IARIA

SERVICE COMPUTATION 2010

The Second International Conferences on Advanced Service Computing

November 21-26, 2010 - Lisbon, Portugal

ComputationWorld 2010 Editors

Ali Beklen, IBM Turkey, Turkey
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Wolfgang Gentzsch, EU Project DEISA, Board of Directors of OGF, Germany
Teemu Kanstren, VTT, Finland
Arne Koschel, Fachhochschule Hannover, Germany
Yong Woo Lee, University of Seoul, Korea
Li Li, Avaya Labs Research - Basking Ridge, USA
Michal Zemlicka, Charles University - Prague, Czech Republic

SERVICE COMPUTATION 2010

Foreword

The Second International Conferences on Advanced Service Computing [SERVICE COMPUTATION
2010] was held between November 21 and 26 in Lisbon, Portugal and continued a series of events
targeting service computation on different facets. It considered their ubiquity and pervasiveness, WEB
services, and particular categories of day-to-day services, such as public, utility, entertainment and
business. The ubiquity and pervasiveness of services, as well as their capability to be context-aware with
(self-) adaptive capacities pose challenging tasks for services orchestration and integration. Some
services might require energy optimization, some might requires special QoS guarantee in a Web-
environment, while others require a certain level of trust. The advent of Web Services raised the issues
of self-announcement, dynamic service composition, and third party recommenders. Society and
business services rely more and more on a combination of ubiquitous and pervasive services under
certain constraints and with particular environmental limitations that require dynamic computation of
feasibility, deployment and exploitation.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION
2010 Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to SERVICE
COMPUTATION 2010. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SERVICE COMPUTATION 2010
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that SERVICE COMPUTATION 2010 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of progress in the
area of advanced service computing.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed the beautiful surroundings of Lisbon, Portugal.

SERVICE COMPUTATION 2010 Chairs:

Ali Beklen, IBM Turkey, Turkey

Emmanuel Bertin, Orange-ftgroup, France

Hepu Deng, RMIT University - Melbourne, Australia

Paul Humphreys, Ulster Business School/University of Ulster, UK

Arne Koschel, Fachhochschule Hannover, Germanyh

Li Li, Avaya Labs Research - Basking Ridge, USA

Ying Li (£ §2), IBM Research - China, China

Michele Ruta, SisInfLab / Politecnico di Bari, Italy

Toyotaro Suzumura, IBM Research / Tokyo Research Laboratory, Japan

SERVICE COMPUTATION 2010

Committee
SERVICE COMPUTATION Advisory Chairs

Academia

Hepu Deng, RMIT University - Melbourne, Australia

Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Fachhochschule Hannover, Germany

Michele Ruta, SisInfLab / Politecnico di Bari, ltaly

Industry

Ali Beklen, IBM Turkey, Turkey

Toyotaro Suzumura, IBM Research / Tokyo Research Laboratory, Japan
Emmanuel Bertin, Orange-ftgroup, France

Ying Li (2 §2), IBM Research - China, China

Li Li, Avaya Labs Research - Basking Ridge, USA

SERVICE COMPUTATION 2010 Technical Program Committee

Isara Anantavrasilp, Technischen Universitat Miinchen, Germany
Ismailcem Budak Arpinar, University of Georgia, USA

Irina Astrova, Tallinn University of Technology, Estonia

Ali Beklen, IBM Turkey, Turkey

Emmanuel Bertin, Orange-ftgroup, France

Noureddine Boudriga, University of Carthage, Tunisia

Sujit Kumar Chakrabarti, Philips Healthcare - Bangalore

Anis Charfi, TU Darmstadt, Germany

Dickson Chiu, Dickson Computer Systems, Hong Kong

Leandro Dias da Silva, Federal University of Alagoas, Brazil
Florian Daniel, University of Trento, Italy

Hepu Deng, RMIT University - Melbourne, Australia

Dwight Deugo, Carleton University, Canada

Tommaso Di Noia, Politecnico di Bari, Italy

Leandro Dias da Silva, Federal University of Alagoas - Maceio, Brazil
José Valente de Oliveira, Universidade do Algarve, Portugal
Erdogan Dogdu, TOBB University of Economics and Technology - Ankara, Turkey
Schahram Dustdar, Vienna University of Technology, Austria
Geoffrey Fox, Indiana University, USA

Vasilis Friderikos, King's College London, UK

Martin Gaedke, Chemnitz University of Technology, Germany
G.R. Gangadharan, Politecnico di Milano, Italy

Luisa Gargano, Universita di Salerno, Italy

Paolo Giorgini, University of Trento, Italy

Luis Gomes, Universidade Nova de Lisboa / UNINOVA-CTS - Monte de Caparica, Portugal
Victor Govindaswamy, Texas A&M University - Texarkana, USA
Michael Hafner, University of Innsbruck, Austria

Jon Hall, Open University, UK

Paul Humphreys, Ulster Business School/University of Ulster, UK
Mirjana Ivanovic, University of Novi Sad, Serbia

Jinlei Jiang, Tsinghua University - Beijing China

Hai Jin, Huazhong University of Science and Technology - Wuhan, China
Paul Johannesson, Stockholm University, Sweden

Dimitris Karagiannis, University of Vienna, Austria

Arne Koschel, University of Applied Sciences and Arts - Hannover, Germany
Natalia Kryvinska, University of Vienna, Austria

Li Li, Avaya Labs Research - Basking Ridge, USA

Ying Li (2), IBM Research - China, China

Shih-Hsi Liu, California State University - Fresno, USA

Jan Lucenius, National Defence University - Helsinki, Finland

Kurt Maly, Old Dominion University, USA

Mihhail Matskin, KTH, Sweden

Susana Munoz Herndndez, Universidad Politécnica de Madrid, Spain
Andreas Nearchou, University of Patras, Greece

Christos Nikolaou, University of Crete, Greece

Ingo Pansa, Karlsruhe Institute of Technology (KIT), Germany

Witold Pedrycz, University of Alberta, Canada

Juha Roning, University of Oulu, Finland

Michele Ruta, SisInfLab / Politecnico di Bari, Italy

Timothy K. Shih, Asia University - Wufeng, Taiwan

Eva Soderstrom, University of Skovde, Sweden

George Spanoudakis, City University - London, UK

Young-Joo Suh, POSTECH, Korea

Toyotaro Suzumura, IBM Research / Tokyo Research Laboratory, Japan
Vladimir Stantchev, Berlin Institute of Technology, Germany

Takeshi Tsuchiya Waseda University, Japan

Xia Wang, Jacobs University - Bremen, Germany

Zhengping Wu, University of Bridgeport, USA

Qi Yu, Rochester Institute of Technology, USA

Konstantinos Zachos, City University - London, UK

Arkady Zaslavsky, Lulea University of Technology, Sweden

Jelena Zdravkovic, SU/KTH - Stockholm, Sweden

Wenbing Zhao, Cleveland State University, USA

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.

Table of Contents

Generation of choreography skeletons from web service definitions
Annett Laube and Patrick Winkler

R-Event: A RESTfulWeb Service Framework for Building Event-Driven Web
Li Li and Wu Chou

Code Contracts for Windows Communication Foundation (WCF)
Bernhard Hollunder

Automated Service Evolution
Virginia Smith and Bryan Murray

An Architecture to Measure QoS Compliance in SOA Infrastructures
Alexander Wahl, Ahmed Al-Moayed, and Bernhard Hollunder

Nontechnical SPAM Detection Paradigmin in Unified Communications Systems
Moritz Giesecke

Formalisation of Mediation Protocol for Web Services Composition with ACME/ARMANI ADL
Raoudha Maraoui, Mohamed Graiet, Mourad Kmimech, Mohamed Tahar Bhiri, and Bechir El Ayeb

WEB Services for Ubiquitous Mobile Device Applications
Mihai Barbos and Eugen Pop

Development of Web 2.0 Applications using WebComposition/Data Grid Service
Olexiy Chudnovskyy and Martin Gaedke

Business Protocol Monitoring
Samir Sebahi and Mohand-Said Hacid

Service Planning in Multi-Layer Networks Considering Physical Constraints
Shu Zhang, Lothar Kreft, and Ulrich Killat

Using QoS for Relevance Feedback in Service Discovery: A Preliminary Empirical Investigation
Konstantinos Zachos, Neil Maiden, Glen Dobson, and Pete Sawyer

Implementation of the Information System of the Telecom Operators Using the ITIL V3 Methodology for the
Service Design Phase
Anel Tanovic and Fahrudin Orucevic

14

21

27

41

55

62

68

75

82

Online Service Similarities and Reputation-based Selection
Oana Dini, Pascal Lorenz, Abdelhafid Abouaissa, and Herve Guyennet

Collaborative Digital Library Servicesin a Cloud
Kurt Maly

Security Service for the Rollout of Security Credentials in Ubiquitous Industrial Automation Environments
Rainer Falk

Integrated e-Services in Public Sector
Seppo Srkemaa

Information and Knowledge Sharing: Involving Customersin Developing Services
Seppo Srkemaa

Data Mining Governance for Service Oriented Architecture
Ali Beklen and Turgay Tugay Bilgin

Generic Function Schemafor Operations on Multiple Network QoS Parameters
Mark Yampolskiy, Wolfgang Hommel, David Schmitz, and Matthias Hamm

A Domain-driven Approach for Designing Management Services
Ingo Pansa, Felix Palmen, Sebastian Abeck, and Klaus Scheibenberger

Studying in Web 2.0 — Virtual University as Virtual Community
Birgit Feldmann

Archer: An Architectural Monitoring Tool

Vitor Correia Alves, Rafael Henrique Santos Rocha, Rodrigo de Barros Paes, Evandro de Barros Costa, Leandro

Dias da Slva, and Gustavo Robichez de Carvalho

A Hybrid Instance Migration Approach for Composite Service Evolution
Jianing Zou

Distributed and Passive Web services discovery middleware for Pervasive services at the edges of Internet
Abdul Haseeb, Mihhail Matskin, and Peep Kungas

Federated Authentication Mechanism with Efficient ID management
Ryu Watanabe and Toshiaki Tanaka

MBPR: A Business Process Repository Supporting Multi-Granularity Process Model Retrieval
Jiangjun Zhu, Hailong Sun, Zicheng Huang, and XuDong Liu

92

98

104

111

116

121

126

132

140

146

153

160

166

172

Critical Information Infrastructures Management System and Security |ssues
Jun Heo and Wan SUK Yi

A Synergistic System of Institutional Repository and Researcher Database
Kensuke Baba, Masao Mori, and Eisuke Ito

Estimation of Telecommunication Technologies, Services and Costs to Support Public Transport Information
System Requirements
Tapio Vaaramaki, Timo Korhonen, Vesa Riihimaki, Reijo Salminen, and Arto Karila

Streaming Cloud Service Concept by Peer-to-Peer Distributed Technology
Takeshi Tsuciya, Hirokazu Yoshinaga, and Keiichi Koyanagi

Evaluation of the Applicability of the OSGi Service Platform to Future In-V ehicle Embedded Systems
Irina Astrova, Ahto Kalja, Arne Koschel, and Roman Roel ofsen

Reliable Authentication and Anti-replay Security Protocol for Wireless Sensor Networks
Laura Gheorghe, Razvan Rughinis, Razvan Deaconescu, and Nicolae Tapus

Adaptive Trust Management Protocol Based on Fault Detection for Wireless Sensor Networks
Laura Gheorghe, Razvan Rughinis, Razvan Deaconescu, and Nicolae Tapus

179

184

189

196

202

208

215

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Generation of choreography skeletons from web
service definitions

Annett Laube and Patrick Winkler
Bern University of Applied Science
Devision of Computer Science

Biel/Bienne, Switzerland
Email: annett.laube @bfh.ch, winkp1 @bfh.ch

Abstract—Modern IT landscapes underlie constant evolution.
Modeling activities - as a basis for continuous monitoring and
maintenance - stay often behind. Service models describe the way
how services interact. We propose reverse engineering techniques
to generate choreography skeletons from web service definitions.
We describe the necessary transformation to generate a detailed
and consistent choreography than can be easily completed and
merged with existing choreographies. We discuss the restrictions
of the generated WS-CDL skeletons and how they can be
overcome.

Index Terms—web service, choreography, service model, re-
verse engineering

I. INTRODUCTION

IT landscapes in industry or finance are often a result of
a long evolution. Despite continuous efforts to keep models
of systems and components up-to-date, rarely IT landscape
models are consistent and complete.

The landscape model (sometime also called system model)
consists often of two parts: the physical infrastructure and the
service model. The physical infrastructure reflects in great de-
tail components composed in the following groups: computer
hardware (e.g. processing power, memory, etc.), computer
software (e.g. OS, server applications), and network devices
(e.g. links, traffic controllers - hubs/switches/gates/routes).

The service model is an abstraction of the set of all services.
It defines the way how the services interact by exchanging
messages and how more complex services are created by com-
bining services. The terms orchestration and choreography
describe two different aspects of creating business processes
from composite web services.

Orchestration refers to an executable business process that
can interact with both internal and external web services.
Orchestration represents the composition from the viewpoint
of the parties involved in this composition.

A choreography description concerns the composition of
web services seen from a global viewpoint focusing on the
common and complementary observable behavior. Choreogra-
phy is particularly relevant in a setting where there is not a sin-
gle coordinator. Choreography tracks the message sequences
among multiple parties and sources - typically the public
message exchanges that occur between web services - rather
than a specific business process that a single party executes
[1]. Typical examples are a travel agency that offers a broad
range of services including air and train travel, bus tickets,

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

hotels, car rental, excursions, insurance etc. or a company that
wishes to purchase a fleet of cars from automobile suppliers,
which in turn request quotes for specific bill or material items
from their component manufacturers [2].

The main use of a choreography description is to precisely
define the sequence of interactions between a set of coopera-
ting web services in order to promote a common understanding
between participants and to make it as easy as possible to
automatically validate conformance, ensure interoperability
and increase robustness [2].

We want to automate the generation of service models,
more specific of web service choreographies. This reduces the
modeling effort for existing service landscapes. Normally, IT
service landscapes underlie constant evolution due to newly
added or modified business functions. Quite often web services
from partners or external service providers have to be inte-
grated into the existing network. Examples are services from
B2B partners or external data services, like Dun&Bradstreet
to get business information and company assessments from
business partners. In this case, our work helps to keep the
service models up-to-date and to monitor changes in constantly
changing service infrastructures.

We use reverse engineering techniques to extract the neces-
sary information from the implemented web services. Main
information source are the web service definitions, which
provide the documentation for distributed systems and are
available to all communication partners. As the information in
the web service definitions is insufficient to build a complete
service choreography, we concentrate on the generation of
consistent skeletons, which then can be enhanced manually
or enriched with business process information.

The paper continues with a description of related work.
The basis features of WS-CDL and WSDL are addressed in
Sections III and IV. In Section V, the transformation from web
service descriptions to a choreography model is described.
In Section VI, we discuss how the generated choreography
skeletons can be completed. Our implementation of the trans-
formation process is described in Section VII. In Section VIII,
we conclude this paper and discuss further work.

II. RELATED WORK

The most known languages to specify web services cho-
reographies are Web Service Choreography Interface (WSCI,

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

[3]), Web Service Choreography Description Language (WS-
CDL, [4]), and Ontology Web Language for Services (OWL-S,
[5]). All are XML-based and support WSDL [6][7], the well-
established standard to describe web services.

WSCI - sometimes considered as predecessor of WS-CDL
(the last update was released in 2002) — describes the ob-
servable behavior of only one web service including temporal
and logical dependencies in the message flow. WS-CDL and
OWL-S are more powerful to express the collaboration of 2
parties. WS-CDL describes peer-to-peer collaborations of web
services taking part in a choreography. It defines a set of
agreements about ordering and constraint rules. The aim of
OWL-S is to automate the discovery, invocation, composition,
interoperation and monitoring of web services. A detailed
comparison of the 3 languages can be found in [8].

More choreography languages, like Let’s Dance and
BPEL4Chor, are emerged in the last years. Let’s Dance [9]
is a language for modeling service interactions and their flow
dependencies targeting business analysts. It is a language
for high-level analysis and design. WS-CDL is a potential
implementation language for Let’s Dance models. BPEL4Chor
[10] is an extension of Business Process Execution Language
(BPEL, [11]). It adds participant behavior descriptions, i.e.
control flow dependencies, the participant topology and their
interconnection using message links and participant ground-
ings, i.e. concrete configurations for data formats and port
types to the standard BPEL.

To our knowledge, it is a novel approach to reengineer
WSDL files to create a service model. But there are reverse
approaches to generate WSDL descriptions (skeletons) from
choreography models. In [12], the authors describe an ap-
proach to generate the orchestration behavior (BPEL stubs)
and the necessary WSDL templates automatically from WS-
CDL models. The same functionality is implemented in the
visual modeling tool known as pi4SOA [13]. pi4SOA, an open-
source implementation that plugs into Eclipse, is one of the
few WS-CDL implementations available today.

There are many approaches, complementary to our ap-
proach, to recreate the process flow of interacting web ser-
vices. Business process mining, or process mining for short,
aims at the automatic construction of models explaining the
behavior observed in the event log [14]. For example, based
on event logs, it is possible to construct a process model
expressed in terms of a Petri net or Event-driven Process Chain
(EPC). Beside the process perspective, process mining can also
focuses on the originator field (organizational perspective), to
find out, which performers are involved and how are they
related. The goal is either to structure the organization by
classifying people in terms of roles and organizational units or
to show relations between individual performers (e.g., build a
social network [15]).

III. CHOREOGRAPHY

The goal of specifying web service choreographies is com-
posing peer-to-peer interactions between any kind of services,

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

regardless of the programming language or the environment
that hosts the service.

We have chosen to use WS-CDL for our service model,
because its tight coupling to WSDL files and the recommenda-
tion of the W3C Web Services Choreography Working Group.

A WS-CDL model consists of 3 parts:

o Collaborating parties: describing the entities that ex-
change information, their roles and their relationships,

o Collaborative behavior: describing the physical order
(message flow) of the information exchange and assigned
constraints,

« Exchanged information: describing the type of informa-
tion used in the information exchange.

A. Collaborating parties

Within a choreography, information is always exchanged
between participants. A participant — described by a partici-
pant type — groups all the parts of the collaboration that must
be implemented by the same entity. A role type enumerates
potential behaviors of a participant within an interaction. A
channel type is a point of collaboration between participants
specifying where and how information is exchanged. Finally,
a relationship type is used to identify the mutual obligations
between participants that must be fulfilled to succeed.

B. Collaborative behavior

A choreography defines re-usable common rules that govern
the ordering of exchanged messages. A choreography contains
collections of activities that may be performed by one or
more participants. There are three types of activities in WS-
CDL, namely control-flow activities, WorkUnit activities and
basic activities. In the first category, there are three types
of activities: Sequence, Parallel, and Choice. These activities
enclose a number of sub-activities. A WorkUnit activity de-
scribes the conditional and, possibly, repeated execution of
an activity. The basic activities include Interaction, NoAction,
SilentAction, Assign, and Perform. The most important element
of WS-CDL is the Interaction activity that corresponds to an
operation of a web service.

C. Exchanged information

InformationTypes describe the type of variables, tokens and
messages used in the choreography. Their description at the
package level makes them available to all enclosed activities.
They normally refer either WSDL 1.1 message types, WSDL
2.0 schema elements or XML schema elements/types.

IV. WSDL

A web service is described by a web service description
(WSDL file). Currently, there are 2 versions of the specifica-
tion. WSDL 1.1 [6] is the widely accepted standard. Although
WSDL 2.0 [7] is recommended by the W3C since June 2007
and promises an easier implementation, its adaption by SOAP
servers, vendors and tools is still reluctant.

A WSDL 1.1 description containing six major elements
(In this paper, we concentrate on WSDL 1.1, but the same
information is also available in WSDL 2.0.):

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

o types, which provides data type definitions used to de-
scribe the exchanged messages.

o message, which represents an abstract definition of the
data being transmitted.

o portType, which is a set of abstract operations, which
refer to input and output messages.

« binding, which specifies concrete protocol and data for-
mat specifications for the operations and messages de-
fined by a particular portType.

e port, which specifies an address for a binding, thus
defining a single communication endpoint.

o service, which is used to aggregate a set of related ports.

To generate the choreography skeletons, only the elements

message, portType with operations and service are used. The
name of service element is used to name the activities and
collaborating parties in the choreography.

V. TRANSFORMATION

Our goal is the generation of a valid web service cho-
reography (*.cdl file) out of one or several web service
definitions (WSDL files). In the following, we describe the
needed transformations to create the 3 essential parts of a WS
choreography.

A. Collaborating parties

The service element of a web service description is used
to generate the collaborating parties of the choreography.
Each service element represents a relationship between service
provider and service consumer. The name of the service
element is used to generate the relationship type and the role
types related to web service provider and consumer. In Figure
1, the graphical representation of such a relationship is shown.!

i BarCodeConsumer,

i EBarCodeProvider,

= BarCodeSnap

=y BarCodeSoap

FiarCodeRelationship

4:_.-: BarCodeHttpGet 4:‘" BarCodeHttpGet

*E:“' BarCodeHttpPost E_,:' BarCodeHttpPost

Fig. 1.

Graphical Model of a WS-CDL Relationship

The role types enumerate potential observable behaviors
a participant can exhibit in order to interact. This behavior
corresponds to the portTypes (interfaces in WSDL 2.0) of the
WSDL. In Figure 1, each role type has 3 behaviors assigned.

The optional behavior of the role types in the relationship
is not filled during the transformation. In this case, all the
behaviors belonging to this role type are identified as the
commitment of a participant for this relationship. The right
values have to be selected manually in a later stage.

The generated relationship type is assigned to the choreo-
graphy (see in Figure 2) and bound to all interactions created
from the WSDL file (see Section V-B).

'In this and the following examples, we used a public web
service for bar code generation available with its WSDL under
http://www.webservicex.net/WCF/ServiceDetails.aspx ?SID=40.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

<package>
<roleType name="BarCodeProvider">
<behavior interface="BarCodeSoap" name="BarCodeSoap"/>
<behavior interface="BarCodeHttpGet"
name="BarCodeHttpGet" />
<behavior interface="BarCodeHttpPost"
name="BarCodeHttpPost"/>
</roleType>
<roleType name="BarCodeConsumer">
<behavior interface="BarCodeSoap" name="BarCodeSoap"/>
<behavior interface="BarCodeHttpGet"
name="BarCodeHttpGet"/>
<behavior interface="BarCodeHttpPost"
name="BarCodeHttpPost"/>
</roleType>
<relationshipType name="BarCodeRelationship">
<roleType typeRef="BarCodeProvider"/>
<roleType typeRef="BarCodeConsumer"/>
</relationshipType>
<choreography name="BarCode" root="true">
<relationship type="GlobalWeatherRelationship"/>

</choreography>
</package>

Fig. 2. WS-CDL Relationship

Participant types are not generated. The participants are the
logical entities or organizations implementing or using the
web services. The necessary information is not available in
the WSDLs of the web services and can be added later.

<informationType element="AnyType" name="BarCodeRef"/>
<token informationType="BarCodeRef" name="BarCodeRef"/>

<channelType action="request-respond"
name="GenerateBarCodeChannelll"
usage="distinct">
<roleType typeRef="BarCodeProvider"/>

<reference>
<token name="BarCodeRef"/>
</reference>
</channelType>
Fig. 3. WS-CDL ChannelType and related token

A channel type realizes a point of collaboration between
participant types by specifying where and how information is
exchanged. All our channel types have mostly the action type
request-respond. In the rare cases, that a web service
operation has no parameters or does not return anything (that
means there is no input or output message assigned to the
operation) the action type respond rtsp. request is assigned.
A channel type is named (the name is generated from the
wsdl:operation) and then related to the role of the web service
provider. In the case of several behaviors (corresponding to the
portTypes in the WSDL), we generate equally channel types.
The first of these is related to the interaction via a channel
variable. A channel type gets a reference assigned to convey
the information needed to contact the receiver of the message.
This reference token is associated with an information type.
As the reference information belongs to the business process,
we can only generate the tokens and a dummy information
type (see in Figure 3).

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

’\. GetInFoBEAreaCndeInte

—F GetInfoByareaCod
4+ GetInfoByAreaCod

’\. < EGetInFDBEF\reaCDdeIn

I
o= [{Parallel
% [GetInfoByZIPTnteraction % [GetInfoByCitylrteractio
—F GetInfoByZIPExcha —F GetInfoByCityExchi
4+ GetInfoByZIPExcha 4+ GetInfoByCityExch:
%, <[GetInfoByZIPInteracti %, <JGetinfoByCityInteract
& < [{Parallel
3

Fig. 4. Graphical Model of Parallel Activities

B. Collaborative behavior

The collaboration behavior of two partners is described
by activities with an ordering structure. The web service
definition contains no information about the order in which
the different operations are called, therefore we assume an
unrestricted parallel activity, in which one or more activities
can be executed in any order or at the same time (see Figure
4%). By nature, all operations of a web service can be called
at any time and in any order. Ordering restrictions are only
given by the using business process. Our skeletons could be
enriched later with the real ordering structure, either manually
or automatically by integrating the information from, e.g., a
business process model.

The basic activities generated from the WSDL files are
interaction activities. Each web service operation corresponds
to one interaction (see in Figure 5 a generated example
interaction). The name of the web service operation is used
to generate a name for the interaction and the operation
attribute.

An interaction activity description has 3 main parts corres-
ponding (i) to the participants involved, (ii) to the information
being exchanged, and (iii) to the channel for exchanging the
information.

The information about the involved participants is contained
in the element participate and refers to the role types and
relationship types described in Section V-A. The attribute
fromRoleTypeRef refers the web service consumer role,
the attribute toRoleTypeRef to the web service provider
role, and the attribute relationshipType to the relation-
ship between the two.

The exchanged information is described in the message
part of a WSDL. The operation input and output elements
connect the related messages to a WSDL operation. The
information from the message element is transformed to the

2To illustrate parallel activities, we have chosen a weather web service avail-
able under http://www.webservicex.net/WCF/ServiceDetails.aspx?SID=48

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

<informationType type="GenerateBarCodeType"
name="GenerateBarCode"/>

<informationType type="GenerateBarCodeResponseType
name="GenerateBarCodeResponse" />

nr

<choreography name="BarCode" root="true">

<parallel>
<interaction
channelVariable="GenerateBarCodeChannelVariablel"
name="GenerateBarCodeInteraction"
operation="ReceiveGenerateBarCode">
<participate fromRoleTypeRef="BarCodeConsumer"
relationshipType="BarCodeRelationship"
toRoleTypeRef="BarCodeProvider"/>
<exchange action="request"
name="GenerateBarCodeExchangel"
informationType="GenerateBarCode">
<send/>
<receive/>
</exchange>
<exchange action="respond"
name="GenerateBarCodeExchange2"
informationType="GenerateBarCodeResponse">
<send/>
<receive/>
</exchange>
</interaction>

</parallel>
</choreography

Fig. 5. Generated WS-CDL Interaction

exchange element in the WS-CDL interaction. Depending on
the operation type the action attribute of the exchange is
generated differently: input messages — action=request
and output message — action=respond.

The attribute informationType of the exchange ele-
ment refers to the information type used for the exchanged
information. All information types are defined at the package
level of the choreography. The elements send and receive,
which contain application-dependent or state information are
generated without attributes.

The channels used during the interactions are also derived

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

from the web service operations. The associated channel types
are defined on package level and only referred via channel
variable in the interaction (attribute channelVariable).

C. Exchanged information

Information types are mainly used in the exchange element
of the interaction to describe the type of exchanged informa-
tion. WS-CDL does not allow the construction of complex
data types like possible in the rypes element of the WSDL.
Therefore we have to generate new information types from
the data type assigned to the WSDL 1.1 message parts.

The information types contain also the generated informa-
tion type for the reference tokens (see Figure 3).

The complete mapping of web service definitions to a
WS-CDL choreography is shown in Table 1. Although the
described transformation uses a single WSDL, the concept
can equally applied to several files. Naming conflicts are an-
ticipated by applying different namespaces for WSDL specific
and generated elements.

VI. SKELETON COMPLETION

The following steps are necessary to complete the generated
WS-CDL skeletons and to merge them into existing choreo-
graphies:

1) Create the participant types and assign the generated role
types: Typically a participant type groups several roles.
In a chain of interacting services, a participant can be
the consumer of one service and the provider of another.
Process mining techniques could be used to identify the
roles that belong to one participant type.

2) Select the implemented behaviors in role types of the
service consumer: The behaviors generated from the
portTypes describe the different possibilities to commu-
nicate. But a specific service consumer could decide to
use only a certain subset. This information belongs to
the web service consumer’s client application.

3) Verify the behaviors of the relationship types: Per de-
fault, all generated behaviors are committed from both
sides. But for a specific combination of service consumer
and service provider only a subset could be used (in
accordance with the selection in 2).

4) Remove or flag unused channel types: A channel type
describes the communication channel for each interac-
tion in accordance with a selected behavior. If a web
service consumer uses only a subset of the communi-
cation channels, some of the generated channel types
become obsolete and can be removed.

5) Select the correct channel for each interaction: Each
interaction has exactly one channel type assigned. Per
default, we select always the first generated channel
type. In accordance to the selected behaviors for the
relationship type, the right channel type has to be
selected. If the interaction can be executed on several
channels the interaction has to be duplicated.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

6) Fill additional information: Information from the busi-
ness process and description of all components can be
added.

7) Merge the choreography: The completed skeleton can
now be merged with existing choreographies. This is a
manual step that is not supported by the pi4SOA tool
[13].

8) Establish the flow: The last step is to establish the correct
ordering structure of the activities from the merged
choreographies. The generated parallel activities have
now to be brought in the right sequential order and
to be integrated in the complex flow of activities. As
information source serves mainly the knowledge about
the business process. Existing workflow descriptions of
the business process or process models constructed with
process mining techniques could enrich the choreogra-

phy.
VII. IMPLEMENTATION

Our transformation process consists of 3 automated steps
(see Figure 6) complemented by manual activities to add
additional information and to merge the skeletons with existing
choreographies (see Section VI).

Fig. 6.

Merge

Choreography

{*.cdl)

mport pi4S0A Graphical
;/ Model

Transformation flow

Validate

The transformation process starts with the selection of one
or several WSDL files. A XSLT transformation transforms the
input into a *.cdl file containing the choreography skeleton
in WS-CDL. We use a XSLT 2.0 engine. The *.cdl file can
now be manually completed and merged with existing cho-
reographies. After this, a validation against the XML schema
provided by [4] verifies the correctness of the manual editing.
In the last automated step, the *.cdl file is imported into the
Eclipse Plug-in pi4SOA [13]. During the import, the *.cdl file
is semantically validated and transformed in a graphical model
(stored as *.cdm file) that can be visually modified.

VIII. CONCLUSION AND FUTURE WORK

We presented an approach to generate WS-CDL skeletons
from web service definitions. The result is promising; we could
generate complete and consistent choreographies that can be
easily completed manually with the support of a graphical
tool. Our approach of reengineering web service definitions
facilitates the modeling process (the modeling time is reduced
from several hours to a couple of minutes). It generates
skeletons that describe the web service operations detailed as
interactions including the cumbersome modeling and referenc-
ing of communication channels, behaviors, relationships, etc.

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

WSDL WS-CDL
Element [Autribute Element [Awtribute
message — part element informationType name
(name="parameters”) element+"Type” informationType type
message — part element interaction — exchange informationType
portType name roleType — behavior name
name roleType — behavior interface
portType — operation name channelType name
“request-respond”/’request”’/’respond” channelType action
“distinct” channelType usage
portType — operation name+"Interaction” interaction name
”Receive”+name interaction operation
name+"Channel Variable” interaction channel Variable
portType — operation — input “request” interaction — exchange action
portType — operation name+" Exchange[n]” name
portType — operation — output | “respond” interaction — exchange action
portType — operation name+" Exchange[n]” name
portType — operation — fault “respond” interaction — exchange action
name faultname
portType — operation name+"Fault” name
service name+"Provider” roleType name
name+"’Consumer” roleType name
name+"Relationship” relationshipType name
name+"Provider” relationshipType — roleType | typeRef
name+"Consumer” relationshipType — roleType | typeRef
service name+"Relationship” choreographie — relationship | type
service name+" Ref” informationType name
”AnyType” informationType element
name+" Ref” token name
name+" Ref” token informationType

TABLE 1
WSDL 1O WS-CDL MAPPING

We plan to further reduce manual modeling efforts by
automated enrichments of the choreography model from ex-
isting workflow descriptions, like BPEL, or process models
constructed by process mining. In [12], orchestration behavior
was generated from a choreography. We will also try to reverse
this process.

We consider our work as a first step in the direction of
automated service model generation as a basis for constant
monitoring of steadily evolving service landscapes. So far,
we concentrated on the functional feature of web services.
In the future, we want also consider non-functional aspects,
like security and dependability. This will require extensions to
the choreography languages, like WS-CDL.

ACKNOWLEDGMENT

This work was partially funded by the European Commis-
sion under the Seventh Framework Project "PoSecCo” (IST
257129).

[1]
[2]

[3]
[4]

Copyright (c) IARIA, 2010

REFERENCES

C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, no. 10, pp. 46-52, 2003.

D. Austin, A. Barbir, E. Peters, and S. Ross-Talbot, “Web services
choreography requirements 1.0,” World Wide Web Consortium, March
2004. [Online]. Available: http://www.w3.0rg/TR/2004/WD-ws-chor-
reqs-20040311

A. Arkin et al., “Web service choreography interface 1.0,” 2003.
[Online]. Available: http://www.w3.org/TR/wsci/

N. Kavantzas et al., “Web Services Choreography Description Language
1.0,” November 2005. [Online]. Available: http://www.w3.org/TR/ws-
cdl-10/

ISBN: 978-1-61208-105-2

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

D. Martin et al., “OWL-S: Semantic Markup for Web Services,” 2004.
[Online]. Available: http://www.w3.org/Submission/OWL-S/

E. Christensen et al, “Web Services Description Lan-
guage (WSDL) 1.1;” March 2001. [Online]. Available:
http://www.w3.0rg/TR/2001/NOTE-wsdl-20010315

R. Chinnici et al., “Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language,” Juni 2007. [Online]. Available:
http://www.w3.org/TR/wsdl20/

M.-E. Cambronero, G. Daz, E. Martinez, and V. Valero, “A Comparative
Study between WSCI, WS-CDL, and OWL-S.” in ICEBE. IEEE
Computer Society, 2009, pp. 377-382.

J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofstede,
“Let’s Dance: A Language for Service Behavior Modeling,” in OTM
Conferences (1), ser. Lecture Notes in Computer Science, vol. 4275.
Springer, 2006, pp. 145-162.

G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor: Extend-
ing BPEL for Modeling Choreographies,” in Proceedings of the IEEE
International Conference on Web Services (ICWS).

IBM, BEA Systems, Microsoft, SAP AG, and Siebel
Systems, “Business process execution language for
web services version 1.1 2007. [Online]. Available:

http://www.ibm.com/developerworks/library/specification/ws-bpel/

F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar,
“Integrating quality of service aspects in top-down business process de-
velopment using WS-CDL and WS-BPEL,” in EDOC. IEEE Computer
Society, 2007, pp. 15-26.

pi4 Technologies Foundation, “Pi4soa,” 2007. [Online]. Available:
http://pi4soa.sourgeforge.net/

“Business process mining: An industrial application,” Information Sys-
tems, vol. 32, no. 5.

W. M. van der Aalst and M. Song, “Mining social networks: Uncovering
interaction patterns in business processes,” Business Process Manage-
ment, pp. 244-260, 2004.

A. Barros, M. Dumas, and P. Oaks, “A Critical Overview of the Web
Services Choreography Description Language (WS-CDL),” BPTrends,
March 2005.

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

R-Event: A RESTful Web Service Framework for Building Event-Driven Web

Li Li
Avaya L abs Research
Avayalnc.
Basking Ridge, New Jersey, USA
[li5@avaya.com

Abstract— As the Web is becoming a communication and
collaboration platform, there is an acute need for an
infrastructure to disseminate real-time events over the Web.
However, such infrastructure is still seriously lacking as
conventional distributed event-based systems are not designed
for the Web. To address thisissue, we develop a RESTful web
service framework, R-Event. It represents and encapsulates
the structural elements of Event-Driven Architecture (EDA)
into the infrastructure of REST (Representational State
Transfer), the architectural style that underlies the Web. Our
approach leads to an event-driven web consisting of 4 layers of
RESTful web services. The R-Event framework implements
the layers that are pivotal to the event-driven web. The core
component of this framework is federated topic hubs that
provide services for notification publication, subscription,
delivery, tracking, and linking. The advantages and
applications of this approach are presented and discussed,
including the important features of addressability,
connectedness, dynamic topology, robustness, scalability, and
efficient notifications. A prototype system for presence driven
collaboration is developed and the preliminary performance
tests show that the proposed approach is feasible and
advantageous.

Keywor ds -
driven; EDA.

Web service; REST; Topic Hubs, Event-

l. INTRODUCTION

The Web has undergone a rapid evolution from an
informational space of gatic documents to a space of
dynamic communication and collaboration. However, to
some large extent, the Web is gtill a reactive informational
space and information sharing is still mostly pull based.
Consequently, there could be significant latency between the
availability of a piece of information and the use of that
information. This model of information sharing has worked
well for the Web, but is becoming increasingly insufficient
for new emerging applications.

In the early days of Web, changes to web content were
infrequent and a user could rely on web portas, private
bookmarks, or search engines to find information. However,
in the era of Web 2.0, dynamic and user generated contents
become increasingly popular, such as blogs, wikis, mashups,
folksonomies, social networks, etc. People are demanding
timely and amost instant availability of these dynamic
contents, and interactive use of this information, without
being overwhelmed by the information overload. This drives
the Web from an informational space towards a

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Wu Chou

Avaya L abs Research
Avayalnc.
Basking Ridge, New Jersey, USA
wuchou@avaya.com

communication and collaboration oriented environment that
affects both consumer and enterprise application spaces.
These new trends demand an event-driven web in which
information sharing is driven by events to support the
dynamic and near real-time information exchange.

Despite many existing event notification systems
developed over the years, infrastructures and technologies
for such an event-driven web are till serioudy lacking. As
the architectures, protocols, and programming languages of
the existing event notification systems are developed outside
of the web, there is an acute need for a unifying framework
that can provide a seamless integration of these notification
systems with the infrastructure of web and web based
services.

