
SERVICE COMPUTATION 2021

The Thirteenth International Conferences on Advanced Service Computing

ISBN: 978-1-61208-844-0

April 18 - 22, 2021

SERVICE COMPUTATION 2021 Editors

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and
Arts, Germany

 1 / 27

SERVICE COMPUTATION 2021

Forward

The Thirteenth International Conferences on Advanced Service Computing (SERVICE COMPUTATION
2021), held on April 18 - 22, 2021, continued a series of events targeting computation on different
facets.

The ubiquity and pervasiveness of services, as well as their capability to be context-aware with (self-)
adaptive capacities posse challenging tasks for services orchestration, integration, and integration. Some
services might require energy optimization, some might require special QoS guarantee in a Web-
environment, while others a certain level of trust. The advent of Web Services raised the issues of self-
announcement, dynamic service composition, and third party recommenders. Society and business
services rely more and more on a combination of ubiquitous and pervasive services under certain
constraints and with particular environmental limitations that require dynamic computation of
feasibility, deployment and exploitation.

The conference had the following tracks:

 Service innovation, evaluation and delivery

 Service quality

 Challenges

 Advanced Analysis of Service Compositions

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION 2021
technical program committee, as well as the numerous reviewers. The creation of a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and effort to contribute to SERVICE COMPUTATION 2021.
We truly believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the SERVICE COMPUTATION 2021 organizing
committee for their help in handling the logistics and for their work that made this professional meeting
a success.

We hope SERVICE COMPUTATION 2021 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of
computation.

 2 / 27

SERVICE COMPUTATION 2021 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany

SERVICE COMPUTATION 2021 Publicity Chair

Jose Luis García, Universitat Politecnica de Valencia, Spain
Lorena Parra, Universitat Politecnica de Valencia, Spain

SERVICE COMPUTATION 2021 Industry/Research Advisory Committee

Steffen Fries, Siemens Corporate Technology - Munich, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Jan Porekar, SETCCE, Slovenia
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany

 3 / 27

SERVICE COMPUTATION 2021

Committee

SERVICE COMPUTATION 2021 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany

SERVICE COMPUTATION 2021 Industry/Research Advisory Committee

Steffen Fries, Siemens Corporate Technology - Munich, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Jan Porekar, SETCCE, Slovenia
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany

SERVICE COMPUTATION 2021 Publicity Chairs

Jose Luis García, Universitat Politecnica de Valencia, Spain
Lorena Parra, Universitat Politecnica de Valencia, Spain

SERVICE COMPUTATION 2021 Technical Program Committee

Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Uwe Breitenbücher, University of Stuttgart, Germany
Antonio Brogi, University of Pisa, Italy
Isaac Caicedo-Castro, Universidad de Córdoba, Colombia
Rong N. Chang, IBM T.J. Watson Research Center, USA
Dickson Chiu, The University of Hong Kong, Hong Kong
Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil
Erdogan Dogdu, Angelo State University, USA
Monica Dragoicea, University Politehnica of Bucharest, Romania
Sebastian Floerecke, University of Passau, Germany
Sören Frey, Daimler TSS GmbH, Germany
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Somchart Fugkeaw, Sirindhorn International Institute of Technology | Thammasat University, Thailand
Katja Gilly, Miguel Hernandez University, Spain
Victor Govindaswamy, Concordia University - Chicago, USA
Maki Habib, The American University in Cairo, Egypt

 4 / 27

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Wei-Chiang Hong, School of Computer Science and Technology - Jiangsu Normal University, China
Paul Humphreys, Ulster University, UK
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Maria João Ferreira, Universidade Portucalense, Portugal
Yu Kaneko, Toshiba Corporation, Japan
Hyunsung Kim, Kyungil University, Korea
Alexander Kipp, Robert Bosch GmbH, Germany
Christos Kloukinas, City, University of London, UK
Arne Koschel, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Wen-Tin Lee,National Kaohsiung Normal University,Taiwan
Mohamed Lehsaini, University of Tlemcen, Algeria
Robin Lichtenthäler, University of Bamberg, Germany
Cho-Chin Lin, National Ilan University, Taiwan
Mark Little, Red Hat, UK
Xiaodong Liu, Edinburgh Napier University, UK
Michele Melchiori, Università degli Studi di Brescia, Italy
Fanchao Meng, University of Virginia, USA
Philippe Merle, Inria, France
Giovanni Meroni, Politecnico di Milano, Italy
Naouel Moha, Université du Québec à Montréal, Canada
Fernando Moreira, Universidade Portucalense, Portugal
Sotiris Moschoyiannis, University of Surrey, UK
Gero Mühl, Universitaet Rostock, Germany
Artur Niewiadomski, Siedlce University of Natural Sciences and Humanities, Poland
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Ali Ouni, Ecole de Technologie Superieure, Montreal, Canada
Agostino Poggi, Università degli Studi di Parma, Italy
Jan Porekar, SETCCE, Slovenia
Thomas M. Prinz, Friedrich Schiller University Jena, Germany
Joao F. Proenca, University of Porto / University of Lisbon, Portugal
Teresa Proença, Porto University, Portugal
Arunmoezhi Ramachandran, Tableau Software, Palo Alto, USA
Christoph Reich, Hochschule Furtwangen University, Germany
Wolfgang Reisig, Humboldt University, Berlin, Germany
Sashko Ristov, University of Innsbruck, Austria
José Raúl Romero, University of Córdoba, Spain
António Miguel Rosado da Cruz, Politechnic Institute of Viana do Castelo, Portugal
Michele Ruta, Technical University of Bari, Italy
Marek Rychly, Brno University of Technology, Czech Republic
Ulf Schreier, Furtwangen University, Germany
Frank Schulz, SAP Research Karlsruhe, Germany
Mohamed Sellami, Telecom SudParis, Evry, France
Wael Sellami, Higher Institute of Computer Sciences of Mahdia - ReDCAD laboratory, Tunisia

 5 / 27

T. H. Akila S. Siriweera, University of Aizu, Japan
Jacopo Soldani, University of Pisa, Italy
Masakazu Soshi, Hiroshima City University, Japan
Orazio Tomarchio, University of Catania, Italy
Juan Manuel Vara, Universidad Rey Juan Carlos, Spain
Yong Wang, Dakota State University, USA
Hironori Washizaki, Waseda University, Japan
Mandy Weißbach, Martin Luther University of Halle-Wittenberg, Germany
Michael Zapf, Technische Hochschule Nürnberg Georg Simon Ohm, Germany
Sherali Zeadally, University of Kentucky, USA
Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany

 6 / 27

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 27

Table of Contents

Towards a Resiliency Decision Framework for Microservices
Johannes Busch, Andreas Hausotter, and Arne Koschel

1

Towards a Microservices Reference Architecture for Insurance Companies
Arne Koschel, Andreas Hausotter, Robin Buchta, Alexander Grunewald, Moritz Lange, and Pascal Niemann

5

Executable Architectures for Complex Software Systems
Sebastian Apel and Thomas M. Prinz

10

Towards Extending USEfUL-ness for Urban Logistics with Service-orientation
Richard Pump, Sophie Gohde, Maik Trott, Marvin auf der Landwehr, Arne Koschel, Volker Ahlers, Lars Gusig,
and Christoph von Viebahn

13

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 27

Towards a Resiliency Decision Framework
for Microservices

Johannes Busch
Faculty IV, Dept. of Computer Science
Univ. of Appl. Sciences&Arts Hannover

Hannover, Germany

Andreas Hausotter
Faculty IV, Dept. of Computer Science
Univ. of Appl. Sciences&Arts Hannover

Hannover, Germany
Email: Andreas.Hausotter@hs-hannover.de

Arne Koschel
Faculty IV, Dept. of Computer Science
Univ. of Appl. Sciences&Arts Hannover

Hannover, Germany
Email: Arne.Koschel@hs-hannover.de

Abstract—Microservices build a deeply distributed system.
Although this offers significant flexibility for development teams
and helps to find solutions for scalability or security questions,
it also intensifies the drawbacks of a distributed system. This
article offers a decision framework, which helps to increase the
resiliency of microservices. A metamodel is used to represent
services, resiliency patterns, and quality attributes. Furthermore,
the general idea for a suggestion procedure is outlined.

Keywords—Microservice; Resiliency; Software Architecture.

I. INTRODUCTION

Microservices are a current trend in software development.
They divide complex systems into several independent and
lightweight services [1]. This approach has several bene-
fits over traditional architectures like monoliths or Service-
Oriented Architectures (SOA). One major point is the inde-
pendence of these services at runtime and in development.
Furthermore scalability, security or equivalent questions can
be answered on a per service basis, which offers a higher
degree of flexibility [2][3].

Besides these benefits, microservices also come with various
challenges, one important of them being their distributed
nature. To compute non-trivial business functions, several
microservices have to work together. Thus, they have to
communicate over networks, which cannot guarantee complete
availability. Modern cloud based systems further increase this
problem by their volatile nature.

Key contribution of this article is a decision framework,
which offers suggestions to increase the resiliency of specific
microservices. To achieve this goal services and resiliency
patterns need to be put in perspective. This is done through
the resiliency decision framework metamodel, a novel way
to describe services, patterns, quality attributes and their
interconnections. Furthermore, a suggestion procedure will be
presented. Its purpose is to analyze service requirements and
pattern effects to compute a list of suggestions to strengthen
these requirements.

In this article resiliency is defined as the ability of a software
to handle failures in a meaningful way or recover completely
from it without human intervention. The context for resiliency
in this article is based upon safety and not security. The
definition is based upon [4][5].

This work was developed under the Competence Center
Information Technology and Management (CC ITM), which is
part of the University of Applied Sciences and Arts Hannover.
Its main objective is the transfer of knowledge between
university and the insurance industry.

The remainder of this article is organized as follows: First
related work is presented in Section II. An application sce-
nario based on the german insurance sector is presented in
Section III. The core of the Resiliency Decision Framework
is described in Section IV. Section V summarizes this article
and gives an outlook on future work.

