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Foreword

The Tenth International Conference on Advances in Signal, Image and Video Processing (SIGNAL
2025), held between March 9 - 13, 2025, continued the inaugural event considering the challenges
mentioned above. Having these motivations in mind, the goal of this conference was to bring together
researchers and industry and form a forum for fruitful discussions, networking, and ideas.

Signal, video and image processing constitutes the basis of communications systems. With the
proliferation of portable/implantable devices, embedded signal processing became widely used, despite
that most of the common users are not aware of this issue. New signal, image and video processing
algorithms and methods, in the context of a growing-wide range of domains (communications,
medicine, finance, education, etc.) have been proposed, developed and deployed. Moreover, since the
implementation platforms experience an exponential growth in terms of their performance, many signal
processing techniques are reconsidered and adapted in the framework of new applications. Having
these motivations in mind, the goal of this conference was to bring together researchers and industry
and form a forum for fruitful discussions, networking, and ideas.

We take here the opportunity to warmly thank all the members of the SIGNAL 2025 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to SIGNAL 2025. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SIGNAL 2025 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that SIGNAL 2025 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of signal
processing.

We are convinced that the participants found the event useful and communications very open.
We also hope that Nice provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city
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Combined EEG/ERG Features for Bipolar Disorders Diagnosis

Julie Muzzolon1,4, Xiaoxi Ren2, Steven Le Cam1, Thomas Schwitzer3, Valérie Louis Dorr1
1. Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France

2. Unité d’Imagerie Adaptative Diagnostique et Interventionnelle, Nancy, France
3. Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France

4. e-mail: julie.muzzolon@univ-lorraine.fr

Abstract—Bipolar Disorder (BD) is a disabling lifelong condition
that remains misdiagnosed. Robust biomarkers are needed for a
reliable and early diagnosis. Recent studies have demonstrated
that electrophysiological ERG/EEG measurements hold relevant
features for the diagnosis of BD. In this study, we propose a
combined analysis of these modalities with promising performance
for the detection of BD subjects with respect to controls.

Keywords-ERG; EEG; DWT; bipolar disorders; SVM.

I. INTRODUCTION

Bipolar disorders (BD) are characterized by alternating manic
and depressive episodes. Although these disorders are quite
common, the diagnosis is often late [1] and subjective since it
primarily relies on an interview guided by a clinician. Hence,
there is a need for more robusts biomarkers independent of
the subjective interpretations of patients and practitioners.

Previous studies have shown that psychiatric disorders in
general affect the responses of retinal rod and cone cells [2]–[4],
and that electroretinigram (ERG) responses to light stimuli can
help in the differential diagnosis of mental disorders [5][6].
Electroencephalogram (EEG) alterations in responses recorded
from primary visual cortex areas are also well-documented
[7][8].The aim of this study is to assess the benefit of combining
ERG with EEG measurements. To the best of our knowledge,
no previous research work applied machine learning techniques
to coupled ERG/EEG features for BD diagnosis.

Most studies focus on waveform amplitudes and latencies
of a and b waves [5]. These temporal features are sensitive to
noise and do not characterize the whole response waveforms.
We then propose to extract time-frequency (TF) features from
ERG and EEG responses using Discrete Wavelet Transform
(DWT) [9]. The most significant coefficients according to the
Wilcoxon rank sum test (alpha risk < 0.05) were selected.

Finally, we performed classification using Support Vector
Machine (SVM) on 6 datasets : we studied the discriminating
power of TF features against temporal features from EEG alone,
ERG alone and combined ERG/EEG. Our database being rather
modest in size, we performed stratified k-fold cross-validations
to avoid overfitting. Averaged F1-score, Accuracy, Recall and
Specificity scores are reported, as well as the standard deviation
(SD) of these criteria over the tested folds.

In Section II, we introduce the data source and methods
employed to collect the recordings, denoise the signals, extract
the biomarkers and perform our predictions. In Section III,
we describe the selected biomarkers and the prediction results.

Finally, in Section IV, we conclude about the benefit of coupled
ERG/EEG TF features in BD diagnosis.

II. METHODS

A. Data source and protocol

ERG (right and left eyes averaged) and EEG (average of
4 electrodes over primary visual cortex of both hemispheres)
responses to visual stimuli were recorded on euthymic bipolar
patients (N = 30, Age (mean ± SD) = 47.5 ± 13.3, 67.7%
women) and on healthy control subjects (N = 25, Age (mean
± SD) = 42.3±14.8, 60.0% women) who were included in the
BiMar study carried out by the CPN, Nancy, France. We used
the Retinaute device (BioSerenity), a virtual reality headset
fitted with electrodes that simultaneously records ERG and
EEG responses. All stimuli were performed according to the
International Society for Clinical Electrophysiology of Vision
(ISCEV) standards [10][11].

We recorded ERG and EEG responses under dark-adapted
(DA) and light-adapted (LA) conditions with a strength of 3.0
cd.s.m−2 (DA3.0, LA3.0). In total 16 and 32 flashes for DA3.0
and LA3.0 respectevily. A 30Hz flash LA3.0 (Flicker) was also
repeated 16 times. Each stimulus triggers an electrical activity
of a specific cell in the retina : the combined rod-cone activity
can be studied with DA3.0 and cone activity only with LA3.0.

B. Signal denoising and preprocessing

50Hz powerline interference was removed with an infinite
impulse response notch filter (center frequency = 50Hz, quality
factor = 5). We did a 10-level DWT decomposition and set
approximate coefficients and corresponding detail coefficients
to zero to remove low frequencies (0-1 Hz) and high frequencies
(above 62 Hz) [9]. The stimuli consisting of a repetition of
flashes, we then segmented our signals into equal-size epochs
starting 50 ms before each flash. Ouliers epochs were rejected
and we worked on the averaged epoch.

C. Biomarkers selection

We selected the amplitude and latencie of a and b waves
for DA3.0 and LA3.0 [11]. The retinal response to the Flicker
stimulus is periodic, so we measure the amplitudes and latencies
of the first trough and peak. The EEG responses result in a
series of negative (N-waves) and positive waves (P-waves), but
we focused on the P2-wave as it is the most robust [10].

In order to extract more relevant features, we computed
a 6-level DWT analysis [9] that gives a synthetic and non

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-245-6
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redundant representation of the ERG and EEG in both time
and frequency domains. The sampling frequency of our signals
being 1000 Hz, it allows us to analyze the energy content in the
frequency ranges [0, 8], [16, 31], [31, 62], [62, 128], [128, 256],
and [256, 512] Hz. We chose ’daubechies-4’ wavelet since it
gave the best reconstruction of our signals once the lowest
energy coefficients were removed.

A nonparametric Wilcoxon rank sum test with an alpha risk
of 0.05 was used to select coefficients significantly different
between patients with BD and the healthy population.

D. Machine learning model and prediction evaluation

We conducted our classification on ERG, EEG and coupled
ERG/EEG features. We analyzed wave time characteristics and
TF coefficients separately. Classification was made using a
linear SVM classifier that separates the two classes (1 = BD, 0
= controls)[12]. In order to evaluate the discriminating power
of our model, we performed a stratified cross-validation, where
our data set was randomly split into 5 folds within each the
proportion of the classes is preserved : 4 folds constitute the
training set (N = 44) and the 5th fold is the test set (N = 11).
We repeat this operation 10 times so we have 50 predictions
for each dataset.

We recorded the accuracy, recall, specificity and F1-score at
each step, then these scores are averaged. We also pay attention
to variability in the predictions by computing the SD of the
scores. A great recall (resp. specificity) means that only a few
bipolar patients (resp. controls) will be misclassified.

III. RESULTS

Temporal characteristics selection showed a significant
greater a-wave amplitude for DA3.0 (p < 0.05) as long as a
significant increase in LA3.0 a-wave latency (p < 0.05) in
bipolar patients compared to controls. In contrast, the Flicker
P2-wave amplitude is significantly higher (p < 0.01) in controls.
We extracted 12 significant DWT coefficients, 7 in ERGs and
5 in EEGs while we had only 3 features in the time domain.

We obtained better classification results using TF features
rather than temporal characteristics for any electrode, whether
they are coupled or not, as shown in Table I.

TABLE I. SCORES (MEAN (SD)) FOR COUPLED AND NON
COUPLED ERG AND EEG FEATURES

Electrode Feature F1score Accuracy Recall Specificity

EEG Amp./Lat. 65.4 (12.8) 60.2 (11.3) 72.7 (21) 45.2 (20.5)
DWT 75.5 (12.3) 73.1 (14.0) 76.7 (15.8) 68.8 (21.8)

ERG Amp./Lat. 70.9 (10.1) 67.5 (11.3) 73.3 (13.9) 60.4 (20.4)
DWT 76.5 (11.4) 74.4 (10.3) 79.7 (17.3) 68.0 (15.1)

EEG/ERG Amp./Lat. 74.4 (9.6) 68.4 (11.5) 84.7 (14.2) 48.8 (20.7)
DWT 82.8 (9.2) 80.4 (10.1) 87.3 (12.9) 72.0 (15.7)

Moreover, we show that combining EEG and ERG yields
in greater scores with a decrease in the variability for most of
the scores despite high standard deviations for EEG.

Finally, coupled EEG-ERG TF showed the best results with
a high recall (> 87%) meaning that a few bipolar patients will
remain undiagnosed, whereas the specificity is lower (72%).

IV. CONCLUSION AND FUTURE WORK

Our first results suggest that the TF features give a more
precise representation of the ERG and EEG signals compared
to the amplitudes and latencies of the waves. They also suggest
that coupled ERG/EEG provides greater discrimination and
more reliable predictions, making it highly beneficial for BD
diagnosis. However, the relatively small data set might limit
the generalizability of the obtained results. Our future work
will focus on improving these results by including more flash
stimuli and testing other machine learning classifiers.
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Abstract—This study presents a One-Dimensional Convolu-
tional Neural Network (1D-CNN)-based algorithm for the early
detection of childhood absence seizures in ElectroEncephaloGra-
phy (EEG) traces. This detection aims to enable timely sensory
interventions, such as acoustic or visual stimulation, to potentially
abort seizures. The algorithm was evaluated using a clinical
setting with full EEG data and a reduced number of electrodes
version of the data to show its suitability in a normal child
environment. On the clinical EEG database of 117 patients, the
model achieved promising results, including a Sensitivity of 0.859,
Precision of 0.819, F1-score of 0.837, and a mean detection delay
of 0.522 seconds. The performance remained satisfactory when
using fewer electrodes, with a Sensitivity of 0.837, Precision of
0.808, F1-score of 0.820, and similar detection delays. These
results demonstrate the method’s robustness and feasibility for
clinical applications, as well as its potential to be embedded in
wearable devices for continuous, real-time seizure monitoring and
intervention in children with absence epilepsy.

Keywords-Surface EEG; Childhood Absence Epilepsy; Onset
Detection; 1D-CNN.

I. INTRODUCTION

Typical absence seizures are characterized by brief and
sudden lapses in consciousness and an absence of voluntary
movements. Typically, they are associated with specific pat-
terns of generalized spike-wave discharges observed in EEG
recordings [1]. Childhood Absence Epilepsy (CAE) affects
between 6.3 to 8.0 children per 100 000 annually [2] and
accounts for 18% of all cases of epilepsy in school-aged
children. Absence seizures, if untreated, can occur frequently
throughout the day, sometimes up to 200 episodes daily [3].
Children with CAE generally follow a normal developmental
path. Nevertheless, approximately 30% of them experience
learning difficulties and Attention Deficit Hyperactivity Dis-
order (ADHD).

The diagnosis of CAE often involves a physical exam with
an EEG routine during voluntary hyperventilation. On EEG,
seizures are commonly associated with 3-4 Hz generalized
spike-wave patterns, but variations in speed, symmetry, and the
presence of polyspikes may also be observed. The treatment

of absence seizures typically involves antiepileptic drugs, al-
though there is a notable drug resistance rate of approximately
30% [4]. As an alternative to drug therapy, sensory or electrical
stimulation techniques have shown promise in interrupting
seizures [5], [6]. Research on rodent models has demonstrated
that auditory stimuli, such as a 2 kHz tone, during the first
few seconds of the seizure can stop around 52% of absence
seizures [6]. In humans[7], simple acoustic stimuli delivered
during the first 3 seconds of the seizure can inhibit the episode
with a success rate of 57%. Thus, detecting the onset of
seizures as early as possible is crucial for effectively applying
these kinds of stimulation techniques. Numerous studies for
absence seizure detection from surface EEG signals have been
reported during the last decades [8]–[12]. Surprisingly, none
of these approaches have focused on early detection, i.e.,
identifying seizure within one second of its onset, which is
crucial for applying external stimulation to abort seizures as
the stimulation must occur within the first seconds of the
seizure [7]. To address this gap, the paper proposes a new Deep
Learning-based (DL) approach designed for early detection
of absence seizures from raw EEG data. The method uses a
learned 1D-CNN model to identify seizure onset within short
sliding windows of EEG data in real-time, making it suitable
for integration into wearable devices. This approach improves
accuracy by analyzing data across multiple EEG channels.
Additional constraints on the consecutive detection of the onset
of seizures and the number of channels, where the seizure is
detected, are also proposed to minimize the False Detection
Rate (FDR), ensuring robustness of the pipeline in real-world
applications.

This communication is organized as follows: the dataset, the
CNN-based model and the evaluation criteria are presented in
Section II. The obtained results are reported in Section III.
Discussion, conclusions and perspectives are given in Section
IV.
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Figure 1. a. Selection of 50 segments for the seizure onset. The first segment is selected so the expert onset tag is located at the 384th sample. The other
segments are shifted from the first one from 1 to 49 samples. b. 20 segments were picked from -2 to 2s around the artifact tag (yellow position). c. 20 seizure
segments were picked starting from 2s to 4s after the seizure onset tag. d. Noise segments were picked where seizure onset tags were absent within 2s from
the starting noise segment.

II. MATERIAL AND METHOD

The annotated dataset, the data-driven model design and the
evaluation metrics are described in this section.

A. EEG recordings

In this study, EEG signals issued from 117 children (53
females and 64 males) diagnosed with CAE were used for
evaluating the proposed pipeline. The dataset was acquired
between 2013 and 2019, following the guidelines outlined in
the French recommendations for EEG procedures in children
[13] under the study protocol IRB:IORG0010044. The chil-
dren were between 4 and 11 years old, and the recordings were
conducted at two medical centers: Saint-Brieuc Hospital and
Necker-Enfants Malades Hospital. The study strictly excluded
children with intellectual disabilities or relevant neurological
abnormalities based on the new classification of epileptic syn-
dromes. EEG signals were acquired using the Deltamed Natus
system at 256 Hz sampling frequency, with recordings lasting
at least 20 minutes. The number of EEG electrodes varied
across recordings, depending on the age of the patients, with
11, 16, or 19 electrodes used. Following the 10/20 international
system, these recordings resulted in a total duration of 2.75
days of EEG data, or 49.9 days when measured across one
EEG channel. As the signals are z-score normalized for each
EEG trace, no magnitude scale was given in all figures.

B. EEGs annotation

It is well-known that the ground truth is mandatory for
the performance evaluation of machine learning methods. In
our study, clinical experts visually annotated the seizure onset

times to create a ground truth for training the model and
validate the detection of the proposed procedure. The experts
used dedicated software to mark seizure onset times across
each EEG channel in a recording. To ensure consistency, two
strict criteria were applied for selecting seizure events: (1)
at least four consecutive spike-wave occurrences had to be
visually detected, and (2) spike-waves had to be visible on
at least half of the EEG channels. This ensured that only
generalized seizures were included in the analysis, leading to
827 early seizure onset positions used for training and testing.

C. Training data set building strategy

An adequate design of the training data set is important to
construct an efficient and stable DL model. Thus, to address
the specific task of early detection of absence seizure onset,
the training set was built by dividing the EEG data into
two sets of 2-second segments: the first one contains seizure
onset segments and the second one encompasses non-seizure
onset segments. More precisely, as depicted in Figure 1-
a, the seizure onset set was constructed, by extracting 50
segments from each onset expert tags. These segments were
designed to capture temporal information around the seizure
onset by varying their relative position to the expert onset.
This allows the model to learn the dynamic transition from
background EEG to seizure activity. The seizure onset expert
tags, positioned around 1.5 seconds of the window, ensure
the presence of 1.5 to 2 spike waves at the end of the seizure
onset segments which contributed to a comprehensive analysis
of onset seizure events. Regarding the non-seizure onset set,
it includes three subcategories of EEG signals: background
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EEG, physiological and non-physiological artifacts, and fully
developed seizure segments (Figure 1-b). Background EEG
was randomly selected to represent a broad spectrum of normal
brain activity (Figure 1-d). Artifact segments, such as those
caused by patient movements, eye movements, or amplifier
disconnections, were included to avoid detecting them as false
positives (Figure 1-b). In addition, fully developed seizure
segments (Figure 1-c) were also added to ensure that the model
could differentiate between the onset of a seizure and the more
periodic, established spike-wave patterns of a full seizure.

D. DL-based model architecture

The proposed model is designed to analyze each EEG
electrode independently. Analyzing each EEG channel inde-
pendently ensures flexibility across different EEG systems and
configurations, making it suitable for various clinical settings.
The model consists of four 1D convolutional layers with
progressively increasing numbers of filters (from 32 to 256),
followed by average pooling layers, a flatten layer, and two
fully connected layers. A dropout rate of 50% was applied
to prevent overfitting, and the Rectified Linear Unit (ReLU)
activation function was used throughout the network. The final
output layer used a Softmax activation function to classify
segments as either seizure onset or non-seizure onset. The
training was optimized using the Adam algorithm, with a batch
size of 128, 10 epochs, and a learning rate of 0.001.

E. Training, detection stages

To ensure the generalizability, robustness, and stability of
the proposed DL-based method, the training stage involved
constructing 12 bootstrap datasets, with 80% of patients al-
located for training and 20% for testing. Importantly, the
model was trained based on a non-patient-specific detection
strategy. For each bootstrap, patients included in the training
set were excluded from the testing set. During the detection
phase (testing stage), for each tested patient, the trained model
was applied on each EEG channel using a 2-second sliding
window with a 1-sample shift. Segments were classified as
Event of Interest (EoI) based on the output probability of
the 1D-CNN exceeding a threshold T . However, the sliding
window approach could lead to multiple detections of the same
seizure onset, artificially exaggerating the FDR. To reduce this
issue, a post-processing step was introduced. It is based on
two thresholds: i) if the percentage of the number of positive
detections within the N consecutive 2 s time windows is
higher than a threshold Pw%, then the final sample of the last
window is qualified to be a seizure onset position, and ii) the
end of this last window is definitively tagged as a seizure onset
if it was simultaneously detected on a minimum percentage of
EEG channels (denoted as Pch%).

F. Evaluation metrics

In this study, the Sensitivity (S), Precision (P), F1-score and
FDR per Hour (FDR/H) metrics [14] are used to evaluate the
seizure onset detection performance of the proposed pipeline.
The limit for the detection was fixed to 2 seconds from an
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Figure 2. All plots x-axis represent the length (in sample) of the consecutive
window use along with the Pw threshold, In all plots, each color used
represents a Pw value (blue: Pw=70%; orange: Pw=80%; green: Pw=90%;
red: Pw=100%). a. Boxplot of the delays of the algorithm detection with
respect to the expert tags. b-d. violin plot of the Sensitivity (b), Precision (c)
and F1-score (d).

expert tag: if a detection of our algorithm is out of this ±2s
bound, it is considered as a False Positive (FP).

