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Forward

The Nineteenth International Conference on Sensor Technologies and Applications (SENSORCOMM

2025), held between October 26th, 2025, and October 30th, 2025, in Barcelona, Spain, was a multi-track

event covering related topics on theory and practice on wired and wireless sensors and sensor

networks.

Sensors and sensor networks have become a highly active research area because of their potential of

providing diverse services to broad range of applications, not only in science and engineering, but

equally importantly on issues related to critical infrastructure protection and security, health care, the

environment, energy, food safety, and the potential impact on the quality of all areas of life.

Sensor networks and sensor-based systems support many applications today on the ground.

Underwater operations and applications are quite limited by comparison. Most applications refer to

remotely controlled submersibles and wide-area data collection systems at a coarse granularity.

In wireless sensor and micro-sensor networks energy consumption is a key factor for the sensor

lifetime and accuracy of information. Protocols and mechanisms have been proposed for energy

optimization considering various communication factors and types of applications. Conserving energy

and optimizing energy consumption are challenges in wireless sensor networks, requiring energy-

adaptive protocols, self-organization, and balanced forwarding mechanisms.

We take the opportunity to warmly thank all the members of the SENSORCOMM 2025 technical

program committee, as well as all the reviewers. The creation of such a high-quality conference program

would not have been possible without their involvement. We also kindly thank all the authors who

dedicated much of their time and effort to contribute to SENSORCOMM 2025. We truly believe that,

thanks to all these efforts, the final conference program consisted of top-quality contributions. We also

thank the members of the SENSORCOMM 2025 organizing committee for their help in handling the

logistics of this event.

We hope that SENSORCOMM 2025 was a successful international forum for the exchange of ideas

and results between academia and industry for the promotion of progress in the field of sensor

technologies and applications.
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Abstract—As network infrastructure expands, the Internet of 

Things (IoT) demands extensive coverage, substantial 

throughput capacity, and real-time performance. The 802.11ah 

standard's raw mechanism was proposed to enhance efficiency 

in high-density environments. However, its implementation in 

latency-sensitive IoT network environments is constrained by 

inherent limitations. In this paper, we propose the Secure 

Restricted Access Window Based Group Coordination (SRAW-

GC) technique, which prioritizes the processing of latency-

sensitive traffic while aggregating high-throughput traffic for 

transmission, addressing both throughput and latency 

requirements. Experimental findings indicate that SRAW-GC 

improves performance metrics by 29.86% in throughput, 19.3% 

in latency, and 48.23% in energy consumption compared to 

conventional mechanisms. The proposed technique can ensure 

better availability in IoT network environments than the 

conventional RAW technique. 

Keywords- IoT (Internet of Things) Network; IEEE 802.11ah; 

Network Efficiency. 

I.  INTRODUCTION 

The proliferation of Internet of Things (IoT) devices, 
along with the rapid increase in network traffic among these 
devices, has led to the development of technologies to address 
the diverse security and performance needs of IoT networks. 
Specifically, IoT networks require wide coverage, high 
throughput, and real-time performance. Therefore, developing 
wireless communication technologies that meet these 
performance criteria is crucial for advancing IoT technology 
[1]. The types of traffic exchanged between devices in IoT 
networks vary based on the purpose of transmission and 
network conditions. Each type of traffic has distinct 
requirements, such as latency, throughput, and reliability. To 
efficiently manage the vast amount of diverse traffic, it is 
essential to understand the characteristics of each traffic type 
and apply appropriate transmission and processing methods 
[2]. 

IoT communication technologies can be broadly divided 
into two categories: Wireless Personal Area Network (WPAN) 
technologies and Low-Power Wide Area Network (LPWAN) 
technologies. WPANs, exemplified by ZigBee and Bluetooth 
Low Energy (BLE), facilitate medium-level data transmission 
rates over short distances. In contrast, LPWANs, such as Long 

Range (LoRa), enable long-distance transmission at low data 
rates. Consequently, WPAN and LPWAN exhibit distinct 
advantages and disadvantages regarding throughput and 
coverage [3]. IEEE 802.11ah, also known as Wi-Fi HaLow, is 
a technique designed to overcome the limitations of 
conventional IoT communication technologies. It is gaining 
attention for its potential to enhance throughput, coverage, and 
power efficiency in IoT networks. IEEE 802.11ah provides a 
long-range, low-power, low-speed alternative to traditional 
Wi-Fi, supporting approximately 8,000 nodes per AP (Access 
Point) within a 1-2 km service radius. Unlike other IoT 
connectivity technologies, it does not require the 
implementation of separate controllers, hubs, or gateways, 
ensuring cost effectiveness and substantial scalability.  

IEEE 802.11ah incorporates several pivotal features 
within the MAC layer, offering functionalities such as fast 
authentication and association, Restricted Access Window 
(RAW), Traffic Indication Map (TIM) segmentation, and 
Target Wake Time (TWT). Among these technologies, the 
RAW technique is noteworthy for providing a distributed 
channel access method that can enhance the efficiency of 
densely packed, energy-constrained Stations (STAs) and can 
be flexibly applied to varying network conditions. However, 
the conventional RAW technique groups STAs based on their 
required throughput levels and allocates time slots to ensure 
high network throughput, which limits its applicability in real-
time IoT environments that require latency-sensitive traffic 
[4]. Consequently, this study proposes the Secure Restricted 
Access Window Based Group Coordination (SRAW-GC) 
technique, which considers both traffic throughput and 
latency requirements, prioritizes the processing of latency-
sensitive traffic, and aggregates traffic requiring high 
throughput for transmission.  

The contributions of this study are as follows: 

• An SRAW-GC mechanism is proposed to address 
latency and throughput requirements. This 
mechanism utilizes a grouping approach to organize 
traffic and allocate time slots based on the 
characteristics of each group. 

• The proposed SRAW-GC mechanism prioritizes time 
slots for latency-sensitive traffic while aggregating 
traffic that requires high throughput for transmission. 
Its efficacy is demonstrated by improvements in both 
network latency and throughput. 

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-304-0
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• An evaluation of the proposed SRAW-GC across 
various network environments shows a performance 
enhancement of 29.86% in throughput, 19.3% in 
latency, and 48.23% in energy consumption 
compared to the conventional RAW scheme. 
 

The structure of this paper is as follows: Section 2 analyzes 
previous studies related to technologies introduced in 
802.11ah, and Section 3 proposes the SRAW-GC technique to 
address the limitations of the RAW technique in 802.11ah. 
Section 4 evaluates and verifies the performance of the 
proposed SRAW-GC technique, while Section 5 concludes 
the paper. 

II. RELATED WORK 

The IEEE 802.11ah standard introduces technologies such 
as TIM segmentation, TWT, and RAW to enable efficient 
channel access for resource-constrained STAs in dense IoT 
networks. TIM segmentation is a power-saving technique that 
divides TIM information in beacons into groups, allowing 
STAs to activate only during their corresponding groups, 
thereby improving energy efficiency. TWT is a reservation-
based communication technique that facilitates the 
negotiation of activation timings between STAs and APs, 
enabling communication during designated time slots while 
preserving power-saving mode during other periods, thus 
significantly enhancing power efficiency. The RAW 
technique groups STAs to access the channel only during 
specified time slots, reducing network collisions and 
improving scalability. Table 1 summarizes existing studies 
relevant to TIM segmentation, TWT, and RAW technologies 
in 802.11ah. 

TABLE I.  COMPARISON OF PREVIOUS STUDIES 

Feature Ref. Contribution Limitation 

TIM 

segmentation 

[5] 

 The proposed 

network 

architecture 

enhances 

scalability by 

incorporating 

control loops and 

monitoring sensors 

into the network 

infrastructure. 

 It has been 

demonstrated that if 

the beacon cycle is 

not optimized, there 

will be an increase 

in throughput and 

energy 

consumption. 

[6] 

 The proposal 

entails the 

implementation of 

a link-layer 

mechanism, 

comprising 

downlink TIM and 

uplink RAW 

groups, to mitigate 

energy 

consumption. 

 It is challenging to 

verify performance 

on real-time 

networks because 

link latency is not 

taken into account. 

TWT 

[7] 

 The proposed 

methodology 

involves 

implementing a 

multifaceted 

approach, 

integrating the 

utilization of RAW 

and TWT, to 

enhance network 

energy efficiency. 

 It has been 

demonstrated that 

there is an increase 

in latency when 

using RAW and 

TWT in 

conjunction with 

one another. 

[8] 

 The proposal 

entails the 

implementation of 

a novel channel 

access 

methodology for 

STAs within a 

network 

environment 

characterized by 

the coexistence of 

RAW STA and 

TWT STA 

configurations. 

 TWT transmission 

is contingent upon 

the availability of 

empty RAW slots, 

a factor that 

compromises 

energy efficiency 

and engenders 

augmented 

latency. 

RAW 

[9] 

 The proposal 

entails 

implementing a 

RAW mechanism 

to identify 

concealed 

terminals and 

organize STAs into 

designated groups. 

 It has been 

demonstrated that 

an increase in 

network latency is 

associated with a 

failure to consider 

traffic latency 

requirements. 

[10] 

 The proposal 

entails the 

implementation of 

a machine 

learning-based 

mechanism within 

the RAW 

framework to 

facilitate the 

process of 

grouping and the 

subsequent control 

of channel access. 

 The method of 

determining 

channel access 

depends on the 

number of 

collisions between 

STAs. 

 
Seferagić et al. [5] propose a network that hosts a control 

loop to regulate its dynamic status. Additionally, the network 
includes monitoring sensors that periodically transmit 
measurement results. The purpose of this system is to enhance 
the scalability of IEEE 802.11ah. The proposed method 
utilizes a control loop to dynamically adjust the beacon 

2Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-304-0
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interval, ensuring compliance with latency requirements. 
However, it is important to note a limitation inherent to this 
approach: optimization of the beacon cycle is necessary since 
throughput and energy consumption increase with the beacon 
cycle. Bel et al. [6] propose a link-layer mechanism consisting 
of downlink TIM and uplink RAW groups to reduce energy 
consumption. The study demonstrated that energy efficiency 
can be enhanced to prolong the battery life of sensor nodes. 
However, it does not consider delays in uplink and downlink 
communications, complicating the verification of 
performance in real-time networks. 

Santi et al. [7] call for research to enhance network energy 
efficiency by utilizing RAW and TWT technologies. Energy 
consumption calculations under various conditions 
demonstrate that the proposed method significantly improves 
energy efficiency. However, it is important to note the 
limitation of this method: a substantial increase in latency, 
which makes it difficult to apply in real-time networks. Santi 
et al. [8] analyze energy consumption rates in scenarios where 
RAW STAs and TWT STAs coexist, proposing a channel 
access method for STAs designed to enhance energy 
efficiency. The implementation of the IEEE 802.11ah TWT 
technique in an NS-3 environment has demonstrated the 
degradation of energy efficiency for TWT STAs caused by 
RAW STAs. Furthermore, a scheduling method has been 
proposed that allows TWT STAs to reserve empty RAW slots. 
However, this method raises concerns regarding energy 
consumption and latency when RAW slots are occupied, 
complicating TWT transmission. Similarly, the TIM 
technique has been observed to have increased beacon 
overhead. Additionally, TWT has the limitation of being 
challenged to apply in dynamically changing networks due to 
its reservation-based approach, which requires real-time 
performance.  

Mondal et al. [9] proposed the HTAG (Hidden Terminal 
Aware Grouping) technique to address the hidden terminal 
problem that arises when employing the RAW technique in 
IEEE 802.11ah-based high-density IoT networks. The system 
detects hidden terminal devices through the Neighbor 
Detection Table (NDT) and engages in the grouping of these 
hidden nodes. However, this method has a limitation: it does 
not consider traffic delay requirements, which leads to 
increased network delays. Mahesh et al. [10] propose a 
machine learning mechanism to group STAs and control 
channel access for each STA group. After calculating the 
collision count for each RAW group using an unsupervised 
learning model, the AP adjusts the beacon interval based on 
this information and broadcasts it to the STAs. However, this 
method bases the channel access determination solely on the 
collision count between STAs, complicating the fulfillment of 
the network's real-time requirements, as ensuring smooth 
channel access for low-latency traffic is challenging. The 
conventional RAW technique groups STAs solely based on 
network throughput when managing traffic. However, low 
latency is essential in IoT environments with densely packed 
and interconnected sensors. This necessitates a mechanism 
that considers both latency and throughput when grouping 
traffic. 

III. PROPOSED SCHEME 

This section delineates the methodologies of SRAW-GC 
for facilitating efficient data transmission in dense network 
environments with IoT STAs. As illustrated in Figure 1, high-
throughput STAs are grouped within the same Basic Service 
Set (BSS), and each STA transmits data to the AP. 

 
SRAW-GC has developed a methodology for classifying 

STAs at the application level. These STAs are divided into 
two distinct categories: those requiring low-latency 
transmission and those requiring high-throughput 
transmission. STAs that require low-latency transmit their 
data, known as MAC Protocol Data Unit (MPDU), to the AP 
individually. In contrast, STAs that require high throughput 
prioritize the transmission of MPDU to the Relay STA. The 
selection of relay STAs is determined by the Modulation and 
Coding Scheme (MCS) index, which provides a 
comprehensive assessment of the channel quality between the 
AP and the STAs. The selected Relay STA receives MPDUs 
from nearby STAs requiring high throughput and aggregates 
the data using the Aggregated MAC Protocol Data Unit (A-
MPDU) method. Low-latency STAs generate data irregularly 
and require low-latency transmission rather than high 
throughput. Consequently, aggregating data and transmitting 
it in batches, as high-throughput STAs do, does not satisfy 
their low-latency transmission requirements. Instead, it is 
more efficient for them to transmit data immediately as the 
need arises. High-throughput transmission requires a 
throughput that exceeds the transmission delay rate. The A-
MPDU method, as outlined in the extant 802.11n specification 
for high throughput, meets these requirements by allowing 
data to be transmitted in batches.  

As illustrated in Figure 2, the operation methods for low-
latency and high-throughput slots are sub-slots within the 
RAW slot. 

 
 

 

 

Figure 1. This is how STAs that require low latency and STAs that 

require high bandwidth transmit data to AP. (a) shows how low-
latency STA communicates with AP, and (b) shows how high-

bandwidth STA communicates with AP. 

3Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-304-0
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The SRAW-GC technique has been designed to be 
compatible with the 802.11ah RAW technique, and STAs are 
assigned to the 𝑛𝑡ℎ RAW slot according to (1) to access the 
channel: 

𝑠𝑙𝑜𝑡𝑛 = (𝑥 + 𝑁𝑜𝑓𝑓𝑠𝑒𝑡)𝑚𝑜𝑑 𝑁𝑅𝐴𝑊 (1)  

 

In (1), 𝑠𝑙𝑜𝑡𝑛  is the index number of the RAW slot 
allocated to the STA, and 𝑥  represents either the AID 
position index or the AID of the STA. 𝑁𝑜𝑓𝑓𝑠𝑒𝑡 is the offset 

value expressed with the lower two bytes of the FCS field in 
the SIG beacon frame. 𝑁𝑅𝐴𝑊 is the total number of slots in 
RAW. 

The RAW slot is divided into two sub-slots: a low-latency 
sub-slot and a high-throughput sub-slot. In the low-latency 
sub-slot, STAs requiring low-latency transmission compete 
for channel access with the AP to transmit MPDU data. After 
this, the STA anticipates the designated back-off time and 
transmits its MPDU to the AP. It has been shown that since 
the low-latency sub-slot is prioritized within the RAW slot, 
STAs needing low-latency transmission can effectively 
address transmission delays caused by high-throughput STAs 
with long channel occupancy times. This situation is 
analogous to the existing RAW mechanism. Once the low-
latency sub-slot concludes, a transition to the high-
throughput sub-slot occurs. In this slot, the AP first selects 
relay STAs within the BSS. These designated relay STAs 
receive MPDUs from high-throughput STAs nearby and 
aggregate the data using the A-MPDU method. The 
aggregated data is then transmitted to the AP through channel 
competition among the relay STAs. The improved 
transmission efficiency observed in this scenario can be 
attributed to the superior channel quality and status 
maintained by the relay STAs with the AP, compared to 
situations where individual STAs transmit data directly to the 
AP. Furthermore, since only relay STAs are responsible for 
transmitting data to the AP, the probability of competition 
and subsequent collisions is significantly reduced, thereby 
enhancing the efficiency of high-throughput transmission. 

IV. EVALUATION AND ANALYSIS 

A. Evaluation Environment 

This section delineates the experimental environment for 
evaluating the performance of the proposed SRAW-GC 

technique. The conventional model selected the 802.11ah 
RAW mechanism for performance comparison with that of 
SRAW-GC [9][10]. 

The experiment aimed to assess the performance of both 
the proposed and conventional models in a network 
environment based on the 802.11ah standard. The experiment 
was conducted in a Python 3.12 environment. The simulation 
environment was set up with one AP and 2,000 STAs within 
a single BSS. Performance evaluations were conducted for 
each scenario, considering the number of STAs, the ratio of 
low-latency STAs to high-throughput STAs, and the collision 
probability among STAs. The evaluation metrics used 
included throughput, latency, and energy consumption. The 
variables employed in the equations are detailed in Table 2, 
and throughput was calculated according to (2): 

TABLE II.  VARIABLES IN FORMULAS 

Parameter Meaning 

𝐷𝑖 Data successfully transmitted by 𝑖𝑡ℎ STA (byte) 

𝑇𝑅𝐴𝑊 Total RAW duration (ms) 

𝑃𝑏𝑎𝑠𝑒 0.1 W (basic transmission power) 

𝑃𝑖𝑑𝑙𝑒 0.02 W (idle power) 

𝑇𝑎𝑐𝑡𝑖𝑣𝑒,𝑛 Active transmission time of nth STA (ms) 

𝑇𝑖𝑑𝑙𝑒,𝑛 Idle time of nth STA (ms) 

𝐸𝑆𝑇𝐴(𝑛) Energy consumption of node 𝑖 (joules) 

𝐸𝑡𝑜𝑡𝑎𝑙 
Sum of energy consumed by all N nodes plus energy 
consumed by the access point (joules) 

 
 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑘𝑏𝑝𝑠) =
∑  𝐷𝑖(𝑏𝑦𝑡𝑒𝑠)  ×  8𝑛

𝑖=1

𝑇𝑅𝐴𝑊(𝑚𝑠)
(2) 

 
To express throughput in kbps, the number of bytes 

successfully transmitted was multiplied by 8 to convert the 
unit to bits. This equation represents the successful 
transmission of data to the AP during the total RAW duration, 
𝑇𝑅𝐴𝑊. Latency was determined via (3): 

 
𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑚𝑠)

= 𝑇𝐷𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + (𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓 × 𝑁𝑏𝑎𝑐𝑘𝑜𝑓𝑓) (3)
  

 
Latency is calculated as the sum of data transmission time 

and back-off time. Subsequently, energy consumption could 
be predicted using (4): 

𝐸𝑡𝑜𝑡𝑎𝑙(𝐽) = ∑ 𝐸𝑆𝑇𝐴(𝑛)

𝑁

𝑛=1

(4) 

 
The total energy consumption of BSS is defined as the sum 

of the energy consumption of all STAs and APs, as shown in 
Equation (4). The energy consumption of each STA can be 
calculated according to (5): 

 

Figure 2. SRAW-GC technique showing a RAW slot divided into a 

low-latency sub-slot for individual transmissions and a high-

throughput sub-slot for aggregated A-MPDU transmissions. 

4Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-304-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SENSORCOMM 2025 : The Nineteenth International Conference on Sensor Technologies and Applications

                            12 / 47



 

𝐸𝑆𝑇𝐴(𝐽) = 𝑃𝑏𝑎𝑠𝑒 × (𝑇𝑎𝑐𝑡𝑖𝑣𝑒,𝑛/1000)

+𝑃𝑖𝑑𝑙𝑒 × (𝑇𝑖𝑑𝑙𝑒,𝑛/1000) (5)
 

 
Within the same BSS, throughput, latency, and energy 

consumption were evaluated for each number of STAs, the 
ratio of low-latency STAs to high-throughput STAs, and the 
collision ratio. The simulation was repeated a total of 10,000 
times. 

B. Evaluation Results and Analysis 

As illustrated in Figure 3, a comparative analysis was 
conducted to assess the throughput, latency, and energy 
consumption of SRAW-GC and conventional models in 
relation to the number of STAs. 

 
As illustrated in Figure 3, the performance of the 

proposed model was compared to that of the conventional 

model in a network scenario where the ratio of STAs 

requiring low-latency transmission to those requiring high-

throughput transmission is set at 1:1, and the collision 

probability is set at 0.3. A thorough analysis revealed that 

while throughput increased for both models as the number of 

STAs grew, they reached similar throughput levels starting 

from 400 STAs. This phenomenon can be attributed to the 

gradual increase in the number of STAs allocated to each 

RAW slot, which reduces the amount of data successfully 

transmitted within the slot. Consequently, both models 

achieved maximum throughput at 600 STAs, with the 

proposed model reaching 779.7 kbps and the conventional 

model achieving 624.4 kbps. When comparing the 

throughput of low-latency STAs alone, the proposed model 

achieved 46.3 kbps. In comparison, the conventional model 

attained 35.5 kbps at 600 STAs, indicating a 30.3% 

improvement in throughput for the proposed model. As the 

number of STAs increased, the average latency increased for 

both models. The conventional model exhibited an increase 

in latency from 14.7 ms (milliseconds) to 45.4 ms as the 

number of STAs increased from 100 to 1,000, while the 

proposed model demonstrated an increase from 16.6 ms to 

26.8 ms. At 100 STAs, the proposed model had a latency that 

was 1.9 ms higher; however, as the latency of the 

conventional model increased sharply, the proposed model 

improved latency by up to 41.1% when the number of STAs 

reached 900. When examining the latency of low-latency 

STAs specifically, the proposed model showed a significant 

enhancement. This improvement results from the proposed 

model allocating sub-slots to prioritize the transmission of 

low-latency STAs within the RAW slot. In contrast, high-

throughput STAs and low-latency STAs coexist within the 

conventional model, leading to competition within the same 

RAW slot. This competition increases latency for low-

latency STAs due to the long channel occupancy times of 

high-throughput STAs. 

As illustrated in Figure 4, an increase in the ratio of low-

latency STAs led to a decline in throughput for both the 

proposed and conventional models. This phenomenon occurs 

because the data size transmitted by low-latency STAs is 

smaller than that of high-throughput STAs, resulting in an 

overall decrease in throughput. The proposed model 

demonstrated superior performance for both all STAs and 

low-latency STAs. In the initial phases, when the proportion 

of low-latency STAs was minimal, the proposed model 

exhibited higher latency compared to the conventional model. 

This can be attributed to the allocation of a minimum low-

latency sub-slot within the RAW slot by the proposed model, 

which prioritizes the transmission of low-latency STAs. 

Consequently, even in the absence of low-latency STAs to 

transmit, high-throughput STAs must wait. However, as the 

proportion of low-latency STAs increased to an 8:1 ratio with 

high-throughput STAs, the latency of the proposed model 

exhibited a 62.2% improvement compared to the 

conventional model. This finding substantiates the efficacy 

of the proposed mechanism in reducing latency in network 

environments characterized by a high density of low-latency 

STAs.  

 
 

 
 

 

Figure 3. Performance evaluation results for (a) throughput, (b) 

latency, and (c) energy consumption according to the number of STAs. 
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A comparison of the latency exhibited by low-latency 
STAs reveals that the proposed model exhibited an average 
reduction of 93.4% in latency compared to the conventional 
model. As the proportion of low-latency STAs increased, 
both models exhibited a decline in energy consumption. It has 
been demonstrated that low-latency STAs maintain an active 
state for a shorter period than high-throughput STAs due to 
their shorter channel occupancy time, resulting in a reduced 
energy consumption rate. Nevertheless, the proposed model 
demonstrated a notable enhancement in energy efficiency, 
achieving an average savings of 51.2% compared to the 
conventional model. Figure 5 compares the throughput, 
latency, and energy consumption of SRAW-GC and the 
conventional model based on collision probability in an 
environment with 2,000 STAs. Figure 5 compares the 
throughput, latency, and energy consumption of SRAW-GC 
and the conventional model based on collision probability in 
an environment with 2,000 STAs.  

As illustrated in Figure 5, an increase in collision 
probability led to a decline in throughput for both the 
proposed and conventional models.  

The conventional model showed a sharp decrease in 
throughput, dropping from 980.1 kbps to 172.2 kbps 
(82.43%). In contrast, the proposed model exhibited a more 
modest reduction, from 980.1 kbps to 540.8 kbps (44.82%), 
demonstrating its effectiveness in maintaining throughput 
performance. The proposed technique employs the A-MPDU 
mechanism to transmit aggregated data from relay STAs with 
optimal channel conditions and transmission efficiency to the 
AP among high-throughput STAs. This allows the proposed 
model to sustain a higher throughput than the conventional 
technique. As the collision probability increased, the latency 
of both models also rose; however, the proposed model 
maintained a lower latency. This is due to the classification 
of traffic into low-latency and high-throughput slots by 
dividing the RWA slot, which mitigates collisions within the 
slot compared to the conventional RAW technique. 
Conversely, the conventional model competes for channel 
occupancy across all traffic within the same RAW slot, 
resulting in increased latency for STAs with low-latency 
requirements. A comparison of the proposed and 
conventional models in terms of latency for low-latency 
STAs shows that the conventional model suffers from 

 
 

 
 

 

Figure 4. Performance evaluation results for (a) throughput, (b) 

latency, and (c) energy consumption based on the ratio of low-latency 

STAs to high-throughput STAs. 

 
 

 
 

 

Figure 5. Performance evaluation results for (a) throughput, (b) 

latency, and (c) energy con-sumption based on collision probability. 
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increased latency as the collision probability increases. In 
contrast, the proposed model maintained lower latency. This 
can be attributed to the fact that, even in scenarios with 
collisions, the competition among low-latency STAs 
mitigates the latency caused by high-throughput STAs, 
ensuring system availability and contrasting with the 
outcomes observed in the conventional method. As the 
collision probability increased, the retransmission 
mechanism was triggered, resulting in elevated energy 
consumption for both models. However, the proposed model 
demonstrated reduced energy consumption compared to the 
conventional model. Notably, when the collision probability 
was set at 0.8, the proposed model showed a significant 
reduction in energy consumption of 51.62%, underscoring its 
effectiveness in energy-efficient operations. 

V. CONCLUSION AND FUTURE WORK 

As the proliferation of IoT devices continues to accelerate, 
the demand for efficient processing of the substantial volume 
of IoT traffic associated with wireless networks is increasing. 
While prior studies have focused on enhancing wide coverage 
and high throughput, it is crucial to recognize the need for 
advancements in real-time and low-latency data transmission 
within mission-critical IoT networks. Consequently, the RAW 
technique of 802.11ah has been proposed as a solution to 
improve latency. However, this technique groups STAs based 
on the required throughput level of the traffic and allocates 
time slots to ensure high network throughput, which limits its 
applicability to real-time IoT environments that require 
latency-sensitive traffic. This study proposes an A-MPDU 
grouping technique based on IEEE 802.11ah RAW to achieve 
low latency and high throughput. According to the 
experimental results, SRAW-GC enhances throughput by 
29.86%, reduces latency by 19.3%, and decreases energy 
consumption by 48.23% compared to the conventional model. 
Furthermore, for STAs with low-latency requirements, the 
proposed SRAW-GC approach demonstrates improvements 
of 29.53% in throughput and 74.66% in latency compared to 
the conventional method. Consequently, the SRAW-GC 
technique can ensure better availability in IoT network 
environments than the conventional RAW technique. Future 
research will determine the optimal values for the low-latency 
sub-slot and the high-throughput sub-slot within the RAW 
framework.  
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Abstract—Falls are a major cause of injury among older
people, often leading to severe consequences, including death. To
reduce this risk for both older and younger populations, Artificial
Intelligence (AI) can play a critical role by predicting pre-fall states
(conditions leading to a fall) and enabling timely intervention. Pre-
fall prediction can be approached through various contexts, such
as time-based, biological, and sensor data. This study focuses on
predicting pre-falls through the time-based context by using the
data from wearable sensors (accelerometer and gyroscope), while
considering the time window feature of the dataset. The dataset
used in this paper was collected using a MetaMotionR device and
comprises two classes: “fall” and “no fall”. A sliding time window
approach of 5 seconds and 10 seconds was applied to prepare the
dataset for pre-fall prediction. Notably, this type of dataset has
not previously been utilised for pre-fall prediction. A variety of
machine learning and Deep Learning algorithms were tested on
this dataset. The machine learning models included Decision Tree
(DT), Support Vector Machine (SVM), and Logistic Regression
(LR), and Deep Learning models included Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), and Recurrent
Neural Networks (RNN). Among machine learning algorithms,
the DT demonstrated super performance, achieving accuracies of
95.99% and 95.75% for the 5-second and 10-second time windows,
respectively. In the category of Deep Learning algorithms, Long
Short Term Memory (LSTM) type of RNN models outperformed
other approaches, with accuracies of 81.08% and 82.63% for the
5-sec and 10-sec windows, respectively.