II. RELATED WORK

While resiliency is important in microservice based archi-
tectures, it is certainly not a new topic in general. In Service-
Oriented Architectures resiliency is often realized by means of
fault tolerant services. These can be designed either through
specific middleware [6][7] or alternative implementations [8].
Furthermore, fault tolerance can be evaluated over several
services [9], which can increase the resiliency of complex
business functions or processes.

Another field besides fault tolerance are self healing sys-
tems. Self healing can be achieved either through internal
techniques [10] or external components [11]. Furthermore, self
healing can be build into the architecture itself [12].

In [13], a catalogue of resiliency patterns is described.
Furthermore, a framework for resiliency in high performance
computing is defined. In contrast we provide a full resiliency
decision framework for microservices, which is a novelty to
the best of our knowledge.

III. APPLICATION SCENARIO

To stress the importance of resiliency in microservice-
based systems and to evaluate the suggestions given by the
Resiliency Decision Framework following application scenario
will be used. It is based on prior CC ITM [14] work. The
described Partner Management System is expanded
further by a business process from the reference architecture
for the German insurance companies (VAA) [15].

An overview of the application scenario is given in Figure 1.
It consists of several microservices grouped into different sys-
tems. Each system represents a bounded context as described

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 9 / 27

Figure 1. Overview of the application scenario

by Evans in [16]. The goal was to develop a realistic and
complex enough system, which could be found at partner
companies of the CC ITM.

The Partner Management System offers several
CRUD operations to manage insurance partners. It is used
throughout the scenario and represents the core of the sce-
nario. The Application System implements the busi-
ness process Manage Application (’Antrag verwalten’)
from the VAA. It processes applications for a new insurance
contract. Thus it retrieves information about partners and
adds a new insurance contract, if an application finishes
successful. The Employee-Interface System contains
a UI and API for internal use. It offers a comprehensive
access to all insurance systems and is the sole way to work
with the implemented business process. Customers and exter-
nal companies can access insurance information through the
Customer-Interface System. Both UIs are designed
as modern Single Page Applications.

IV. RESILIENCY DECISION FRAMEWORK

The goal of the Resiliency Decision Framework
(RDF) is to suggest resiliency design patterns based upon
the quality requirements of the analyzed microservices. To
achieve this goal the different patterns, services and quality
requirements need to be presented in a well defined way. This
is done through a metamodel. To evaluate these information
and provide a list of suggestions a suggestion procedure is
described.

A. Resiliency Decision Framework Metamodel

An overview of the Resiliency Decision
Framework Metamodel is given in Figure 2. Base
is the Framework element, which is the root for a given
RDF instance. The metamodel consists of three major parts:
Quality Tree: Services and patterns are described

through a quality attributes defined in a quality tree. The
QualityTree element offers, for example, to define a
resilient specific one. The metamodel structure is based on
well know quality trees like ISO 25010 [17].
Services: The Service element describes a specific

microservice. Each service has several characteristics, which

Figure 2. Overview of the developed metamodel

correspond to a specific requirement described by an quality
attribute. Each characteristic also contains a numeric value,
representing its importance. Currently these have to be defined
by the architect. ServiceType elements are used to orga-
nize these characteristics and enable reusability in complex
systems.
Concepts: This element defines resilient patterns in a

consistent way. Each pattern consists of a base concept and
one or more sub concepts. The base concept describes a
general problem and solution (for example, Monitoring). A
Sub concept narrows this to a specific pattern (for example,
Logging) with its effects on service quality and requirements.
The effect is described through a numeric value. Currently
these are given by the authors based upon research into
the corresponding patterns. Furthermore, influences amongst
patterns can be defined in order to describe how well certain
patterns work together.

B. Resiliency Decision Framework Suggestion Procedure

The Suggestion Procedure analyzes a defined model
and computes a list of resiliency pattern suggestions for each
defined service. It consists of several steps to determine and
enhance the list of suggestions for a given service. Especially
the filter steps are highly configurable. All steps are based
on the numeric values given to pattern effects and service
characteristics. Currently these represent qualitative values and
not quantitative ones based on concrete measurements. The
different steps are:

1) Collect requirements: Collect the requirements
for a service by collecting all service types.

2) Determine positive patterns: Determine all
resiliency patterns, which have a positive effect (for
example, a corresponding positive numeric value) on at
least one of the service requirements.

3) Domain filter: Filter these patterns by domain
rules, for example, that would cause a negative impact
onto the service requirements.

4) Threshold filter: Additionally filter these pat-
terns by thresholds, for example, the combined negative
effects of a pattern. A simple approach to combine these
effects is to add corresponding numeric values but more
complex approaches (for example, weighing) are also
possible.

5) Sorting: Evaluate each pattern against the service
requirements and sort the pattern list based on this eval-

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 10 / 27

Figure 3. Overview of the developed procedure

uation. A simple approach for evaluation is to combine
the positive and negative effect values in correspondence
to the service requirements.

6) Filter alternatives: Filter less fitting pattern
alternatives to diversify the list of suggestions, for ex-
ample, filter less fitting approaches to load balancing.

These steps will be repeated for each service defined in the
Resiliency Decision Framework model. An overview of the
procedure is given in Figure 3.

C. Applying the Resiliency Decision Framework

To apply the Resiliency Decision Framework to a microser-
vice based system, several activities have to be performed.
Besides configuring the procedure filters, a comprehensive
pattern catalogue has to be developed. This was done by
a comprehensive literature analysis into software patterns.
Furthermore, the different microservices have to be defined
in the framework model.

After applying the procedure (cf. Figure 3) to this model, the
last activities are implementing the suggestions and evaluating
the improved microservices. These activities especially have to
be repeated each time the catalogue of patterns or the service
requirements change. All these activities form the Resiliency
Decision Framework process.

How the microservices are evaluated, is out of scope of this
contribution. One approach could be the QoS Measurement
Model described in [18].

D. Resiliency Decision Framework Example

As described above, the basis for all suggestions is the
definition of a service. For example, the partner service needs
to be highly available because of its central role. Also it has to
offer minimal latencies for user interfaces and external partner

Figure 4. RDF applied onto the Partner service

companies. Resiliency patterns are analyzed by the framework
procedure based on these service Characteristics. A
possible list of patterns could include automatic scaling, es-
calation and monitoring. These are ordered by their positive
impact onto the service requirements. Besides this, all effects
of required patterns and pattern influences are also analyzed.
Automatic scaling increases the availability of the

service, but has a list of requirements. To distribute the
requests and support scaling, a load balancing pattern is
needed. Several load balancing patterns are known, thus the
suggestions procedure evaluates the different alternatives. An
external load balancer would, for example, add another hop,
thus load balancing based upon service discovery is suggested
by the framework.

The enhanced Partner-Service is given in Figure 4.
The partner service is now deployed through an autoscaling
group. Requests to a partner service a distributed through a
service discovery, which could implement different algorithms
(for example, round robin). To minimize the impact on client
services, the service discovery should implement DNS as its
API. Thus, no changes to the API services are needed.

V. CONCLUSION AND FUTURE WORK

The basis for the Resiliency Decision
Framework was described in this article. By using a
well-defined metamodel, the RDF can be applied to different
sectors and areas. The Suggestion Algorithm uses
the metamodel to create a list of diverse suggestions with
maximum positive effect on the resiliency of a microservice.

Future work will revolve around the development of a
quality tree for software resiliency. Furthermore, an extensive
library of resiliency patterns will be developed. An evaluation
will be done by applying the framework to the complete
application scenario. The quality of the suggestions is directly
dependent on the quality of the service requirements and
pattern catalogue definitions. Thus, a way to evaluate the
quality of service requirements and pattern definitions need
to developed.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices a definition of this
new architectural term,” [retrieved 11, 2020]. [Online]. Available:
https://martinfowler.com/articles/microservices.html

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 11 / 27

[2] E. Wolf, Microservices: Grundlagen flexibler Softwarearchitekturen.
dpunkt.verlag, 2016.

[3] M. Richards, Microservices vs. Service-Oriented Architecture. O‘Reilly
Media Inc., 2016.

[4] U. Friedrichsen, “Unkaputtbar: Eine kurze Einführung in Resilient
Software Design,” Business Technology Magazin, vol. 19, 4 2014.

[5] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, V. Sekar,
“Gremlin: Systematic resilience testing of microservices,” in Proc.
36th IEEE International Conference on Distributed Computing Systems,
2016, pp. 57–66.

[6] Z. Zheng and M. R. Lyu, “A qos-aware middleware for fault tolerant web
services,” in 2008 19th International Symposium on Software Reliability
Engineering (ISSRE), 2008, pp. 97–106.

[7] I. Chen, G. Ni, and C. Lin, “A service-oriented fault-tolerant environ-
ment for telecom operation support systems,” in 2008 IEEE International
Symposium on Service-Oriented System Engineering, 2008, pp. 208–
214.

[8] A. S. Nascimento, C. MF. Rubira, R. Burrows, F. Castor, and P. HS
Brito, “Designing fault-tolerant soa based on design diversity,” Journal
of Software Engineering Research and Development, vol. 2, no. 1, p. 13,
2014.

[9] K. Peng and C. Huang, “Reliability evaluation of service-oriented
architecture systems considering fault-tolerance designs,” Journal of
Applied Mathematics, vol. 2014, pp. 1–11, 01 2014.

[10] A. Carzaniga, A. Gorla, A. Mattavelli, and N. Perino, “A self-healing
technique for java applications,” in Proc. ICSE ’12: International
Conference on Software Engineering, 2012, pp. 1445–1446.

[11] . K. Ravi and V. Sathyanarayana, “Container based framework for self-
healing software system,” in Proc. 10th IEEE International Workshop on
Future Trends of Distributed Computing Systems, 2004. FTDCS 2004.,
2004, pp. 306–310.

[12] Y. Qun, Y. Xian-chun, and X. Man-wu, “A framework for dynamic soft-
ware architecture-based self-healing,” in Proc. 2005 IEEE International
Conference on Systems, Man and Cybernetics, vol. 3, 2005, pp. 2968–
2972 Vol. 3.

[13] S. Hukerikar and C. Engelmann, “Resilience design patterns: A struc-
tured approach to resilience at extreme scale,” Supercomputing Frontiers
and Innovations, vol. 4, 08 2017.