For such aunifying framework, we lay our foundation on
Event-Driven Architecture (EDA) [12], in which information
is modeled as asynchronous events that are pushed to the
interested parties as they occur. By synchronizing the states
of the communicating parties through events, EDA makes
real-time communication and collaboration possible.
Moreover, EDA is a natura fit for the Web as both do not
assume any centralized control logic. However, the current
web protocols are based on client-server architecture which
does not readily support EDA. Even though some recent
standards and industria efforts, such as Atom [4][5], Server-
Sent Events [9], Web Sockets [10] and HTML 5 [8§],
introduce the notion of feed and event, they are aimed at the
web browsers and human users. As far as we know, there is
no research work to combine EDA and REST to enable and
support federated event-driven web services.

Because EDA is an abstract architecture whereas REST
has concrete protocol (HTTP), we need to first resolve how
to project the elements of EDA to those entities of REST
[1][2] in a consistent framework. In our approach, we found
that many important features and problems in conventional
event notification systems can be established and resolved
efficiently in our REST based framework. For instance, the
uniform interface, connectedness, and addressability of
REST can apply and facilitate the discovery of notification
web services. The idempotent operations and statel essness of
REST can add robustness and scalability to notification web
services. Furthermore, projecting EDA to REST can
facilitate transformation of conventional notification systems
into RESTful web services, because EDA can be viewed as a
generalization of the architectural elements in those
notification systems.

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

In our approach, the key concepts of EDA are projected
into 4 layers of an event-driven web. Each layer consists of
interconnected resources that collectively provide RESTful
web services for applications. This projection leads to our
RESTful web service architecture, R-Event that defines the
notification web services for such event-driven web. To
maximize the reuse and interoperability, these layers are
weaved and combined through RESTful web services
composition and linking. A prototype event-driven web
consisting of topic hubs and topic webs is implemented to
demonstrate the feasibility and advantages of this approach.

The rest of the paper is organized as follows. Section Il
introduces the background and related work. Section IlI
describes the model of event-driven web. Section IV
introduces the R-Event framework and its components, e.g.
topic hub and topic web. Section V summarizes the
advantages of this approach. Section VI is dedicated to a
prototype implementation and experimental study results.
Findings of this paper are summarized in Section VII.

Il. RELATED WORK

REST stands for REpresentational State Transfer, the
architecture style underlying the Web as described in [1] [2]
[3]. The fundamenta concept of REST is a resource. REST
promotes the following architectural choices: 1)
Addressability: each resource can be addressed by URI. 2)
Connectedness: resources are linked to provide navigations.
3) Uniform Interface: al resources support a subset of the
uniform interface, namely GET, PUT, DELETE and POST.
GET is safe and idempotent, while PUT and DELETE are
idempotent. Idempotent operations can be resubmitted if
failed without corrupting resource states. 4) Statelessness:
all requeststo aresource contain all of information necessary
to process the requests, and the servers do not need to keep
any context about the requests. Stateless servers are robust
and easy to scale. 5) Layering: intermediate proxies between
clients and servers can be used to cache datafor efficiency.

RSS [6] and Atom [4] are two data formats that describe
the published resources (feeds), including news, blogs, wikis,
whose contents are updated by the content providers. The
content providers syndicate the feeds on their web pages for
the feed readers which fetch the updates by periodically
polling the feeds. However, such polling is very inefficient in
general, because the timing of the updates is unpredictable.
Polling too frequently may waste a lot of network
bandwidth, when there is no update. On the other hand,
polling too infrequently may miss some important updates
and incur delay on information processing.

To address the inefficiency of poll style feed delivery,
Google developed a topic based subscription protocol called
PubSubHubbub [22]. In this protocol, a hub web server acts
as a broker between feed publishers and subscribers. A feed
publisher indicates in the feed document (Atom or RSS) its
hub URL, to which a subscriber (a web server) can registers
the callback URL. Whenever there is an update, a feed
publisher natifies its hub which then fetches the feed and
multicasts (push) it to the registered subscribers. While this
protocol enables more efficient push style feed updates, it
does not describe how hubs can be federated to provide a

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

global feed update service across different web sites. The
protocol defines the unsubscribe operation by overloading
POST which should have been DELETE. Also the
subscriptions are not modeled as addressable resources.

Many techniques have been developed over the years to
address the asynchronous event delivery to the web
browsers, such as Ajax, Pushlet [7], and most recently
Server-Sent Events [9] and Web Sockets [10]. However,
these techniques are not applicable to federated notification
services where server to server relations and communication
protocols are needed.

In software engineering, Publisher-Subscriber [15] or
Observer [11] is a well-known software design pattern for
keeping the states of cooperative components or systems
synchronized by event propagation. It is widely used in
event-driven programming for GUI applications. This pattern
has aso been standardized in severa industrial efforts for
distributed computing, including Java Message Service
(IMS) [24], CORBA Event Service [25], CORBA
Notification Service [26], which are not based on web
services.

Recently, two event notification web services standards,
WS-Eventing [18] and WS-Notification [19][20] are
developed. However, these standards are not based on REST.
Instead they are based on WSDL [27] and SOAP [28], which
are messaging protocols aternative to REST [1]. WS-Topic
[21] is an industrial standard to define a topic-based
formalism for organizing events. However, these topics are
not REST resources but are XML elements in some
documents.

Recently, much attention has been given to Event-Driven
Architecture (EDA) [12][16] and its interaction with Service-
Oriented Architecture (SOA) [17] to enable agile and
responsive business processes within enterprises. The
fundamental ingredients of EDA are the following actors:
event publishers that generate events, event listeners that
receive events, event processors that analyze events and
event reactors that respond to events. The responses may
cause more events to occur, such that these actors form a
closed loop.

A comprehensive review on the issues, formal properties
and algorithms for the state-of-the-art event notification
systems is provided in [13]. The system mode of the
notification services is based on an overlay network of event
brokers, including those based on DHT [14]. There are two
types of brokers. the inner brokers that route messages and
the border brokers that interact with the event producers and
listeners. A border broker provides an interface for clients to
subscribe, unsubscribe, advertise and publish events. An
event listener is responsible to implement a notify interface
in order to receive notifications. However, none of the
existing notification systems mentioned in [13] is based on
RESTful web services.

I1l. EVENT-DRIVEN WEB

To project EDA to REST, we model the EDA concepts
notification, subscription, publisher, and reactor as
interconnected resources that support the uniform interface
of REST. Astheresult, an event notification system becomes

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

an event-driven web: a web of resources that responds to
events as envisioned by EDA. There is no longer any
boundary between different event notification systems as the
event-driven webs are interconnected into the Web and
interoperable under REST. Because an event-driven web is
built on layered resources, we divide it into 4 layers as in
Figure 1.

Layer 1 is aweb of event publishers. They could be any
resource that generates, advertises and publishes its events.

Layer 2 is a web of subscription resources that depends
on Layer 1. Subscription resources define how notifications
flow from the publishers to the reactors. They provide
services for subscribers to manage the subscription links,
such as change the filter, as well as to deliver and track the
notifications.

Layer 3 isaweb of notifications that depends on Layer 2.
Notifications are trested both as resources and messages.
This approach allows us to link notifications with relevant
subscriptions and topics to facilitate information sharing and
discovery. It also alows us to link notifications according to
message exchange patterns and participants to capture the
socia interactions in communications and collaborations.

Layer 4 isaweb of reactors that dependson Layer 3. The
resources in this layer receive, process and react to the
notifications. A reactor can be both alistener and publisher.

Lg Layer 4: web of reactors
: receive, :: link
L Layer 3: web of notifications
C A A .
8 v propagate, track v link
w
g Layer 2: web of subscriptions
+ pwlishn, T ik
g Layer 1: web of publishers
Figure 1: Mapping EDA to layers of web
@ » TopicHub [« g8
= HTTP presence HTTP g
ﬁ_ topic g}'
g8 o 2
subscriptions S
notifications
_ otification notification o
a (¢ < 5
g) v g
processor &

Figure 2: Topic hub resources and interactions

It should be pointed out that the resources in these layers
are interconnected, such that a user can enter an event-driven
web from any layer and navigate to other layers. Because
layers 2 and 3 congtitute services shared by publishers and

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

reactors, they are pivotal to the event-driven web. We
propose R-Event, a RESTful web service architecture to
implement these two layers.

Hub 3

Q.

Figure 3: A topic web

IV. R-EVENT FRAMEWORK

The basic component of the R-Event framework is a
topic hub that provides RESTful web services for
notification publication, subscription, delivery, tracking and
linking. A topic hub hosts three types of resources: topic,
subscription and notification. Each hub also hosts a presence
resource through which an administrator can start or shut
down the services. A hub can be owned and operated by a
single user or shared by a group of users. A topic hub can
aso invoke distributed event processors to process
notifications. The high level interactions between a topic hub
and itsclients and servers areillustrated in Figure 2.

The topic hub is a light weight component and it can be
run on any devices, including mobile phones that support
HTTP protocol. It can be a servlet on a HTTP server, a
standalone HTTP server, or embedded in another
application. The interactions between the topic hub and its
clients and servers are al based on RESTful web services.

The topic hub can aso be used as a gateway that
transdates conventional event infrastructures into REST web
services. This approach can significantly reduce the cost of
web service development while ensuring the quality of
services.

Because a topic hub is based on REST design, it is
stateless. Conseguently, a topic hub can shut down and
restart safely without losing any of its services, provided that
the resource states are persisted. This is especialy useful
when the hubs are hosted on mobile devices, which can be
turned on and off. Because atopic hub is stateless, it is also
scalable. We can add more topic hubs to support more clients
without worrying about client session replica or affinity.

Topic hubs can be interconnected by subscriptions to
provide routing services to notifications. An example topic
web is illustrated in Figure 3, where topic hubs are
represented as rectangles and publisherglisteners are
represented by circles. The arrows indicate the subscription
links on which notifications flow.

The following section describes the elements in R-Event
framework in a more formal setting. In these descriptions,
the left-side symbol of an equation represents a resource and
the right-side tuple represents the key properties of the

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

resource defined by this framework. Implementations can
add more properties to these resources as needed.

A. Topic Tree

A topic tree is a set of topics organized as atree. A topic
is a resource to which events can be published and
subscribed. More formally, a topic t has a set of events E, a
set of children topics C:

t=(E C), C={ t;| tjisachild topic of t}.

B. Subscription

Conceptually, a subscription is a directed link from a
publisher (p) to alistener (I). We extend subscription to have
a set of alternative listeners (L), filter (f), expiration (d), and
status (u), such as active or paused. More formally, we have:

s=(p,L,af,du),L={llisalistener}

A notification n can propagate to one of the listenersin L
if and only if the filter is evaluated to true, i.e. f(n)=true.
Which listener is selected is determined by an agorithm a,
defined by the subscriber. A simple agorithm is to try
listeners according to the order they are created until one
succeeds.

Subscriptions can be used to link two topics by treating
them as either publisher or listener. A subscription link from
a publishing topic to a listening topic is represented by two
subscription resources, each as a subordinate resource of the
involved topics. On the publishing topic, it is called
outbound subscription (0s), as notifications flow out of it. On
the listening topic, it is called inbound subscription (is), as
notifications flow into it. The two matching subscriptions are
double linked to keep their correspondence. More formally,
we have:

os= (L, af,d,u), L={I[I=(t, is, 9(i9))}, a(L)=I

is=(,g(), 1 OL

Here each listener resource | consists of: 1) listening
topic tj; 2) inbound subscription is, and 3) the presence of is:
g(is). Aninbound subscription consists of: 1) the listener [;
and 2) the presence of |: g(l).

C. Topic Web

Given a set of topic hubs H={h;} where each hub hosts a
set of topic trees T(h;)={t|t is a topic on h;}, these topic trees
form a web of topics linked by subscriptions. More formally,
atopic web W(H) on top of a set of hubs H is defined as:

W(H)= 0 T(h)

D. Notificatiion

A notification is also modeled as an addressable resource
that can be updated. More formally, we have:

n=(o,r,b,R),

r={(t,m)|t isatopic, mistimestamp},

R={n;|n;is aresponse to n}

where:

» origin (0): the URI of the original notification as it
was posted. Any propagated copy of the original
notification inherits this property to track itsorigin.

» route (r): the ordered set of topics (t) and timestamp
(m) visited by this notification during delivery. This

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

is used to detect loop and to expose topics to
listeners.
e about (b): the URI of the notification that this
message responds to.
* Regponses (R): the set of notifications responded to
this notification
The topic web may contain cycles of subscriptions. To
facilitate loop detection, each notification message has a
specia property route, which contains alist of topics visited
by the notification during propagation. Each hub checks if
the current topic is in the list. If so, aloop is found and the
notification will not be propagated. Otherwise, the hub
appends the topic to the list and propagates the notification.

E. Resource Design and Hub Protocols

The key properties, interfaces and relations of the
resources are depicted in the UML class diagram in Figure 4.

1

1

1 topic
topics | T listatus
TGET() +topigs FGET(+notifications
+POST() +PUT()
L +DELETE()
+subsctiption 1
1 subscription
+reference ! notification
+status ey
subscriptions +presence notifications :?;lﬂl(:
+GET(+gxpiration +GET([@——+about
+POST() 1= [Hilter +POST() 1« [rGETO
+GET() +PUT()
+PUTQ +DELETE()
+DELETE() ,
Q 1 +responses
1 +listeners 1
1 listener res|
_ ponses link
listeners Ir:;:::;ce +GETO 1 . [Hink
+GET(+presence +GET(
+POST() 11.* |+GET() +DELETE()

+PUT()
+DELETE()

Figure 4: Main resources on topic hub

To facilitate client access, each resource on a hub is
addressed by a predefined URI template that reflects the
subordinate relations defined above:

* Topict: /topics/{t};

» Child topic t; of topic t: /topics/{t}/topics/{t;};

* Subscription s of topic t: /topics/{t}/subscriptions/{s};

o Listener I: /topics/{t}/subscriptions/{s}/listener/{l};

* Notification with UUID {n} on topic t:

[topics/{t}/notifications/{ n}.

A subscription link from topic ta on hub A to topic tb
on hub B is established by a user using a web browser as
follows:

1.The user requests a subscription resource under ta

with POST;

2.Before returning to the user, hub A creates the

outbound subscription under ta and requests the
corresponding inbound subscription under tb with
PUT (nested inside the POST);

3. Both requests succeed and the response is returned to

the user;

10

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

A notification is propagated between hubs by a user as
follows:
1.The user posts a notification to a topic on hub A
using POST that returns when the resource is created;

2.The notification is delivered by a scheduler to all
listening topics with PUT that maintains the original
UUID assigned to the notification by hub A; as the
result, al the propagated notifications on different
hubs can be identified by the same UUID;

This framework does not define the representations of
its resources, which is left to the implementations. Different
representations (media types) of the same resource are
supported through HTTP content negotiation. The
communications between web browsers and the topic hubs
are also outside the scope of this framework, as we expected
they can be addressed by the upcoming W3C standards[9].

F. Security

The communication between the topic hubs are secured
using HTTPS with PKI certificates based mutua
authentication. For this to work, each topic hub maintains a
X.509 certificate issued by a CA (Certificate Authority) that
is trusted by other hubs. It is possible or even preferable, to
obtain two certificates for each topic hub: one for its client
role and one for its server role, such that these two roles can
be managed separately.

The communications between the topic hubs and web
browsers (users) are also secured by HTTPS. In this case, the
browser authenticates the topic hub certificate against its
trusted CA. In return, the users authenticate themselves to
the hub using registered credentials (login/password or
certificate). Once a user is authenticated to a topic hub A, it
employs role-based authorization model to authorize a user
for hisactions.

If the user wants to create a subscription link from hub A
to hub B, B has to authorize A for the inbound subscription.
To satisfy this condition, the user first obtains an
authenticated authorization token from hub B. The user then
sends this token with the subscription message to hub A.
Hub A uses this token to authorize itself to hub B for the
inbound subscription creation. Once hub B creates the
resource, it returns an access token to hub A to authorize it
for future notifications to that topic.

An aternative to the above scheme is to use the OAuth
1.0 Protocol [31] that allows a user to authorize a third-party
access to his resources on a server. In this case, hub A
becomes the third-party that needs to access the topic
resources on hub B owned by the user. Here is how it works
a a very high level: 1) the user visits hub A to create a
subscription to hub B; 2) hub A obtains a request token from
hub B and redirects the user to hub B to authorize it; 3) the
user provides his credentials to hub B to authorize the
request token and hub B redirects the user back to hub A; 4)
hub A uses the authorized request token to obtain an access
token from hub B and creates the inbound subscription on B.

In both approaches, the user does not have to share his
credentials on hub B with hub A.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

V. ADVANTAGESOF EVENT-DRIVEN WEB

On surface, the event-driven web built on top of the R-
Event framework, as described in the previous section,
appears similar to the broker overlay network in the
conventional notification architecture [13]. However, it has
the following advantages due to a REST based design.

A. Addressability and Connectedness

Unlike conventional broker overlay networks that are a
closed system whose usability is prescribed by the API, all
resources in a topic web are addressable and connected.
Unlike in conventional broker overlay network that
distinguishes between inner, border, or special rendezvous
brokers, a topic web consists of homogeneous topic hubs
with the same type of web services. The users can navigate
and search the topic web to find the interested information
using regular web browsers or crawlers. The addressability
and connectedness increase the “surface area” of the web
services such that the information and services in atopic web
can be integrated in many useful ways beyond what is
anticipated by the original design.

B. Dynamic and Flexible Topology

Unlike in conventional broker network where brokers
have fixed routing tables, a topic web can be dynamically
assembled and disassembled by users for different needs. Its
topology can be changed on the fly as subscriptions are
created and deleted and hubs join and leave the topic web.
For example, a workflow system can be created where work
items are propagated as notifications between users. In an
emergence situation, a group of people can create an ad-hoc
notification network to share alerts and keep informed. In an
enterprise, a topic web about a product can be created on-
demand such that alerts from field technicians can propagate
to proper sales and supporting engineers in charge of the
product to better serve the customers. In any case, once the
task is finished, the topic web can be disassembled or
removed completely. In this sense, a topic web is similar to
an ad-hoc peer-to-peer network. However, a topic web is
based on REST web services whereas each type of P2P
network depends on its own protocols.

In conventional notification services, a broker routes all
messages using one routing table. Therefore, it cannot
participate in more than one routing topology. In our
framework, a hub can host many topics, each having its own
routing table (subscription links). As a result, a hub can
simultaneously participate in many different routing
networks. This gives the users the ability to simultaneously
engage in different collaboration tasks using the same topic
web.

C. Robustness and Scalability

Topic hubs are robust because its resource states can be
persisted and restored to support temporary server shutdown
or falover.

The safe and idempotent operations, as defined by HTTP
1.1 [29] aso contribute to the robustness. Our framework
uses nested HT TP operations where one operation calls other
operations. We ensure that such a chain of operations is safe

11

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

and idempotent by limiting how operations can be nested
inside each other asfollows:

nested(GET)={GET}

nested(POST)={GET,POST,PUT,DELETE}

nested(PUT)={GET,PUT,DELETE}
nested(DELETE)={GET,PUT,DELETE}

The robustness and scaability aso come from the
statelessness of REST design. The statel essness means that a
topic hub can process any request in isolation without any
previous context. By removing the need for such context, we
eiminate a lot of failure conditions. In case we need to
handle more client requests, we can simply add more servers
and have the load balancer distribute the requests at random
to the servers who share the resources. If the resource access
becomes a bottleneck, we can consider duplication or
partition of resources. This robustness and scalability is
crucial when atopic hub serves as the gateway to large-scale
notification systems.

D. Efficient Notifications

In conventional notification systems, notification is a
message that can only be transmitted and stored. In our
framework, notifications are adso modeled as REST
resources that provide services. Such model addresses the
following issuesin notification services:

Inline update: Because notifications are treated as
addressable resources, a publisher can update a posted
notification (using PUT) without having to create a new one.
The updates will propagate over the subscription links in the
topic web. This kind of inline update is more difficult to
achieve in conventiona notification services that treat
notifications as messages.

Duplicate notification: In the topic web, a topic may
receive different copies of a notification from multiple routes
or multiple inline updates of the same notification, leading to
potential duplicated notifications. Because our framework
uses PUT to deliver notifications, the duplicate notifications
to a hub become multiple updates to a resource. Therefore,
we can use HTTP ETag and | f - None- Mat ch headers to
efficiently detect duplicate notifications and avoid spurious
alerts to the users. Compared to the solution proposed in
[13], this approach solves the difficult problem without
congtraining the topology of the topic web.

VI. IMPLEMENTATION AND EXPERIMENTS

A prototype event notification system has been
developed based on the described R-Event framework. The
notification system alows users within a group to publish
and subscribe presence information. Users can respond to
received presence information to enable readl-time
collaboration. For example, when an expert becomes
available through his presence notification, a manager may
respond to the notification and propose a new task force be
formed with the expert as the team leader. This response is
propagated to the group so that interested members can set
up a new workflow using the proposed topic web.

The prototype was written in Java using Restlet 1.1.4
[23]. The implementation followed the Model-View-
Controller (MVC) design pattern. The Model contains the

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

persistent data stored on disk. The Controller contains the
resources and the View contains the view objects that
generate XHTML pages from the XHTML templates. The
topic hub stack was implemented by four Java packages, as
illustrated below.

application (container) > ——HTFv]

- templ ates
resources views
p ~Resotirce™|
util (file manager) data

restlet (HTTP client/server) M Keystore™|

Figure 5: Topic hub stack

For this prototype, we used OpenSSL package [30] as the
CA to generate certificates for the topic hubs, and Java
keytool to manage the keystores for the hubs. Resources
states are managed by a file manager that synchronizes the
access to them. A hub used a separate thread to dispatch
notifications from a queue shared by all resources. Because
HTML form only supports POST and GET, we used
JavaScript (XMLHttpRequest) to implement the PUT and
DELETE operations for pages that update or delete
resources.

Users interact with the services using web browsers
(Firefox in our case). For demo purpose, the notifications
were delivered to the browsers using automatic page
refreshing. This is a temporary solution as our focus is on
communications between hubs, instead of between browser
and server. However, the R-Event framework should work
with any client side technologies, such as Ajax or Server-
Sent Event technologies.

We measured the performance of the prototype system in
a LAN environment. The hubs were running on a Windows
2003 Server with 3GHz dua core and 2GB RAM. The
performances of severa key services were measured, where
S means subscription, L means listener, and N means
notification. The time durations for each method are
recorded in the following table. The time duration includes
processing the request, saving data to the disk, and
assembling the resource representation.

TABLE 1: PERFORMANCE MEASURED IN MILLISECONDS

task/time | POST | POST | PUT | POST | PUT
S L S N N
avg 14.1 38.9 6.2 95 0
std 13.7 16.8 8.0 8.1

The table shows that adding alistener (POST L) takes the
longest time and this is expected because it is a nested
operation, where

t(POST L)=processing time + network latency + t(PUT
S).

The time to update a notification (PUT N) isignorable (0
ms) and this is good news, since we use PUT to propagate
notifications.

12

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

VII.
The contributions of this paper are summarized as

CONCLUSIONS

follows:

1. We presented an approach and a framework in
which the elements in EDA can be projected and
represented by REST resources, protocols and
services;

2. We developed a RESTful web service framework,
R-Event, based on this projection. The REST
resources, protocols, services and securities are
defined formally as well as described informally;

3. Weillustrated that an event-driven web can be built
using this framework, and discussed the advantages,
including addressability, dynamic topology,
robustness and scalability, etc. of this approach over
conventional notification systems.

4. We developed a prototype using secure HTTP. The
preliminary performance tests showed that the
proposed approach is feasible and advantageous.

Our plan isto test the framework in alarge scale network

environment and analyze its behaviors and performance in
those deployments.

(1
(2

(3l

(4

(5]
(6l

(7
(8l

(9

(10

(11]

(12

Copyright (c) IARIA, 2010

REFERENCES

Richardson, L. and Ruby, S., RESTful Web Services, O'Reilly Media,
Inc. 2007.

Fielding, R., Architectural Styles and the Design of Network-based
Software Architectures, Ph.D. Dissertation, 2000,
http://www.ics.uci .edu/~fiel ding/pubs/dissertation/top.htm.
Last Accessed: August 27, 2010.

Jacobs, |. and Walsh, N., (eds), Architecture of the World Wide Web,
Volume One, W3C Recommendation 15 December 2004.
http://www.w3.0rg/ TR/webarch/, Last Accessed: August 27, 2010.
The Atom Syndication Format, 2005,
http://www.ietf.org/rfc/rfc4287.txt, Last Accessed: August 27,
2010.

The Atom Publishing Protocol,
http://www.ietf.org/rfc/rfc5023.txt, August 27, 2010.
RSS 2.0 Specification, 2006, http://www.rsshoard.org/rss-
specification, Last Accessed: August 27, 2010.

Pushlets, http://www.pushlets.conV, Last Accessed: August 27, 2010.

HTML Working Group, 2009, http://www.w3.org/html/wg/, Last
Accessed: August 27, 2010.

Hickson, I. (ed), Server-Sent Events, W3C Working Draft 29 October
2009, http://www.w3.org/TR/eventsource/, Last Accessed:
August 27, 2010.

Hickson, I. (ed), The Web Sockets API, W3C Working Draft 29
October 2009, http://www.w3.org/TR/websockets/, Last Accessed:
August 27, 2010.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns,
Addison-Wesley, 1995

Taylor, H., Yochem, A., Phillips, L. and Martinez, F., Event-Driven
Architecture, How SOA Enables the Real-Time Enterprise, Addison-
Wesley, 2009.

2007,

ISBN: 978-1-61208-105-2

(13]

[14]

[15]

[16]

(17

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]
[26]
(27

(28]

[29]

(30]
(31]

Muhl, G., Fiege, L. and Pietzuch, P.R., Distributed Event-Based
Systems, Springer, 2006.

Rowstron, A., Kermarrec, A.M., Castro, M. and Druschel, P.,
SCRIBE: The design of alarge-scale event notification infrastructure,
Proc. of 39 International Workshop on Networked Group
Communication, November 2001, pp 30-43.

Buschmann, F. et al. (1996). Pattern-Oriented Software Architecture:
A System of Patterns. West Sussex, England: John Wiley & Sons
Ltd., 1996.

Chandy, K. M. (2006). Event-Driven Applications: Costs, Benefits
and Design Approaches, Gartner Application Integration and Web
Services Summit 2006, http://www.infospheres.caltech.edu/node/38,
Last Accessed August 27, 2010.

Michelson, B. M. (2006). Event-Driven Architecture Overview,
http://soa.omg.org/Uploaded%20Docs/ EDA/bda2-2-06cc.pdf, Last
Accessed August 27, 2010.

Davis, D., Malhotra, A., Warr, K. and Chou, W., (eds), Web Services
Eventing (WS-Eventing), W3C Working Draft, 5 August 2010.
http://www.w3.org/TR/ws-eventing/, Last Accessed August 27, 2010.

Graham, S., Hull, D., Murray, B., (eds), Web Services Base
Notification 1.3 (WS-BaseNotification), OASIS Standard, 1 October
2006. http://docs.oasis-open.org/wsn/wsn-
ws_base notification-1.3-spec-0s.pdf, Last Accessed August 27,
2010.

Chappell, D. and Liu, L., (eds), Web Services Brokered Notification
1.3 (WS-BrokeredNotification), OASIS Standard, 1 October 2006.
http://docs.oasis-open.org/wsn/wsn-ws_brokered notification-1.3-
spec-os.pdf, Last Accessed August 27, 2010.

Vambenepe, W., Graham, S. and Biblett, P., (eds), Web Services
Topics 1.3 (WS-Topics), OASIS Standard, 1 October 2006.
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-
0s.pdf, Last Accessed August 27, 2010.

Fitzpatrick, B., Slatkin, B. and Atkins, M., PubSubHubbub Core 0.2,
Working Draft, 1 September 2009,
http://code.google.com/p/pubsubhubbub/, Last Accessed August
27, 2010.

Restlet, RESTful Web framework for Java, http://www.restlet.org/,
Last Accessed August 27, 2010.

JMS (2002). Java Message Service, vesion 1.1, 2002,
http://www.oracle.com/technetwork/java/index-jsp-142945.html, Last
Accessed August 27, 2010.

Event Service Specification, Version 1.2, October 2004, 2004.
Notification Service Specification, Version 1.1, October 2004.
Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S., Web
Services Description Language (WSDL 1.1), W3C Note, 15 March
2001. http://www.w3.org/TR/wsdl, Last Accessed August 27, 2010.
Gudgin, M., et a, SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition), W3C Recommendation, 27 April 2007.
http://www.w3.org/TR/soapl12-partl/, Last Accessed August 27,
2010.

Fielding, R., et al. Hypertext Transfer Protocol — HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html, Last Accessed
August 27, 2010.

OpenSSL: http://www.openssl.org/, Last Accessed August 27, 2010.

The OAuth 1.0 Protocol: http://tools.ietf.org/html/rfc5849,
Last Accessed August 27, 2010.

13

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Code Contracts for Windows Communication Foundation (WCF)

Bernhard Hollunder
Department of Computer Science
Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany
Email: hollunder @ hs-furtwangen.de

Abstract—Code contracts allow the specification of precon-
ditions, postconditions and invariants for .NET interfaces and
classes. Code contracts not only perform constraint checking
at runtime, but also provide tools for static code analysis and
documentation generation. WCF is another .NET technology
supporting the creation and deployment of distributed services
such as Web services. Currently, WCF services cannot be
equipped with code contracts. Though a combination of both
technologies would bring additional expressive power to WCF
and Web services, there does not exist a solution yet. In this
paper, we present a novel approach that brings code contracts
to WCF. Our solution combines standard technologies such as
WSDL and WS-Policy. The feasibility of the approach has been
demonstrated by a proof of concept implementation.

Keywords-Code Contracts; Windows Communication Foun-
dations; WCF; Web Services; WS-Policy

I. INTRODUCTION

Code contracts [1] are a specific realization of the design
by contract concept proposed by Bertrand Meyer. With code
contracts, i) methods of .NET types can be enhanced by
preconditions and postconditions, and ii) .NET types can
be equipped with invariant expressions that each instance
of the type has to fulfill. While the application developer
specifies code contracts for interfaces and classes, it is the
responsibility of the runtime environment for checking the
constraints and signaling violations. Furthermore, following
tools are available for code contracts:

o Static code analysis;

o Documentation generation;

« Integration into VisualStudio IDE.

From a theoretical point of view, static code checking has its
limitations and cannot detect all possible contract violations.
Nevertheless, it is a sophisticated instrument to help iden-
tifying common programming errors during compile time
thus improving code quality at an early stage.

With the Windows Communication Foundation (WCF),
service-oriented, distributed .NET applications can be devel-
oped and deployed on Windows. WCF provides a runtime
environment for hosting services and enables the exposition
of .NET types, i.e., Common Language Runtime (CLR)
types, as distributed services. WCF employs well-known
standards and specifications such as XML [2], WSDL [3],
SOAP [4], and WS-Policy [5]. The Web Services Interop-
erability Technology (WSIT) project [6] demonstrates how

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

to create Web services clients and implementations that
interoperate between the Java platform and WCEF.

When developing a WCF service one starts with the
definition of an interface (e.g., in C#) that is annotated with
a ServiceContract attribute. To implement the service, a
class is created that implements the interface. During service
deployment, WCF will automatically generate an interface
representation in the Web Services Description Language
(WSDL). WSDL is programming language independent and
makes it possible to create client applications written in other
programming languages (e.g., Java) and running on different
platforms. With the help of tools such as svcutil.exe and
wsdl2java so-called proxy classes for specific program-
ming languages can be generated. A proxy object takes a
local service invocation and forwards the request to the real
service implementation on server side by exchanging so-
called SOAP documents.

In order to bring code contracts to WCF, one may proceed
as follows: The methods in a WCF service implementation
class are extended with code contracts expressions, i.e.,
preconditions, postconditions, and object invariants. In fact,
the compiler will not produce any errors and will create
executable intermediate code. However, the code contracts
constraints are completely ignored when WCF generates the
WSDL description for the service. As a consequence, a
WCEF client application cannot profit from the code contracts
attached to the service implementation. This behavior has
already been observed elsewhere [7]; however, a generic
solution has not been elaborated yet.

This paper presents a novel approach that combines WCF
with code contracts. The strategy is as follows. When
deploying a WCEF service, the code contracts contained in the
service implementation class are extracted. Next, code con-
tracts constraints are represented in a programming language
independent manner with WS-Policy [5]. The WS-Policy
description will be attached to the service’s WSDL. On
service consumer side, the generation of the proxy classes is
enhanced by including the code contracts expressions, which
are extracted from the WSDL/WS-Policy file.

The approach has the following features:

o It combines standard technologies such as WSDL and

WS-Policy to bring code contracts to WCF.
o The approach is transparent from a WCF service de-

14

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

velopment point of view. There are no special activities
required.

e Code contracts are already checked on client side,
including static code analysis. This may save resources
during runtime because invalid service requests will not
be transmitted to server side.

o The feasibility of the approach has been demonstrated
by a proof of concept implementation.

The paper is structured as follows. The next section will
shortly introduce the underlying technologies. Section III
will recapitulate the problem description; the solution pro-
posed will be presented in Section IV. Section V will show
how to represent code contracts with WS-Policy and how
to attach a WS-Policy description to a WSDL file. Then,
in Section VI, the client side proxy generation will be
addressed. An implementation strategy (proof of concept)
will be given in Section VII. The paper will conclude with
a summary and directions for future work.

II. FOUNDATIONS

This section will give a brief overview on the required
technologies. We start with introducing code contracts, fol-
lowed by WCF and WS-Policy.

A. Code Contracts

With code contracts [1] additional expressivity is brought
to .NET interfaces and classes by means of preconditions,
postconditions, and object invariants. A method can be
equipped with preconditions and postconditions. A precon-
dition is a contract on the state of the system when a
method is invoked and typically imposes constraints on
parameter values. Only if the precondition is satisfied, the
method is really executed; otherwise an exception is thrown.
In contrast, a postcondition is evaluated when the method
terminates, prior to exiting the method.

Code contracts provide a Contract class in the name-
space System.Diagnostics. Static methods of Contract
are used to express preconditions and postconditions. To give
an example, consider a method squareRoot that should not
accept negative numbers. This could be encoded as follows:

using System.Diagnostics.Contract;

class MyService {
double squareRoot (double d) {
Contract.Requires(d >= 0);
return Math.Sqgrt (d);
}

}

Definition of a precondition for squareRoot.

The Contract.Requires statement defines a precondi-
tion. There is an analogous method Contract.Ensures
that can be used to specify postconditions.

Object invariants of code contracts are conditions that
should hold on each instance of a class whenever that object

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

is visible to a client. During runtime checking, invariants are
checked at the end of each public method. In order to specify
an invariant for a class, an extra method is introduced that is
annotated with the attribute ContractInvariantMethod.
Within this method, the conditions are defined with the
method Contract.Invariant.

The above sample shows how preconditions can be ex-
pressed for classes. As a method in an interface is described
only by its signature and cannot have a body, code contracts
foresee a simple trick to encode constraints for interface
methods. The required constraints are specified in another
class, which is associated with the interface.

Suppose a class AContract should implement code
contracts for an interface IA. Then IA is annotated with
the attribute [ContractClass (typeof (AContract))],
and AContract is equipped with
For (typeof (IA))]. Now the code contracts of ACon-
tract apply to the interface IA.

Note that most methods of the Contract class are
conditionally compiled. It can be configured via symbols
to which degree code contracts should be applied during
compilation. Code contracts can be completely turned on
(full checking) and off (all Contract methods are ignored);
it is also possible to check only selected code contracts
constraints such as preconditions.

[ContractClass—

B. Windows Communication Foundation

According to [8], “WCF is a software development kit for
developing and deploying services on Windows.” Services
are autonomous, distributed and have well-defined inter-
faces. An important feature of a WCF service is its location
transparency: a consumer always uses a local proxy object
— regardless of the location (local vs. remote) of the service
implementation. The proxy object has the same interface as
the service and forwards a call to the service implemen-
tation by exchanging SOAP documents. As the messages
are independent of transport protocols, WCF services may
communicate over different protocols such as HTTP, TCP,
IPC and Web services.

The following listing shows the squareRoot functional-
ity from above as a WCF service.

-
using System.ServiceModel;

[ServiceContract]
public interface IService ({
[OperationContract]
double squareRoot (double d);
}

public class IServiceImpl IService {
public double squareRoot (double d) {
return Math.Sqgrt (d);
}
}

-

squareRoot as a WCF service.

15

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

In order to successfully deploy a WCF service, the WCF
runtime environment requires the definition of at least one
endpoint. An endpoint consists of

e an address,
e a binding defining a particular communication pattern,
¢ a contract that defines the exposed services.

Endpoints are typically defined in an XML configuration
file (external to the service implementation), but can also be
created programmatically.

During deployment, WCF generates a WSDL interface
description for the service. A WSDL description has an
interchangeable, XML-based format and comprises different
parts, each addressing a specific topic such as the abstract
interface, the mapping onto a specific communication pro-
tocol such as HTTP, and the location of a specific WCF
service implementation.

There are tools that transform WSDL descriptions into
a programming language specific representation. Such a
representation comprises classes for the proxy objects used
by client applications. WCF delivers the tool svcutil.exe,
which generates proxy classes for, e.g., C# together with a
configuration file containing endpoint definitions. Basically,
a proxy object constructs a SOAP message, which is sent to
server side. A SOAP message consists of a body, containing
the payload of the message (including the current parameter
values of the request), and an optional header, containing
additional information such as addressing or security data.

C. WS-Policy

When taking a closer look to a WSDL file one will
find a couple of policy entries. These entries add further
information to the service such as security requirements.

With the help of the WS-Policy specification [5], policies
can be expressed in an interoperable manner. In general, WS-
Policy is a framework for defining policies, which comprise
so-called (WS-Policy) assertions. A single assertion may
represent a domain-specific capability, constraint or require-
ment.

The following XML fragment shows how to associate a
WS-Policy description to a service definition.

<definitions name="Service">
<Policy wsu:Id="SamplePolicy">
<ExactlyOne>
<All>
<EncryptedParts> <Body/> </EncryptedParts>
</All>
</ExactlyOne>
</Policy>
<binding name="IService" type="IService">
<wsp:PolicyReference URI="#SamplePolicy"/>
<operation name="squareRoot"> ... </operation>
</binding>
</definitions>

WS-Policy attachment.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In the example, a WS-Policy description is attached to the
squareRoot service via the PolicyReference element.
The policy states that the body of the SOAP request must
be encrypted. Note that the policy is part of the WSDL
interface of the service. Hence, if a client does not encrypt
the message body, the server would reject the request.

III. PROBLEM DESCRIPTION

Suppose we want to create a WCF service with code
contracts. A straightforward approach to combine both tech-
nologies would be as follows:

using System.ServiceModel;
using System.Diagnostics.Contract;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot (double d);
}

public class IServiceImpl IService {
public double squareRoot (double d) {
Contract.Requires (d >= 0);
return Math.Sqrt (d);
}

WCEF service with code contracts.

