVs. This paper addresses a novel
simulation-driven and uncertainty-aware design scheme for
energy-efficient UWSNSs. Building on prior studies of data
traffic uncertainty in wireless sensor networks and AUV
mobility, this paper employs a simulation environment
that captures the integrated interactions among mobile
targets, sensor nodes, and seabed topography to evaluate
the proposed network model. Furthermore, recognizing that
the unrestricted mobility of navigating vehicles can cause
variations in data generation rates across the network, we
apply balanced 3D K-means partitioning to structure the
network for uncertainty modeling. The proposed robust
optimization framework is evaluated against a deterministic
baseline under varying traffic conditions induced by
vehicle movement. To capture uncertainty at multiple
scales, we incorporate parameters representing sensor-
specific deviations and regional conservativeness, enabling
examination of their impact on solution stability. Results
indicate that the robust framework consistently outperforms
the deterministic approach across varying levels of traffic
deviation under the applied spatial partitioning scheme.

Keywords-Simulation; spatial partitioning; underwater wire-
less sensor networks; traffic uncertainty; robust optimization.

I. INTRODUCTION

Underwater Wireless Sensor Networks (UWSNs) have
become essential for diverse underwater applications, in-
cluding environmental monitoring, offshore exploration,
scientific investigation, and marine operations involv-
ing submarine detection, AUV-assisted monitoring, and
maritime observation for situational awareness [1]-[4].
Comprising spatially distributed acoustic sensor nodes,
UWSNs are designed to observe and transmit underwater
phenomena to a base station, often through multi-hop
communication schemes. Due to the inherent challenges
in accessing and replacing deployed sensor nodes, energy
efficiency is a critical design consideration.

Recent advancements in underwater acoustic commu-
nication and the integration of heterogeneous underwater
platforms have significantly expanded the capabilities of

UWSNSs. Nevertheless, these networks still face persis-
tent operational challenges, especially in dynamic and
mission-oriented environments. The need to detect and
track mobile entities such as submarines and AUVs creates
sensing demands that vary spatially and temporally. As
these entities move through the monitored area, nearby
nodes experience fluctuating sensing activity, resulting in
uneven data generation and shifting traffic patterns. Such
imbalances result in localized energy depletion, reduced
network availability, and premature degradation of system
performance [5]. Therefore, understanding how target mo-
bility affects sensing dynamics and communication load
is crucial for developing resilient UWSNs.

Our primary goal is to design an event-driven UWSN
capable of monitoring a designated underwater area
through a robust optimization approach. For a com-
prehensive literature review on the topic, the interested
reader is referred to [6], where a preliminary formulation
was introduced to address uncertainty using a global
robustness framework. Building upon this foundation, the
current study extends the analysis by incorporating spatial
heterogeneity through a region-based modeling strategy.
To better capture spatial variability in uncertainties, we
partition the 3D underwater network into sub-regions,
allowing region-wise deviations for detailed analysis of lo-
calized uncertainties. Several spatial partitioning methods,
such as grid-based schemes, clustering algorithms, and
Voronoi tessellations, have been explored in underwater
studies [7]-[9]. In this study, we adopt a balanced 3D
K-means clustering approach to achieve spatial division
that reflects the structure and operational characteristics
of underwater environments. This method provides a
practical and effective means to form spatially compact
and evenly sized regions, facilitating the application of
localized deviation scenarios and enabling clearer analysis
of their region-specific impacts on network behavior [10].

More specifically, we address the problem of minimiz-
ing the maximum initial battery allocation to sensors while
ensuring sustained network operation over a specified time
period. The robust design framework determines energy
allocations that remain feasible across all admissible data
rate variations, guided by a reference lifetime defined
during the configuration phase. In contrast, the nominal
design which does not consider uncertainty may lead to
premature network failure under slight deviations from
expected sensing rates. Subsequent evaluation shows that
the robust design consistently achieves network lifetimes
at or near the reference lifetime, demonstrating improved
resilience and reliability compared to the nominal ap-
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proach.

Finally, we present detailed analyses illustrating the
performance of both robust and deterministic designs
during the implementation phase, based on comprehensive
tests conducted across a wide range of scenarios.

The major contributions of this study are as follows:

o« We utilize a comprehensive simulation framework
that integrates underwater vehicle movements, sensor
deployment, and detailed seabed topography derived
from real-world bathymetric data. This allows real-
istic estimation of sensing rates as they vary with
sensor locations and target trajectories, forming a
critical input for our robust model.

« We introduce a novel robust optimization framework
for UWSNSs featuring balanced 3D K-means spatial
partitioning. This approach captures localized un-
certainty and traffic load variations more precisely,
enhancing the network’s resilience and performance.

o We present comprehensive test results on the per-
formances of the nominal design made without con-
sidering the uncertainty in the configuration phase
and the robust design under a polyhedral uncertainty
definition in different sensing rate scenarios when
they are put into practice. The test results indicate
that minor variations in sensing rates substantially
impair the performance of the deterministic design,
whereas the robust design consistently preserves
the expected performance and extends operational
longevity relative to the deterministic approach.