[14] A. Koschel, A. Hausotter, M. Lange, and S. Gottwald, “Keep it in sync!
consistency approaches for microservices: An insurance case study,”
Service Computation, pp. 7–14, 10 2020.

[15] GDV, “Vaa-fachliches referenzmodell,” [retrieved 07, 2017]. [Online].
Available: http://www.gdv-online.de/vaa

[16] E. Evans, Domain Driven Design — Tackling Complexity in the Heart
of Software. Addison-Wesley, 2004.

[17] iso25000.com, “Iso/iec 25010,” [retrieved 3, 2021]. [Online].
Available: https://iso25000.com/index.php/en/iso-25000-standards/iso-
25010?start=0

[18] A. Hausotter, A. Koschel, , J. Busch, and M. Zuch, “A generic mea-
surement model for service-based systems,” Service Computation, pp.
12–18, 2 2018.

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 12 / 27

Towards a Microservice Reference Architecture for Insurance Companies

Arne Koschel
Andreas Hausotter

Robin Buchta
Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hannover, Germany
Email: arne.koschel@hs-hannover.de

Alexander Grunewald
Moritz Lange

Pascal Niemann
Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hannover, Germany
Email: andreas.hausotter@hs-hannover.de

Abstract—Microservices are meanwhile an established software
engineering vehicle, which more and more companies are examin-
ing and adopting for their development work. Naturally, reference
architectures based on microservices come into mind as a valuable
thing to utilize. Initial results for such architectures are published
in generic and in domain-specific form. Missing to the best of our
knowledge however, is a domain-specific reference architecture
based on microservices, which takes into account specifics of
the insurance industry domain. Jointly with partners from the
German insurance industry, we take initial steps to fill this gap in
the present article. Thus, we aim towards a microservices-based
reference software architecture for (at least German) insurance
companies. As the main results of this article we thus provide
an initial such reference architecture together with a deeper look
into two important parts of it.

Keywords–Microservices; Insurance Industry; Reference Archi-
tecture; SOA co-existence

I. INTRODUCTION

A current trend in software engineering is to divide soft-
ware into lightweight, independently deployable components.
Each component can be implemented using different technolo-
gies because they communicate over standardized interfaces.
This approach to structure the system is known as the microser-
vice architectural style [1]. A study from 2019 (see [2]) shows,
the microservice architecture style is already established in
many industries such as e-commerce. However, this is rarely
the case for the insurance services industry.

Our current research is the most recent work of a long
standing, ongoing applied research–industry cooperation on
service-based systems. This includes cooperative work on tra-
ditional Service-Oriented Architecture (SOA), Business Rules
and Business Process Management (BRM/BPM), SOA-Quality
of Service (SOA-QoS), and microservices (cf, [3]–[6]), be-
tween the Competence Center Information Technology and
Management (CC ITM) from the University of Applied Sci-
ences and Arts Hanover and two regional, middle-sized Ger-
man insurance companies. The ultimate goal of our current
research is to develop a ’Microservice Reference Architecture
for Insurance Companies’ jointly with our partner companies.
This shall allow to build microservice conformant insurance
application systems or at least such system parts.

When developing a reference architecture for our partner
companies, several cornerstones and resulting challenges exist
frequently in at least the German industry domain. Especially,
insurance companies rarely start development ’in the green
field’, but must integrate and comply with existing application

systems. For example, our partners both operate a SOA and
additional 3rd party software, such as SAP systems, which
both have significantly different characteristics, for example,
for testing, release cycles, versioning, administration etc.

Nowadays, our partners would like to get the promised
benefits of microservices, such as improved scalability, both
technical and organizational through parallel execution and
also parallel development, significantly faster release cycles
(a few weeks or even days instead of quarters or several
months) etc. However, a microservices-based approach to help
them must still work well in ’cooperative existence’ with
their existing systems and SOA services. Thus, improvements
or partial replacements of their existing software landscape
for particular goals by means of microservices is fine, but a
complete migration to the microservices architectural style is
not a desired option.

On the one hand, there is a desire to raise the potential
of the microservices approach and, on the other hand, to
take into account requirements that result from the existing
application landscape. This leads to several guidelines, respec-
tively, questions to be answered by a reference architecture,
such as, for example, ’Which information from business and
technical services shall be provided for architects, developers,
operators, etc.?’, ’How to integrate with business processes
– is service orchestration or choreography (or both) more
suitable for microservices?’, ’How to co-exist with the given
SOA services and their Enterprise Service Bus (ESB)?’, ’What
about transactions and consistency?’, ’Compliance aspects’,
and more. While initial research on reference architectures with
microservices exists in general as well as in some domain-
specific variations, we are not aware of such research for the
insurance domain in particular.

In this article, we present our initial steps towards a
microservices reference architecture for the insurance domain
as mentioned above, that complies with the above-named
cornerstones and guidelines. In particular, we present our initial
logical reference architecture and more logical and technical
details about two selected important components from it,
namely logging and monitoring.

We organize the remainder of this article as follows:
After discussing related work in Section II, we present our
initial logical reference architecture in Section III. Afterwards,
Section IV shows how details about the logging and monitoring
parts of our reference architecture. Section V summarizes the
results and draws a conclusion.

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 13 / 27

II. RELATED WORK

The work related to our research falls into several cate-
gories. We will discuss these categories in sequence.

Publications of renowned authors in the area of microser-
vices form the solid base of our research work. Worth men-
tioning are the basic works of Newman [7] and Fowler and
Lewis [1]. The design of our reference architecture benefits
from diverse microservices patterns as they are discussed by
Krause [8] and Richardson [9].

The contribution of Angelov et al. [10] explains that a
reference architecture is successful only if context, objectives
and design can be brought into line. Our design refers to
’type 4’, which amongst other things means that findings of
the implementation of microservices-based application flow
into the design of the target reference architecture. Here our
previous work – a prototypic implementation of the Partner
Management System – comes into play [11].

The closest relationship to our research has an article
published by Yu et al. [12]. They present a microservices-based
reference architecture in the context of enterprise architecture.
However, this reference architecture aims to be applied to
many organizations and is therefore rather generic, while our
approach tries to meet the requirements of our industry partners
from the insurance sector.

III. REFERENCE ARCHITECTURE FOR MICROSERVICES

In this section, we will present our logical reference archi-
tecture for microservices in the insurance industry (RaMicsV).

RaMicsV defines the setting for the architecture and the
design of a microservices-based applications of our industry
partners. The application’s architecture itself is out of scope,
as it heavily depends on the specific functional requirements.

When designing RaMicsV a wide range of restrictions
and requirements given by the insurance company’s IT man-
agement have to be taken in account. With respect to this
contribution the most relevant are:

• Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned.

• Coexistence: Legacy applications, SOA and
microservices-based applications will be operated in
parallel for a longer transition period. This means
that RaMicsV has to provide approaches for the
integration of applications from different architecture
paradigms.

• Observability: To observe microservices-based as well
as SOA and legacy applications in a comprehensive
and consistent manner, a unified monitoring and log-
ging approach has to be designed.

Figure 1 depicts the building blocks of RaMicsV which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow, those that are out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting
clients and external applications such as SOA services.

• Business Logic & Data contains the set of mi-
croservices to provide the desired application specific
behavior.

Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV.

• Governance consists of components that contribute
to meeting the IT governance requirements of our
industrial partners.

• Integration contains system components to integrate
microservices-based applications into the industrial
partner’s application landscape.

• Operations consist of system components to realize
a unified monitoring and logging, which encloses all
systems of the application landscape.

Components communicate either via HTTP—using a
RESTful API, or message-based—using a Message-Oriented
Middleware (MOM) or the ESB. The ESB is part of the
integration responsibility area, which itself contains a message
broker (see Figure 1).

In the next section, we will have a detailed look at the
operations responsibility area in detail.

IV. LOGGING AND MONITORING

In this section we privide details about the logging and
monitoring parts of our reference architecture, starting with
fundamental concepts, followed by a logical and technical
reference architecture.

A. Introduction to Logging and Monitoring
In order to provide production-ready software, it is not

enough to fulfill only the functional requirements. Figure 2
shows a typical process that is followed when creating
production-ready microservices. Observability is assigned to
the final quality attributes along with configurability and
security. Only if these components have been considered,
is it possible to speak of production-ready software [9]. In
the following we would like to focus on the aforementioned
requirements for the reference architecture, specifically on ob-
servability. We are concerned with the objective of how we can
create a uniform, fully comprehensive, traceable environment
for monitoring and logging.

In his book Release IT, Michael T. Nygard does not call
this observability but transparency [13]. We do not distinguish
between the different terms used for this purpose, but fo-
cus on the activities behind the terms, i.e., logging of data
and subsequent monitoring. Logging includes the automatic

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 14 / 27

Figure 2. Typical building blocks for the development of a (micro)Service.

Figure 3. Exemplary implementation of all patterns in combination [9,
adopted with modifications].

generation of messages. The generation is based on different
triggers. The messages are sent to a location and collected
there [14]. Monitoring includes the tools and processes that
measure and manage the systems. Furthermore, it includes the
process of extracting business value from the underlying data.
This data is used to generate added value [15]. We will not
go into the basics of monitoring and logging as this would
exceed the scope. We will look at what is involved in a fully
comprehensive logging of a service.

In the next subsection IV-B, patterns are presented that take
account of the provision of data. The aim is to cover all areas
of the service. It is important to note that we are focusing on
the service and not on the environment in which it is located.

B. Patterns for Logging and Monitoring
In the following, the individual patterns that have been

considered in Figure 3 are going to be explained. Figure 3
shows an example implementation of all patterns. In the Figure,
the log aggregation is placed over all logs that are created so
that when the pattern is implemented, all logs are considered.

We first consider the health check API pattern. The service

receives an endpoint that provides information about its current
health status. For example, Spring Boot Actuator can be used
for this purpose, which automatically creates a health endpoint
that can be adjusted if required [9]. This can be a simple
ping for accessibility, but also a smoke test that ensures
functionality. Figure 3 shows a bidirectional connection from
the health check service to the corresponding API. This is
because the endpoint must be queried, and the results obtained.
The queries can take place periodically and/or before each
invocation of the service. It is important to note that the health
check service is a logical component and that requesting the
endpoint and collecting the results may very well be two
independent components [9].