We define a WCF service interface as usual. The code
contracts for the service are encoded in the implementation
class of the service.

This WCF service implementation can be successfully
compiled and deployed. However, the generated WSDL
description does not include any information about code
contracts. In other words, code contracts are completely
ignored and are not part of the WSDL interface. There are
two important consequences to stress here:

1) Code contracts imposed on the service implementation
are not considered when generating the proxy classes.

2) Clients of the WCF service are not aware of any
code contracts. Hence, code contracts support such as
static analysis and runtime checking is not available
on client side.

Next we will elaborate a concept that resolves these deficits.

IV. CoDE CONTRACTS AND WCF: THE CONCEPT

We observe that a WCF service implementation class can
use the methods of the Contract class according to the
code contracts programming model (see Section II-A). When
deploying the service, the following additional activities will
be performed:

o The code contracts expressions are extracted from
the WCF service implementation class and are trans-
lated into corresponding WS-Policy assertions (so-
called code contracts assertions).

o The resulting WS-Policy description is included into
the WSDL interface of the WCF service.

16

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

In order to exploit code contracts contained in WSDL on
client side, we will enhance the generated proxy classes.
This is achieved by two activities:

o Extraction of the code contracts expressions contained
in the WSDL description.

o Creation of corresponding Cont ract method calls and
integration into the proxy classes.

Before we will discuss each of these steps in more detail,
we give some remarks. From a service development point of
view, the approach is transparent. One can apply the standard
programming models both for WCF and code contracts. The
enhanced deployment infrastructure has the responsibility
to realize the above mentioned activities. Secondly, code
contracts imposed on WCF services are also available for
client technologies other than .NET. Finally, due to enhanced
proxy generation, code contracts tool support is available for
.NET clients. Again, this enhancement is transparent for the
(client) developer.

V. CODE CONTRACTS ASSERTIONS FOR WS-POLICY

To formally represent code contracts expressions with
WS-Policy, we introduce a WS-Policy assertion type, which
is called CodeContractsAssertion.

The XML schema is defined as follows. (Note that
we omit, for sake of simplicity, some attributes such as

targetNamespaceJ

<xsd:schema ...>
<xsd:element name = "CodeContractsAssertion"/>
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "requires"
type = "xsd:string"
maxOccurs = "unbounded"/>
<xsd:element name = "ensures"
type = "xsd:string"
maxOccurs = "unbounded"/>
<xsd:element name = "invariant"
type = "xsd:string"
maxOccurs = "unbounded"/>
</xsd:sequence>
<xsd:attribute name = "name"
type = "xs:anyURI"/>
<xsd:attribute name = "context"
type = "xs:anyURI"
use = "required"/>
</xsd:complexType>
</xsd:schema>

contained in the requires and ensures elements typically
refer to parameter names of the service, which are also
part of the WSDL. An invariant expression applies to
instances of data types used as service parameters. Such an
expression may impose restrictions on the (public) members
of the type.

Observe that code contracts expressions should only be
imposed on parameters that are visible at WCF service
interface level, and hence are meaningful to the client
developer.

The created CodeContractAssertions are packaged
into a WS-Policy description, which is attached via a
PolicyReference to the service definition. The following
WS-Policy description is produced for the WCF service
squareRoot from the previous section.

-
<definitions name="Servicel">

<Policy wsu:Id="CCPolicy">
<ExactlyOne>
<Al1>
<CodeContractsAssertion
name="squareRootAssertion"
context=
"IService.squareRoot (System.Double) ">
<requires>d >= 0</requires>
</CodeContractsAssertion>
</All>
</ExactlyOne>
</Policy>

<binding name="IService" type="IService">
<wsp:PolicyReference URI="#CCPolicy"/>
<operation name="squareRoot"> </operation>
</binding>
</definitions>

XML schema for CodeContractsAssertion.

A CodeContractsAssertion has two attributes: name
and context. The context attribute specifies the service
to which the constraint applies. To be precise, the value of
the context attribute is the (uniquely defined) name of the
service as specified in the binding section of the WSDL.

The body of CodeContractsAssertion consists of a
set of requires, ensures, and invariant elements. The
values of these elements have the type xsd:string and
should be valid code contracts expressions. The expressions

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Code contracts policy.

Before we will describe in Section VII how to create
and attach policies for code contracts during the deployment
process, we first take a look at the service consumer side.

VI. CODE CONTRACTS ON CLIENT SIDE

On client side, a WSDL description is compiled into
proxy classes of a concrete programming language. The tool
svcutil.exe, provided by WCEF, takes a URL of a WSDL
description and creates C# proxy classes. To be precise, a
C# interface is generated that defines the available services,
and a C# class that implements the interface. This class
is instantiated by the client application to invoke a WCF
service.

The standard version of svcutil.exe does not take
into account custom WS-Policy descriptions such as code
contracts policies. Hence, the generated proxy classes do
not contain any code contracts expressions.

In order to include code contracts into proxy classes, one
can proceed as follows. One can either modify the generated
client proxy classes by incorporating the required Cont ract
methods calls. For object invariants new methods will be
added. Alternatively, an additional class can be created that

17

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

contains only the code contracts expressions. This class will
be linked via the ContractClassFor attribute to the proxy
interface.

From a client developer point of view, the enhanced
proxy classes bring the following advantages. First, a static
analysis of the code contracts can be performed, which helps
detecting invalid invocations of the WCF service during
compile time. Second, during runtime a validation of the
constraints will already be performed on client side. As
a consequence, invalid service calls are not transmitted to
the service implementation thus saving resources such as
bandwidth and server consumption.

VII. PROOF OF CONCEPT
A. Code Contracts Extraction

Given a WCF service implementation, we need some
mechanism to obtain its preconditions, postconditions and
invariants. Recently, API functions have been published
to access code contracts expressions. These functions are
part of the Common Compiler Infrastructure project [9].
We adapted the proposed visitor pattern to obtain the
methods’ code contracts expressions and created a func-
tion getCodeContractsForAssembly that computes for
a given assembly a code contracts dictionary; the key is
the full qualified name of the method and the value is a
list of strings each representing a code contracts expression.
Each expression starts either with pre:, post:, or inv: to
indicate its type.

The function makes use of types defined directly or
indirectly in the namespace Microsoft.Cci.

B. Creation of WS-Policy Code Contracts Assertions

In this step, we create an XML representation for the code
contracts expressions according to WS-Policy. The XML
schema for CodeContractsAssertion has been described
in Section V.

This transformation is realized as follows: It takes the
code contracts dictionary from the previous step and iter-
ates over the keys (i.e., methods with code contracts). For
each key, a corresponding CodeContractsAssertion is
created. A single CodeContractsAssertion may contain
several expressions. As each expression string starts with
pre:, post:, Or inv:, it is clear which of the elements
requires, ensures and invariant are to be created in
the assertion.

How to embed a set of CodeContractsAssertions as
a WS-Policy description into a WSDL file is described next.

C. WS-Policy Creation and Attachment

In WCEF, additional policies can be attached to a WSDL
file via custom bindings. We define a custom binding that
uses the PolicyExporter mechanism also provided by
WCE. To achieve this, we implement two classes:

e ExporterBindingElementConfigurationSection

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

e CCPolicyExporter.

The former class is derived from the abstract WCF
class BindingElementExtensionElement. The inherited
method CreateBindingElement is implemented in such
a way that an instance of CCPolicyExporter is created.
CCPolicyExporter has BindingElement as super class
and implements the ExportPolicy method, which contains
the specific logic for creating code contracts policies.

The following figure visualizes the class layout.

(ExporterBindingEle mentConfigurationSection ES
Class
=+ BindingElementExtensiorElement

4 Properties
= Methods

7" CreateBindingElement

) IPolicyExpertExtension

¥

[CCPolicyExporter
Class
=+ BindingElement
4 Fields
Bl Methods
% ExportPolicy

Figure 1. Class diagram for WS-Policy creation.

In our case, the ExportPolicy method creates the Code—
ContractsAssertions as described in the previous step.
The result of this activity is an enriched WSDL description
as shown in Section V.

To use the custom binding, the configuration file of the
WCF service must be adapted as follows:

1) In the definition of the service endpoint, the attribute
binding is changed to customBinding and the at-
tribute bindingConfiguration is set to exporter-
Binding.

2) In the bindings section, the element custom-
Binding declares exporterBinding.

3) The element bindingElementExtensions 1S in-
troduced in the extensions section. Its add ele-
ment specifies the assembly in which the Exporter—
BindingElementConfigurationSection class is
implemented.

During deployment of the service, WCF now uses the
custom binding. As a result, the generated WSDL file will
include the code contracts policy.

18

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

D. Importing Code Contracts Policies

In order to invoke a service, a WCF client application
requires a definition of a service endpoint. Typically, this is
declared in a configuration file, similar to the one used on
server side. In our case, we extend the endpoint definition
by a policyImporters element that refers to the class
CCPolicyImporter.

We have realized this class in the following way. It imple-
ments the WCF interface TPolicyImporterExtension,
which declares the ImportPolicy method. CCPolicy-—
Importer implements this method in such a way that code
contracts policies referenced in the WSDL are imported.
During the import, a code contracts dictionary (similar to
the one on server side as described in Section VII-A) is
constructed. This dictionary will be used to enhance the
proxy classes, which is shown next.

E. Enhanced Proxy Generation

The tool svcutil.exe does not process custom policies.
Hence, the standard proxy classes generated do not contain
any code contracts constraints.

In our proof of concept we have realized the following
approach. First, we apply svcutil.exe to create the stan-
dard proxy classes. In a second step, the following activities
are performed:

1) Create an additional source file that contains a contract

class for the proxy interface;

2) Link the generated contract class to the proxy inter-

face.

The contract class will contain all constraints that are
found in the code contracts policy. In the proof of con-
cept, we construct the contract class as follows. Via the
reflection interface we iterate on the methods of the proxy
interface. For each method contained in the code con-
tracts dictionary we create a method body with the corre-
sponding Contract.Requires, Contract.Ensures, and
Contract.Invariant statements. Otherwise, if the code
contracts policy does not contain any constraints for the
method at hand, an empty method body is generated, which
means that no additional constraint is imposed to the method.

Next, we link the generated contract class to the proxy in-
terface. This is achieved by equipping the contract class with
the ContractClassFor (typeof (...)) attribute. Finally,
the proxy interface generated by svcutil.exe will be ex-
tended by an analogous ContractClass (typeof(...))
attribute. This completes the generation and linkage of the
code contract class with the proxy interface.

We have developed a simple tool ccsvcutil.exe that
wraps svcutil.exe as described. Thus, a client developer
uses ccsvcutil.exe to generate the client proxy infras-
tructure. It should be noted that the code contracts processing
is transparent for the client developer — with the exception
that the code contracts runtime environment and tools are
now available on client side.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

FE. Object Invariants

In WCF, so-called data contracts are types that can
be passed to and from the service. In addition to built-
in types such as int and string user defined data con-
tracts can be introduced be annotating a class with the
DataContract attribute. WCF will serialize all fields that
are marked with DataMember. To impose object invari-
ants on data contracts one may introduce a method an-
notated with ContractInvariantMethod that contains
Contract.Invariant statements (cf. Section II-A).

As an example consider a data contract AddressData
with members such as street, zip and city and an object
invariant method that, for example, controls the zip format.
Suppose a WCF service ChangeAddress takes an instance
of AddressData together with a customer id as parameters.
Because AddressData is part of the service’s signature, it
has a representation as complexType in the WSDL. There-
fore, svcutil.exe will generate a corresponding C# class
AddressData, which is used by the service consumer to
construct address instances. We note that this class contains
only a default constructor to create “empty” instances; their
members can be accessed via public getters and setters.

In order to invoke the ChangeAddress service, a client
may proceed as follows: i) create an empty instance of
AddressData, ii) set the specific values of the members
with the public setters, and iii) pass the instance together
with the customer id to the service. Unfortunately, the code
contracts infrastructure on client side will report an error
after the first step. This is due to the fact that the empty zip
member contains an invalid value, which is recognized by
the object invariant.

To overcome this problem, one needs on client side a
public constructor that takes all relevant address data and
constructs a properly initialized instance (which conforms
to the object invariant). However, such a constructor is not
generated by the standard svcutil.exe tool. Thus, we pro-
pose that the code contracts aware version ccsvcutil.exe
should generate for each user defined data contract a corre-
sponding public constructor.

On WCEF service provider side this is not an issue, though.
When introducing a data contract, specific constructors
can be implemented by the creator of the WCF service.
These constructors are available for general usage on WCF
provider side.

G. Exception Handling

There are two separated code contracts runtime environ-
ments: one on WCF service consumer side and one on WCF
service provider side.

As described in Section 7 of [1], code contracts support
several runtime behavior alternatives. By default, a contract
violation yields an “assert on contract failure”. Thereafter,
a user interaction is required to continue or abort program
execution. While this behavior may be acceptable on client

19

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

side during the development and testing phase, an analogous
behavior would not be helpful on WCF provider side. Each
time a violation occurs, the WCF service process requires a
user interaction, which means that the server process must be
observed the whole time. In general, this is not acceptable,
not even during development and testing.

To remedy this problem, we disable “assert on contract
failure” in the WCF service project. As a consequence, a
contract violation now leads to the creation of an exception,
which will be handled by the WCF runtime environment.
By default, WCF returns a FaultException to the client
indicating that something went wrong without giving de-
tailed information. In order to embed the real reason into
the exception (e.g., a “Precondition failed: d >= 0 mes-
sage) the IncludeExceptionDetailInFaults parameter
of the ServiceBehavior attribute in the WCF service
implementation class is set to true.

On client side, standard exception handling can be applied
to inspect the exception’s reason.

H. Service Provider Side Development Model

To sum up, the development model that brings code
contracts to WCF services is as follows:

1) Creation of a WCF service and an assembly with
VisualStudio as usual, e.g. as WCF Service Library
project.

2) Definition of a service endpoint that includes a custom
binding as described in Section VII-C.

3) Deployment of the WCF service by launching the
project.

4) Creation of a WCEF client project as usual.

5) Invocation of ccsvcutil.exe to generate the en-
hanced proxy classes.

6) Usage of the code contracts infrastructure on client
side.

VIII. SUMMARY AND FUTURE WORK

In this paper we have elaborated a concept that combines
WCF with code contracts. As a consequence, WCF appli-
cation developers — both on server and client side — can
now profit from the additional expressive power of code
contracts including runtime and tool support. It has been
stressed elsewhere that there does not exist a generic solution
yet.

Our novel approach exploits well-known standards such as
WSDL and WS-Policy. We have described how to transform
code contracts expressions contained in the WCF service
into a programming language independent representation.
This representation will be used to generate an enhanced
client proxy infrastructure, thus allowing to evaluate the
WCEF service’s code contracts already on client side.

We see several areas for future work. One direction is
concerned with a precise definition of “WCF code contracts

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

expressions.” When defining code contracts for WCF ser-
vices, only those variables should be referred that are visible
to the service consumer. While service parameters are public
and hence meaningful for a service consumer, it is not useful
for the client when members of the service implementation
class are included into the created code contracts assertions.
Therefore, rules should be defined that i) characterize valid
expressions (similar to the ones presented in Section 5 on
contract extraction in [10]) and ii) translate the code con-
tracts statements into corresponding WS-Policy assertions
embedded into the service’s WSDL description.

Additional tool support for WCF code contracts is an-
other topic. We have shown how a custom binding can be
defined such that code contracts expressions are exported to
(resp. imported from) the WSDL. For a WCF developer, it
would be helpful to have a specific “WCF code contracts”
project type for VisualStudio that automatically introduces
the required elements in the WCF configuration files.

This work is concerned with making code contracts
available for a WCF client environment. Another interesting
question is how a WCEF service consumer developed with
an alternative technology such as Java (see e.g., [11]) can
process the code contracts expressions.

ACKNOWLEDGMENTS

I would like to thank the anonymous reviewers for giving
helpful comments. This work has been partly supported by
the German Ministry of Education and Research (BMBF)
under research contract 17N0709.

REFERENCES

[1] Microsoft Corporation, “Code contracts user manual,” 2009.

[2] Extensible Markup Language (XML) 1.1. http://www.w3.org/
TR/xmll11/.

[3] Web Services Description Language (WSDL) 1.1. http:/
www.w3.org/TR/wsdl/.

[4] SOAP Version 1.2. http://www.w3.org/TR/soap/.

[5] Web Services Policy 1.5 - Framework. http://www.w3.org/
TR/ws-policy/.

[6] Web Services Interoperability Technology (WSIT). https:/
wsit.dev.java.net.

[7] Writing rock solid code with Code Contracts. http://blog.
hexadecimal.se/2009/3/9, last access on 08/24/2010.

[8] J. Lowy, Programming WCF Services. O’Reilly, 2007.

[9] Common Compiler Infrastructure: Code Model and AST APL
http://cciast.codeplex.com/, last access on 08/24/2010.

[10] M. Barnett, M. Fahndrich, and F. Logozzo, “Embedded
contract languages,” in ACM SAC - OOPS. Association for
Computing Machinery, 2010.

[11] E. Hewitt, Java SOA Cookbook. O’Reilly, 2009.

20

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Automated Service Evolution

Dynamic Version Coordination Between Client and Server

Virginia Smith
Business Technology Optimization
HP Software
Roseville, CA, USA
Virginiasmith@hp.com

Abstract— While client/server integrations may be loosely
coupled so that the evolution of the service endpoints occurs
with minimal impact on backward compatibility, installing and
configuring application upgrades to take advantage of new
application functionality is still painful for customers and
involves manual work by administrators. Coordinating
changes in version between client and server has traditionally
been done using either a central registry or through manual
configuration, both of which can be error prone. The authors
propose that clients and servers be aware of the versions they
consume and provide and that they coordinate between
themselvesto adapt dynamically to new versions.

Keywords - automation, versioning, web service, REST
client/server, evolution

l. INTRODUCTION

Upgrading deployed software has been an ongoing
problem in the software industry. Much of the research has
focused on this problem in severad main areas. One area of
focus is adaptive software where a software system can adapt
itself in response to specific internal or external conditions as
detailed in [10]. This research focuses on the software
system itself (the service) and does not address the problems
that occur in the client/server communication when a service
is upgraded. Another area of research focuses on maintaining
backwards compatibility to eliminate client problems after
the service upgrade, usually through the addition of a new
component. Some examples are [5] which uses adapters and
[4] which uses an interface monitoring component.

This version evolution problem is even more acute today
as more and more functionality is deployed as web services
where the client and server are independently controlled. In
addition, in many enterprise deployments, multiple versions
of client and services must coexist due to business
requirements or software supplier constraints. Services must
evolve to handle new customer requirements and clients
want to know when a service is upgraded so they can take
advantage of new functionality immediately without waiting
for a manua configuration. To handle this dynamic
environment, clients must be able to deal with multiple
service versions and services must be able to dea with
multiple client versions. The authors propose a method of
dynamic negotiation between client and server that enables
them to adapt to this kind of deployment environment.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Bryan Murray
Business Technology Optimization
HP Software
Bellevue, WA, USA
bryan.murray@hp.com

We showcase our proposed solution using the
Representation State Transfer (REST) [2] client/server
architectural style as defined by Roy Fidlding in his doctoral
dissertation. One of the key benefits of the REST
architectural style is that the client and server become much
more loosely coupled than was possible using the operation-
oriented approach. A RESTful architecture is being adopted
by many applications to enable easy and consistent
integration development. While RESTful application
integrations may be loosely coupled and, therefore, the
evolution of the service endpoints occurs with minimal
impact on backward compatibility, installing and configuring
application upgrades to take advantage of enhanced
application functionality is still painful for customers and
involves manual work by administrators. The authors
demonstrate dynamic version coordination between client
and server using a method that enables RESTful integration
participants to seamlessly configure themselves to use a new
endpoint version as the client is updated and/or a new service
version becomes available.

All services, even those written using the REST
architectural style, will need to modify their data models at
some point. With care, a client and service can continue to
work even with many data model changes, as long as those
changes are backwards compatible. The W3C TAG draft
document [8] on versioning languages addresses the issue of
maintaining compatibility between versions of a language
and provides insight into a number of design patterns for
constructing extensible languages and defining a language
versioning strategy. These strategies help to ensure
compatibility between versions of a language and thus
between a service and its clients.

However, even when there is language compatibility
between a service and its clients, there are reasons that may
prompt a server to move to anew version. Bug fixes are one
scenario. Another scenario is when there is a functionality
change in the content of a client request to the server. For
example, a server might support new query parameters. The
client can then add new logic to communicate with the server
using the new functionality. A third scenario occurs when
there is an expectation of some new action related to the
resources controlled by the service. For example, a resource
has a state attribute of 'on' or 'off' but a new dtate is
introduced such as 'standby’. The new language version may
be compatible with the old version but there is new

21

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

functiondity represented by this change. The service
supports the new state attribute with some specific actions. In
fact, the service might require that clients make use of the
new state in a new version of the service. In these scenarios,
the client is not satisfied with simply maintaining language
compatibility with the server. The client isinterested in using
the latest version of a service to take advantage of new
functiondity or new language elements. Therefore, even
with a well-defined versioning strategy, there is a need to
address the ease of migration of a service and its clients to
newer versions when that migration is desired.

The remainder of this paper is organized as follows.
Section |1 defines the terms used throughout the paper and
presents an examplethat is used to demonstrate the concepts.
Section 111 describes the problem that occurs when individual
applications are combined to deliver an enhanced solution to
the customer. Sections IV and V present an approach to
solving this problem using common REST technologies.
Section VI offers suggestions for implementing version
evolution in non-RESTful environments. Finaly, the paper
concludes with thoughts on the genera applicability of the
approach.

1. TERMS

Anintegration is apoint of communication between two
applications for the purpose of sharing resources. For
example, the operations management application can open a
ticket in the help desk application when an alarm is raised.
The business impact anaysis application can add additional
relevant information to the help desk ticket to help the
operator triage the problem.

There are two parties to every integration point, a client
and a server. In REST architecture, these are defined as the
two main connector types. “ The essential difference between
the two is that a client initiates communication by making a
request, whereas a server listens for connections and
responds to requests in order to supply access to its services.
A component may include both client and server
connectors.” [2]

An endpoint isthe implementation of a service interface.
In a RESTful web service, it is defined by a set of related
URLs and the HTTP methods that are valid for those URLSs.
The endpoint implementation acts as the server in an
integration. The term service is also used here to mean the
service endpoint.

1. ASYNCHRONOUS MANUAL CONFIGURATION

While loosely coupled integrations alow for the client
and server to evolve independently, upgrading to a new
version can cause integration configuration problems. With
multiple versions of the client and multiple versions of the
server available in the field, it is necessary to configure
which version of the server aclient connectsto. Thisis often
a manual process that is performed by administrators and is
error prone. Making the matter worse is that the applications
participating in integrations rarely follow the same upgrade
timeline. When and how should an administrator configure a
new version of an integration (e.g., reconfigure the endpoint

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

URLSs) and what happens if there are multiple application
versions that exist in a customer’s environment?

Consider the example of an IT management solution.
This solution is enabled through integrations between four
related applications as shown in Figure 1. This product suite
solution is now being upgraded to enable additional new
collaboration between the applications. Each application
must implement its part of this new collaboration
functionality. The products have the following schedules for
the release of the version that will support the enhanced
solution:

e Product A: version 5is already released.

e Product B: version 6 will releasein 2 months.

e Product C: version 7 will releasein 3 months.

e Product D: version 2 will release in 6 months.

o e

/ / \A
e
Product A -
N AN
- /\\ \\
KN Py
/ f - /

. o /
1

e L e /
//
/ / //
/ g /
» // I'e
Product B 7 Product D
-

Figure1l. A 4-product solution showing the integration points.

While it is difficult to synchronize the release timelines
of any two products developed independently, it is even
more difficult to synchronize the upgrade of different
applications in a customers’ environment where there may
be sets of constraints by users of those applications on
availability, risk of change or introducing incompatibilities,
etc. The administrator must not only install the new version
of the application, but also reconfigure new versions of al of
the integrations between that application and other
applications. Some applications may or may not be ready for
anew version of an integration, making the upgrade process
error prone. This results in customer frustration and
increased support calls. As aresult, customers are sometimes
very slow to upgrade their applications. This can have a
detrimental impact on the ability to bring end-to-end solution
improvements to customers.

The authors propose an approach that enables dynamic
version coordination between client and server. The
approach defines how a client can automatically discover
when a server is upgraded and how the client can reconfigure
itself to use the new version of the server without requiring
either a centra registry or manual intervention by an
administrator.

22

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

IV. AUTOMATED EVOLUTION

Through careful orchestration of the messages exchanged
and theincorporation of version information in the messages,
integrated applications can maintain their relationship
automatically, always using the latest version shared by the
client and server. This significantly improves the decoupling
of individua product releases for integrated applications and
makes the deployment of enhanced integrations and
solutions a simpler, more automated process.

The authors proposal is composed of two behaviors:
Discovery and Notification. Discovery is used to assure that
when a client starts, it is using the latest version of the
service that it supports. Notification is used to inform the
client of an available new service version when the client has
been running and the service was asynchronoudly updated.

The Discovery behavior defines how a service advertises
its capabilities, and how a client approaches using the
service. The key elements of Discovery are:

e Each application that provides services to integrating
partners makes available to the client information
about what versions it currently supports and how to
access each version.

e Clients are expected to access this information when
they begin using the service and select the
appropriate version of the service to access the
resources of interest.

The Notification behavior defines a process for
independently updating a client or service without updating,
manually reconfiguring, or restarting other applications. For
example, it alows for installing a new version of a service
(in parale with an existing version of the service) without
requiring a manual reconfiguration of an application that is a
client of that service. The Notification behavior defines how
aservice informs a client that a newer version of the service
is available, and how a client behaves upon receiving such a
notification. The key elements of Notification are:

e When a server receives a message from a client that

is not the latest version, the server includes a
notification that a new version is available as part of
the response to the client (along with the location of
the new version). The location of the version
information document is dso included in the
response.

e When a client receives a notification indicating a
newer version, it may follow the link to the latest
version information document and discover the
server versions there or it can follow the link to the
requested resource using the latest version of the
service. If the client does not support a newer
version, it ignores the new version notification.

There are significant benefits to this approach. No
endpoint registry needs to be maintained, no periodic
checking for new application versions needs to occur, and no
manual configuration of the upgraded client or server
application is necessary. The version information document
is always up to date and the binding of the server and client
occurs a the last possible time. Clients can seamlessly

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

configure themselves to use a new server version as the
client is updated and the server version becomes available.

V. |IMPLEMENTING DISCOVERY AND
NOTIFICATION BEHAVIORS

This section will map the proposed dynamic version
coordination approach to an implementation suitable for use
in RESTful services.

A. Discovery

In order to address the Discovery behavior described in
Section 1V, the authors propose using the Atom Publishing
Protocol (APP) Service Document to advertise the versions
that a service currently supports. The APP specification [3]
defines a Service Document to be a set of Workspaces, each
containing references to a set of Collections. The APP
specification does not attach any particular meaning to a
Workspace.

The authors define a new element, ver si on, to be a
child of the APP wor kspace eement. The wor kspace
element already groups collection references into a cohesive
set. The addition of the ver si on element adds the concept
of version to a workspace. Multiple workspaces may have
the same value for the ti t | e element, as long as the value
of version is different for the two workspaces. An
example of a Service Document using the new ver si on
element is shown below. The example shows how the
workspace grouping is used to advertise two versions of a
service. Note the difference in the URLs for the collections.

<?xm version="1.0" encodi ng="utf-8"?>
<service xm ns="http://ww. w3. or g/ 2007/ app"
xm ns: at om="htt p: // ww. wW3. or g/ 2005/ At ont’
xm ns: v="ur n: x- aut o- ver si on: ver si on" >
<wor kspace>
<atomtitle>Hel p Desk Svc</atomtitle>
<v:version>1</v:versi on>
<col | ection
href="http://exanpl e. org/inci dents">
<atomtitle>lncidents</atomtitle>

</ col |l ecti on>
</ wor kspace>
<wor kspace>
<atomtitle>Hel p Desk Svc</atomtitle>
<v:versi on>2</v:versi on>
<col | ection
href ="http://exanpl e. org/v2/inci dents">
<atomtitle>lncidents</atomtitle>

</ col |l ecti on>
<col | ection
href ="http://exanpl e. org/ v2/ operators">
<atomtitle>Qperators</atomtitle>
</ col | ecti on>

</ wor kspace>

</ servi ce>

23

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

The versi on eement allows a service to advertise
multiple versions of its endpoint(s) with links to resource
collections as a cohesive set for a given version. A service
supporting multiple workspaces before adding a second
version can till support multiple versioned workspaces. A
client can easily determine whether the service supports
multiple versions by searching for the ver si on eements
and selecting the workspace(s) to use based on the available
versions and the versions supported by the client.

B. Notification

In order to address the Notification behavior described in
Section 1V, the HTTP Link header [7] is used in response
messages. Use of the HTTP Link header alows the
Notification behavior to work with any mediatype. The Link
header includes a URI reference and an indication of how the
resource indicated by the URI reference is related to the
resource in the response body. Two relation types are used in
the Notification behavior. First, the service relation
defined in the Web Linking specification [7] is used to
identify the location of the Service Document. Second, a new
relation is defined to indicate the location of aresource using
the latest version of the servicee urn:x-auto-
ver si on: new servi ce-ver si on.

A link with the ser vi ce relation can be included in any
response message from a service. The link must be included
when a newer version of the service is available. The URI
reference in a service link identifies the location of the APP
Service Document used for the Discovery behavior.

A link with the new- servi ce-version reation
indicates that the service provides a newer version than the
client was accessing in the request message. The resource
referenced by the URI is the resource the client requested,
but in a newer version of the service. The ver si on link
parameter is aso defined for the new ser vi ce-ver si on
relation. This parameter indicates the new version of the
service and must contain the latest version supported by the
service. The client may also access the Service Document for
information on how to access other versions of the service if
appropriate. The response containing the new- ser vi ce-
ver si on link will use the same version that the client used
in the request. A new- servi ce-ver si on link must not
be included in a response message unless the service
supports a newer version.

An example of how the links are used in a response sent
from a service is shown below. The example shows how the
service link is used to indicate the location of the service
document, and how the new-service-version link indicates
the location of the requested resource using a newer version
of the service.

Li nk: <http://exanple.org> rel="service"
Li nk: <http://exanple.org/v2/incidents>;
rel =

"ur n: Xx- aut o- ver si on: new ser vi ce-versi on";
ver si on="2"

The new service-version and service link
relation types alow a service to notify a client that a newer

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

version of the service is available. A service indicates the
location of both a newer version of the referenced resource
and the service's Service Document. A client can use the
referenced Service Document to find the available versions
and determine which version is appropriate. The client also
has access to the newest version of the resource it was
accessing. This document does not define any meaning for
thenew- servi ce-ver si on andser vi ce link relations
in requests sent from the client to the service.

C. Service Actions

When a service deployment is updated to support a new
version, it is important for the service to continue supporting
one or more older versions to alow for clients that cannot be
upgraded at the same time and preserve loose coupling
between a service and its clients. The service provides an
updated Service Document advertising the new version of
the service and one or more supported older versions. In the
case where a service receives a request sent to an older
version, it notifies the client of the availability of the newer
version.

It is not difficult for the service to support a newer
version of the Service Document. All requests, regardless of
version, will return the same Service Document listing all of
the available versions. The Service Document for the service
should aways be a the same location. In any case, the
servi ce link relation will aways indicate the location of
the Service Document.

Support for the notification to clients when a newer
version is available requires that older versions of a service
are aware that a newer version is available. This awareness
only needs to extend to the ability to add the HTTP Link
header to the response where the request used an older
version.

There are four use cases that occur in a multi-version
environment. The following discussion will use version 1 to
mean an older version of the application (client or service),
and will use version 2 to mean a newer version of the
application. With respect to the client, the version is intended
to indicate which version(s) of the service the client
understands. That is, a version 1 client understands only
version 1 of the service and a version 2 client understands
version 2 of the service and also supports version 1 of the
service.

a) Version 1 servicereceivesversion 1 client request

b) Version 1 servicereceivesversion 2 client request

c) Version 2 service receives version 1 client request

d) Version 2 servicereceives version 2 client request

The cases where a service receives a message from a
client matching its version (use cases a and d above) are not
interesting and will not be discussed here. In addition, awell-
behaved client will only send messages to a service that the
service will understand because the client has performed a
discovery of supported versions of the service. Thus, use
case b will not occur in awell-behaved environment.

The main concern is with an ‘evolving state’ where the
client and server are out of sync with respect to their versions
(use case c). When a version 2 service receives a message

24

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

from a version 1 client, it means the service has been
upgraded to a newer version while the client remains at an
older version. In this situation, the service will generate a
response using the same version that the client used, but will
add the HTTP Link header indicating that a newer version is
available and where to find it.

D. Client Actions

A well-behaved client will initially start from the Service
Document for a service in order to find the resources in
which it is interested. A client is given the address of the
Service Document through configuration performed when
the client is first deployed. The client will choose the
appropriate version of the service from the Service
Document.

Version sdection is done by reviewing dl of the
wor kspace dements within the Service Document, noting
their respective versions based on the value of the ver si on
element. The client will choose to use the endpoints in the
workspace(s) with the highest version that is less than or
equa to the highest version the client understands. Once the
workspace(s) have been selected, the client can proceed with
the discovery of resources.

If the installed client is version 1, the client will choose
the version 1 workspace(s). The client may receive newer
version notifications from version 2 of the service but will
continue to use version 1 since that is the latest version it
understands. In the case where the installed client is version
2 but the serviceis version 1, the only workspace available to
the client will be version 1. (Normally, a client will continue
to support severa versions of the service for some period of
timein order to handle this use case.) Later, after the service
is upgraded to version 2, the next time the client accesses the
service, it will receive a notification in the response that
indicates a newer version of the serviceis available.

A client that is using an older version than the highest it
can understand should check every response from the service
to seeif it includesthe HTTP Link header indicating a newer
version. Just because a new version of the service was
deployed, does not mean that the clients of that server must
be restarted. When a client receives the notification of a
newer version it should either start the discovery process
over, or update its cache for the resource location and
continue on using the newer version for the resource.

As described for services, there are four use cases that
will be examined from the client's point of view. As
mentioned previously, the following discussion will use
version 1 to mean an older version of the application, and
will use version 2 to mean a newer version of the application.
With respect to the client, the version is intended to indicate
which version(s) of the service the client understands. That
is, a version 1 client understands only version 1 of the
service and a version 2 client understands version 2 of the
service and also supports version 1 of the service.

€) Version 1 client receivesversion 1 server response

f) Version 1 client receives version 2 server response

g) Version 2 client receivesversion 1 server response

h) Version 2 client receives version 2 server response

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

As with services, the case where a client receives a
response from a service with the matching version (use cases
a and d above) are not interesting and will not be discussed
here.

When aversion 2 service sends a response to aversion 1
client, it must add the HTTP Link header (defined in Section
V.B) as the notification to the client that a newer version is
available. In this case the client is not capable of
understanding the newer version and will ignore the
notification. It is possible that the client will not even be
checking for newer versionsiif it is dready using the highest
version it understands.

If a client receives a response message containing the
HTTP Link header indicating a newer version is available
and it supports a later version of the server than it is currently
using, it should use the links to begin using the newer
version.

E. Example Scenario

The following scenario demonstrates the Discovery and
Notification behaviors. This scenario occurs when the client
is upgraded to a newer version before the service. The
sequence of steps involved is shown in Figure 2. The
opposite scenario where the service is upgraded first is very
similar and involves the same actions athough in a different
order.

Service
“ersion 1

Client

“erzian 2 7

Wersion 2

F 3
Yy

Service Document Request
Mormal Reguest / Normal Response
Maormal Request / Response with Motification

Upgrade Installed

Figure2. Stepsto evolve client and service to new version

The actions that occur at each step are the following:

Both the service and its client are a version 1 and
continuously execute the normal request/response cycle.

The client is upgraded to version 2 athough it still
supports version 1 for ease of migration. (The service is
unaware of this upgrade.)

As part of its norma startup, the client requests the
service's Service Document. The client selects version 1 of

25

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

the service. In this scenario, version 1 is the only version
currently supported by the service and therefore is the only
version availablein the Service Document.

The client and the service continue to execute the normal
request/response cycle asif both were at version 1.

The service is upgraded to version 2 athough it till
supports version 1. (The client is unaware of this upgrade.)

The next time the client sends a request to this service
(still using version 1), the service sends back the normal
response but this time it includes a natification to the client
that there isalater version of the service available.

Upon receiving a response that includes a newer version
notification, the client automatically begins to use version 2
of the service from this point forward.

F. Performance Impact

A demondtration of the described research has been
coded as APP-based client and service, and a pilot project
within HP has been initiated. The impact of the Discovery
behavior on message size and processing time is minimal
since Discovery is used only when a client connects to a
service for the first time or after a service notifies a client of
anew service version. These areinfregquent events.

The impact of the Notification behavior on message size
and processing time is more important since it can affect
most messages between the client and service. The
demonstration service uses different URLs for different
versions, always sends the link to the service document, and
conditionally sends the link to the new resource version. The
message size is increased by the size of these two HTTP
headers. The processing time is increased by the time to
write the headers.

The processing time impact for every message is the
check for the presence of the notification. If present the
Discovery behavior is initiated. The demonstration client
checks for notifications only when it is not operating with its
most recent version, otherwise the client can ignore them
thus incurring no extra processing time.

The minimal change in processing time and message size
is deemed a good trade-off for the significantly reduced
manual configuration normally done for version changes of
services and their clients.

V1. EXTENDING THISAPPROACH TO OTHER

TYPESOF SERVICES

The previous section describes an implementation of the
proposed approach to automated service evolution that can
be easily applied to RESTful services and clients. There are
other alternatives that could be used in this same context. For
example, the HTTP Link header is explicitly defined as
semantically equivalent to an HTML LI NK element [8] or
atom | i nk elements in an Atom feed [4]. The advantage
of choosing the HTTP Link header is that it can be used to
provide version notifications independent of the media type
used for the datain the response body.

There are some types of services, for example SOAP-
based services, where it is less obvious how to apply the
proposed approach to enable independent version evolution

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

of applications. It is still necessary to provide both Discovery
and Notification behaviors.

Using a non-RESTful architecture (such as SOAP),
applications can still perform the Discovery behavior by
using the APP Service Document as described above.
However, other approaches may be more natural for the
environment. For instance, versions of services could be
advertised in aregistry. The basic actions that the client goes
through for discovery are similar to the approach described
above, just using a different source for the version
information.

The HTTP Link header will continue to work for the
Notification behavior in a non-RESTful architecture as long
as HTTP is used as atransport. When HTTP is not used as a
transport, it will be necessary to find a way to convey the
availability of a newer version from the service to the client
either as part of the transport or in the body of the message
itself. For instance, XML-based messages could include an
optional element or attribute in the message body to provide
the notification.