Keywords-Fall; Pre-Fall; Machine learning; Deep Learning.

I. INTRODUCTION

As the world’s population ages more quickly, there is
growing concern about the safety and health of the elderly.
Unintentional falls are occurring frequently among older adults,
which is associated to negative health outcomes. While falls
can happen at any age, their impact is especially severe for
the elderly, who often face longer recovery times and higher
healthcare expenses; these factors can result in a reduced quality
of life. The growing aging population underscores the urgency
of addressing fall related risks. Therefore, fall prevention and
early intervention are essential for maintaining well-being [1].

These challenges have made research on the detection
and prevention of falls before they happen a priority, with
recent developments in AI and wearable technology offering
promising solutions [2][3]. By continuously tracking people’s

movements and predicting potential fall scenarios, AI systems
can initiate timely interventions to prevent falls, ultimately
saving lives and reducing injuries [4]. A key focus in this study
is Pre-fall prediction, which can be approached from a sensor
based perspective. In this approach, sensors collect data and
timestamps to show early indicators of a possible fall. Each
situation provides different perspectives on the elements that
influence the risk of falling. This study adopts a sensor based
approach, utilising gyroscope and accelerometer data to predict
pre-fall instances. It highlights the importance of understanding
the transitional period leading up to a fall, offering new insights
into the factors that contribute to fall risk.

To facilitate this analysis, this study uses a publicly available
dataset that includes sensor data collected during both fall
and non-fall scenarios. To improve the understanding of Pre-
fall (leading to fall) conditions, the dataset was segmented
into fixed time windows of 5 and 10 seconds preceding each
fall event. This segmentation captures the transitional phase
before a fall and provides contextual data that enhance the
predictive accuracy of the models. Both Machine Learning
(ML) and Deep Learning (DL) algorithms were tested for
their effectiveness in predicting pre-fall. The tested models
included LR, DT Classifier, Support Vector Machine, Multi-
Layer Perceptron, Gradient Boosting, Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), and Long-
Short-Term-Memory (LSTM).

Most existing studies focus on post fall detection and under-
utilize temporal sensor data for pre-fall prediction. This study
addresses these gaps by using gyroscope and accelerometer
data within 5 and 10 second windows to enable early fall
prediction and timely interventions.

The following are the main contributions of this study:

• Predicting pre-fall instances was achieved using wearable
sensor data (gyroscope and accelerometer) segmented into 5
and 10-second time windows.

• A comparative analysis of ML and DL algorithms showed
that DT performed the best among the machine learning
models, while the LSTM model was the most effective Deep
Learning model for pre-fall detection.
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• The proposed framework for predicting fall risks in real
time facilitates timely interventions, thereby reducing in-
juries caused by falls and providing overall safety through
immediate fall risk assessment.
The remainder of this paper is organized as follows.

Section II reviews related work and existing approaches.
Section III presents the proposed methodology. Section IV
reports experimental results, and Section V discusses the
findings. Finally, Section VI concludes the paper and outlines
future work.

II. LITERATURE REVIEW

With the aging population and associated risks, the need
to address fall related challenges has become increasingly
urgent. Researchers are now focusing on early detection systems
and preventive measures to mitigate these risks [5][6][7].
The development of wearable sensor technologies, such as
gyroscopes and accelerometers, has significantly transformed
falls detection and prevention. These devices enable continuous,
real-time motion tracking, making it possible to detect of
unusual patterns associated with potential falls [8][9]. Due to
their portability, non-invasive nature, and high data collection
capacity, wearable sensors have proven to be extremely useful
for developing ML and DL models [8][10]. While fall detection
research has historically concentrated on post-fall identification,
more recent studies emphasise pre-fall prediction to allow for
prompt intervention. Pre-fall prediction identifies transitional
movements indicating an elevated risk by analysing motion
patterns during brief time windows before a fall [11][12].

Strong performance in classifying fall related data has
been shown by machine learning techniques, such as Logistic
Regression (LR), Decision Tree (DT), Support Vector Machine
(SVM), and Gradient Boosting [5]. However, time series sensor
data analysis is a perfect fit for Deep Learning models, espe-
cially LSTM networks, which have demonstrated exceptional
performance in capturing temporal dependencies in sequential
data [13][14].

When developing and accessing fall detection systems,
datasets play an essential role. One example of such datasets
are SisFall[15], which is gathered using an accelerometer
and gyroscope. It contains classes for Activities of Daily
Living (ADL) and falls, gathered from both younger and
some older individuals. These activities were selected based
on a literature survey [15]. UpFall includes the dataset of 17
individuals who performed 11 daily living activities, as well
as falls [16]. The UMAFall dataset highlights the difference
between the various approaches of machine learning to fall
detection [17]. KFall is a comprehensive dataset for fall inertial
sensors (acceleration, gyroscope and Euler angles) which are
synchronised with video based fall labels [18]. These datasets
were gathered from numerous sensors, both wearable and
non-wearable, during everyday activities and simulated falls.
Under controlled circumstances (Lab-based environment), these
datasets allow researchers to train and validate ML and DL
models. Recent advancements in fall prediction and detection
are increasingly using wearable and vision based technologies.

For instance, the system presented in the study [19] uses both
wearable and vision-based sensors, giving a sensitivity of 96%
using Hidden Markov Models (HMM) and a decision tree.
Many other studies are focusing on real time applications, [20]
employs the ConvLSTM network and techniques for real time
fall detection and prediction, achieving a high accuracy rate
of 98.3%. Similarly, KNN, GRU(Gated Recurrent Unit), and
SVM algorithms, along with the wearable sensors, are used to
predict falls with an accuracy of 93.5% [21]. Heterogeneous
Hidden Markov Model (HHMM) is used for the effective
recognition and prediction of falls by utilising the 3D Vision
based body data with an accuracy of 81.5% [22]. Additionally,
the Kinect System, along with Zero Moment Point (ZMP)
and SVMs approaches, was used to reach an accuracy of
91.7% [23]. Deep Learning methods are commonly used in
fall detection and prediction research, such as the use of CNNs
with Class Activation Maps (CAM), which can detect the
impact of a fall before it happens by utilising the wearable
sensors. This approach has achieved an accuracy of 95.33%
[24]. The PreFallKD system, which integrates CNNs and Vision
Transformers with knowledge Distillation, demonstrates strong
performance with a 92.66% F-1 score in real time fall prediction
using wearable sensor data [25]. However, most existing fall
detection systems focus on post fall identification, which limits
the potential for prompt interventions. Additionally, temporal
data for pre-fall prediction remains underutilised. This study
addresses these gaps by leveraging accelerometer and gyroscope
data within 5 and 10 second time windows to predict pre-fall
conditions. We assess conventional machine learning models
(e.g. SVM, DT, and more sophisticated DL architectures (RNN
and CNN)), offering a framework for early intervention and fall
risk mitigation.Table I shows the comparison of fall detection
and prediction approches.

To the best of our knowledge, our study is among the first
studies to use this specific MetaMonitor dataset with sliding
time windows of 5 s and 10 s for pre-fall prediction, combining
both ML and DL models to emphasize the role of temporal
context in improving pre-fall prediction.

III. METHODOLOGY

The subsequent Figure 1 illustrates the methodological
process in this study. The methodology includes various
components, such as dataset sampling (data generation), dataset
cleaning, preprocessing, modelling and evaluation.

A. Dataset

This study utilised a publicly accessible dataset [26] collected
using the MetaMotionR sensor. Data was gathered using two
wearable sensors (accelerometer and gyroscope) positioned at
the user’s waist. The dataset comprises recordings from 17
participants (4 females, 13 males) with an average age of 30
± 8.02 years, height 174.18 ± 7.85 cm, and weight 74.35 ±
9.71 kg performing various Activities of Daily Living (ADLs)
and simulated fall (lab based) events in controlled conditions.
The ADLs included jumping, running and stopping, sitting on
a chair, and pulling the sensor. The fall scenarios included
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TABLE I. COMPARISON OF FALL DETECTION AND PREDICTION METHODS

No. Refrence Prediction Detection Real Time Wearable Vision AI/ML Accuracy / Perf.
1 [19] Yes Yes No Yes Yes HMM, DT Sens: 96%
2 [20] Yes Yes Yes Yes No Conv, LSTM, Smoothing Acc: 98.3%
3 [21] Yes Yes Yes Yes No KNN, GRU, SVM Acc: 93.5%
4 [22] Yes Yes Yes No Yes HHMM Acc: 81.5%
5 [23] Yes Yes Yes No Yes SVM, Mod. ZMP Acc: 91.7%
6 [24] Yes Yes Yes Yes No CNN + CAM Acc: 95.33%
7 [25] Yes Yes Yes Yes No CNN + ViT KD F1: 92.66%

Figure 1. Methodology.

forward falls, right-side falls, left-side falls, and backwards
falls. MetaMotionR sensor records acceleration, rotation, and
orientation. Falls were performed on a mat for safety, with a 1-
second data window captured when acceleration exceeded 2.5 G.
This dataset was chosen due to the nature of the sensor and time
stamping for evaluating the performance of various ML and DL
algorithms. In this study, we only considered two classes: fall
and no fall. Figure 2 shows the values of features (x,y,z) from
both the accelerometer and the gyroscope for instances of fall
and no fall. It can be observed that both fall and no fall follow
distinct patterns; the value of the accelerometer (Acc(X)) is
lower in the fall instance and higher in the no fall instance.
In case of Acc(Y), the values are higher for the fall event
but lower when there is no fall. Acc(Z) shows lower values
during fall and higher values for no fall. For the gyroscope
readings, fall events are associated with higher Rot(X)and
Rot(Y) values while Rot(Z) values are lower. These observed
patterns highlight the potential of sensor based features in
distinguishing between fall and non-fall events.

B. Sampling/ Data Generation

Data sampling was conducted to create the pre-fall dataset,
capturing the time window preceding each fall event. The
dataset comprises timestamps (e.g., 5 seconds, 10 seconds),
sensor readings, and a binary fall indicator (e.g., 1 representing
a fall). The timestamp denotes a fixed time window (e.g.,
5 seconds) before each fall, facilitating the identification of

Figure 2. Illustration of all Instances (Fall, no fall) sub figure (a) shows the
sensor values of accelerometer and sub figure (b) shows the sensor values of

gyroscope.

conditions that lead to a fall event. Data was chronologically
sorted by timestamp to generate the dataset, with fall events
marked as 1 and Pre-Fall events as 0. This relationship can be
expressed mathematically as follows:

prefall = tfall − Tw ≤ tevent ≤ tfall (1)

Where tfall is the timestamp of the fall event, Tw is the time
window before fall, which is taken for prefill, which in this
case is 5 and 10 seconds, and tevent is the timestamp of any
row in the dataset. Figure 3 further illustrates the sensor (both
accelerometer and gyroscope) reading from a typical no-fall
to a fall transition. The pre-fall period is virtually highlighted
for both 5 and 10-second windows preceding the fall, showing
the temporal dynamics captured in the dataset.

C. Data Preprocessing /Cleaning

The data cleaning process contains several techniques. Firstly,
the dataset was checked for missing values [27]. If any missing
values are found, they were replaced by the mean of their
respective columns. After addressing missing values, the next
step was identifying and removing outliers. Outliers were
removed using the interquartile range method to prevent them
from destroying model training and accuracy [28]. Once the
dataset is refined, normalisation is applied in standard scaling to
ensure that all data points fall within a consistent range. While
ML models often require normalization, feature selection, or
handcrafted feature extraction, DL models can automatically
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Figure 3. Illustration of sensor readings from Fall to no Fall sub figure (a)
shows the sensor values of accelerometer and sub figure (b) shows the sensor

values of gyroscope.

learn hierarchical features from raw sensor data, simplifying
the overall workflow and potentially capturing more complex
temporal patterns.

D. Data Modeling

After completing the preprocessing and data cleaning stages,
80% of the data was utilised to train ML and DL algorithms. For
the ML, the data was trained using LR, DT, SVM, Multilayer
perceptron (MLP), perceptron, and gradient boosting. The DL
algorithms employed include LSTM, CNN, RNN, and DNN.
Once the models were trained, the remaining 20% of the data
was used to test the ML and DL algorithms. The model’s
performance was evaluated using Accuracy (the ratio of the
number of correctly classified instances to the total number of
instances predicted), Precision (the ratio of correctly predicted
positive instances to all positively predicted instances) and
Recall (the proportion of predicted positive instances to all
actual positive instances) factors. These parameters provide
comprehensive evaluation of model’s performance to predict
pre-fall.

IV. RESULTS

The experiments for this study were conducted using Google
Colab and Python, utilising 32 GB of RAM and 128 GB
of storage. The DL models were trained over 20 epochs
after which no significant performance gains were observed,
and early stopping was applied to prevent overfitting. The
results obtained from experiments using 5-second and 10-
second window data by applying ML and DL algorithms, as
proposed in the framework. The performance of ML and DL
algorithms with the parameters Accuracy(Acc), Precision(Pre)
and Recall(Rec) is summarised in Table II. Among all ML
models, the DT classifier model has performed efficiently
with an accuracy of 95.99% and 95.75% on 5-second and

10-second windows, respectively. For DL models, LSTM has
performed efficiently with an accuracy of 81.08% and 82.63%
on 5-second and 10-second windows, respectively. Figure
4 illustrates the precision-recall curve and ROC (Receiver
operating characteristic) curve for the DT under 5 and 10-
second windows. The curves demonstrate a high area under
both metrics, indicating strong model accuracy. The 10-second
window shows a slightly steeper curve, reflecting marginally
improved performance.