III. RESULTS

The first experiment was conducted to determine a good
compromise between the number N of the consecutive 2
s time windows and the threshold Pw. Regarding the Pch
(minimum number of channels where the onset was simul-
taneously detected), it was fixed to 50% in the sequel. Fig-
ures 2 (a), (b), (c) and (d) display the delays, in seconds, of
the algorithm detections relative to the expert annotations, S,
P and F1-score, respectively, for all tested patients (across the
12 bootstraps). Four values of Pw=70% (blue), 80%(orange),
90% (green),100% (red) were tested, where the number N
was varied from 10 to 190 with a step of 20. It can be seen
from Figure 2 (a) that as N increases, the detection delay
becomes more pronounced, regardless Pw. Figure 2 (b) shows
that Sensitivity decreases significantly for N > 50, while
Precision increases with increasing N , indicating a reduction
in false detection. Interestingly, the best F1-score, defined as
the harmonic average of the Sensitivity and the Precision,
was obtained for N = 50 and Pw=80%, with a satisfactory
detection delay around 0.5 s. Figure 3 focuses on the results
obtained for Pw=80%, N = 50, and Pch=50% across all
bootstraps. The average F1-score across all bootstraps was
0.837 ± 0.032, reflecting the model’s effectiveness in detect-
ing seizure onsets. Sensitivity and Precision were also well-
balanced, with averages of 0.859 ± 0.030 and 0.819 ± 0.064,
respectively, while the FDR/H remained low at 1.78 ±0.49.
Furthermore, the delay between the detected seizure onsets
and expert annotations was minimal, with an average delay of
0.522 seconds and a maximum delay of 1.5 seconds, as shown
in Figure 3 (b). These results confirm the model’s ability
for very early seizure detection. Additionally, the proposed
pipeline demonstrated robustness across different training and
testing sets, since the standard deviations were low, whatever
the analyzed metric.
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Figure 3. a: Sensitivity (S), Precision (P) and F1-score computed from the
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orange), 4 monopolar channels (in green), 2 bipolar channels (in red), 2 bipolar
channels with a retrained DL model (in purple). Medians are shown with black
lines and means are shown with white circles

The second experiment deals with the configuration of the
wearable device, where we can only expect that four electrodes
will be available. Thus, we evaluated our detector only with
Fp1, Fp2, T3 and T4 electrodes. The choice of two prefrontal
electrodes and two temporal electrodes was driven by the
fact that they could be hidden in the temples of glasses.
More precisely, the model used previously was applied in two
different montages: i) on 4 monopolar EEG channels (brown
in Figure 4), and ii) on two bipolar channels Fp1-T3 and Fp2-
T4 (red in Figure 4). Bipolar montages are known to be less
susceptible to artifacts and commonly used for clinical EEG
recordings. The impaired statistics using a reduced number
of EEG channels are presented in Figure 4. We observed
that the optimal F1-scores and the related sensitivities and
precisions decrease for both montages compared to the use of
all electrodes. Logically, the number of FDR/H increased from
1.783 for all electrodes to 3.071 and 3.060 for four monopolar
and two bipolar electrodes, respectively.

To enhance the applicability of the model to bipolar chan-
nels, we also evaluate a new model that was specifically
trained only on bipolar channels FP1-T3 and FP2-T4. As
expected, this adjustment led to a significant improvement in
results, although it does not exactly reach the performance
achieved using all EEG channels (purple vs orange boxplots in
Figure 4). With respect to the Performances of the initial model
applied on bipolar montage (red boxplots), the Sensitivity,
Precision and F1-score were increased from 0.78 to 0. 837
(±0. 064), 0.771 to 0. 808(±0. 063), and 0.796 to 0. 820 (±0.
040), respectively. In addition, the FDR/H was improved from
3.06 to 2.03. Regarding the delays of the detection of the
seizure onset, the mean delay was almost not impacted (0.460

s).

IV. DISCUSSION AN CONCLUSION

The proposed study is based on existing research, which
demonstrates that absence seizures can be inhibited if external
sensory stimulation is applied early in the seizure onset.
Detection of the onset of the absence seizure as early as
possible is mandatory to abort seizure progression, as delayed
stimulation becomes ineffective once the seizure is fully es-
tablished. Although several studies have been dedicated to the
automated detection of absence seizures, no technique has yet
been designed for early seizure onset detection (less than one
second from the onset). Thus, this study introduces a new 1D-
CNN-based pipeline for the early detection of absence seizures
in children. Furthermore, the pipeline did not need heavy
preprocessing and can be implemented in wearable devices.
The 1D-CNN was favored over other models, such as Long
Short Term Memory (LSTM) and Temporal Convolutional
Network (TCN), due to its simplicity, ease of paralleliza-
tion, and performance efficiency in handling EEG data. For
instance, the computational time for processing data from a
15-electrodes is only about 0.4 ms. Obtained results, on a
large real database, show that the model is very efficient in
detecting the onset of seizures in children, with a Sensitivity
of 0.859, Precision of 0.819, and F1-score of 0.837, alongside
a time delay of just 0.522 seconds from the expert annotations.
Importantly, even with a reduced set of electrodes (two bipolar
channels), the method maintained good performance, which
indicates that the algorithm is well-suited for portable devices.
An adjustment of some parameters in the postprocessing step
can also provide a possibility for a tradeoff between FDR/H
and the maximal delay of detection allowed by a physicist to
abort seizures.

The study acknowledges certain limitations, including the
challenge of dealing with false detection due to short spike
trains, which clinicians do not consider as seizures. In addition,
more intensive clinical or animal studies are necessary to deter-
mine the optimal window length for effective intervention. The
exploited EEG data were collected in controlled environments,
and future work should focus on validating the robustness of
the proposed pipeline in more variable settings, particularly in
wearable devices.
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Abstract—This study presents an integrative strategy for simul-
taneously localizing brain sources and inferring effective connec-
tivity. The proposed approach leverages the model underlying the
events of interest as a regularizer in the electroencephalographic
inverse problem. The effectiveness of this strategy is confirmed
using realistic simulated high resolution electroencephalographic
signals in the context of epilepsy, and compared to the conventional
sequential strategy, where connectivity estimation is performed
after solving the electroencephalographic inverse problem.

Keywords- Effective connectivity; inverse problem; optimization;
EEG; epilepsy.

I. INTRODUCTION

Inferring effective connectivity among brain regions from
surface High Resolution (HR)-ElectroEncephaloGraphic (EEG)
recordings is typically performed through a sequential process
involving: (i) preprocessing EEG data to remove artifacts
and detect Events of Interest (EIs); (ii) solving the EEG
inverse problem to pinpoint the spatial location of brain regions
responsible for the observed EIs and reconstruct their neural
activities; and (iii) inferring effective connectivity among
these identified regions based on their reconstructed neural
activities. However, this sequential approach faces two major
limitations: (i) the error propagation phenomenon across the
successive steps, and (ii) the absence of the optimal pairing of
source localization methods and effective connectivity measures.
Furthermore, even if such an optimal pairing exists, it is
highly dependent on the specific application. To address these
limitations, a Proof-of-Concept (PoC) study of an integrative
strategy that combines both source localization and brain
effective connectivity inference steps into a single one is
presented here. Note that a similar strategy was recently
proposed in [1] but within the context of functional connectivity.
The proposed integrative strategy is evaluated here in the
context of drug-resistant epilepsy [2], where identifying brain
connectivity is essential for localizing regions responsible for
seizure initiation and propagation. This information is valuable
for surgical treatments aimed at reducing or eliminating seizures.
The performance of the proposed integrative strategy is tested
using realistic simulated HR-EEG signals and compared to
the conventional sequential strategy, where brain connectivity
is determined after solving the EEG inverse problem. The
remainder of this paper is organized as follows: Section II
details the proposed integrative strategy, including the EEG
observation model and optimization framework. Section III
presents simulation results, comparing its performance to the

conventional sequential method. Finally, Section IV summarizes
the findings, discusses implications for epilepsy research, and
suggests future directions.

II. TOWARDS AN INTEGRATIVE STRATEGY

This section presents the concept of the proposed integrative
strategy, emphasizing the key idea of combining the brain
source localization problem with brain effective connectivity
inference.

A. EEG observation model

From now on, HR-EEG recordings are assumed to be
preprocessed, with artifacts removed and EOIs (pre-ictal
epileptic spikes) detected. Assume that the brain is divided
into P regions, each consisting of synchronized dipoles in the
source space. Then, the brain electrical activity over T time
points, observed by N scalp EEG sensors, follows the linear
model:

X = GY +Xb

where X ∈ RN×T is the spatio-temporal observation matrix,
G ∈ RN×P is the lead field matrix, which is a known matrix
encoding the transfer medium between the cortical surface
(source space) and the scalp (observation space), Y ∈ RP×T

collects the neural activities of epileptic regions, and Xb ∈
RN×T corresponds to background brain activity.

B. EEG inverse problem

The EEG inverse problem involves estimating the positions of
brain sources underlying the EIs (e.g., pre-ictal epileptic spikes)
and reconstructing their corresponding electrical activities. To
this end, the following optimization problem is to be solved:

Minimize
Y

||X −GY ||2F +

C∑
c=1

λcfc(Y ) (1)

Here, fc represents the c-th regularization term, encoding prior
information about the latent source matrix Y , λc ∈ R∗

+ is
the associated penalty parameter, and ∥.∥F is the Frobenius
norm. For example, in the Weighted Minimum Norm Estimate
(wMNE) approach [3][4], widely used to solve the EEG inverse
problem for its simplicity and efficiency, the regularization
term is f1(Y ) = ∥BY ∥2F, where B is a weighting matrix
with diagonal entries Bp,p = ∥gp∥−1

2 . Here, gp denotes the
p-th column of G ∈ RN×P . The role of B is to compensate
for the bias in the estimation of deep brain sources.

8Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-245-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIGNAL 2025 : The Tenth International Conference on Advances in Signal, Image and Video Processing

                            16 / 53



C. The proposed integrative strategy

As previously mentioned, the proposed integrative strategy
unifies source localization and brain effective connectivity
inference into a single step. In the context of epilepsy, pre-ictal
epileptic spikes, events occurring just before seizure onset,
offer valuable insights into the brain regions initiating seizures.
The key idea of the integrative strategy is to incorporate the
mathematical model underlying the EOIs as an additional regu-
larization term in the EEG inverse problem. In this PoC study,
a MultiVariate AutoRegressive (MVAR) model is employed
to describe the pre-ictal epileptic spikes. Albeit suboptimal as
neural activities exhibit rather nonlinear interactions, the MVAR
model is widely adopted in effective connectivity measures
(e.g., Granger index [5][6]). An MVAR modeling of Y is
given by:

Y =

L∑
l=1

ΘlY l +W (2)

where Θl ∈ RP×P denotes the matrix of model coefficients,
Y l ∈ RP×T is a delayed version of Y ∈ RP×T associated
with the l-th time lag, and W accounts for the model residual,
where the (i, j)-th entry of W verifies Wi,j ∼ N (0, σ). The
elements of the L matrices Θl reflect, to a large extent, causal
effects that those delayed signals have on the signal they are
constituting. Thus, estimating these coefficients will lead to
infer the causal relationships among different epileptic sources.
Now, by considering the well-known wMNE algorithm for
source localization and the MVAR model as a model underlying
the observed pre-ictal epileptic spikes, the proposed integrative
strategy consists in solving the following optimization problem:

Minimize
Y ,{Y l}1≤l≤L,{Θl}1≤l≤L

||X−GY ||2F+γ||Y −
L∑

l=1

ΘlY l||2F

+ λ||BY ||2F + ξ

L∑
l=1

||BY l||2F + β

L∑
l=1

||Θl||1 (3)

where γ, λ, ξ, and β are hyperparameters optimized using a
grid search strategy to achieve the best results. The inclusion
of the L1-norm term emphasizes the selection of only the most
significant connections among brain regions. Solving the above
optimization problem is performed by minimizing instead its
associated augmented Lagrangian function, where the Proximal
Alternating Linearized Minimization (PALM) algorithm [7] is
used as a solver.

III. NUMERICAL RESULTS

To assess the feasibility and performance of the proposed
integrative strategy, a realistic simulated 257-channel HR-
EEG dataset of 60 seconds with a sampling frequency of
1024 Hz was generated to model a focal epileptic seizure.
In this simulation, the right frontal pole (r-FP) region was
defined as the seizure onset zone, while the right middle
temporal gyrus (r-MT) region represented the propagation
zone, establishing a causal effect from r-FP to r-MT. The
dataset was created using the "Coalia" software [8], which
incorporates realistic head models. The brain was parcellated

into 66 regions based on the Desikan-Killiany atlas [9]. As far
as the regularization parameters γ, λ, ξ and β, were concerned,
they were set to 0.5, 23, 1 and 1, respectively. The proposed
strategy was compared to the traditional sequential approach,
where the wMNE algorithm was employed to solve the EEG
inverse problem, followed by Granger causality [5] to estimate
effective connectivity among the localized neural sources based
on their reconstructed activities. For both strategies, the study
was conducted over a time period of 6 seconds right before the
onset of the epileptic seizure. In terms of source localization,
the proposed integrative strategy demonstrated clear superiority
over the sequential strategy based on the wMNE algorithm [3],
[4], as illustrated in Figure 1.

(a)

(b) (c)

r-FP

r-FP r-FP
l-FP

r-MT

r-MT r-MT

r-BSTS

Figure 1. Epileptic source localization. (a) ground truth, (b) sequential strategy
with wMNE, (c) proposed integrative strategy.

Specifically, in addition to correctly localizing the brain regions
associated with the seizure (r-FP for the onset region and
r-MT for the propagation region), the sequential strategy
where the wMNE algorithm is used to solve the EEG inverse
problem, followed by the Granger causality measure for
inferring effective connectivity, also identified other spurious
brain regions, such as the left frontal pole (l-FP) region as an
onset region and the right banks of the superior temporal sulcus
(r-BSTS) as a propagation region. In contrast, the proposed
integrative strategy did not identify any spurious regions,
providing a more accurate and reliable result. Both strategies
successfully identified the correct causal effect between the
two brain regions, r-FP and r-MT. This effect is highlighted
in bold, as shown in Table I for the conventional sequential
strategy and Table II for the proposed integrative strategy,
where the interactions are ranked from highest (leftmost) to
lowest (rightmost).

TABLE I
ESTIMATED EFFECTIVE CONNECTIVITY USING THE SEQUENTIAL STRATEGY.

Interaction 1 Interaction 2 Interaction 3 Interaction 4
l-FP → r-MT r-FP → r-MT r-FP → r-BSTS l-FP → r-BSTS
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TABLE II
ESTIMATED EFFECTIVE CONNECTIVITY USING THE INTEGRATIVE

STRATEGY.

Lag Interaction 1 Interaction 2
3 r-FP → r-MT ×
5 r-FP → r-MT ×
6 × r-FP → r-MT

Average r-FP → r-MT

It is noteworthy that the connectivity matrices obtained for
each strategy were thresholded such that all values in the
matrices that were less than 90% of the largest value were
set to zero. This thresholding step ensured that only the most
significant connectivity relationships were retained for further
analysis. However, compared to the sequential strategy, the
proposed integrative strategy offers the possibility for a dynamic
analysis of the effective connectivity over the different time
lags. For some time lags (i.e., l ∈ {3, 5}), the highest estimated
causal interaction (i.e., Interaction 1), corresponds to the true
effective connectivity while for other time lags (i.e., l = 6), it
stands for the second most important connectivity value (i.e.,
Interaction 2). Thus, contrary to the sequential strategy, where
the true causal effect is ranked as the second most important
connectivity pattern (see Table I), the integrative strategy offers
an average effective connectivity over the considered time lags,
where the true effective connectivity accounts for the most
significant connectivity pattern (see Table II). It is noteworthy
that Table II highlights only the interactions among the regions
of interest (i.e., r-FP and r-MT).

IV. CONCLUSION AND FUTURE WORK

In this communication a PoC study of an integrative
strategy for simultaneous brain source localization and effective
connectivity estimation was proposed. The strategy relied
mainly on the model underlying the EIs as an additional
regularization term in the source localization problem. This
strategy was evaluated in the context of focal epilepsy with
pre-ictal epileptic spikes as EIs that were assumed to follow an
MVAR model. The effectiveness of this integrative solution was

confirmed using realistic surface HR-EEG recordings compared
with the conventional sequential strategy, where wMNE was
considered for source localization and Granger causality for
effective connectivity estimation. Future work will focus on
evaluating the proposed strategy in more complex scenarios,
such as incorporating multiple epileptic sources and evaluating
its performance on real HR-EEG data from multiple epileptic
patients.
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Abstract—This paper proposes a novel High Dynamic Range
video (HDRv) reconstruction method from Standard Dynamic
Range video (SDRv), with a Feature Modulation Spatio-
Temporal Fusion network (FMSTFnet). FMSTFnet has low-
frequency and high-frequency parts with a pyramid structure.
The low-frequency part mainly includes a Combined Global
and Local Feature Modulation module (CGLFM) and a
Spatio-Temporal Fusion Module (STFM). CGLFM modulates
global and local features of SDR frames to correct the detail
deviation caused by brightness differences in different regions
and obtain preliminary HDR frames. STFM is designed to
enhance the preliminary HDR frames using inter-frame
information, and eliminate possible inter-frame artifacts.
Finally, an adaptive hybrid module is constructed to fuse the
low-frequency HDR frames and gradually extend the
processed high-frequency information from low resolution to
the higher. The proposed network fully utilizes the inter-frame
information of multiple SDR frames and the contextual
information of previously predicted HDR frames to generate
high-quality results that are consistent in the temporal domain.
The experimental results show that compared with many
representative methods, the proposed method can reconstruct
higher quality HDR videos.

Keywords-high dynamic range video reconstruction; feature
modulation; spatio-temporal fusion; transformer block.

I. INTRODUCTION
New generation displays can display visual contents

with High Dynamic Range (HDR) and wide color gamut,
providing a higher visual experience quality. However, at
present, most video resources are still stored as Standard
Dynamic Range videos (SDRv), resulting in a shortage of
HDR video (HDRv) resources. Thus, generating HDRv
from SDRv (SDRv-to-HDRv) is a challenging task [1][2].

For learning-based SDRv-to-HDRv, Kim et al. [3]
proposed a method with separating input SDR frame into
base and detail layers for different processing, which has the
advantage of being easier to restore fine details.
Subsequently, they integrated video super-resolution with
SDRv-to-HDRv task to enhance texture details [4]. Chen et
al. [5] designed a deep learning network for a single SDRv-
to-HDRv task, which includes global feature modulation,
local enhancement, and over-exposure compensation, and
achieved good results. Wang et al. [6] proposed an SDRv-
to-HDRv method with three sub-networks corresponding to
the three processes in HDR imaging pipeline, to generate

HDR images with rich global information. Xu et al. [7]
constructed a frequency-aware modulation network that
enhances the contrast of SDR to HDR conversion in a
frequency adaptive manner, for reducing structural
distortion and artifacts in the low-frequency regions. Xue et
al. [8] proposed an improved residual block for extracting
and fusing multi-layer features for fine-grained HDR image
reconstruction. Guo et al. [1] constructed an HDRTV4K
dataset and an HDR to SDR degradation model, and
proposed a brightness segmentation network consisting of a
global mapping backbone and two Transformer branches on
the brightness range. The above methods mainly perform
SDRv-to-HDRv tasks spatially. Many SDRv-to-HDRv
methods mainly utilize a single SDR frame to generate
corresponding HDR frame, which may lead to temporal
inconsistency of HDRvs and produce annoying artifacts.
Cao et al. [9] presented a kernel prediction network based
SDRv-to-HDRv method, which utilizes multi-frame
interaction modules to capture spatial information of multi-
frame data and uses correction between adjacent frames to
maintain inter-frame consistency.

In this paper, a novel SDRv-to-HDRv method with the
design of Feature Modulation Spatio-Temporal Fusion
network (FMSTFnet) is proposed. Its main contributions are
summarized as follows: (1) A Combined Global and Local
Feature Modulation module (CGLFM) is designed to
perform macroscopic global and detailed local modulation
on the current frame to reduce the color deviation of HDR
video frames; (2) A Spatio-Temporal Fusion Module
(STFM) is constructed, which can process contextual
information in spatio-temporal domain, enhancing spatial
results while reducing temporal inconsistencies. (3) Low-
frequency and high-frequency information of SDRv are
processed separately using a pyramid structure and fused
with each other to obtain high-resolution output.
Experimental results demonstrate the effectiveness of the
proposed method.

The rest of the paper is organized as follows. Section 2
describes the proposed method in detail, Section 3 gives
experimental results and analyses, and finally Section 4
concludes the paper.