VII. CONCLUSION

The origina motivation for this solution was the
integration of HP enterprise management products in order
to bring more comprehensive, end-to-end, and synergistic IT
management solutions to our customers. However, the
authors feel that this approach provides value in general
situations where the client and server are under the control of
different organizations as is the case for many web services.
This approach enables a seamless, automated evolution of
web services and their clients.

REFERENCES

[1] T. BernersLee, R. T. Fielding, and H. F. Nielsen, “Hypertext
transfer protocol—HTTP/1.0", IETF RFC 2616, May 1996.

[2] R. T. Felding, “Architectura styles and the design of network-based
software architectures’, PhD Dissertation. Dept. of Information and
Computer Science, University of Cadlifornia, Irvine, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm (last
access October 27, 2010).

[3] J. Gregorio and B. de hOra, “Atom Publishing Protocol”, IETF RFC
5023, October 2007.

[4] B. Kalali , P. Alencar , D. Cowan, “A service-oriented monitoring
registry”, Proceedings of the 2003 conference of the Centre for
Advanced Studies on Collaborative research, October, 2003.

[5] P. Kaminski , H. Mller , M. Litoiu, “A design for adaptive web
service evolution”, Proceedings of the 2006 international workshop
on Self-adaptation and self-managing systems, May, 2006.

[6] M. Nottingham and R. Sayre, “Atom Syndication Format”, IETF
RFC 4287, December 2005.

[7] M. Nottingham, “ Web Linking”, IETF Draft, January 2010.
[8] D. Orchard, ed., Extending and Versioning Languages: Compatibility
Strategies, World Wide Web Consortium, September 2008.

[9] D. Raggett, A. Le Hors, |. Jacobs, eds., HTML 4.01 Specification,
W3C Recommendation 24, December 1999.

M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges’, ACM Transactions on Autonomous and
Adaptive Systems, May 2009.

[10]

26

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

An Architecture to Measure QoS Compliance in SOA Infrastructures

Alexander Wahl

Ahmed Al-Moayed

Bernhard Hollunder

Department of Computer Science
Hochschule Furtwangen University
Furtwangen, Germany

alexander.wahl @ hs-furtwangen.de

Abstract—In the last couple of years Service Oriented Ar-
chitecture (SOA) has gained in importance and became widely
used. With increased acceptance the demand of non-functional
requirements, so-called Quality of Service (QoS) attributes,
arose. QoS attributes were applied to SOA environments,
resulting in QoS-aware SOAs. Within the QoS-aware SOAs,
compliance to the desired QoS in general is not easy to measure.
In this work, we offer a solution architecture to measure
actual data that relate to QoS attributes. Further, these data
are compared to their target state. The aim is i) to evaluate
compliance of the entire QoS-aware SOA to the desired QoS
attributes and ii) to start suitable activities. In a proof of
concept a solution architecture, based on the technique of
Complex Event Processing, is implemented. Within this proof
of concept selected QoS attributes are applied and compliance
to the SOA is measured.

Keywords-Service Oriented Architecture; Quality of Service;
QoS Attributes; Complex Event Processing;

I. INTRODUCTION

Service Oriented Architectures (SOA) are a design
paradigm to compose and structure loosely coupled com-
ponents to form distributed applications. SOA offers a way
to map business processes from the business domain to the
technical domain of computer systems. After a business
process is analyzed and its single activities are identified, the
individual activities are mapped to the technical domain by
implementing corresponding services. To execute a business
process, the services are called in corresponding sequences.

Web Services (WS) are the predominant technology to
realize the services of a SOA. They are used to imple-
ment the functional aspects of business processes, which
in brief define the input/output behavior of a component.
Additional, in many business domains it is crucial to fulfill
non-functional requirements. A non-functional requirement,
or Quality of Service (QoS) attribute, specifies how a compo-
nent is supposed to behave. Examples for QoS attributes are
robustness, security, performance, scalability and account-
ing. More detailed descriptions of QoS attributes in SOA
can be found in [1] and in [2]. Within a SOA equipped
with QoS attributes, which we call QoS-aware SOA, desired
QoS attributes are described in a formal manner. Therefore
a policy language is used typically. These so-called service
policies define the target state of the desired QoS attributes.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

ahmed.almoayed @ hs-furtwangen.de

bernhard.hollunder@ hs-furtwangen.de

The crucial need to fulfill non-functional requirements is
reflected by QoS attributes applied to SOA. For example,
consider security aspects, like integrity and confidentiality,
which are applied to Web Services using WS-Security [4].
When implementing a SOA from scratch, QoS attributes can
be designed from the beginning. But many SOAs are grown,
which means that they expanded over time. Such SOAs often
integrate existing legacy applications and enhance them by
QoS attributes they were not equipped with before. Also
QoS attributes may have changed several times. So how can
compliance to QoS attributes be measured? For example,
assume a SOA of high complexity that has grown over time.
For this SOA, a roles and rights model is specified. During
runtime violations to the roles and rights specification are
observed. In consequence, the entities that caused the viola-
tions are to be fixed. Further, the SOA is to be analyzed on
compliance of all entities to the given roles and rights policy.
But how can such an analysis be performed efficiently?

An efficient solution is to monitor and analyze the QoS
attributes of a SOA at dedicated measurement points. Mon-
itoring approaches were already elaborated in several publi-
cations. Berbner et al. [5] selected Web Services (WS) based
on QoS properties guaranteed by Service Level Agreement
(SLA). They ensured compliance to a given SLA using a
monitoring component, which was not described in detail.
Zeng at al. [6] introduced a high-performance QoS moni-
toring system. In their work they focus on service monitor-
ing architecture and QoS metric computation. Artaiam and
Senivongse [7] described a JIMX-based monitoring extension
of application servers for selected QoS attributes. Michlmayr
et al. [8] integrated existing client-side and server-side mon-
itoring approaches using Complex Event Processing (CEP).
Finally, Oriol et al. [9] described the monitoring of adaptable
SOA. We will go into more detail on these approaches and
the differences to our work later in Section VI.

In this work, we propose a solution architecture that eval-
uates compliance of a QoS-aware SOA to the desired QoS
attributes. The solution architecture monitors the SOA at
dedicated measurement points. The thereby collected actual
data are filtered according to a filter policy and compared
to target states specified in the service policies of the SOA.

A SOA application landscape consists of several compo-

27

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

\ Request /
\ I SOA

entity

losuag

Client

\Jusuodwos/

\‘
Sensor™
/component\

| —

Response

Events:
Send request: e1{timestamp}
Received response: ed{timestamp}

' !

Collect, filter and combine events ‘

Recelve request: e2{timestamp}
Send response: e3{timestamp}

Events: ‘

i

Filter policy

Complex event:
cefet,e2,e3,e4)

' '

Complex event processor — Performance ‘

roundtrip time <=t

Service policy: ‘

Compare actual to target:
e4.timestamp - e1.timestamp <= t

Figure 1. Mechanism for the exemplary QoS attribute performance

nents like services, processes, application servers, hardware
platforms, etc. we refer to as SOA entities (SE). Dedicated
measurement points at the SOA entities are equipped with
sensor components (SC). The characteristics of the sensor
components differ depending on the measurement point. A
sensor component may be some source code attached to a
services source code, a JMX client component, or even a
GUI element, like buttons, sliders, etc. In common, these
sensor components collect actual data from the SOA entities.

A sensor component emits events that include the infor-
mation needed for further analysis. The included information
as well as the necessary number of events strongly depends
on the desired QoS attribute. The latter depends, among
others, on the number of measurement points. If several
events are needed they are combined, which generates an
abstract event, also called a complex event [10].

Figure 1 visualizes the mechanism for the QoS attribute
performance:

1) In the sensor components events including timestamps
are emitted.

2) The events are collected and filtered based on filter
policies. The filter policies thereby describe what
events emitted by which sensor components are com-
bined to a complex event.

3) A complex event is generated including the collected
events needed.

4) The complex event is processed by a complex event
processor. Incoming complex events are analyzed on
compliance to QoS attributes defined in the service
policy of the SOA.

In our example target roundtrip time is compared to the
calculated actual roundtrip time. Therefore two of four
measurement points (send request, receive request, send
response, receive response) are used.

In summary: With a grown SOA it is desirable to evaluate
compliance to specified QoS attributes. The combination of
SOA and CEP results in a highly flexible approach to detect
compliance to or violation of QoS attributes constraints by
target-actual comparison. This work offers a solution archi-

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

tecture that is able to perform such a target-actual compari-
son. The comparison is not limited to information extracted
from single services only, but also from whole business
processes, the application server and/or the system platform.
By filter policies analysis can be controlled to single QoS
attributes or SOA entities. The solution architecture is able
to analyze QoS attributes from technical domain as well as
from business domain. Exemplary QoS attributes are perfor-
mance, roles and rights, reliability, schedule and cost. The
solution architecture also is able to react in various ways,
reaching from display on a dashboard towards automatic
anatagonization using dedicated escalation applications.

The paper is organized as follows: The next section gives
a brief description of the requirements this architecture has
to address. Afterwards our solution architecture is described
in detail, including a statement on coverage of the given
requirements. A realization of the solution architecture and
exemplary implemented QoS attributes are described in the
proof of concept section. We then provide a discussion on
related work. Finally, a description of potential future work
and our conclusion is given.

II. ARCHITECTURAL REQUIREMENTS

In a SOA application environment, there are several
situations where it is desirable to support QoS attributes.
Remember the QoS attributes performance, schedule and
cost, which relate to an ordering process with a due time
for shipment. But how can compliance of a SOA to its
QoS attributes be shown? A flexible and powerful solution
architecture is required to measure compliance of the SOA
to its QoS attributes.

The aim is to evaluate conformance to desired QoS
attributes. Thereby, QoS attributes may relate to technical
domain, like performance, or business domain, like cost and
schedule. Ability to handle QoS attributes of both domains
is a requirement.

The solution architecture

1) needs to be able to determine the actual state of a SOA
concerning its desired QoS attributes and

2) to compare this actual situation to the defined QoS
attributes.

To sum up, the architecture performs a target-actual com-
parison on QoS attributes described in the service policies.

The actual situation concerning QoS attributes is deter-
mined based on relevant data captured from SOA entities.
The solution architecture therefore needs to provide an ap-
propriate capturing mechanism. Relevant data are to be cap-
tured by sensor components at dedicated measurement points
located at specific SOA entities. The SOA entities thereby
may be of different type (service, process, application server,
etc.), possibly distributed and under diverse governance. The
need of source code change at the SOA entity to apply the
sensor component is to be kept to a minimum to increase

28

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

acceptance, applicability and interoperability. The aim is to
minimize necessary modifications to the SOA.

Next, the solution architecture needs to provide a con-
figurable filter component to filter the data according to
defined filter policies. The filter policies define i) on which
QoS attributes target-actual comparison is to be performed
ii) what data are to be captured and iii) where the data are to
be captured. For a filter policy a declarative language ,e.g.,
WS-Policy [3], is to be used to enable modification the filter
behavior without the need of recompilation.

The relevant data captured at the SOA entities can be
seen as a kind of events that contain the appropriate data
for further analysis. The solution architecture needs to be
able to combine desired events to a more abstract event, as
described before in the performance example.

Another requirement is to offer a flexible mechanism
that allows to react on specified conditions. Appropriate
activities thereby include execution of applications for active
antagonization (e.g., cancellation of request execution) as
well as the compilation of statistics (e.g., display of statistics
on QoS attribute conditions).

Finally, the solution architecture should be based on
standards and well-known frameworks. By using standard
frameworks and products the applicability to and the inter-
operability of different environments is increased.

III. SOLUTION ARCHITECTURE
A. Description of solution architecture

In this section, an architecture that meets the requirements
in the previous section will be presented. Figure 2 gives a
basic overview of the solution architecture, which consists
of four components: i) the QoS-aware SOA, ii) the filter
component, iii) the analysis and statistics component and
iv) the escalation component. The QoS-aware SOA is al-
ready existing. It is to be enhanced and monitored by the
other three components to enable a target-actual analysis on
desired QoS attributes.

In a QoS-aware SOA, the desired QoS attributes are
defined by service policies, which describe the target states.
To determine the actual state of QoS attributes, sensor com-
ponents are applied to SOA entities at specific measurement
points. The sensor components are responsible for emitting
events with collected actual data. The data was read and
composed from the SOA entities and sent to the monitor
and filter component.

The monitor and filter component has two tasks: i) to
observe the SOA environment and to collect the emitted
data from the sensor components; ii) to filter the received
data according to filter policies.

The term policy is used in both, QoS-aware SOA and
monitor and filter component. It is to be interpreted depend-
ing on the context: Within a SOA, the term policy refers to
service policies, for example W3C standard WS-Policy [3],
that specify the target non-functional behavior of a certain

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

QoS-aware SOA Monitor and

Filter Component

Sensor
=TT Component

Service Monitor

Policies
Descriptions

Sensor
Component
Services
Sensor

Processes Component

Filter
Policies
Descriptions

Sensor
Component

Application Server P

Platform Filter

Escalation TComponent

Analysis and
— Statistics Component

[—

Application 1

Application 2 f—

Event Processors
l

Activity Selection

Application 3

Application N Statistics

Figure 2. Basic overview on the solution architecture

Web Service. Within the monitor and filter component, the
term policy defines the behavior of data filters.

The analysis and statistics component compares actual
data to service policies of the SOA environment. To do
that, the filtered data are compared with the service policy.
This component also creates statistics on QoS attribute
conformance or violation. If an escalation is desired, this
component will trigger the next component to perform the
appropriate escalation.

Finally, the escalation component provides desired ac-
tivities, like solutions to solve service policy violations on
the SOA environment. The activity strongly depends on the
objectives, as will be shown later by example in Section V.

B. Why does the architecture meet the requirements?

First, the solution architecture is able to collect data from
the SOA entities. For example, with performance it is able
to collect timestamps data whenever a SOAP message is
initiated or received (see Figure 1). The architecture attaches
sensor components to SOA entities like e.g., Web Services.
These components collect data and send them as an event
to the filter component. Once an event is received, the filter
component checks its filter policy in order to decide what
to do with such an event.

Second, our architecture keeps code modifications to SOA
entities to a minimum. Ideally, none of their source code
will be changed. As mentioned before, the monitor and
filter component must be able to collect data from the
SOA environment. Therefore, data from the SOA entities
needs to be sent to the monitor and filter component. There
are different ways to put this into effect. Either new code
fragments must be added to the SOA entities, or realized
by sensor components, like SOAP message handlers, that
work as proxies for the incoming and outgoing SOAP
messages. The sensor component could be based on different
technologies, such as JMX or even ESB events components.
Also, a network sniffer could be used as a sensor component

29

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

to analyze network traffic for a certain request or response.
In summary: Several options do exist to implement the
handler approach. The decision, which one to use, strongly
depends on different factors; for example, to which extend
the SOA entities are allowed to be modified.

All the sensor components have in common that they
are attached to measurement points within the SOA. The
measured data then need to be transferred to the monitor
and filter component. Therefore, events are created and
emitted at the sensor components. All incoming events at
the monitor and filter component are filtered according
to the filter policy. The events that the policy allows are
forwarded to the analysis and statistic component. Other
events will be ignored. Optional, all incoming events are
saved permanently.

At the analysis and statistics component the events that
passed the filter are further processed. If needed, the events
are combined to complex event. Analysis is performed on the
complex events. The solution architecture described here is
able to handle both, single events as well as complex events.

Compliance to desired QoS attributes are detected either
based directly on the events or on complex events. This
method enables the system to measure compliance of a
SOA to a single quality attribute. Moreover, several complex
events again can be combined with events or complex
events. With this mechanism, the solution architecture is
also able to measure compliance to combinations of several
QoS attributes. For example, if several QoS attributes in
combination have impact on other QoS attributes.

The architecture is based on standards, frameworks and
products. However, some components, like sensor compo-
nents, need to be implemented from scratch.

The escalation component is an important part in this
architecture. It provides a way to initiate appropriate esca-
lation measures as well as a way to start a certain activity
in case of a service policy violations. The functionality of
this component strongly depends on the kind of violation
and predefined objectives of the escalation component.

In a nutshell: The provided solution architecture fulfills
all the requirements specified in Section II. It is able to
monitor diverse entities of a SOA application landscape.
Changing the source code within the SOA landscape is kept
to a minimum by using sensor components to the monitored
component. Events emitted by the sensor components are
collected by a monitor and filtered by an adjustable filter.
The filtered events are further analyzed to measure com-
pliance of the SOA to QoS attributes, which are described
in a services’ policy. Also based on these events statistics
are generated. This architecture is based on standards and
well-known frameworks. Finally, the architecture offers an
escalation component, which is used to trigger desired
activity in case of compliance to or violation to a services’
policy.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

IV. SOLUTION ARCHITECTURE DETAILS

For each of the four systems of the solution architecture
we will in detail describe the input and output data, the
performed tasks and the entities within the systems.

A. SOA Application Landscape

The SOA application landscape consists of several entities
that we named SOA entities. But what are these entities?
Obviously, there are the different kinds of services, like
component service, composite service, workflow service,
etc. In addition to that there are processes, realized by
appropriate combinations of services. An entity of the
SOA application landscape is also the application server
itself. Finally, the platforms (operating system, hardware
components, etc.) are such entities, too. Typically, these
SOA application landscapes are huge and grown distributed
systems. In consequence, these systems are highly complex,
and so is the communication structure within.

B. Monitor and Filter Component

All the SOA entities are to be interlinked with a monitor
and filter system to determine the actual states of the QoS
attributes of the entire SOA entities. The applied sensor
components collect actual data, encapsulate these data in
events and finally emit these events. The sensor components
are situated within the SOA application landscape, but they
are part of the monitor and filter component. The sensor
components detect and indicate changes in state of the SOA
entities. As a simple example: At the time a service receives
a request, for example a SOAP message, its state changes.
This change in state is detected by the sensor component,
which is situated prepending to the service. With rights
and roles the sensor component will then determine the
user principal of the SOAP message. Afterwards an event
that contains (besides other information) the principal is
generated and emitted. At a more global view each SOA
entity equipped with such a sensor component emits a
corresponding event once a SOAP message is received.
Received events are optionally stored before the further
processing, like the filter mechanism. Because of the storage
the system is enabled to perform retrospective analysis.

The received events are filtered according to the desired
filter behavior. The filter behavior is described by the filter
policies in a declarative manner, for example using XML.
For example: Suggest a SOA equipped with sensor com-
ponents for performance and for rights and roles. In the
filter policy, the desired QoS attribute (rights and roles) and
its corresponding sensor component IDs are described. For
each received event the sensor component ID is compared to
the ones specified within the filter description. If matching,
the event is forwarded to the corresponding subsequent
processing unit, as described later. So in our example events
related to rights and roles pass the filter, events related to

30

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

performance do not pass. The output of the monitor and
filter component are events.

C. Analysis and Statistics Component

The output events of the monitoring system is the input
for the analysis and statistics system. Within this component
the input event vectors are further processed. For each
event vector, respectively the corresponding QoS attribute,
an event processor is provided. With the example stressed
before two event processors are provided - one for roles and
rights and one for performance.

Within the event processors the events are combined to
complex events and analyzed according to the QoS attributes
requirements. In a first step, the service policies (located
in the SOA) of the SOA entities are read by the event
processors. As described above, the service policy contains
the description of the target state for a QoS attribute. Next,
from the event vector the events that correspond to the SOA
entity are extracted and combined for further analysis. Based
on these complex events the actual state concerning the QoS
attribute is determined. In the performance example stressed
before, the actual message transfer times and the processing
time of a SOA entity are determined by four events. The
filtered events of the same SOA entity ID and message ID,
which corresponds to receiving a request and sending the
response, are combined to a complex event. The processing
time can now be determined from the complex event by
subtraction of the timestamps. Finally, the result (actual
state) is compared to the target state. The result indicates
compliance to or violation of target state. In either case,
statistics can be generated, like performance violation per
time unit or a list of principals for each SOA entity.

In a nutshell, the analysis and statistics system is a
collection of event processors and generated relations. For
each quality attribute a dedicated event processor is needed,
since combination of used events and attached additional
information is individual for each quality attribute. From
the results of the event processors desired relations are gen-
erated. The outputs of these components are QoS attributes
compliance or violation vectors and the generated relations.

D. Escalation Component

The final component of our solution architecture is the
escalation component. The component in essence is a col-
lection of individual application that establishes certain
activities based on the output of the analysis and statistic
component. These activities are highly individual. For ex-
ample, on performance violation an application that issues
a ticket to a ticketing system might be started. Or a kind
of management application that upscales resources for the
SOA application landscape. Another option is an information
cockpit application. On compliance of actual states to target
states the cockpit indicates green condition, on violation red
condition. Additional information, like performance status

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

of the last hour, may also be displayed by gaining access
the corresponding statistics.

Relationship among event and escalation activity can be
1-by-1 or 1-by-n. This means that for an individual result
of the analysis and escalation system, like a QoS attribute
violation, several escalation activities may be issued. For
example, on performance violation a ticket is issued and
the resources available to the SOA application landscape
are upscaled. By these examples it also becomes obvious
that the escalation system does not necessarily influence the
SOA application landscape. Issuing a ticket does not directly
influence the SOA, but resource upscaling does.

V. PROOF OF CONCEPT

In the following, we will describe our proof of concept
implementation of the prior described solution architecture.

A. System Overview

The solution architecture in general is realized based
on several established frameworks and standards. For the
SOA application landscape we used the Enterprise SOA
(eSOA) showcase by q-ImPrESS [11]. For the monitor and
filter component as well as for the analysis and statistics
component GlassFishESB with IEP runtime component [12],
[13] is used. IEP includes an implementation of CEP. The
event processors are implemented using NetBeans and IEP
design time component. At runtime the event processors
are hosted at the GlassFishESB application server. To store
events the default setting of the IEP component, Apache
Derby, is used.

The eSOA showcase is a set of exemplary applications
from the domain of order and supply chain management
forming a non-trivial service oriented system. It implements
simulators for customer-relationship-management (CRM),
product data management (PDM), pricing, inventory, order
and shipment. The showcase is based on Web service
technology and Java. For communication SOAP messages
are used.

Sensor components are applied to the Web services of the
eSOA showcase. In detail, we implemented SOAP message
handlers for some exemplary QoS attributes, as we will
describe later. On server-side the sensor components are
positioned before the individual Web services, as can be
seen in Figure 1. Before, in this case, means that the SOAP
message handler is positioned between the client and the
Web service. In consequence, a SOAP request first passes the
SOAP handler before it is received by the Web service. And
a response of the Web service first passes the SOAP handler
before it is received by the client. In addition, subsequent
means that a request message first passes the SOAP handler
and is then sent to the Web service. A response message
first passes the SOAP message handler and is afterwards
forwarded to the client. On client-side the situation is vice-
versa, if a client-side sensor component is needed.

31

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

All sensor components have in common that they emit
events. The characteristics of the events depend on the
QoS attributes. The emitted events are collected by the
IEP component of GlassFishESB. Further, these events are
filtered using corresponding event processors. For the filter
policy description XML is used. The filter policy thereby
consists of the QoS attribute to pass the filter.

After passing the filter the events are processed by the
analysis and statistics component. The analysis is performed
by event processors. An event processor basically consists of
an input stream and some processing entities that end in an
output stream. For each QoS attribute a corresponding event
processor is implemented. The individual event processors
are designed and executed using the IEP design time and
runtime components.

B. Exemplary quality attribute implementations

In our proof of concept, we implement selected QoS
attributes. In a first step, we implemented the QoS attribute
of performance. In more detail: Based on SOAP message
handlers (client-side and server-side) we determined request
and response transmission time, service calculation time and
roundtrip time.

Also from the technical domain, roles and rights are
implemented. In brief: The individual Web Services of
eSOA are called by clients. Each client has an individual
identification. The right and roles model defines which Web
Service may be called by a certain client. The motivation for
this scenario is the analysis of a grown SOA on conformance
to given right and roles model. The task is to generate a
statistic on principals of service requests.

Different sensor components are implemented for this
task. A first kind of sensor component is a SOAP message
handler at server-side prepending to a Web service. Within
this SOAP message handler the principal of the incoming
request is determined from the SOAP message context.
Then, an event including this information on the principal
is emitted to the corresponding event processor. In brief,
an IEP component is a JBI module, that is added to and
deployed with a composite application. The event processor
appears as a Web Service that, in our case, uses SOAP
for communication. At the sensor component, respectively
our SOAP message handler, the created event, in essence,
is a SOAP message. The structure of the SOAP message
is defined in the JBI modules WSDL. Emitting the event
means, that this SOAP message is sent to the Web Service
exposing the event processor.

With regards to righs and roles, one concrete example
would be the SOAP request from the client is processed
by the SOAP handlers handleRequest() method. From the
MessageContext the principal of the SOAP request is de-
termined using method getUserPrincipal(). Next, a SOAP
message including the principal is generated and sent to the
event processors Web Service. At the event processor the

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

principal is compared to a database that contains the roles
and rights model, and any violation is indicated.

An alternative kind of sensor component uses the JMX
interface of the application server to extract the information
on principal of request on hosted services. Both kinds of
sensor components do solve the task, and either can be
used depending on existing restrictions. The advantage of the
second is that it does not touch services at all, but accesses
to application server management console is needed.

Another exemplary QoS attribute is from the business do-
main: schedule. With this a due date for shipment is agreed.
Motivation for this scenario is, for example: Shipment of
a placed order is guaranteed within 24 hours, otherwise a
certain discount is allowed. The task is to ensure this in
due time. If the due time is exceeded, statistics on time
overruns are to be generated and discount is to be given out.
Again, the Web services are equipped with SOAP message
handler as sensor components. From the SOAP messages
the information on order ID, actual time and due time is
extracted. With that information time overruns are detected
and statistics are generated at the analysis and statistics
component. On violation an application within the escalation
component automatically allows a discount.

VI. RELATED WORK

In 2005, an architecture based on Web services including
comprehensive QoS support was described by Berbner et
al. [5]. Within it particular Web services are composed to
workflows. Thereby, the selection of Web service is based
on their QoS properties that they guarantee in Service Level
Agreement (SLA). To ensure compliance to given SLAs a
monitoring component is mentioned, but not described in
detail.

The design and implementation of a high-performance
QoS monitoring system was presented by Zeng et al. [6].
Their two main issues on the monitoring system are the
service monitoring architecture and the QoS metric compu-
tation. Within their work a QoS observation metamodel with
three types of monitoring context, one on processes and two
on services, was developed. So the measurement points for
QoS monitoring are limited to the services and processes.
Our work is a more general approach, since we do not limit
ourselves to services and processes, but support any SOA
entity as described before.

A JMX-based monitoring extension of Java system ap-
plication server for the QoS attributes availability, accessi-
bility, performance, reliability, security and regulatory was
described by Artaiam et al. [7]. They also give a detailed
description of QoS attributes metrics. However, they are
limited to service-side monitoring, which means QoS mon-
itoring of services within the application server (GlassFish).
Client-side QoS monitoring is not included. Our approach
explicitly enables both, server-side and client-side monitor-
ing.

32

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

The integration of an existing client-side monitoring ap-
proach and a server-side monitoring using CEP to monitor
SLA was elaborated by Michlmayr et al. [8]. For CEP the
open source implementation ESPER is used. For monitoring
at client side so-called QoS monitoring schedules are used
that specify that certain services are monitoring in certain
time intervals. On server side a .NET technology is used,
which 1) is a limitation to certain server infrastructure and ii)
also limits the service implementation to .NET technology,
as is mentioned by the authors. The described solution archi-
tecture of the authors also includes a notification mechanism
to subscribers on detected SLA violations. Their approach is
similar to our approach. However, they use ESPER, focus on
.NET technology and monitor at dedicated points in time.
In contrast, our work uses the IEP component. Although
our proof of concept uses Java, it is also applicable to other
technologies, like .NET. Next, we use continuous monitoring
rather than dedicated points in time. And finally, we provide
a mechanism to trigger activities.

Monitoring of adaptable SOA was described in Oriol et al.
[9]. The focus is on dynamic adoption of a QoS-aware SOA.
Within the QoS-aware SOA QoS attributes are stated using
SLA. The current QoS values are monitored by a monitor
component and compared to the stated SLA at an analyzer
component. SLA violations are shown to a decision maker
component, which is able to perform adjustments within
the SOA. In contrast to our work, this approach focuses on
adjustments within the SOA. Our approach is more general.
In our solution, architecture adjustments are just one aspect
of possible escalation activities.

VII. CONCLUSION

By the combination of SOA system, monitor and filter
component, analysis and statistics component and escalation
system a versatile and powerful tool is available to analyze
SOAs on compliance to the defined QoS attributes. Using
this solution architecture compliance analysis is not limited
to services and processes, but also includes other SOA
entities, like application server and platform. This enables
for several QoS attributes yet not supported, especially QoS
attributes, like in our schedule example. With the escalation
component a variety of activities can be carried out. These
activities may be of more passive nature, like to issue a
ticket. Or of active nature, like enabling for a self-scaling
SOA. The boundaries of the given approach have not been
yet explored.

Our perspective is to enrich the existing systems with
additional QoS attributes that are not yet supported. There-
fore, it is necessary to determine which QoS attributes are
requested from both, the technical and the business domain.
And which of these QoS attributes can be formalized and
further supported. A related question is the use of alternative
description languages for QoS attributes.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

We will also implement additional tools to support de-
velopers with an interest for our approach. The generated
tools are to be added to different IDEs. A tool chain to
define additional QoS attributes, to equip Web Services with
these, and to deploy such Web services is implemented. Also
additional components to ensure compliance to these QoS
attributes will be provided.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
giving us helpful comments. This work has been partly sup-
ported by the German Ministry of Education and Research
(BMBF) under research contract 17N0709.

REFERENCES

[1] “Web services quality factors v1.0,” http://www.oasis-open.
org/committees/download.php/38611/WS-Quality_Factors_
v1.0_cd02.zip, accessed at 27. Aug 2010

[2] L. O’Brien Lero, P. Merson, and L. Bass, “Quality attributes
for service-oriented architectures,” in Systems Development in
SOA Environments, 2007 (SDSOA’07)

[3] “Web Services Policy 1.5,” http://www.w3.org/TR/ws-policy

[4] “Web Services Security v1.1,” http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss

[5] R. Berbner, O. Heckmann, and R. Steinmetz, “An Architec-
ture for a QoS driven composition of Web Service based
Workflows,” in Networking and Electronic Commerce Re-
search Conf. (NAEC’05)

[6] L. Zeng, H. Lei, and H. Chang, “Monitoring the qos for web
services,” in Proceedings of the 5th Int. Conf. on Service-
Oriented Computing (ICSOC’07)

[7] N. Artaiam and T. Senivongse, “Enhancing service-side qos
monitoring for web services,” ACIS Int. Conf. on Software
Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD’08)

[8] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Comprehensive qos monitoring of web services and event-
based sla violation detection,” in Proceedings of the 4th Int.
Workshop on Middleware for Service Oriented Computing
(MWSOC’09)

[9] M. Oriol, J. Marco, X. Franch, and D. Ameller, “Monitoring
Adaptable SOA-Systems using SALMon,” in Workshop on
Service Monitoring, Adaptation and Beyond

[10] D. Luckham, The power of events, 5th ed.
[u.a.]: Addison-Wesley, 2007.

Boston, Mass.

[11] Q-ImPrESS, “Enterprise SOA Showcase.” http://www.

q-impress.eu/wordpress/software/, accessed at 27. Aug 2010
[12] S. Microsystems, “Glassfish application server.” https://
glassfish.dev.java.net/, accessed at 27. Aug 2010
[13] Oracle, “Intelligent event processing (iep).” https://open-esb.
dev.java.net/IEPSE.html, last accessed at 27. Aug 2010

33

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Nontechnical SPAM Detection Paradigm
in Unified Communications Systems

Moritz Giesecke
School of Engineering, Pforzheim University of Applied Sciences
D-75175 Pforzheim, Germany
moritz.giesecke @hs-pforzheim.de

Abstract—The recognition and filtering out of unwanted messages in
technical communications media presents an ever more difficult challenge.
The best-known of these problems is with ubiquitous e-mail. Most e-
mail sent are unwanted spams. In order to protect the recipient the
most diverse applications must be used. Longer observations have shown
that spam is continually adapted and is able to overcome the most up-
to-date recognition programs. In the future the most widely different
communication methods are growing together such as e-mail, telephony
and others, so that soon we will be able to speak of unified communication.
There is a danger that these other communications media will increasingly
become the target of new types of spam. On the other hand this logical
union opens up new possibilities for spam recognition. In this paper, a
behaviour-based evaluation paradigm is introduced which works on a
uniform basis for all communications media. It uses an evaluation of the
three parameters of abstracted times of usage, distance of communication
partners and costs. All communication events between media using actors
create a social network whereby the actors are clustered according to
their social proximity. The evaluation of spam is a result of the actors
and cluster specific communication behaviour up to a point. In this way
a new non-technical level of analysis is created, which spammers can
only overcome with difficulty. Likewise the problem of limited focus in
network centred filtering programs is dealt with. The presented filtering
paradigm can be used unitary in all technical communications media and
works with the same three nontechnical parameters at a behavior-based
level.

Index Terms—spam, spit, unified communications and social networks.

I. INTRODUCTION

In modern communications media the proportion of unwanted
messages is continually growing. A classical example is e-mail spam,
which has appeared since the widespread use of e-mail services.
Normally, these are differentiated between unsolicited commercial
mail (UCE) and unsolicited bulk e-mail (UBE). Both forms are
normally characterized as spam [1]. The particular societal and
economic meaning of this amount, around 120 billion spam e-mails
per day, or calculated at up to 20 spams per day per person is fatal
[2]. Typical return rates are under 1 per thousand, depending upon
the quality of the spam [3]. By processing these spams economic
damages are incurred in the form of lost working time, server and
energy costs as well as the irritation of the users of the e-mail service.
By today, classical spam technologies are no longer used only for
advertising purposes; they are used for fraud, typically called phishing
[2].

Until now various classes of processes were used, based upon the
individual e-mail infrastructure or the users’ mail boxes to protect
against incoming spam. These differ according to granularity, effec-
tiveness as well as complexity of the filtering. In a typical mail server,
these filters are arranged in a cascade, see Fig. 1. Starting with a
Firewall, all incoming connections from IP addresses recognized as
known spam senders are blocked. After this first IP address based
list process, different black and white lists with known spam servers
and e-mail addresses are queried. These come from specialized

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

companies, which put a lot of effort into the finding of the most up
to date and correct data. Typically, the highest level of effectiveness
is achieved through recognition of spam e-mails and through the
avoidance of false positives. For this, three different lists are used
and then evaluated with a two out of three decision. Afterwards,
information in the e-mail header is checked to see if the address
name and server details are correct for the domain to send e-mails
by searching DNS records, which contains appropriate mail exchange
information [4]. After this, a specification of the SMTP protocol is
exploited using the grey listing process [5]. In doing so, a temporary
problem in receiving the e-mail is simulated in the users own server.
Real mail servers wait a certain amount of time and try a new
delivery; typical spam senders on the other hand drop the repeated
delivery of the spam e-mail. A further recognition method, which
consists of comparing as many as possible of received e-mails is
the well known process called Distributed Checksum Clearinghouse
(DCC) with a distributed checksum filter [6]. This consists of cross
server boundary checking for the existence of the same or similar
e-mails. Following this, e-mails are evaluated according to content
based on the signalling process method. Typically, Bayes-filters are
used, which must firstly be trained with the typical appearance of
spam and reasonable e-mails [7]. Afterwards, on the basis of this
training, the e-mails were scanned for these patterns of learned words
and then weighed against each other. This results in a decission
about the current received e-mail, whether it contains spam or
not. In addition to these generally easily accessible procedures, as
they are reproducible from open source software, there are different
commercial service providers with proprietary procedures offering
the evaluation of incoming e-mails. An example named here is
Cisco SenderBase, which works off of a central database containing
reputation values of individual e-mail addresses and organisations [8].
The evaluation process uses more than a hundred different parameters
for the evaluation [9]. An important critical point is the central capture
of the e-mail traffic occurs nearly in real time and the long term
storage of the same. Parallel to these technical filtering processes,
the introduction of a global legal barrier for allowed e-mail marketing

Filter
No. <n>

=

Spam filter cascade with cost-benefit relation

Filter
No. 1

Filter
No. 2

| Filter |__

No. 3

Filter
No. 4

L e e o L L »

Total amount of classification results|

| Expenses for filtering

Figure 1.

34

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

== 7

Unified- - - -
Layer Nontechnical SPAM Detection Paradig fctar
Configuration I
Abstraction Layer and Switch Matrix
!
Service- 1 \
hayer telephon?\? e-mail & others.g
landline, @ s
mobile or & QV' QV'
VolP & 2) 9D
O
J?b) ‘\\‘oéz‘f & &Q;Q
s G .S S
& - <&
K Qs s
2 O & O 2 @
NS SR > Q
fllb\Q Q?\Q $ >
é&@ @8? @
Network-|
lLayer

Phone Network Data Network “Transport Medium*“

Figure 2. Unified Communications System in an abstract view

since at least the end of the 1990s took place, i.e., in the USA and
Germany USA and Germany [10] [11]. In spite of a few, but deterring
judgements there has been no visible reduction in spam. The leading
suspects are known in part by name and with a photograph [12].

A. Characteristics and transformation of spam

In order to be interesting for the spam-senders, a few characteristics

must be present in the communication media. Mainly, low cost, so
that an individual spam process can not incur any costs. Because of
the low rate of reply gigantic amounts of individual spams are sent.
Equally important is the possibility of sending a variable content.
In order to provoke a response from the recipient of the spam, the
spam appearance must be varied. Limited traceability meaning that
the spammer tries to conceal their true identity to avoid trouble with
the recipient of spam. There can be possible civil suits for damages
and financial compensation and severe criminal consequences. Simple
completion; meaning that the recipient of the spam should easily be
able to respond to the spam. Typically, spam has a feedback link,
which logically lies as close as possible to the communication media
of the spam. For example, a successful spam e-mail pulls the user
who received it directly to a web page, which may instantly be opened
with one mouse click.
In spite of the laws against spam and other legal instruments available
there is little help on the way towards a more tightly ordered e-
mail framework. That is why new technological evolution must be
continuously developed and implemented in order to act against the
continuous flood of spam. Communications media are the target of
spam as soon as the above mentioned characteristics are fulfilled.
In addition to the old e-mail spam problem, the spam over internet
telephony (SPIT) is growing recently, but is still not as intensive
as traditional e-mail spam. With a telephone call, the recipient is
provoked into giving a reaction which allows the spammer to make
a profit. An example hit German customers that used a SIP-based
VoIP connection in the first mass spamming in September 2008 [13]
[14].