TABLE II. ACCURACY, PRECISION AND RECALL FOR 5 AND
10-SECOND TIME WINDOW

5 Second Window

Algorithms Acc Pre Rec

Logistic Regression 78.75% 59.21% 46.86%
Decision Tree Classifier 95.99% 92.26% 91.58%
Support Vector Machine 82.02% 60.26% 81.41%
MLP Classifier 82.24% 62.02% 73.81%
Perceptron 69.72% 43.88% 77.93%
Gradient Boosting Classifier 84.58% 63.16% 91.18%
RNN 80.60% 56.84% 88.17%
CNN 78.53% 55.00% 70.26%
DNN 75.97% 54.86% 13.48%
LSTM 81.08% 57.42% 89.52%

10 Second Window
Algorithms ACC PRE Rec
Logistic Regression 78.98% 62.11% 53.78%
Decision Tree Classifier 95.75% 92.27% 91.72%
Support Vector Machine 83.49% 64.03% 86.57%
MLP Classifier 82.13% 65.51% 69.35%
Perceptron 73.18% 49.75% 81.00%
Gradient Boosting Classifier 85.08% 65.13% 94.55%
RNN 82.08% 60.79% 90.05%
CNN 78.74% 61.74% 50.74%
DNN 78.13% 57.89% 62.22%
LSTM 82.63% 61.69% 89.84%

Figure 4. ROC Curve and Precision Recall Curve. (a) and (b) represent ROC
curve and Precision recall curve for decision tree for 5 second window and
(c) and (d) show ROC curve and Precision recall curve for decision tree for

10 second window.
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Figure 5. (a) Training, Validation and Testing Accuracy, precision and recall
over 20 epochs for LSTM on 5 second window (b) Training, Validation and
Testing Accuracy, precision and recall over 20 epochs for LSTM on 5 second

window.

Figure 6. (a) Training and testing validation accuracy, precision and recall on
5 second window (b) Training and testing validation accuracy, precision and

recall on 10 second window.

Figure 5 illustrates line graphs for training and validation
accuracy, precision and recall over 20 epochs for the LSTM
model. The graph highlights a steady improvement in these
metrics as training progresses. A slight gap between training
and validation metrics indicates that the model fits well and is
generalised effectively.

Figure 6 compares training and validation precision and
recall for the LSTM model across 5 and 10 second windows.
The minimal difference between training and validation metrics
suggests the model’s robustness and adaptability to the use
case.

V. DISCUSSION

This study investigated pre-fall prediction using time stamped
data collected from wearable sensors. The dataset included
readings from the accelerometer and the gyroscope. The
dataset consists of two classes, fall and no fall. To predict
Pre-fall events, the dataset was transformed to 5 and 10-
second time windows preceding fall occurrence. Both ML
models, including Logistic Regression, Decision Tree Classifier,
Support Vector Machine, MLP Classifier, Perceptron, Gradient
Boosting Classifier and DL models, such as RNN, CNN, DNN,
LSTM, were evaluated to identify their effectiveness for pre-
fall prediction. The results of model tests indicate the that
the DT Classifier is the best performing ML model, achieving
an accuracy of 95% across both time windows. This means

that the predictions made by the model for the pre-fall events
were correct 95% of the time. The DT model was able to
perform so well because of its ability to handle datasets with
temporal features. In this study sensor readings were taken as
temporal feature, which enhance the predative strength of DT
model. Among DL models, LSTM performed well, achieving
the accuracies of 81.08% and 82.63% for 5 and 10 second
windows, respectively. Based on the comparative analysis, the
results suggest that although LSTM is good with temporal
features, traditional ML models, such as Decision Trees, are
more suitable for this dataset due to their structure and features.
The robustness of the proposed solution can be seen by the
fact that models were tested across multiple time windows (5s
and 10s) and using diverse ML and DL models. The consistent
performance of DT in ML models and LSTM in DL models
across both 5 s and 10 s windows demonstrates the framework’s
ability to generalize well under varying temporal conditions,
which is crucial for reliable real world deployment. Since all
of the experiments are performed on single dataset uniform
sensor type i.e. accelerometer and gyroscope there exist the
chance of data bias which only be studied and covered by
including more dataset as discussed in future work.

VI. CONCLUSION AND FUTURE WORK

In this study, a time-stamped dataset was used to predict pre-
fall using machine learning and Deep Learning. The threshold
windows set for pre-fall prediction were 5 seconds and 10
seconds. Based on these time frames, ML and DL algorithms
are applied to this dataset. The results indicated that the best
performing model is a decision tree with an accuracy of 95%
for both 5 and 10-second windows. For DL, LSTM has been
demonstrated to be the most suitable model. The nature of data
favored traditional machine learning models such as decision
trees. The main contribution of this study includes, to perform
pre-fall prediction on time-stamped datasets and provide the
evaluation scores for these techniques. Additionally, this study
evaluated and compared the performance of ML and DL models
for pre-fall prediction and established the baseline performance
for future research. In the future, more advanced ML and DL
approaches will be explored on real-time datasets to further
enhance the accuracy and generalisation of pre-fall prediction
systems.
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Abstract— The recent increase in Internet of Things devices and 

wireless network equipment has led to frequent occurrences of 

overlapping basic service set environments, where multiple 

wireless networks share the same or adjacent channels within 

the same space. In these environments, network quality 

degrades owing to channel interference. Previous studies have 

attempted to avoid interference by blocking some links or using 

time-division methods; however, these methods have limitations 

in responding to real-time environmental changes and 

improving overall network throughput and spatial reuse rates. 

This study proposes a Machine Learning-based joint control 

technique for TX power and RX sensitivity. This technique is 

implemented in both centralized and distributed architectures. 

Each node recognizes the network state, predicts optimal 

parameters through a Machine Learning model, and applies 

them to minimize interference. Experimental results 

demonstrate that the proposed technique achieves up to 47.1% 

higher effective throughput and 29.6% better measured Signal-

to-Interference-plus-Noise-Ratio compared with the 

conventional technique. The proposed distributed technique 

demonstrated approximately 46.4% higher effective 

throughput (21.43 Mbps) than the conventional central 

technique under low traffic load and maintained relatively high 

link quality even in environments with increased traffic load. 

While the proposed distributed method incurred higher control 

overhead owing to increased computational requirements 

compared with the conventional distributed method, the 

distributed architecture enables each Access Point to operate 

independently, allowing for parallel processing benefits in 

actual network deployments. 

Keywords- Overlapping Basic Service Set; Machine Learning; 

TX power and RX sensitivity Control; Internet of Things Wireless 

Networks. 

I.  INTRODUCTION 

The recent rapid growth of Internet of Things (IoT) 
devices and wireless network equipment has led to the 
frequent occurrence of Overlapping Basic Service Set (OBSS) 
environments, where multiple wireless networks share the 
same or adjacent channels within the same space [1]. In these 
environments, the performance degradation due to channel 
interference increases significantly. Furthermore, attackers 
can intentionally generate interference signals or unnecessary 
traffic, resulting in jamming attacks that threaten the network 
availability and reliability [2]. Existing OBSS interference 
mitigation techniques primarily avoid interference issues by 

blocking certain links or applying time-division methods. 
However, these approaches have limitations: they degrade the 
overall network throughput and Spatial Reuse (SR) rates [3]. 
They often focus solely on TX power control (on sender side) 
or rely on predefined probability models, thereby failing to 
respond effectively to real-time changes in the network 
environment or dynamic traffic patterns. Furthermore, they do 
not consider controlling the RX sensitivity (on receiver side), 
which can also affect the interference. Therefore, this study 
views the OBSS environment as a resource to be managed 
efficiently, and not merely as a constraint to avoid. This study 
proposes a Machine Learning (ML)-based framework that 
jointly controls TX power and RX sensitivity. This study 
implemented and compared the performances of centralized 
and distributed architectures. The centralized approach 
utilizes network-wide information to enable global 
optimization, whereas the distributed approach allows each 
Access Point (AP) to perform predictions independently based 
solely on local information, ensuring scalability and 
practicality. We compared and analyzed the performance of 
the conventional technique and two proposed approaches. The 
main contributions of this study are as follows: 

 • Centralized and distributed ML architectures are 
proposed, demonstrating the trade-off between performance 
and control overhead in OBSS networks. 

• TX power and RX sensitivity are optimized to support 
simultaneous connections for more devices. 

• The trade-off between the Signal-to-Interference-plus-
Noise-Ratio (SINR) of AP–Station (STA) communication 
pairs and the overall network connectivity is analyzed, and 
criteria for simultaneous connections are presented. 

The structure of this paper is as follows: Section II reviews 
the research related to OBSS interference mitigation and ML-
based network optimization. Section III describes the 
proposed technique, and Section IV presents the simulation 
model. Section V details the experimental environment and 
Section VI discusses the performance evaluation results. 
Finally, Section VII presents conclusions and directions for 
future research. 

II. RELATED WORK 

Jung et al. [4] proposed an OBSS packet detection SR 
technique based on an optimized TX power control to achieve 
high throughput in OBSS environments. The proposed 
technique derives the optimal TX power that maximizes the 
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communication success probability through probabilistic 
geometric analysis and adjusts the clear channel assessment 
threshold accordingly to reduce interference and increase 
channel access opportunities. However, this technique has 
limitations in that it calculates the optimal values based on 
predefined probability models, making it difficult to adapt 
flexibly to real-time changes in the network environment or 
dynamic traffic patterns. Zhu et al. [5] improved the 
performance of coordinated SR (CSR) in an IEEE 802.11be 
environment through TX power adjustment and distributed 
optimization using adaptive CSR and distributed CSR. 
However, this study did not address RX sensitivity control or 
adaptability to real-time environmental changes via ML, 
thereby limiting the comprehensive optimization of the 
transmit/receive parameters in dynamic traffic environments. 
In addition, Haxhibeqiri et al. [6] proposed a centralized CSR 
approach to centrally optimize transmit parameters to resolve 
OBSS interference issues and enhance network throughput. 
This approach aims to optimize TX power and Modulation 
and Coding Scheme (MCS) index to avoid interference at the 
main receiver. However, centralized structures have limited 
SR efficiency in dynamic environments owing to structural 
constraints, such as scalability, overhead, and single points of 
failure. It also has the limitation of focusing solely on TX 
power without simultaneously considering RX sensitivity 
joint control. Wojnar et al. [7] proposed a learning-based 
scheduling technique using multi-armed bandits (MABs) to 
optimize the TX power of multiple APs in an IEEE 802.11bn 
CSR environment. Specifically, they contributed to an 80% 
throughput improvement using hierarchical MAB (H-MAB) 
in a centralized manner. However, this study has limitations 
in terms of interference management, because it does not 
consider RX sensitivity control. 

Previous studies have proposed various approaches to 
mitigate interference and enhance the SR efficiency in OBSS 
environments, such as TX power optimization and centralized 
or distributed parameter control. However, most of these 
approaches rely on predefined models, making them difficult 
to adapt flexibly to real-time changes in network 
environments and dynamic traffic patterns. Furthermore, 
comprehensive control strategies that simultaneously consider 
both TX power and RX sensitivity are still lacking, and fail to 
actively incorporate these dynamic factors through ML-based 
predictions. 

III. OBSS INTERFERENCE MANAGEMENT VIA ML-BASED 

JOINT TX POWER AND RX SENSITIVITY CONTROL 

The proposed technique is illustrated in  Figure 1. The left 

figure shows the problem of reduced overall network 

throughput due to OBSS interference when each AP and STA 

shares the same or adjacent channels in the existing OBSS 

environment. In contrast, the figure on the right shows the 

results of applying the proposed distributed control method. 

Each node dynamically adjusts its TX power and RX 

sensitivity through ML-based prediction, thereby minimizing 

interference and improving the overall network throughput. 

In the case of the proposed centralized control method, a 

single AP controls all STAs and APs to minimize interference. 

 

Figure 1.  Distributed control for OBSS interference mitigation. 

 Figure 2 illustrates the overall operational flow of the TX 
power and RX sensitivity joint control framework proposed in 
this study.  

 

Figure 2.  Overall flow for TX power and RX sensitivity control using 

ML. 

First, simulations were repeatedly performed under 
various OBSS environments and network configurations to 
collect network environment data. This includes the 
transmit/receive parameters of each node, number of 
neighboring nodes, distance, SINR, Packet Loss Rate (PLR), 
and communication success. Subsequently, the ML model 
was trained on the collected dataset to predict the optimal TX 
power and RX sensitivity for each communication pair 
(source–destination). Detailed information regarding the real-
time network environment is summarized in Table 1. 

TABLE I.  NETWORK ENVIRONMENT INFORMATION 

The source ID is the identifier of the transmitting node 

(AP or STA). The destination ID is the identifier of the 

Type Description Scope 
Source ID Transmitting node 1–45  

Destination ID Receiving node 1–45 

Source  

TX power 

Transmitting node's  

 TX power 

15–23 dBm 

Source  

RX sensitivity 

Transmitting node's  

RX sensitivity 

-90–-75 dBm 

Destination  

TX power 

Receiving node's  

TX power 

15–23 dBm 

Destination  

RX sensitivity 

Receiving node's  

RX sensitivity 

-90 – -75 dBm 

Number of 

neighbors 

Number of nodes within 50 m  

of the transmitting node 

0–44 

Distance Distance between transmitter  

and receiver nodes 

0–141.4 m 

SINR Estimated SINR  

at the receiving node 

-10 – 40 dB 

PLR Packet loss rate 0–1 

Success flag Success of communication 

connection 

0 or 1 
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receiving node. Source TX power and source RX sensitivity 

are the transmitting node's current TX power (range 15–23 

dBm) and RX sensitivity (-90 – -75 dBm), respectively. 

Destination TX power and destination RX sensitivity refer to 

the TX power of the receiving node and the RX sensitivity, 

respectively. The number of neighbors is the number of 

surrounding nodes within 50 m of the transmitting node. 