II. THE PROPOSEDMETHOD WITH FMSFNET
A novel SDRv-to-HDRv method with the designed

FMSTFNet is proposed, as shown in Figure 1. Aiming at the
problem of color deviation, a CGLFM is designed by
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combining adaptive feature modulation with Fourier
convolution. For processing spatio-temporal information, a
STFM is designed to fuse inter-frame features, and
Transformer is employed to enhance the features, which can
further reduce color deviation while eliminating temporal
artifacts. The designed FMSFNet first establishes a pyramid
structure and decomposes the input SDR frame into high-
frequency component pyramids and low-frequency SDR
frames. The low-frequency SDR frames are input to
CGLFM and STFM to obtain low-frequency HDR frames.
Residual blocks [10] are leveraged to reinforce the high-
frequency components. Then, the enhanced high-frequency
components are fused with low-frequency HDR frames
using an Adaptive Hybrid Module (AHM), gradually
expanding from low resolution to higher resolution results,
and reconstructing the final high-resolution HDRv frame.

Specifically, for the t-th SDR frame It, it is firstly
decomposed into a Gaussian pyramid M t

I =[ 0I
t , 1I

t ,… t
sI ]

and a high-frequency component pyramid M t
L =[ 1L

t ,… Lts ],
where s is the number of downsampling. Similarly, It+1 is
also processed like It. After that, the low-frequency
components of 0I

t and 1
0I
t  are respectively fed into CGLFM

with weight sharing to obtain the preliminary HDR frames,
denoted as 1 1

0 0, ( , )t t t t
CGLFMf +F F I I .

In Figure 1, Ft and Ft+1 are then fed to STFM for spatio-
temporal information enhancement; meanwhile, the (t-1)-th
preliminary HDR frame Ft1 is also input to STFM to obtain
the enhanced HDR frame 1 1( , , )S F F Ft t t t

STFMf   .
Each layer of the high-frequency component pyramid

M t
L is fed to multiple residual blocks ƒRes(·), to enhance the

high-frequency information, denoted as ( )t t
L Res LfK M . By

relying on the high-frequency information t
LK and the

enhanced pyramid low-frequency HDR frame St, high-
resolution results can be reconstructed. Adaptive Hybrid
Module (AHM) is used to fuse high-frequency component
pyramids with low-frequency HDR frames, the final output

pyramid E t
L =[ 0Y

t , 1Y
t ,…Y t

s ] is obtained, where Y t
s denotes

the reconstructed HDR frames, ( , )t t t
s AHM LfY K S .

A. CGLFM
In the SDRv-to-HDRv task, there may be a phenomenon

of uneven repair of over-exposed and under-exposed regions,
as well as uneven color mapping from standard color gamut
to wide color gamut. To address this issues, CGLFM, as
shown in Figure 1, is designed, in which the global rough
modulation is for roughness adjustment on images, while the
local detail fine-tuning is for local detail enhancement.
Specifically, the input SDR frame It is processed through
two-layer convolution to obtain low dynamic range features
IF, which will be modulated into high dynamic range
features Ft. CGLFM has two parts, namely, conditional
generation module and feature modulation module. The
conditional generation module can extract global and local
information from features for modulation. Global conditional
generation module uses Fourier convolution to perform
global operations on input features, and then uses average
pooling to downsample while reducing information loss, so
as to obtain global information of the image. After five
downsampling and global pooling, the feature CG is get,
denoted by ( ))(AVG C

G F
GFMf fC I , ƒCGFM(·) and ƒAVG(·) are

the global operation and global pooling, respectively.
By processing CG, global conditional features CG

V (V=A,B)
are obtained, which are used as the global modulation
vectors. Local modulation requires local features that
represent the corresponding pixel positions in the image.
Here, through upsampling the global features five times and
decoding from the encoded global information, the local
conditional features C L

V is obtained and expressed by

( ))(C ICLFM CGV FM
L Ff f , and ƒCLFM(·) is the local operation.
Then, perform global rough modulation and local detail

fine-tuning on the features. The former uses global features
CG
A to point-multiply the SDR feature HG to achieve global

Figure 1. The proposed SDRv-to-HDRv method with the design of Feature Modulation Spatio-Temporal Fusion network (FMSTFnet).
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scaling, and directly adds C G
B to achieve global displacement.

The latter uses C L
A to point-multiply the feature HL to

achieve local scaling, followed by adding C L
B to achieve

local displacement. After implementing local and global
modulation, the features are converted to the HDR domain to
obtain the preliminary HDR frame, which is expressed as

( )G G
L A G B  H C H C 

( )F C H Ct L L
A L B   

B. Spatio-Temporal Fusion Module (STFM)
STFM includes spatial and temporal reinforcement,

mainly relying on the non-local attention mechanism. As
shown in Figure 1, STFM mainly includes Hashing Spatio-
Temporal Non-local Attention Module (HSTNAM), Hashing
Non-local Attention Module (HNAM) [11], and Vision
Transformer (ViT). To reduce resource consumption, when
fusing inter-frame information in the temporal domain, only
the information transmitted from the previous frame is used.
Only the t-th and (t+1)-th frames are processed, and the (t-1)-
th frame is obtained from the previous processing, as shown
in Figure 2. Note that the (t-1)-th frame transmitted in the
network is the intermediate feature rather than image. This
processing can reduce the used memory while allowing the

network to learn the entire sequence information. The input
(t-1)-th frame contains the content of the previous video
frames. As the number of input video frames increases, the
network can learn all the early video frames.

STFM has four input features, i.e., Ft, Ft+1, Ft1 and St1.
It has conducted two inter-frame information fusions, and
with the deepening of the network, more deep level
information is carried in the features. HSTNAM in Figure
3(a) is constructed to fuse the features of the t-th, (t-1)-th and
(t+1)-th frames to obtain inter-frame information. Figure 3(b)
represents the hashing non-local attention module, which
differs from HSTNAM in that it only calculates spatial
domain non-local attention. The purpose of STFM is to
enhance features from both spatial and temporal perspectives,
learn global inter-frame information to improve the temporal
correlation of videos.

C. HDR Reconstruction and Loss Function
The FMSTFNet employs a pyramid structure, and the
proposed method mainly focuses on handling the low-
frequency components of the pyramid, which are processed
using the above modules. For the high-frequency
components, the stacked residual blocks are directly used for
processing. AHM is constructed to facilitate rapid scaling of
low resolution results. A lightweight module is designed as

1 2 1( ( ( ( ( )), )))t t t
s+ s sh cat up Y Y K 

where up(·) is the bilinear interpolation, ϕ1(·) and ϕ2(·) are
two 3×3 convolutional layers, cat(·) is the channel
concatenation, t

sK is the high-frequency component of It,
and h(·) is the ReLU activation function.

The proposed loss function includes a multi-scale HDR
reconstruction loss Lr and a perceptual loss Lp, expressed as

1 2: r ploss L L L    

where Lr represents the L1 loss between the ground truth
HDR image pyramid HL and the predicted HDR image
pyramid YL. Lp is the L1-norm difference between the
intermediate feature maps when YL and HL are separately
fed into the pre-trained VGG19.

III. EXPERIMENTAL RESULTS
This section verifies and compares the proposed method

with some representative methods including ITM-CNN [3],
FMNet [7], KPN-MFI [9], KUNet [6], SR-ITM [4] and
HDR-TV [5], and so on. Moreover, ablation experiment is
constructed to investigate the role of the core modules of the
proposed method. The proposed method is implemented
with Pytorch, and the environment is configured with an
Intel(R) Xeon(R) Silver4210 CPU, NVDIA RTX 3090Ti
GPU. The proposed FMSTFnet is trained by the Adam
optimizer, with β1=0.9 and β2=0.999. The batch size is 7, the
initial learning rate is set to 0.0002, and it decays to 0.00001
after 100 epochs. The network parameters are initialized by
the MSRA tool. A multi-frame SDRv-to-HDRv dataset is
constructed for training and evaluation. 20 HDR10 standard
HDR videos with 21603840 are collected from YouTube,

Figure 2. Information transmission approach of FMSTFNet.

Figure 3. The used two non-local attention modules.
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each with a corresponding SDR video. All videos are
encoded using PQ curves and BT.2020 color gamut. 16
pairs of videos are used for training, and the remaining 4
pairs are used for testing. To evaluate the quality of
generated HDR videos, six quality metrics are used, namely
PSNR, SSIM, spectral residual based similarity (SR-SIM),
learned perceptual image patch similarity (LPIPS), color
difference indicator (ΔEITP), and HDR visual difference
predictor (HDR-VDP).

Table I presents the objective comparison between the
proposed method and representative methods, and the best
results are presented in bold. The proposed method achieves
better HDR video reconstruction performance, resulting in
higher fidelity in spatial details and dynamic range of the
reconstructed HDR video. The proposed method combines
local and global features in the spatial domain and fuses
inter-frame features in the temporal domain, this can better
fit the nonlinear mapping process required for SDR frame to

HDR frame reconstruction. The proposed method also
achieves the best performance in ΔEITP, demonstrating the
superiority of the proposed method in color restoration.

Figure 4 shows the visual effects of videos obtained by
different methods. For each scene, the upper row shows the
original HDR frames without tone mapping, while the lower
is the tone mapped frames, similar to [4]. It can be found
that the proposed method reconstructs the HDR images with
higher visual quality and effectively restores the color
information. For example, in the cloud region of the sky, the
comparison methods produce significant visual artifacts. In
contrast, the proposed method utilizes both local and global
information to enhance the reconstruction results, thus more
realistically reproducing the information of cloud region.

For the ablation experiments, Table II shows the results
of average PSNR, SSIM and ΔEITP for different modules
and their combination. Clearly, the proposed full network

TABLE I. THE RESULTS OF THE PROPOSEDMETHOD COMPARED TO THE EXISTING REPRESENTATIVEMETHODS
Methods PSNR↑ SSIM↑ SR-SIM↑ LPIPS↓ ΔEITP↓ HDR-VDP↑

ITM-CNN [3] 29.96 0.9622 0.9358 12.73 22.354 8.0753
FMNet [7] 35.70 0.9811 0.9367 8.78 9.621 8.1787

KPN-MFI [9] 34.73 0.9645 0.9592 14.85 9.733 8.4039
KUNet [6] 35.72 0.9743 0.9419 9.58 10.458 8.2122
SR-ITM [4] 33.89 0.9782 0.9494 10.15 15.522 8.1667
HDR-TV [5] 37.45 0.9858 0.9650 6.53 8.947 8.6111
Proposed 38.53 0.9880 0.9710 5.34 7.517 8.6806

TABLE II. THE RESULTS OF AVERAGE PSNR, SSIM AND ΔEITP FOR DIFFERENTMODULES
CGFM AHM CLFM HSTNAM1 ViT HSTNAM2 PSNR↑ SSIM↑ ΔEITP↓

 36.51 0.9824 9.730
  37.60 0.9862 8.574
   37.60 0.9866 8.647
    37.70 0.9863 8.434
     37.70 0.9869 8.415
      38.53 0.9880 7.517

Ground truth image GT FMNet ITM-CNN KPN-MFI KUNet SR-ITM HDR-TV Proposed

(a) Scene 1

Ground truth image GT FMNet ITM-CNN KPN-MFI KUNet SR-ITM HDR-TV Proposed

(b) Scene 2
Figure 4. Visual effects of videos obtained by different SDRv-to-HDRv methods (Two partially enlarged regions are water splashes and the sky).
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achieves the best performance, which verifies the
effectiveness of each module.

IV. CONCLUSIONS
We have proposed a new HDR video reconstruction

method from SDR video method based on the design of
Feature-Modulation Spatio-Temporal Fusion network (called
FMSTFnet). The proposed method can fully utilize temporal
and spatial information to reconstruct HDR video, improve
the visual effect of the HDR video, and reduce its color
deviation. The designed FMSTFnet has low-frequency and
high-frequency parts with a pyramid structure, and combined
global and local feature modulation module and spatio-
temporal fusion module are constructed for eliminating
possible inter-frame artifacts and color deviation. In future
work, it will be extended to HDR light field reconstruction
and angular consistency constraint will be explored to ensure
better quality of reconstructed HDR light field images.
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Abstract—A novel framework, called InterGridNet, is in-
troduced, leveraging a shallow RawNet model for geolocation
classification of Electric Network Frequency (ENF) signatures in
the SP Cup 2016 dataset. During data preparation, recordings
are sorted into audio and power groups based on inherent
characteristics, further divided into 50 Hz and 60 Hz groups via
spectrogram analysis. Residual blocks within the classification
model extract frame-level embeddings, aiding decision-making
through softmax activation. The topology and the hyperparam-
eters of the shallow RawNet are optimized using a Neural
Architecture Search. The overall accuracy of InterGridNet in
the test recordings is 92%, indicating its effectiveness against the
state-of-the-art methods tested in the SP Cup 2016. These findings
underscore InterGridNet’s effectiveness in accurately classifying
audio recordings from diverse power grids, advancing state-of-
the-art geolocation estimation methods.

Keywords-electric network frequency (ENF); grid location esti-
mation; audio processing; multimedia forensics

I. INTRODUCTION

Due to power grid disturbances, the Electric Network Fre-
quency (ENF) is a dynamic time series that exhibits fluctua-
tions around its nominal frequency of 50 Hz in Europe and
60 Hz in the United States/Canada. These oscillations result
from instantaneous load variations within the power grid,
displaying a consistent pattern within interconnected grids.
ENF signals become embedded in multimedia recordings
captured in proximity to power sources. This distinctive signal
can subsequently be extracted [1]–[4] from digital recordings
for various applications, such as verification of recording
timestamps [5]–[8].

Another application where ENF is also utilized is grid local-
ization. Grid localization can be treated as inter-grid [9]–[11]
or intra-grid [10] [12] [13] localization. Inter-grid localization
focuses on identifying the grid in which a media recording was
captured, while intra-grid localization aims to determine the
recording’s location within the specific grid precisely. Inter-
grid localization is briefly surveyed in Section II.

The intra-grid localization is considered more challenging
due to the highly subtle distinctions in the ENF signatures
encoded within the recorded signals. However, this assumption
is challenged by [14], who detail noticeable differences due
to varying city power consumptions and the time for load
changes to impact different grid segments, a concept further

explored in [15]. Additionally, ENF fluctuations can stem from
system disruptions like short circuits, power line switching,
and generator failures, as noted in [16]. Minor local load
changes affect ENF differently than major events like gen-
erator disconnections, which impact the entire grid at about
500 miles per second [17]. Given the aforementioned intra-
grid characteristics, various methods have been proposed to
tackle the problem of intra-grid localization [18] [19] [20].

A novel framework, termed InterGridNet, is introduced for
geolocation classification exploiting the ENF. The framework
offers a comprehensive approach that includes data prepara-
tion and preprocessing techniques using a shallow RawNet
[21] for classification. The topology and the hyperparameters
of InterGridNet are optimized through Neural Architecture
Search (NAS), enhancing its capability to tackle inter-grid
localization in audio recordings. It incorporates innovative
techniques, including filtering to isolate the relevant ENF
signal, using residual layers to extract frame-level embeddings,
and employing a softmax activation function in the decision-
making process. To our knowledge, this represents a pio-
neering advancement spanning from preprocessing techniques
to the classification stage, establishing a novel framework in
geolocation classification using deep learning methodologies.
The Signal Processing (SP) Cup 2016 dataset [22], the only
benchmark dataset publicly available, is employed for assess-
ing geolocation classification.

The key contributions of the paper are as follows:

• A novel framework, coined InterGridNet, is proposed to
treat geolocation estimation as a classification problem
among nine power grids, employing a shallow RawNet
optimized with NAS and leveraging ENF signatures from
the benchmark SP Cup 2016 dataset. It should be noted
that a shallow RawNet is utilized to reduce the number
of parameters and achieve comparable performance with
that using a deeper neural network.

• Experimental evaluation, including extensive testing of
the SP Cup 2016 dataset, showcases the effectiveness
of InterGridNet in geolocation classification across nine
distinct power grids, where it is compared with state-of-
the-art methods.

The remainder of the paper is organized as follows. Sec-
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tion II provides an overview of related work. The proposed
framework is detailed in Section III. Experimental evaluation
is conducted in Section IV. Section V concludes the paper by
providing information for future work.

II. RELATED WORK

ENF variations due to load fluctuations and grid frequency
control help to localize audio recordings. Grigoras’s research
demonstrated this by correlating ENF from audio recordings
with reference ENF signals from different power grids to
estimate the location of the recording [23]. Extensive research
was conducted in grid localization using ENF by employing
diverse datasets [12]. Additionally, location estimation at var-
ious scales was addressed in [24] and [13]. In [10], a machine
learning system was developed to ascertain where an ENF-
containing media file was recorded, even when no simulta-
neous ENF reference was available. Five machine learning
algorithms were explored to identify the recording location
of power and audio recordings obtained from ten distinct
power grids in [25]. The hypothesis that variations in load
conditions could generate unique location-specific patterns
within the ENF signal was assessed in [14]. In [26], an ENF
region classification model, UniTS-SinSpec, was introduced
within the UniTS framework, integrating a sinusoidal activa-
tion function and a spectral attention mechanism and trained
on a public dataset. Addressing the complexities of inter-grid
classification, field specialists have formulated methodologies
to distinguish audio recordings across global power grids,
exemplified by the 2016 SP Cup. This work substantially
improved the forensic analysis based on ENF, fortifying the
verification of the authenticity of multimedia recordings. These
distinctive patterns could pinpoint the precise location within
a grid where the recording was made.

III. THE INTERGRIDNET FRAMEWORK

A. Dataset Preperation

The SP Cup 2016 competition [22] benchmark dataset [27]
is employed, with data split into three sets: a training set
for the model’s development and training, a practice set for
validation, and a testing set for evaluating performance on
unseen data (see Section IV-A). The dataset encompasses
audio recordings capturing ENF signals from power grids
across different countries. Specifically, it consists of recordings
from nine distinct power grids, denoted as A through I. Grids
A, C, and I are characterized by nominal ENF at 60Hz, while
the remaining grids exhibit ENF around 50Hz.

The dataset consists of audio and power recordings for each
grid. The power recordings were generated from a specialized
circuit designed to capture the ENF time series directly from
the power mains and have a temporal span of 30 to 60 minutes.
The audio recordings were acquired using a microphone near
substantial electrical devices, capturing the ENF hum for 30
minutes. In particular, power recordings are distinguished by
stronger ENF traces than audio recordings.

The testing set has been augmented with 100 samples
(40 Audio and 60 Power), each spanning 10 minutes. This

subset comprises 8-11 samples from each of the nine grids
(A - I) and 10 additional samples from networks other than
these, categorized as “None” (N). This diverse sample set
is a benchmark for assessing the proposed InterGridNet’s
efficiency and generalization.

Figure 1 illustrates the InterGridNet framework, highlight-
ing the two critical stages of data preparation and classifica-
tion. The data preparation process is depicted within the yellow
dashed box in Figure 1. Initially, the recordings’ inherent
characteristics, encompassing ENF signals at either 50Hz or
60Hz, are utilized to classify the recordings as audio or power
recordings. Four distinct and independent data groups were
created: audio50, audio60, power50, and power60.

During the training phase, this categorization is direct
since the differences between audio and power recordings are
perceptible, mainly due to the higher Signal-to-Noise Ratio
(SNR) in power recordings. In contrast, during the testing
phase, an automated grouping method is required to classify
recordings based on their spectral characteristics, mainly to
distinguish between the ENF frequencies of 50Hz and 60Hz.
This method is described as follows:

1) For each recording, the average spectrogram magnitude
is calculated for the first three harmonics associated with
the nominal frequencies of 50 Hz and 60 Hz.

2) For each nominal ENF, the harmonic with the smallest
value from step 1 is ignored. Since the ENF may not be
present in every harmonic, the two harmonics with the
stronger traces are enough for the categorization.

3) The average of the magnitude values at the retained
frequencies in step 2 is calculated.

4) The largest value reveals the nominal frequency of the
network.

After classifying each recording into its data group, a
filtering process is applied to isolate the corresponding ENF
within a range of 2 Hz. For instance, samples from the
audio60 group undergo filtering using a bandpass filter set
to frequencies between 59 Hz and 61 Hz. Subsequently, the
waveforms are segmented into 16-second frames with a 50%
overlap and normalized to the interval [−1, 1]. These processed
frames are subsequently fed into the classification model for
power grid classification, shown as the blue dashed box in
Figure 1. The aggregated count of frames for each grid is
depicted in Figure 2, providing an overview of the distribution
of frames across the dataset.