Next, we are going to look at the log aggregation pattern.
This is for aggregating all the logs of the multiple instances
of a service, to be able to make themselves available together
afterwards. This is important because you are interested in all
the logs of the service and not just those of one instance. And
if a particular instance is of importance, it should be found in
the log entry [9].

In Figure 3, the log aggregation goes across all log entries,
as the aggregation will refer to all logs regardless of the type.
Here it becomes clear that the implementation of this pattern
depends strongly on how the service is implemented. If there is
only one instance, aggregation is not needed. The same applies
to the implementation of the other endpoints. For example, if
the audit logs are written directly to a database, no aggregation
layer is needed. Again, this is only from a logical point of view.

The distributed tracing pattern is particularly important if
control flows are of interest, and requests are being passed
through multiple services. For this purpose, each request is
given a unique ID and it is logged where and how long the
request was in the individual services concerned.

The application metrics pattern is designed to collect
metrics provided by the service. The developer is responsible
for ensuring that valuable metrics can be collected, and the
operator is responsible for managing them [9].

The exception tracking pattern considers the exceptions
thrown by a service separately. Exceptions are also special to
the service and require special attention. Here, the exceptions
are duplicated and handled in detail if necessary. An alert func-
tion is optional. An attempt is made to prepare the information
so that action can be taken as quickly as possible [9].

The last pattern we look at is the audit logging pattern.
Here, all user actions are recorded. An audit log contains the
identity of the user, the action taken, and the business objects
involved [9].

Not all patterns can always be implemented in a meaningful
way. In addition, the level of detail in which the individual
patterns are implemented varies from application to applica-
tion. Most of the time, a subset of the patterns presented is
the right and sufficient choice to fully observe the service
for the purpose it fulfills. If there are multiple instances of
a service, log aggregation should be performed across all
log types to evaluate the real behavior of the service. In
the implementation of the patterns, there are sometimes clear
responsibilities of the task areas, as can be seen in Figure 3.
However, coordination at the interfaces is also unavoidable.
The developers are responsible for creating decent log entries.
The operators are responsible for what the users get to see. In

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 15 / 27

the end, it can be said that monitoring and logging is essentially
very similar to that of distributed systems.

C. Logical reference architecture
A big building block of the logical reference architecture

for microservices (RA4MicsV) is monitoring and logging to
add an observability layer to the architecture. One of our main
goals was to identify the logical components to implement
logging and monitoring in a microservice environment, while
maintaining the requirement of coexistence mentioned in Sec-
tion III. To accomplish this it was important that the logging
and monitoring concept for the microservices could be in-
tegrated as well as possible into the existing environment,
which consists of a combination of monolithic systems and
SOA. Figure 4 shows the components of the system itself
and the identified, logical components needed to implement
an extensive logging and monitoring infrastructure. The key
components for the logging and monitoring in this figure will
be explained in detail down below.

Figure 4. Logical reference architecture of the monitoring and logging
environment

• Agent (A): Agents are some sort of external process
or processes to instrument processes at runtime. There
are two major methods agents use to instrument a
service directly. The first is some external process or
monitoring service that injects code into your service.
The second method is through some sort of in-process
agent that is imported to the runtime environment of
a process and uses a system of user defined rules to
trace specific actions [16].

• Library (L): Standardized libraries used in services
that handle the key components for instrumentation
and context propagation through a standardized API.
Libraries can support a polyglot heterogeneous appli-
cation by defining a relatively small API that supports
the least-common set of features shared by all of the
target languages [16].

• Collector: The functions of a collector varies from
implementation to implementation, but in common

cases the following functionalities are provided by
an collector: Translate incoming data into another
format for further processing, sampling and compute
aggregate statistics about incoming data [16].

• Centralized storage and analysis: Responsible for
gathering all of the telemetry data, storing it and
analyzing it. As mentioned before, the functionality
will vary widely based on the implementation [16].

Our model attempts a combination of white box and
black box monitoring and logging, since the systems does not
only consists of microservices. Apart from that, a whitebox
model should generally be considered first when it comes to
microservices [16].

D. Technical reference architecture
Since most monitoring and logging components vary in

their functionality depending on the specific implementation
chosen, this section deals with a sample implementation
shown in Figure 5. The model is using a combination
of the open source frameworks open telemetry for the
instrumentation, elasticsearch as endpoint for the data and
Kibana for visualization. The most important components
will be explained in detail after a brief introduction of the
technologies used.

1) Open Telemetry: Open Telemetry is a nascent project
of the Cloud Native Computing Foundation (CNCF) and the
result of a merger between the OpenTracing and OpenCensus
projects. Its goal is to simplify the telemetry ecosystem
by providing a unified set of instrumentation libraries and
specifications for observability telemetry [16], [17].

2) Elasticsearch and Kibana: Elasticsearch is a distributed
search and analytics engine, which provides near real-time
search and analytics for all types of data. Kibana is the in-
house dashboard for visualizing and analyzing data as well as
managing, monitoring and securing the elastic stack [18].

• Open Telemetry Libraries: In order to receive data,
the targets need to be instrumentalized. Open Teleme-
try provides this mechanism throughout libraries,
which support manual (code modified) instrumenta-
tion as well as automatic (byte-code) instrumenta-
tion [17].

• Open Telemetry Collector: The Collector is a
vendor-agnostic implementation to receive, process,
and export telemetry data. It is the default location
instrumentation libraries export telemetry data and it
can be deployed in two different ways. First is an agent
running with the application or on the same host as
the application and second is a gateway running as a
standalone service typically per cluster, datacenter or
region [17].

In addition, we added a Kafka-Queue and another collector
as optional components to the architecture. The queue provides
a kind of buffer for the data in case the endpoint is tem-
porarily unable to ingest data or the endpoint is unreachable.
The optional collector is deployed as a gateway to provide
advanced capabilities such as tail-based sampling. In addition,
the Gateway can limit the number of egress points required to
send data as well as consolidate API token management [17].

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 16 / 27

Figure 5. Technical reference architecture of the monitoring and logging
environment using open telemetry

V. CONCLUSION AND FUTURE WORK

In this article, we presented initial steps towards a reference
architecture for microservices, which we are creating jointly
with our partners from the insurance industry. The reference
architecture aims to build compliant microservices-based ap-
plications that meet the specified guidelines and best practices.

We first give an overview of the architecture with its
building blocks. We then focus on the operations responsibility
area, by presenting conceptual and technical details on logging
and monitoring.

The next steps in our research are the design of the business
process component and the integration responsibility area. The
latter is of particular interest as our partners operate a service-
oriented landscape, so it’s necessary to identify coexistence
pattern to run a SOA and microservices-based applications
concurrently.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices a definition of this new ar-
chitectural term,” https://martinfowler.com/articles/microservices.html,
March 2014, [retrieved: 3, 2021].

[2] H. Knoche and W. Hasselbring, “Drivers and barriers for microservice
adoption–a survey among professionals in germany,” Enterprise Mod-
elling and Information Systems Architectures (EMISAJ), vol. 14, 2019,
p. 10.

[3] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken,
“Always stay flexible! wfms-independent business process controlling in
soa,” in 2011 15th IEEE Intl. Enterprise Distributed Object Computing
Conference Workshops. IEEE, 2011, pp. 184–193.

[4] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald,
“Components for a SOA with ESB, BPM, and BRM – Deci-
sion framework and architectural details,” Intl. Journal On Ad-
vances in Intelligent Systems, vol. 9, no. 3,4, Dec. 2016, pp. 287–
297, [Online]. Available: https://www.thinkmind.org/index.php?view=
article&articleid=intsys v9 n34 2016 6. [retrieved: 3, 2021].

[5] A. Hausotter, A. Koschel, J. Busch, and M. Zuch, “A Flexible
QoS Measurement Platform for Service-based Systems,”
Intl. Journal On Advances in Systems and Measurements,
vol. 11, no. 3,4, Dec. 2018, pp. 269–281, [Online]. Available:
https://www.thinkmind.org/index.php?view=article\&articleid=
sysmea\ v11\ n34\ 2018\ 4. [retrieved: 3, 2021].

[6] A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency
for Microservices - A Legacy Insurance Core Application Migration
Example,” in SERVICE COMPUTATION 2019, The Eleventh
International Conference on Advanced Service Computing, Venice,
Italy, 2019, [Online]. Available: https://thinkmind.org/index.php?view=
article&articleid=service computation 2019 1 10 18001. [retrieved:
3, 2021].

[7] S. Newman, Building microservices: designing fine-grained systems.
Sebastopol, California: O’Reilly Media, Inc., 2015.

[8] L. Krause, Microservices: Patterns and Applications: Designing fine-
grained services by applying patterns. Lucas Krause, 2015.

[9] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[10] S. Angelov, P. Grefen, and D. Greefhorst, “A classification of software
reference architectures: Analyzing their success and effectiveness,” in
2009 Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture, IEEE, Ed., 2009.

[11] A. Koschel, A. Hausotter, M. Lange, and S. Gottwald, “Keep it in
Sync! Consistency Approaches for Microservices - An Insurance Case
Study,” in SERVICE COMPUTATION 2020, The Twelfth International
Conference on Advanced Service Computing, Nice, France, 2020,
[Online]. Available: http://www.thinkmind.org/index.php?view=
article&articleid=service computation 2020 1 20 10016. [retrieved:
3, 2021].

[12] Y. Yu, H. Silveira, and M. Sundaram, “A microservice based reference
architecture model in the context of enterprise architecture,” in 2016
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC). IEEE, 2016, pp. 1856–
1860.

[13] M. Nygard, Release It! Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2007.

[14] A. Chuvakin, K. Schmidt, and C. Phillips, Logging and Log Man-
agement: The Authoritative Guide to Understanding the Concepts
Surrounding Logging and Log Management. Waltham, Massachusetts:
Syngress Publishing, 2012.