The remainder of this paper is organized as follows.
Section II presents the main components of our optimiza-
tion framework. We begin by introducing an optimization
model for the deterministic design of underwater net-
works in Section II-A, followed by the robust counterpart
formulation that enables analysis under uncertainty in
Section II-B. Section II-C then describes the simulation
environment used to derive sensor data generation rates.
Computational results and performance analysis are pro-
vided in Section III, organized around the configuration
and implementation phases. Finally, Section IV concludes
the study with a summary and directions for future re-
search.

II. PROBLEM DEFINITION
A. The Network Model

In this section, we will first present the classical math-
ematical model for the problem of efficient energy alloca-
tion to sensors. Next, we will block out how we integrate
the uncertainty in detection rates into the model within
the framework of robust optimization. In all models, we
assume that the sensors and sink possess all the necessary
capacity to process the data that they are supposed to
transmit and receive, respectively. As indicated in [11]
and [12], we consider only transmitting and receiving
energy consumption, which are dominant with respect to
other forms of consumptions like sensing and processing.
The channel characteristics are considered ideal and the
number of retransmissions due to failures is negligible
[13]. We present the notation used in the paper in Table I.

Given the data sensing rates of the sensors, the fol-

lowing mathematical model (E%) aims to determine the

TABLE I. SETS, PARAMETERS, AND DECISION VARIABLES.

N Set of sensor nodes

Ne Set of all nodes in the network, i.e., N'U {BS}, where BS denotes the base station

R Set of sensor subsets (regions), i.e., Z = {R1, Ry,...} with R; C N

R; A subset of sensors forming region Rj, ie., Rj € #

7 Index set of regions, i.e., # ={1,2,...,|%Z|}

54 Set of sensing rate vectors within feasible intervals satisfying regional sum constraints
A Set of directed one-hop connections: A = {(i,7) :i € N,j € Ng \ {i},d;; < R}

G Directed graph representing the network, i.e., G = (Ng, A)

4 Uncertainty set of feasible sensing rate vectors

Parameters

a

ij Euclidean distance between i € N and j € Ng
T Default network lifetime in configuration

<

R Transmission range for sensors (m)

elX Energy cost of transmission from i € N to j € Ng per bit (m.J/bit)

e{{x Energy cost of reception by i € N from j € N per bit (m.J/bit)

Sk Sensing rate of sensor k € N (bit/s)

sk Nominal sensing rate of sensor k € N (bit/s)

Shew Sensing rate deviation of sensor k € N (bit/s)

o Regional uncertainty budget

B Binary parameter indicating whether sensor k belongs to region R;, where j € 7
Variables

ft’; Proportion of s, sensed by k € N transmitted on (i,j) € A

e Initial energy to be allocated to i € N (m.J)

erb Maximum energy assigned to a sensor in N under the robust model (m.J)

edet Maximum energy assigned to a sensor in N under the deterministic model (m.J)
ik » Aik Deviation duals

0ji Regional budget dual variable

initial energy allocations for the sensors, which ensures
the energy-efficient operation of the network over default
network lifetime 7"

min e (1)
s.t.
1 ifi=k
Sorb= > fE={-1 iti=BS
(i,j)eA (4,1)€A 0 otherwise
Vie Ng, ke N ()
S| X Tl st X TeR
kEN | (i,j)EA (Ji)EA
<e; Vie N 3)
et >e  VieN “)
k>0 Y(i,j) € A, k€N (5)
e; >0 Vie N (6)

B. The Network Model for Polyhedral Sensing Rates

The polyhedral uncertainty model is widely adopted in
robust optimization due to its favorable balance between
computational efficiency and strong worst-case protection.
It enables reformulation into linear programs, preserv-
ing the complexity of deterministic models and allowing
scalable solutions using standard optimization techniques.
Compared to ellipsoidal sets [14], which require second-
order or semi-definite programming, the polyhedral ap-
proach offers greater tractability [15].

Unlike probabilistic methods that rely on distributional
assumptions and often lead to nonconvex or chance-
constrained formulations, the polyhedral model guarantees
feasibility without stochastic knowledge [16]. It also flex-
ibly captures parameter dependencies, supporting diverse
use cases.

To apply localized uncertainty, sensor nodes were
partitioned into spatially compact, equally sized groups
using the balanced K-Means method, which has demon-
strated effectiveness across various domains [17][18]. This
structure facilitates region-specific deviation modeling in

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

89



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

underwater network design by minimizing intra-cluster
distances while maintaining uniform group sizes.

The balanced K-Means algorithm divides the sensor
set N into k clusters of equal size n;, minimizing intra-
cluster variance. At each iteration ¢, cluster centroids are
updated as C;(t + 1) = n%zjeci(t) x;j. Sensors are
then reassigned via a weighted bipartite matching process
that minimizes the total squared distance to centroids,
subject to |C;| = n;. This is achieved using a virtual
slot index a € [l,n] with edge weights defined as
W (a,i) = dist(xs, C(q mod ky+1)* for all i € [1,n] [10].