B. Classification Architecture

The spectral content of the frames exhibits variation based
on the grid of origin, providing valuable information for
the location estimation of the recording. Figure 3 displays a
spectrogram concentrated around the nominal ENF from four
distinct grids. Notably, the ENF behavior differs depending
on the grid, wherein Figures 3(a), 3(b), 3(c), and 3(d) the
frequency content is around 60Hz, 50Hz, 50Hz, and 60Hz,
respectively. Consequently, the technique elucidated following
harnesses these ENF characteristics to classify the samples
according to the grid where the recording was made.
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Figure 1. Flowchart of the proposed InterGridNet framework.

Figure 2. Number of audio and power recording frames in each grid.

TABLE I. OPTIMIZED HYPERPARAMETERS OF THE SHALLOW
RAWNET.

G50
Audio G60

Audio G50
Power G60

Power

Learning Rate 6.5× 10−4 7× 10−4 1.1× 10−3 9.7× 10−4

β1 0.96 0.97 0.98 0.98
β2 0.998 0.998 0.992 0.993

To address the classification problem, individual classes are
defined for each grid, comprising 16-second frames derived
in Section III-A. These 16-second frames are called samples
hereafter. The classification problem for each data group is
denoted as GENF

REC, where REC represents the recording type
(Audio or Power), and ENF signifies the nominal frequency
of the grid. Consequently, the classification problems are
denoted as G50

Audio, G50
Power, G

60
Audio, and G60

Power. Each GENF
REC

is expressed as GENF
REC = {C1, C2, . . . , Cn}, where n = 3 for

G60
Audio and G60

Power, and n = 6 for the others. Each Ci class
in the classification problem contains all samples from the
corresponding grid in the respective data group.

As an illustrative example, the classification problem for the
data group audio60 is denoted as G60

Audio = {C1, C2, C3},
where C1 encompasses the audio frames from grid A, C2 from
grid C, and C3 from grid I. Each sample has a label l ∈
{1, 2, . . . , n}.

For the last part of the flowchart in Figure 1, a shallow
RawNet architecture has been implemented to perform the
classification. The topology of the shallow RawNet was opti-

mized through NAS using the Keras-Tuner library. During
this search, several parameters were fine-tuned, including the
number of convolutional layers (ranging between 3 and 5),
the filter sizes (128 to 256), Gated Recurrent Unit (GRU)
units (512 to 1024), and dense layer units (64 to 512). After
extensive experimentation, the optimal configuration for this
architecture was determined to include two residual blocks.

Specifically, as depicted in Figure 4, the network begins
with an input layer that processes frames of size 15,999.
These frames are passed through a Strided Convolution block
consisting of a one-dimensional convolution layer, batch nor-
malization (BN), and LeakyReLU activation (with a slope of
0.01 for negative inputs). This initial block outputs a feature
map of size 5333 × 128. The first residual block follows,
comprising two convolutional layers, batch normalization,
LeakyReLU activation, and a max-pooling layer, resulting in
an output of 593× 128. Following a similar structure, another
residual block with 256 filters is applied next, reducing the
output to 66 × 256. These residual blocks are crucial for
extracting frame-level embeddings from the input data. Next,
the network incorporates a GRU to aggregate these frame-level
embeddings into a single ENF-level representation. The output
from the GRU is then passed through a dense layer, reducing
the dimensionality to a 128-dimensional vector. This layer
condenses the extracted features into a more abstract, higher-
level representation. Finally, the 128-dimensional vector is
processed by the output layer, which uses a softmax activation
function to map the vector to a probability distribution over
the 9 classes, completing the classification task.

In addition to optimizing the topology of the shallow
RawNet, NAS is also employed to fine-tune the hyperparame-
ters. The optimization process explicitly targets the learning
rate and parameters associated with the Adaptive Moment
Estimation (Adam) optimizer [28]. Initially, the learning rate
is set within a range from 10−4 to 10−2, and the β values
for the Adam optimizer vary between 0.9 to 0.999 and 0.99
to 0.999, respectively. Following the optimization with the
Keras-Tuner library, the optimal hyperparameter settings
for each data group are summarized in Table I. These config-
urations effectively balance the influence of past and current
gradients, contributing to efficient optimization.

To perform grid localization using InterGridNet, we adhere
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(a) Grid A (ENF 60Hz). (b) Grid B (ENF 50Hz). (c) Grid D (ENF 50Hz). (d) Grid I (ENF 60 Hz).

Figure 3. Spectrograms focused on the nominal ENF value for different grids.

Figure 4. Architecture of the proposed optimized shallow RawNet model. The operators utilized in the network include Conv1D(kernel size, strides, filters),
MaxPool1D(pool size, strides), GRU(units), and Dense(nodes).

to the outlined steps depicted in Figure 1. After data prepa-
ration, each recording frame undergoes classification by the
neural network, resulting in a probability distribution across
classes as determined by the softmax activation function of
the last layer. For the classification of a frame into one of the
known classes, the predictions should satisfy the rule:

−
n∑

i=1

pi(x) log2 pi(x) < α1 · log2(n), (1)

where pi is the probability for each class prediction from the
softmax and n is the number of classes in the frame’s data
group. In cases where the frame fails to meet (1), it is classified
as N.

Subsequently, a majority voting mechanism is employed to
ascertain the final estimate. The final estimate is deemed valid
only if it appears in at least α2 of the frames’ predictions;
otherwise, it is designated as N. Through the validation
process, thresholds α1 and α2 have been set to 0.8 and
0.75, respectively. This approach ensures robustness in the
grid localization process by requiring a consistent majority
agreement across frames for a conclusive final estimation.

IV. EXPERIMENTAL RESULTS

In this section, the validation and testing of the InterGridNet
are disclosed [29]. Additionally, limitations are discussed,
providing valuable insights into the model’s performance and
areas for potential improvement.

TABLE II. INTERGRIDNET VALIDATION ACCURACY.

Type A B C D E F G H I N Overall

Audio 80% 100% 100% 100% 80% 100% 80% 80% 100% 100% 80%
Power 100% 100% 100% 100% 100% 100% 80% 100% 100% 100% 96.67%

All 80% 100% 100% 100% 80% 100% 60% 80% 100% 100% 90%

A. Model Validation and Testing

At the training phase of each model, all available training
data depicted in Figure 2, corresponding to each data group,
were utilized. For validation purposes and to experimentally
determine the coefficients α1 and α2, the practice set from
the SP Cup 2016 dataset was employed. This shares identical
characteristics with the testing set described in Section III-A
and consists of 50 samples (5 samples for each class).

Table II summarizes the accuracy achieved for each class
in the practice set of applying InterGridNet after completing
model training and coefficient tuning. The classifier exhibits
superior performance in the Power recordings compared to the
Audio recordings as the Power recordings contain stronger
ENF traces, and the corresponding classifiers benefit from
a larger volume of training data, contributing to enhanced
performance. In addition, class “None” has 100% accuracy,
as shown in column N, underscoring the effectiveness of the
“None” sample identification method outlined in Section III-B.
The aggregate accuracy of the framework culminates at 90%.

The final assessment of InterGridNet’s performance was
conducted utilizing the dataset testing set. In Figure 5(a),
the confusion matrix derived from the predictions of the
proposed framework is illustrated, yielding an overall accuracy
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(a) Bandpass filtering is applied.

(b) No filtering is applied.

Figure 5. Confusion matrices predictions on the testing set employing the
proposed InterGridNet.

of 92%. Notably, misclassifications between classes A-I are
minimal, owing to the inherent constraints of the data splitting
technique, which refrains from classifying a sample with ENF
at 50Hz into classes A, C, or I with ENF at 60Hz, and
vice versa. Consistent with expectations, the testing accuracy
closely aligns with the validation accuracy.

B. Discussion

The achieved testing accuracy of 92% underscores the
unique characteristics embedded in the ENF signal per grid.
Unlike analytical feature extraction methods [30]–[35], these
distinctive features, crucial for solving the classification prob-
lem, are effectively extracted by the residual blocks and the
GRU layer of the neural network described in Section III-B.
This observation suggests that the chosen architecture demon-
strates exceptional suitability for processing the ENF signal
within raw audio data.

Figures 5(a) and 5(b) present the impact of frequency
filtering around the nominal ENF on the classification. When
this filtering is not applied, the overall accuracy is 72%,
significantly lower compared to the scenario with bandpass
filtering. This underscores the significant contribution of the
ENF signal to accurately determining the grid corresponding
to the recording location. In Figure 5(a), the misclassifications
by InterGridNet predominantly categorize samples as “None”
(class N). This exposes a vulnerability of (1) in the framework

TABLE III. TESTING ACCURACIES (%) IN SP CUP 2016 DATASET.

Method Characteristic Accuracy

SVM [30] One-vs-one classification 86%
SVM [31] Multi-class classification 77%
SVM [35] Multi-class classification 88%
Random Forest, SVM, AdaBoost [32] Ensemble method 88%
Binary SVM [33] Binary classification 87%
Multi-Harmonic Histogram Compari-
son [34]

Frequency domain analysis 88%

InterGridNet (Ours) Shallow RawNet 92%

but also underscores its confidence when handling samples
from grids on which it has been trained. This dual observation
provides insights into the framework’s strengths and areas for
potential improvement.

Table III summarizes the testing accuracy of other methods
using the same testing set. The data highlights the superiority
of the proposed InterGridNet framework over previous works,
reaffirming its effectiveness in geolocating sound recordings.
Hence, InterGridNet is a powerful tool in the field, showcasing
its potential for advancing state-of-the-art audio source grid
location classification.

In [11], authored by our team, a fusion model comprising
five machine learning classifiers was developed, trained, and
tested using audio spectrograms from the nine ENF grids.
This model achieved a testing accuracy of 96%, compared
to the 92% accuracy of the proposed InterGridNet. While the
higher accuracy of the fusion model can be attributed to its
combination of multiple classifiers, it’s important to note that it
required a significantly larger parameter count, with 11 million
parameters for the CNN alone, which further increased when
including the parameters of the fusion framework’s classifiers.
In contrast, InterGridNet, with a streamlined architecture of
7 million parameters, adopts a novel unified single-classifier
approach based on raw audio input via a DNN, highlighting its
innovation and efficiency in power grid classification without
the need for classifier fusion.

V. CONCLUSIONS

This paper presents InterGrid, a novel framework for ge-
olocating audio recordings across different power grids, in-
corporating optimization through NAS. Inspired by RawNet’s
architecture, InterGridNet has employed a shallow version of
RawNet, offering a dynamic framework that includes prepro-
cessing techniques to tackle the complex challenge of inter-
grid localization within audio recordings. Key techniques have
been crucial, such as bandpass filtering of ENF data, integra-
tion of residual layers for extracting frame-level embeddings,
and softmax activation for decision-making. This research has
marked the first implementation of DNN methodology for
classification with preprocessing methods, achieving a 92%
accuracy rate on the SP Cup 2016 dataset. Future research
will employ a transformer architecture for grid location clas-
sification. To enhance transparency and understand the model’s
decision-making process, explainable AI (xAI) techniques will
also be integrated to extract specific patterns associated with
each grid.
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Abstract—This paper proposes a technique for camera calibra-
tion and depth estimation from a single view that incorporates
a spherical mirror. By leveraging the sphere’s contour and
reflections, the approach enables precise calibration and scene
measurement while capturing additional environmental details
beyond the direct image frame. The study explores the geometry
and calibration of catadioptric stereo systems, addressing both
challenges and practical applications. The paper delves into the
intricacies of the geometry and calibration procedures involved
in catadioptric stereo utilizing a spherical mirror. Experimental
results with synthetic and real-world data demonstrate the
method’s feasibility and accuracy.

Keywords-Camera matrix calibration; Single-view image; Spher-
ical objects; Mirror sphere; Computer vision.

I. INTRODUCTION

Incorporating spherical mirrors in a catadioptric imaging
system makes it possible to observe a wide area with a
relatively small mirror. Research and analysis of catadioptric
systems based on spherical mirrors can be found in various
papers [1]–[3].

Inspired by the concepts introduced in [4], [5], which
utilized two spheres in the camera’s field of view for obtaining
stereo information, our focus is on the more practical scenario
of employing a single mirrored sphere. Our research aims to
present a method capitalizing on the unique attributes of a
single mirrored sphere for both camera matrix calibration and
catadioptric stereo.

Our approach only requires the image to show part of the
sphere’s contour and one of the following; the reflection of
the camera, two pairs of corresponding points on and off the
spherical mirror, or a single correspondence in special cases.

This research extends to the practical implementation of
a real-time system, showcasing the feasibility and efficacy
of employing mirrors for stereo imaging as a compelling
alternative to the established two-camera stereo methodolo-
gies. It is also applicable in scenarios where an accidental
spherical mirror is present in the scene. In Section 2, reviews
related work in catadioptric imaging system and existing cal-
ibration methods, highlighting the advantages and limitations
of prior approaches. In Section 3, presents our proposed
method for camera calibration and depth estimation using a
single spherical mirror, including a detailed explanation of the
mathematical formulation and implementation. In Section 4,
provides experimental results, including synthetic and real-
world data, to validate the accuracy and feasibility of our
approach. Finally, In Section 5, discusses the implications of
our findings, possible improvements, and potential real-world

Figure 1. Spherical mirror in scene

applications. It concludes the paper with a summary of our
contributions and directions for future research.

II. RELATED WORK

Catadioptric imaging systems, combining cameras with one
or more mirrors, can be divided into categories based on the
mirror type and calibration methods. A planar mirror, often
used to create a new viewpoint, serves as a cost-effective
option for building a stereo system with a single camera. In
contrast, a spherical mirror provides a significantly wider field
of view, making it popular in catadioptric systems that aim to
capture a more complete environment.

Central catadioptric camera calibration: Central cata-
dioptric cameras are imaging devices that use mirrors to
enhance the field of view while preserving a single effective
viewpoint[6]. Linear calibration methods are proposed that
unify the handling of straight-line projections in the real world
and sphere images formed by reflections of a spherical mirror,
requiring three images of a spherical mirror for implementa-
tion. Ying et al. propose a calibration method for paracata-
dioptric camera based on sphere images, which only requires
that the projected contour of a parabolic mirror is visible
on the image plane in one view [7]. Their approach relies
on the projection properties of spheres in central catadioptric
cameras, utilizing a unit viewing sphere model where a sphere
projects to two parallel circles they derive constraints for
camera calibration. Our method is not sufficient for a central
catadioptric camera calibration due to our assumption that the
sphere projects an ellipse in the image.
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Multiple views of spheres: Agrawal et al. [8], [9] and
Zhang [10] developed comprehensive methods for camera
calibration, positioning three or more spheres at multiple
locations. They present an algorithm that uses the projection
of the occluding contours of three spheres and solves for the
intrinsic parameters and the locations of the spheres. Extrinsic
calibration here involves first estimating each sphere’s 3D
position in the camera’s coordinate system, using known
intrinsic parameters and projected ellipses. The methods then
determine relative rotation and translation between cameras
by aligning these 3D sphere centers. Schnieders et al. [11]
propose a method that given multiple views of a single sphere,
estimate the camera parameters using the recovered sphere and
light directions.

Mirror-Based Calibration with a single-view image: Cal-
ibration algorithms that do not require direct observation of 3D
reference objects. Many approaches leverage Zhang’s calibra-
tion algorithm to estimate intrinsic parameters, For instance,
Francken [12] utilized this approach for webcam calibration
restricted to a screen setup, and others, like Agrawal [13],
adapted similar methods.

Perhaps the closest work to our topic is presented by Han
et al. [14], who propose a novel self-calibration method for
single-view 3D reconstruction using a mirror sphere. Han’s
approach requires estimating/guessing both the principal point
and focal length from a single-view image by minimizing
focal length discrepancies between images or through iterative
sampling. In contrast, our method computes camera intrinsic
parameters directly based on precise mathematical equations
derived from the sphere’s contour and reflection properties.
This approach enables a robust calibration process that avoids
iterative estimation, making it suitable for real-time applica-
tions.

III. METHOD

In this paper, we assume:
• A projective camera with no skew.
• The image contains a spherical mirror.
• The extrinsic parameters of the camera are




1 0 0 0
0 1 0 0
0 0 1 0



 (1)

• The unit is defined by the sphere’s radius.
To calibrate the camera we need to find the sphere’s contour
and center in the image. The sphere projects to an ellipse
in the image [15]. Let the conic be v

T
Cv = 0, where T

denotes transposition, with v the homogeneous coordinates of
a point on the conic, and C is the 3→ 3 symmetric matrix (as
illustrated in Figure 1, where the ellipse mark in red represents
the projected contour of the sphere. ).

Locating ellipses in images is a long-studied challenge, with
various methods proposed to tackle it, including both tradi-
tional and deep learning approaches, for example, [16]–[19].

Next, we find the sphere’s center in the image (O =[
ox oy 1

]T ). O can be determined by either of the fol-
lowing three methods:

1) Locating the camera’s reflection in the mirror (see Figure
9a, Figure 9b). The rays from the camera to the mirror,
from the mirror to the camera and the normal at the
mirror coincide, thus the ray from the camera to its
reflection in the mirror intersects the center of the sphere.
So, the image of the camera center is also the location
of the image of the sphere’s center.

(a) The rays from the camera to the mirror 0 → H , from the mirror to
the camera H → 0, and the normal at the mirror coincide.

(b) The center of the sphere in the image is at the camera’s reflection.

Figure 2. Illustration of method 1.

2) Using 2 or more pairs of correspondence points (see
Figure 3a, Figure 3b). Let v be the image of a 3D point
V and v

→ the image of V ’s reflection at V
→ then the

rays from the camera to V
→, from V

→ to V and from V
→

to the sphere’s center B (the normal) are coplanar and
include the camera center thus project to the line in the
image coincident to the sphere’s center. The intersection
of lines spanning corresponding points, on and off the
mirror, is thus the image of the sphere’s center.

3) If we assume that the camera has equal focal lengths,
fx = fy . intersecting the line containing a single pair of
corresponding points and the major axis of the ellipse,
(see Figure 4) suffices. This follows from the axial
constraint [15], which is the observation that the camera
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(a) A 2D cross-section of a pair of correspondence points.

(b) Finding the sphere’s center in the image from two pairs of
corresponding points.

Figure 3. Illustration of method 2.

center, the sphere center, and the major ellipse axis are
co-planar. Thus, the image of the sphere center is on the
ellipse’s major axis.

We want to compute the camera matrix P3↑4 and the
sphere’s center B =

[
bx by bz

]T . We will use the radius
of the sphere as the unit. Assuming a no skew camera

P :=




fx 0 tx 0
0 fy ty 0
0 0 1 0



 =



K
0
0
0



 (2)

K contains the first 3 columns from the matrix P . Where
fx, fy are the focal lengths and (tx, ty) is the principle point.

Let V =
[
vx vy 1

]T ↑ R3 be a pixel on the projected
contour of the sphere. Geometrically (see Figure 5) this means
that there is s ↑ R+ such that:

• ↓0, sK↓1
V,B is a right triangle.

In other words

↔sK↓1
V,B ↗ sK

↓1
v↘ = 0. (3)

• The distance between sK
↓1

V and B is the radius.
The radius is our unit, so

|sK↓1
V ↗B| = 1 (4)

Figure 4. Finding the sphere’s center from a single pair of corresponding
points and the major axis of the ellipse. The green line connects the

corresponding points, while the red line represents the major axis of the
ellipse.

Figure 5. 2D example of sphere outline. sK→1
V is perpendicular to

B ↑ sK
→1

V . The distance between sK
→1

V and B is the radius, which is
1.