[15] J. Turnbull, The Art of Monitoring. Turnbull Press, 2014.
[16] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs, Dis-

tributed Tracing in Practice - Instrumenting, Analyzing, and Debugging
Microservices. Sebastopol, California: ”O’Reilly Media, Inc.”, 2020.

[17] The OpenTelemetry Authors, “Documentation | OpenTelemetry,” https:
//opentelemetry.io/docs/ [retrieved: 3, 2021].

[18] Elastic, “What is Elasticsearch? | Elasticsearch Reference [7.11]
| Elastic,” https://www.elastic.co/guide/en/elasticsearch/reference/
current/elasticsearch-intro.html, [retrieved: 3, 2021].

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 17 / 27

Executable Architectures for Complex Software Systems

Sebastian Apel
Technische Hochschule Ingolstadt

Ingolstadt, Germany
Email: sebastian.apel@thi.de

Thomas M. Prinz
Course Evaluation Service

Friedrich Schiller University Jena
Jena, Germany

Email: thomas.prinz@uni-jena.de

Abstract—The design and implementation of complex software
systems can be achieved by modern software architecture
styles and well-chosen tool stacks. The resulting systems have
their benefits in technical cleanliness, reproducibility, and
automation (e. g., of processes). However, there is a gap between
the design of the system architecture and its implementation.
Well-advised architectures get lost in tool configurations and
implementations of simple service-to-service communications
that both do not belong to the scope of the architecture. How
could this gap be closed without losing the advantages of
tool stacks? This paper introduces the idea of focusing not
on toolstacks, but on data models, data streams, algorithms,
and business logic. Instead of designing architectures for
documentation and overview, the architecture itself represents
the executable system software. Our main idea is to describe
the data model used in architectures and provide a language
to describe the data’s transformations.

Keywords–Software Architectures; Distributed Systems; De-
velopment Tools; Model Transformation

I. INTRODUCTION
Architectures describe abstract components of complex

software systems and how they communicate. They follow
fundamental software engineering principles for independent
and isolated development: high cohesion and low coupling
[1].

Modern development approaches allow implementing
an architecture closer to the components’ descriptions to
generate rudimentary applications (stubs), e. g., by using
the Google Web Toolkit (GWT) [2] [3], swagger.io [4], or
jHipster [5] [6]. Another recent trend for architectures is mi-
croservices [7]. This trend forces to create service-oriented
components in isolation that are independent and resilient.
The resulting service components represent functionality
whose combination results in the complete and complex
software system [8].

The usage of such modern development approaches re-
quires different, individual tool stacks [9]. These tool stacks
include middlewares, construction tools, container formats,
process automation, and services deployment. This allows
services and processes to be deployed in different runtime
environments. The overall result should be a service-based
modern software architecture.

Microservice systems claim to have advantages in tech-
nical cleanliness, reproducibility, reliability, and automation
processes [9]. In reality, however, there is a gap between the
design of the system architecture and its implementation,
which usually leads to discrepancies between them. Archi-
tectures get lost in tool configurations and implementations

of simple service-to-service communications. As a result,
all application developers, from programmers to software
architects, have to operate at multiple abstraction levels to
implement the architecture, with much time not spent in
application logic. A real-world project by Apel et al. [10]
has shown that the implementation overhead ratio between
functional and additional code is sometimes less than or
equal to 1 : 3. In other words, for 100 lines of functional
code, 300 lines of organizational code are needed. It would
be a gain in time, cost, robustness, and correctness if the
developer can focus only on the application logic. But how
could this gap be closed without losing the benefits of
different tool stacks?

This paper describes an idea to close this gap in Sec-
tion II. Section III discusses this idea shortly compared
to existing ones. A short conclusion ends the paper in
Section IV.

II. IDEA
Our idea includes four main aspects: (1) a meta-language

that allows programming in different programming lan-
guages, (2) compilation into existing tool stacks, (3) automa-
tion of the appropriate tool stack selection, and (4) a suitable
development platform.

The language (1) that allows implementation in differ-
ent programming languages can be interpreted as a meta-
programming or domain-specific language. However, it does
not have to be a new one. One can assume an extension of
Java or another popular programming language, such as is
done in ArchJava [11].

The goal of the language is to reduce the effort of man-
aging and configuring services and using different program-
ming languages for them. 85% of software engineers within
one study use multiple languages to solve problems during
software development [9]. Instead of developing each service
on its own, the language provides a common execution
environment and abstracts from their communication and
deployment. One advantage is that common data models can
be implemented centrally and used in all components. It also
avoids tedious mapping of parameters. The disadvantage is
that it seems somewhat centralized, where the advantage
of an independent service implementation can increase its
generalization and minimize its coupling. When designing
such a language, this fact must be carefully considered.

Since there is a trend towards data streams and data
science, the language should enable data orientation. In addi-
tion to defining data structures and functional programming,
it should also allow processes that connect different data

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 18 / 27

+

+
Data model

Functionality

Processing

Meta Language

Service A Service CService B

Java

Sprint-Boot

Database

REST-API

R TypeScript

HTML / CSS

Angular

Compilation/Transformation

Infrastructure

C
on

ta
in

er

Se
rv

ic
e

A

C
on

ta
in

er

Se
rv

ic
e

B

C
on

ta
in

er

Se
rv

ic
e

C

Deployment

Figure 1. Linkage between meta language, compilation / transformation,
and deployment.

streams.
Architectures described in the meta-programming lan-

guage should be executable in an ad-hoc fashion as shown
in Fig. 1. We propose to focus on both interpretation and
compilation (2). Language interpretation has the advantage
of fast error detection, debugging, and bottlenecks identifi-
cation. Compilation should increase performance, especially
if it distributes the various services across different (virtual)
execution environments.

Traditional compilation translates a software system into
one set of (virtual) system instructions. However, our idea
is to compile the language into instructions in those pro-
gramming languages that best fit the functionality’s real-
ization — in case the developer does not want to choose
this and describes the functionality abstractly in the meta-
language. In other words, since programming languages
belong to different tool stacks, the compiler must translate
the language into an individual set of tool stacks. Data
structures, functions, and processing chains described at an
abstract level would then have to be translated into multiple
programming languages.

The compiled components and tool stacks must commu-
nicate with each other. A surrounding execution environment
should enable this communication. Furthermore, compilation
remains within the problem complexity of the architecture
description. As in the case of the Unified Modeling Lan-
guage (UML) [12], our goal is not to find a language
that covers every use case by default. The language should
provide bounds, and every part of it should be executable.
It is not the idea to cover all existing development ap-
proaches. On the contrary, the focus is on questioning some
daily development practices and searching for alternative
approaches.

One difficulty with our idea is identifying those parts/
functionality of the language that will be compiled into the
same components. Another difficulty is choosing an appro-
priate tool stack for these components (3). An automatic
decision must interpret essential information provided in the
language – such as functions and component-specific data.
Another difficulty is the inclusion of existing dependencies
(other systems, libraries, and services) and how their inte-
gration works within and between services.

Our idea follows well-established computer science prin-
ciples in the problem description, compilation, and execu-
tion. As with ordinary programming languages, a develop-
ment tool (4) should support development with the meta-
language and with all phases of software development (plan-

ning, analysis, design, implementation, and maintenance).
Since one of our primary goals is to reduce technical details,
the tool should focus on problem-solving, i. e., describing
and programming the software, rather than on the particular
technical configurations.

This development environment is our final goal. It allows
focusing only on architecture and business logic. Differ-
ent components should be described in separate projects
and supplemented by dependencies. However, since every
project knows and uses the same meta-language, the de-
velopment environment can provide support across pro-
gramming language and tool boundaries. The application
should be immediately interpretable in the environment.
When projects are deployed, the application is compiled and
made executable in the form of services with service-specific
tool stacks. For example, the results of the compilation could
be containers (such as Docker [13]) that are published. The
compilation realizes the communication described in the
architecture, and the service publication assures availability.

III. SHORT DISCUSSION
Of course, our idea is not completely new and there are

several, other approaches in the literature. For this reason,
we compare our idea in the following with two approaches
that have the same research direction but a different focus.
The first of them is ArchJava by Aldrich et al. [11]. ArchJava
is a Java extension that provides three new language con-
structs: Components, Ports, and Connectors. Components
describe architectural components with their ports, i. e., what
communication endpoints are needed and provided. Some
components can be connected via connectors, which then
results in a concrete software instance consisting of multiple
components. ArchJava is very promising, but Aldrich et
al. state as limitations that it is language-bound to Java
and only runs on a single Java Virtual Machine (JVM).
However, our goal is to be free of these limitations. In
addition, ArchJava operates on a high architectural level and
method calls are only allowed within components. Although
this is understandable for an architectural view, in some
cases developers would benefit from a low-level method call
where (technical) architecture details are hidden from the
developer. In particular, tool stack decisions are sometimes
unnecessary or disruptive when high performance is not a
concern. In summary, however, ArchJava offers good and
clear concepts and its focus on implementation and language
constructs should be strongly considered when implementing
our idea.

A second approach to architecture-level design and im-
plementation is Archface by Ubayashi et al. [14]. Archface
is very high level in architecture decisions and is oriented
towards UML. Like ArchJava, it provides the language con-
structs component and connector and a new one architecture.
Components and connectors are special, abstract interfaces.
Component interfaces describe the communication endpoints
of the component, while connectors describe their interac-
tion. Architectures finally define concrete implementations
of the components and connectors and, therefore, define a
concrete software instance. Archface is also promising, but
seems to have the same limitations as ArchJava. Although

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 19 / 27

it can be implemented for different programming languages
— like ArchJava —, it is unclear how different components
communicate across languages. However, in summary, the
ideas of Archface are valuable during implementation out-
lined by our idea.