Unlike standard K-Means, the equal-size constraint
introduces global dependencies, requiring iterative reas-
signments to balance cluster sizes and minimize variance.
This ensures a fair and symmetric robustness formulation
by avoiding region-specific scaling and simplifying con-
straints [10][19].

Under this formulation, deviations are restricted to one
region at a time. To prevent over-conservatism from overly
broad uncertainty sets, we adopt a region-based version
of the I'-uncertainty model [15], enabling tractable and
focused robustness without excessive conservatism.

We define the polyhedron of feasible sensing rates as
the set of all s;, satisfying spo™ < g, < shom 4 gdev
for each sensor £ € N, and for all regions I7; € %’,
the sum of sensing rates within R; satisfies >, - R, Sk <
(L4 a) X ker, si™ More explicitly, # = {s, € 7" :
spom < sy < ospo™ 4+ sdev Vk € N; ZkeR s <
(14a) . R, Sk VR € Z}. This formulation allows
for individual dev1at10ns wh11e controlling aggregate sens-
ing rates regionally, balancing robustness with practical
conservatism.

The worst-case realization of the left-hand side in the
energy constraint leads to the robust counterpart constraint
maxXse ) pen Sk Gik < €;, Where % is the uncer-
tainty set defined by the intervals and regional budget
constraints, and a;; denotes the energy consumption at
node ¢ associated with the sensing activity of node k, rep-
resented in the original constraint as 3, o, TelX fF; +
Y Giea TexX fﬁ‘- We now dualize the inner maximiza-
tion problem. The primal form of this inner maximization
is:

H;E:X Z Sk - Ak (7)
keEN
s.t.
sp < sy, VkeN (8)
sp < S1OM 4 g9V Vke N )
> Brisk < (L+0a) > Bysi™ Vie #  (10)
keN keN
Br; € {0,1} VkEN,Vjc 7

(11)

Introducing dual variables p;, > 0 for the upper
bounds, A;; > 0 for the lower bounds, and 6;; > 0 for the
regional constraints, the dual of this linear maximization

becomes:
: . nom dev _ nom
min D k(74 S = ) dast
kEN keEN
L+a) > 0> Brysim (12)
jEL keN

s.t.
pik = Xik + Y 05iBr; > ag Yk €N (13)
jef
Mik, Ak > 0 Vie NNke N (14)
0 >0 Vjie #,ie N (15)

Consequently, replacing the original constraint with its
dual leads to the robust energy constraint. The resulting
compact LP model, which represents the robust counter-

part of E%__is denoted by E™ :
- rob
min €max (16)
s.t.
keN
+ Z 05i(1+ ) Brjsp | < e Vie N (17)
Jj€s
e > € Vie N (18)

(2)7 (B)a (6)7 (13) -
C. Simulation Model

The simulation framework developed for underwater
sensor networks encompasses several critical stages to
capture the complex interactions between sensors, under-
water vehicles, and the seafloor environment. These stages
ensure realistic modeling of detection processes and yield
the data generation rate as a key uncertainty parameter to
support the accuracy of robust network model.

(15).

Z coordinate

0
1000 0

Figure 1. Trajectories of AUVs in 3D underwater environment

The process begins with generating detailed bathymet-
ric maps to accurately characterize the underwater terrain.
Underwater vehicles are initialized at random locations,
and their trajectories are simulated based on predefined
mobility rules formulated to emulate smooth underwater
motion. A network of 40 sensors is deployed in a grid-like
fashion with terrain-aware feasibility checks and appropri-
ate detection radii to ensure sufficient coverage [20]. Each
sensor is assumed to possess both an absolute detection
area, which is designed to be tangential to those of
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neighboring nodes, and a surrounding probabilistic zone
where the likelihood of detection decays with distance due
to signal attenuation. This dual-layer sensing model cap-
tures detection uncertainty beyond the immediate sensing
range, resulting in a more precise representation of sensing
behavior.

Sensor detection durations are evaluated over discrete
time intervals, integrating continuous environmental mon-
itoring with event-driven sensing triggered by the tran-
sitions of underwater vehicles. In each run, a total of
100 underwater vehicles follow their trajectories, during
which sensors remain actively engaged in monitoring and
record the cumulative durations of the detection process.
These values are normalized by the total simulation time
to compute individual data generation rates. To account
for environmental variability, the process is independently
repeated 30 times using different random seeds, and the
consistency observed across these repetitions confirms
the reliability of the estimated sensing rates used in the
optimization model. The modular simulation framework,
implemented in Python and conceptually detailed in [6],
supports flexible modeling of sensor coverage, AUV mo-
bility, and energy-aware operations, thereby providing a
reliable foundation for both current analyses and potential
extensions involving more detailed energy models. The
energy model adopted in this study is based on the 10-
level discrete power scheme described in [21], in which
each level defines a communication range along with the
corresponding energy cost per bit for both transmission
and reception, thereby capturing distance-dependent en-
ergy consumption. Figure 1 presents an overview of the
simulation environment along with the intruder trajecto-
ries.