Distance is the physical distance (m) between the 

transmitting and receiving nodes, which directly affects path 

loss. The SINR is the current SINR of the receiving node (dB), 

indicating the instantaneous link quality. Approximately -10 

to 40 dB is an estimated value calculated during training data 

generation. PLR denotes the packet loss rate. The success flag 

indicates whether the communication connection was 

successful, represented by 0 or 1, and serves as the training 

label for supervised learning. 

IV. SIMULATION MODEL 

This section presents the simulation model considered in 

this study. It includes the high-density IEEE 802.11ax 

network configuration, the wireless channel assumptions, and 

the formulations of key variables such as TX power, RX 

sensitivity, and SINR.  Figure 3 shows the network 

configuration used in the simulation. 

 

Figure 3.  Network configuration. 

This study assumes a high-density IEEE 802.11ax 

wireless network environment deployed within a 100 m × 

100 m square area, operating only on a single 20 MHz 

channel in the 2.4 GHz band [8]. The network comprises nine 

APs arranged in a 3 × 3 grid pattern at 33.33 m intervals, with 

four STAs assigned per AP, randomly distributed across each 

area. This configuration creates an OBSS environment where 

multiple BSSs operate on the same channel, causing co-

channel interference. The 33.33 m spacing between APs was 

specifically chosen to represent high-density deployment 

scenarios commonly assumed in smart building and 

industrial WLAN studies, where coverage overlap is 

unavoidable. This symmetric arrangement ensures that 

interference patterns are equally distributed from all 

directions, providing an unbiased testing environment for 

evaluating the proposed joint control algorithm's 

performance under realistic interference conditions.  

The wireless channel is modeled using a log-distance path 

loss model that includes shadow fading, as shown in (1) 

[9][10]. 

𝑃𝐿(𝑑) = 𝑃𝐿0 + 10𝛼𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝑋𝜎           (1) 

Here, 𝑃𝐿0  =  46.7𝑑𝐵  is the path loss at the reference 
distance 𝑑0  =  1 𝑚, and 𝛼 =  3.5 is the path loss exponent 
for indoor environments. 𝑑 denotes the distance (m) between 
the transmitter and receiver, and 𝑋𝜎~𝑁(0, 𝜎2) is the shadow 
fading component with 𝜎 =  4𝑑𝐵. 
The noise power is calculated as in (2). 

𝑁 = 𝑁0 + 10log10(𝐵𝑊) + 𝑁𝐹 
= −174 + 10 log10(20 × 106) + 7               (2) 

= −94 𝑑𝐵𝑚 

Here, 𝑁0 = −174 𝑑𝐵𝑚/𝐻𝑧 is the thermal noise power 
density at 290 K, 𝐵𝑊 = 20 𝑀𝐻𝑧 is the channel bandwidth, 
and 𝑁𝐹 =  7 𝑑𝐵 is the receiver noise figure. 

The SINR is a key indicator of link quality and achievable 
data transmission rates in wireless networks [11]. For each 
communication link, both the downlink and uplink SINR 
values are calculated. The SINR for the downlink 

transmission from 𝐴𝑃𝑗 to 𝑆𝑇𝐴𝑖  is calculated as shown in (3). 

𝑆𝐼𝑁𝑅𝐷𝐿(𝑖,𝑗) =  
𝑃𝑟𝑥(𝑖,𝑗)

𝑁𝑖+𝐼𝑖
                            (3) 

Here, 𝑃𝑟𝑥(𝑖,𝑗) = 𝑃𝑡𝑥(𝑗) − 𝑃𝐿(𝑖, 𝑗)  represents the received 

signal power, where 𝑃𝑡𝑥(𝑗) denotes the TX power of 𝐴𝑃𝑗, and 

𝑃𝐿(𝑖, 𝑗) denotes the path loss between 𝐴𝑃𝑗 and 𝑆𝑇𝐴𝑖 . 𝑁𝑖 is the 

noise power at 𝑆𝑇𝐴𝑖 , calculated as 𝑁𝑖 = 𝑘𝑇𝐵 ∙ 𝑁𝐹, where 𝑘 
is the Boltzmann constant, 𝑇  denotes the temperature, 𝐵 
denotes the bandwidth (20 MHz), and 𝑁𝐹 denotes the noise 
figure (7 dB). 𝐼𝑖  is the interference from the other APs and 
active STAs, as shown in (4). 

𝐼𝑖  =  ∑ 𝑃𝑡𝑥(𝑘) · ℎ𝑘𝑖𝑘≠𝑗  + ∑ 𝑃𝑡𝑥(𝑚) · ℎ𝑚𝑖𝑚∈𝑆𝑇𝐴𝑎𝑐𝑡𝑖𝑣𝑒
        (4) 

where ℎ𝑘𝑖  and ℎ𝑚𝑖  represent the channel gains from the 
interfering AP and STA, respectively, and 𝑆𝑇𝐴𝑎𝑐𝑡𝑖𝑣𝑒  denotes 
the set of STAs actively transmitting. The expression for the 
uplink transmission from 𝑆𝑇𝐴𝑖  to 𝐴𝑃𝑗 is given by (5). 
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𝑆𝐼𝑁𝑅𝑈𝐿(𝑖,𝑗) =  
𝑃𝑟𝑥(𝑗,𝑖)

𝑁𝑗+𝐼𝑗
                           (5) 

The main difference in the uplink calculations is that STAs 
usually transmit at a lower power. This increases the 
probability of collisions, owing to the distributed properties of 
the CSMA/CA protocol. 

V. EXPERIMENTAL ENVIRONMENT 

In this study, experiments were conducted to analyze the 

impact of increasing traffic load on network performance by 

varying the data transmission rate to 3, 6, 12, 24, and 48 Mbps 

in a formula-based simulation using MATLAB 2021b [12]. 

Experiments lasting 10 s were repeated 1000 times for each 

traffic load level to measure the average performance. A ML 

model using XGBoost [13] was employed to predict and 

control TX power and RX sensitivity based on the network 

environment. The model was divided into two approaches: a 

centralized method, where a single AP handles data learning 

and prediction, and a distributed method, where nine APs 

perform data learning and prediction across a 40 m area. The 

experiments compared and analyzed the following four 

approaches: 

TABLE II.  CONTROL TECHNIQUES 

Control 

techniques 
Description 

Conv (central) 
Conventional method controlling Tx power  

in a centralized technique 

Conv (dist) 
Conventional method controlling Tx power  

in a distributed technique 

Prop (central) 
Proposed method controlling Tx power  

and Rx sensitivity in a centralized technique 

Prop (dist) 
Proposed method controlling Tx power  

and Rx sensitivity in a distributed technique 

Table 2 summarizes the control techniques used as 
comparators in this experiment. Conv (central) is a 
conventional method that centrally controls TX power, 
corresponding to the approach by Wojnar et al. [7]. Conv (dist) 
is a conventional method for controlling TX power in a 
distributed manner. Prop (central) and prop (dist) are the 
proposed methods for controlling Tx power and Rx sensitivity 
in centralized and distributed manners, respectively. 

The performance evaluation metrics used were the 
effective throughput, SINR, control overhead. To evaluate 
network performance, the achievable effective throughput of 
each STA-AP link was measured. Effective throughput 
follows the IEEE 802.11ac physical layer specification, with 
the transmission rate adaptively selected based on the channel 
quality [14]. The effective throughput 𝑇𝑖  of each 𝑆𝑇𝐴𝑖  is 
calculated using (6). 

𝑇𝑖  =  𝑅𝑀𝐶𝑆(𝑆𝐼𝑁𝑅𝑖 ) ×  (1 − 𝑃𝐿𝑅𝑖)             (6) 

where 𝑅𝑀𝐶𝑆() is the MCS selection function that maps the 
measured SINR to the corresponding data transmission rate. 
The IEEE 802.11ac standard defines 10 MCS levels (0–9), 

supporting rates from 6.5 Mbps (MCS 0, SINR ≥ 5 dB 

required) to 86.7 Mbps (MCS 9, SINR ≥ 33 dB required) on 

a 20 MHz channel. This function selects the highest MCS 
level that satisfies the minimum SINR requirement. 𝑃𝐿𝑅𝑖  is 
the PLR that combines channel-induced errors and collision-
induced losses, as shown in (7). 

𝑃𝐿𝑅𝑖  =  𝑃𝐿𝑅𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑆𝐼𝑁𝑅𝑖 ) + 𝑃𝐿𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝜌) 
−𝑃𝐿𝑅𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑃𝐿𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛                   (7) 

where 𝜌  represents network congestion. STAs with an 
SINR below 5 dB experience high packet loss (50–90%), 
whereas those with an SINR above 20 dB achieve low loss 
rates (below 5%). The control overhead represents the time 
required for parameter optimization, including ML prediction, 
file I/O, and SINR calculation. This is distinct from the data 
transmission period used in effective throughput 
measurements. While the distributed method theoretically 
allows nine APs to operate independently, our MATLAB 
implementation processes these operations sequentially, 
resulting in cumulative overhead. 

VI. PERFORMANCE EVALUATION 

In this section, the performance of the proposed ML-based 
joint control technique is evaluated. The centralized and 
distributed schemes are compared with the conventional 
methods, focusing on effective throughput, control overhead, 
and measured SINR under various traffic load conditions.  
Figure 4 shows the effective throughput of each method for 
different traffic loads. 

 

Figure 4.  Effective throughput comparison of the four control schemes 

(conv (central), conv (dist), prop (central), and prop (dist)) with increasing 

traffic load. 

As the traffic load increased, the effective throughput 
decreased across all methods. The prop methods (central, dist) 
demonstrated superior performance compared with the conv 
methods (central, dist). Specifically, prop (dist) achieved the 
highest effective throughput of 12.09 Mbps, showing an 
improvement of approximately 47.1% over conv (central). 
This improvement results from the effective interference 
control achieved by simultaneously optimizing TX power and 
RX sensitivity. The dist method exhibited higher effective 
throughput than the central method because each AP was 
optimized with values suitable for a 40 m radius area, enabling 
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finer control. At a low traffic load (3 Mbps), prop (dist) 
achieved the highest effective throughput at 21.43 Mbps, 
representing a performance improvement of approximately 
46.4% compared with conv (central). However, as the traffic 
load increased to 48 Mbps, the interference caused a sharp 
decrease in effective throughput for all methods. Notably, 

prop (dist) exhibited an effective throughput of 4.71 Mbps, 

which was 0.44 Mbps lower than that of prop (central).  
 Figure 5 shows the results of the comparison of the 

control overhead for each method.  

  

Figure 5.  Control overhead comparison of the four control schemes (conv 

(central), conv (dist), prop (central), and prop (dist)) with increasing traffic 

load. 

Conv (dist) exhibited the fastest control overhead, 
averaging 9.8 s, whereas prop (dist) required the longest 
control overhead, averaging 80.6 s. All the methods 
maintained consistent control overhead regardless of the 
traffic load, because the computational complexity of the 
algorithm was independent of the data transmission rate. 
Because of the complex model structure that simultaneously 
optimizes TX power and RX sensitivity, the control overhead 
for the prop methods (central, dist) increased compared with 
those of the conv methods (central, dist). Specifically, prop 
(dist) used four models, significantly increasing the overhead 
and requiring additional computation to predict both TX 
power and RX sensitivity based on network state information. 
However, in actual distributed systems, each AP operates 
independently; therefore, the benefits of parallel processing 
exist from the perspective of the entire network. Prop (central) 
increased by 18.1% compared with conv (central), averaging 
57.5 s, whereas prop (dist) increased by 723.2% compared 
with conv (dist). 

  Figure 6 shows the SINR variation for each method under 
different traffic loads. 

 
Figure 6.  Measured SINR comparison of the four control schemes (conv 

(central), conv (dist), prop (central), and prop (dist)) with increasing traffic 

load. 

The experimental results indicate that the prop method 
generally maintained a higher SINR than the conv methods 
(central, dist). Prop (dist) achieved the highest average SINR 
of 6.09 dB, representing a 29.6% improvement over conv 
(central). As the traffic load increased, all methods exhibited 
a decreasing trend in SINR. When traffic load increased from 
3 to 48 Mbps, conv (central) decreased from 10.76 to -1.65 dB, 
and conv (dist) decreased from 11.61 to -0.73 dB. The 
proposed methods, prop (central) and prop (dist), also 
decreased from 11.66 to 0.28 dB and from 12.06 to -0.05 dB, 
respectively. However, even under high traffic load, the 
proposed methods maintained a relatively high SINR, 
providing better link quality. This demonstrates that the 
proposed methods can sustain a stable link quality even in 
high-traffic-load environments. The analysis indicates that the 
distributed approach maintains a higher SINR than the 
centralized approach because it can more accurately identify 
and control the interference characteristics within the local 
area. 

VII. CONCLUSION AND FUTURE WORK 

The rapid increase in the number of devices utilizing 
wireless networks has exacerbated problems such as channel 
interference, degraded network quality, and jamming attacks 
in OBSS environments. Previous studies avoided interference 
by suspending communication on some links or applying 
time-division methods; however, these methods failed to 
reflect real-time changes in the network environment, limiting 
improvements in overall throughput and SR rates. To address 
these issues, this study proposes an ML-based simultaneous 
control technique for TX power and RX sensitivity. The 
proposed technique is implemented in both the centralized and 
distributed architectures. Each node recognizes the network 
state and then predicts and applies the optimal parameters 
through an ML model, effectively controlling the interference. 
Experimental results demonstrate that the proposed technique 
achieves up to 47.1% higher effective throughput and 29.6% 
improved measured SINR compared with conventional 
techniques. In particular, the proposed distributed approach 
achieved a 46.4% higher effective throughput than the 
proposed centralized approach under low traffic load 

18Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-304-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SENSORCOMM 2025 : The Nineteenth International Conference on Sensor Technologies and Applications

                            26 / 47



conditions while maintaining a relatively stable link quality 
even under high traffic loads. Although the control overhead 
increased significantly in the proposed distributed approach, 
the distributed structure enabled each AP to operate 
independently. This leverages the benefits of parallel 
processing, ensuring practical applicability in real-world 
environments. However, limitations were identified in the 
simulation environment. MATLAB is primarily designed for 
algorithm development and numerical computation, not for 
network simulation, and could not adequately reflect the 
parallel nature of distributed systems. The sequential 
processing of distributed operations in MATLAB resulted in 
higher control overhead, which prevented the observation of 
actual performance benefits that would occur when multiple 
APs operate independently in real networks. Future research 
will use ns-3 for more realistic distributed simulations and 
reinforcement learning for adaptive control, ultimately 
validating the framework in real WLAN scenarios. 
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Abstract—An air-gapped network is used as a representative 

protection mechanism to strengthen cybersecurity by 

physically separating systems. However, to enhance the 

security of such environments practically, in-depth research on 

air-gap attack techniques should first be conducted. This study 

proposes SCREEN2AIR, a novel air-gap attack technique that 

utilizes screen savers and a high-dimensional modulation 

technique to encode large amounts of information. Screen 

savers generally do not cause user suspicion because they are 

automatically executed when the user is absent and exhibit 

excellent detection evasion. The experimental results 

demonstrated that a stable extraction success rate, up to 13 

times higher than that of the conventional QR code-based 

method, can be maintained when the number of cells is small. 