IV. CONCLUSION
Our idea is a new executable meta-language that should

support the complete application development lifecycle. This
language covers data structures, functionality, and descrip-
tions of processes. It enables that each part of the described
application is compiled into a best fitting tool stack. The
selection of service boundaries and tool stacks is done
automatically. In addition, it automatically implements how
the components (services) of the architecture communicate.
The result is a correctly configured distributed application
based on existing technologies. The developer benefits by
always acting on the level of the architecture description to
realize the application. To support the developer in using the
language, one goal is to provide a development platform.
This platform covers the development along the complete
software development process. Starting with planning and
analysis, the support is possible up to implementation and
maintenance.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, Third, Ed. Addison-Wesley, 2013.
[2] A. Tacy, R. Hanson, J. Essington, and A. Tokke, GWT in Action,

2nd ed. Greenwich, CT, USA: Manning Publications Co., Feb.
2013.

[3] Google, “[GWT],” [retrieved: March, 2021]. [Online]. Available:
http://gwtproject.org/

[4] Swagger, “The best apis are built with swagger tools,” [retrieved:
March, 2021]. [Online]. Available: https://www.swagger.io/

[5] M. Raible, The JHipster mini-book, 5th ed. USA: C4Media, 2018.
[6] JHipster, “JHipster - Generate your Spring Boot + Angular/React

applications!” [retrieved: March, 2021]. [Online]. Available: https:
//jhipster.tech/

[7] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo,
“Microservices in practice: A survey study,” arXiv preprint
arXiv:1808.04836, 2018.

[8] F. De Paoli, “Challanges in services research: A software architecture
perspective,” in Advances in Service-Oriented and Cloud Computing,
A. Lazovik and S. Schulte, Eds. Cham: Springer International
Publishing, 2018, pp. 219–227.

[9] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang, “Microservice
architecture in reality: An industrial inquiry,” in IEEE International
Conference on Software Architecture, ICSA 2019, Hamburg,
Germany, March 25-29, 2019. IEEE, 2019, pp. 51–60. [Online].
Available: https://doi.org/10.1109/ICSA.2019.00014

[10] S. Apel, F. Hertrampf, and S. Späthe, “Towards a Metrics-
Based Software Quality Rating for a Microservice Architecture
- Case Study for a Measurement and Processing Infrastructure,”
in Innovations for Community Services - 19th International
Conference, I4CS 2019, Wolfsburg, Germany, June 24-26, 2019,
Proceedings, ser. Communications in Computer and Information
Science, K. Lüke, G. Eichler, C. Erfurth, and G. Fahrnberger,
Eds., vol. 1041. Springer, 2019, pp. 205–220. [Online]. Available:
https://doi.org/10.1007/978-3-030-22482-0 15

[11] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting
software architecture to implementation,” in Proceedings of the
24th International Conference on Software Engineering, ICSE 2002,
19-25 May 2002, Orlando, Florida, USA, W. Tracz, M. Young,

and J. Magee, Eds. ACM, 2002, pp. 187–197. [Online]. Available:
https://doi.org/10.1145/581339.581365

[12] Object Management Group, OMG Unified Modeling Language
— Version 2.5.1, Object Management Group Std., Dec. 2017,
[retrieved: March, 2021]. [Online]. Available: https://www.omg.org/
spec/UML/2.5.1

[13] Docker Inc., “Empowering App Development for Developers
— Docker,” [retrieved: March, 2021]. [Online]. Available: https:
//www.docker.com/

[14] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: a contract
place where architectural design and code meet together,” in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010, J. Kramer, J. Bishop, P. T. Devanbu, and
S. Uchitel, Eds. ACM, 2010, pp. 75–84. [Online]. Available:
https://doi.org/10.1145/1806799.1806815

12Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 20 / 27

Towards Extending USEfUL-ness for Urban Logistics with Service-orientation

Richard Pump∗, Sophie Gohde†, Maik Trott‡, Marvin auf der Landwehr‡, Arne Koschel∗,
Volker Ahlers∗, Lars Gusig†, Christoph von Viebahn‡

University of Applied Sciences and Arts
Hannover, Germany

∗Department of Computer Science
†Department of Mechanical Engineering and Bio-Process Engineering

‡Department of Business Informatics
e-mail: {richard.pump | sophie.gohde | maik.trott | marvin.auf-der-landwehr |

arne.koschel | volker.ahlers | lars.gusig | christoph-von.viebahn}@hs-hannover.de

Abstract—In this paper the workflow of the project
’Untersuchungs-, Simulations- und Evaluationstool für Urbane
Logistik‘ (USEfUL) is presented. Aiming to create a web-based
decision support tool for urban logistics, the project needed
to integrate multiple steps into a single workflow, which in
turn needed to be executed multiple times. While a service-
oriented system could not be created, the principles of service
orientation was utilized to increase workflow efficiency and
flexibility, allowing the workflow to be easily adapted to new
concepts or research areas.

Index Terms—Service Orientation; Urban Logistics; Decision
Support Tool.

I. INTRODUCTION

Urban logistic processes are currently transformed in many
ways to reduce emissions, increase efficiency and follow new
political guidelines [1]. This creates a complex environment
for urban planners when making decisions, since many novel
concepts can be utilized to achieve different objectives within
the planning area, requiring new tools to support the decision
making process [2]. To support urban planners in their decision
making process, the project USEfUL created a web-based
decision support tool that provides important information in
an easy to comprehend way. One of the main goals of the
project was to create an application that can easily be used
while in discussion with other planners and decision makers.

A Workflow was devised to generate the data utilized in the
web-based decision support tool, as many different domains
had to be combined. First, data about the city Hannover was
collected to select representative areas that could be used for
the evaluation of novel logistic concepts. In the next step,
simulation models were built that utilized the data to simulate
the selected novel concepts within the representative areas,
producing new data about the populations behavior and traffic.
The newly created data was then analyzed using purpose built
evaluation models, which derived simple tendencies that could
be presented to the end user. As the last step, data had to be
ingested into a web-based decision support tool.

The general workflow fits well with the application of
a service-oriented software system, in which each domain
team develops their own services, connected by a common
service bus. Creating a complete service oriented system

was however not possible due to constraints to time, budget
and software development expertise. With service orientation
providing many benefits within software development [3], the
application of service orientation to other kinds of processes
was considered. This leads to our research question: How can
the principles of service oriented software development be
applied to partially automated workflows?

In the following sections we will further implore the work-
flow as well as the application of service-orientation in a
manual process. To this end Section II will discuss related
work, before Section III will present the utilized service
principles. The acquisition of data will be shown in Section
IV, while simulations are discussed in Section V. Analysis of
data and presentation within the web-based decision support
tool are shown in Sections VI and VII respectively. Results
are discussed in Section VIII and Section IX provides the
conclusion to this article.

II. RELATED WORK

Few other tools have been created to publicly present the
impacts of different logistic concepts on urban areas.

As one of the earlier projects, BestUFS [4] analyzed dif-
ferent urban logistic solutions in general, providing rough
advantages and disadvantages of concepts. The effects of
concepts were analyzed through living labs, implementing
pilot projects and evaluating impacts. While rough guidelines
are also provided by the web based decision tool developed in
USEfUL, no pilot projects were utilized in the project, relying
on simulations instead. Furthermore, BestUFS does not present
the results in the form of a web-based tool, but as simple
documents, reducing the user experience.

Another project of a decision support tool combined route
planning and the implementation of urban transport via PPGIS
data running on a tangible interface [5]. Using the statistical
data of three European capitals a support tool was created. In
addition, workshops have been executed to teach the partici-
pants. In the case of USEfUL, the generalization of the urban
area was further fostered as well as the easy utilization.

The most important tool is the urban-transport-road maps
shown by De Stasio et al. [6]. While the road maps show

13Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 21 / 27

similar key performance indicators to the user, the results are
simulated in real time. To achieve real time simulations, a
very rough grained simulation was utilized instead of concrete
agent based transport simulations as used in USEfUL. Further-
more the urban-transport-road maps-tool is a single system
integrating different modules instead of a workflow consisting
of multiple different tools.

Bozzo et al. [7] present a literature survey and a theoretical
ex-ante-framework for the evaluation of logistic concepts
created in the project SIPLUS. However, no simulations were
utilized and no concrete evaluation of logistical concepts are
presented in the paper. Furthermore, the authors remain with
a theoretical model, not implementing a concrete decision
support tool.

Overall, very little works concentrate on creating and man-
aging a workflow to evaluate novel logistic concepts and
presenting evaluation results to a user. Other works often focus
on single issues within a possible workflow, while holistic
views are uncommon.

III. PRINCIPLES OF SERVICE-ORIENTATION

Providing the web-based decision support tool with data
required a multi-step process that contained data collection,
simulation, analysis and data ingest. All these steps had to
be followed for many different logistic concepts that had to
be evaluated in different research areas in respect to multiple
key performance indicators. A fully automated approach was
therefor likely to reduce overall project run time and increase
productivity. Figure 1 shows the workflow as well as the
different models utilized in the project.

Unfortunately, due to budgetary constraints, the project team
consisted mostly of domain experts, firm enough in computer
science to develop and maintain domain specific models but
not firm enough to create an inter-domain system. Therefor,
a manual approach utilizing applicable principles of service-
orientation was developed.

In service-orientation, the following principles for service
design are often listed (e.g., by Rosen et al. [3] or Huns and
Singh [8]):

• Isolation of responsibilities - a service is responsible for
a specific task and is the only service responsible for that
task.

• Loose coupling - services are as independent as possible
of each other.

• Encapsulation - the interface of a service is strictly
decoupled from the implementation.

• Modularity - services are self-contained and can be
combined to create new workflows.

• Autonomy - a services lifecycle is independent of other
services.

• Statelessness - services are without state.

Following these principles allows for high flexibility in
software architectures. By applying principles of service ori-
entation to a manual workflow, changes (which often are

necessary within a research context) to each step of the
workflow should be able without impacting the project at large.

In the following sections, it will be shown how the principles
were applied to the design of the different tasks needed to cre-
ate data for the decision support tool and evaluate whether the
application of the principles improved the workflow flexibility.

IV. DATA ACQUISITION

The first step in the workflow is the acquisition of data
necessary for simulations. To simulate inhabitant behavior,
and in turn traffic resulting from the behavior, exhaustive
data about geography (i.e. roads, buildings, etc.), inhabitant
distribution, and other structural information (distribution of
living spaces vs. office buildings/other industries, logistical
points of interest, etc.) was needed, as shown in Table I.