III. COMPUTATIONAL RESULTS

In this section, we present the results of numerical
experiments conducted in two main phases. First, we
examine the impact of incorporating uncertainty into en-
ergy allocation decisions during the configuration phase.
Second, we compare the performance of robust and
deterministic network designs in terms of operational
lifetime once deployed. These analyses aim to evaluate
the network’s capability to maintain performance when
exposed to potential uncertainties after configuration.

In the deterministic model, all parameters are assumed
to be known with complete accuracy. In contrast, the
robust model takes into account possible deviations in
the data generation rate, which is based on event-driven
measurements observed throughout the simulation. The
maximum battery allocations for both the deterministic
and robust models are obtained by solving their respective
linear programming formulations, denoted as EY and
E™® | respectively. The goal in both cases is to minimize
the highest amount of energy allocated to any single
sensor. As expected, the robust model does not yield a
better objective value than the deterministic one, since
it is designed to handle more demanding and uncertain
conditions. Then, we evaluate the practical performance
of both configurations by comparing their optimal results
across various cases to assess trade-offs and identify the
most effective design strategy.

We performed all computations on a 2.50 GHz machine
with 16 GB. The optimization problems were solved by
IBM ILOG CPLEX Optimization Studio Version: 20.1.0
under a runtime limit of 720 seconds.

A. Configuration Phase: Maximum Energy Allocation

The aim of this section is to analyze how variations
in data generation rates, characterized by different uncer-
tainty sets, affect the maximum battery allocation values
(E™) as determined by both the deterministic model
(E3d*) and the robust model (E]%) during the configu-
ration phase. In both models, the default network lifetime
is fixed at 100 seconds.

To assess the sensitivity of the robust framework in
comparison to the deterministic one, we vary the regional
uncertainty budget « € {0.01,0.05,0.10,0.20} within
a selected region. Additionally, sensors are allowed to
deviate individually by up to three standard deviations
(o) to reflect node-specific uncertainty bounds. For each
(o, o) combination, a robust provisioning is generated to
enable lifetime analysis in Section III-B.

These uncertainty parameters determine the level of
conservatism in the robust design: larger values lead to
broader uncertainty sets, thereby requiring more energy
provisioning to guard against adverse scenarios. Although
the robust model yields more conservative objective values
during the configuration phase, it consistently ensures
reliable performance in implementation. In contrast, the
deterministic design shows greater performance degrada-
tion even under minor deviations.

At this stage, considering the standard deviation bands
o; (for v =1,2,3) with 01 < 05 < 03, it is observed that
the maximum battery capacity increases against higher o,
while all other parameters remain constant. A similar trend
is evident across the localized conservativeness levels
«;, though the growth follows a sublinear pattern in
percentage terms. This suggests that higher regional con-
servativeness entails relatively modest additional battery
provisioning during the configuration phase, while still
ensuring robustness. Although variations in « contribute
to the observed gains, the deviation level o emerges as the
primary factor driving regional disparities, as illustrated in
Figure 2.

In this context, for the least conservative scenario
(o = 0.05, 01), the average increase in maximum battery
allocation under the robust configuration relative to the
deterministic baseline is 2.97%. Under the most conser-
vative setting (o = 0.20, o3), this increase reaches 9.85%.

Region-wise analysis further reveals that sub-region
R; consistently requires the highest battery allocation,
whereas Rs necessitates the lowest, across all o levels.
This pattern is likely related to the higher sensitivity of
critical constraints in R; to input deviations. In particular,
several nodes in R; appear to operate near their feasibility
limits. In such cases, even small perturbations can activate
binding constraints with high dual values, amplifying
their influence on battery provisioning and, in turn, the
objective function.

B. Implementation Phase: Network lifetime

This section analyzes the performance of networks
designed with both models, as described in Section

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

91



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

20

. A prob - - A plob rob .
181 Aenmx(al ) e A‘7111}\.‘(02) - A(’m,\x((T;)
16
_____ eeeereeeeem
I
w
..... e R
Lem Hm————- x FUTP TOPRTRTPPIN a R
—— e
______ = = e X
- ———
B it e X
U
——""—
—
-——————o—————o
—
‘ P ‘ < P P < P
» N > N » Q > N » N > N H Q > N
Q Q QY Q7 Q Q QY Q7 QS QY Q” Q7 QS o Q N
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
o > o o o > o o > [ o o [ o v >
(R1) (Re) (Rs) (Ra)

Figure 2. Percentage change of optimal battery capacity across different o and o values in each sub-region R;.