We simplify these equations to get:

↔K↓1
V,B↘2 + (1↗ |B|2)|K↓1

V |2 = 0 (5)

We use the fact that an inner product can be represented by
a matrix multiplication and rewrite it as:

V
T
K

↓T (BB
T + (1↗ |B|2)I)K↓1

V = 0 (6)

Where I denotes the identity matrix ensuring that it preserves
the dimensional of B. This is an equation of the conic section
we already computed: C. Therefore, they are equivalent up to
a scalar factor:

C = rK
↓T (BB

T + (1↗ |B|2)I)K↓1 (r ↑ R) (7)

We currently have 8 unknowns:

r, bx, by, bz, fx, fy, tx, ty

but equating the conic sections only gives 6 equations (Both
matrices are symmetric). We first get rid of tx, ty by shifting
the image so (0, 0) represents the center of the sphere.
We define:

S :=




1 0 ox

0 1 oy

0 0 1



 (8)
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Since we know C, o we can compute the matrix

M := S
T
CS (9)

Q := bzK
↓1

S =




bzf

↓1
x 0 bx

0 bzf
↓1
y by

0 0 bz



 (10)

p =
r

b2z

(11)

We get:

M = pQ
T (BB

T + (1↗ |B|2)I)Q (12)

Denote mij := M [i, j]. can be expanded to a system of
equations:






m11 = pf
↓2
x b

2
z(b

2
x + 1↗ |B|2)

m22 = pf
↓2
y b

2
z(b

2
y + 1↗ |B|2)

m33 = p|B|2

m12 = pf
↓1
x f

↓1
y bxbyb

2
z

m13 = pf
↓1
x bxbz

m23 = pf
↓1
y bybz

(13)

To solve these equations, first calculate p and |B|2:

p =
m13m23

m12
(14)

,

|B|2 =
m33

p
(15)

Now we can calculate b
2
x, b

2
y, b

2
z:

b
2
x =

1↗ |B|2
m11

m2
13
p↗ 1

, b
2
y =

1↗ |B|2
m22

m2
23
p↗ 1

, b
2
z = |B|2↗b

2
x↗b

2
y (16)

The choice of either the positive or negative square root of
b
2
x, b

2
y doesn’t matter and it will be compensated by positive or

negative fx, fy . However, bz should be positive as the sphere
is in front of the camera. Now we can determine the values
of fx, fy:

fx =
pbxbz

m13
, fy =

pbybz

m23
(17)

Notice KB is the position of the sphere’s center in the image,
so KB = bzo. Therefore, we can determine the values based
on our previous calculations:

tx = ox ↗ fx
bx

bz
, ty = oy ↗ fy

by

bz
(18)

Note that knowing both the sphere’s and camera parameters
suffice to reconstruct the 3D positions of all pairs of corre-
sponding points by intersecting the corresponding rays.

Figure 6. Synthetic Data 1

IV. RESULTS

We have tested our algorithm on a synthetic image of
resolution 2048x2048 generated using Blender (see Figure
6), using only the conic section, the contour of the spherical
mirror, and the reflection of the camera to calibrate the image.

First phase: We selected points on the sphere contour and
calculated the conic. Second phase: We estimate the center of
the sphere in the image by locating the camera’s reflection.
Now we apply our algorithm to calibrate the image. Figure 7
resolution 1920x1080.

TABLE I. COMPARISON OF REAL VALUES AND OUR ALGORITHM’S
RESULT ON 6.

Parameters

Ground Truth

bx = 3 by = ↑4,

bz = 7 fx = 1024

fy = 1024 tx = 1024

ty = 1024

Result

bx = 3.00 by = ↑3.94

bz = 7.03 fx = 1027.99

fy = 1032.84 tx = 1024.34

ty = 1016.94

.

Error Range Less than 1.5%

TABLE II. COMPARISON OF REAL VALUES AND OUR ALGORITHM’S
RESULT ON 7.

Parameters

Ground Truth

bx = ↑1.5 by = 3,

bz = 1 fx = 1144

fy = 1144 tx = 960

ty = 540

Result

bx = ↑1.47 by = 3.07

bz = 1 fx = 1179

fy = 1167 tx = 949

ty = 535

.

Error Range Less than 3.1%
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Figure 7. Synthetic Data 2

In the real image 1600x1196 (see Figure 1), the estimated
sphere origin is:

bx = ↗0.76, by = 0.13, bz = 5.07

fx = ↗1744, fy = 1732, tx = 722, ty = 583

To verify our algorithm, we also computed the length of
objects using two pairs of correspondence points (Figure 3a)
and a sphere with a radius of 5 cm, in Figure 8. We computed
the height of the vase using two pairs of corresponding points.
We computed the ray for each point. Let v,v→, and u, u→ be
pairs of correspondence points; we then calculate the rays in
3D space. This conversion involves scaling and translating the
pixel coordinates. Next, we compute the 3D point represen-
tation where the ray intersects the correspondence point v

→,
denoted as h. According to the equation we presented earlier,
(4), we define offset = h↗B = sK

↓1
V ↗B with the condition

|sK↓1
V ↗B| = 1. The reflected vector is

reflect = h↗ 2 ≃ ↔offset, h↘ ≃ offset.

Given the reflected ray and the direct ray, we compute the 3D
position of the point. The first and second phases are the same
as described in the previous example.

bx = 1.30, by = 0.48, bz = 5.62

fx = 2714, fy = 2703 , tx = 3052, ty = 1664

The height of the marker is 13cm, computing the 3D points of
v, u marked in red and their distance we obtained is a height of
14 cm. The real height of the tape dispenser is 5cm, computing
the 3D points of v, u marked in blue and the distance we
calculated a height of 5.05 cm.

TABLE III. COMPARISON OF ZHANG EVALUATION FOR OVER MORE THEN
20 IMAGES AND OUR ALGORITHM’S ON A SINGLE IMAGE RESULT

9.

Parameters

Zhang Calibration
fx = 8146

fy = 8286 tx = 3143 ty = 2397

Result
fx = 8258

fy = 8073 tx = 3904 ty = 3875
.

Figure 8. Height test

(a) Single image of a spherical mirror - our algorithm

(b) Images - Zhang algorithm

Figure 9. Comparison of Camera Calibration Methods for the Canon EOS
R10

V. CONCLUSION AND FUTURE WORK

We presented a novel approach for calibrating the camera
matrix using a single-view image. Our findings help reduce the
requirements for achieving this calibration. Using our method,
further image analysis is possible, such as determining the
3D location of a point from a pair of corresponding points or
estimating an omnidirectional image centered at the sphere’s
origin. Additionally, since a spherical mirror distorts the scene
by projecting it onto a curved surface, we aim to leverage our
findings to correct this distortion and reconstruct the scene as
if it were reflected in a planar mirror in future work.
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Abstract — This paper proposes the multirate Convolutional
Neural Networks (CNN) algorithms for an efficient
implementation of the 2-Dimensional (2-D) CNN circuits
implementation. During the rapid growth in computation power,
Deep Learning (DL) using CNN has widened the areas of the
Artificial Intelligent (AI) applications. For the layers of the
convolution with pooling operation in CNN some researchers
work has initially applied the multirate algorithms to the
traditional (non-multirate) convolutional kernel operation of
using polyphase architectures resulting in the more efficient
implementation of the multirate filtering. In this work we
extend it into 2-D CNN by using time-varying coefficient to
achieve an efficient implementationwith reduced memory(i.e. the
line-buffer) size by M-fold(the pooling factor) and the MACs at
1/M of clock running rate. A design example of the first stage
of CNN system will be provided. Its results are verified with
the Matlab CNN-based digit recognition tool.

Keywords—CNN; ML; DL; AI; IC; Multirate; 2-D; Signal
Processing; DSP; AISC; Filter.

I. INTRODUCTION

With the surging of the computational power, Deep
Learning (DL) using Convolutional Neural Networks (CNN)
has become reality in more and more applications of
Artificial Intelligence (AI). However, some applications have
limited energy capacities. In various Internet of Things (IoT),
the wearable and mobile applications of CNNs have scarce
energy sources and thus require solutions to lower power
consumption and smaller hardware size in order to ensure the
longevity of the devices and smaller chip area [4]. As the
result of the demand for lower power consumption, more
research interest has been generated in exploring high-
performance neural processing units or Application Specific
Integrated Circuit (ASIC) accelerators with superior power
efficiency and computation parallelism [5].

Fig. 1 shows a typical DL system with CNN architecture
which contains convolution, pooling, and fully-connected
layers. It usually includes several cascaded convolutional
layers in which the a single clock frequency is employed [5].

In the applications of real-time image processing, for
instance, the 2-D CNN hardware architectures that make
dense, pixel-wise predictions, such as FCN [6], U-Net [7],
and their variants, use very long skip lines. For example each
line contains as many as 512 pixels in the U-Net image.
Those skip lines are crucial for recovering of the details lost
during the down-sampling. The IC hardware

implementations of those networks require large memory (or
line-buffer or line-delay) to store all the skip lines. The line
buffers often use external memory, such as SRAM or DDR,
which dramatically increases the cost in terms of silicon area
footprint and consumes high power [8].

Figure 1. A typical CNN architecture with convolutional, pooling and
full-connected layers

Images or 2-D signals are acquired line-by-line by the
raster scan sequence. In the 2-D raster scanning-line based
system, the row (vertical) delay of lines is accumulated in
each convolution layer. For example, a 2x2 spatial window
may cause a 1-line delay, whereas two consecutive 3x3
convolutions may result in 2-line delays and each delay
contains 512 pixels to be stored in the U-Net image.

The problem with the long skip lines is that once the data
on one end of the skip line is generated, it needs to be held in
memory until the data in the receiving end of the skip
connection is available. The more layers a connection skips
over, the more line pixels need to be stored in memory.
Therefore, the size of the total memory required increases
with the length of the skip line. The memory requirements
for the line delays can aggregate quickly and become a
significant contributor to the total silicon area needed to
implement the network. Moreover, the latency issues can
also be problematic in latency-sensitive applications such as
autonomous driving systems.

The computation of convolutional operations involves
multipliers and adders, i.e., the Multiply-and-Accumulate
(MAC) operation. For concurrent processing, the number of
multipliers required must be the same as the filter size, which
can result in large area consumption. Moreover, summing up
the outputs of these multipliers involves multiple cascaded
adders. Thus, digital MAC units may occupy a vast area with
high power consumption [8].

The chip area and power constraint facilitate the
researcher interests in the multirate filtering techniques [2]
which can not only perform real-time kernel convolution but
can also occupy significantly less chip area and smaller
power consumption. Although the works in [2][3] are in the
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analog-digital mixed-signal domain, their multirate
(decimating filter) algorithms and implementation
architectures can be expanded into the digital signal
processing domain.

In this paper we describe the way to design decimating
(multirate) filters for kernel convolution with pooling
(decimating) operations, and introduce the time-varying
coefficient (weight)architectures for the efficient 2-D CNN
circuit implementation architectures whose memory (the
line-buffer) size is to be reduced by M-fold(a pooling factor)
and the MACs at 1/M of the clock rate.

The paper is organized as follows. In Section II, the
multirate algorithms for 1-D decimating filter is presented in
terms of time-varying coefficients. In Section III, a direct-
form implementation of the 2-D CNN counterpart is derived.
Finally, Section IV presents a design example of 3x3 kernel
convolutional layer with pooling 2x2 (decimating filter)
for demonstrating of the 2-D CNN implementation.

II. MULTIRATE ALGORITHMS FOR 1-D CONVOLUTION
WITH POOLING OPERATIONS IN CNN

The multirate algorithms for efficient implementation of
1-D and 2-D filtering circuits have been previously
introduced by [1][2][3] based on polyphase structures. In
CNN efficient implementation, however, we modify the
polyphase structures and manipulate the (decimating) filter
transfer functions as filtering with the time-varying
coefficients (weights) form. Thus, the resulting filter
expression form is comparable to its non-multirate prototype
counterpart.

The multirate algorithms in terms of time-varying
coefficient expression give explicit mapping relations
between non-multirate and multirate relations of z-transform
functions. These can be utilized for efficient de s i g n an d
implementation architectures of such 1-D and 2-D
decimating filters.

For the sake of easy comprehension, only the first (one)
layer of CNN in Fig. 1 is discussed and illustrated. We can
see that the convolutional and pooling layers architecture is
the same as the 2-D decimating filtering system [2][3], as
depicted in Fig. 2, with an activation operation (ReLU)
which operates either after or prior to the pooling.

Figure 2. The convolution followed by pooling architecture can be
considered as a 2-D decimating filter.

To derive the efficient implementation architecture we
further consider a 1-Dimensional (1-D) linear, time-invariant
(N-1)-th order FIR filter followed by a decimator with a
factor (In neural network computation, stride for pooling
layers is often used）of M, as illustrated in Fig. 3(a) below.

Figure 3. (a) A general filter clocking at Fs and followed by a decimation
operator

Figure 3. (b) Deriving efficientmultirate implementationforan1-Dflter.

and its z-transfer function is H(z) as shown in Eq.1, where
the unit-delay z-1 is related to the sampling frequency Fs . The
overall system clocking at an unique frequency Fs is also
called non-multirate (traditional) system,

1

0

(z)
N

n
n

n

H h z






 (1)

For an efficient implementation of Fig. 3(a) this system
H(z) can be alternatively manipulated as Eq.2 by using
multirate (decimation or interpolation) filter architecture
based on the polyphase decomposition algorithms as
described in [1][2].

The efficient implementation implies that the most parts
in CNN operate at lower clock frequency (lower power
consumption) and less memory used (smaller memory size
required) especially in the 2-D and 3-D [9] CNN systems.
Such a decimating filter using time-varying coefficients
(weights) of convolutional layer expression can be
considered as a time-variant filter with periodically varying
coefficients [2][3]. It can be straightforwardly applied to
CNN implementation in which the convolutional layer is
followed by the pooling operation.

Considering such a decimating filtering system as in Fig.
3(a) which can be mathematically expressed as Eq.1, where
the (N-1)-th order prototype filter with decimating factor
(pooling stride) of M, it can be manipulated as
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where the filter order N= ML. Eq.2 contains L terms (and
each of which contains bracketed M sequential terms that can
be considered as a periodically commuted coefficient. We
define such a coefficient as a time-varying one. Therefore, it
has L time-varying coefficients.

Assuming Z= (zM) which is related to the reduced
sampling rate Fs/M . Thus, we arrive at the transfer function
with a time-varying coefficient form:

(2)
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where hi represents the time-varying weights in Eq.3. It is
noticed that Eq.3 has a similar math expression form to its
non-multirate (prototype filter) counterpart. H(Z) or H(zM) is
operating at Fs/M which is a lower clock rate than the
original Fs.

III. EFFICIENT IMPLEMENTATION OF 2-D MULTIRATE
CONVOLUTIONAL AND POOLING LAYERS IN CNN

Fig. 4 shows an FIR prototype 2-D filter with the
transfer function H(z1,z) where z-1 represents the horizontal-
dimensional delay unit and z1-1 represents the vertical-
dimensional delay unit(scan-line delay). The overall filter
system is operating at the horizontal frequency Fs. This non-
mul ti rate 2-D filter can be expressed as Eq.4.

Figure 4. A non-multirate prototype 2-D filter.
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where aij are the normalized weight coefficients for b o t h
t h e horizontal and vertical dimensions. The index i is
equal to the integer of for i = 0,1, and (N1-1) where N1 is
defined as the filter order in the vertical dimension.
Similarly, index j is for 0,1, and (N-1) where N is the
horizontal dimension filtering order.

The variable separable filters (convolutions) are
commonly used to design efficient neural network
architectures [8]. For the demo purpose of multirate concept,
assume the H(z1,z) to be variable separable. Therefore Eq.4
can be further simplified to Eq.5 [2][3],

     1 1,  H z z H z H z
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Assuming that decimating factor M is the same in both
dimensions, in Fig. 4 we apply the multirate transformation
[3] to both H(z) and H(z1) as similar form to Eq.3, and thus
an efficient implementation can be achieved in which the
scan-line memory length and computational clock speed can
be reduced by a factor of M as shown in Fig. 5.

(a)A 2-D non-multirate filter H(z1,z) followed by a decimator

(b)The efficient implementation form ofa 2-D decimating filter and the decimator is now in
front of filter

Figure 5.Deriving theefficient multirate implementationfor the2-Dfilter.

Fig. 5(a) and (b) depicts the process of deriving efficient
implementation of the 2-D decimating filter. It can be
observed in Fig. 5(a) a typical convolutional layer followed
by a pooling layer, in which the filter circuit is operating at
the system maximum frequency Fs and the scan-line memory
is equal to the input image pixel numbers in each line.

In Fig. 5(b), however, the decimator i s p l a c ed in the
front of the 2-D filter and it yields an efficient
implementation when using time-varying weights. This can
be described as the following Eq.6.

     1 1,  H Z Z H Z H Z
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where the capital-case z1-1 represents the vertical scan-
line delay and the capital Z equals to (zM), so Z-1= (zM)-1

which implies t h a t the computation rate (the required
sampling frequency) has been lowered with the factor of M.
L1 and L2 are the time-varying coefficient indexes,
respectively. Thus, we arrive at an efficient implementation
architecture of Eq.6 with the time-varying weights as
shown in Fig. 6

Figure6.Theproposedefficient implementationwith time-varyingweights

where M equals 2 in both dimensions. Thus, the time-
varying coefficients can be manipulated as

; ; and

(3)

(4)

(6)

(5)
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; ;

IV. A DESIGN EXAMPLE OF 2-D MULTIRATE CNN

Consider a 2-D FIR edge-filter example whose
coefficients is listed in TABLE I below

TABLE I. THE 2-D SEPERABLE EDGE FILTER WITH BOTH
DIMENSIONAL WEIGHTS

Filter Coefficients (Weights)
Horizontal
Filter H(z)

a0= -3.9; a1= 0; a2= 4; a3= 0;

Vertical
Filter H(z1)

a10= -3.9; a11= 0; a12= 4; a13= 0;

For comparison, an image as shown in Fig. 7(a) inputs to
the three types of multirate (decimation) filter shown in Fig.
6.

(a) (b)

(c) (d)
Figure 7. (a)Input image; (b)Type-I:Traditional convolution followed by
pooling system’s output image; (c)Type-II:Proposed multirate filter output;
(d)Type-III:The pooling layer followed by the convolution layer.

The type-I is the same as convolution layer of 3x3 kernel
followed by the pooling layer with stride =2 in CNN and the
simulated output image is as shown in Fig. 7(b). The type-II
is the proposed Franca-multirate edge filter architecture and
the output image is as shown in Fig. 7(c); The type-III
consists simply of placing the decimator in front of the filter
and the output is shown in Fig. 7(d).

Comparing the above mentioned output images, we
notice that the proposed Franca-multirate filter has the same
output with the traditional convolution plus pooling’s output.
To further verify the multirate architecture, consider again
the case of the design example for a convolution layer with
pooling stride=2. The operating clock frequency is set at
27MHz. It can be seen that the entire 2-D filter now
operates at a lower frequency 13.5MHz which can reduce
power consumption in the circuit and the scan-line memory
by half. In addition, the feature-map memory of CNN is
also reduced by three quarters (image 14x14).

By using MATLAB CNN based tool at 3x3 for the
digit-recognition, we compare the simulation results from
the original code to modified code which models our
multirate architecture in the first convolution, ReLU, and
pooling layers as shown above in Fig. 5 where the bias
values have been considered in the weights during the
training..

The weights training has no noticeable delay or any
convergence issue, and the final detecting accuracy is
identical to the MATLAB original results as depicted in Fig.
8.

Figure 8. Digit-recognition simulation results of the multirate 2nd-order
filter with pooling stride=2

V. CONCLUSIONS

We have proposed the new multirate algorithms with
time-varying weight architectures for efficient CNN
hardware implementation. The design example has been
verified with digit-detection CNN-based MATLAB tool. It
has achieved 2-fold reduction of computing clock rate and
line delay memories for the CNN implementation resulting
in a smaller chip size and lower power consumption.

As future work, it would be interesting to design ASIC
chips to study how the efficient implementation of the while
multirate CNN presented in this paper would applied into
many applications in DL of AI, especially in the 2-D and 3-
D CNNs. The training methodology of the multirate CNN
should be further studied to achieve a similar generalized
existing learning methods.
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Abstract— Fixed-Point FFT implementation is very sensitive to 

finite-word-length-effects due to the large quantization noise 

that is being accumulated throughout the FFT stages. In FFT 

implementations on fixed register size processors like CPUs and 

DSPs, Block-Floating-Point (BFP) is a well-known scheme for 

controlling the tradeoffs between the fixed-point register size 

and the resultant accuracy. The performance of the ideal BFP 

FFT, in terms of the output Signal to Quantization Noise Ratio 

(SQNR), has been investigated in depth. However, ideal BFP-

FFT suffers from implementation complexity, and especially 

non-deterministic latency. This is caused by the inherent 

mechanism that requires to re-calculate an entire FFT stage if 

one of the stage’s output overflows. Because of this, most of the 

implementations are of a more practical variant for the BFP-

FFT that does guarantee fixed latency. This, however, comes on 

the expense of reduced accuracy (degraded SQNR). In this 

paper, we derive the SQNR formulas for the practical BFP-FFT 

for radix-2 and radix-4 Cooley-Tukey Decimation-In-Time 

(DIT) FFTs. The derived model is compared to computer 

simulations and found highly accurate (less than 0.2dB 

difference). We use the derived model to compare the SQNR 

performance of the practical algorithm to the ideal one and 

show a 6-14dB penalty cost for guaranteeing fixed latency 

implementation.  