TABLE I. KEY DATA FOR SIMULATION OF URBAN LOGISTIC BEHAVIOR.

Categories Key data

Traffic 1. road maps, 2. velocity limits, 3. number of vehicles,
4. level of service, 5. modal split

Area usage 1. public, living, industrial, retail areas, 2. coordinates

Public trans-
port

1. network, 2. coordinates

Districts 1. Borders, 2. number of buildings, 3. number of inhab-
itants, 4. demographics

While most of the data were provided by the city admin-
istration of Hannover, further studies and statistics have been
analyzed to complete the necessary database. The database
provides the information to other parts of the workflow.

V. SIMULATION MODELS

The second step in the workflow is the simulation of novel
logistics concepts utilizing the previously described data as
inputs. Since multiple logistics concepts needed simulation
(the number of which was not pre-defined), the simulations
were designed with common inputs and outputs as to flexibly
interchange different models within the same workflow. The
models were created using AnyLogic, a proprietary, java-based
simulation tool, which provides extensive libraries and multi-
method-simulation. A combination of discrete event simulation
(DES) and Agent-Based Simulation (ABS) was chosen as the
development methodology [9]. The combination allows the
development of flexible models, enabling the simulation of
different logistics concepts using the same base model.

In total, two base models were developed which can be
configured to simulate six logistics concepts. While breaking
with the principle of Isolation of responsibilities, since a single
model may simulate different concepts, this choice was made
due to software inflexibility within the simulation toolkit.
The first model, CEP, simulates courier, express and parcel
delivery services and provides the base for four of the con-
cepts. The second model, E-Grocery, simulates food delivery
in the research area via food fulfillment centers (DCenter)
or traditional supermarket shopping. Both simulation models

14Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 22 / 27

Fig. 1. Workflow of the project USEfUL.

utilize the same database, containing information about roads,
buildings, inhabitants, etc. about the research areas.

TABLE II. SCENARIOS SIMULATED VIA ANYLOGIC MODELS.

Scenario Description

Micro-Hub The population is supplied by micro-hubs in the inner city
area. A supply chain is created across different logistics
levels.

White Label The population of the CEP population is supplied by
bundling orders from several CEP service providers in
a common distribution center on the outskirts of the city.

City Hub A stationary, inner-city transshipment point will be built,
which will be used by several CEP service providers for
last-mile distribution.

Parcel
Pickup
Locations

CEP service providers now only deliver via unattended
services, in which orders are delivered to customers
exclusively at stations/stores or via a drop-off location.

Online
Grocery
Shopping

Customers order consumer goods such as food and drug-
store items from a local supplier with a specific delivery
window to their desired location.

Neighborhood
Logistics

Neighborhoods organize their mobility-triggering activ-
ities by linking and optimizing their routes through
division of labor. Preferably, one neighbor does several
activities for another neighbor (e.g. shopping activities).

In the following section, the E-Grocery model will be
presented, which comprises the most comprehensive tool in
particular with regard to the logistical complexity (time win-
dow routing).

A. E-Grocery model

This simulation model is a consideration of the real world
problem of last mile grocery delivery. Within the e-grocery
base model, the basic logic of the food delivery process
(e-grocery) was mapped and contrasted with the classical
purchasing process. This delivery concept was chosen because
it is one of the most common in Germany and is used by
our partner company. The delivery module of the simulation
model shows accruing routes through grocery deliveries to the
pilot neighborhoods from a distribution center (DCenter). The
deliveries were route-optimized to achieve the highest possible
degree of realism.

The inputs for the simulation model utilize publicly avail-
able data such as OpenStreetMap locations or anonymized data
from the city of Hannover, municipalities or other external
partners. All simulation models utilize the same base model
of the research areas as well as the population living in the
research areas. The simulation of different logistic scenarios is
achieved by configuring the simulation model via parameters
such as participation rate, consolidation of orders or delivery
locations. Important input parameters such as the size of the
delivery fleet, the order volume, the type of purchase (bulk pur-
chase or small purchase), time window of the order (depending
on the customer type) as well as the shopping behavior, the
travel speed and the route guidance were parameterized in
order to be able to analyze the model flexibly depending on
different behavior and circumstance scenarios and to produce
results that are as realistic as possible.

The classic shopping model is based on data on shopping
and mobility behavior from the MID study [10] and provides
reference values and logics for comparison between classic
shopping and grocery deliveries. A more detailed description
of our model can be found in [9]. In the publications [11] and
[12], supplementary, later extensions of our model are shown,
which consider the neighborhood types of the pilot area and
the downstream supply chain of the eGrocery scenario in more
depth.

Since influences of e-grocery on traffic are mainly de-
termined by shopping behavior, different, behavior-oriented
comparison scenarios were defined (see Figure 2).

Depending on their characteristics, these lead to different
kilometers driven, a different number of start/stop operations,
a different working time, and different emissions after interface
transfer.

The simulation output is realised trough the creation of
Excel-files which contain information common to all simula-
tion models as well as some scenario-specific information like
the success rate of delivering within specified time windows.
A wide variety of simulation experiments were conducted
for each scenario and over 1000 simulation iterations were
performed.

15Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 23 / 27

Fig. 2. Comparison of CO2 emissions for e-grocery and normal grocery
shopping [9].

The final Excel spreadsheet contains all iteration results for
each scenario, shown in Table III.

TABLE III. OUTPUT VALUES OF THE E-GROCERY MODEL.

Data origin Measured variable

Mileage AnyLogic Total kilometers driven per agent
type

Process times AnyLogic Duration tour / per vehicle type
Utilization of vehicles or buildings
Start/stop ratios

Number of tours AnyLogic Number of tours per vehicle type
Deliveries made Returns (false ac-
ceptances)

Scenarios Information AnyLogic Scenario no. Iteration run & Sim-
ulation timestamp

Within the simulation model loose coupling as well as
modularity is achieved through the definition of inputs and
outputs. While some modifications needed to be made to
accommodate each scenario, file structure is mostly identical
between the models. This allows some interchangeability of
simulation models in respect to data im-/export, reducing
development time of interfaces in the database or the follow-
ing evaluation models. In the context of the larger project,
defining clear interfaces supported the parallel development
of multiple simulation models as well as the database and the
evaluation models, reducing overall communication workload.
After common interfaces were defined only big changes had to
be coordinated between all project teams, while small changes
between two teams did not cause issues for other teams.

VI. ANALYSIS OF THE SIMULATION DATA

The next step within the workflow is the evaluation of the
effects of logistics concepts on key performance indicators
such as emissions, area use, costs and traffic behavior. The
evaluation was done by comparison with the current traffic
situation within the research areas, as logistics concepts influ-
ence multiple key performance indicators at once (Allen et al.
[4]). For that a base case was defined and simulated to give a
detailed overview about the actual situation.

Fig. 3. Evaluation procedure modified from Drews and Hildebrand [13].

Every evaluation comprised of multiple steps as shown in
Figure 3. Firstly, requirements have to be defined to figure
out the main results of the analysis and the structure of the
evaluation model. With the knowledge and simulation base a
data base is created to collect specific data and structure them.
The results of the data base are one part of the definition of the
target figures. They are roughly defined before the execution
of the AnyLogic simulation and specified with the knowledge
base. The other part of the data base is the input for the target
systems. The target systems are built to work up the simulation
input. Each target figure gets its own system. At last, all the
scenarios and models are summed up and scaled to make them
comparable.

Before the modeling of the evaluation system some goals
have to be set and defined. In the following sections each step
is described in further detail.

A. Requirements

To model a significant evaluation system some core require-
ments have been set. The aspects shall guarantee a structured
modeling process and an easy way to extend it once new
logistic concepts should be implemented. In addition, the
linking of the parameters and scenarios is desirable to release
a comparable output.

The following aspects have to be taken into account while
executing this evaluation modeling:

• transparent and replicable evaluation
• generalized assessment
• automation possible
• cross-district valuation based on the different criteria

16Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 24 / 27

B. Simulation and knowledge base

As seen in Figure 4 two different input types are used for the
evaluation model: the research input and the simulation input.
The research input provides information about the logistic
concepts and the variation of data needed to evaluate them. The
sources of the research input have been the data described in
Section IV. Also, data from logistic companies were taken into
account. The simulation output of the AnyLogic workflow and
the research have been combined to build the basic structure of
the target system. In addition, some of the research input also
influences the specific definition of the target figures. Some of
the most important inputs and outputs are listed in Figure 4.

Fig. 4. Simulation output analysis.

C. Target figures

As shown in Table IV, the target figures are categorized
into core targets and derivation targets. The core targets are
emissions, costs, traffic and area savings.

TABLE IV. TARGET FIGURE CATEGORIES.

Core [unit] Derivation 1st [de-
pendence]

Derivation 2nd [de-
pendence]

emissions [CO2

equivalent]
ecologic BEP [CO2

equivalent per e]
implementation
potential
[{CO2/e;e;m2;∅
km/h}]

costs [e per day] economic efficiency
[profit (e) per day]

acceptance
[{CO2/e;e;m2;∅
km/h}]

area savings [m2]
traffic [∅ km/h]

Emissions Goal of the target figure is the reduction of CO2

emissions and noise.
Costs For the last mile delivery a cost model is created. The

balances are measured to the base case which provides
information about the economic effects.

Traffic The overall intention is to reduce the traffic activity
and congestion. One idea is to substitute individual traffic
to commercial transport.

Area savings This target figure deals with the reduction of
exploited economically used areas in the urban surround-
ing.

Due to the mutual influences (proportional, neutral, re-
ciprocal) the core target values are connected. The derived
target figures are deduced out of the core targets. Whereas the
ecologic BEP (Break-even point) and the economic efficiency
are calculated out of the core target figures directly, the ac-
ceptance and the implementation potential needed qualitative
input which is challenging to evaluate.

1) Target system: Each target figure has got its’ own
analysis system. In this case the cost model is presented more
detailed:

Ktotal = kfleet + kDC + klog

The shown formula describes the three main modules of the
cost model. The parts “fleet costs” (kfleet) and “distribution
center costs” (kDC) are essential for all presented concepts.
Due to changes in the supply chain in some concepts the third
part “logistic costs” (klog) is adapted, especially in the CEP
delivery services.