ITI-A, under predetermined parameter combinations. Con-
sequently, given the battery capacities of the sensors and
the data transmission paths, the functional duration of each
design will be calculated under different data sensing rates
and compared with the reference lifetime value 7', speci-
fied during the design phase. Based on the uncertainty set
encompassing the applicable sensing rate vectors for the
given network configuration, and for specified values of
o, we generate the set s' = {s) : k € N} by selecting
sensors whose sensing rates are allowed to deviate from
their nominal values and reach the corresponding upper
bounds within the predefined sub-regions.

Then, we solve formulations (19) and (21) to determine
the lifetime of the deterministic and robust designs in
each case, respectively. Herein ffjdet and ffjmb denote
the transmission paths, while e}, and e}, represent the
battery capacities obtained by solving E9¢! and ET°? .
Hence, we solve LP models since the only unknowns are
Tdet and T'mb-

max Tget 19)
S.1.
Z Z Tdetez;x f;;-’dets;c + Z Tdeteﬁ'x fz!;',dets;c
kKEN | (i,5)€A (j,1)eA
< eéet Vie N (20)
and

max Trop @n
S.1.
Z Z T'robeg;'x fi];',robsk + Z ,‘Z}ObeﬁX fikjvmbsk
keEN | (i,j)eA (4,9)eA
< ezob Vie N (22)

The sensor network is partitioned into four disjoint
regions R; C N (for j = 1,2, 3,4), satisfying U?Zl R; =
N and |R;| = 10 for each j. Deviation bands are
applied precisely to the sensors within each active R;,
consistent with the robust configuration. The network
lifetime achieved under the robust configuration closely
approaches or slightly underperforms the reference life-

time value of 100 seconds across all cases, as observed in
Figure 3.

Under nominal conditions, where no deviations occur,
higher values of « in the robust configuration extend net-
work lifetimes by provisioning additional capacity. When
deviations arise, as illustrated in Figure 3, increased «
enhances the model’s ability to maintain feasible operation
durations and mitigate premature battery depletion. This
adaptive behavior is achieved by conservatively allocating
battery capacity, selectively restricting the total magnitude
of deviations within regions characterized by spatially
correlated risks.

Building on this, the analysis based on parameters «
and o highlights the critical importance of incorporating
sensing rate variability through robust optimization to
enhance network availability and reliability under high
uncertainty. For instance, in the baseline scenario with
(v = 0.05, 01), the deterministic configuration exhibits
network lifetimes approximately 9.44%, 11.15%, 11.94%,
and 11.97% shorter across regions R; to Ry, respectively,
compared to the robust model. As uncertainty intensifies,
reflected by larger o and o values, these differences
increase substantially, reaching reductions of 14.72%,
17.93%, 15.30%, and 21.75% in the most extreme cases.
From the « perspective, the robust design closely ap-
proaches the reference lifetime under low o conditions.
However, as ¢ increases, the model requires more con-
servative allocations to accommodate higher uncertainty,
making it more difficult to achieve the reference lifetime.
This reflects the inherent trade-off between robustness
and performance in the presence of increased variability.
Ultimately, region-wise analysis indicates that lifetime
variability increases across each region as the levels of
« or ¢ increase.

Together, these findings confirm that the robust design
effectively sustains network lifetime close to the reference
target despite any considered level of uncertainty, balanc-
ing conservatism with operational efficiency.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a robust optimization framework
for the design of an UWSN focused on target detection,
ensuring energy efficiency and network reliability under
uncertainty. Utilizing a simulation-based robust optimiza-
tion framework with real-world bathymetric data, we
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Figure 3. Comparison of deterministic and robust lifetime performance for a 40-sensor network across varying parameters

address uncertainties in sensing rates stemming from both
regional and individual sensor deviations, and evaluate
their impact on overall network performance. To enhance
this framework, we integrate a region-based deviation
model that provides a more comprehensive assessment of
spatial vulnerabilities across the network.

This study develops an uncertainty set grounded in
system-specific data obtained through simulation, leverag-
ing a polyhedral formulation that improves the scalability
of the proposed method and enhances its suitability for
practical applications.

Results from comprehensive tests indicate that even
minimal variations in sensing rates can severely compro-
mise deterministic designs, causing early network failures.
In contrast, the robust design consistently delivers sus-
tained long-term performance, substantially exceeding the
reliability of deterministic methods, even in the presence
of varying regional and localized spatial instabilities.