Keywords - Block Floating Point; Fixed Point; DIT; SQNR; 

I. INTRODUCTION 

The Fast Fourier Transform (FFT) serves as an important 
tool in many signal processing applications. Throughout the 
Years it has been successfully used in radar application, 
spectral analysis, filtering, voice enhancement, advanced 
audio codecs (like MP3 and AAC), and during the last three 
decades, with the introduction of multitone modulations, it is 
also being successfully used in wired and wireless modems 
such as discrete-multi-tone in Digital-Subscriber-Line (DSL) 
modems [1], Orthogonal-Frequency-Division-Modulation 
(OFDM) in several wireless modems, e.g., [2] and in 
advanced fiber optic modems [3]. 

Finite-word-length effects (denoted hereafter also as 
quantization noise) have substantial effect on the accuracy 
performance of FFTs. This is a result of the native 
characteristic of the FFT in which quantization noise that is 
added at the output of each stage of the FFT is accumulated 
toward the FFT output. Since the maximal value at each 
stage’s output grows as we proceed with the stages [4], in 
many hardware implementations, the performance 

degradation due to the quantization noise is mitigated by 
adapting the register size at each stage to accommodate the 
signal growth [5]-[7]. On the other hand, in software 
implementations (as in CPUs and Digital Signal Processors - 
DSPs), or hardware implementations where intermediate 
values are forced to be written to memory, increasing the bit-
width of the stored values is not possible. For those cases, a 
dynamic-scaling BFP based schemes are commonly used.  

The straight-forward dynamic-scale BFP is such that 
throughout the calculation of each FFT stage, the butterflies’ 
outputs are tested for an overflow. If an overflow is detected, 
the entire stage is recalculated and scaled down before stored 
to memory. The advantage of this BFP scheme is that the 
scale down is done only on a concrete need, which leads to 
the best accuracy performance among other BFP-FFT 
schemes. For that reason, we relate to the straight-forward 
dynamic-scale BFP-FFT as “ideal BFP-FFT” herein. The 
drawbacks of this scheme are its complexity and the fact that 
it results in non-deterministic latency. Deterministic latency 
may have high importance when the FFT is used within a 
synchronized pipelined system, such as a modulator or 
demodulator in OFDM modems [8]. 

Multiple schemes that overcome the non-deterministic 
latency drawback have been proposed, e.g., [9] [10], but they 
all involve non-negligible SQNR performance degradation as 
compared to the ideal BFP. Among the class of the 
deterministic latency BFP-FFTs, the one proposed by Shively 
[11] leads to the least SQNR loss as compared to the ideal 
BFP-FFT. Thanks to this fact, it turns to be among the most 
common schemes for practical implementations, e.g., [12] 
[13]. We refer to the Shively’s scheme herein as “practical 
BFP-FFT". 

The ideal BFP-FFT was originally analyzed in [14], 
which provided a lower and upper bound for the output 
quantization noise variance. In [4] and [9], a more accurate 
statistical model was used to project the expected value of the 
ideal BFP-FFT output noise power for an uncorrelated input 
sequence. Although the practical BFP-FFT is widely used in 
practical systems for deterministic latency BFP-FFT, to the 
best knowledge of the author, its accuracy performance has 
not been analyzed. 

In this work, we refine the commonly used statistical 
model of quantization noise within FFTs, apply this 
refinement to the SQNR of the ideal BFP-FFT, and derive the 
analytical model of the SQNR of the practical BFP-FFT. We 
adapt the noise models to represent modern processor having 
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embedded complex multipliers and wide accumulators, and 
we evaluate the accuracy degradation of the practical BFP-
FFT as compared to the ideal one. 

The paper is organized as follows: Section II introduces 
the models used throughout the paper covering the DIT FFT 
model, the underline processor model, and the quantization 
noise models. In Section III the analytical SQNR formulas of 
a generic scaling policy are derived and in Section IV the 
associated scaling policies for the ideal and practical BFP 
FFT are described. Section V applies the SQNR formulas to 
the associated scaling policies while the results are presented 
in Section VI., Finally, conclusions are given in Section VII. 

II. FFT, PROCESSOR AND QUANTIZATION NOISE 

MODELS 

We relate to fixed-point representation of fractional 
datatypes. We assume a processor having registers of 𝑏 bits 
(including sign) and accumulators of at least 𝐵 = 2𝑏 +
⌈log2 𝑅⌉ + 1  bits, where 𝑅  is the FFT radix and ⌈𝑎⌉  is the 
smallest integer that is larger than 𝑎. The numbers represented 
by the registers are in 2’s complement representation and in 

the range −1 ≤ 𝑥 ≤ 1 − 2−(𝑏−1). The numbers represented 

by the accumulators are in the rage −2⌈log2 𝑅⌉+1 ≤ 𝑥 <
2⌈log2 𝑅⌉+1. The width of the data stored to memory is always 
of 𝑏 bits. 

Our focus is of fixed-radix, Cooley-Tukey, DIT-FFTs of 
radix-2 and radix-4. A generic model of a finite-word-length 
radix-2/radix-4 butterfly of the DIT-FFT is given in Figure 1. 

In the DIT topology the inputs loaded from the memory 

are first multiplied by the Twiddle Factors (TFs), 𝑤𝑁
𝑘𝑛, then 

multiplied by the butterfly’s coefficients 𝛾𝑟,𝑡  ; 𝑟, 𝑡 ∈
{0, 1, … , 𝑅 − 1}, and then summed up within the butterfly 
before being stored back to the memory. The processing 
model that we will deal here with is a model that is most 
common to DSPs and dedicated FFT processors. In this 

model the inputs 𝑥𝑛  and the TFs 𝑤𝑁
𝑘𝑛  are represented by 𝑏 

bits per component (b bits for the real component and b bits 
for the imaginary component) and are within the range of 
[−1 , 1 − 2−(𝑏−1)] . When multiplied, the multiplication is 

spanned over 2𝑏 + 1  bits (recalling that the TF 
multiplication is a complex multiplication). Since in radix-2 
and radix-4 FFTs the butterfly’s internal coefficients,  𝛾𝑟,𝑡  , 

belong to the sets  {1, −1}  and {1, −1, 𝑗, −𝑗}  ;   𝑗 = √−1 
respectively, there are no truly multiplications within the 
butterfly. The bit-width of the butterfly’s output can grow to 
span over up to 𝐵 bits and then potentially scaled down by a 
factor of 𝛼, where we restrict 𝛼 to be a power of 2. The scaled 
down butterfly output is quantized to 𝑏 bits per component 
via rounding before being stored to memory.  

The quantization model that we use here is the so-called 
Rounding-Half-Up (RHU) [15], which is also known as 
hardware-friendly-rounding and is being used in most digital 
signal processors and hardware implementations of digital 
signal processing functions. The mathematical function of 
RHU rounding to 𝑏 bits is 

 𝑦 = 𝑄[𝑠] ≜ 2−𝑏 ∙ ⌊𝑠 ∙ 2𝑏 + 0.5⌋ (1) 

where ⌊𝑎⌋ is maximal integer lower than 𝑎 and 𝑠 ∈ [−1,1 −

2−(𝑏−1)] . The quantization error is 𝑣 = 𝑠 − 𝑦  and in the 

general case is modeled as an additive noise having uniform 
distribution [16] 

 𝑣 ~ 𝑈[−2−𝑏 , 2−𝑏) (2) 

and is independent of 𝑠. As we deal here with finite-word-
length, in fact 𝑣  has a discrete distribution. However, for 
large enough 𝑏  it is common to treat it as a zero mean 
continuous uniform distribution. As such its variance is 

 
𝜎𝑣
2 =

2−2(𝑏−1)

12
 . (3) 

In addition, throughout the FFT there are plenty of cases 
where all the TFs preceding a given butterfly are among the 
set  

 𝒯1 ≜ {1,−1, 𝑗, −𝑗}  ;   𝑗 = √−1 . (4) 

In such cases, the multiplication of a 𝑏 -bits value 𝑥 ∈
[−1 , 1 − 2−(𝑏−1)] by the TF 𝑤 ∈ 𝒯1  would result in a 2𝑏-

bits number, 𝑡 = 𝑤 ∙ 𝑥, that it’s lower 𝑏 bits are equal to zero. 
If all the TFs preceding a given butterfly are among the set 
𝒯1 , then the lower 𝑏  bits of the butterfly’s outputs, before 
down scaling, are also equal to zero. When such a number is 
scaled down by very few bits, the quantization noise does not 
obey to the uniform distribution anymore [16]. In this case 
we get a Random Variable (RV) having discrete distribution 
and non-zero mean. For example, in the case that such a 
number is shifted one bit to the right, the quantization noise 
𝜀1 is distributed as  

 

𝜀1 = {

0                  𝑤. 𝑝. 0.5

−
1

2
2−(𝑏−1)  𝑤. 𝑝. 0.5 ,

 (5) 

where the subscript 1 in 𝜀1 refers to the case of quantization 
noise generated by right shift of the 𝑏-bits number by one bit.  

The expected value of this noise equals −2−(𝑏−1)/4  and 
hence when dealing with Signal-to-Quantization-Noise-
Ratios of those RVs we will relate to the noise power rather 
than to its variance. To distinguish the power from the 
variance we use the symbol 𝜌2 for power. The expected value 
of the power of 𝜀1 RV then is 

 
𝜌𝜀1
2 =

1

2
∙ 0 +

1

2
∙ (
1

2
2−(𝑏−1))

2

=
2−2(𝑏−1)

8
 . (6) 

As expected, this is larger than the variance of the zero mean 
uniformly distributed quantization noise of (3). In a similar 
way we can calculate the noise power of quantization noises 
that are generated due to the rounding after right shift of a 𝑏-
bits number by 𝑞 bits. In most FFT topologies and radices up 
to Radix-5, the right shifts are in the range of 0  to 3 . 
Moreover, for right shifts of 4 and above the quantization 
noise power is very close to the variance of the zero mean 
uniform quantization noise of (3). Therefore, for our 
analytical derivations we use 
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𝜌𝜀𝑞
2 =

{
 
 
 
 

 
 
 
 
0                        ;     𝑞 = 0
1

8
2−2(𝑏−1)        ;    𝑞 = 1   

3

32
2−2(𝑏−1)     ;    𝑞 = 2   

11

128
2−2(𝑏−1)   ;    𝑞 = 3    

1

12
2−2(𝑏−1)     ;    𝑞 ≥ 4 .  

 (7) 

 
In the sequel, we designate the set of butterflies that all their 
inputs were multiplied by TFs belonging to 𝒯1, as the ℬ1 set 
or ℬ1 butterflies. 

III. SQNR OF A GENERIC BFP-FFT 

By “generic BFP-FFT” we refer to a BFP-FFT that 
incorporates policy for down-scaling by right shifts at the 
outputs of the FFT stages, where the decision at which stages 
to scale down and by what factor are the policy parameters. 
In the following paragraphs we will relate to specific BFP 
scaling policies and will analyze their SQNR performance. 
We assume zero mean i.i.d. input sequence, 𝑥(𝑛), and that 
the quantization is regarded as an i.i.d. noise source. 
Moreover, multiple quantization noises at the input to a given 
butterfly that have been generated at earlier stages are 
mutually uncorrelated [9]. In order to derive the analytical 
expression of the SQNR, we will adopt the analysis strategy 
of Weinstein [9]. Let us relate to an input sequence of length 
𝑁 , 𝑥(𝑛) , and a fixed-radix FFT of radix R. Define 𝑀 =
log𝑅 𝑁, and 𝛼𝑚 as the scale value at the output of the 𝑚𝑡ℎ 
stage, 𝑚 ∈ {1, 2, … ,𝑀}, where we restrict 𝛼𝑚  to be of the 
form 𝛼𝑚 = 2−𝑞𝑚  and 𝑞𝑚  is a positive integer. We denote 

𝑥𝑚(𝑛)  as the array values at the output of the 𝑚𝑡ℎ  stage, 
where 𝑥𝑀(𝑘) ≜ 𝑋(𝑘) is the FFT output, and 𝑥0(𝑛) ≜ 𝑥(𝑛) 
is the FFT input. For a zero mean, i.i.d. sequence 𝑥(𝑛), the 
variance of the signal at the FFT output is given by 

 

𝜎𝑥𝑀
2 = 𝑁𝜎𝑥0

2 ∏𝛼𝑚
2

𝑀

𝑚=1

= 𝑁𝜎𝑥0
2 2−2∑ 𝑞𝑚

𝑀
𝑚=1  . (8) 

The noise at the output of a given butterfly is composed of  
 

 
Figure 1. Generic model of DIT FFT Butterfly 

two components: the noise that is generated by that particular  
butterfly, which we call butterfly self-noise, and the noise that  
is propagated through the butterfly (noise that was generated 
at earlier stages), which we call propagated-noise. The 
propagated-noise power is multiplied by a factor of 𝑅𝛼2 as 
each butterfly output is composed of the sum of 𝑅 i.i.d. noise 
values and is multiplied by a scaling factor 𝛼. The self-noise, 
𝑣, is the noise generated by the quantization at the butterfly 
output after being multiplied by 𝛼 as depicted in Figure 1. Its 
variance is denoted as 𝜎𝑣

2 (or power of 𝜌𝑣
2). Looking at the 

output noise of an M stages FFT, it is observed that the noise 
from the first stage propagates through the following M-1 
stages, which results in accumulation of 𝑅𝑀−1  such i.i.d. 
noise sources, each attenuated by a factor of ∏ 𝛼𝑚

2𝑀
𝑚=2 . The 

propagation of the noise from the second stage results in 
accumulation 𝑅𝑀−2 such i.i.d. noise sources, each attenuated 
by a factor of ∏ 𝛼𝑚

2𝑀
𝑚=3 , and so on. The total output noise 

variance, 𝜎𝐸
2 , for an M stages FFT, assuming all the 

quantization operations are modeled as uniform RVs, 

𝑈[−2−𝑏 , 2−𝑏),  is given by the following expression  

 

𝜎𝐸
2 = 𝜎𝑣

2 (1 + ∑ ∏ 𝑅𝛼𝑖
2

𝑀

𝑖=𝑚+1

𝑀−1

𝑚=1

) 

= 𝜎𝑣
2 (1 + ∑ 𝑅𝑀−𝑚 ∏ 𝛼𝑖

2

𝑀

𝑖=𝑚+1

𝑀−1

𝑚=1

) . 

(9) 

In (9) it was assumed that the self-noise is a continuous RV 
and have the same PDF at all the butterflies. For 𝑏 
sufficiently large (e.g., 𝑏 = 16) this assumption is commonly 
accepted. However, this is not the case for butterflies 
belonging to the ℬ1  set in which their outputs are discrete 
RVs with Probability-Mass-Function (PMF) that depend on 
the number of right shifts took place at the butterfly output. 
The power of those noise sources is larger than that of the 
uniform RV, and hence they have negative effect on the 
quantization noise power at the FFT output. In order to be 
able to evaluate the effect of those noise sources, we want to 
incorporate their statistical model in the derivation of 𝜌𝐸

2. 
Let us denote by 𝛽𝑚  the fraction of the butterflies 

belonging to the ℬ1 set at stage 𝑚, and by 𝜌𝑞𝑚
2  the self-noise 

power at the output of those butterflies. Using those 
notations, and relating to power-of-two FFTs, we can now re-
write (9) as 

 

𝜌𝐸
2 = 𝜎𝑣

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

+∑ 𝛽𝑚(𝜌𝑞𝑚
2 − 𝜎𝑣

2)𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 , 

(10) 

where we defined a virtual 𝛼𝑀+1 set to 𝛼𝑀+1 = 1/√𝑅. 
The second term in (10) is a positive quantity that represents 
the increased output noise power caused by butterflies of the 
set ℬ1. As we are dealing with power-of-two DIT FFTs, we 
can write the precise expression of 𝛽𝑚 as a function of the 
radix R. This is easily extracted from the flow graphs of those 
FFTs and is equal to 
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𝛽𝑚(𝑅) = {
𝑅−(𝑚−1)             ;   𝑅 > 2                   
1                          ;   𝑅 = 2,𝑚 = 1     

𝑅−(𝑚−2)             ;   𝑅 = 2,𝑚 > 1 .   

 (11) 

Now we can plug 𝛽𝑚 into (10) and get for 𝑅 = 2 

 

𝜌𝐸
2 = 𝜎𝑣

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

          +(𝜌𝑞1
2 − 𝜎𝑣

2)𝑅𝑀∏𝛼𝑖
2

𝑀+1

𝑖=2

 

+ ∑(𝜌𝑞𝑚
2 − 𝜎𝑣

2)𝑅𝑀−2𝑚+3 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=2

 

(12) 

 
and for 𝑅 > 2 

 

𝜌𝐸
2 = 𝜎𝑣

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

+∑(𝜌𝑞𝑚
2 − 𝜎𝑣

2)𝑅𝑀−2𝑚+2 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 . 

(13) 

Using (8), (12) and (13), the SQNR for a given scale 

pattern, 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑀],  can be calculated by 𝜎𝑥𝑀
2 /𝜌𝐸

2 

where assigning 𝛼𝑖 = 2−𝑞𝑖 . 

IV. SCALING POLICIES 

In most FFT realizations, we wish to select a scaling 
policy that maximizes the SQNR under the constraint of zero-
overflows. At the ideal BFP-FFT, the scaling policy is such 
that throughout the butterflies’ computation, every butterfly’s 
output is tested for an overflow before it is quantized down 
to 𝑏  bits. If the real or the imaginary components of the 
butterfly output overflows, the entire stage is re-calculated 
where the butterflies’ outputs are scaled down by 𝑞  bits 
before being rounded to 𝑏 bits and stored to memory. The 
value 𝑞 is selected to guarantee that the scaled result does not 
overflow anymore. For example, if one of the absolute values 
of the real or imaginary butterfly’s outputs is within the range 
[1, 2 − 2−(𝑏−1)], the entire stage will be re-calculated while the 

butterflies’ outputs will be scaled by one bit to the right (𝑞 =
1). If one of the absolute values of the real or imaginary 
butterfly’s outputs is within the range [2, 4 − 2−(𝑏−1)] , the 

entire stage will be re-calculated while the butterflies’ outputs 
will be scaled by two bits to the right and so on. The more 
common, fixed latency policy proposed by Shively [11] 
guarantees deterministic latency at the expense of decreased 
SQNR. In this policy, the decision by what factor to down-
scale the outputs of stage 𝑚 is taken based on the values of 
the outputs of stage 𝑚 − 1, which are guaranteed to fit in the 
range [−1 , 1 − 2−(𝑏−1)]. While writing the outputs of stage 

𝑚 − 1  to the memory, the processor finds the maximal 
absolute value among the real and imaginary components of 
the whole stage, which serves for the down-scaling decision 
for the next stage. The down-scaling criteria is similar to that 
being used at the ideal BFP-FFT, i.e., to guarantee zero 

overflow at the output of the next stage. Here, there is a need 
to consider the fact that the maximal absolute value at the 
next stage (stage 𝑚 ) butterflies’ output would grow by a 

factor that is between 1 and √2𝑅 relative the outputs of the 
current stage (stage 𝑚− 1). In order to formalize this, let us 
define 𝑥𝑚

𝑐 (𝑛) for 𝑛 ∈ {0, 1, … , 𝑁 − 1} as 

 𝑥𝑚
𝑐 (2𝑛) = 𝑟𝑒𝑎𝑙(𝑥𝑚(𝑛)) 

𝑥𝑚
𝑐 (2𝑛 + 1) = 𝑖𝑚𝑎𝑔(𝑥𝑚(𝑛)) 

(14) 

and 

 �̃�𝑚 = max
𝑛
{|𝑥𝑚

𝑐 (𝑛)|} . (15) 

Using those, the scaling policy of the practical BFP-FFT can 
be written as 

 

𝑞𝑚 =

{
 
 
 
 
 

 
 
 
 
 0                          ;  �̃�𝑚−1 <

1

√2𝑅
               

1                          ;  
1

√2𝑅
≤ �̃�𝑚−1 <

2

√2𝑅

2                          ;  
2

√2𝑅
≤ �̃�𝑚−1 <

4

√2𝑅
⋮
⋮

⌈𝑙𝑜𝑔2(𝑅)⌉ + 1    ;
1

√2
≤ �̃�𝑚−1      .               