In addition, we propose a technique to intentionally lower 

screen saver image quality to defend against decoding, and we 

experimentally demonstrate that the attack success rate can be 

reduced by up to 95% compared to using normal high-quality 

images. 

Keywords-Air-Gap; Data Leak; Screen Saver; Cybersecurity. 

I.  INTRODUCTION 

In recent years, as our reliance on the Internet has grown, 
cyberattacks have manifested in diverse forms, such as 
viruses, worms, and ransomware [1]. These attacks can cause 
significant damage, such as data breaches and network 
paralysis, at both the individual and national levels. The 
establishment of air-gapped networks is recommended to 
mitigate the impact of such threats and protect critical 
national and industrial information [2]. An air-gapped 
network is a security system that physically and completely 
isolates an internal network from external networks, thereby 
minimizing the risk of external intrusion and internal data 
leakage [3]. Air gaps are used in environments that require 
high security, such as national infrastructures and military 
systems [4]. 

However, in recent years, security threats targeting air-
gapped networks have become a reality; specifically, attacks 
that exfiltrate data from internal networks to the outside 

using electromagnetic signals, optical signals, and vibrations 
generated by the operation of computer components and 
Internet of Things (IoT) devices are being actively studied 
[5]. For instance, in 2010, the Stuxnet malware targeted an 
Iranian nuclear facility [6]. Additionally, in 2024, the Korea 
Hydro & Nuclear Power Research Institute was hacked, and 
in 2016, the Ministry of National Defense of the Republic of 
Korea also suffered a cyberattack [7]. These incidents 
demonstrate that cyberattacks against air-gapped systems 
have been reported in multiple countries. Such covert 
channel-based attacks are challenging to detect using 
traditional network-based security solutions, such as 
Intrusion Detection Systems (IDS), Intrusion Prevention 
Systems (IPS), and firewalls [8]. Therefore, a systematic 
analysis of potential attack vectors is essential to enhance the 
security of air-gapped environments. 

Conventional air-gap attacks using various physical 
channels, including electromagnetic, optical, and vibration, 
have certain limitations. They are easy for users to recognize 
owing to their high visibility and narrow transmission range 
[9]. To address these limitations, this study proposes a novel 
information leakage technique based on a screen saver and a 
high-dimensional modulation method for encoding large 
volumes of data. The proposed technique divides the screen 
saver into cells of a fixed size and assigns binary data to each 
cell, generating a movement pattern that covertly transmits 
information that is recognizable only to the attacker. Because 
screen savers are standard system functions that are typically 
activated when the user is away, the attack does not raise 
suspicion and offers strong detection evasion. Furthermore, 
as the data transmission range scales with the screen size, 
this technique is advantageous for long-distance exfiltration. 

The contributions of this paper are as follows: 

• We propose a novel data leakage mechanism and a 

corresponding defense technique for air-gapped networks 
utilizing screen savers. 

• We experimentally demonstrate the feasibility and 
effectiveness of the proposed attack with respect to the cell 
size and number of cells on the screen saver. 
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• We present a defense strategy tailored to screen-saver-

based air-gap attacks and experimentally validate its 
practicality and performance. 

The remainder of this paper is organized as follows. 
Section Ⅱ reviews the related work. Section Ⅲ introduces the 
proposed information leakage and defense techniques based 
on screen savers. Section Ⅳ presents the results of the 
performance evaluation. Finally, Section Ⅴ concludes the 
study. 

II. RELATED WORK 

Morderchai Guri [10] proposed an air-gap attack that 
embeds a Quick Response (QR) code into a monitor display 
exploiting the limitations of the human visual system in 
rapidly perceiving blinking images and subtle grayscale 
patterns. In this study, 40 participants were tested for their 
ability to recognize Aurmented Reality (AR) codes visually, 
and the detection range was evaluated using both DSLR and 
smartphone cameras. However, the method achieved only a 
75% success rate in data extraction at a distance of 1m when 
using a Digital Single-Lens Reflex (DSLR) camera with a 
35mm lens, and the maximum recognition range using a 
smartphone camera was limited to 1.5 meters. Moreover, due 
to individual differences in visual sensitivity, there exists a 
risk that an embedded attack pattern may be noticeable to 
some users. 

Anindya Maiti et al. [11] proposed an air-gap attack that 
leverages the infrared (IR) functionality of smart lighting 
systems. They encoded the binary data by dividing the 
brightness levels of smart lights into discrete steps and 
assigning bit values to each level. A TSOP48 IR sensor 
connected to an Arduino board was used to detect changes in 
infrared intensity. Additionally, an 80mm telescope with 45-
255x magnification was employed to collect infrared signals 
and enhance the decoding performance. However, this 
technique is constrained by its reliance on smart lights 
equipped with infrared capabilities, which limits its 
applicability to specific environments. 

Morderchai Guri [12] proposed an air gap attack 
technique that finely adjusts the brightness of the monitor 
screen, focusing on the fact that it is difficult for the human 
visual system to recognize the rapidly changing minute 
brightness difference. In this paper, the monitor screen was 
photographed using a security camera, webcam, and 
smartphone camera. OpenCV, an open-source library, was 
used to process the photographed image in real-time, and a C 
program that performs additional MATLAB processing by 
calculating frame brightness was developed and used for 
decoding. However, this technique has limitations in that the 
maximum transmission distance is only 1.5m when 
photographed with a smartphone camera, so the transmission 
range is limited, and the transmission speed is slow to 1 bit/s. 

Previous studies have proposed attack scenarios that 
exfiltrate data using computer components or IoT devices 
located in air-gapped environments. While these studies 
introduced novel attack vectors that are challenging to detect 
using conventional network-based security solutions, they 
are limited by the restricted range of usable devices, short 

transmission distances, and high visibility of attack patterns, 
which hinder their practical applicability, To address these 
limitations, this paper proposes a new air-gap attack 
technique that exploits the screen saver of a computer 
monitor. The proposed method enables long-distance data 
exfiltration while remaining inconspicuous to users. 
Furthermore, we enhance transmission speed by applying a 
high-dimensional modulation technique and supporting 
large-volume data leakage. 

III. INFORMATION LEAKAGE ATTACK                              

USING SCREEN SAVER AND ITS DEFENSE TECHNIQUE 

A. Information Leakage Attack Using Screen Saver 

Figure 1 illustrates the operation of the proposed method, 
SCREEN2AIR. First, after collecting the information to 
infect and leak malware into a PC inside the airgap, it was 
converted into a binary number. Subsequently, the screen 
saver screen was divided into cells of a certain size, and 
binary bits of data were assigned to each area. When an 
attack begins, bubbles of a specific color among the bubbles 
of the screen saver are moved to the corresponding cell 
according to the information converted to a binary number 
and repeatedly stopped for a certain period. At this time, 
since the bubbles used in the attack operate mixed with 
ordinary bubbles, it poses a challenge for the user to discern 
this as an anomalous symptom. An attacker outside the 
airgap photographs the screen saver with a camera and then 
decrypts the information by analyzing the movement of the 
bubbles. 

 

 

Figure 1.  Method of attack using a screen saver 

1) Data Encoder  
 

In an environment where the screen saver is divided into 

cells, the pseudocode for transmitting information is 
presented in Algorithm 1. First, the information to be leaked 
outside the air-gap network is converted into binary data, and 

21Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-304-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SENSORCOMM 2025 : The Nineteenth International Conference on Sensor Technologies and Applications

                            29 / 47



n bit grouping is performed to map it to cells in the screen 
saver. The height and width of the monitor on which the 
screen saver was executed was assessed, and the color of the 
bubbles to be used for data leakage were selected. The screen 

was divided into  cells based on its height and width and 
assigned n bits of binary data to each cell. According to the 
information converted into binary data, the selected bubbles 
moved to the corresponding coordinates within the cell and 
stopped at that position for a certain period while normal 
bubbles maintained their normal movement. For all n bit 
groups, the corresponding operation process was repeated, 
and the binary data were leaked to the outside through the 
position movement pattern of the bubbles. 

 

 
Algorithm 1. Data encoder pseudocode. 

 

2) Data Decoder 
 

The pseudocode for decrypting information in an 

environment where the screen saver is divided into  cells is 
presented in Algorithm 2. First, the image captured by the 
screen saver is inserted into the decoder. The decoder 
analyzes the height and width of the image and converts it 
into an HSV color space. Subsequently, the image is 
analyzed to identify the location of the mark. Because the 
bubbles on the screen saver have translucent characteristics, 
two HSV (Hue, Saturation, Value) coordinates were set by 
adjusting the brightness and saturation according to the color 
of the mark. To distinguish colors accurately, the image was 
masked using Gaussian blur, and the color was recognized in 
the image according to the HSV coordinates. The area of 
each cell was classified according to the height and width of 
the analyzed image, and the binary data allocated according 
to the area where the recognized color was located was 
output. 

Algorithm 2. Data decoder pseudocode. 

 

B. Defense Techniques for Information Leakage Attack 

Using Screen saver 

Screen savers are automatically activated when a 

computer remains idle for a certain period, thereby 

preventing screen burn-in, preserving user privacy, and 

conserving power. Although they were originally developed 

to prevent burn-in in older display technologies such as 

Cathode-Ray Tube (CRT) and Plasma Display Panel (PDP), 

their necessity has diminished with the widespread adoption 

of Liquid Crystal Display (LCD) and Light-Emitting Diode 

(LED) displays. Nevertheless, screen savers are still used for 

screen protection and privacy enhancement. 

Detecting data leakage attacks that exploit screen savers 

in air-gapped environments using traditional security 

solutions can be challenging because they utilize legitimate 

system programs as cover channels. In this study, we 

propose a defense technique that intentionally degrades the 

image quality of screen savers to reduce the stealthiness of 

such attacks and lower their success rate. The proposed 

method decreases the resolution of the screen saver to reduce 

the clarity of the visual information, thereby significantly 

diminishing the accuracy of data decryption when the screen 

is captured by an external camera. 
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IV. EVALUATION RESULTS AND ANALYSIS 

A. Evaluation of Air-Gap Attack Experiments Based on 

Screen Saver 

This experiment was conducted by photographing the 
screen saver screen of a Samsung Galaxy Book Pro laptop 
with the camera of a Galaxy S25 smartphone and then 
processing the image to extract information. Shooting was 
performed by gradually increasing the distance between the 
screen and camera, and the data leaked from the 
photographed image were decrypted using an automated 
script. The air-gap attack technique, which converts leaked 
data into a QR code and inserts it into an image with lower 
visibility to evaluate the performance of the proposed model 
and compare it with existing techniques, was implemented as 
a conventional model. 

 

 

Figure 2.  Maximum leakable distance depending on scree brightness. 

Figure 2 illustrates the result of comparing the maximum 
outflow distance according to the screen’s brightness. The 
proposed model (SCREEN2AIR 2) with two cells recorded 
the longest transmission distance because it can transmit 
information up to about 24m. On the other hand, the 
conventional study (QR code) was limited to a maximum of 
2m. And as the number of cells increased, the transmission 
distance tended to decrease somewhat. Since the 
conventional technique relies on camera-based static image 
recognition, it was confirmed that the robustness against 
ambient illumination change is low, and due to this, there is a 
limit to the transmission distance. 

Figure 3 illustrates the results of comparing the 
information leakage based on the transmission distance of 
the proposed model with 2, 4, and 16 cells, respectively. In 
this experiment, the word “hello” was attempted to be 
transmitted, and each character is expressed as 8 bits (ASCII 
code), so the maximum information leakage is 40 bits. In the 
proposed model with 16 cells, the outflow began to decrease 
from the 12m point and decreased to 3 bits at the 24m point. 
However, in the proposed model with 4 cells, the outflow 
decreased from 15m and recorded 13 bits at 24m. The 
proposed model with 2 cells exhibited the most stable 
performance, maintaining a 40-bit level even at 24m. 

 
 

 

Figure 3.  Information leakage by distance by cell count 

 
This result is interpreted as follows: as the number of 

cells increases, the boundaries between the cells become 

closer to each other, and the cells where the bubbles are 

located are not distinguished, thereby increasing the 

probability of a decoding error. In particular, when the 

number of cells is 16, the gap between cells is very narrow; 

therefore, there is a high possibility of a signal hanging over 

the boundary or a recognition error occurring during long-

distance transmission, resulting in a sharp decrease in 

information leakage. However, when the number of cells 

was as low as two, the size of the cells was large, and the 

boundaries were wide, enabling stable information leakage 

even over a long distance. However, the higher the number 

of cells, the higher the transmission efficiency because more 

binary data can be encoded in a single cell. In other words, it 

has the advantage of transmitting more information at once; 

however, reliability decreases in a long-distance environment 

because the gap between cells narrows. In addition, the 

results of this experiment show that as the screen size 

increases, the cell gap widens, so even if more cells are 

placed when using a large screen, a sufficient gap between 

cells is secured. Thus, a high outflow can be expected, even 

when long-distance transmissions are performed. 