Following the worst-case scenario implementations that
are localized within one of the designated regions, future
work may explore more comprehensive deviation models
to address increasingly complex and unstructured condi-
tions across networks with varying numbers of sensors.
These include sensors deviating outside the active region,
mixed-region cases, and over-budget scenarios exceeding
the predefined uncertainty limits. Additionally, alternative
deployment and partitioning strategies can be employed
to evaluate their impact on robustness and enable com-
parative analyses.
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Abstract - The goal of this idea contribution is to provide a
systematic head-to-head comparison of regression-based
inference and Machine Learning (ML) prediction in applied
Social Network Analysis (SNA) for energy transition research,
addressing a gap that has not yet been explored. The problem
is relevant because methodological choices affect how actor
influence and decision-making are interpreted in networked
household energy-efficient refurbishments. While regression
models offer explanatory clarity, ML models often deliver
higher predictive accuracy; yet their joint evaluation in this
domain remains missing. This study proposes a structured
pipeline combining regression baselines with ML models, such
as Random Forests, Support Vector Machines (SVMs), and
Gradient Boosting. Model performance will be evaluated using
R? and the Receiver Operating Characteristic — Area Under
the Curve (ROC-AUC), while interpretability will be assessed
through SHapley Additive exPlanations (SHAP) values. The
expected outcome is a sharper understanding of trade-offs and
complementarities between inference and prediction in energy
transition networks, informing methodological integration in
computational social science.

Keywords - Social Network Analysis; Machine Learning;
Traditional Statistics; Comparative Methods; Interpretability and
Prediction

I. INTRODUCTION

Statistical reasoning has long underpinned empirical
social science. Yet today, the term “artificial intelligence” is
often used loosely, conflating traditional methods with data-
driven techniques simply because they run in complex
software environments. This paper critically engages with
that trend by comparing traditional statistics and ML
approaches within a shared empirical context - Social
Network Analysis (SNA) of decision-making in energy-
efficient home refurbishments.

While statistical modeling prioritizes explanatory clarity
and hypothesis testing, ML focuses on pattern detection and
predictive power. Recent studies (e.g., Hossain [1], Sakib et
al. [2]) have shown how ML methods like LASSO, Random
Forests, and SVMs improve predictive accuracy, especially
in complex or high-dimensional settings. However, to our
knowledge, no prior work has conducted a head-to-head
comparison of regression-based inference and ML-based
prediction in applied SNA of energy transition networks.
This study seeks to fill that gap by re-analyzing a large,

previously published dataset using both methodological
paradigms.

The remainder of this idea contribution first introduces
the methodological paradigms (Section II), then outlines the
dataset and empirical frame (Section III), presents the
research question (Section III), and concludes with expected
contributions and next steps (Section IV).

II. TRADITIONAL STATISTICS AND MACHINE LEARNING:
DEFINITIONS AND TENSIONS

A. Traditional Statistical Inference

Methods like linear and logistic regression rely on
assumptions, such as linearity, homoscedasticity, and
independence. These methods enable interpretability and
quantification of uncertainty—key strengths in hypothesis-
driven research.

B.  Machine Learning and Predictive Modeling

ML models like Random Forests and SVMs are
assumption-light and often outperform traditional models in
predictive contexts. Though often less interpretable, new
tools (e.g., SHAP values) are improving transparency.

C. Convergence and Complementarity

Techniques like regularized regression (LASSO, Ridge)
and decision trees bridge the gap between interpretability and
flexibility. These “hybrid” models illustrate growing
convergence.

D. Prior Comparative Research

Studies in psychology, epidemiology, and sociology
(e.g., Jang & Lee [3]; Di Franco & Santurro [4]) show ML
often provides superior predictive power while traditional
models offer theoretical alignment. Comparable SNA studies
remain scarce - underscoring this study’s relevance.

III.  SOCIAL NETWORK ANALYSIS: THE EMPIRICAL
FRAME

A. Dataset and Context

The analysis draws on a dataset from Verhoog (2017)
covering approximately 700 cases of household decisions
regarding energy-efficient refurbishment. The data capture
not only household characteristics but also the role of
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professional stakeholders, such as building merchants,
engineers, energy consultants, and financial institutions.
Alongside these actor variables, the dataset includes the
technical and efficiency status quo of the dwelling and the
homeowners’ attitudes toward refurbishment.

For instance, a household’s decision to invest in energy-
efficient refurbishment may depend not only on the
building’s technical condition and the homeowner’s
attitudes, but also on the involvement of professionals—
whether consultants, engineers, merchants, or financial
institutions—within the decision network. This combination
of contextual, attitudinal, and network-related information
provides a suitable empirical frame for comparing traditional
statistical inference and Machine Learning (ML) prediction
in applied Social Network Analysis (SNA)

B. Feature Engineering

Multiple SNA metrics (degree, betweenness, closeness
centrality; network size; density; interaction intensity) will
serve as predictors. These are complemented by contextual
variables and preprocessed via normalization and encoding
for compatibility with both methods.

C. Modeling Approach

The original analysis employed regression and factor
methods. The reanalysis will apply ML models, such as
Random Forests, Support Vector Machines (SVMs), and
Gradient Boosting, with optional extensions to Neural
Networks. The comparative pipeline will include
preprocessing of SNA metrics (normalization and encoding),
model training with cross-validation, hyperparameter tuning
via grid search, and evaluation on a hold-out test set. Model
performance will be evaluated using R? and the Receiver
Operating Characteristic — Area Under the Curve (ROC-
AUC), while interpretability will be assessed through
SHapley Additive exPlanations (SHAP) values. Results from
these ML models will be benchmarked directly against
baseline regression models to enable a head-to-head
comparison of inference and prediction.