 (16) 

V. SQNR CALCULATION 

It is now clear that the SQNR at the FFT output of a 
particular realization of the FFT depends on the scale pattern 
that has been used throughout this realization. Each scale 
pattern, 𝒒, is associated with a resultant SQNR. We adopt 
Weinstein’s definition for “theoretical” SQNR as the 
weighted sum of the SQNR per scale pattern over all possible 
patterns [9]. The probability of a scale pattern depends solely 
on the PDF of the input sequence and the scaling policy. In 
the sequel we will derive the scale patterns probabilities as 
well as the SQNR of the practical BFP-FFT and of the ideal 
BFP-FFT algorithms for Gaussian input sequences.  

A. Scale patterns probabilities of practical BFP-FFT 

We start with the derivation of the probabilities of scale 
patterns. Given the practical BFP-FFT’s scaling policy, the 
probability that there will be exactly 𝑞 > 0  right shifts at 
stage 𝑚 is equal to 

 
𝑃𝑟(𝑞𝑚 = 𝑞) = 𝑃𝑟 (

2𝑞−1

√2𝑅
≤ �̃�𝑚−1 ≤

2𝑞

√2𝑅
) 

= 𝑃𝑟 (−
2𝑞

√2𝑅
≤ 𝑎𝑙𝑙

𝑛
{𝑥𝑚−1

𝑐 (𝑛)} ≤
2𝑞

√2𝑅
) 

  −𝑃𝑟 (−
2𝑞−1

√2𝑅
≤ 𝑎𝑙𝑙

𝑛
{𝑥𝑚−1

𝑐 (𝑛)} ≤
2𝑞−1

√2𝑅
) 

(17) 

whereas for 𝑞 = 0  

 
𝑃𝑟(𝑞𝑚 = 0) = 𝑃𝑟 (�̃�𝑚−1 ≤

1

√2𝑅
). (18) 

By the assumption that the input sequence, 𝑥𝑚−1
𝑐 (𝑛); 𝑛 ∈
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{0, 1, … , 2𝑁 − 1} is an i.i.d. sequence, (17) and (18), can be 
written as 

 𝑃𝑟(𝑞𝑚 = 𝑞) = 

[𝑃𝑟 (−
2𝑞

√2𝑅
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
2𝑞

√2𝑅
)]

2𝑁

 

−[𝑃𝑟 (−
2𝑞−1

√2𝑅
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
2𝑞−1

√2𝑅
)]

2𝑁

 

(19) 

whereas for 𝑞 = 0  

 𝑟(𝑞𝑚 = 0) = 

[𝑃𝑟 (−
1

√2𝑅
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
1

√2𝑅
)]
2𝑁

. 
(20) 

We now define the following auxiliary variables 

 
𝑄𝑚 =∑𝑞𝑖

𝑚

𝑖=1

 ;  𝑚 ∈ {1, 2, … ,𝑀}  ,   𝑄0 = 1  (21) 

and 

 𝑇𝑚 = 2−2𝑄𝑚 . (22) 

Using those, the variance of the sequence at the output of the 

𝑚𝑡ℎ stage is  

 𝜎𝑥𝑚
2 = 𝜎𝑥0

2 𝑅𝑚𝑇𝑚 (23) 

and the variance of the real and imaginary individual 

components at the output of the 𝑚𝑡ℎ  stage is 𝜎𝑥0
2 𝑅𝑚𝑇𝑚/2. 

For an i.i.d complex Gaussian input sequence, 

𝑥0
𝑐(𝑛)~𝑁(0, 𝜎𝑥0

2 /2) ;  𝑛 ∈ {0, 1, … , 2𝑁 − 1}, it can be shown 

that all the intermediate sequences 𝑥𝑚
𝑐 (𝑛) , 𝑚 ∈ {1, 2, … ,𝑀} 

are also Gaussian i.i.d [9]. Therefore, the probability that the 

outputs of the 𝑚𝑡ℎ stage would be shifted by exactly 𝑞𝑚 > 0 
right shifts, given that there were accumulated 𝑄𝑚−1  right 
shifts at the stages preceding stage 𝑚 is 

 𝑃𝑟(𝑞𝑚 | 𝑄𝑚−1; 𝜎𝑥0
2 ) 

=

[
 
 
 

𝑒𝑟𝑓

(

 
2𝑞𝑚

𝜎𝑥0√2𝑅
𝑚+1𝑇𝑚−1)

 

]
 
 
 
2𝑁

−

[
 
 
 

𝑒𝑟𝑓

(

 
2𝑞𝑚−1

𝜎𝑥0√2𝑅
𝑚+1𝑇𝑚−1)

 

]
 
 
 
2𝑁

 

(24) 

and the probability that there would be no right shifts (𝑞𝑚 =
0) is given by 

 𝑟(𝑞𝑚 = 0 | 𝑄𝑚−1; 𝜎𝑥0
2 ) 

= [𝑒𝑟𝑓 (
1

𝜎𝑥0√2𝑅
𝑚+1𝑇𝑚−1

)]

2𝑁

 
(25) 

where 𝑒𝑟𝑓(𝑥) is defined by 

 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫𝑒−𝑡

2
𝑑𝑡

𝑥

0

 . (26) 

B. Scale patterns probabilities of ideal BFP-FFT 

At the scaling policy of the ideal BFP-FFT there are no 

per-stage scaling pre-decisions. An FFT stage is calculated 

without scaling and throughout the calculations, if any of the 

stage’s outputs overflows, the whole stage is re-calculated 

while the outputs are down-scaled before being written to 

memory. Note that in the ideal policy there may be multiple 

re-calculation of the same stage if the strategy is to initiate 

the re-calculation upon the first detected overflowed value. 

Different strategies may eliminate the multi re-calculations of 

the same stage, for example set the scale value to the maximal 

scale upon the detection of the first overflow, or always 

calculate the stage to its end and if overflows have been 

detected, set the scale value according the largest magnitude 

among the overflowed values. Some strategies suffer 

degradations in the SQNR performance due to potential 

mismatch between the scale value and the actual overflowed 

value. Nevertheless, here, for the sake of SQNR comparison, 

we assume a strategy that determine scale value according to 

the largest magnitude output sample, and hence no 

performance loss is involved. 

As opposed to the practical case, at which the scale 

decision for stage 𝑚 depends on the outputs of stage 𝑚 − 1 

after being scaled down, the scale decision of the ideal BFP-

FFT depend on the outputs of stage 𝑚 before being scaled 

down. Let us denote those values as 𝑠𝑚(𝑛), i.e. 

 𝑥𝑚(𝑛) = 𝛼𝑚𝑠𝑚(𝑛) (27) 

and define 𝑠𝑚
𝑐 (𝑛) and �̃�𝑚 in analogous to (14) and (15) as 

 𝑠𝑚
𝑐 (2𝑛) = 𝑟𝑒𝑎𝑙(𝑠𝑚(𝑛)) 

𝑠𝑚
𝑐 (2𝑛 + 1) = 𝑖𝑚𝑎𝑔(𝑠𝑚(𝑛)) 

(28) 

and  

 �̃�𝑚 = max
𝑛
{|𝑠𝑚

𝑐 (𝑛)|} . (29) 

Now, the SQNR analysis using the ideal BFP-FFT policy 

follows the steps of the analysis of the practical BFP-FFT 

scheme. The output signal variance and the output noise 

power follow (8) and (10) respectively. The probability that 

there will be exactly 𝑞 > 0 right shifts at stage 𝑚 is equal to  

 𝑃𝑟(𝑞𝑚 = 𝑞) = 𝑃𝑟(2𝑞−1 ≤ �̃�𝑚 ≤ 2𝑞) 

= 𝑃𝑟 (−2𝑞 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 2𝑞) 

−𝑃𝑟 (−2𝑞−1 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 2𝑞−1) , 

(30) 

and the probability that there will be no right shifts at stage 

𝑚, i.e. 𝑞 = 0, is  

 𝑃𝑟(𝑞𝑚 = 0) = 𝑃𝑟(�̃�𝑚 ≤ 1) = 

𝑃𝑟 (−1 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 1) . 

(31) 

Under i.i.d. Gaussian input assumption, we get for 𝑞𝑚 > 0 
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 𝑃𝑟(𝑞𝑚 | 𝑄𝑚−1 ;  𝜎𝑥0
2 ) 

= [𝑒𝑟𝑓 (
2𝑞𝑚

𝜎𝑥0√𝑅
𝑚𝑇𝑚−1

)]

2𝑁

− [𝑒𝑟𝑓 (
2𝑞𝑚−1

𝜎𝑥0√𝑅
𝑚𝑇𝑚−1

)]

2𝑁

, 

 

(32) 

and for 𝑞𝑚 = 0 

 𝑃𝑟(𝑞𝑚 = 0 | 𝑄𝑚−1 ;  𝜎𝑥0
2 ) = 

[𝑒𝑟𝑓 (
1

𝜎𝑥0√𝑅
𝑚𝑇𝑚−1

)]

2𝑁

. 
(33) 

 

C. SQNR calculation 

We use the per-stage probabilities to calculate the 
probability of a specific scale pattern, 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑀],  

 𝑃𝑟(𝒒; 𝜎𝑥0
2  )

= 𝑃𝑟(𝑞1; 𝜎𝑥0
2 )∏𝑃𝑟(𝑞𝑚|𝑄𝑚−1; 𝜎𝑥0

2 )

𝑀

𝑚=2

 
(34) 

and the output SQNR is calculated by the weighted sum of 
the SQNRs per scale pattern as 

 
𝑆𝑄𝑁𝑅 =∑𝑃𝑟(𝒒; 𝜎𝑥0

2 ) ∙ 𝑆𝑄𝑁𝑅(𝒒, 𝜎𝑥0
2 )

𝒒

 

=∑𝑃𝑟(𝒒; 𝜎𝑥0
2 ) ∙

𝜎𝑥𝑀
2 (𝒒, 𝜎𝑥0

2 )

𝜌𝐸
2(𝒒)

𝒒

  . 

(35) 

In (35) the expression 𝑃𝑟(𝒒; 𝜎𝑥0
2 )  is calculated by (34), 

𝜎𝑥𝑀
2 (𝒒, 𝜎𝑥0

2 ) is calculated by (8) and 𝜌𝐸
2(𝒒), with 𝛼𝑖 = 2

−𝑞𝑖 , 

is calculated by (12) or (13) for Radix-2 and Radix-4 
respectively.  

VI. RESULTS 

The derived models of the SQNR for the practical and the 
ideal BFP-FFT have been validated against simulation. The 
model and the simulation results for 16-bit datatype (𝑏 = 16) 
and Gaussian i.i.d input with standard deviation of 𝜎𝑥0 =
0.15  are shown in Figure 2 and Figure 3 for radix-2 and 
radix-4 respectively. For the simulation results we have 
averaged the SQNR of 1000 FFT runs per FFT length. As can 
be seen, there is a very good match between the simulation 
results and the derived model. The gap between the refined 
statistical model (that incorporate the refinement for ℬ1 
butterflies) and the simulation result for the practical BFP- 
FFT is in the order of 0.2dB. The results for the ideal BFP-
FFT are not shown in the figures since the model has almost 
perfect match to the simulation result with gaps that are in the 
order of 0.05dB. 

In Figure 2 and Figure 3 we can also see the effect of the 
refined statistical model for the ℬ1 butterflies. The model 

 
Figure 2.  Radix-2 Practical BFP-FFT 

 

 
Figure 3.  Radix-4 Practical BFP-FFT 

neglecting the effects of the ℬ1 butterflies, for radix-2 BFP-
FFT, is optimistic by about 0.5dB for the practical BFP-FFT 
and by about 1dB for radix-4. 

One of the main goals of the paper is to provide an 
analytical tool that enables the prediction of the SQNR 
penalty one needs to pay for getting fixed latency BFP-FFT. 
This penalty is clearly seen for radix-2 and radix-4 in Figure 
2 and Figure 3 respectively. We see that such a penalty is in 
the order of 6dB when the number of stages is above five, and 
grows up to 13.5dB for lower number of stages as seen at the 
case of 64 points radix-4 FFT. 

Another interesting observation that the model reveals 
relates to the comparison of the SQNR between radix-2 and 
radix-4 BFP-FFT implementations. It is well known that from 
complexity perspective, the radix-4 has advantages over 
radix-2 (at least in the number of multiplications). From the 
results in Figure 2 and Figure 3, we can also see that radix-4 
have better SQNR in the ideal BFP-FFT implementation. We 
get 4dB advantage for 64-points FFT down to about 2dB 
advantage for 4096-points FFT. However, for the practical 
BFP-FFT we see an opposite behavior. The radix-2 practical 
BFP-FFT results in 2.8dB better SQNR for 64-point FFT, 
down to 1.2dB better SQNR for 4096-points FFT.  
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VII. CONCLUSIONS 

In this paper, we refined the analytical model of the finite-
word-length-effects of Cooley Tukey DIT BFP-FFT to 
incorporate butterflies belonging to the ℬ1  set, as well as 
extended the model for the commonly used practical BFP-
FFT. The refined analytical model was validated against 
simulation and found highly accurate for ideal and practical 
BFP-FFTs. The model enables to accurately predict the 
SQNR for the practical BFP-FFT and the performance 
degradation compared to the ideal BFP-FFT scheme. 

The analysis covers DIT-FFT for radix-2 and radix-4, but 
can be easily adapted to DIF FFT topologies and be extended 
for non-power-of-2 BFP-FFTs as well as for mixed radices, 
such as the ones used in LTE wireless modems. 
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Abstract—The best selling computer game of all times,
Minecraft, represents the world as discrete blocks. The
Minecraft-like worlds may be unknowingly created by many
mathematical models of the real-world systems, when their
inputs and outputs are discretized. This paper investigates system
modeling and identification with noisy, discretized, but otherwise
static inputs and outputs. Such a scenario occurs, for example,
when configuring and measuring the system is time-consuming
and costly. The task is to infer the model parameters from
a limited number of input-output measurements. It is shown
that, in this setting, the traditional least-squares model fitting
is ineffective. A better strategy is to first accurately estimate
the static input and output values, and then obtain the model
parameters by inverting the model numerically by solving an
underlying set of equations for the same number of unknown
model parameters. These results have direct implications on
creating and interpreting mathematical models of systems, and
even physical laws, when the noisy measurements are implicitly
or explicitly discretized.

Keywords—Linear model; Mean-square error; Minecraft; Quan-
tization; Parameter estimation; System identification.

I. INTRODUCTION

Mathematical models are used extensively in many appli-

cations. The models are usually represented by the sets of

parameterized equations describing the model input-output

relationships. The aim of model identification is to recover

the model parameters from the noisy measurements of its

inputs and outputs. These measurements may be explicitly or

implicitly quantized. The former is used to reduce the storage

and transmission requirements, and to speed-up computations

at the expense of loosing some information and accuracy. The

implicit quantization is more subtle, and it occurs when the

resolution of measured samples is insufficient, for example,

due to the use of inexpensive measuring equipment.

Simply inverting the model in order to recover the model

parameters from the measurements of its inputs and outputs

is often unacceptable. The model inversion tends to greatly

amplify the measurement noises, which leads to large es-

timation errors [1]. The model-based parameter estimation

methods are often used to obtain the optimum and numerically

efficient estimators in the presence of strong measurement

noises. However, for model identification [2] and supervised

machine learning [3], an alternative strategy can be adopted.

In particular, the input and output values can be estimated

independently from their noisy, and possibly discretized mea-

surements. For static values, this corresponds to estimating

unknown constants in additive noises. If the estimators used

are unbiased and consistent, the measurement noises can be

sufficiently suppressed, so the model inversion is acceptable

to accurately infer the model parameters.

The paper [4] is one of the earliest studies on estimating the

state of dynamic linear systems from quantized measurements.

The authors demonstrated that Kalman filtering is still effective

even under these conditions. This problem was considered

again in [5] as a joint design of the quantizer and the estimator.

The classical textbook [2] covers a wide range of topics in

adaptive filtering including system identification and adaptive

filter design with quantized inputs. The paper [6] investigates

the optimum techniques for signal detection and estimation,

and evaluates the corresponding performance losses due to

uniform signal quantization. The confidence intervals of the

discretized likelihood-based estimators with quantized inputs

were studied in [7]. The encoding and decoding schemes for

quantized random processes were designed in [8] to enable

their efficient transmissions under the age-of-information con-

straints. The Cramér-Rao bounds for estimating the parameters

from quantized measurements were derived in [9].

In this paper, we consider the problem of identifying the

model parameters from quantized noisy measurements of both

the model inputs and outputs. The model inputs and outputs

are assumed to be static, so their values can be inferred with

a high accuracy from a sufficient number of measurements

assuming the consistent and unbiased estimators. The model

parameters are then obtained by solving a set of linear or

non-linear equations. It is also shown that the traditional least

squares fitting of the model to the input and output data is

much less effective, when the input and output measurements

are noisy and quantized. This is also an important issue, for

example, in supervised machine learning.

The following notations are adopted in the paper: Av[·] =
(1/T )

∫ T/2

−T/2
(·) dt, and, Av[·] = (N + 1)−1 ∑

N/2

i=−N/2
(·), are the

time-averaging (arithmetic average) operators in continuous

and discrete time, respectively, E[·] is the statistical expecta-

tion, xxx denotes a column vector, whereas XXX denotes a matrix,

(·)T and (·)−1 denote the matrix transpose and inverse, respec-

tively, 〈·, ·〉 denotes the dot-product, ḟ is the first derivative

of function, f , ⌊·⌋, ⌈·⌉, and sign(·) are the floor function, the

ceiling function, and the sign function, respectively, and R and

Z represent the sets of real numbers and integers, respectively.

The rest of the paper is organized as follows. Section II

outlines system model with uniformly, and also binary quan-

tized inputs and outputs. The estimation of model parameters

is described in Section III. The estimator variances are studied

in Section IV. Discussion and future work are in Section V.
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II. SYSTEM MODEL

A general parameterized model with multiple inputs and

outputs (MIMO) is shown in Figure 1. Such a model can be

succinctly described by a single equation,

f (xxx,yyy,aaa) = 0 (1)

relating the model inputs, xxx, outputs, yyy, and a given set of

model parameters, aaa. Importantly, it is assumed that the input

as well as output measurements of model (1) are first quantized

and de-noised, before estimating the parameters, aaa.
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f (E[x1], . . . ,E[xM];a0, . . . ,ap;E[y1], . . . ,E[yN ]) = 0

Figure 1. Modeling and measurements of a static (M×N) MIMO system.

Note that, here, the system modeling assumes the expected

values of the inputs and outputs. In practice, measuring the

statistical means can be problematic, when the random pro-

cesses are non-stationary or non-ergodic [10]. The measuring

instruments usually report the time-averaged values over a

certain time-window. On the other hand, the expected values

are more a theoretical concept, which is used, for example,

when deriving the estimators of random signals to minimize

the given risk. However, under the law of large numbers, the

expectations can be replaced by the time averages. These dif-

fering views and assumptions can be reconciled by assuming

the statistical and time averaging at the same time, i.e., by

assuming, Av[E[·]] = E[Av[·]]. Depending on the type of a

random process, x(t), different averages are related as:

E[x] = Av[E[x]] = Av[x] ⇔ ergodic &

stationary,

E[x] 6= Av[E[x]] = Av[x] ⇔ ergodic &

non− stationary,

E[x] = Av[E[x]] 6= Av[x] ⇔ non− ergodic &

stationary,

E[x] 6= Av[E[x]] 6= Av[x] ⇔ non− ergodic &

non− stationary.