Additionally, increasing the resolution and quality of an 

image can potentially improve the success rate of 

information extraction. The pre-image optimization process 

must be performed since images with low or high resolution 

are likely to cause errors or missing information during the 

data extraction process. Therefore, in this paper, image 

quality processing was performed using “upscale.media 

[13]”, and Artificial Intelligence (AI)-based image upscaling 

service. “upscale.media” uses an AI super-resolution 

algorithm to improve low-resolution images up to 8 times to 

preserve details and textures as much as possible. Rather 

than simply enlarging the image, the neural network 

improves the clarity without deteriorating the quality of the 

original image by analyzing the patterns and boundaries of 

the image and naturally restoring the missing pixels. 
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Figure 4.  Success rate of information extraction according to distance    

by Scaling Factor when there are 16 cells 

 
Figure 4 compares the performances of the same scaling 

factors when the number of cells is 16. The 4x scaling factor 
maintained a stable data extraction success rate of 100% up 
to 21m and slightly decreased to 95% at 24m. The 2x 
scaling factor maintained 100% performance up to 18m and 
then gradually decreased to 70% at 24m. The 8x scaling 
factor showed a 95% success rate up to 12m and then 
decreased to 13% at 24m. Consequently, when an 
appropriate scaling factor was applied, the information 
extraction success rate was improved in a long-distance 
transmission environment. In particular, when a 4x scaling 
factor was applied to a system with 16 cells, a high 
information extraction success rate of 95% was recorded at 
a distance of 24m; this shows that the scaling factor 
significantly impacts the information extraction 
performance when the scaling factor is not used, compared 
to 7.5%. These findings show that proper image scaling 
more clearly distinguishes inter-cell boundaries and 
amplifies the detailed features of the mark to effectively 
offset the effect of noise generated during long-distance 
transmission; this also suggests that excessive scaling can 
cause noise amplification or artifact generation, which can 
degrade leakage data-decoding performance. 

Through experiments, it was confirmed that the 
optimization of the scaling factor plays an important role in 
increasing the effectiveness and reliability of information 
leakage. Therefore, it is expected that effective information 
extraction will be possible through the selection and 
optimization of the scaling factor in long-distance data 
leakage scenarios within an air-gap network in the future. 

B. Experimental Evaluation of Defense Techniques for 

Attack Techniques Based on Screen Savers 

 

    Figure 5 shows the change in the information extraction 

success rate according to the attack distance. The 

information extraction performance was compared with that 

of normal screen savers with 2 and 4 cells, respectively, and 

screen savers with deteriorated image quality by applying a 

defense technique. Normal screen savers maintain a 100% 

data-extraction success rate up to a distance of 24m. 

However, in the case of screen savers with deteriorated 

image quality, the data extraction success rate decreased 

sharply when the distance was over 9m. As such, screen 

savers with deteriorated image quality decreased by 95% 

compared with normal screen savers at a distance of 24m 

and decreased by approximately 29.5% on average. This 

suggests that by lowering the image quality of the screen 

savers, the quality of the visual information decreases, 

which significantly decreases the decoding accuracy of the 

attack side. According to the experimental results, the 

deterioration in the image quality of screen savers can 

effectively reduce the reliability of an attack as the physical 

distance increases. This demonstrates that screen saver 

quality control can be used as a security enhancement 

technique in an air-gap environment. 

 

 

 

Figure 5.  Success rate of information extraction according to distance      

by image quality 

V. CONCLUSION 

Building an air-gapped network is recommended to 
mitigate the impact of cyberattacks and protect critical 
national and industrial information. However, data leakage 
attacks that exploit various types of signals within air-gapped 
systems have been actively studied. Because covert channel-
based attacks are difficult to detect using traditional network-
based security solutions, proactive re-search on air-gap 
attack techniques is essential for enhancing the security of 
such environments. 

Conventional air-gap attacks that utilize physical 
channels, such as electromagnetic and optical signals, are 
limited by their high visibility, which makes them easily 
detectable by users, and their short transmission range. To 
address these limitations, we propose a novel air-gap attack 
technique that leverages a screen saver combined with a 
high-dimensional modulation scheme to encode high-
capacity information. The proposed method divides the 
screen saver into cells of fixed size and assigns binary data to 
each cell to generate a movement pattern for covert data 
transmission. 

The experimental results revealed that a stable extraction 
success rate of up to 13 times higher can be achieved at long 
distances when the number of cells is small. Furthermore, 
applying an appropriate scaling factor improves the success 
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rate of information extraction by up to 7.6 times, even in 
long-distance scenarios, confirming the feasibility of 
effective data leakage over extended ranges. 

In addition, we evaluate a defense technique that 
intentionally degrades the image quality of a screen saver to 
reduce the reliability of the attack. The experimental results 
showed that, while the data extraction success rate was 
maintained almost completely up to 24 m under normal 
image quality, it dropped sharply to a maximum of 5% at the 
same distance when the image quality was reduced. These 
findings experimentally demonstrate that lowering screen-
saver image quality is an effective and practical defense 
technique. 

In future work, we plan to compare and analyze 
additional defense strategies against information leakage 
attacks using screen savers. These strategies include inserting 
invisible watermarks into screen content and applying 
privacy-protection films on the monitor. 
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Abstract—Advancements in Artificial Intelligence (AI) have 

greatly increased the risk of digital-image tampering, 

underscoring the need to verify the integrity and authenticity of 

image data collected and transmitted within sensor networks 

and sensor-based systems. As visual threats, such as deepfakes 

and adversarial attacks proliferate, manipulated sensor images 

can trigger severe security incidents and false detections. This 

paper proposes a robust watermarking method that employs a 

three-level Discrete Wavelet Transform (DWT) and Singular 

Value Decomposition (SVD) to repeatedly embed a watermark 

into the singular values of both low- and selected high-frequency 

components. Designed to account for transmission noise and 

environmental distortions in multi-sensor settings, the proposed 

approach leverages redundancy across multiple frequency 

bands to enhance resistance to diverse signal-distortion attacks 

while keeping the watermark imperceptible. Experimental 

results show that the proposed method significantly surpasses 

conventional techniques in watermark extraction accuracy 

while preserving high image quality, establishing it as a reliable 

security solution for protecting image integrity and detecting 

tampering in sensor-based environments. 

Keywords-Sensor camera; Digital watermarking; Image 

protection. 

I.  INTRODUCTION 

The increasing prevalence of malicious video-based 
attacks, such as deepfakes and adversarial attacks, has 
increased the need for technologies that can verify the 
integrity and authenticity of image data obtained from sensor 
cameras [1]. 

For instance, a notable 2019 incident in China involved 
bypassing a facial recognition access control system with 
deepfake technology. An attacker manipulated facial images 
from existing surveillance camera footage into real-time 
deepfake videos, which were then used to deceive the system 
and compromise physical security [2]. This incident 
underscores the vulnerability of image sensor-based systems, 
particularly those integral to public safety. 

Similarly, a 2020 experiment in the United States targeting 
autonomous vehicles demonstrated the threat of adversarial 
patches. By placing specially crafted patterns on road signs, 

researchers deceived a vehicle's camera into misinterpreting a 
“STOP” sign as a “SPEED LIMIT 45” sign [3]. This attack 
exploited vulnerabilities in AI-based recognition systems, 
posing serious safety risks during road operations [4]. 

These examples illustrate the significant security threats 
that arise when malicious actors manipulate sensor-captured 
images. Consequently, verifying the integrity and authenticity 
of sensor-based image data has emerged as a critical security 
challenge [5].  

Digital watermarking is a promising solution to this 
challenge. This technique embeds identifiable information 
into image data to detect unauthorized modifications or trace 
copyright ownership. To be effective, digital watermarking 
must satisfy two key requirements: robustness against external 
attacks and imperceptibility, which preserves the original 
image's visual quality. To meet these criteria, frequency-
domain-based methods—particularly those using the Discrete 
Wavelet Transform (DWT)—are commonly employed. 
However, DWT-based methods can be vulnerable to certain 
attacks such as Joint Photographic Experts Group (JPEG) 
compression, Gaussian or salt-and-pepper noise, filtering (e.g., 
low-pass/median), and geometric transformations like 
rotation, scaling, and cropping [6]. 

To overcome these limitations, recent studies have 
combined DWT with Singular Value Decomposition (SVD). 
SVD facilitates watermark insertion by modifying an image's 
singular values, which represent its essential features, thereby 
avoiding noticeable distortion [7]. Embedding a watermark 
into the singular values of DWT-decomposed frequency 
components has been shown to enhance robustness against 
both noise and compression attacks [8]. 

In this study, we propose a method that applies a three-
level DWT to decompose an image into its low- and selected 
high-frequency components. Subsequently, SVD is used to 
embed the watermark repeatedly into these components. 
Embedding the watermark in the low-frequency region, which 
contains the image's core structural information, helps ensure 
imperceptibility, as even minor modifications in this area can 
significantly impact the visual appearance. Simultaneously, 
embedding in high-frequency components enhances 
resistance to filtering and other frequency-based attacks. 
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During the extraction process, the correlation between the 
repeated watermark signals is leveraged to correct errors and 
accurately reconstruct the original watermark, even in the 
presence of distortion. 

The main contributions of this study can be summarized 
as follows: 

• We propose a novel invisible digital watermarking 
method that combines a three-level DWT with SVD 
for robust image integrity protection. 

• The method demonstrates enhanced resilience 
against partial data loss and various signal distortion 
attacks, which is achieved by embedding the 
watermark with redundancy across multiple 
frequency components. 

• We developed a comprehensive framework to 
systematically evaluate watermarking performance 
under diverse signal distortion conditions. 

• Experimental validation confirms that the proposed 
method significantly outperforms conventional 
approaches in watermark extraction accuracy while 
maintaining high image quality. 

The remainder of this paper is organized as follows: 
Section II discusses the conventional methods employed for 
image integrity protection, Section III details the proposed 
method, Section IV outlines the experimental setup and 
procedures, and Section V presents the performance 
evaluation results. Finally, Section VI concludes the paper. 
 

II. BACKGROUND 

Prior studies have employed various techniques to verify 
the integrity and authenticity of image data, including digital 
signatures, hashing, and digital watermarking. This section 
analyzes the conventional methods used for protecting image 
data. 

A. Digital Signature 

Albahadily et al. [9] proposed a hash-based digital 
signature scheme to verify the integrity and authenticity of 
digital documents. This method generates a unique hash value 
from the document and user information using the MD5 
algorithm and embeds it as a signature. To detect tampering, 
the receiver extracts the hash value and compares it with a 
newly generated hash from the received content. This 
approach employs a lightweight hashing algorithm, enabling 
fast computation suitable for real-time processing, and is 
applicable to various data formats, including text and images. 
However, a key limitation is that the signature data must be 
stored separately from the image; therefore, the overall 
content integrity is compromised if the signature is lost or the 
image is partially modified. 

B. Hashing 

Khan et al. [10] proposed an ElGamal-based digital 
signature and encryption scheme to ensure both privacy and 
authentication for biometric image data. The method first 
randomizes the image's pixel positions using a 3D Arnold 
transform and then encrypts both the transform parameters 
and the image data with the ElGamal public-key cryptosystem. 

Integrity verification is subsequently achieved using an 
ElGamal digital signature. The scheme offers strong security 
by leveraging a public-key cryptosystem based on the discrete 
logarithm problem. Additionally, the integration of 
randomization and encryption enables both tamper detection 
and authentication while significantly reducing the risk of data 
leakage. However, the method’s general applicability is 
limited, and its high computational overhead makes it 
unsuitable for lightweight or real-time environments such as 
Internet of Things (IoT) systems. 

C. Digital Watermark 

Zhan et al. [11] proposed a reversible fragile watermarking 
scheme that can verify the integrity of digital images and 
restore their original content. The method divides an image 
into blocks and generates two types of data for each: 
Verification Information (VI) and Recovery Information (RI). 
VI is embedded directly into its corresponding block to detect 
tampering, whereas RI, used for content restoration, is 
concealed in different block locations using the Arnold 
transform. This dual-verification approach achieves high 
detection accuracy and supports both tamper detection and 
content recovery. However, recovery accuracy decreases if 
the areas containing the watermarks are tampered with, and 
the complex decoding logic limits its use in real-time 
applications. 

In a related study, Kusumaningrum et al. [12] proposed an 
image-watermarking technique combining a two-level DWT 
with SVD, where the watermark is embedded in the low-
frequency (LL2) subband, and a non-blind extraction method 
is employed. The authors compared their method against 
approaches using only DWT or SVD, evaluating robustness 
under various attacks, including salt-and-pepper noise, 
Gaussian filtering, and JPEG compression. However, their 
evaluation was limited, as it did not consider varying attack 
intensities or a sufficiently broad range of attacks to 
comprehensively validate robustness. Although their method 
outperformed individual DWT and SVD models in watermark 
extraction, it exhibited poor performance under certain attacks. 

Conventional methods demonstrate strengths in areas such 
as processing speed, security, and recoverability, but they 
typically involve trade-offs that make it challenging to satisfy 
all requirements simultaneously. Therefore, this paper 
presents a watermarking method that minimizes image quality 
degradation while maintaining robustness against external 
attacks and tampering during transmission. 

 

III. IMAGE-WATERMARKING METHOD BASED ON DWT 

AND SVD 

This study proposes an invisible watermarking scheme 
that is robust against signal distortion attacks. The proposed 
method applies a three-level DWT to decompose an image 
into multiple frequency subbands, followed by SVD on both 
the low-frequency and selected high-frequency components. 
The watermark is embedded repeatedly into the singular 
values, which enhances resistance to attacks that exploit signal 
distortions. During extraction, the watermarks embedded in 
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these multiple frequency regions are retrieved and integrated 
to successfully reconstruct the original watermark. 

The design of the method leverages the different 
properties of an image's frequency components. High-
frequency regions contain fine details such as edges and 
textures. Slight modifications to these regions are typically 
imperceptible to the human visual system, making them 
suitable for embedding invisible watermarks. However, these 
regions are vulnerable to noise attacks aimed at disrupting the 
watermark. 

In contrast, an image's low-frequency components carry 
its global structure and essential information. Because 
modifications in this region can cause noticeable degradation 
in image quality and structure, embedding watermarks here 
requires minimal distortion to preserve visual fidelity. 
Watermarks in the low-frequency band are generally robust 
against JPEG compression, which primarily targets high-
frequency content, and show lower sensitivity to attacks such 
as Gaussian noise and downsampling. As the low-frequency 
subband retains significant image information even after 
transformation, an embedded watermark can be reliably 
recovered unless the image undergoes severe degradation. 
However, this region has its vulnerabilities. High compression 
ratios can cause data loss in low-frequency components, and 
compression schemes like JPEG2000, which operate across 
the full frequency spectrum, can adversely affect the 
watermark. Moreover, global adjustments to image properties, 
such as brightness or contrast, can also impact the integrity of 
a watermark embedded in this region. 