D. Research Question

This study asks to what extent can Machine Learning
uncover structural patterns in energy transition networks that
traditional statistics may overlook, and under what
conditions do their results converge or diverge?

This overarching question is addressed through three
dimensions:

1.  Network conditions — when do ML models achieve

higher predictive accuracy than regression models?

2.  Feature relevance — which network features emerge

as most influential in ML compared to regression?

3. Interpretability — can tools, such as SHAP reconcile
predictive accuracy with explanatory clarity in
applied SNA for energy transition research?

IV. EXPECTED CONTRIBUTION AND NEXT STEPS

This idea contribution aligns with SIMUL 2025 themes
by providing one of the first head-to-head comparisons of
regression-based inference and ML-based prediction in
applied SNA for energy transition research. In line with the
research question, the study will clarify (i) under which
network conditions ML offers superior predictive accuracy,
(ii)) how feature importance differs between ML and
regression, and (iii) whether interpretability tools can bridge
predictive and explanatory approaches. While the analysis
centers on one empirical dataset, the approach is adaptable to
other energy transition networks, which may enhance its
broader relevance. These insights will highlight
methodological synergies and trade-offs, advocating a hybrid
perspective that combines theory-driven and data-driven
approaches in studying decision-making in energy transition
networks.

Immediate next steps are the preparation of the dataset
and the construction of the modeling pipeline (Python: scikit-
learn, NetworkX, SHAP). This will involve feature
engineering of network metrics, cross-validation and
hyperparameter tuning for multiple ML models, and
systematic benchmarking against regression baselines to
generate comparative performance and interpretability
results. The findings will inform a full paper for the
computational social science and organizational modeling
community.
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Abstract—Modern vehicles rely heavily on the Controller Area
Network (CAN) for communication between electronic control
units, yet CAN lacks inherent security features like authentica-
tion, making it susceptible to attacks, such as message injection.
In this paper, we develop a means of simulating and visualizing
the effect of an attack on the communication traffic and the actual
system and the effect of a countermeasure. Qur tool is based
on Vector CANoe simulation and demonstrates a CAN message
injection attack and a simple rule-based Intrusion Detection
System (IDS). The setup includes a custom Graphical User
Interface (GUI) for interactive demonstration. This framework
serves as an educational tool and a foundation for future research
into more advanced attack and defense scenarios. This work takes
a step towards developing simulation platforms or frameworks
for security of in-vehicle networks that are flexible and based on
industry suitable toolchains.

Keywords - Controller Area Network (CAN); In-vehicle
Network Security; Simulation; Demonstration for Education

I. INTRODUCTION AND BACKGROUND

Vehicles today are increasingly dependent on in-vehicle
communication networks such as the Controller Area Network
(CAN) bus to support functionalities ranging from basic en-
gine control to advanced driver assistance systems. While the
CAN protocol was originally designed for reliability and effi-
ciency, it lacks built-in security features such as authentication,
encryption and message integrity [1]. This makes it vulnerable
to a range of cyber-attacks including spoofing, injection,
and Denial-of-Service (DoS) [2][3][4]. The growing concern
over automotive cybersecurity has prompted researchers and
engineers to explore both, attack vectors and countermeasures.

However, there remains a gap between experimentally es-
tablished attacks and targeted security concepts and being able
to demonstrate and explore them in flexible and configurable
environments such as those used by the automotive industry
in their development processes. Vector CANoe provides a
powerful platform to model, simulate and analyse automotive
networks, making it well-suited for such exploratory work [5].

This paper presents a simulation-based demonstration using
CANoe that showcases a common CAN bus attack and the
impact of an Intrusion Detection System (IDS) designed to
mitigate it. The setup simulates normal traffic on the CAN
network, introduces a malicious node injecting abnormal mes-
sages, and then analyzes the detection capability of a rule-
based IDS. The objective is to provide a practical framework

Sibylle Froschle
Institute for Secure Cyber-Physical Systems
Hamburg University of Technology
Hamburg, Germany
email: sibylle.froeschle@tuhh.de

for visualizing both vulnerabilities and potential defense mech-
anisms within the CANoe environment. This demonstration
can be useful in teaching as well as serve as a starting point to
build complex real-time simulation framework for other attack
and countermeasure demonstrations.

The rest of the paper is structured as follows: Section II
explains the methodology, Section III describes the demon-
stration itself followed by conclusion and future work in
Section IV.

II. METHODOLOGY

This section outlines the experimental setup created in
Vector CANoe to simulate a CAN bus environment, demon-
strate the attack and the IDS. The demo contains the baseline
network configuration, attack implementation, IDS integration
and the Graphical User Interface (GUI).