(2)

A. Linear SISO model

For the sake of notational simplicity, consider a single-input,

single-output (SISO) model.

The linear SISO model is described by a linear combination

of p basis functions, φi(x), i.e.,

y = a0 +
p

∑
i=1

ai φi(x). (3)

If the functions, φi(x), are mutually orthogonal, i.e., the dot-

product,
〈

φi,φ j

〉

6= 0, for ∀i 6= j, then p is also the dimension

(rank) of the linear model. The n output measurements, yi,

collected at n input values, xi, are related as,







y1

...

yn






=







1 φ1(x1) · · · φp(x1)
...

...
...

1 φ1(xn) · · · φp(xn)






·











a0

a1

...

ap











yyy = ΦΦΦ(xxx) ·aaa.

(4)

The basis functions are generally non-linear, however, they

can be linearized about a chosen value, x0, as,

φi(x)
.
= φi(x0)+ φ̇i(xo)(x− x0). (5)

Such linear approximations can be also defined in multiple

dimensions [11]. The caveat is that the approximation (5) is

only valid in the vicinity of x0, and choosing the suitable value

can be problematic. For example, if linear model (3) represents

a polynomial regression, then it can be rewritten assuming the

linearized basis functions as,

y = a0 +
p

∑
i=1

ai(Aix+Bi) (6)

where Ai = φ̇i(x0), and, Bi = φi(x0)− φ̇i(x0)x0.

B. Quantized measurements

The measurements are quantized for various reasons. For

instance, the explicitly quantized values require less memory

for storage, and the numerical computations become faster to

perform. The implicit quantization occurs when the resolution

of the measurements is insufficient with respect to a given

modeling application. The most common is a uniform quanti-

zation having the equidistant quantization intervals of length,

∆, i.e.,

x̌ = Q (x) =

⌊

x−∆/2

∆

⌋

+1 ∈ Z (7)

so that the quantization error, ε∆ = x−∆x̌, and,

∆(x̌−1/2)≤ x < ∆(x̌+1/2). (8)

Note also that, ⌊x⌋+ 1 6= ⌈x⌉, for the integer values of the

argument. In addition, the quantized values are often bounded

to a finite set of integers between, −x̌max, and, x̌max.

Alternatively, the binary quantization,

x̌ = Q2(x) = sign(x) ∈ {−1,+1} (9)

can be sufficient in some applications.

The issue with implicit quantization due to insufficient

resolution is illustrated in Figure 2, assuming a linear system,

y = 3x/2, and the uniform quantization with ∆ = 1/2. It
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can be observed that, the model having only the quantized

inputs, y = aQ (x), is nearly identical to the unquantized

model, y = ax. However, when both the input and the output

are quantized, a formerly linear model becomes a staircase

function (red dashed line), Q (y) = aQ (x). In this case, only

one noise-free measurement is necessary to determine the

constant, a. If such a measurement is taken at points, A, B,

or C, the proportionality constant is inferred to be equal to 1,

5/4, or 7/4, respectively. Consequently, the implicit or explicit

quantization of the output values have a severe impact on

identifying the model parameters.
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Figure 2. The consequences of the input-output uniform quantization on
modeling linear SISO systems.

III. ESTIMATING MODEL PARAMETERS

Assume that n noisy measurements can be written as,

yi = ȳ+ εyi

xi = x̄+ εxi

(10)

where the additive noises, εyi, and, εxi, have zero means, i.e.,

E[yi] = ȳ, and, E[xi] = x̄. Even when the measurements at

different time instances can be assumed to be independent,

the input-output correlations,

E[xiyi] = x̄ȳ+E[εxiεyi] (11)

are affected by the noise covariances, E[εxiεyi] 6= 0.

Provided that the measurements are noisy, the input-output

relationship (4) can only be satisfied approximately. The over-

determined linear systems with n ≫ p measurements can be

solved by considering the least-squares (LS) model fitting.

The closed-form expression for the LS estimate of the model

parameters is well-known, i.e., [12]

âaaLS =
(

ΦΦΦT (xxx)ΦΦΦ(xxx)
)−1

ΦΦΦT (xxx)yyy. (12)

Substituting the noisy measurements (10) into (12), while also

assuming a linearization of the basis functions (5) about the

mean, x̄, the resulting linear model (4) can be written as,

yyy =
[

1(n,1) | Φ̄ΦΦ(x̄)+ εεεx · φ̇φφT
(x̄)

]

·aaa (13)

where 1(n,1) is the all-ones column vector, the constant matrix,

Φ̄ΦΦ(x̄), has identical rows with the elements, φi(x̄), the column

vector, εεεx, contains additive noises, εxi, at the model input, and

the constant column vector, φ̇φφ(x̄), has the elements, φ̇i(x̄).
In order to obtain an insight into the LS solution of (13)

for the model parameters, aaa, consider the LS sum over the n

measurements, i.e.,

LS(a0,aaa) =
n

∑
i=1

(

yi −a0 −
(

φ̇φφεxi +φφφ
)T ·aaa

)2

(14)

where the parameter, a0, was taken out of the p-element vector,

aaa, φφφ represents the row of the matrix, Φ̄ΦΦ(x̄), transposed to

become a column vector, and let the vector of derivatives,

φ̇φφ(x̄) ≡ φ̇φφ. Note that both vectors, φ̇φφ, and, φφφ, are independent

of the index, i. The model parameters minimizing the LS value

are the solution of the set of linear equations, i.e.,

∂

∂a0
LS(â0, âaa) = 0

∂

∂aaa
LS(â0, âaa) = 0.

(15)

After some lengthy, but otherwise straightforward manipula-

tions, we get,

â0 = Av[yi]−
(

φ̇φφAv[εxi]+φφφ
)T

âaa (16)

where Av[yi] = (1/n)∑n
i=1 yi, and, Av[εxi] = (1/n)∑n

i=1 εxi.

Noticing that, yi −Av[yi] = εyi, we obtain the solution for aaa,

which can be substituted into (16), i.e.,

φ̇φφAv[εxiεyi]+φφφAv[εyi] =
(

Av
[

(

φ̇φφεxi+φφφ
)(

φ̇φφεxi+φφφ
)T

]

−Av
[

φ̇φφεxi+φφφ
]

Av
[

φ̇φφεxi+φφφ
]T
)

aaa.

(17)

The right-hand side of (17) can be further simplified as,

φ̇φφAv[εxiεyi]+φφφAv[εyi] = φ̇φφφ̇φφ
T

Av
[

(εxi − ε̄x)
2
]

aaa (18)

where ε̄x = Av[εxi]. Finally, the LS estimates of the model

parameters are then computed as,

âaa =
(

φ̇φφφ̇φφ
T
)−1

φ̇φφ
Av[εxiεyi]

Av[(εxi − ε̄x)2]
+
(

φ̇φφφ̇φφ
T
)−1

φφφ
Av[εyi]

Av[(εxi − ε̄x)2]
.

(19)

For a large number of samples, n ≫ 1, Av[εyi]
.
= 0, and the

final expression for estimating the model parameters becomes,

âaa =
(

φ̇φφφ̇φφ
T
)−1

φ̇φφ
Av[εxiεyi]

Av[(εxi − ε̄x)2]
. (20)

As an illustrative example, assume a simple linear SISO

model, yi = a1xi +a0, with p = 2 parameters. Assuming (20),

the LS estimates of the model parameters are,

â0 = ȳ− â1x̄

â1 =
Av[(yi − ȳ)(xi − x̄)]

Av[(xi − x̄)2]

(21)

42Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-245-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIGNAL 2025 : The Tenth International Conference on Advances in Signal, Image and Video Processing

                            50 / 53



where ȳ = Av[yi], and, x̄ = Av[xi]. The resulting mean-square

error (MSE) is equal to,

MSE(â0, â1) =
n

∑
i=1

(yi − â1xi − â0)
2

=
n

∑
i=1

((yi − ȳ)− â1(xi − x̄))2

= Av
[

(yi − ȳ)2
]

− Av[(xi − x̄)(yi − ȳ)]2

Av[(xi − x̄)2]
.

(22)

Moreover, for the specific model of measurements (10), and

an asymptotically large number of measurements, n ≫ 1, the

LS estimate of a1 can be rewritten as,

â1 =
E[εxiεyi]

E
[

ε2
xi

] =
cov[εxiεyi]

var[εxi]
. (23)

In this case, the resulting MSE is equal to,

MSE(â0, â1) = E
[

ε2
yi

]

− E[εxiεyi]
2

E
[

ε2
xi

] . (24)

Importantly, examining eqs. (22) and (24), it can be ob-

served that the achievable MSE is greatly affected by the

cross-covariance terms, Av[(xi − x̄)(yi − ȳ)]2, and, E[εxiεyi], re-

spectively. In practice, this cross-covariance can be expected to

be much larger between the zero-mean processes representing

the model inputs and outputs than between the measurement

noises at the model inputs and outputs. Consequently, the LS

estimation of the model parameters performs poorly when the

input and output signals are noisy constants as assumed in

(10). In such a case, some other strategy for identifying the

model parameters has to be adopted.

A. Estimating the model inputs and outputs

In the absence of measurement noises, the n = (p + 1)
measurements are sufficient to obtain the model parameters

in (4) by inverting the matrix, ΦΦΦ, i.e.,

aaa = ΦΦΦ−1(Q (xxx))Q (yyy) . (25)

However, theoretical guarantees about the existence of the

inverse, ΦΦΦ−1, are not considered further in this paper.

The noise in the measurements of the static model in-

puts and outputs can be suppressed statistically by taking

repeated measurements. In particular, considering the input-

output model (10), this leads to the problem of estimating the

deterministic, but otherwise unknown constants in the zero-

mean, stationary additive noises from multiple measurements.

Several strategies were proposed in the literature for estimat-

ing the deterministic (without any prior knowledge) parameters

[12]. The minimum variance unbiased (MVUB), and among

them, the best linear unbiased (BLUE) methods yield the

estimators with the minimum variance, provided that they

exist, and that they can be found. The LS estimator will

perform poorly as argued in the previous subsection. The

maximum-likelihood (ML) estimator is relatively easy to ob-

tain for simple input-output signal models (10), and since it is

asymptotically unbiased as well as consistent, this estimator

is selected here. Furthermore, note that it is sufficient to only

consider the estimators for one input-output signal, since all

these input-output signals have the same model (10).

In particular, given n quantized measurements, xi, i =
1,2, . . . ,n, the task is to derive an ML estimator of the constant,

x̄, in an additive noise, εxi. In this paper, we assume that

the additive noise is zero-mean, Gaussian, and stationary with

the variance, σ2. If the measurements are unquantized, it is

straightforward to show that the ML estimator is the arithmetic

mean, i.e., [12]

ˆ̄x =
1

n

n

∑
i=1

xi =
1

n

n

∑
i=1

(x̄+ εxi) = x̄+ ε̄xi. (26)

In the case the measurements are quantized into integer val-

ues using the mapping (7), the probability of the measurement,

x̌i = k, where k ∈ Z can be computed as,

Pr(x̌i = k) = Q

(

∆(k−1/2)− x̄

σ

)

−Q

(

∆(k+1/2)− x̄

σ

)

(27)

where the Q-function for the standard Gaussian variable is

defined as,

Q(t) =

∫ ∞

t

1√
2π

e−t2/2 dt. (28)

Provided that the additive noise is also white, the measure-

ments are independent, and the ML estimator maximizes the

joint probability density,

Pr({x̌i}i) =
n

∏
i=1

Q

(

∆(x̌i −1/2)− x̄

σ

)

−Q

(

∆(x̌i +1/2)− x̄

σ

)

.

(29)

Taking the logarithm, and then the derivative by x̄ (i.e., the

parameter to be estimated), we obtain,

∂

∂x̄
logPr({x̌i}i) =

− 1

σ

n

∑
i=1

Q̇

(

∆(x̌i−1/2)−x̄

σ

)

− Q̇

(

∆(x̌i+1/2)−x̄

σ

)

Q

(

∆(x̌i−1/2)−x̄

σ

)

−Q

(

∆(x̌i+1/2)−x̄

σ

) . (30)

In order to find, for which value of x̄, the expression (30)

becomes zero to maximize the log-likelihood, we can linearize

the Q-function and its derivative about the point, x0, i.e.,

Q(x)≈ Q(x0)−
1√
2π

e−x2
0/2(x− x0)

Q̇(x)≈ 1√
2π

e−x2
0/2(x0x− x2

0 −1).
(31)

The corresponding approximations are then,

Q(x0 −b)−Q(x0 +b)≈ be−x2
0/2

√

2

π

Q̇(x0 −b)− Q̇(x0 +b)≈−x0 be−x2
0/2

√

2

π
.

(32)

Assuming x0 = (∆x̌i − x̄)/σ, and, b = (∆/2)/σ, in approxima-

tions (32), the derivative of the log-likelihood function (30)

can be greatly simplified as,
n

∑
i=1

∆x̌i − x̄

σ2

!
= 0. (33)
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Consequently, we find that the ML estimator of x̄, from the

quantized noisy measurements, x̌i, is again a simple arithmetic

average, i.e.,

ˆ̄x = ∆
1

n

n

∑
i=1

x̌i. (34)

However, and importantly, note that the ML estimator was

derived under the assumption that, b = (∆/2)/σ, is relatively

small (i.e., b < 1), so that the linearization is sufficiently

accurate. The value, ∆/2, also represents the maximum quan-

tization error, and thus, we can conclude that the arithmetic

average estimator can be expected to perform comparatively

well as the arithmetic average estimator for the unquantized

measurements, when (∆/2)≪ σ.

The similar derivation can be performed for the case of

binary quantization (9) when the measurements are quantized

to, −1, and, +1, values. Under the assumption that, x̄ ≪ σ,

the ML estimator (which, in this case, can be shown to be

actually the MVUB estimator) becomes,

ˆ̄x = σ

√

π

2

1

n

n

∑
i=1

x̌i, x̌i ∈ {−1,+1}. (35)

Thus, the estimator for the binary quantized measurements

requires knowledge of the noise standard deviation, σ.

IV. ESTIMATOR VARIANCES

In this section, the goal is to compare the variances of the

estimation errors for different estimators considered in the

previous section. In particular, when the measurements are

unquantized, the estimator (26) is unbiased, and its variance

is simply,

E
[

( ˆ̄x− x̄)2
]

= σ2/n. (36)

When the measurements are uniformly quantized, the ML

estimator (34) may be biased, i.e.,

E
[

ˆ̄x
]

=
∆

n

n

∑
i=1

E[x̌i] =
∆

n

n

∑
i=1

∞

∑
k=−∞

k Pr(x̄ = k)

=
∆2

√
2πσ

∞

∑
k=−∞

k e
− (∆k−x̄)2

2σ2

(37)

where we assumed linearization (32) of the Q-function.

Further insight can be obtained by analyzing the best

case, and the worst case quantization scenarios. In particular,

without loss of generality, the best case scenario occurs, when

x̄ = 0 (more precisely, if x̄ is an integer multiple of ∆); then,

the mean, E
[

ˆ̄x
]

= 0, and the ML estimator (34) is unbiased. On

the other hand, the largest bias occurs for the values, x̄=±∆/2

(more precisely, if x̄ is an odd-integer multiple of ∆/2). Hence,

let, x̄ = −c∆/2, where c = 0, represents the best case, and

c = 1, represents the worst case scenario, respectively.

The ML estimator (34) with quantized measurements has

the variance,

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

=
∆2

n2
E

[

n

∑
i, j=1

x̌ix̌ j

]

−∆2E[x̌i]
2

=
∆2

n

(

E
[

x̌2
i

]

−E[x̌i]
2
)

. (38)

To simplify the notation, define the moment [cf. (37)],

Zm(∆/σ) = E[x̌m
i | x̄ =−c∆/2]

=
∞

∑
k=−∞

km Pr(x̌ = k | x̄ =−c∆/2)

=
∆√
2πσ

∞

∑
k=−∞

k e
− (k+c/2)2

2
∆2

σ2 .

(39)

After substituting Zm(∆/σ) into (38), the final expression for

the estimator variance becomes,

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

=
∆2

n

(

Z2(∆/σ)−Z2
1(∆/σ)

)

. (40)

The derived MSE expression (40) is compared with the

computer simulations in Figure 3 assuming n = 100 measure-

ments, and the quantization intervals with ∆ = 1/2. It can be

observed that the derived expression is in a good agreement

with simulations, provided that the condition, ∆ ≪ σ, is

satisfied. For larger values of ∆/σ, the derived expression rep-

resents a loose lower bound of the actual MSE. As expected,

when the estimator with quantized inputs is unbiased (the best

case scenario), the MSE continues to be reduced by reducing

the amount of measurement noise. When the quantization

error makes the estimator to be biased, the MSE eventually

saturates, as might be expected.
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best case math

M
S

E
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Figure 3. The MSE of the ML estimator with uniformly quantized
measurements corresponding to the best case and the worst case

quantization errors, respectively.

The variance of the MVUB estimator (35) with the binary

quantized measurements can be shown to be,

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

=
π

2

σ2

n
. (41)

Thus, it is (π/2) times larger than the variance (36) of the

estimator from unquantized measurements, and importantly,

provided that the condition, x̄ ≪ σ is satisfied.
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The Cramér-Rao bound can be derived using again a lin-

earization of the Q-function in the low signal-to-noise ratio

(SNR) regime to obtain, [13]

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

≥ J−1 =
σ2

n

(1−Q(x̄/σ))Q(x̄/σ)

Q̇(x̄/σ)
(42)

where J denotes the Fisher information matrix (a scalar value,

here). The normalized Cramér-Rao bound, nJ−1/σ2, is shown

in Figure 4 (black-line), together with the MSE of the estima-

tor having the binary quantized measurements (41) (blue-line),

and the MSE of the estimator with unquantized measurements

(36) (red-line). It can be observed that the MSE raises quickly

with improving SNR. In such a case, the binary quantization

error starts dominating, and it cannot be reduced, for example,

by simply increasing the number of measurements.
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un-quantized

M
S
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x0/σ

Figure 4. The Cramér-Rao bound of the estimator with the binary quantized
measurements (black line), the actual MSE in the low-SNR regime (blue
line), and the MSE of the estimator with the unquantized measurements

(red-line).

V. DISCUSSION AND FUTURE WORK

Our investigations showed that the quantization noise can be

neglected, provided that it is comparable with the measurement

noise. If this condition is not satisfied, the estimators are

only unbiased and consistent with respect to the additive

measurement noise, and the estimation error is dominated by

the residual quantization noise. The measurements obtained

at both the system inputs and outputs represent a classical

problem of system identification. When the inputs and outputs

are static, i.e., they are constant values observed in an additive

noise, the recommended strategy for estimating the model

parameters is to first clean the input-output measurements

by suppressing the measurement noises. This can be done

independently for each input and output using different types

of estimators. The noise-free input and output values can be

then substituted into the model, and the model parameters

are obtained by solving the same number of linear or non-

linear equations representing the system model. This strategy

is superior to classical least-squares model fitting (i.e., without

suppressing the measurement noises first), provided that the

inputs and outputs are noisy constant values. Furthermore,

estimating the model parameters from input-output data pairs

resembles a supervised machine learning. The main difference

is that the data examples for machine learning are usually

assumed to be noise-free, and the number of parameters

assumed in machine learning models can be excessively large.

In this paper, our focus was on identifying relatively small

linear models from their input-output measurements. Such

models are common not only in engineering, but they also

represent many physical laws. For example, Schrödinger and

Maxwell’s equations are both linear. It was shown in Figure 2

that the coarse-grained quantization can substantially affect

the model, and also our perception of reality, if the model

represents a physical law. This phenomenon is referred to here

as Minecraft of system modeling, since the quantization makes

the reality to appear as if it consisted of discrete blocks.

The future work can investigate the optimum representations

of MIMO systems with discretized inputs and outputs. The

non-linear systems can be modeled by recursive structures

[14]. The fundamental question is how to suppress the quan-

tization noise akin to suppressing the measurement noise. In

this paper, the static input and output values were considered.

Measuring the systems having the random processes as their

inputs and outputs is more challenging, as it requires precise

time-synchronization of the measurements at all the system

inputs and outputs.
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