With the following formula of the distribution center costs
(kDC) the process and the handling of the data should be
emphasized:

kDC = ((nDC ∗ (kpbs + kst)) ∗ c) ∗ l

where nDC is the number of distribution centers-output of the
simulation, kpbs are the fixed asset costs to run the distribution
center (defined via research input), kst are staff costs (defined
via research input), c is the factor to define the capacity of
the DCs-output of the simulation and l is a location factor
defining cost changes based on ground values (defined via
research input). The total costs of the last mile delivery are
all compared to the firmly defined base case (BC). In case of
the different CEP concepts, all concepts are more expensive
compared to the base case. As seen in Figure 5 the White-
Label (WL) concept and the central pick-up stations (PS) are
slightly higher positioned while the Micro Hub concept (MH)
and the City-Hub concept (CH) doubled or rather tripled the
costs. In this project the costs are spread on four different
quarters of the city. This was clarified by the fixed numbers
of parcels per quarter. With this output of the target system
the overall scaling is possible.

Fig. 5. CEP cost comparison.

17Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 25 / 27

Fig. 6. Scaling system.

2) Weighting and scaling of criteria: With the valuation
of the simulation all the concepts have to be comparable to
give a clear statement about the tendencies and the possible
changes. All values for a target figure have been collected to
scale the values. Another important point has been the possible
negotiation of some of the target figures like emissions,
costs, area savings, ecological BEP and acceptance. With the
categorization with limit values a tendency is shown as a result
of the analysis as shown in figure 6.

As the entire process of evaluation is inherently independent
of previous evaluations, the application of statelessness was
trivial. Furthermore, evaluations are modular, since the eval-
uation of a single key performance indicator is independent
form the evaluations of other KPIs Different KPI-Evaluations
can be easily combined to create a clearer picture about each
logistic concept, as each concept might affect different KPIs.

VII. WEB-BASED DECISION-SUPPORT-TOOL

Lastly, evaluation data was made available to users in
the form of a web-based decision support tool. The tool
presents evaluation results as well as information about logistic
concepts, research areas and the project itself. The main design
goal of the web-based decision support tools was ease of use.
A user should be able to utilize the tool quickly e.g. in a
meeting with other decision makers to discuss the impacts
of novel logistic concepts on a given area. Through expert
workshops the following requirements were refined:

• Present Information about:
1) the project USEfUL
2) research areas (districts)
3) novel logistic concepts

Fig. 7. Rough design of the web-based decision support tool.

• Allow users to view and export the evaluations of the
concepts.

• Allow the modulation of concepts through the selection
of different parameters.

• Compare the evaluation results of multiple concepts
within a research area/across research areas.

The rough design of the web-based decision support tool
is shown in Figure 7. Based on the industry standard model-
view-controller-pattern, four different views present the user
the most important information. The start page, showing rough
overviews over logistics concepts, as well as research areas,
serves as a landing page. From this page, the user can navigate
to detail pages for concepts ans research areas (districts) or
the decision support tool. Detail pages show images and in-
depth information about concepts or districts and can be used
to thoroughly understand the presented evaluations. The tool-
page allows a user to select the combination of research area
and logistic concepts, configure the concept with the parame-
ters defined for the simulation models. After the user makes
a selection, the evaluation results for the chosen combination
are presented to the user.

The application was built utilizing the Laravel Framework
which in turn required the use of php, javascript and a database
(e.g. mysql). Docker was utilized to decrease setup times and
increase productivity. Data import is handled by manually
converting Excel files from the evaluation into RFC-compliant
comma-separated-values, which in turn are imported into the
database of the tool. If the web-tool is viewed as a service, this
results in a violation of the statelessness of services. However,
as the workflow is not fully automated, storing the results in
the web-tool is necessary, as the results can not be recreated
on-the-fly. Furthermore, execution of simulations takes a long
time, violating the design goal of quickly presenting a user
with the desired information.

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

 26 / 27

VIII. DISCUSSION

With the service principles originating from well structured
workflows within industry solutions [3], the reverse application
of the principles to a manual workflow as seen in this article
was expected to benefit the project.

The principles of service design could easily be utilized as
guidelines for the steps of a non-digital workflow and provided
different benefits. The loose coupling of the different steps
allowed each team to draw upon its expertise in the domain
of the step (e.g. traffic analysis, simulation), while reducing
communication needs. By applying encapsulation and defining
data exchange formats before implementation of the tools
used in the different steps, work could be parallelized within
the overall project. In combination with statelessness, the
encapsulation also supported the interchangeability of different
models, e.g. the model to simulate the e-grocery-concept could
be easily exchanged with the model for city hubs.

However, not all the service principles, which are usually
applied to services, could also be applied to all steps of the
workflow. While simulation and analysis were stateless steps,
producing outputs only dependent on the inputs, data collec-
tion and presentation of results could not be implemented in a
stateless manner, as the state of data is the main driving factor.
Furthermore applying service principles to a manual workflow
is inferior to a complete automation if the processes are to be
executed repeatedly. However, within the context of research,
where software is often a tool used a limited amount of times
to generate data, the reduced expertise in the computer science
domain necessary to create a partially automated workflow is
advantageous for budget constrained projects.

Overall, the project benefited from aligning the workflow
with service orientation. Other projects, which do not utilize a
workflow that consists of multiple steps, each clearly confined
to a different domain with own tools, might not benefit from
the application of service orientation. E.g. a project that aims
to create a software according to a users needs might profit
more from an agile workflow allowing for many feedback
loops.

IX. CONCLUSION AND FUTURE WORK

The paper presented a novel application of service prin-
ciples by focusing on a partially manual workflow instead
of completely automated software solutions. The workflow
of the project USEfUL was presented, which aims to create
a web-based decision support tool for urban planners. To
create the web-based decision support tool a multi-domain
workflow was utilized to combine the expertise of different
research teams. With each step focusing on a single domain,
the application of the principles of service orientation was
chosen to refine the workflow of the project. Through this
service oriented workflow a decision support tool for urban
planners was created to assist the evaluation and selection of
novel logistic concepts for the development of urban spaces.

Applying the principles of service oriented software design
to the partially automated workflow of the project, provided
multiple positive effects on the projects efficiency. Modular-
ity and encapsulation not only allowed interchangeability of
models but also increased development speed by reducing
communication needs. However the created solution is inferior
to a fully automated software when repeated process use is a
major goal.

In future work the construction of a fully automated service
oriented system is the next logical step for the project USE-
fUL, since a fully automated system is often faster and more
reliable than manual processes.

ACKNOWLEDGMENT

This work was supported by the Federal Ministry of Edu-
cation and Research of Germany (project USEfUL, grant no.
03SF0547). We would like to thank our colleagues from the
other institutions and the City of Hannover.

REFERENCES

[1] B. für Bildung und Forschung, “Future cities strategic research and in-
novation agenda (zukunftsstadt strategische forschungs- und innovation-
sagenda),” https://www.bmbf.de/upload_filestore/pub/Zukunftsstadt.pdf,
2015, accessed: 2021-04-01.

[2] A. Lagorio, R. Pinto, and R. Golini, “Research in urban logistics: a sys-
tematic literature review,” International Journal of Physical Distribution
& Logistics Management, 2016.

[3] M. Rosen, B. Lublinsky, K. T. Smith, and M. J. Balcer, Applied SOA:
service-oriented architecture and design strategies. John Wiley & Sons,
2012.

[4] J. Allen, G. Thorne, and M. Browne, “Bestufs good practice guide on
urban freight transport,” 2007.

[5] C. Guerlain, S. Cortina, and S. Renault, “Towards a collaborative
geographical information system to support collective decision
making for urban logistics initiative,” Transportation Research
Procedia, vol. 12, pp. 634–643, 2016. [Online]. Available: https:
//doi.org/10.1016%2Fj.trpro.2016.02.017

[6] C. de Stasio, D. Fiorello, F. Fermi, A. Martino, G. Hitchcock, and
S. Kollamthodi, “On-line tool for the assessment of sustainable urban
transport policies,” Transportation Research Procedia, vol. 14, pp. 3189–
3198, 2016.

[7] R. Bozzo, A. Conca, and F. Marangon, “Decision support system for
city logistics: literature review, and guidelines for an ex-ante model,”
Transportation Research Procedia, vol. 3, pp. 518–527, 2014.

[8] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles,” IEEE Internet computing, vol. 9, no. 1, pp.
75–81, 2005.

[9] M. Trott, M. Auf der Landwehr, and C. von Viebahn, “E-grocery
of tomorrow - home delivery of food between profitability, customer
acceptance and ecological footprint,” World Review of Intermodal Trans-
portation Research (in press), pp. 10–, 2020.

[10] infas Institut für angewandte Sozialwissenschaft, “Mobility in germany:
traffic - structure - trends (Mobilität in Deutschland: Verkehrsaufkom-
men – Struktur – Trends),” Deutsches Zentrum für Luft- und Raumfahrt
e.V, IVT Research GmbH, infas 360 GmbH, Tech. Rep., September
2019, http://www.mobilitaet-in-deutschland.de/pdf/infas_Mobilitaet_in_
Deutschland_2017_Kurzreport.pdf, last visit: 17.07.2019.

[11] M. Auf der Landwehr, M. Trott, C. von Viebahn, M. Putz, and
A. Schlegel, “E-grocery in terms of sustainability-simulating the en-
vironmental impact of grocery shopping for an urban area in hanover,”
Simulation in Produktion und Logistik, pp. 87–96, 2019.

[12] M. Auf der Landwehr, M. Trott, and C. von Viebahn, “Simulation-
based assessment of grocery shopping in urban areas,” Simulation News
Europe, 30(4), pp. 145–158, 2020.

[13] G. Drews and N. Hillebrand, Encyclopedia of project management
methods (Lexikon der Projektmanagement-Methoden). Haufe-Lexware,
2007.

19Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

Powered by TCPDF (www.tcpdf.org)

 27 / 27

http://www.tcpdf.org