(1) Configuration: The simulation is built on the sample

Network
CAN1
CAN1

Ze]
attacker DS

Prog Prog

Joa 75L&

ECU

Fig. 1. Simulation set-up showing the CAN network.

configuration ABS Brake Control provided with the CANoe
installation. The simulation, as seen in Figure 1, mainly
consists of an embedded Simulink model for the Chassis
block that simulates the application of brakes by providing
the brake moment depending on two signals, status of ABS
and brake activation. Other physical properties, such as mass
of the vehicle are input as parameters to the model. The two
Check Brak nodes are used for testing the Antilock Brake
System (ABS) performance. The environment consists of two
vehicles: the vehicle under consideration and a trailing vehicle.
We added two Communication Access Programming Lan-
guage (CAPL) programs Vehicle and ADAS that perform the
functions such as setting the car in cruise control, calculating
the distance between the vehicle under consideration and the

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-300-2

97



SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

trailing vehicle among other things.

(2) Attack Simulation: We use the attacker model from [3].
The attack is simulated with the addition of a node called
attacker which represents a compromised gateway. The be-
haviour is simulated in CAPL. The attacker can now inject
malicious messages on the CAN with the aim to bring down
the Vehicle speed suddenly causing an accident on the high-
way. When the attack is active, if the Vehicle speed is high (in
this case more than 130 kmph), Brake Input messages are
injected at intervals of 50ms for 3s.

(3) IDS Simulation: We have implemented a simple rule-based
IDS here. This is realised as an additional CAPL node. It
utilises the periodic property of the Brake Input message. Since
the time interval between two consecutive legitimate Brake
Input messages is known, any message occurring on the bus
between this is flagged.

(4) GUI: We developed the GUI to facilitate the demonstration.

G| @ Car Attacker
Car Stop Start attack
Highway Drive Stop attack
gl g
e w0 10T o 1607, . Brake
<o w0,
S 2
o N 20
AN

IDS

Active/Inactive g
Alarm O

Alarm_count: 0|

Distance from trailing car

I

Fig. 2. GUI developed to facilitate the demonstration.

Here, the dial shows the current speed of the vehicle in kmph.
The Highway Drive button provides a quick way to accelerate
the vehicle to constant high speed and set the vehicle in cruise
control like motion. The Car Stop button provides a quick way
to decelerate the vehicle until it reaches a speed of 0, i.e. it
stops. The Brake button is used to simulate standard brake
pedal action. The Attacker part of the GUI shown in Figure 2
provides the means to start the attack during the demonstration.
The activation and deactivation of IDS can be done via the
IDS part of the GUI. The distance from the trailing car is also
displayed in m with an indicator LED showing if the distance is
safe (green), is in warning limits (yellow) or dangerous (red).

III. DEMONSTRATION AND RESULTS

The steps of the demonstration flow are as follows: Without
IDS: (1) Start the config from the GUI. (2) Press Highway
Drive and wait till cruise control. (3) Press Start attack.
(4) Observe - The warning LED goes from green to yellow
to red and the cars in animation collide. See Figure 3. CAN
message injection can be seen in the trace and graphics
window in Display Desktop as shown in Figure 4(a), where the
attack was started at around 53s after simulation start. With
IDS: (1) Stop and Start config from the GUI. (2) Press IDS
- see that IDS indicator is ON. (3) Press Highway Drive and
wait till cruise control. (4) Press Start attack. (5) Observe - As

(a) Safe distance. (b) After attack.
Fig. 3. Demonstration results - cars animation

IDS
650 S—
600 ! Active/lnactive @

Alarm

PN
2 B3
3. 88

CarSpeed  Brakelnput::COUNT

5 Alarm_count: [88 |

-20. ! Intrusion detected.
50 51 52 53 54 55 56 57 58 59 60 Manual brakes only

v

(a) Graph shows increased Brake input
messages between 53s and 56s and corre-
sponding decrease in vehicle speed when
IDS is inactive.

(b) IDS section of
GUI when IDS is ac-
tive and attack is at-
tempted.

Fig. 4. Demonstration results

shown in Figure 4(b), Alarm LED indicates that intrusion is
detected. Warning text is displayed for the driver. Alarm count
maintains history as long as Config is running (analogous to
car ECUs being reflashed and reset). Cars in animation do
not collide. From this point on, there is no effect of Start
attack. Brake by wire is deactivated as a preventive measure
but manual brake application is possible with the pedal and
can be observed as a short dip in speed and also small dip in
distance from trailing car. The cars continue to drive safely.

IV. CONCLUSION AND FUTURE WORK

We have presented in this paper a CANoe-based simulation
framework demonstrating a CAN bus injection attack and a
rule-based IDS designed to mitigate it. This demonstration
provides an effective means to visualise the said attack and
countermeasure and observe the effects. Future work can be
pursued in two directions. One is to add other attacks such as
those exploiting fault-confinement to the demonstration and
other security concepts. Second is to extend the demonstra-
tion to include real-time simulations with Hardware-in-the-
loop (HIL) for more accurate analysis of attacks and IDS
implementations.
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