B. The idea of Unified Communication

The users of modern communication technologies are taken in
more and more by the complexity of the technology and the operating
effort for the user of different communications media such as e-
mail, telephony (land lines, mobile or cell phones and voice mail
services) as well as multiple specialized services (Instant Messaging,
Pager, Groupware solutions). In addition to various user variations

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Ejs(M)=1
Ejr(mi)=1
Ejr(M)=1

Eis(ny)=1
Eis(me)=2

Figure 3. Social network as a graph with actor properties

and configuration options on the part of the recipient’s end it is
also difficult for the communications initiator to reach the desired
communications partner with the correct communications medium.
The origins lie in the asynchronous communications media such as
e-mail, for which here the term Unified Messaging is used. The
idea of Unified Communications (UC), is the managing of different
types of communications media bundled in one location with a
supporting function to relieve the user. It is not totally clear in the
general language usage as of when Unified Communication can be
spoken of or rather, which criteria must be completely fulfilled. For
the consideration of this paper it is assumed that in addition to
the other aspects of UC technology a central instance exists that
captures all communication procedures, manages all of the user’s
preferences and can appropriately influence the communication. As
an example calls can be rerouted to a voice mailbox and the message
can be sent by or as an e-mail. It is equally possible to think of
calling up e-mails by telephone and having them read aloud using
a text2speech system. The required settings would be in put by the
user themselves, and thereby be part of the user’s preferences. Such
an Unified Communication System (UCS) scheme is shown in Fig.
2. All communications media in the UCS, are connected to the
rest of the world by their different transport media in the network
layer. Typically, this is an IP-based network for e-mail and VoIP
or traditional phone networks often referred to as PSTN. Any other
communication media are of course also conceivable. The different
communications media resides, in the so-called service layer, where
they are considered as separately existent. The usual media specific
Spam test procedures (e.g. signalling and content evaluation), are
applied here. The unified layer is aware of all communication events
sent or received by the actor, indicated by the light-blue arrows.
Furthermore, this layer makes available also all the benefit features
described with the idea of UC, once it gets configured by the actor.
This is the instance is the place, where the subsequent described
nontechnical Spam detection is carried out.

C. Information gain with social networks

With the idea of the social network connections between people
can be formally modelled, whereby the interactions of people can be
graphed. Fig. 3 depicts the connections £, shown as edges, between
the individual human actors M = {mi,mq, ...}, shown as nodes.
The edges arise from the performed communication events within
the group of observed actors. This concept uses a communication
process, for example a delivered e-mail or a finished telephone
conversation or any other discrete event using any other possible
communications method. In this way any interaction between people
through the use of communications media can be represented. At first
invisible information content is made up of exposing the relationship,
the organizational structures, work processes and the influences of
events. The sociological and mathematical formulated questions of
the social network analysis (SNA) have been researched enough
and have found practical applications in sociology, economics and
criminalistics. Further applicable methods such as data mining can

35

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

be derived from general sources [15] [16].

In large UC systems of telecom companies are I different human
actors present, who have access to K different communications
media. Between the system members and the system non-members
from outside user communications processes take place, which can
be transferred into a social network. At the observation starting
point there are already a number of communications processes
available so that an adequate connection density amongst the actors
of the social network exists. Because of the freedom of the modern
communications media, boundless interactions between them are
possible and the evaluation of the social proximity network follows
through the intensity of the incidences of communications events.
Therefore the choice of the communications medium K is irrelevant.
Important is the individual communications event E only. Thus a
first approximation of the social proximity Vs between two actors is
given through the amount of events between them. Here is a summary
of reciprocally received events by recipients (received) where the
syntax Fcqcteurs,r(< partneracteur >) is used:

Nsoc(mi,mj) = E’iﬂ“(mj) + Eﬂr(ml)

A proposition with this first assumption does not take into account
the relativity of the amount of communications events that the actors
or partner actors sent (indicated by s) to the other actors within
the observed social network. In order to be able to capture these
relatively important reciprocal events,bpoth actors are introduced with
an additional proportionality factor <ACt"‘,E“22’;:f>“;t(’};‘[)A”‘"T>. In
the sum of all £ of an actor to a partner actor and the sum of
all Fs from this actor to all other actors M, the attractiveness of
the respective partner actor is determined from the ratio between the
count s to the respective partner actor and the count of E, to all
others actors in M. Because in a UCS the human actors continuously
communicate, the form of social network is seen as variable and
therefore also those with the equivalent (1), determined value for
Nsoc between two actors.

Eis(my) Ejs(ms)
Br o) LM o

That is why it is recommended to define an observation interval At,
within which a calculation of N,,. (approximation) is seen as valid
and must be newly recalculated. These order of magnitudes of the
observation intervals result in the emergence of new E, the system
performance capability towards the eradication of filtering cycles (see
Section II) as well as the volatility of the current spam in comparison
to the recognition capability of the filter systems.

For Ns,. the valid conditions are that the value of the result is
non-dimensional, Nsoc(ms,m;) = Nsoc(mj,m;) and Ngoe > 0.
The clamping of such a social network can first take place after a
initial observation time, meanwhile the actors have produced a certain
amount of communications events F. For the new evaluation process
of this paper the quality of the social network depends upon as many
as possible of the intended communications processes in the network
derived by means of the intended prototypical performance. Only a
few spams which were able to overcome the previous filters can be
tolerated as they will be detected as inappropriate.

Nsoc(mi7 mj) = Eiﬂ“(mj) *

(€]

D. Related works

Most spam recognition processes are based on the technical
signalling information of the various communications media, e.g.
within the transmission of e-mail typically on the level of Internet

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Protocol and SMTP. A further class of processes work on the basis of
content, in the e-mail service as an example Bayes and Markov filters
or DCC as well as VoIP methods for the differentiation of humans
and machines. Furthermore there are ideas for the use of processes
out of the field of social network analysis (SNA) for the recognition
of spam [17] [18].

Typically these approaches are used on ordinary e-Mail traffic and use
the results of various metrics to scan for the characteristics of spam.
Here, primarily two general classes of procedures are widely used. On
the one hand it is attempted to assign each communication participant
a reputation value based on experience over a long period of time.
On the other hand, the behaviour of communication participants vis-
a-vis other participants can conclude the likelihood of spam.
Nevertheless, in the technical reality there exists the problem of a
limited focus. Every filter instance of any such SNA based process
can only work with the information that runs through the commu-
nications system used. This leads to spammers from outside the
SNA based filter system, in certain instances, exhibiting no complete
characteristics of spam if they, for example, only send a small amount
of spam in the focus of the SNA filter systems [19]. Thereby the
spammers wouldn’t, in certain circumstances, be recognized as such.
From the main countries of origin spam is distributed globally and it
can be assumed that these will not be completely hit by the individual
SNA based filter systems.

The filter processes presented in this paper primarily observe only
individual system communication participants using all available
communications media. It evaluates, using the method of normal
user behaviour as though these successful incoming communications
processes are desired. In the following, a non-technical level of
analysis that circumvents the problem of limited SNA focus and
thereby presents a realistic scenario suitable for the communications
infrastructure of the telecom companies (development of design
technology for telecommunications service provider), is introduced.

II. FILTER METHODS

The UCS passes all data of the users to the filtering processes.
These parameters are: communication partners and times, the commu-
nication media, resulting costs as well as possible profile information.
If interaction occurs with a foreign actor from outside of the system
limits of the UCS, which involves a previously unknown actor, this
communication will be saved to the database as well. Doing so, all
available data of the communication events is captured.

In the literature there are countless methods describing how to search
available data bases according to problem oriented parameters. Most
of these procedures have their origins in the optimization of business
process in commercial fields. Others come from purely scientific
queries, for example the researching of questions in sociology. In
the UCS there exist the communication relationships of individual
actors of the UCS amongst themselves and beyond the UCS. This
data is spanned as a social network. In this way there is no
differentiation made about the type of communication media that
was used for a communications event that has taken place. In the
social network there are clusters in which the partial totals of the
actors are significantly more densely bound together compared to
communications participants from other areas of the social network.
These clusters are detected using a k-Means-procedure and the actors
are appropriately assigned to them [17]. This class of procedure is a
simple and fast method of cluster identification and is widely used in
SNA applications. The number of clusters Count is predetermined
because the k-Means-procedure is hard partitioned. As a distance
function of the k-Means-procedure the social proximity /Nso. between

36

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

TABLE I

EXAMPLE PARAMETERS OF DIFFERENT COMMUNICATION MEDIA TO FEATURE EXTRACTION

communication media H user identification

location parameter

starting time

approx. expenses

eMail MAIL FROM initial MTA delivery start time amount of data

PSTN phone number prefix number call start time estimated charges
Cellular radio phone number home network call start time estimated charges

VoIP SIP indentity IP-Subnet call start time estimated charges

o © Krasnojarsk
Novosibirsk. b
RUSSLAND / % bvian e

e\
Semipalatinsk "\ ul
KASACHSTAN

—~
Company B: unknown users

Company A: users known by the UCS

Figure 4. Example of a usage scenario with an incoming event

individual actors is used from (1).

At this point, the theory of operation will be explained with of
a pithy example. In a fictive situation company A is collaborating
with a company B during a product developement process. The two
companies are far away from each other, one of them for example
in China, see Fig. 4. The communication of the users in company A
are protected with the new filters residing in their UCS. The heads of
both development departments have a lively exchange over different
communication media with each other, these events are indicated by
the two black lines. Then an external developer hired by company B
gets a problem definition to solve, for which he has to communicate
with a developer of company A. So, both developers had not been
in contact before and with the fact of the external hiring, traditional
filters like (personal) listing procedures can not use common criterias
of company B, e.g. domains in e-mail adresses or transmitted phone
numbers. At the moment of receiving a communication event in
company A’s UCS, sent by the external developer, the filters know
about the social proximity between company A’s head of develope-
ment and company A’s developer (actuall receiving). By the former
communication behavior between the two developement heads in
A and B, the filter system is aware of the heads A parameters
in times of usage, distance of communication partners and costs
of communication. When deciding about this communication event
solely by tradional spam filters, the result could be unsure. And when
deciding with former personal behavior of the developer in company
A, the result could be unsure too. But now the corrective properties of
company A’s head of developement, which is detected to have a high
social proximity to his developers, could be applied to the filtering
process of this incomming communication event.

A. Data pre-processing

Each actor shows connections in the social network through the
various communication processes with other actors from the range of
available communications media. Out of the communication relation-

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

ships of individual actors three characteristic relationship parameters
are able to be derived by every communication process in every
type of communications media available. Additionally, it is possible
through the communication behaviour of closely connected actors
to connect them to clusters and to in turn derive the three charac-
teristic behaviour parameters of the clusters. These three behaviour
parameters are the times h, at which communications procedures
take place, the distance d between the participating actors and
subsequently occurring costs c. The distance data are deduced from
the technical parameters of the appropriate communications medium
or communication system. Typically available communications media
example parameters are shown in table I. Afterwards this makes
procedures usable for position determination [20] [21]. The media
specific costs due to a communication process can be deduced
from telephone charges or the volume of transmitted data. In order
to get the abstract comparable costs of a communication process
from various communications media the cost parameters for these
considerations are standardized units and therefore comparable in the
sense used here.

Each actor is given a 3 tuple as parameter data for the three
characteristic behaviour parameter, see (2). The elements of this make
up the parameter and can be expressed through their index.

h(m;)
T, = (d((m;) ()

Over a long period of time, a human actor displays time focal points
upon which multiple communications have taken place. Capturing
the time occurrences of the communication takes place in intervals
in order to capture phases of increased communications incidences.
This method is presented as a bar chart (see fig 5). A class wide of
60 minutes is proposed. Thereby a compromise between cancellation
and complexity is given. Consequently a relationship is given between
the division of the communications events in the different intervals
and information about preferred communications points in time. As
indicated in (3), the communications events are assigned to the 24
elements of the time vector .

> iy Er(m)
hi(ms) = (: 3)
Zi4=23 B (m)

The captured position of the actors m;, at every communications
event, and his corresponding partner actor is processed to the distance
d. In this way a prototypical range of all communications can be
calculated out of the number of all communication processes. This
takes place through the mathematical mean, here the distance of all
communication processes totalled is divided by the set, see (4).

E (Count) .
d(mi) = 2k E..(Distance)
Epn(Count)

Every communications instance has a cost c applied to it, in order
to be able to classify the value of a communications instance, see

“

37

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

(5). Typically, this value is generated from the sending actor or his
approximate surroundings. From the sum of all communication in-
stances a prototypical cost value of the communication is calculated.
This is represented through the mathematical mean, here the costs of
all communication instances are totalled and divided by the set (see
equation 4).

kE;”l(CO“m) Ern i (Costs)
En(Count)

c(m;) =)

Subsequently the actor specific first part of the pre-processing
clusters are searched for in the social network. For this the k-
Means-procedure with the distance function given in equation 1 is
used. Thereby the actors are connected to clusters which appear,
through the communication behaviour, to be closely linked. After
the clustering is carried out, each cluster C} is assigned with the
actors C <acteurs>. According to the actors parameters three cluster
parameters h(C;), d(C;) and ¢(C;) are represented. These result
from the arithmetic mean of the actor’s parameters in the cluster.
Thereby the parameter values of the actors in the cluster are added
and divided by the set of the actors in the appropriate cluster. In this
way the prototypical actor value for the cluster is generated. This 3

tuple is shown in (6).
R(Cy)
T, = | a(cy) (6)
c(C;)

The captured values T, and T¢, can have their lines addressed
through the index.

B. Evaluating the communications incidences

With the gathered and pre-processed data from the observed
user behaviour, a simple test for spam or ham can be carried out
upon the arrival of an external communication event F,, on an
actor in the UCS m;. Thus, the actors and the cluster specific
parameters are viewed as equal valued statements. With the linking
up of individual behaviours, the affiliated actors and through the
cluster analysis uncovered connection, the data basis for the decision
is considerably enlarged and possible evaluation errors can be
minimized. The cluster bound actors are socially affiliated and
display similar communications behaviour. In this way the cluster
specific statement confirms or corrects the actor specific statement.
The ratio, between the new and individual communication event
current and the previously determined average value all, will be
calculated for each of the three parameters h, d and c. To evaluate a
single communication event a non-naive approach is chosen, which
means the result of the relationship comparison drives against the
value 1.0. This means the smaller the result’s absolut value of the
subtraction, the lower the probability of spam. This is represented
by a subtraction of the evidence of a relationship comparison of
one. In (7), the number of communication events in the class (time
slice) of the current communication process Acyrrent 1S compared
against all other classes according to the number of E,, contained.

T, (1,current)
T, (Loall)

Tc, (1,current)
Tc, (1,all)

hresult (Er(mz)) =1.0—-

5 N

In (8) the mean distance value from the recipient actor and his
cluster are tested against the value of the received communication
events.

T, (2,current)
T, (2,all)

T, (2,current)
Tc, (2,all)

dresult(E'r(mi)) =10- (8)

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In (9) the mean cost value of the previous communication of the
recipient actors and their clusters are tested against the value of
received communication processes.

Ty, (3,current)
Tyn; (3,all)

T, (3,current)
Tc, (3,all)

Cresult (Er(mz)) =1.0- (9)

C. Summary of the filter results

In order to summarize the three different filter results into a result
value, a specific term must be used that allows it on the one hand
to contain the total result, and on the other hand takes into account
the characteristics of the individual filter levels. According to size,
or rather construction of the social network in a database, various
individual results can be achieved using evaluations metrics. A simple
scoring method is based on experience values existing above the
reliability of individual metrics in the usage context of the UCS.
If it is recognized that the participant results invalidate, the spam
level of a communication instance F; ., the weighting factors a, b
and ¢ not equal to 1.0 can be chosen. The individual metric results
are multiplied with the scale factor and the product totalled.

Spamle’U@l(Ei,r) =a* hresult + b * d'result +c* Cresult (10)

For making a decision about a current F; ., whether it is spam or not,
a threshold must be defined. The value to be used here is an individual
nature, according to whichever risk of false positives appears to be
acceptable.

D. Filter Position within a total context

The results from the filters described here can not reliably decide
on a positive spam detection alone. Because of the multiplicity of
possible connections a result value is only an additional indicator
in the collection of all evaluation processes. Therefore a linking
with the other (media specific) filters of individual communications
media is allways necessary. Typically there are the hard criteria,
such as firewall or listing procedures, which without cooperation
with other filters reach a valid conclusion and soft criteria, such
as content evaluation processes. For the final evaluation result of a
communications process the results from all filter processes in this
paper must be run together with the other processes. Typically a
weighting according to reliability as well as personal settings of the
associated communication participant will take place in the UCS.

III. FURTHER ASPECTS

A telephone system’s calculations data is taken and investigated
for the characteristics of the three parameters h, d and c. The data
contains only the call placed by internal participants to unknown
external numbers. The capture resulted originally for the purposes
of billing only, not for the new procedure presented here. According
to German data privacy law, the collection of unnecessary personal
data is not allowed without agreement of every affected participant.
There are no telephone calls between two or more known internal
participants available, so that no social network in the appropriate
sense can be spanned. The pure simulation of an artificial user group,
in which each user generates the three parameters (ﬁ, d and c) by
random processes, would lead to results that are far away from reality.
The following results presented in Fig. 4 to 6 originate from October
2009 data, the resulting analysis was carried out with standard tool
boxes from Mathworks MatLab. There are 9298 communication
events from 408 different call numbers available, a total of 42,211
charge units were used with an average speaking length of 287.48
seconds. The Fig. 5 to 7 were created using all available data
thereby representing the total relationships of all participants. Clearly

38

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

recognizable are working hours and weekends, as during that time
little appreciable private call activity at the university takes place, see
Fig. 5.

1200

1000

Number of Phone Calls

)
Day of Month

20
Daytime / h

Figure 5. Call distribution over time of day and month

A large proportion of calls are shorter than five minutes and involve
minimal cost, based on the charging units, see Fig. 6.

2000 ©
= 4000
1800 H
§ 3500
1600 [
k3
T o 20
2
1200 5 =0
=4
1000 2000
800
1500
600
1000
400
200 500
0 -
0 5 10 15 20 25 30 3 40 4 80 0 2 30 40

Eq &
Units of Charge ————Duration of Call / Min

Figure 6. Call distribution over fee and time

The international calls are distributed over only a few target
countries. This characteristic could be derived to a criterion for
filtering by distance values, see Fig. 7.

Abroad Destination Metworks (131 of 9295)
Slovenia

Switzerand

France

Metherland

A and Canada

924

. Greece
Austria

Figure 7. Abroad destination networks over a month

Through the broad range of the appropriately investigated parame-
ters it is evident, that the procedure introduced here can give strongly

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

conclusive results.

In order that these methods do not have to only be used with external
databases an experimental UCS is being worked on at Pforzheim
University, which unites the communications media of telephony and
e-Mail and offers the possibility of the analysis introduced here. It
will therefore be possible to evaluate the described procedures in a
situation approximating reality and to variably test the parameters of
different evaluation processes.

IV. FINAL REMARK

Proof of the effectiveness of the presented methods can only, untill

now, be given from theoretical experiments as at the moment no
data fulfilling the assumed conditions (social network capable) for
this theory, is available. Because the decision procedures are based
using the three parameters in (7), (8) and (9) on hard limitations,
incorrect decisions on these limitation values are not unlikely. Real
enviroments impose to implement an imprecise decision threshold, for
example through the simple one-dimensional variance VAR(X) =
>7(X — E)? of the appropriate parameter X, with the arithmetical
mean as expectation value FE. The effectiveness of constant pur-
ported and thereby potentially suboptimal number of clusters through
purported quantities of hard partitioned k-Means-procedure is also
to be investigated using the available applicable data. Both input
values from position and cost estimates will show different exactitude
according to origin and communication instance. In combination with
several relationship parameters and their histories these parameter
input characteristics should be insignificant.
The procedure presented in this paper from three captured parameters
of all conceivable communication media (time use behaviour, distance
from communication partner and incurred - if only abstract - costs) in
combination with individual and sum total behaviour as a reciprocal
correction is a new type of idea in the battle against spam.

ACKNOWLEDGMENT

This research was made possible through Professor Dr.-Ing. Frank
Niemann (Engineering) and the Pforzheim University as well as the
Federal Ministry for Education and Research. The data represented in
this paper does not necessarily represent the opinion of the Pforzheim
University or the Federal Ministry for Education and Research.

REFERENCES
[1

—

The Spamhaus Project, The Definition of Spam, February 2010, Checked
September 2010 http://www.spamhaus.org/definition.html.

Cisco IronPort, 2008 Internet Security Trends - A report on Emerging
Attack Platforms for Spam, Viruses and Malware, Checked September
2010 http://www.ironport.com/securitytrends/.

C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker,
V. Paxson, and Stefan Savage, Proceedings of the 15th ACM CCS,
Spamalytics: An Empirical Analysis of Spam Marketing Conversion,
October 2008, Checked September 2010 http://www.icsi.berkeley.edu/
pubs/networking/2008- ccs-spamalytics.pdf.

J. Klensin, RFC 5321: Simple Mail Transfer Protocol (SMTP), October
2008, Checked September 2010 http://tools.ietf.org/html/rfc5321.
Wikipedia, Greylisting, 4th February 2010, Checked September 2010 http:
/fen.wikipedia.org/w/index.php?title=Greylisting&oldid=341929685.
Rhyolite Software LLC, Distributed Checksum Clearinghouses, Summer
2008, Checked September 2010 http://www.dcc-servers.net/dcc/.

Dr. S. Ritterbusch, Die Mathematik des Bayes Spamfilters, Checked
September 2010 http://www.math.kit.edu/iag1/~ritterbusch/seite/spam/de.
Cisco Systems Inc., Description of the SenderBase Network, Checked
September 2010 http://www.senderbase.org/about.

Cisco IronPort, The SenderBase Network - Overview, Checked September
2010 http://www.ironport.com/pdf/ironport_senderbase_overview.pdf.
[10] Federal Trade Commission, The CAN-SPAM Act: A Compliance Guide
for Business (Facts for Business), September 2009, Checked September
2010 http://www.ftc.gov/bep/edu/pubs/business/ecommerce/bus61.shtm.

[2

[

(3]

(4]
(51
[6

[t}

(71
(8]
(91

39

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

[11] The German Federal Ministry of Justice, Gesetz gegen den un-
lauteren Wettbewerb, 2004, Checked September 2010 http://www.
gesetze-im-internet.de/englisch_uwg/index.html.

[12] The Spamhaus Project, TRegister of Known Spam Operations (ROKSO),
February 2010, Checked September 2010 www.spamhaus.org/rokso/.
[13] J. Rosenberg, et. al., RFC 3261: Session Initiation Protocol (SIP), June

2002, Checked September 2010 http://tools.ietf.org/html/rfc3261.

[14] Heise-Newsticker, Erste grofiere Attacke gegen deutsche VoIP-Nutzer,
September 2008, Checked September 2010 http://www.heise.de/security/
meldung/Erste- groessere- Attacke- gegen-deutsche- VoIP-Nutzer-207400.
html.

[15] D. Jansen, Einfuehrung in die Netzwerkanalyse: Grundlagen, Methoden,
Forschungsbeispiele, August 2006 (3. Auflage), Vs Verlag,

ISBN-13: 978-3531150543.

[16] D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining
(Adaptive Computation and Machine Learning), October 2001, The MIT
Press ISBN.

[17] H.-Y. Lam and D.-Y. Yeung, A Learning Approach to Spam Detec-
tion based on Social Networks, 2007, CEASO7 Fourth Conference on
Email and AntiSpam, September 2010 http://www.ceas.cc/2007/papers/
paper-81.pdf.

[18] P. O. Boykin and V. Roychowdhury, Personal Email Networks: An
Effective Anti-Spam Tool, April 2005, IEEE Computer, Vol. 38, No. 4,
pages 61-68.

[19] The Spamhaus Project, The World’s Worst Spam Producing Coun-
tries, March 2010, Checked September 2010 http://www.spamhaus.org/
statistics/countries.lasso.

[20] Wikipedia Encyclopedia, Signaling System 7, April 2010, Checked
September 2010 http://en.wikipedia.org/w/index.php?title=Signaling_
System_7&0ldid=346781094.

[21] J. A. Muir and P. C. van Oorschot (Carleton University, Technical Re-
port), Internet Geolocation and Evasion, April 2006, Checked September
2010 http://www.ccsl.carleton.ca/~jamuir/papers/TR-06-05.pdf.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

40

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Formalisation of Mediation Protocol for Web Services Composition with
ACME/ARMANI ADL

Raoudha Maraoui
Faculty of Sciences of Monastir
Tunisia
maraoui.raoudha@gmail.com

Mourad Kmimech

MIRACL, ISIMS, Tunisia
mkmimec2@iutbayonne.univ-pau.fr

Mohamed Graiet

MIRACL, ISIMS, Tunisia
Mohamed.graiet@imag.fr

Mohamed Tahar Bhiri

MIRACL, ISIMS, Tunisia
tahar_bhiri@yahoo.fr

Béchir El Ayeb
Faculty of Sciences of Monastir
TUNISIA
Ayeb_b @yahoo.fr

Abstract—SOA (Service Oriented Architecture) defines a new
Web Services cooperation paradigm in order to develop
distributed applications using reusable services. The handling
of such collaboration has different problems that lead to many
research efforts. In this paper, we address the problem of Web
service composition. Indeed, various heterogeneities can arise
during the composition. The resolution of these heterogeneities,
called mediation, is needed to achieve a service composition. In
this paper, we propose a sound approach to formalize Web
services composition mediation with the ADL (Architecture
Description Language) ACME. To do so, we first model the
meta-model of composite service manager and mediation. Then
we specify semi formal properties associated with this meta-
model using OCL (Object Constraint Language). Afterwards,
we formalize the mediation protocol using Armani, which
provides a powerful predicate language in order to ensure
service execution reliability.

Keywords- Web Services Composition; Mediation;
Transactional Web Services; Formalization; ACME/ARMANI
ADL; reliability.

. INTRODUCTION

The recent evolution of Internet technologies expands
the role of the Web from a simple data support to a
middleware for B2B (Business to Business) applications.
This new Internet wave is guided by the concept of Web
services. However, it is necessary to combine a set of atomic
service to answer for more complex requirements [1]. The
problem we are interested in is how to ensure a reliable Web
service composition. By reliable, we mean any compositions
where all instances are correct in the sense that they meet
designer’s requirements, and especially in case of component
failure. But, despite the organization of the composition into
steps, the Web services composition has many heterogeneity

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

problems. The resolution of these heterogeneities, called
mediation, is needed to achieve a reliable service
composition. In this paper, we formalize a reliable service
composition based on non-functional Web Services
properties. To do so, we describe the protocol mediation
using the ACME of architectural concept style and Armani
[17], to detect architectures software disparities.

This paper is organized as follows. In Sections 2 and 3,
we present the Web services modeling related works, and
then describe our formalization approach of Web services
composition, respectively. In Section 4, we study the Web
services meta-model and we propose a new composite
service meta-model. Afterwards, we present in Section 5 the
informal and semiformal specification of transactional
properties. In Section 6, we propose a new architecture. In
Section 7, we present our case study: a travel agency
application. Finally, we conclude the paper by summarizing
the main results and describing our futures woks.

Il. RELATED WORKS

Many efforts have been provided to allow a usable and
acceptable Web services composition. These efforts have
been implemented by several composition standard and
approaches and vary between those that aspire to become
industry standards to those that are much more abstract.
There are several formalisms for modeling Web services
composition. We can cite the Petri nets, contracts, graphs, [2]
, [3] UML (Unified Modeling Language), and ADLs. Each
approach has advantages and disadvantages. For example,
modeling using Petri nets is sound, has an intuitive graphical
representation, and very visual. This approach is relevant but
does not use the power of Petri nets for the composition
verification. It does not model inputs and outputs of services.
Another approach [4] used the concept of contracts, which

41

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

are graph transformations rules. They are specified by
assertions expressing the the parties’ obligations and rights.
This approach remains inadequate if we want to make a
dynamic or semi-automatic service composition. In our
work, we try to formalize Web services compositions with
ADL, an architecture description language which describes
such formal process. It is recognized that UML does not
describe software architecture within the meaning of ADL
[5]. Even if you can use profiles to give the ADL
characteristics [6], this approach limits his strong reusability
property. Therefore, our approach is inspired by ADL. Yet
most approaches ignore the specification of non-functional
properties such as security, dependency, or transaction
management. We try in this work to formalize Web services
compositions with an architecture description language by
implementing the protocol mediation and encouraging a
large proportion of non-functional properties namely
transaction management. In the next section, we present our
method of formalization that derives from an MDE (Model
Driven Engineering) approach which is based on the use of
the ADL ACME / Armani.

I1l. PROPOSED APPROACH

In order to check the Web services composition, we use
an MDE-based approach (Fig. 1).

Meta model of formalization Stvle: Meta model
M2 web services — of web services
7| composition in composition in
BPEL / WSIOL update ACME / Armani
-

mmst beTconfoml to? mmst be conform to'.’TA{*meSmdio

Svstem: Scenario System Composition

implementation of web services

in ACME / Armani

mapping

L
M]

M1

Figure 1. An overview of our services composition checking approach
applied to the web service model.

Indeed, we distinguish two levels M2 and M1. The M2 level
describes the Web services composition meta-model and its
formalization in Acme/Armani while the M1 level describes
the services model. We aim to check its conformity with its
meta-model.

For that purpose, we transform this service model into
Acme/Armani through the M2 level formalized in
Acme/Armani. The M1 level is conform to the M2 level if it
checks the coherence of rules described in the M2 level and
the specific rules described in the M1 level. This is checked
thanks to the AcmeStudio environment, which enables the
evaluation of the Armani constraints [8].

Indeed, to achieve the formalization of web service
composition in ACME and check the consistency of this
composition, we describe the meta-model of web service
composition (M2) using the concept of architectural style of

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

ACME. A web services composition in M1 is described
using the concept of ACME system. Level M1 is said to be
conform to M2 if it satisfies the consistency rules described
in M2 in addition to specific rules outlined in M1.
Our approach of components assembly checking has
several advantages:
e It could be applied to several components models.
o It allows validating (see the labeled arrow updated
on Fig. 1) the coherence rules described on the M2
level of the considered component model. Indeed,
the completeness of these rules must be considered
as well on the theoretical level as on the practical
level through a test activity. Representative test
models based on functional testing can be
established in order to validate the coherence of the
suggested rules thanks to the AcmeStudio
execution environment.
e The expressiveness power of Acme/Armani is
higher than the UML/OCL which is considered as
an alternative to our approach.

IV. META-MODELING OF COMPOSITE SERVICE

In this section, we offer an overview of the services
composition that defines a meta-model of composite service.
This meta-model reifies all reliable characteristics of a
service composition. It identifies their interdependencies,
allows a comprehensive understanding of the mechanism
composition and provides the ability to reuse our meta-
model, which is independent of application domains or
specific technologies. The construction of our meta-model is
based on the modification of various properties of a service
composition. Each of its properties is clearly identified and
defined. Moreover, our meta-model is built as an extension
of the meta-service model of OASIS (Organization for the
Advancement of Structured Information Standards) [10] and
W3C (World Wide Web Consortium). As, an atomic service,
a composite service inherit all properties [11]. A composite
service is a composition of one or several services: services:
the services' constituents.

We allocate these services constituents to business
services and management services of the composite (Fig. 2):

Atomic Sewice
Q}name

MSC +manager senice
@name -
-

Service
Q}name
Composite Semvice
&name

CBS "~ +business senvice
&name [
*

Figure 2. A meta-model of composite service.

42

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

e Business services: These services provide their
functionality without global knowledge of the
composition. The business services are grouped in
the composite service business or CBS.

e Manager Services Composite MSC: These are
specialized services in the management of the
composition logic. They manage the other
components and services, which have a
comprehensive understanding of the composition.
The service managers are grouped in the manager
service composite or MSC [12].

The MSC meets all services managers who are totally
transparent to users. It is the invisible part of the composite,
in charge of the composition logic. Inspired by services
composition existing work, we can abstract four main roles
that are described in Fig. 3:

Himocation senice

Invacation Collaborationh Mediationht Adaptationl

Figure 3. A meta-model of Manager Service Composite.

We focus mainly on the definition of MSC and more
specifically on the mediation manager.

A. Web services mediation

The resolution of heterogeneities between Web services is
critical to the achievement of the composition of these
services. Indeed, the composition would lead most of the
times to failure without a mediation between the functioning
of services and data exchanged between them. In general,
mediation is to resolve conflicts between stakeholders to
ensure successful interactions. Furthermore, no current
approach offers a comprehensive solution to the mediation
protocol for Web services composition. Our work aims to
answer to this lack of clarity. We are interested in a
classification proposed by [7]:

e The integration level of Web services: aims to
resolve all the heterogeneities between the non-
functional properties.

e The adaptation level interface: aims to resolve all the
heterogeneities of the service properties described in
a WSDL document

e The data level mediation: aims to resolve all the
heterogeneities of the service of data exchanged
between the composed Web services.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

MMediation

¢
* * *
IMWS MAI MDM

1]

* FSM
NFMS

TN

*
T8M Q3M

MEM

Figure 4. A meta-model of manager mediation

However, we can go further into the analysis of the meta-
model and extract other properties to solve all kinds of
heterogeneity. These properties included the specific non
functional properties such as:
e The sequences message exchange (MEM).
e The transactional properties: They are managed by
the Transaction Service Manager (TSM).
e Quality of service (QSM): This term includes
nonfunctional properties, such as availability, speed,
and cost

B. The transactional patterns mediators

Moreover, we introduce in our mediation the concept of
transactional pattern, which is a point of convergence
between workflow patterns and ATMs (Advanced
Transactional Models) [14], one can express the logic of
business processes, and the other can define the reliability of
the executions. We also show their use to define and ensure
service reliability compounds. For example, we use the
ANDJoin pattern [15] that describes a class of interactions
where a service will be activated after the termination of
other services (Fig. 5).

TSM Senvice

e

HTransactionnal senice

Transactionnal Pattern
Ename -—

\ | | | | |
AndSplit AndJoin OrSplit OrJoin HorSplt YorJoin
&name & name &name &name | |&name &name

Figure 5. Transactional patterns.

43

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

C. Composition of transactional Web services

In this section, we show how we combine a set of
transactional Web services to offer a hew more complex
value-added service. To manage the coordination of service
components of a Transactional Composite Service (TCS), a
composed service defines preconditions for external
transitions (Fig. 6). These preconditions specify how the
service responds to state of other services and how it can
influence their behavior. Thus, a transactional web service
can be set up as the couple of all components of its services
and all preconditions set on their external transitions [13].

CompositeService

&sname
4 Semice Externallransition
&name &name
-
>
Iy T
1 *
PrecFonction Precondition
&name &name
1 *

Port
&name [

Figure 6. Definition of a transactional composite service.

Then, we show in Fig. 7 how these preconditions can express
a level of abstraction above dependencies between services.
These dependencies in turn define the control flow and the
transactional flow of the service compound.

+source | Transition
&name
1
1 ExtemalTransttion InternalTransition
Dependence +cible Soname name
&name 1. $activate() rail[)
- 1 :drop[} Sterminate()
1+ ‘cancel()
+specifie %compensate()
1
1
1
Precondition
&name

1

Figure 7. The preconditions to express a level of abstraction above
dependencies between services.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

The internal transitions that we consider in our approach are
fail (), terminate () and external transitions are activate (),
drop (), cancel () and compensate ().

» Dependencies between services components of a
TCS:

The preconditions express the form of dependency relations
(successions, alternative, etc) between service components,
that is to say how services are coupled and how the behavior
of some services can influence the others. In general, a
dependency of S1 on S2 exists if the initiation of a transition
(internal and external) of S1 can be triggered from external
transition of S2. The management of these dependencies
includes the definition of 5 types of dependencies:
activation, alternative, abandonment, compensation and
cancellation.

V. SPECIFYING PROPERTIES OF WEB SERVICES FROM THE PROPOSED
META-MODEL

A. Non functional transactional properties

It is necessary to make a choice among various
nonfunctional properties for each system as it is often
impossible to fully satisfy all. We have chosen to highlight
the transactional approach by the interest it provides. In
addition if you want to move towards more rigorous, it is
possible to complete this vision chart needs through the
appropriate use of pre and post conditions expressed
textually with OCL [16].Thus the semi-formal specification
of some OCL constraints described informally as follows:

e In the component type AndSplit mediator, any port
service type must have a pre-condition equal to
active.

Context MedAndSplit

InvPortServiceTerminate:Self.ports — oclisTypeOf
(PortTWSService)implies Forall(p : PortWSServicejp:P rec
== activate)

B. Structural properties

Although our framework focuses on the specification of
transactional properties related to non-functional mediation
for web service composition, it is clear that the
formalization of these properties generates other properties
related to the structure and the operation of composed Web
services. Among the structural properties of our style, we
can cite:

e Every component in the system must satisfy to be
made a Web service client, mediator or service.

Context System
InvServiceType:Self.service ——p ocllsTypeOf

(CompTWSClient) ORocllsTypeOf(CompTWSService)
ORocllsTypeOf(CompTWSMediator)

e In the Component CompTWSMediator, there must at
least two ports, a port of entry and an output port.

44

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Context CompTWSMediator
Inv AtLeast2ports:Self.port —p size () >=2

C. Fonctional properties

A specific style shows sequences of operations. Among the
functional properties of our style, we can cite:

e A mediator AndSplit type specifies tha a set of
services will be activated after the termination of
another service.

Context AndSplit
Pre:SCN.PortTWSClient.Prec==terminate
Post:FB.PortTWSService.Prec==activate AND
HR.PortTWSService.Prec==activate

VI. ANEW ARCHITECTURE STYLE:WSM

By studying the deployed systems, there is a number of
architecture which are not limited to one style only use. This
is the case for our style that works in client/server roles style
and symmetrical drawing some specific pipe/filter style.
This WSM style (Web Service Mediation) has three
components: clients, servers and mediators. They all play
the role of a service with certain features. The Ombudsman
is the link between the actors who are clients and servers.
Clients and servers can communicate only with the
mediators. There is no direct connection between the
different clients of the system or between different servers.
They use SOAP (Simple Object Access Protocol) as the
communication protocol in order to exchange structured
data regardless the programming languages or operating
systems. The WSM style is an interaction model application
implementing connections to perform a Web services
composition. This style is not specific to a domain, it is
rather generic in order to increase the level of reuse and
adapt it to any field. In fact this advantage goes to the
ACME ADL that allows these users to formalize their own
styles.

A. The ADL ACME

The ADL ACME [17] [18], developed at Carnegie
Mellon, is a common foundation for architecture description
languages. It aims to enable the exchange of architectural
specifications across different ADLs. ACME is based on
seven types of entities to describe architecture: components,
connectors, systems, ports, roles, representations, and rep-
maps (map representation). Moreover, it provides a rather
powerful predicates language called Armani [19] with
functions appropriate to the field of software architecture.
The Armani language allows describing architectural
properties in the invariant or heuristics forms attached to
any architectural element (component, family, system,
connector, etc.). Such properties are achievable within the
AcmeStudio environment [20]. In the same way, the ADL
Acme supports the type concept. One can define types of
architectural elements (component type, connector type, role
type, port type and style type). The concept property of
Acme used in the type and instance levels allows attaching

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

nonfunctional properties to the architectural elements.
Lastly, Acme provides basic types (int, float, boolean and
string) and type builders (enum, record, set and sequence).

B. Formalisation of the mediation service for the Web
services composition with ACME

Our work began with the improvement of an existing
style. We have studied the work of [21] dealing Web
services composition without mediation approach, or control
over the execution of flow of services. The added mediation
approach is used to increase the interactions reliability
between services and ensured proper implementation
through transactional patterns and connectors that represent
mediators. We define in our WSM style five types of
connectors that inherit from ConnTWS which is connector
type of Web service and represents the five types of
dependencies mentioned above. The connector ConnTWS
contains rules that detect inconsistencies and show that the
connector should have only two roles. Fig. 8 shows an
example of an activation connector, which specifies a
fundamental property to ensure the activation dependency.
This property ensures that for any role rl attached to a port
P1, and for any role r2 attached to a port p2 , the two roles
are different, the port pl must be a precondition equal to
“terminate”. Therefore, to ensure this property the port p2
should be equal to a pre-condition ’activate’ and vice versa.

46. // Definition of Activation Connector

47. Connector Type ConnTWSAct extends ConnTWS with
{

48. Rule CondActivation =
self.ROLES |

49. Forall r2 : Role in self.ROLES |

50. Forall p1: PortTWSClient in r1.ATTACHEDPORTS |

51. Forall p2 : PortTWSService in r2. ATTACHEDPORTS]|

52. (rl !'=r2 AND attached (r1, p1) AND attached (r2, p2))
-> (p1.Prec == terminate AND p2.Prec == activate) OR
(p2.Prec == terminate AND p1.Prec == activate) ;}

invariant forall rl1 : Role in

Figure 8. The ACME descriptions of the activation connector.

In addition, this style cans be used to detect the
mismatches between web services. Thus, rules are defined,
illustrated in Fig. 9. The first rule states that all the elements
found in a system of this style must meet the requirement of
being one of three component types CompTWSClient, or
CompTWSService or CompTWSMediateur.

The second rule checks that if two components are
connected one of them must be of mediator type and the
third shows that the control flow is formalized as a
composition between the AndSplit mediator on one hand and
activation connector on the other. Indeed, if the component
AndSplit exists it must necessarily be attached to an
activation connector.

45

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

VII. CASE STUDY

We present in this section a scenario to show how this
style can be used in ACME Studio to detect inconsistencies.
The example shows a web travel organization application.
The client specifies its requirements in terms of destination
and choice of accommodation through the activity
”Specification of Client Needs” (SCN). This specification is
then passed through mediation service AndSplit that
describes how the services “Flight Booking” (FB) and
“Hotel Reservation” (HR) will be activated after SCN
termination.

The organization Travel Service Online (TSO) described
above, specifies a dependency of activation between SCN
and HR services, denoted depAct (SCN,HR) under the
activation condition, HR CondAct (HR) = SCN.terminate().
So HR will be activated after the termination of SCN. But
the client component SCN has only Client type port
according to the WSM specification style. In addition the
mediator, AndSplit has an input service type port that can be
assembled with the client port component SCN having a pre-
condition “activate”.

143.//l Configuration of few rules

144.Rule rule33 = invariant forall comp: Component in self.
COMPONENTS satisfiesType(comp, CompTWSClient)
OR satisfiesType(comp, CompTWSService) OR
satisfiesType(comp, CompTWSMediateur)

145.Rule rule34 = invariant forall c1: Component in self.
COMPONENTS | forall c2: Component in self.
COMPONENTS|connected(c1,c2) —»
(satisfiesType(cl, CompTWSClient) AND
satisfiesType(c2, CompTWSMediateur)) OR
(satisfiesType(cl, CompTWSService) AND
satisfiesType(c2, CompTWSMediateur)) OR
(satisfiesType(c2, CompTWSClient) AND
satisfiesType(cl, CompTWSMediateur)) OR

146. (satisfiesType(c2, CompTWSService) AND
satisfiesType(c1l, CompTWSMediateur))

147.Rule rule35 = invariant exists c: Component in self.
COMPONENTS | declaresType(c, MedAndSplit) AND
forall conn : ConnTWS in self. CONNECTORS |
attached(c, conn) — (satisfiesType
(conn,ConnTWSAct)); }

Figure 9. The The ACME descriptions of few rules.

It also has two ports as client having”terminate” as pre-
condition. A fundamental property was described in the
activation connector and specifies that any assembly with a
client port service must satisfy a dependency of activation,
i.e., a precondition “activate” and pre-condition “terminate”
on both sides of the connected ports. So given these
properties checked during assembly AndSplit mediation
service that has a service port “activate” pre-condition with
the SCN client service, it can only have one client port pre-
condition ” terminate”. As a result, we check the function of
a listed mediator AndSplit, which is to complete a service
that is SCN client service. On the other side the mediator has

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

the same role to enable other service that are the HR Service
and FB using the same process as the AndSplit mediation
service which can be linked with an activation connector.
However, the different dependencies of activation,
alternative, and cancellation have been fulfilled with the
ADL ACME / Armani and fostered a reliable Web service
composition through mediation. We note that Acme Studio
puts warning triangles in architecture during the
inconsistency detection process. These triangles are
superimposed on pre signaling components or connectors,
which indicate that one or more constraints are not met. In
this case, it means that an architecture inconsistency has been
detected and is localized around the connector or component
as in Fig. 10.

{}
=N
1

o=

Figure 10. The initial system architecture with warning triangles showing
where mismatches have been detected.

A triangle does not indicate what type of asymmetry is.
This is why we should select the connector in question to
find the reported failed rules. Fig. 11 shows this point of
view of the activation connector between FB and services
ANDJoin. The rule states that the activation connector fail to
evaluate to true as shown in the figure and as consequence
the activation dependence is failed, which then leads to
failure of the entire system.

El]l Bookmarks | ¥ Tasks| = Properties (21 Problems &2
2 errors, 0 warnings, 0 others
Description

@ Errors (2 items)
@ Design Rule Sys-WSM.ConnTWS0.CondActivation fails to evaluate to true.
@ Design Rule Sys-WSM.rule35 fails to evaluate to true.

Figure 11. The initial system architecture with warning triangles showing
where mismatches have been detected.

To process the ANDJoin mediator, it is necessary to satisfy
the activation condition in the connector between FB and
ANDJoin. To correct the detected inconsistency, we have to
establish a good activation condition between these

46

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

components by associating a precondition to enable
ConfirmRegReserv port of the ANDJoin component.

VIIl. CONCLUSION AND FUTURE WORKS

This work presented in a general framework to ensure a
safe design and execution of software architectures
specifically the web services composition. We could
formalize this composition mechanism by implementing the
mediation protocol and ensuring reliability advocated by
specifying non-functional properties. To do so we use Acme
to check assembling consistency of Web service
composition. We address this issue by describing the Web
services composition Meta-model (M2 level) using Acme
style architecture. The checking of the structural and non-
functional properties of the composition models exploits the
AcmeStudio features of verifying invariants of an Acme
model. In our future works we are considering the following
perspectives:

e Using existing techniques developed by the
Semantic Web initiatives to promote the automation
of messages and the selection of mediator models.

e Using external analysis tools associated to
AcmeStudio environment in order to reason on Web
services composition structures: processing global
properties from local properties.

e Developing systematic translation rules of Web
service composition architecture through the M2
level provided in Acme style (WSM style) which
would call upon an MDE approach.

REFERENCES

[1] F. Curbera, I. Silva-Lepe, and S. Weerawarana: On the integration of
heterogeneous web service partners, IBM T. J. Watson Research
Center, August, 2001. [retrieved: June, 2010].
http://www.research.ibm.com/people/b/bth/OOWS2001/curbera.pdf

[2] R. Hamadi and B. Benatallah: A Petri Net-based Model for Web
Service Composition, in School of Computer Science and
Engineering, The University of New South Wales, In Proceedings of
the 14th Australasian Database Conference (ADC’03), CRPIT 17, pp.
191-200, Australian Computer Society, Adelaide, Australia,
February, 2003.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M.
Mecella: Automatic Composition of e-Services, Proceedings of the
First International Conference on Service-Oriented Computing
(ICSOC), pp. 43-58, 2003.

[4] R. Heckel: Towards contract based testing of web service, in
Electronic Notes in Theoretical Computer Science 116, pp. 145-156,
2005.

[5] N. Medvidovic and N. R. Taylor: A classification and comparison
framework for software architecture description languages. |EEE
Transactions on Software Engineering, 26 (1): pp. 70-93, January
2000.

[6] M. Graiet: Contribution a une démarche de vérification formelle
d’architectures logicielles, thése de doctorat, Université Joseph
Fourier, 25 Octobre 2007.

[7] M. Mrissa: Meédiation Sémantique Orientée Contexte pour la

Composition de Services Web, thése de doctorat, Université Claude
Bernard Lyon | UFR Informatique, pp. 15-36, 2007.

[8] M. Kmimech, M. Tahar Bhiri, M. Graiet, and P. Aniorté: Checking
component assembly in Acme: an approach applied on UML 2.0
components model, In 4nd IEEE International Conference on

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Software Engineering Advances (ICSEA’2009), Portugal, IEEE
Computer SocietyPress, Septembre 2009.

M. Rouachid: Une approche rigoureuse pour I’ingénierie de
compositions de services Web, thése de doctorat, Université Henri
Poincaré, Nancy, pp. 31-34, 2008.

OASIS (2008), Service component architecture assembly model
specification version 1.1. http://www.o0asis-opencsa.org/. [retrieved:
August 10, 2010].

OpenGroup (2009). Soa source book.
http://www.opengroup.org/projects/soa-book. [retrieved: June, 2010].

M. Oussalah: Vers une meilleure compréhension de la composition de
services par Méta Modélisation d’un service composite, 4th
Francophone Conference on Software Architectures, CAL’2010, Pau-
Paris, March 2010.

S. Bhiri, C. Godart and O. Perrin: Patrons transactionnels pour assurer
des compositions fiables de services web, Technique et Science
Informatiques 28(3): pp. 301-330, 2009.

S. Bhiri: Reliable Web services composition using a transactional
approach, International Conference on e-Technology, e-Commerce
and e-Service (EEE’05): pp. 22-30, 2005.

W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede, and B.
Kiepuszewski: Advanced Workflow Patterns. In O. Etzion and Peter
Scheuermann, editors, 5th IFCIS Int. Conf. on Cooperative
Information Systems, number 190 in LNCS, pp. 18-29, Eilat, Israel,
September 6-8, 2000.

J. Warmer and A. Kleppe: The Object Constraint Language: Precise
Modeling with UML, AddisonWesley, 1998.

D. Garlan, R. T. Monroe, and D. Wile: Acme: An Architecture
Description Interchange Language, Proceedings of CASCON 97,
Toronto, Ontario, November, pp. 169-183, 1997.

D. Garlan, R. T. Monroe, and D. Wile: Acme: Architectural
Description of Composed-Based Systems, Gary Leavens and Murali
Sitaraman, ed.s Kluwer, 2000.

D. Garlan, R. Monroe, and D. Wile: Acme: Architectural Description
of Component-based. Capturing software architecture design
expertise with Armani. Technical Report CMU-CS, pp. 98-163,
Carnegie Mellon University School of Computer Science, 2001.
Group 2006, http://www.cs.cmu.edu/~acme/Acme Studio/ [retrieved:
August 12, 2010].

C. Gacek and C. Gamble: Mismatch Avoidance in Web Services

Software Architectures, Journal of Universal Computer Science, vol.
14, no. 8, pp. 1285-1313, 2008.

47

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

WEB Services for Ubiquitous Mobile Device Applications

Mihai Barbos

IT&C Department
SCIPA SA
Bucharest, Romania
e-mail: mihaibarbos @ipa.ro

Abstract— A WEB service is as a self-describing, self-
contained software module available via a network, such as the
Internet, which completes tasks, solves problems, or conducts
transactions on behalf of a user or application. WEB services
constitute a distributed computer infrastructure made up of
many different interacting application modules trying to
communicate over private or public networks (including the
Internet and WEB) to virtually form a single logical system.
Mobile WEB services target embedded devices. In other words,
they enable handheld devices to interact with servers in a
standardized way, regardless of operating systems, platforms,
and programming languages. WEB services provide good
opportunities for developing ubiquitous mobile client
applications, allowing the delivery of information to users
anytime and from anywhere. This paper brings to focus some
general considerations required in designing and building
WEB services that target ubiquitous mobile applications as
consumers. The research work presented here was carried out
under the UbiPOL FP7 research project, which aims to
develop a ubiquitous platform for policy making, funded
within the grant agreement nr. 248010. The main achievement
of this work is the analysis of several WEB service
frameworks and choosing the most appropriate one for
developing the UbiPOL platform.

Keywords - WEB services; mobile devices; ubiquitous
applications

I. INTRODUCTION

The “always on” vision of mobile Internet access has
became a reality with the nearly ubiquitous coverage
provided by cellular networks. Communications speeds have
also increased significantly with the advent of 3G mobile
networks that enable data rates supportive of real time video.
In addition, using the competing access technologies such as
wireless, the user can experience Internet data rates similar to
those available with broadband connectivity in the fixed
networks [4].

The increasing use of mobile terminals and infrastructure
makes it possible the communications and information
access from any location at any time. The convergence of
mobile and WEB service technologies enables new services
and business models, and accelerates the development of
mobile and fixed Internet technologies [1]. The mobile
industry is poised to take advantage of the benefits of

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Eugen Pop

IT&C Department
SCIPA SA
Bucharest, Romania
e-mail: epop@ipa.ro

interoperability that WEB services provide [2]. Interoperable
messages can reduce the time and costs of business
integration, creating opportunities for the adoption of WEB
services technologies.

The present paper describes the technology and the
building blocks needed to be put together in mobile
networks, that can wirelessly delivered WEB content [7].
Included are extensive coverage of the network elements,
languages used to represent browser content,
communication protocols, network services and related
software components that are used in the operation of such
networks [5], [8]. The UbiPOL platform services will
include user location tracking, security schemes, content
personalization approaches, privacy mechanisms, etc. .

While on the move, a mobile user faces many challenges
such as mobile terminal’s limited screen size, restricted
input capabilities, battery power constrains and air time
costs. There is where knowledge of a user context can be
leveraged to drive and personalize the interaction between
user and the Internet server, so as to ease the communication
exchange and focus the delivery of WEB content to the user.

First, the paper presents and analyzes the tendencies and
characteristics of the mobile device market. Then, the JAVA
ME platform is presented as a very useful and performance
tool for mobile application development. In fact, JAVA ME
seems to be the nost ubiquitous application platform for
mobile devices, which complies with the UbiPOL
objectives. Following these considerations, the WEB
services clients in JAVA ME are also presented. Several
Java WEB service stacks and frameworks that will be
considered in the implementation of UbiPOL are presented
next. Finally, a section for conclusions is present at the end
of the paper.

II. THEMOBILE DEVICE MARKET

The mobile devices market trends are closely related to
the significant increase of the bandwidth necessity and data
traffic on the cellular or wireless channels. Nowadays, the
network and service infrastructure domain is facing many
important changes like:

- Explosive growth of data rates and capacities;

48

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

- The emergence of massive data and content delivery
and consumption;

- Evolution towards a converged architecture that has
dramatically increased the permutations and combinations of
services and usages between people, devices, media, and
even between real and virtual worlds;

- User involvement in defining her/his communication
sphere has led to much more customization, personalization
and users becoming content producers.

An explosion in number of mobile Internet devices is
expected, evolving towards trillions of connected devices,
M2M, within the Internet of objects.

Globally, mobile data traffic will double every year
through 2014, increasing 39 times between 2009 and 2014.
Mobile data traffic will grow at a compound annual growth
rate (CAGR) of 108 percent between 2009 and 2014,
reaching 3.6 exabytes per month by 2014 [24]. The UbiPOl
project aims to use this opportunity to involve the citizens in
the policy making process.

According to Gartner Inc. Report, the worldwide mobile
phone sales totalled 286.1 million units in the second quarter
of 2009, a 6.1 per cent decrease from the second quarter of
2008, according to Gartner, Inc. [3] (see Table 1).
Smartphone sales surpassed 40 million units, a 27 per cent
increase from the same period last year, representing the
fastest - growing segment of the mobile - devices market (see
Table 2).

WORLDWIDE MOBILE TERMINAL SALES END
USERS IN 2Q09 (THOUSANDS OF UNITS)

TABLE L

2Q09 2Q08
2Q09 Market 2Q08 Market
Company Sales Share (%) Sales Share (%)
Nokia 105,413.3 36.8 120,353.3 39.5
Samsung 55,430.2 19.3 46,376.0 15.2
LG 30,497.0 10.7 26,698.9 8.8
Motorola 15,947.8 5.6 30,371.8 10.0
Sony
Ericsson 13,574.2 4.7 22,951.7 7.5
Others 65,260.2 23.0 57,970.6 19.0
Total 286,122.7 100 304,722.3 100
TABLE IL WORLDWIDE SMARTPHONE SALES TO END
USERS IN 2Q09 (THOUSANDS OF UNITS)
2Q09 2Q08
2Q09 Market 2Q08 Market
Company Sales Share (%) Sales Share (%)
Nokia 18,441.0 45.0 15,297.9 474
Research In
Motion 7,678.9 18.7 5,594.2 17.3
Apple 5,434.7 13.3 892.5 2.8
HTC 2,471.0 6.0 1,330.8 4.1
Fujitsu 1,249.0 3.0 1,071.5 3.3
Others 5,688.2 13.9 8,085.8 25.1
Total 40,962.8 100.0 32,272.7 100.0

As mobile devices continue to converge with consumer
electronics, vendors find themselves (and their devices)

Copyright (c) IARIA, 2010

ISBN: 978-1-61208-105-2

locked in a battle over similar market segments, similar
buyer demographics and similar product concepts. Mobile
users have a wide choice of capable device types to fulfill
their mobile communication and computing needs. Studies
highlighed key device segment trends and market
considerations across many mobile device categories,
including mobile handsets and handset accessories. Since
wireless connectivity continues to be incorporated into new
device segments, the impact of emerging services and
technologies is in close relation to their market potential in
mobile devices [4].

The remarkable technical performances of the mobile
devices make them available for a great variety of
applications: social networking, consumer and, business
applications, content & delivery platforms, messaging,
browsers, operating systems (OS), and users interfaces (UI).

III. JAVAME “THE MosTt UBIQUITOUS
APPLICATION PLATFORM FOR MOBILE DEVICES

Java Platform, Micro Edition (Java ME) provides a
robust, flexible environment for applications running on
mobile and other embedded devices—mobile phones,
personal digital assistants (PDAs), TV set - top boxes, and
printers. Java ME includes flexible user interfaces, robust
security, built - in network protocols, and support for
networked and offline applications that can be downloaded
dynamically [5]. Applications based on Java ME are portable
across many devices, yet leverage each device's native
capabilities.

In order to provide ubiquitous deployment across
different mobile operating systems and device types the Java
ME platform was selected for development of front end
components for the UbiPOL platform [6]. An inventory of
mobile application development tools was realized. For each
mobile application development tool, the following issues
were analyzed and specified: system’s requirements,
installation procedures, available device emulators, Java ME
API, etc.

The following tools are components of the mobile
application development environment for UbiPOL:

= Java ME SDK 3.0, [15],[16];

Nokia S60 3 Edition SDK for Java, [17];
BlackBerry JDE 5.0 [21];

LG SDK 1.5 for the Java ME Platform ; [18];
MOTODEYV SDK for Java ME v3.0 [19];

Samsung Java SDK 1.1.2, [20];

Sony Ericsson SDK 2.5.0.6 for JavaME Platform[22].

The SDK from SUN was chosen as the default
development tool for UbiPOL mobile applications identified
as necessary. Compiling, building, running, testing and
debugging mobile applications will be done using this tool.
The other tools have been deployed only for test purpose, in
order to ensure UbiPOL mobile applications compatibility
with other device types from leading market manufacturers.

The Java ME Platform SDK 3.0 form SUN provides
device emulation, a standalone development environment,
and a set of utilities for rapid development of Java ME

49

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

applications. On Windows, Java ME SDK 3.0 is the
successor of the Java Wireless Toolkit 2.5.2 and Java Toolkit
1.0 for CDC. The Java ME SDK 3.0 is available for
Windows XP and Vista 32 - bit, and for Mac OS.

The Java ME SDK 3.0 includes several emulators to
allow running, testing and debugging applications under
different scenarios (different device screen size, different
input device configuration — key board, touch screen, both —,
external events generator support —location events, device
orientation change —, number of colours, different Java ME
API support etc.) The device emulators available in the
SUN’s Java ME SDK are: ClamshellCldcPhonel,
DefaultCldcJtwiPhonel, DefaultCldcJtwiPhone2, Default
CldcMsaPhonel, DefaultCldcMsaPhone2, DefaultCldc
Phonel, DefaultCldcPhone2, DefaultFxPhonel, DefaultFx
TouchPhone.

The Java ME SDK from SUN offers a great number of
Java ME API’s, configurations and profiles as follows:
configurations (CLDC 1.0, CLDC - 1.1), profiles (MIDP -
2.0), Java ME API’s (ex. JSR 172 — WEB Services
Specifications, JSR 179 — Location API, and so on),
available for each emulator included in the SDK from SUN.

IV. WEB SERVICES CLIENTS INJAVA ME

The J2ME WEB services API (WSA) extends the
Java2 Platform, ME to support WEB services, and was
developed within the Java Community Process, as JSR 172.
The API's two optional packages standardize two areas of
functionality that are crucial to clients of UbiPOL WEB
services: remote service invocation and XML parsing.

WSA is designed to work with J2ME profiles based on
either the Connected Device Configuration (CDC) or the
Connected Limited Device Configuration (CLDC 1.0 or
CLDC 1.1). The remote invocation API is based on a strict
subset of J2SE’s Java API for XML - Based RPC (JAX -
RPC 1.1), with some Remote Method Invocation (RMI)
classes included to satisfy JAX - RPC dependencies. The
XML - parsing API is based on a strict subset of the Simple
API for XML, version 2 (SAX2).

The core specifications and application - level protocols
that define WEB services are promoted by the WEB Services
Interoperability Organization (WS - I), and governed by the
World Wide Web Consortium (W3C) and the Organization
for the Advancement of Structured Information Standards
(OASIS) [8]. The four key standards that specify how to
create, deploy, find, and use WEB services, are presented in
the following table.

TABLE IIL WEB SERVICES STANDRADS

Language and XML

Schema

Language (XML) 1.0, and (XML)

XML Schema

WERB services standards Description

Defines transport and data encoding

Simple Object Access

Protocol (SOAP) 1.1

Defines how remote services are
described

WEB Services Definition
Language (WSDL) 1.1

Universal Description, | Defines how remote services are
Discovery, & Integration discovered

(UDDI) 2.0

Extensible Markup | Defines the Extensible Markup

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

The goal of WSA is to integrate fundamental support for
WEB services invocation and XML parsing into the device's
runtime environment, so developers don't have to embed
such functionality in each application.

To make the interpretations of the standards easy, WS - 1
has defined a set of conformance rules called the WS - I
Basic Profile, version 1.0. JSR 172 conforms to the Basic
Profile. JSR 172 specifies standardized client - side
technology to enable J2ME applications to consume remote
services on typical WEB services architectures, as Figure 1
illustrates:

Application

Back-end Servers

Apo :f-a

/
L/

=

it
Serverts)

Is

{Service Producer)
JSR 172
Web Service

Ot
v

Consumer

Figure 1. J2ME in a typical WEB service architecture

At a high level, this WEB service architecture has three
elements:

- A network-aware application residing on a WSA-
enabled wireless device. The application includes a JSR 172
stub that uses the JSR 172 runtime to communicate with the
network.

- The wireless networks, the Internet and the
corresponding communication and data - encoding protocols,
including binary protocols, HTTP, and SOAP/XML.

- A web server, acting as the service producer, typically
behind one or more firewalls and a proxy gateway; the web
server often provides access to back - end applications and
servers on a private network [7].

A typical JSR 172 based application is a smart client
based on the Mobile Information Device Profile (MIDP) or
the Personal Basis Profile (PBP), with business - specific
logic, user interface, persistence logic, and life - cycle and
application - state management. To handle XML documents,
the application can employ the JAXP subset APL. To
consume WEB services, it can use the JAX - RPC subset
API, employing JSR 172 stubs and the runtime. In devices
such as cell phones, typically the application and the JSR
172 stub reside in the device's memory, while all the JSR
172 elements, along with the underlying profile and
configuration, are embedded in the device itself.

At the center of JSR 172 operations is the runtime, with
its service provider interface, which enables the stubs to
perform all the tasks associated with invoking an RPC
service endpoint:

- Set properties specific to an RPC invocation;

- Describe the RPC invocation input and return values;

50

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

- Encode input values;

- Invoke the RPC service endpoint;

-decode and return to the application any values that the
service endpoint returns.

In the Figure 2 is presented how a typical JSR 172 based
application is organized.

Application

Application {Business) Logic

Mebile Informatien Device Profile,
Parsonal Basis Profile

cLDoc/coc

Oparating System

Figure 2. A typical JSR 172 based application architecture

There are many WEB services useful for developing Java
ME client applications. Among them, Google Maps API
WEB services is a collection of HTTP interfaces to Google
services providing geographic data for maps client
applications. Google Maps offers REST services that allow
accessing its data with simple HTTP requests, so they can be
easily integrated into mobile applications [13].

The developer must sign up, [23] to get a key
(API_KEY, a simple string) that he/she will use for all the
queries to Google Map services.

The static maps WEB service allows retrieving single
images that can be used in mobile applications, because it
not requires Javascript or any dynamic page loading.

The static maps service supports different image formats
(png32, GIF, JPG) and customizable image size that can be
used for all purposes. The developer must retrieve an URL
with an HTTP request, that must include some parameters
like: the map’s center geographical coordinates (latitude and
longitude), the image format and size, the zoom level (the
zoom range is from 0 to a maxim level of 19) and the
API_KEY [14].

Geocoding is the process of converting an usual address
into geographical coordinates, that can be used, for example,
to place markers or position the map. The Google Geocoding
API is another REST service that provides access to a
geocoder via an HTTP request, so it can be integrated into
mobile applications. Additionally, “reverse geocoding” can
be performed, that means the converse operation (turning
coordinates into addresses).

Location API (JSR - 179) allows Java ME applications to
get the user geographic location. The implementation of this

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

technique in the device can be based on a GPS technology,
using the mobile phone network (with Cell ID), etc.

V. WEB SERVICES FRAMEWORKS AND
PROTOCOLS

WEB services are being widely deployed to facilitate
interoperability across different hardware and software
implementation, machine architectures and application
programming interfaces (API’s) [9].

Creating effective mobile WEB services requires an
architecture that addresses issues related to identity
management, security, the machine readable description of
WEB services and methods for discovering WEB services
instances.

The XML Protocol work is the foundation for a WEB
Service framework within which automated, decentralized
services can be defined, deployed, manipulated and evolved
in an automated fashion. This framework provides a
structure for integration and a foundation for protocols that
will support the needs of such service - oriented applications.
The goal is a scalable, layered architecture, one that can
appropriately meet the needs of both simple and extremely
robust high - volume deployments. As with other Web
technologies, the focus is on enabling ubiquitous
interconnectivity of entities and organizations dispersed
throughout the world. The WEB services framework focuses
on supporting application - to - application integration
between entities having disjoint platforms, management,
infrastructures and trust domains. Using the framework, a
model for describing, discovering and exchanging
information can be realized, that is independent of
application implementations and the platforms on which
applications are developed and deployed.

The UbiPOL platform will be realized using frameworks
and stacks that allow the WEB services implementation
using Java language. As implementation options for UbiPOL
platform the following WEB service frameworks have been
considered: Axis 1.x, Axis2, CXF, Glue, JBossWS, XFire
(1.2), Metro, OracleAS 10g.

Their general features and WS related JSR standards, as a
criteria list approach, are presented synthetically in the
following tables.

Apache Axis is an open source, XML based WEB
service framework, It consists of a Java and a C++
implementation of the SOAP server, and various utilities and
APIs.

Apache Axis 2 is a core engine for WEB services. It is a
complete re - design and re - write of the widely used
Apache Axis SOAP stack.

Apache CXF is an open source services framework,
suitable for building and developing services using frontend
programming APIs, like JAX - WS and JAX - RS. These
services can comply with protocols such as SOAP,
XML/HTTP, RESTful HTTP, or CORBA.

GLUE Java WEB services, delivered by Mind Electric,
is a WEB service toolkit for Java programmers that offers an
easy way to implement SOAP messaging.

For UbiPOL, the Glue server can have two parts: a
Java class that performs the business logic and a Java class

51

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

that starts GLUE's HTTP Server and publishes the business
logic object as a SOAP service.

JBossWS is a WEB service framework developed as part
of the JBoss Application Server. It implements the JAX -
WS specification that defines a programming model and run
- time architecture for implementing WEB services in Java
[12].

XFire is an open source Java SOAP framework built on
a high performance, streaming XML model. XFire includes
support for WEB service standards, an easy to use API,
Spring integration, JBI support, and plugable bindings.

The Metro WEB services stack is an open source tool
developed by Sun Microsystems. It incorporates the
reference implementations of the JAXB 2.x data - binding
and JAX - WS 2.x WEB services standards, along with other
XML - related Java standards.

Oracle Application Server 10g R3 WEB Services
provides a new runtime infrastructure supporting J2EE 1.4
WEB services. Figure 3 provides an architectural overview
of this new infrastructure [15].

__

H 1
H Stateless . !
! SW5'_(Session EJB 2.1/3.0 y;‘r";‘,
ecurity " 1
! EJB Container Adapters ||!
Web Service soAP ! J H
. ws lava Class
Client 1412 1 | Protocol Reliable iway |1
————— | Handler PL/SQL/AQ/ Aftunity ||
(J2EE, NET, ws-l || HTTR DML/SOL Fujista |1
o A
Moi:eELl;'flosr;)all_v) Compliant ! | yus) Message S Tople dapters ||
' | Auditing/Logging Queue !
! wms ||}
Find ! Resource |[1
' Web Services Corba Adapter |[[!
wsDL i Manager Custom I
| Agent Provider A |
/ Handler Service Management Servlet Container Adapters |}
H]
1 ; N . Data .
i Transactions H Messagin rsecurlt ‘ ‘ Poolin, H
Publish 1 9ing Y Access 9
Service H
i ‘ !
|
i

Oracle Application Server 10g R3

Service Registry
and Policy Management

Figure 3. Oracle Application server 10g R3 (10.1.3.0.0) WEB Services
Framework

Their general features and WS related JSR standards, as a
criteria list approach, are presented synthetically in the
following tables.

TABLE IV. WEB SERVICES FRAMEWORK GENERAL
FEATURES
Feature Axis | Cxf Glue JBossWS | Oracle
1.x, XFire 1,2 | AS 10g
2 Metro
Basic
Profile | M | M M
Compliant
Easily
Create
Services | M | M M
from
POJOs
Open ¥ | 2| ™ ¥
Source
e o M | UMl | M
ncoding
Spring M| o
Support

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

REST

S 4| M X 4|
upport
IDEA 4} o} ANT
Plugins
Echpse o o ANT
Plugins
NetBeans ® STP ® ANT
Plugins
JDeveloper [x [x ™
Hot
Deployment v v v
Soap 1.1 M %] M %] %]
Soap 1.2 ™ ™M ™ ™M ™M
Streaming
XML
(SIAX | M [l [l
based)
WSDL 1.1
—Code | ™ | | 4|
(Client)
WSDL 1.1
—Code | ™ | | 4|
(Server)
WSDL 2.0
—Code 4] | [x] [x]
(Client)
WSDL2.0 —
Code 4] [x] [x]
(Server)
Client-side BPEL
Asynchrony o v o
Server-side BPEL
Asynchrony M v M =
Policy-
driven code ™M ™
generation

TABLE V. WS RELATED JSR STANDRADS
Feature | Axis 1.x, Cxf Glu | JBossWS | Oracle

2 e XFire 1,2 | AS 10g
Metro

JAX-

RPC 4} A M 4} M
IAXWS |MA2 | M | & | M3 | ™
JAX-RS ™M ™ ™M ™M
JSR 181 ™M ™M ™M ™M
JSR 181
on Java 4]] [x] [x] [x]

14

SAAJ
(1.211.3) X o} | X |
JSR 109 4] | M ANT

JBI [x] M [x]] ANT

Generally, all the previously WEB services Frameworks
comply with the following transport protocols: HTTP, JMS,
SOAP/JMS Spec, Jabber, SMTP/POP3, TCP.

The notes from Tables IV and V highlight some issues
relevant to our objectives, as follows:

52

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

- M1 - in case of the Metro WEB service framework, the
Remote Procedure Call encoding is available only through
the JAX-RPC 1.1 APIs and removed JBI JSR;

- M3 - in case of Metro WS, JAX-RPC 1.1, JAX-WS 2.0
and JAX-WS 2.1 RI are combined together in Metro as well
as JAXB 2.0 and JAXB 2.1. JAX-WS 2.0 and JAXB 2.0
functionality is available in Java SE 6 as well;

- A22 —in case of Axis 2 WS, there is not JAX-WS TCK
compliant due to lack of JAX-WS tooling;

- BPEL - allow services interaction to be described easily
and thoroughly by the WS - BPEL, an XML based
programming language;

- ANT - is a Java based software tool useful for
automating software build processes.

CXF supports a very wide range of connection
possibilities, by using the Camel transport.

The specification from the Tables IV and V show that
Metro is in conformance with the WS-I Basic Profile and it
supports SOAP 1.1 messages relayed over HTTP as
transport. It also provides support for WSDL 1.1 and XML.

Metro is an open source web service stack that is a part
of the GlassFish project. It is included in Glassfish V3 and it
is available under the CDDL and GPLv2 licence. Since
Metro is compliant with the WS-I Basic Profile and the
requirements of JSR 172, web services deployed with it can
target Java Me applications running on mobile phones as
service consumers. That is why Metro seems an appropriate
web service stack option for UbiPOL.

OSGi technology is the dynamic module system for
Java™. The OSGi Service Platform provides functionality to
Java that makes Java the premier environment for software
integration and thus for development [11].

ProSyst, an OSGi and Java pioneer, is a company entirely
focused on open standards technology and was most actively
involved in helping to create the OSGi specifications. It
offers OSGi technology based products and services for
Mobile Devices market [12].

VI. CONCLUSIONS AND FUTURE WORK

The following general advantages indicate WEB services
as a suitable solution for UbiPOL:

WEB services are platform and language independent:
WEB services provide interoperability between various
software applications running on disparate platforms. They
are not tide to any operating system, development platform
or programming language. WEB services allow different
applications from different sources to communicate with
each other, without time - consuming or custom coding. This
is because WEB services use open standards and protocols
like SOAP, WDSL and XML. After deployment, this could
provide other developers with the opportunity to include
UbiPOL WEB services in their custom applications and
deliver UbiPOL content and data merged with their own.

One solution for handling interaction between Java ME
applications running on mobile phones and UbiPOL servers
are WEB services. WEB services will be the logic tier
components of the scalable UbiPOL system architecture.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

There are several APIs that provide WEB service client
support for the Java Me platform: WSA, WINGFOOT
SOAP client, kSOAP2. The WSA specification was
developed within the Java Community Process as JSR 172.
The J2ME WEB Services API (WSA) extends the Java 2
Platform, Micro Edition to support WEB services. This is
why it is included in many Java ME platform
implementations by mobile phone manufacturers. WSA
provides out of the box support for Java ME WEB service
client applications on many mobile phones available on the
market.

In order to develop Java ME WEB service client
applications, UbiPOL must rely on an available APIL
Because WSA (JSR 172) provides out of the box support for
Java ME WEB service client applications on mobile phones,
it is the most appropriate option for now. Other third party
APIs require including those APIs in the distribution file.
This would lead to larger distribution files, which is not
recommended. The other options may be implemented if
they prove to be necessary.

WSA (JSR 172) conforms to the WS - I Basic Profile
WEB service specification. It requires the use of SOAP 1.1,
WDSL 1.1 and XML 1.0. The WEB service framework or
stack that will be used for the deployment of UbiPOL WEB
services on the server must comply with the same
specification as WSA in order to ensure compatibility and
interoperability.

Several WEB service frameworks were analysed: Axis
1.x, Axis2, CXF, Glue, JBossWS, XFire (1.2), Metro,
OracleAS 10g.

The application server identified as required for the
implementation of UbiPOL is Glassfish. Metro is the WEB
service application stack bundled with Glassfish. It is in
conformance with the WS - I Basic Profile WEB service
specification. This makes Metro the best available option for
now.

WEB services will be logic tire components of the
UbiPOL system architecture, enabling the interaction
between UbiPOL Java ME applications (presentation tier)
and UbiPOL database servers (data tier) [17]. UbiPOL WEB
services will be in conformance with the WS - I Basic Profile
1.0 specification. SOAP 1.1 conveyed over HTTP will be
used for messages sent between Java ME applications and
WEB services. As SOAP is an XML based protocol, the data
conveyed between Java ME applications and UbiPOL WEB
services will be XML serialised for both request and
response messages. UbiPOL WEB services will make use of
WDSL 1.1 to provide a “machine - processable” description
of the operations supported, enabling client side code
generation in many IDEs. The Metro WEB service stack and
the Glassfish application server will be used to deploy
UbiPOL WEB services. The WSA (JSR 172) API will be
used in the implementation of UbiPOL Java ME WEB
service client applications.

ACKNOWLEDGMENT

This paper represents part of the work realized by the
authors within the UbiPOL FP7 European Union research

53

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

project, dealing with e - participation of citizens in policy
making and funded by grant agreement nr. 248010.

REFERENCES

[1] A. Pashtan, “Mobile WEB Services” Cambridge University Press 2005
pp. 5 - 30.

[2] M. Papazoglou, "What Are WEB Services?" WEB Services: Principles
and Technology. Harlow, England Pearson/Prentice Hall, 2008. pp. 22- 32.
[3] Gartner Press Release on Worldwide Mobile Phones Sales http:/www.
gartner.com/it/page.jsp?id=1126812, [accessed: 30.08.2010] 20 August
2010

[4] P. M. Woo, K.Y. Seok, and Kyong - Ho “Migrating WEB Services in
Mobile and Wireless Environments” International Journal of WEB
Services Research, Volume 6, Number 2, April - June 2009 (pp. 1 - 19).

[5] D. Lizcano, J. Soriano, M. Reyes and J. Hierro “A user - centric
approach for developing and deploying service front - ends in the future
internet of services” International Journal of WEB and Grid Services
(IIWGS) Vol 5, Issue 2 — 2009, pag. 155 - 191, doi: 10.1504/ UWGS.
2009.027572

[6] A. Yamazaki, A. Koyama, J. Arai and L. Barolli “Design and
implementation of a ubiquitous health monitoring system” International
Journal of WEB and Grid Services (IWGS) Volume 5, Issue 4 — 2009,
pag. 339 - 355, doi: 10.1504/1JWGS.2009.030263

[7] E. Cerami, "Introduction to WEB Services."WEB Services Essentials,
O'Reilly & Assoc., USA 2002, ISBN 0 —-596 - 0224 - 6, pp. 10 - 50.

[8] G. Alonso and F. Casati “WEB Services - Concepts, Architectures and
Applications”, Springer — Verlag — Berlin, Heidelberg 2004 ISBN 3 — 540 -
44008 - 9, pp. 124 - 149.

[9] L Richardson and S Ruby “RESTful WEB Services” Farnham O'Reilly
2007 pp. 47 - 67

[10] “Appache WS Wiki”; http://wiki.apache.org/ws StackComparison;
[accessed: 30.08.2010];

[11] “OSGi Technology™;
[accessed: 30.08.2010];

[12] “ProSyst is an OSGi and Java Pioneer”; http://www.prosyst.co;
[accessed: 30.08.2010];

[13] “GoogleMap API WEB Services”
maps/documentation/webservices/index.html; [accessed: 30.08.2010];
[14] “How Map Data in Mobile
http://wiki.forum.nokia.com/index.php/How_to_use_Google_Maps_data_in

http://www.osgi.org/About/Technology;

http://code.google.com/apis/

to use Google Applications”
_mobile_application; [accessed: 30.08.2010];

[15] “Java ME SDK 3.0” http://www.oracle.com/technetwork/java/javame/
downloads/ sdk30-jsp-139759.html; [accessed: 30.08.2010];

[16] “Java ME SDK 3.0 released” http://weblogs.java.net/blog/ 2009/04/22
/java-me-platform-sdk-30-released-goodbye-wtk-hello-java-me-sdk-part-2;
[accessed: 30.08.2010];

[17] “Nokia S60 3" Edition SDK for Java” http://www.forum.nokia.com/
info/sw.nokia.com/id/6e772b17-604b-4081-999¢c-31£1f0dc2dbb/S60;
[accessed: 30.08.2010];

[18] “LG SDK 1.5 for the Java ME Platform” http:/developer
Igmobile.com/Ige.mdn.tnd.Retrieve TNDInfo.dev?modType=T&objectType

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

=T&menuClassCode=&saveFileName=&resourceNo=TND00000294 &sele
ctedType=&tabIndex=1#none; [accessed: 30.08.2010];

[19] ” IMOTODEYV Studio for Java ME: Downloads”
http://developer.motorola.com/docstools/motodevstudio/javame/download
[accessed: 30.08.2010];

[20] “New Samsung Java SDK 1.1.2 - release 17th Nov 2009~
http://innovator.samsungmobile.com/down/cnts/toolSDK.detail. view.do?plat
formId=3&ecntsIld=5640&listReturnUrl=http://innovator.samsungmobile.co
m:80/down/cnts/toolSDK list.do%3Fplatformld%3D3;

[accessed 30.08.2010];

[21] "What's new in BlackBerry Java application development 5.0”
http://www.blackberry.com/developers/docs/5.0.0api/index.html;

[accessed: 30.08.2010];

[22] ” Sony Ericsson SDK for the Java ME platform 2.5.0.6”
http://dwgs3.sonyericsson.com/wportal/devworld/downloads/download/dw-
99962-semcjavamecldcsdk2506?cc=gb&lc=en; [accessed: 30.08.2010];

[23] ”Sign up for the Google Maps Api” http://code.google.com/apis/maps
/signup.html; [accessed: 30.08.2010];

[24] ” Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2009 - 2014” http://www.cisco.com/en/US/solutions/collateral
/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html; [accessed:
30.08.2010];

54

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Development of Web 2.0 Applications using WebComposition/Data Grid Service

Olexiy Chudnovskyy, Martin Gaedke
Faculty of Computer Science
Chemnitz University of Technology
Chemnitz, Germany
olexiy.chudnovskyy @ s2004.tu-chemnitz.de
martin.gaedke @informatik.tu-chemnitz.de

Abstract—Data integration and content publishing in terms
of Linked Data is a complex and time-consuming task while
developing Web 2.0 applications. Considering this problem
separately from architecture design increases application main-
tenance effort and causes additional overhead to provide public
access functions. In this paper, we present the WebComposi-
tion/Data Grid Service and its data management capabilities
to meet demands of modern Web 2.0 applications. We show
how to facilitate the application implementation and shorten
development time by applying the Data Grid Service as Web
Service-based storage solution.

Keywords-REST; Linked Data; Web 2.0.

I. INTRODUCTION

The classical approach while developing Web 2.0 applica-
tions foresees many steps beginning with problem analysis
over data modeling, architecture design and ending with
implementation and maintenance [1]. Consider the develop-
ment process of a small Web 2.0 application. As an example,
we create a small online-tool to support Scrum software de-
velopment method [2]. In Scrum a product owner separates
the project into stories, which are functionalities a client
wishes from the application. Stories are implemented by the
Scrum team during sprints - fixed periods of time, usually 2
or 4 weeks. The team divides the stories into small tasks and
solves them by implementing the specified functionality. If
problems occur, so called impediment requests are posted to
the scrum master, who tries to solve them and cares about
the smooth development process.

First we define entities and relationships using the UML
class diagram from Fig. 1. Following the classical approach
we use one of the Object-Relational-Mapping libraries (like
Hibernate [3] or Microsoft Entity Framework [4]) to map the
described classes and associations onto tables of a relational
database. This way the application deal only with conceptual
scheme and concentrates on business logic, abstracting from
database read/write operations and communication details.
With the help of a Model-View-Controller (MVC) Frame-
work we develop the presentation level and implement
navigation functions. Due to the simplicity of our example
application it doesn’t take much time to implement the
business logic. The creation, edition and retrieval functions

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Belongs To Sprint Has Story
o
Sprint Story
-1d “Id
+ Description s +Name
- Start Date Hes Sprint Project S9% |+ Description
" + Estimation
1 <ld 1
Title]
Belongs To Project |+ Description Belongs To Project Belongs To Story
Belongs To Prject | 0.m Has Task
on
Hasuser | o
Impediment User Task
“1d Crestes -1d ‘1d
+ Description {mpediment « Username Has Task |+ Description
- Date on 1| Password 1 on| et
- State eaeagy| *Group Seiongs To Uee
Figure 1. UML class diagram of scrum tool.

are usually automatically generated by modern MVC frame-
works.

The created application works fine as a standalone tool,
but still doesn’t collaborate with other services or exchange
any data. Assuming we would like to provide a Really
Simple Syndication (RSS) feed [5] with newly added imped-
iment requests, additional programming effort in implemen-
tation of a web-service is needed making this simple feature
costs- and time-consuming. Publishing the information about
ongoing projects in Resource Description Framework (RDF)
format [6] requires new work again, transforming internal
data into new representation and exposing it by imple-
menting new web service methods. Further functionalities
like public or new data representations become even more
expensive due to the implementation and maintenance costs.

As we see, application development time and project
costs could be decreased if collaboration with other services
as well as publishing of content in terms of Linked Data
would be considered in the planning phase. Addressing these
problems after essential application functions are imple-
mented, data is strictly modeled and manipulation methods
are defined makes the further development inefficient and
increases maintenance costs. Our solution acts as a web-
based storage solution targeting common integration and
data exchange needs of modern Web 2.0 applications and
supporting the developer in implementation and maintenance
of web-based applications. We show how schema-free data

55

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

can be modeled using Data Grid Service (DGS) and ma-
nipulated in the RESTful way [7] (Section II). We illustrate
the application of Data Grid Service as underlying storage
engine (Section III) and discuss it respecting complexity and
performance aspects (Section IV). We also present some
related approaches in Section V.

II. WEBCOMPOSITION/DATA GRID SERVICE

In this section, we discuss the fundamentals of the
WebComposition/Data Grid Service, present data modeling
possibilities, access methods and internal architecture of the
service.

A. Basic Principles

The Data Grid Service acts as a flexible and easy to inte-
grate component providing wide information exchange and
sharing possibilities. Focusing on the management of XML
lists and corresponding metadata in a RESTful way, the
service can be applied in a variety of scenarios with different
requirements on discovery, presentation and integration of
data. The concept of URI plays a decisive role in data
access and manipulation methods, the variety of supported
representation formats makes it easy to share the information
and integrate it into existing applications. Though the service
focuses on the maintenance of data in form of XML lists,
further functionality such as content transformation using
XSLT stylesheets, binary content or gateways to other data
sources may be managed through extensions.

The logical view on the resources managed by Data
Grid Service is described by a set of so called information
stores (Figure 2). The information stores provide access
to the resources inside and corresponding metadata. For
example an information store may act as a single XML list,
containing XML representation of people or publications and
providing Create/Read/Update/Delete (CRUD) methods for
item manipulation. The information stores, metadata and sin-
gle items are references through URIs, service architecture
allows items to contain further information stores or act as
a gateway to other services or data sources. To create infor-
mation stores within the Data Grid Service a corresponding
HTTP request is made with descriptive information about
the newly created information store. Configuring the stores
using metadata allows not only the definition of functionality
but also affects performance issues, e.g., XML lists may
be internally stored either directly in separate files or in
the database to maintain larger amounts of data. Moreover
relationships between information stores can be configured
to merge the contents and process the combined data.

B. Data Model

The WebComposition/Data Grid Service manages struc-
tured data in form of XML lists. Additionally service can
handle lists of binary arrays, providing a fast and flexible
storage solution for web application resources. Resource

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

WebComposition/Data Grid Service
..\ http://dgs.exampleorg

Information Store
/projects

Information Store
/people

Information Store
/publications

Q

Information Store
/lectures

Figure 2. WebComposition/Data Grid Service. Logical view.

metadata in form of RDF statements can be created to
annotate the stored information, connect it with related
resources or configure access and manipulation methods.
XSLT stylesheets are used to transform the content into
another representation formats, such as RDF or JSON, or
to organize the data as Atom or RSS Feeds.

Resources in DGS may be created via HTTP in the
RESTful way and configured for the future use by provided
descriptive metadata. Depending on the type of the created
resource its behavior and access methods are defined. In
case of XML lists, single XML blocks may be added,
retrieved or deleted. To validate the incoming data a XSD
schema can be defined, specifying either the overall list
structure or making restrictions on the incoming elements.
The approach simplifies the maintenance of objects used by
web applications and allows making changes into data struc-
ture without reorganizing dependencies or affecting other
contents. In order to support the development of applications
with focus on relationships between objects foreign keys
and connections may be specified between lists providing a
flexible access to subordinate items. The relationships are
defined using RDF statements so that external services may
consume this information to optimize their own discovery
and integration functions.

C. Data Manipulation

The WebComposition/Data Grid Service is a web com-
ponent designed in a RESTful architectural style, providing
a number of resource discovery and maintenance functions.
With a HTTP GET request on service metadata (/meta) the
RDF description of existing information stores and current
service configuration is retrieved

New information stores are added with a POST request
on Data Grid Service URL providing description of the
resource to be created. The type of the resource (list of XML
elements, XSLT transformation, gateway to other services

56

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

etc.) defines the allowed operations both on the resource
itself but also on the subordinate items. Single list items are
created with a POST request on the corresponding parent
list URL:

POST /authors HTTP/1.1
Host: dgs.example.org
Content—Length: 89

Content—Type: text/xml

<author>
<fname>Olexiy</fname>
<sname>Chudnovskyy</sname>
<city>Chemnitz</city>
</author>

HTTP/1.x 201 Created
Location: http://dgs.example.org/authors/5

Unique id’s are assigned to the newly created store items
so these can be later retrieved, updated or deleted with
corresponding GET, PUT or DELETE methods. To make the
item URI even more descriptive a URI Template [8] may be
defined to map the incoming request onto predefined XPath
expression selecting the appropriate items from the list:

POST /authors/meta HTTP/1.1
Host: dgs.example.org
Content—Length: 89
Content—Type: text/n3

@prefix meta: <http://www.webcomposition. net
/2008/02/dgs/ meta/>.

<http: //dgs.example.org/authors>

meta:urlTemplate

[

meta:url “authors/{value}”;

meta:xPath ”/authors/student[sname="{value}’]”

1.

then
URI:

would be
the

The newly created item
alternatively available under
http://dgs.example.org/authors/chudnovskyy.

The metadata of XML list items may provide further
information in RDF format about the resource e.g., its
creation date or list creator.

The described approach simplifies the fast development of
many Web 2.0 applications, e.g., blogs, online presentations
or information sharing portals by providing a flexible and
intelligent storage solution. Satisfying the needs of devel-
opers to model structured data, Data Grid Service exposes
its content in a RESTful way, so the content may be
immediately consumed by other applications and services.

To support applications based on the domains with many
connections between items, the pre-configured relationships
are used by the Data Grid Service to aggregate subordinate
items. The relationship is defined through 4 obligatory and
3 optional attributes:

o Source: A URI of the information store within the
Data Grid Service to act as a primary list, e.g.,
http://dgs.example.org/authors/

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

o Target: A URI of the information store within the
Data Grid Service to act as a subordinate list, e.g.,
http://dgs.example.org/publications

e Predicate: A URI of RDF predicate to act
as a foreign key, defining a connection
between primary and secondary list items, e.g.,
http://www.webcomposition.net/2008/02/dgs/meta/has-
Published. Predicates are automatically stored in the
metadata of the parent item.

e URI: The unique identifier for the relationship. In
particular an URL within Data Grid Service domain
is used to retrieve the relationship details, to modify or
to delete it. The URL is provided by the service and is
sent in the Location header to the client after creation.

A relationship defined through the obligatory attributes
allows the service to process URIs after the following
pattern:
http: //{service_host }/{source_list_name }/
{source_item_id }/{target_list_name }

and as such, filtering only those items from target list that
have a relationship to the parent list item source_item_id
over the RDF property defined in Predicate-attribute. A
POST request on the same URI is used to add new items
to the subordinate list connecting it simultaneously with the
given parent list item. An inverse operation to remove the
relationship between items is performed using a DELETE
request on the URI
http://{service_host}/{source_list_name }/
{source_item_id }/{target_list_name }/
{target_item_id}

An optional Inverse-Predicate-attribute can be specified to
define a reverse relationship from the target list to the source
list. A corresponding RDF statement is then automatically
assigned to the child item metadata, acting as a foreign
key to the parent list item. The approach improves both
performance processing n:m relationships and lets the Data
Grid Service process the URIs after the reverse pattern:
http://{service_host}/{target_list_name }/
{target_item_id }/{source_list_name}

In example above both publication(s) of some fixed author
and also author(s) of some fixed publication can be retrieved
with simple GET requests on the corresponding URIs. If
many relationships between the same source and target list
should be modeled, optional Source and Target Aliases are
specified to resolve conflicts with already existing relation-
ship definitions. The predicate of the relationship is then
used to perform aggregation of target list items and response
to the requests URIs like

http://{service_host}/{source_list_name }/
{source_item_id }/{target_list_alias}

or

http://{service_host}/{target_list_name }/
{target_item_id }/{source_list_alias}

57

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Request
Hitp Request
2 [—
DataSpaceEngi Storage
e — e
SOAP Request — —
DataSpaceEngine ataSpaceEngine le i ibrary
b2 Selector
SOAP Response o
XML/RPC Request
DataSpaccEngine
<
XML/RPC Response Response i
S

Figure 3. Data Grid Service architecture

The data modeling possibilities and processing functions
let the developer concentrate on the contents and user
interface of the web application supporting them by flex-
ible and intelligent storage solution. The ease of service
integration and data retrieval shortens both development
of prototypes and real applications. As the content is
immediately available in form of XML for consumption
and integration into existing applications, implementation
of additional web services or API to access the application
data is unnecessary. The variety of representations formats
and target clients is supported through configurable trans-
formation of output content. E.g., author may provide an
RSS Feed of his newly posted publications simply providing
the Data Grid Service a XSLT stylesheet, that should be
applied on the XML document returned to the request
on http://dgs.example.org/authors/chudnovskyy/publications.
The same way one creates RDF graphs or JSON represen-
tation from the data stored in Data Grid Service.

D. Data Grid Service Internals

The flexibility of the service is achieved by integrating
new components, so called Data Space Engines, handling
the incoming requests with predefined URI patterns (Figure
3). The request is first analyzed by the DataSpaceEngine-
Selector component to determine the information store type
of the requested URL

The processing of the request is done afterwards by a
chain of Data Space Engines, providing the specific behavior
of the information store. The Data Space Engines may
complete different tasks, such as authorization, resource
versioning, data manipulation or gateway functionality. 3rd
party libraries, components, storage engines and services
may be used to accomplish the task. Following Data Space
Engines are currently implemented:

o XmlDataSpaceEngine - main component providing the
basic functionality on XML lists. Both lists and XML
items are created using corresponding HTTP requests.
Metadata is maintained for stored resources, contain-
ing RDF statements describing the contents and rela-

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Relationship

- 1d: 00acdebl-7af9-4544-a6ed-859ac0e09%ad
- Source: projects

- Target: users

 Predicate: http:/ /dgs.example.org/scrumonthology#hasUser

- Inverse-Predicate: http:/ /dgs.example.org/scrumonthology#belongsToProject

Relationship

- 1d: 9fdaf3eb-aef9-4c3b-8e13-c6e8371fe204

- Source: users

« Target: tasks

 Predicate: http:/ /dgs.example.org/scrumonthology#hasTask
 Inverse-Predicate: http:/ /dgs.example.org/scrumonthology#belongsToUser

Figure 4. Definitions of entity relationships.

tionships to other lists or items. URI Templates and
relationship definitions are resolved and processed by
the component.

o XSLTDataSpaceEngine - transforms the requested
XML resource according to the defined XSLT trans-
formation. XML lists or single items can be used to
create an alternative representation of contents, e.g.,
Atom or RSS feeds, RDF graphs, JSON representation
or HTML pages. The behavior is configured through
the list metadata.

o BinaryDataSpaceEngine - manages lists of binary con-
tent, automatically extracting meta data from known
formats and storing it using common RDF vocabularies.

The well defined interface allows developers to extend the
functionality of the service implementing further function-
ality, e.g., synchronizing the stored contents with other data
sources or restricting access to specific resources.

III. WEBCOMPOSITION/DATA GRID SERVICE IN USE

In this chapter we apply the Data Grid Service as a storage
solution to the example application discussed in Section L.
To represent the entities, we start with defining 6 XML
lists representing the entities (classes) of the UML model,
i.e., their URIS /projects, /stories, /sprints, /users, /tasks and
/impediments and corresponding schemas to perform data
validation. We also describe the associations by submitting
the corresponding information to the Data Grid Service
(Figure 4).

Each relationship is specified in the service’s metadata
through a set of RDF statements, identifying source and
target XML lists as well as connection predicates. The asso-
ciations between entity objects (depending on the direction)
are now represented by URIs as follows:

o /projects/{project id}/users &
lusers/{user id}/projects

o /projects/{project id}/stories &
/stories/{story id}/projects

o Jusers/{user id}/tasks &
/tasks/{task id}/users

58

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Welcome developer! [Log Off]

~

DGS ‘fgcmm
AT

Project Impediment

Home > Projects: "Web Notes Management " > Stories: "Hardware Sstup" > Tasks

Tasks of story: "Hardware Setup"

Action Estimation Description State Enddate

Details | 2 Compare Hosting Providers Done 20.04.2010

7 Details | Perform Order for Root Server In progress 21.04.2010

] Details | 5

Install Databasesystem In progress 22.04.2010

Back to Story |

Figure 5. Example application based on Data Grid Service.

The definitions made above are enough to maintain the
application data, to create new entities and to connect them.
The content manipulation is performed using GET, POST,
PUT and DELETE methods. As in the approach from
Section 1 we implement the Ul layer and authorization
logic using a MVC Framework (ASPNET MVC [9]). In
contrast, implicit support for data exchange and integration
is given through the RESTful architecture of Data Grid
Service. Transforming XML lists using XSLT allows other
applications to consume the data in a suitable for them
format. For example we created a simple XSLT transfor-
mation to provide a RSS feed with information about newly
added impediment messages. The same we exposed the RDF
representation about current projects, stories and tasks.

IV. EVALUATION
A. Performance

To test the performance of the Data Grid Service regarding
relationship processing functions we evaluated the service
response time while retrieving subordinate XML list items
within a simple relationship. The evaluation was performed
by measuring the service response time on a local machine
after request for all users within a specific project (as
in the example application from the section I) using the
URI http://dgs.example.org/projects/5/users. The number of
items within users list varied from 100 to 5000, which
corresponds to the objects count in the middle-size Web
2.0 application. The measures were performed on a service,
hosted in ASP.NET Development Server on a PC with
Intel Core2 Duo 2.66 GHz CPU 3 GB RAM and WD
Velocity Raptor HDD (10000 rot/min). The results in Figure
6 show the linearity of response time function due to the
straightforward implementation of XML filtering procedures
using XPath. The current implementation gives acceptable
results for smaller amounts of data, but should be revised
for larger XML lists and faster response times. Currently we
consider usage of RDF Tripple Stores, caching techniques
and XML databases to meet the requirements of larger
Web 2.0 applications and to optimize the overall service
performance.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

3500

3008

2508

2008

1508

1688

560

)

) 560 1698 1560 2880 2508 3606 5560 4000 4500 5060
Target list itens count

Figure 6. Measurements of service response time.

B. Development Process

We notice that the overall application complexity de-
creases due to the implicit resource oriented architecture and
integration capabilities of Data Grid Service. The implemen-
tation of additional web services in order to expose appli-
cation content or offer public data manipulation functions
becomes redundant due to the RESTful architecture of Data
Grid Service and its loose coupling with the application.
The publishing of content in terms of Linked Data is
implicitly supported through XSLT transformations and may
be anytime reconfigured without changing the application
code.

V. RELATED WORK

During the last years a large number of distributed non-
relational data storage solutions appeared. While meeting
many web-specific requirements, the solutions concentrate
on these main problems:

« High availability. An uninterrupted access to the stored
data is especially important in Web 2.0 (business)
applications to serve the customers around the world
and to any time.

o Scalability. The time delay of read/write functions is
stable even if maintenance routines are running or the
number of clients emerges.

« Simple data modeling. The built-in support for key-
value pairs or schema-free content simplifies the im-
plementation of data driven Web 2.0 applications.

Following we discuss some interesting solutions providing
the mentioned functionality and that are related to our
approach.

e CouchDB - The Apache CouchDB Project [10] is
a document-oriented storage solution accessible over
HTTP in the RESTful style. The documents maintained
by CouchDB are objects containing a variable number
of named fields. The absence of document schemas
makes the solution flexible for often data structure
changes and new document types. Availability and
robustness aspects are greatly solved, the manipulation

59

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

of content requires solid JavaScript skills, the modeling
of relationships between documents requires mixing
objects and their metadata, the retrieval functions must
be manually defined.

e WCF Data Services - The Microsoft WCF Data Ser-
vices [11] is a part of .NET Framework, enabling
developers to expose the data on the Web in a RESTful
way. The contents are addressed through URIs and
may be retrieved in different formats like JSON or
XML. The data is described using Microsoft Entity
Data Model based on the Entity-Relationship-Model.
The service offers an easy traversal of collections,
items and relationships, the underlying storage may
be either a relational database, such as Microsoft SQL
Server or any other data source accessed with custom
implementations of data source provider component.

e Amazon S3 - Amazon Simple Storage Service (S3) [12]
provides essential functionality to maintain data over
the Web being accessed both through SOAP and over
HTTP in the RESTful style. While Amazon S3 is used
to store unstructured data, it is often accompanied by
Amazon Simple DB [13] offering a storage solution
to access structured information and objects metadata.
The data stored in Simple DB is schema-free and is
automatically indexed to optimize query operations.

o Google Data API - The Google Data API provides
access to the data stored in Google products such as
Spreadsheets or Calendar using Google Data Protocol
[14]. Besides client libraries are available for many
programming languages, abstracting the conceptual
schema from the data serialization formats used for
data transport. The second version of protocol used is
fully compliant with AtomPub RFC 5023 [15]. The data
access and management functions are fast and flexible,
additional methods to retrieve or update partial entities
are implemented.

The presented approaches concentrate mainly on scala-
bility and performance issues, but do not provide built-in
functions to annotation the content with metadata as well
as to transform it into alternative representation formats,
e.g., RDF/XML. However these issues are essential for data
exchange and integration in modern Web 2.0 applications.
In contrast, Data Grid Service simplifies the development of
Web 2.0 applications by providing an implicit support for
the mentioned functionalities.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented the WebComposition/Data
Grid Service as a web-based storage solution to meet the
needs of modern Web 2.0 applications and to support the
developer in the implementation and maintenance process.
Particularly Data Grid Service facilitates the Web 2.0 appli-
cation development by

o Fast and flexible data management methods

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

o Content manipulation in RESTful way

o Data annotations in RDF format

« Rich data modeling capabilities and schema-free data
structures

« Support for different data representation formats (XML,
JSON, RDF, N3)

« URI templates and associations handling for easier data
manipulation

« Flexible architecture to extend the functionality

Existing applications take advantage of the built-in sup-
port for resource annotation and sharing capabilities of the
service. In combination with further WebComposition com-
ponents like Data Grid Service List Manager [16] (DGSLM)
user input elements, e.g., XHTML forms can be automat-
ically generated to manipulate the contents directly from
the external web application. To secure single lists or items
within the Data Grid Service WebComposition/ Identity Fed-
eration System (idFS) [17] may be used as identity provider
component. Both DGSLM and idFS have been successfully
tested and are used as embedded modules on the web page of
Distributed and Self-organizing Computer Systems research
group to publish the information about publications, projects
and lectures. In order to improve service performance and
shorten response times we are currently working on indexing
the contents and caching techniques to avoid redundant parse
procedures and accelerate the content delivery process. To
support the collaboration between single service instances
publish/subscribe mechanism is being developed in current
research projects. We are also working to provide iteration
and pagination functions to simplify content discovery and
navigation process.

REFERENCES

[1] T. O’Reilly. (2005, September) What is web 2.0? de-
sign patterns and business models for the next genera-
tion of software. http://oreilly.com/web2/archive/what-is-web-
20.html. Last Access: 04.07.2010.

[2] K. Schwaber and M. Beedle, Agile Software Development
with SCRUM. Prentice Hall, February 2002.

[3] R. F. Beeger, A. Haase, S. Roock, and S. Sanitz, Hibernate:
Persistenz in Java-Systemen mit Hibernate und der Java
Persistence API, 2nd ed. Heidelberg: dpunkt, 2007.

[4] A. Adya, J. A. Blakeley, S. Melnik, and S. Muralidhar,
“Anatomy of the ado.net entity framework,” in SIGMOD
’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. New York, NY, USA:
ACM, 2007, pp. 877-888.

[5]1 RSS 2.0 Specification, =~ RSS Advisory Board,
http://www.rssboard.org/rss-specification. ~ Last Access:
04.07.2010.

60

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

(6]

(7]

(8]

(91

(10]

(11]

(12]

Copyright (c) IARIA, 2010

G. Klyne and J. J. Carroll, “Resource description
framework (rdf): Concepts and abstract syntax,” World
Wide Web Consortium, Recommendation REC-rdf-
concepts-20040210, February 2004. [Online]. Available:
http://www.w3.org/TR/rdf-concepts/

L. Richardson and S. Ruby, RESTful Web Services. O’Reilly
Media, Inc., May 2007.

J. Gregorio and M. Handley, URI Template,
http://tools.ietf.org/id/draft-gregorio-uritemplate-03.txt.
Last Access: 04.07.2010.

J. Galloway, S. Hanselman, P. Haack, S. Guthrie, and R. Con-
ery, Professional ASPNET MVC 2. Wiley Publishing, Inc,
June 2010.

J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The
Definitive Guide Time to Relax. O’Reilly Media, Inc., 2010.

M. Corporation, WCF Data Services,
http://msdn.microsoft.com/en-us/data/bb931106.aspx. ~ Last
Access: 04.07.2010.

Amazon, “Amazon s3 developer guide,” Ama-
zon, Tech. Rep., 2010. [Online]. Available:

http://aws.amazon.com/documentation/s3/

ISBN: 978-1-61208-105-2

[13]

[14]

[15]

[16]

[17]

D. Robinson, Amazon Web Services Made Simple: Learn how
Amazon EC2, S3, SimpleDB and SQS Web Services enables
you to reach business goals faster. London, UK, UK: Emereo
Pty Ltd, 2008.

Google, Google Data API, http://code.google.com/intl/de-
DE/apis/gdata/. Last Access: 04.07.2010.

J. Gregoric and B. de hOra, RFC 5023 - The Atom Publish-
ing Protocol, http://tools.ietf.org/html/rfc5023. Last Access:
04.07.2010.

R. Sommermeier, A. Heil, and M. Gaedke, “Lightweight data
integration using the webcomposition data grid service,” in
First International Workshop on Lightweight Integration on
the Web (Composable Web’09) in conjunction with the 9th
International Conference on Web Engineering (ICWE 2009),
San Sebastian, Spain, 22.-26. Jun 2009, pp. 30-38.

M. Gaedke, J. Meinecke, and M. Nussbaumer, “A modeling
approach to federated identity and access management,” in
WWW °05: Special interest tracks and posters of the 14th
international conference on World Wide Web. New York,
NY, USA: ACM, 2005, pp. 1156-1157.

61

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Business Protocol Monitoring

Samir Sebahi, Mohand-Said Hacid
Université de Lyon
Université Claude Bernard Lyon 1
LIRIS CNRS UMR 5205

France

{samir.sebahi | mohand-said.hacid}@liris.cnrs.fr

Abstract—Because it is never sure that a business process
successfully tested or statistically checked will have the
expected behaviour during its execution, it is necessary to
bring verification to the execution phase, by continuously
observing and checking the correct behaviour of business
processes during run-time. In this paper, we propose a new
monitoring framework to monitor business protocols. We
provide a monitoring language called BPath, which is an
XPath-based language for both expressing and checking
temporal and hybrid logical properties at run-time, making
visibility on business process external behaviour by expressing
and evaluating statistical queries over execution traces.

Keywords-monitoring; business process; business protocol;
XPath; hybrid logic

. INTRODUCTION

The advent of web services and Service Oriented
Acrchitecture (SOA) has made a considerable progress in the
way applications are developed and used, leading to the
opening of new borders for information systems, with more
automation of tasks, complex and multiple interconnection
scenarios between applications within the same system and
across different systems. In this context, the task of checking
correctness of business processes at run-time becomes
particularly challenging.

Currently, the common practice for developing service-
based systems is to employ the SOA paradigm [1], which
enables composition of services into business processes in a
particular order and according to a set of rules to provide
support for business processes.

Two features characterizing SOA have retained our
attention and guided our investigation towards building an
approach for monitoring business processes: SOA uses a
message-based communication model, and most of
specifications and languages used in SOA are XML based.

Based on these considerations, we designed and
developed a new monitoring framework based on message
abstraction. This abstraction is called business protocol [2].
We provide an extension of XPath [3] to accommodate
verification issues. The resulting language (called BPath) is
also a query language that can be used to track and make
visibility on business process execution.

The paper is organized as follows: In Section Il, we
present some related works. Section 111 presents the concept
of business protocol, and presents a monitoring scenario.
Section IV describes architectural and design principles of
our approach for monitoring. In Section V, we present our
monitoring language. Then, we show its applicability to

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

monitoring in Section VI. Finally, we conclude in Section
VIl by summarizing our work and identifying some
extensions.

Il. RELATED WORK

A lot of research works have been proposed in the last
years to monitor business processes. Some of them are
directly related to our work. Baresi and Guinea [7] proposed
a language (WSColL) for specifying constraints on execution
by defining a set of monitoring rules for both functional and
non-functional constraints with the capability of setting the
degree of monitoring at run-time such as: validity time
frame, priority and a set of certified providers, for which
monitoring may be omitted. Also, it enables specifying
expressions over process variables and supports a set of
built-in functions, logical and mathematical operators, and
quantification. This work was extended in [8] by providing
a support for specification and checking of temporal
properties at run-time like with our monitoring framework.
In [9], both business process behaviors and monitoring
properties were stated as event calculus predicates, which is
a logic-based formalism representing actions and their
effects. Then, monitoring properties are checked in a post-
mortem way against the stated behaviors and the recorded
behavior in execution log at runtime, making the monitoring
framework non intrusive regarding the execution of the
business process, which is also the same case in our
monitoring framework. The authors in [10][11] proposed
monitoring languages that are built on top of XPath. [10]
Proposed an approach to the monitoring of business
processes specified in BPEL. A visual language, called
Business Process Query Language (BPQL), with query
capabilities, over BPEL processes, was introduced. XQuery
expressions are generated, in the same way that graphical
notations help business process designers generate
specification code, using dedicated icons for each activity.
Hallé and Villemaire [11] proposed an approach for
monitoring web services choreography by means of XQuery
[12] engine. Linear temporal logic properties are translated
into an equivalent XQuery expression. Then, it is evaluated
over XML message traces representing the choreography.
Our monitoring framework is distinguished by using a
simple messages based abstraction, and an expressive
hybrid logic based language.

62

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

IIl. BUSINESS PROTOCOL

The purpose of a business protocol is essentially to
specify the set of conversations (sequence of messages) that
are supported by a business process [2]. Formally, we define
a business protocol as a tuple P = (S, so, F, M, T) where:

e S is a finite set of states the process goes through
during its execution.

Sg is the initial state.

F represents the finite set of final states.

M is a set of messages.

T € SxSxM is the set of transitions, where every
transition is labelled with a message name and its
polarity, when a message is consumed by the
protocol, the transition is assigned the polarity
sign(+), and when it is produced by the protocol, the
transition is assigned the sign (-).

In order to give an intuitive idea about our monitoring
approach, let us consider the following scenario, inspired
from [9], of an online Car Rental System (CRS) shown
Figure 1.

CRS offers a car location service: whenever a rent car
request is received (RentCar), the availability of the
requested car will be checked. If it is not available, then a list
of cars will be sent to the client, otherwise, the requested car
is reserved, and a confirmation message is sent to the client
(CarReservation). Then, the client will send her/his bank
information (BanklInfo), which will be validated, before
sending the keys. After returning the keys, the client receives
a payment confirmation (BankConfirmation). But, in case the
bank information is not valid, CardRejected message will be
sent to the client and the process instance is completed.

¥ LEMOICEF | -
b - \, HIOICar| -)
P
h, p,
Rentinfo [+) —_——
= =
F 51 '\.. " =~
—_— =
Y, ~ -
H-Illlriul[fl _ CarResorsathon [=)
.-'_\Lw-
54 1
- 4 CardRajected | -)
heys | -)
W kaye(®) _ BarkConfiem (-])
[8 | g s | a7
= B | |
L 4 A

Figure 1. CRS business protocol

To show how our monitoring framework is able to
monitor different kinds of properties and queries, we propose
to consider the following list which should be continuously
evaluated at run-time:

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

e P1: if a client’s bank information is rejected, he
should not get a car reservation before one hour.

e P2: a client should not get a car reservation when
the keys are taken by another client.

e Q1I: calculates the average time to perform a car
reservation.

e Q2: counts the
information.

number of rejected bank

IV. THE OVERALL ARCHITECTURE

Figure 2 depicts the main components of the monitoring
framework. First, a BPEL business process external
behaviour is represented by means of a business protocol.
Then, monitoring properties and queries are formulated
using BPath monitoring language (presented in Section V).

At run-time, all incoming or outgoing messages will be
captured by the business protocol monitor component before
reaching their original destination. The process engine as
well as the monitoring framework will publish the execution
and monitoring events respectively, which will be stored in
the execution log.

Design/Updates

| represented by _ (‘Business protocol
|

'
[Business protocol Monitor

I
1
1
; Process engine
BPEL specification
/|\ \J/ publish\fpaults/statistics
Execution Log Dashboard
—
l Analyse

Figure 2. Monitoring framework

Manitoring
Prepreties and queries

Actor

Publish events

The execution log is of two types: state log, generated by
the business protocol monitor, and event log generated by the
process engine. On the basis of these generated execution
logs, a checker component will check the correctness of the
current execution and a Business activity monitor component
will evaluate the specified statistical query to return
statistical indicators on the execution of the process, and then
both of these monitoring results will be published on a
dashboard.

Additionally, the monitoring framework provides a set of
business protocol execution events (see TABLE I.), to
capture and control the exchanged messages, but also to
specify when verification tasks should be performed.

For instance, to perform verification every time a
message is received, we write:

OnMessageReceived (EventArgs e){
Check a property(P;)

Or after a message is sent, as follows:

OnMessageSent(EventArgs e){
Check a property(P;)
}

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

In the first case, a business process will be blocked until
the verification is done. But, in the second case, verification
task will not block the execution of the business process.

TABLE I. BUSINESS PROTOCOL EVENTS

Protocol Events Description

Fires every time an event listed in

OnEvent this table occur.

Occurs when a new instance is

OnNewlnstance started

OnNewsState Occurs when a state is entered
OnMessage Occurs when a message sent or
received
OnMessageRecsived Occurs when a message is
received
Occurs when a received message
OnAnknwonMessage is not defined in the protocol
Occurs when a received message
OnUnexpectedMessage is defined in the protocol, but not
expected from the current state
OnMessageSent Occurs when a message is sent

Occurs when a transition from a

OnTransition state to another state happen

OnEndInstance Occurs when an instance is ended

V. MONITORING LANGUAGE

In what follows, we consider that an execution of a
business process as a sequence of states, independently of
the fact that a business process can have different process
instances, or parallel activities inside the same process
instance.

The main idea behind our monitoring language (BPath)
is first to consider a sequence of states representing the
execution of a system as a special kind of tree. Each node
represents a possible state, and its child node represents the
direct next state. Then try to reuse the widely used language
in the area of service based systems, which is XPath, as both
a verification language and a query language.

So, BPath is built on top of XPath, and evaluated over a
special tree of nodes (each node has only one child node,
and no sibling nodes) forming a linear structure. BPath
accommodates the notion of static and dynamic attributes
and allows variable assignment inside path expressions.
BPath offers a mean to express properties in first order
hybrid logic. First order Hybrid logic [6] is an extension of
first-order modal logic that makes it possible to name states
and to assert that a formula is true at a named state.

A. BPath Syntax

A BPath formula is built according to the following
abstract syntax:

e =T|T=T|P(T,...,T) |noto|eand ¢ | or
@1 (@) @50 | 15,0 [z8,0 [Irx,0 [IX @ | VX @
Ti=n|x|c|f(t,...t) | 7/@q|s|s/@q

na= AXISEN [(n) [w o] |7t/ |

N:=n|*

Axis ::= child | descendant | self | descendant-or-self]
parent | ancestor| ancestor-or-self

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Where: x € FVAR (a set of first-order variables),
neLAB (a set of first-order constants), We define a function
lablel: W->LAB, such that for each element of W associates
an element of LAB, s € SVAR (a set of state variables), g
eATTS (a set of unary function symbols, called static
attributes) U ATTD (a set of unary function symbols, called
dynamic attributes) u FUN (a set of one or more arity
functions).

To simplify some expressions, we consider that
“mchild::N” can be written as “n/N”, that “self::*/(@q”
can be simply written as “@gq ", and that “not (¢) V o can
be abbreviated as “p—> a”.

B. BPath semantic

BPath formulas are interpreted in first-order modal
models M (W, R, D, l,)wew With constant domains such
that: W is a set of nodes (or states){w;, w....}, R is a linear
modal relation on W. D is the interpretation domain. (W, R)
is the modal frame.

For every w € W, (D, |y) is an ordinary first-order
model such that:

e ly(c)=Ily (c), for all w, w> € W, ce CON.

e ly(q) €D, forqge ATTSUATTD U FUN.

e 1,(P) = DX for P a k-ary predicate symbol.

e |, (m)cW for & a path expression.

To interpret formulas with free variables, we define an
assignment function g such that:

g: SVAR X FVAR > W x D

g(X)eD if xeFVAR or g(x)eW if x € SVAR.

Given a model and an assignment g, the interpretation of
the term t, denoted by t is defined as:

e x=g(x) forx e FVAR

e 5 =g(s) for se SVAR

e ¢ =ly(c) for c € CON, for some w e W

o s/@q = lyy(q) for s a state variable, and q € ATTS

W ATTD U FUN.

o 7/@q = {lw(@) , lwi(q) Ian(q) }such that
W1,Ws... W, € ly(m), for some w eW.

We also define an assignment gX1-*% - such that:

gxE2 (y) = g(y) for y#x, and g3E*%, (x) = d;.

This means that d; is assigned to x;, d, to X,...and for
each y not in{x;...x,}, g3-*1 is the same as g.

The satisfaction relation of a BPath expression is defined
as follows:

M, g, W=t I mwg (H)7D.

M, g WI[=P(ty, ..., t)e (t1,..., tn)c L(P)
M, g, W|=t=u<s t =u, where: t and u are terms.
M, g, w|znotp & M, g, w|#o.

Mg wlpandy e M, g wi=EoAM, g, wl=y.
M,gwl=porye M,gwlEoVM, g w|=y.
M, g, W=@sp © M, g, g(s) |= ¢ for s eSVAR.

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

M, g Wi=ls,o & M gy, WI=9.
s,s[1]...s[n]
wlwl..wn *

M, g, W[=ls0 Mg
IM'g'W(TC).

M, g, w |:iTX,(P And M, g% » W |:(P

w |=¢. Where w; W, €

M,g,w|=3x 9 e M, gr ,w|=0. for some d € D.
M, g, w|=vxe & M, gk, wl=o. foralld € D.

The interpretation of a path on the model M, starting
from the state-node w, and given an assignment g is defined
as follows:

| M,w,g (Ttll Tl',z): | M,w,g (Tl',l) Ul Mw,g (Tl',z).

I Mg (N T)={W’ | W € I mwg (M) A W € Imwg(m2) }.

I Mg (Ta/T02) =W’ W € I wg (T)w A W€ T g (T2) 3.

I mwg (7 [0])={W' W’ € Tywg(m) A Mg, W= 0 }.

I Mg (Self::N) ={w| label(w)=N v N=* }.

I Mmw,g (Childz:N)={ (W’| (WRW’A YW’ WRW’’> w’Rw)) A
(label(w’y=N V N=%) }.

I mwg(descendant::N) ={w’|lwRw’ A (label(w’)=N v N=*) }.

I mw,g(descendant-or-self::N)- |y wg(descendant::N) U 1y, g
(self::N).

I mw,g (Parent::N)={ w’| (W RwWA Vw’> w”’Rw=> w”’Rw’))
A (label(w’)=N V N=%*) },

I mwg (@ncestor::N)-{w’|w’Rw A (label(w’)=N v N=%*) }.

I mwg (@ncestor-or-self::N)= 1 yw,q [ancestor::N] U

I mwg [Self::N].

C. From BPath to XPath

To be evaluated, a BPath expression will be translated
into a standard XPath expression, extended with two
functions: Set, and Get, which allow to assign variables and
to retrieve their values respectively.

The following table shows, the concrete BPath syntax,
and how it is translated to XPath.

TABLE Il. BPATH TO XPATH

BPath Abstract BPath Concrete Translation to XPath

Syntax Syntax 1.0

x (a free variable) $x Get($x, self::*)

@sp $s [o] Get(p, $5)

X0 $x:=T,p Set($x,t,self::*) and ¢

15,0 $s* ¢ Zet(ﬂss, self::*,self::*) and

xS, @ $s:=m, ¢ Set($s, © ,self::*) and ¢

s/@q $s/@q Get(q, $s)

’ﬂ:/@q Lk

(ge FUN U ATTD) n/@q Get(q, m, self::*)

Quantified expression cannot be expressed in XPath 1.0
[3]. It is possible by using XPath 2.0 [4], as follows:

3x ¢: some $x in D satisfies ¢
VX @: every $x in D satisfies ¢

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Listing 1 presents the Get and Set functions. We suppose
that ‘Eval()’ is a function provided by the framework to
evaluate an XPath expression. e(q,w) is a function returning
the value of a dynamic attribute, g is an array storing
variables and theirs values.

Set($x, t, w){g[x]=Eval(t,w), return true ;}

Get(op , $s) :{ return Eval(o, g[s])}

Get($x, w){return g[x];}

Get(q, $s) { return Get(q, g[s]) }

Get(q, m, w) { return sequence: {Get(q,w’) / w’ € Eval(m,w)}
Get(q, w) { if g € ATTS U FUN return Eval (q,w) else if
(geATTD) return e(q,w) }

Listing 1 Get and Set functions

D. Linear Temporal Logic with BPath

Linear temporal Logic is a special type of modal logic: it
provides a formal system for qualitatively describing and
reasoning about how the truth values of assertions change
over time [5]. LTL provides four future operators with the
following meanings: X(¢): ¢ should be true on the next
state, F(¢): means that ¢ should be true at least once in the
future, G(): @ should be true every time in the future, ¢ U
y: ¢ has to be true at least until y, which is true now or in
the future. These operators can be represented in BPath as
follows:

o X(¢): child::*[o].

e F(¢): descendant-or-self::*[¢].

e G(¢): not(descendant-or-self::*[not(p)]).

o Uy $x* F($y*, SX[F($y=self ::* Ay) A G (F

($y=self ::*) > o)]).

VI. APPLICATION SCENARIO

In this section, we will show, through a concrete
execution scenario, how BPath can be used to monitor a
business process execution.

Let us assume that the car rental system manages three
cars (RedCar, GreenCar, BlueCar), and receives requests
from three clients (John, Mark and Bob), that we consider
as web services interacting with the CRS business process:
First, John sends a request for red car. His credit card will
be rejected, but he tries again and gets the car reservation.
Mark requests a green car, gets a reservation and keys, and
then receives a payment confirmation after returning the
keys. Bob requests the same car as Mark and obtains a
reservation.

At run time, messages exchanged between different
instances of the process and external partners will be
captured and stored in the event log.

Definition 1: An event log is a collection of entries el =
(name, (key=value), (key=value)...., Insld, T), where: name
is the name of the event, (key=value) ...are list of items and
their values contained within the event, Insld is an Instance
identifier of the process instance concerned with the event,
and T is a timestamp recording the time the event occured.
Listing 2 shows an example of an event log, generated from
the supposed execution scenario of the CRS business
process.

65

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

L1 : RentInfo: ClientInfo=John; Carlnfo=RedCar, Instld=1, T=1
L2: CarReservation: carReserved=yes, Instld=1, T=3

L3: CardRejected: cardInfo=798799979879, Instld=1, T=5

L4: RentInfo: ClientInfo=Mark; CarInfo=GreenCar, Instld=2, T=8
L5: CarReservation: carReserved=yes, Instld=2, T=10

L6: BankInfo: cardInfo=798799979879, Instld=2, T=12

L7 : RentInfo: ClientInfo=John; CarInfo=BlueCar, Instld=3, T=15
L8: CarReservation: carReserved=yes, Instld=3, T=17

L9: Keys: keysOut=KY123, Instld=2, T=19

L10: RentInfo: ClientInfo=Bob; CarInfo= GreenCar, Instld=4, T=22
L11: CarReservation: carReserved=yes, Instld=4, T=24

L12: Keys: keysIn=KY123, Instld=2, Instld=2, T=26

L13: BankConfirm: payeConfirmed =yes, BankTransation=Trans0001,
Instld=2, T=28

Listing 2 Event log

Additionally, the business protocol will generate events
related to transition from a state to another state, when a
message is received or sent to or by an instance of the
process. These events are stored in the state log.

Definition 2: A state log (SL) is an XML tree of nodes
(states-nodes): wy, Wy, Ws...where W, isthe unique child node
of wy, ws the unique child node of w,, etc. Each state-node
has a name s;eLAB/ s;=label(w;), and two attributes, Insld
(instance identifier) e ATTS, and T (timestamp)e ATTS.

Listing 3 shows the states log generated from the
supposed execution scenario of the CRS business process.

A BPath expression will be evaluated over the state log.
But as we can see, state log does not contain a lot of
information about the execution, because the real events are
stored in the event log. Execution information can be
retrieved and linked to a state-node through dynamic
attributes.

<S1 Instld="1"T="0">
<S2 Instld="1" T="2">
<S3 Instld="1" T="4">
<S4 Instld="1" T="6">
<S1 Instld="2" T="7">
<S2 Instld="2" T="9">
<S3 Instld="2" T="11">
<S4 Instld="2" T="13">
<S1 Instld="3" T="14">
<82 Instld="3" T="16">
<S3 Instld="3" T="18">
<S5 Instld="2" T="20">
<S1 Instld="4" T="21">
<82 Instld="4" T="23">

<S3 Instld="4" T="25">

<S6 Instld="2" T="27">
<S7 Instld="2" T="29"/>

</S6>

</S3>

{...
</S1>
Listing 3 State log

In BPath, the value of a dynamic attribute at state-node
w is defined by a function 6 (g, w), which extracts the last
value of q from the event log, before that state node w
occurs, as follows:

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

0(q,w):
Begin

Let ge ell / ell e Event log A ell.Instld=Eval(@Instld, w) A
ell .T<Eval(@T, w) A V el2 e Event log: qe el2 A el2.Instld=
ell.Instld A el2. T<Eval(@T, w))-> el2.T<ell.T;

return g.value;

End

For instance, the following BPath expressions, when
evaluated at T>4, will return:

e S1/S2/@Clientinfo={John}.

e S1/S2/S3/@ClientInf={john}.

e S1/S2/S3/@ carReserved={yes}.

Now, the monitoring properties and queries presented in
Section 111 can be expressed using BPath as follows:

a) Check that in case where credit card of a client is
rejected, the client should wait one hour to be able to get a
car reservation. We formulate this property in BPath as
follows (P1):

G(self::S7[$S7*, @CardRejected >
not(F(self::S3[@CleientInfo=$S7/@ClientInfo and (@T-
$S7/@T)<60 D).

In this property, we check that every time in the future a
credit card of a client is rejected (can be checked at state
S7), the concerned client should not get a car reservation
(we check a state S3 following the previous S7), knowing
that the elapsed time (between S3 and S7) is less than one
hour.

b) A client should not get a car reservation when the
keys are taken by another client. This property can be
expressed using BPath as follows (P2):

G (self::S5[$S5*, F(self::S3[$S3*, @CarlInfo =
$S5/@CarlInfo] = $S5[F(slef::S7[@CarInfo =
$S5/@CarlInfo and = @T< $S3/@T])]).

In this property we express that whenever keys of a car
is sent (at state S5). Then, every time in the future where a
reservation for the same car is done (at state S3), it should
be the case that the keys of this car were returned before (if
there exist a state S7 after S5 but before S3, where the keys
of the car are returned)

As we can see from the previous execution log, the

properties (P1, P2) are violated respectively at:

e L8 (see event log): when John obtains a car
reservation, knowing that his credit card was
rejected less than one hour ago (see L3).

e At line L11: the green car was reserved for Bob (at
L11), but this car is still assigned to Mark (L9), and
the keys of the car are returned by Mark only after
(L11), exactly at (L12).

BPath is also a query language that can be used to return

statistical indicators on the execution of a business process:

c) Calculating average time to make a car reservation

(Q1):

66

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

sum(descendant-or-self::S1[$S1*, descendant::S3[$S3*,
(@Instld=$SU/@Instld)] /@($S3/@T-@T)) div
count(descendant::S3).

In this query we start by calculating the sum for all
process instances of the time to reach the state S3 (the
reservation state) from the state S1 (the start state), then
dividing the obtained sum on the number of reservations.
We use two functions (sum and count) to respectively
calculate the sum and the number of elements of a sequence.

d) Count the number of rejected credit cards we write
in BPath (Q2):

Count(descendant-or-self::S7[@CardRejected]).

The previous list of monitoring properties and queries
provides an overview on how to use BPath to monitor
business processes. Additional functionalities can be
expected when using BPath within XQuery, and by adding
new built-in functions.

VIlI. CONCLUSION AND FUTURE WORK

In this work, we provided a framework for business
protocol monitoring. First, we have presented the business
protocol abstraction. Then, we have presented BPath, the
underlying monitoring language. Finally, through a case
study, we have shown how the monitoring framework can
be used to monitor business protocol. To summarize, we
have developed a monitoring framework that mainly
displays the followings features:

e The use of a simple messages based abstraction.

e A single expressive language for expressing both
monitoring properties, and queries. However BPath
is familiar to those who already use XPath
language.

e Monitoring properties and queries can be
dynamically specified during the execution of the
process,

e Non-intrusive monitoring framework, because it is
executed in completely separated way from the
business process.

Our future work will be devoted to the design of

methods to analyze and explain the reason of the deviations,
and move towards resolving them as soon as they occur.

REFERENCES

[1] A. Metzger and K. Pohl, “Towards the Next Generation of Service-
Based Systems: The S-Cube Research Framework,” Advanced
Information Systems Engineering, 2009, pp. 11-16.

[2] B. Benatallah, F. Casati, and F. Toumani, “Analysis and Management
of Web Service Protocols,” Conceptual Modeling — ER 2004, 2004,
pp. 524-541.

[3] J. Clark and S. DeRose, XML Path Language (XPath) Version 1.0,
W3C, 1999.

[4] M. Kay, D. Chamberlin, J. Robie, M.F. Fernandez, J. Siméon, S.
Boag, and A. Berglund, XML Path Language (XPath) 2.0, W3C,
2007.

[5] E.A. Emerson, “Temporal and modal logic,”
Theoretical Computer Science, 1995, pp. 995--1072.

Handbook of

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

[6]

[71

(8]

[10]

[11]

[12]

P. Blackburn and M. Marx, “Tableaux for Quantified Hybrid Logic,”
Automated Reasoning with Analytic Tableaux and Related Methods,
2002, pp. 259-286.

L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-
BPEL Processes,” Service-Oriented Computing - ICSOC 2005, 2005,
pp. 269-282.

L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini, “A
Timed Extension of WSCoL,” Web Services, IEEE International
Conference on, Los Alamitos, CA, USA: IEEE Computer Society,
2007, pp. 663-670.

K. Mahbub and G. Spanoudakis, “Run-time Monitoring of
Requirements for Systems Composed of Web-Services: Initial
Implementation and Evaluation Experience,” IN ICWS °05, 2005, pp.
257--265.

C. Beeri and A. Eyal, “Monitoring business processes with queries,”
IN VLDB, 2007.

S. Hallé and R. Villemaire, “Runtime monitoring of web service
choreographies using streaming XML,” Proceedings of the 2009
ACM symposium on Applied Computing, Honolulu, Hawaii: ACM,
2009, pp. 2118-2125.

D. Chamberlin, J. Snelson, J. Robie, and M. Dyck, XQuery 1.1: An
XML Query Language, W3C, 2009.

67

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Service Planning in Multi-Layer Networks Considering Physcal Constraints

Shu Zhang, Lothar Kreft and Ulrich Killat
Institute of Communication Networks, Hamburg Universityfechnology
Email: s.zhang, kreft, killat@tu-harburg.de

Abstract—In the daily work of network operators, some could be left unguaranteed. A typical problem raised by
traffic engineering tasks are often encountered, e.g., to eate network operators is to ensure physical disjoint pathster t
new logical links over the physical layer considering the —, qiaction of important services in a multi-layer settifibis

efficient utilization of network resources; to establish nev -
end-to-end paths across the network with minimum cost in problem and our solution based on a two-layer reference

order to support emerging data transfer services; to instdl ~model will be extensively discussed in this paper.

physical disjoint paths for some critical services where falt A great number of researches have been carried out on
tolerance is desired, etc. Since these tasks are by nature multi-layer optimization problems, typical works include
interrelated, we propose an integrated optimization framevork [1][2][3] in which multi-layer problems are implicitly dis

to solve them as a unified planning problem. Both an Integer .
Linear Programming model and a Simulated Annealing based cussed in the background of WDM networks, and [4][5]

optimization method are discussed in this paper. Because Where general purpose multi-layer planning models are
optimization in multi-layer networks is known to be much suggested. One common conclusion is that multi-layer opti-
more complicated than that in a single layer, special care h& mization is much more complicated than single layer ones,
been taken in our model to alleviate the scalability problem and to strictly model multi-layer data structures may resul

The framework has been implemented as a commercial tool in orohibitive scale when dealing with practical problefms
for traffic planning. The numerical tests have shown that the In pronhidriv w Ing with p icalp :

corresponding tasks in real scale network can be efficiently thiS paper, we propose an approach which reduces the multi-

handled. layer model as much as possible into a single layer one. We
Keywords-Physical Disjoint; SRLG; Traffic Engineering; will fo_rmulate a core TE model for_ 'Fhe stand_ard single layer
ILP; Simulated Anealing planning problem, where the critical multi-layer features
appear as extra constraints, and the non-critical featanes
|. INTRODUCTION shifted into heuristic algorithms executed before or atter

One of the major challenges in short term network man-main TE process.
agement is to establish a number of new end-to-end paths The rest of the paper is organized as follows. Section
with dedicated resource assignment for the emerging réquel introduces the problem settings and the Integer Linear
of data transfer services, using the currently availablesp Programming (ILP) formulation of our Traffic Engineering
resources in the network. A network operator usually doesnodel. In Section 1ll, a greedy planning method and its
not handle each service directly. Instead, a fixed path wittfextension to a Simulated Annealing (SA) based method are
a bulk of bandwidth allocated at each hop is providedpresented as alternative heuristic solutions. Some nealeri
to an aggregation of individual data transfer services withresults in solving the ILP and the heuristic models for a test
some common properties, e.g., same source and destinatisgtenario are presented in Section IV. The conclusions are
similar QoS requests, and same protection mechanism. Frogiven in the last part.
the qperator’s point of view, the aggregation of services is Il. THE PROBLEM DEFINITION AND THE ILP MODEL
considered as an abstra¢mandto be routed across the)
network. A. Problem Setting

The state of the art solution is to calculate a minimum- Let's consider the task to route a set of end-to-end
cost solution at the moment for each upcoming demandlemands (with given resource requests) across a network
using a shortest path algorithm. However, such a greedglescribed by a grap&'(/N, E), where N is the set of nodes
approach is known to be sub-optimum in case of multipleandE is the set of links. The objective is to find a minimum-
demands, because the demands are interrelated due to st solution where all constraints are held. Without loss
competition for common network resources. The situatiorof generality, our multi-layer network model is defined by
becomes even more complicated when multiple networKollowing properties:
layers are taken into consideration. In practical solvipg a 1) There are two layers in the network, physi-

proaches nowadays, the consideration of inter-layeriogiat cal layer Gpnys(Nphys, Epnys) and logical layer

is mostly intuitive or based on personal experiences of the Glog(Niog, Elog). Since logical nodes are a subset of
planner. This may result in worse solutions than planning in physical nodesy{i,q C Npnys), we defineNypys =

a single layer only. Furthermore, some critical user retpues N;

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2 68

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

2) The logical layer occupies a part of the physicaloff from our optimization model without compromising the
resources. Therefore, there are some remaining freeptimality. Here, we consider the spare resources also as
resources at both physical and logical layer. abstract and no longer differentiate between physical and

3) Free resources in the logical layer can be directly usedbgical links that can eventually be used to support demands
to route an end-to-end demand, while free resources
in the physical layer must be converted into logical
links before being used to route any demand.

4) The routing of each logical link in the physical layer
is known; new logical links can be arbitrarily created
when there are enough resources in each of its physical
hops.

5) The settings of all existing logical links and routed
demands remain constant. The capacity of logical:
links, as well as the routing of demands and logical
links cannot be changed. ‘

<= end-to—end demand
—— logical link
— physical link

- — . abstract link (from logical link)
----. abstract link (from physical link)

Note that the last property originates from the practical &{7 \7_
request of the network operators. The purpose of this censer 4
vative constraint is to make sure that no active servicekicou
be disturbed due to the accommodation of new demands.a_ The multi-layer netwok b. The merged network

Consider another extreme case: Free reconfiguration of all

logical links is allowed. In this case, we can setup an Figure 1. Merge of the physical and logical layer
analytical model where all free resources in logical links

are returned to the corresponding links at the physicallaye

After this step, all logical links can be safely removed Note that both Eq.1 and Fig.1 are missing the information
from the graph since they can no longer influence theof the routing of logical links over physical links, which
routing decisions. Finally, the optimization will be caui must be specially modeled.

out in a topology identical to the physical network, and thus Following the requests of network operators, we define 2
becomes equivalent to a single layer TE problem. After thgypes of end-to-end demands:

optimization, we only have to modify the related logical 1) Type 1 (0,): requiring a single end-to-end path with

links in the original network according to the solution. Wit dedicated resource allocation.

this approach, the sub-optimality of resource utilizatitue 2) Type 2 (D,): requiring a pair of physical disjoint end-
to the "bundle effect” is not an issue, and may therefore to-end paths with dedicated resource allocation along
result in better resource effectiveness than our definition both paths, so that any single failure in the physical
above. But, such kind of solution may require a large number layer can be tolerated.

of reconfigurations, which is a tedious task and in many,
cases a major source of error.

In the following part of this paper, we will focus on our
problem setting with the properties presented above, in
network G defined as follows.

he objective of the optimization is to find a routing soluatio
for each demand, while the link load does not exceed
the limit of the available capacity, and the cost due to
Pesource consumption is minimized. In our planning model,
all available free resources at any layer become resounces i
G = Gphys UGlog = G(Nphys U Niog, Epnys U Erog) the abstract links of the merged network, based on which a
G(N,E U Eog) traffic engineering algorithm is carried out. Eventuallye t
y phys log

creation of logical links is accomplished according to the

results of the optimized routing of demands.

G(N, E), E = Ephys U Elog (1)

This equation explains our attempt to convert most multi- ,
layer optimization features into a single layer model, asS- The Routing of Demands
shown in Fig.1. Both logical and physical links in Fig.1a In order to establish an end-to-end connection for type 1
which have spare resources at the moment are represent¢ddmand, a set of flow continuity equations are established.
by anabstractlink in Fig.1b, with capacities equal to their We define a set of binary variables:

spare resources. In the real operation, spare resources on . .
P P P { 1 if demandd € D, traverses linke

a physical link must be organized into logical link(s) to z;(i,e) = 0 otherwise (2)

be eligible for the routing of demands. However, since
the operation of creating a new logical link on a selected Assumeu,v € N are the end nodes of demandand
physical segment is not an optimization issue, it is takere(m,n) denotes a directional link from nodem to n, then

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2 69

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

the flow continuity constraint is as follows: l.e., because cables can be placed in the same bundle or
same duct, a single event that destroys one cable should
. . 2! . ; .
Ou,j + Z wi(ie) = Z w1(i,€') + v, Vi €N gi50 destroy all others in the same place.
e(m.j)eE ¢ GmeE Considering both cases in the optimization model, a
P — { 1 ifa=b 3)preprocess before running the main optimization is require
a H - . -
0 otherwise firstly, an analysis should be made to find out all such

Eq.3 means that the traffic entering any ngdeust be equal bundles/ducts, referrgd to asriak areg then therouting
to that leaving the node, with the exception at the source antglated groupstraversing the same risk area are merged to
destination nodes of the demand. become an SRLG. Note that any standalone physical link
For type 2 demands, the flow continuity equations ardS considered as an SRLG with only one physical link.
in princip'e the same. Here, a pair of d|SJO|nt paths forW|th this mOdel, the physical d|S]0|nt constraint in a multi
each demand is required. We will show that the physicalayer problem is converted to the equivalent condition in
disjointness in the multi-layer model can be well modeledthe merged single-layer network: the two paths of a type 2
by disjoint conditions of nodes and Shared Risk Link Groupsiemand should not traverse the same SRLG.
(SRLG) [8][9][10] in the layer-merged model. To establish a pair of paths for every type 2 demand, we
While node disjoint condition is obvious, #W?LG may define a similar binary decision variable as Eq.2:
origingte from two cases ina mult@-laye.r network. The first 1 the pth path ofd(c D») traverses:
case is due to the routing of logical links over the sametz(i,e,p) = { 0 otherwise
physical link, as shown in Fig.2a. A single event which e {1,2) @)
destroys the physical linl. will also destroy logical link p ’
P, and P,. Since they share the risk of the same eventUnder this definition, the flow continuity condition is very
we state that the set of link§L, P;, P} forms a shared similar Eq.3, with the same equation set for every {1, 2},
risk link groupS. Consider disjoint paths calculation: If one while the SRLG disjointness of the paths is guaranteed by
path traverses one of the links in a risk group, the other patlEq.5:
should avoid taking any of the links in the same group. Given , o,
the routing of all logical links, we can find as many risk w2(i,e,p) +22(1, ¢, p') < 1 ®)
groups as the number of physical links in the network, each Vi€ D,Vp,p' € {1,2},p# p/,Ve, e’ € S, VS
containing a physical link and all the logical links routed
over it. These groups can be obtained by a deterministi%
analysis process, denoted rasiting related groups 2

The above constraint means thats(i,e,p) and
(i,e’,p’) cannot both bel, which implies the path
p and p’ of the demand; must not traverse links in the
o L Dmmmmm a, same SRLGS. However, Eq.5 does not check disjointness
~~ ~Demand T T of paths at each nodes. The following two equations
“o ensures node disjointness, where the variablé n, p)
\ / tracks the intermediate nodes of a path (see Eq.6), and the
0 Logical node-disjointness constraint (see Eq.7) is similar to Eq.5

Layer

In graph theory u(i,n,p) is binary,, Vi€ Dy,n € N,pe€ [1,K]
a Q x2(i,e(m,n),p) < u(i,n,p), Vi € Da,e € E,p € [1, K]
Physical n is not an end node of (6)
layer © ‘ ‘ ' Z u(i,n,p) <1, Vi € Da,ne N @)
o 8 pe{1,2}
In real layout Note that the SRLG and node-disjointness equations dis-

cussed in this section are not restricted to a pair of disjoin

-------- Path 1
— path2 .. SRLG paths, the formulation can be naturally extended to khe
disjoint paths model.
a. Non—disjoint due to routing b. Non—disjoint due to cable layol
of logical links C. Other Constraints and the Optimization Objective

1) Link utilization: Link utilization should not exceed
capacity, whereR(¢) is the resource required by demand

- ,andC indicates the spare capacity at link
The second case originates from cable layout. As shown ap(e) P pacity

in Fig.2b, although a pair of disjoint paths can be calculate Z x1(i1,e) - R(i) + Z x2(i2, e,p) - R(iz)
it may still be risky due to the layout of the physical links. i1€Dy i2€D2,pe{1,2}

Figure 2. Situations of non-disjoint paths

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2 70

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

< Cap(e), Ve e E (8) Z u(i,n,p) < 14en(i,n),... (13)

. . . . 1,2
2) Objective: As in standard TE problems, we wish _ p_e{ ’ _ o .
to minimize the total cost to support the demands. Let Inthe objective function, we set that each violation brings
Price(i,e) indicate the cost of demand taking a unit an extra punishment cost in addition to the regular cost.

of resource at linke, then the objective function can be Therefore, the optimization of minimizing the objectivenca
formulated as: proceed in the direction of reducing violations too. The
formulation is as follows:
Minimizing : Cost

Cost — Z w1(in,e) - R(i) - Price(in, ¢) + Minimizing : Cost + CostT

i €Dy cEE Cost = ... (as defined in Eq.9)
Z x2(ia,e,p) - R(i) - Price(ia,e) (9) CostT’ = Z (1 —ex(i)) - Cex (i)
i2€D3,e€E,pe{1,2} t€D1UD;
With this optimization objective and all above constraints + Z [Z es(i k) - Ces(i, k)
the default model to solve the TE problem has been estab- i€Ds tkes
lished. It is a linear problem and can be solved by an LP . .
solver. Since we have made no compromise on any feature, + Z;ven(%m ' Ce"(l’”)] (14)
ne

the optimum solution of the problem can be obtained.
3) Relaxations:For the default model, all the constraints 1he values ofC.,, C.s and Ce,, are very critical to
hold strictly. If there are any violations, e.g., the networ the result of the optimization. The relationship between
resource is not sufficient to support all demands, or a pai;hese punishment costs indicates the tradeoffs amongasever
of strictly disjoint paths does not exist for some type o factors: to support more demands, to save cost, as well as to
demands, the result of the optimization will be "infeasible reéduce the amount of rule violation. In our model, we have
Practically, a planner may wish to know more. One of theMade the clear setting:
prical FAQ is: We knqw it _is hard to keep aII. constraiqts, but Cow m Cop > Cup > Cost (15)
if we tolerate some violations, what can still be achieved?
Here we discuss two kinds of tolerances. The first one ig1ere, Cost is the regular cost due to resource utilization.
to allow some demands eventually be left unrouted. Defind his setting implies that respecting the disjoint conditio
a binary variable, (i) as in Eq.10, and a punishment cost is most important. If we se€’.; and Ce,, to In finite, or

C.. (i) to indicate the increment of total cost if demand remove the tolerance terms in Eq.12 and Eq.13, then no
cannot be routed. violation is allowed. Under this principle, a decision wihic

can accommodate more demands is always better than any
(10) other solution with less regular cost but also less demands

being routed.

ea(i) = 1 if demand: is routed
’ 0 otherwise

Now, the flow continuity condition (Eq.3) should be

slightly modified, so that the incoming/outgoing traffic is n IIIl. THE SIMULATED ANNEALING (SA) MODEL AS
longer guaranteed to bieat the end nodes of each demand. ALTERNATIVE SOLUTION
Instead, it depends on the value «f(i): In the previous section, we have modeled every feature of
) C the optimization problem as an ILP. Therefore, theordical
Oiu,j + Z zi(i,e) = Z 1(1,€) + 00,5, the optimum solution can always be obtained. However, the
e(m.j)€E ()€l disjoint routing problem with SRLG constraints is proved
Vi _ _ { ex(i) fa=0 to be NP-complete [9], and our numerical results that will
J € N7 61.a.b - . (1)
T 0 otherwise be introduced in the next section also tend to confirm this

The other tolerance is related to the physical disjointnesg®fOPerty. As an alternative, we introduce our basic greedy
We define two integer variables; (i,) indicates that the algorithm for the same planning problem; then, the greedy

paths of demand traverse the same SRLS, ande,, (i, n) algorithm is ta}ken as the core elgment of a meta heuristic
indicates the paths of demardraverse the same node ~ Medel, for which we chose the Simulated Annealing (SA)
both taking O for no violation and positive integer values MOdel. Since it aims at searching for a satisfactory SF"‘_”“O
for so many times of violation. Besides, punishment costd@ther than the optimum one, the SA approach can efficiently
C..(i, k) andC.,, (i, n) represent the increment of cost when avoid the difficulties of an NP-complete problem.

these kinds of violation happen. We need to modify thep The greedy algorithm

SRLG and node disjoint constraints (Eq.5, 7) as follows: As discussed in the introduction, a straightforward solu-

x2(i,e,p) +x2(i, ', p') < 1+e4(i,59),... (12) tion to plan multiple demands in a network is to route all

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2 71

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

demands sequentially. This is a fully deterministic preces of RSG can be obtained in the same calculation time. Here,
which can be expressed by the pseudo code of Algorithm lwe present our model with simulated annealing which helps
to decide on a suitable sequence for GTA. The pseudo code

Algorithm 1 Greedy TE Algorithm (GTA)

is shown in Algorithm.2.

Given a fixed sequencg of demandsD(i),i = 1..Ng

Algorithm 2 Simulated Annealing based TE

for i =1 to Ng do
for each linki in the networkdo
if | has sufficient resource to accommodddéi)
then
set the cost of as its cost forD(i)
else
set the cost of as In finite
end if
end for
calculate a minimum-cost solutiofl(z) for D(7)
if sol(i) existsthen
recordsol(z) in the solution setSol
for each linkl in sol(i) do

Start with a current sequenc¢eand costC «— GT A(S)
Sbest — Sl Obest —C
for resetround = 0 to R do

S — Sbestl C Cbest

for schedulestep =1 to N do

sequences’ «— neighbor(S)
C' — GTA(S")
if ¢’ < C then
Sbest — S/l Obest —
end if
the current temperaturte— 7'(4)
if Pirans(C,C',t)) > random() then

S5, C«C
add the cost of to costC end if
update resource utilization &t end for
end for end for
else

Return Syes;: and Cheqt

record no solution foD(z) in Sol
add the punishment cost t0
end if
end for
Return the solution sefol and costC'

1)

Here, if D(4) is type 2, then a pair of paths with minimum
cost sum should be calculated. If the SRLG condition is 2)
not considered, know methods like Suurballe’s algorithm
[6][7] can guarantee the optimum solution. To the best of our
knowledge, no heuristic algorithm has been found to be able
to guarantee a minimum cost SRLG-disjoint solution. In our 3)
greedy algorithm, th&rap avoidancelgorithm suggested by
the authors of [10] is used.

B. The simulated annealing algorithm

Because each shortest path is adaptively calculated ac-
cording to the available network resources at the moment,
the above greedy method is to some extent optimized. The 4)
quality of the solution is generally better than the intuti
solution of a human planner. An open issue is that GTA (Al-
gorithm 1) depends on a given sequence of demands. With
a different sequence, a different set of paths and different
overall cost will be obtained. A simple method to take care
of the observation is to repeat the same operation: Randomly 5)
modify the sequence, and call GTA; the best solution that
occurs in this process is taken as the final solution. We refer
to this method afkandom Solution Generation (RSG)

However, according to our tests, if we combine GTA
with some well-known meta heuristics, solutions with bette
quality (more demands accommodated, less cost) than that

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

The major functions in the algorithm are:

The function GT'A(S) is the greedy method
Algorithm.1 with the given demand sequengeThe
costC of its solution is then passed to the simulated
annealing process.

The SA algorithm will reset forR times. At the
beginning of each reset, the current state is set to the
best solution obtained so far, i.e., the sequence which
brings the lowest overall cost.

The functionneighbor(S) is designed to move a
fraction of randomly chosen demands in the sequence
to the front of the modified sequence. Therefore, the
new sequences’ is similar to the originalS, and
theoretically the whole solution space can be explored
by this operation without preference of any specific
pattern.

There will beN steps till the temperature drops from
the initial 7},,,, to 0. The functionT'(:) controlling

the temperature dropping according to the tiines
referred to as &ooling scheduleHere, an exponential
scheduleT (i) = a'Tpas,0 < a < 1 is chosen based
on our tests.

If a neighbor state” is better (with lower cost) than

its original stateS, then a state transition t68’ will
definitely take place. Whef’ is worse tharf, the key
idea ofsimulated annealings to allow the transition
according to probability, so that the searching process
may have chances to let the current state move out
from thelocal optima The probability of a transition

72

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

to a worse state is reduced with the dropping of tem-slightly hit the bottleneck of network resources, i.e.: et
perature, therefore the state tends to stabilize aroungolution obtained by simulated annealing, roughly 90% of
some good solutions. When the temperature reathes the demands can eventually be routed. Then, the result is
the SA becomes a pure greedy algorithm. According tacompared to the greedy solution, as well as the optimum
our tests, the exponential transition probability formulasolution obtained by the ILP model. All methods follow the
suggested by Kirkpatrick et al.[11] has shown goodprinciple of accommodating as many demands as possible
performance, i.e.Pi ans(C,C’ 1) = e:vp(CK_BC;/). (Section 11-C3).

According to our testsy it is Capab'e of Obtaining a The qua“ty of the solutions obtained by the different
satisfactory solution within much less time than that regpii ~ Solving approaches is shown in the following two figures.
by the ILP model (Section 1V), and the solution quality For ILP solutions, the result is obtained when the gap
is also better than that obtained by running fRandom reaches<1%, i.e., at most 1% away from the optimum
Solution Generation (RSG)r the same time. Although the solution. Fig.3 shows the total number of demands routed in
final solution obtained by SA is inherently sub-optimum. its the final solution, and Fig.4 shows the comparison of average
quality is significant better than the path-oriented meghod routing cost for each demands using the greedy solution as
(even combined with ILP), in which the paths for eachreference.
demand are selected from a set of pre-calculated candidates

IV. NUMERICAL RESULT Number of Demands Routed

Here we show the optimization result obtained with the 1
topology of X-WiN network [12], which is a German P
scientific research network with nodes located in its major **°
cities. The physical layer of our test case consists of 54maj
nodes and 81 links from X-WiN network. The capacities of g
links range from 1Gbit/s to 20Gbit/s, the same setting as
established in X-WiN. Then, 100 logical links are randomly ¢
generated using the resource of physical links, which orga+
nizes 70% to 80% of the physical resources into the logical ,,
layer. Finally, 20% to 80% (random even distribution) of the
total capacity at each logical link is marked as occupied to 2
emulated the current network usage.

A test has been carried out to show the influence of "z 40 60 80 100 120 140 160
SRLG conditions (in the above model, SRLGs are only due Humber of demands fequing disont paihs
to logical links routed over the same physical link). We
repeatedly generate type 2 demand with random source and
destination nodes. The resource request of such demands
are set to)