To address these respective challenges, the proposed 
method utilizes both low- and selected high-frequency 
components to implement a robust and invisible watermarking 
scheme. 

A. Watermark Embedding Process 

Although image-watermarking techniques that combine 
DWT and SVD typically follow a similar structure, specific 

procedures vary based on research objectives, such as 
enhancing robustness, imperceptibility, or efficiency. 
Typically, the process involves applying DWT to a host image 
to generate subbands (LL, LH, HL, HH), followed by 
performing SVD on a selected subband to embed a watermark 
by modifying its singular values.  

The embedding process for the proposed method is 
illustrated in Figure 1. The size of the watermark image is 
fixed based on the host image's dimensions and the DWT level, 
as defined in (1):  

 W =
N

2𝐿
   (1) 

 
where 𝑊 denotes the side length of the watermark, N is 

the side length of the host image, and L represents the DWT 
level. In this study, a 512 × 512 host image and a three-level 
DWT were employed, necessitating a 64 × 64 watermark 
image. 

When a three-level DWT is applied to the host image, the 
frequency domain is decomposed into four subbands: LL3, 
LH3, HL3, and HH3. SVD is then performed on the low-
frequency (LL3) and selected high-frequency (LH3 and HL3) 
subbands to enable watermark embedding. The watermark is 
first embedded by modifying the singular values of these 
subbands, denoted as 𝑆𝑡. However, this modification can alter 
the host image's structural characteristics, which may degrade 
image quality or cause watermark extraction to fail if the new 
values do not align well with the original structure.  

To address this potential issue, a second SVD is employed 
as a recalibration process to refine the modified singular 
values before reconstruction. This additional step helps 
integrate the modified singular values more naturally into the 
image's structural context, yielding new, updated singular 
values ( 𝑆𝑤 ) that improve both the imperceptibility and 
robustness of the watermark. Using these updated values, the 
modified subbands (LL3t, LH3t, and HL3t) are reconstructed.  

 

 

Figure 1. Proposed watermark-embedding process.

28Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-304-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SENSORCOMM 2025 : The Nineteenth International Conference on Sensor Technologies and Applications

                            36 / 47



 

Figure 2. Proposed watermark-extraction process. 

 
 

Finally, an Inverse DWT (IDWT) is performed to generate 
the watermarked image. This procedure results in the 
watermark being embedded thrice into different frequency 
subbands, creating a redundant watermark structure within the 
image. 

B. Watermark-Extraction Process 

The watermark extraction process, illustrated in Figure 2, 

follows a non-blind approach. First, a three-level DWT is 

applied to the watermarked image to decompose it into its 

constituent frequency subbands. SVD is then performed on 

the LL3, LH3, and HL3 subbands to extract the singular value 

matrices (𝑆𝑤), where the watermark was embedded. Using 

these extracted matrices along with the corresponding 

original 𝑈𝑤  and 𝑉𝑤  matrices, the watermark images are 

reconstructed. Because the watermark is embedded 

separately into the LL3, LH3, and HL3 subbands, three 

distinct instances can be extracted for the final reconstruction. 

The final watermark is reconstructed by fusing these three 

instances. Median fusion is first applied to the corresponding 

pixel values of the watermarks extracted from the high-

frequency LH3 and HL3 subbands. This step integrates their 

information while reducing the influence of noise. The 

resulting intermediate watermark is then combined with the 

watermark from the LL3 subband using a weighted 

combination. Because the LL3 subband contains the most 

critical structural information and is least affected by 

distortions, its extracted watermark is assigned a higher 

weight. This ensures that the LL3 watermark plays a 

dominant role in the reconstruction, whereas the components 

from LH3 and HL3 serve as complementary sources of 

information. 

 

IV. EVALUATION METHODOLOGY 

This section details the methodology used to evaluate the 
performance of the proposed DWT-SVD image-
watermarking method. IT describes the experimental setup, 
attack scenarios, evaluation metrics, and the procedure for 
embedding and extraction. 

A. Experiment Environments 

As shown in Figure 3, the experiments employed 512 × 
512 pixel grayscale host images and a 64 × 64 pixel grayscale 
watermark image. 

 
Figure 3. Host and watermark images used in the experiment: (a) Peppers, 

(b) Mandrill, and (c) watermark image. 

To evaluate the robustness of the proposed watermarking 
scheme, seven distinct signal distortion attacks—
encompassing noise, compression, and filtering—were 
applied to the watermarked images. Each attack was 
conducted at five intensity levels, from mild (Level 1) to 
severe (Level 5), to assess performance under varying 
conditions. The specific parameters controlling the intensity 
for each attack are summarized in TABLE I.  

The intensity of each attack was controlled by specific 
parameters. For Gaussian noise, intensity was determined by  
the variance, where a higher value corresponds to stronger 
noise. 

For salt-and-pepper noise, the density parameter 
represented the proportion of affected pixels; for instance, a 
density of 0.1 adds salt noise (white pixels, value = 255) to 5%  
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TABLE I. ATTACK PARAMETERS AND INTENSITIES. 

Attack Parameter 
Attack intensity (level) 

1 2 3 4 5 

Gaussian 

noise 
Variance 0.001 0.005 0.01 0.05 0.1 

Salt-and-

pepper 
Density 0.01 0.03 0.05 0.1 0.2 

Speckle 

noise 
Probability 0.01 0.03 0.05 0.1 0.2 

JPEG Quality 

factor 

90 70 50 30 10 

JPEG2000 90 70 50 30 10 

Blurring 

attack Kernel  

size 

3 5 7 9 11 

Low-pass 

filtering 
3 5 7 9 11 

of the pixels and pepper noise (black pixels, value = 0) to 
another 5%, resulting in a total of 10% corrupted pixels. 

Speckle intensity was controlled by a probability 
parameter, which defines the likelihood that any given pixel 
will be corrupted by noise. Here, higher probability results in 
noisier pixels. 

For JPEG and JPEG2000 compression, the attack intensity 
was set by the quality factor, with lower factors indicating 
stronger compression and greater image quality loss. 

Finally, for blurring and low-pass filtering, the kernel size 
determined the intensity. A larger kernel produces a stronger 
blur effect (greater information loss) or, in the case of low-

pass filtering, removes more high-frequency components. For 
instance, a kernel size of 3 corresponds to a 3 × 3 filter. Each 
attack was applied at five intensity levels, from weak (Level 
1) to very strong (Level 5), to evaluate the method’s 
robustness under all scenarios. 

B. Experimental Procedure 

The experimental workflow is illustrated in Figure 4. The 
embedding process begins by applying a three-level DWT to 
the 512 × 512 host image, using the Daubechies 4 (db4) 
wavelet with periodization to decompose it into LL3, LH3, 
HL3, and HH3 subbands. SVD is then applied to the LL3, 
LH3, and HL3 subbands. The watermark is embedded into the 
singular value matrices using a scaling factor, α, followed by 
the second SVD recalibration step. The modified subbands 
(LL3t, LH3t, and HL3t) are then reconstructed and used in an 
inverse DWT (IDWT) to generate the final watermarked 
image. 

For the robustness evaluation, each signal distortion attack 
was applied to the watermarked image. The watermark was 
then extracted from the attacked image by first applying a 
three-level DWT, followed by SVD on the LL3t, LH3t, and 
HL3t subbands. The same scaling factor α used during 
embedding is applied during extraction. The three extracted 
watermarks are then combined to reconstruct the final image. 
This is done by first applying median fusion to the watermark 
data from the LH3 and HL3 subbands to reduce noise and 
produce an intermediate watermark. This watermark is then 
combined with the LL3 watermark using a weighted 
combination, assigning a weight of 0.9 to the low-frequency 
data and 0.3 to the high-frequency data. 

 

Figure 4. Flowchart of the experimental procedure. 
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C. Performance Evaluation Metrics 

To assess watermark extraction accuracy and image 
quality, the following performance evaluation metrics were 
used:  

Normalized Cross-Correlation (NCC) measures the 
similarity between two images, and in this study, it was used 
to compare the host image with the watermarked image and 
the original watermark with the extracted one [13]. 

Mean Squared Error (MSE) quantifies the pixel-wise 
numerical error between the original and altered images by 
averaging the squared differences between corresponding 
pixels, which evaluates the distortion caused by watermark 
embedding [14]. 

The Peak Signal-to-Noise Ratio (PSNR) is a widely used 
metric for assessing the quality of a distorted image compared 
to its original version; a higher PSNR value indicates better 
preservation of image quality after embedding [15]. 

The Structural Similarity Index Measure (SSIM) evaluates 
the structural similarity between two images by incorporating 
characteristics of the human visual system, such as luminance, 
contrast, and structure, making it a more perceptually relevant 
indicator than PSNR [16]. 

 

V. EXPERIMENTS 

To validate the performance of the proposed method, a 
comparative analysis was conducted against a conventional 
method, which employs a two-level DWT and SVD, 
embedding the watermark only in the low-frequency (LL2) 
subband [12]. Both methods used the same watermark 
embedding strength (𝛼 ), and robustness was evaluated by 
applying seven signal distortion attacks at five different 
intensity levels to assess performance under varying degrees 
of attack severity. 

A. Image Quality Comparison 

Figure 5 compares the image quality of the conventional 
and proposed methods using the Peppers and Mandrill images. 
The conventional method yielded slightly better visual quality 
because it only embeds the watermark in the low-frequency 
subband (LL2), preserving more of the original image content.  

 
Figure 5. Image-quality comparison between the conventional and 

proposed methods: (a, c) Peppers and (b, d) Mandrill. 

With the proposed method, the PSNR for the Peppers and 
Mandrill images decreased by 11.5% and 7.28%, respectively, 
although both values remained high, exceeding 40 dB. 
Similarly, the SSIM values showed only a marginal decline of 
1.25% and 0.4%, respectively, with scores remaining above 
0.98, indicating excellent perceptual similarity. 

B. Watermark-Extraction Performance 

To compare the watermark extraction performance of the 
conventional and proposed methods, the seven signal 
distortion attacks were applied to the watermarked images at 
five intensity levels. 

The performance was then evaluated using the NCC and 
PSNR metrics. 

As shown in Figure 6, the conventional method exhibited 
significant performance degradation in NCC for the Peppers 
and Mandrill images as the intensity of Gaussian noise, 
sparkle noise, and low-pass filtering attacks increased, with 
noticeable drops also observed for salt-and-pepper and 
blurring attacks. Specifically, as attack intensity rose from 
Level 1 to 5, image deteriorated by 75% (Gaussian noise), 
89.99% (sparkle noise), and 82.55% (low-pass filtering). The 
Mandrill image showed similar degradation rates of 65.95%, 
90.44%, and 92.34% for the same attacks. 

By contrast, while the proposed method’s performance 
also declined with increasing attack intensity, the degradation 
was significantly lower. For instance, under the most 
impactful low-pass filtering attack, the proposed method's 
performance dropped by only 14.26% for Peppers and 16.10% 
for Mandrill, demonstrating its superior robustness. 

While there was no substantial performance difference for 
most compression attacks, the proposed method was superior 
under severe JPEG2000 (Level 5) compression, 
outperforming the conventional method by 31.47% for 
Peppers and 94.66% for Mandrill. 

As presented in Figure 7, the conventional method showed 
a sharp decline in PSNR for nearly all attacks, failing to 
maintain stable performance even at weak, Level 1 intensities 
(except for JPEG compression). The most severe degradation 
occurred with the speckle noise attack; for the Peppers image, 
PSNR dropped from 12.60 dB (Level 1) to -12.83 dB (Level 
5), a 201.86% decline. By contrast, the proposed method 
demonstrated consistently stable PSNR performance. Only 
minor degradation was observed for noise and low-pass 
filtering attacks between Levels 1 and 2, with values 
remaining relatively stable thereafter. Although compression 
attacks caused some degradation, the decline was 
considerably less severe than that with the conventional 
method, and the proposed method maintained higher 
extraction performance across all attack intensities. 

 

VI. CONCLUSION AND FUTURE WORK 

This paper presented a digital-image watermarking 

scheme that achieves both high robustness against signal 

distortion attacks and strong imperceptibility. The method 

combines a three-level DWT with SVD, repeatedly 

embedding a watermark into the singular values of the low-  
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Figure 6. Extraction-performance comparison of conventional and proposed methods based on attack intensity—NCC (top: Peppers, bottom: Mandrill).

 

Figure 7. Extraction-performance comparison of conventional and proposed methods based on attack intensity—PSNR (top: Peppers, bottom: Mandrill).
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frequency (LL3) and selected high-frequency (LH3, HL3) 

subbands. This redundant embedding enhances robustness 

against various attacks while allowing for the complementary 

recovery of damaged watermark data, effectively mitigating 

the typical trade-off between imperceptibility and robustness 

found in conventional methods. 

Experimental results demonstrated that the scheme 

preserves excellent image quality, maintaining high PSNR 

and SSIM values after embedding. The redundancy led to 

significantly improved extraction performance; even when 

parts of the watermark were degraded, the copies enabled 

accurate reconstruction and reliable detection. Moreover, the 

method consistently showed strong performance under 

various levels of noise and compression attacks. 

Therefore, the proposed method represents a practical 

solution for protecting image data in sensor network 

environments, offering an effective alternative for 

applications where high reliability and imperceptibility are 

essential. 
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Abstract—Self-configuration of sequence order, including net-
work addresses and data reporting times, is important in a
sensor network. This process empowers sensors to dynamically
assign short-length addresses, thereby enhancing energy efficiency
in sensing-data reporting. In the absence of configuration
servers, sensors self-organize into function roles of sever-client,
enabling the dynamic formation of address servers to assign
short-length addresses to sensors. This paper addresses the
configuration distance problem with an aim of shortening the
distance of configuration routes between the address server and
clients. We propose a prioritized self-configuration method that
employs spatial-temporal control of configuration according to the
topological distance to the client server in each round of address
configuration. Numerical evaluations are carried out to verify
the performance of the proposed method. The evaluation results
show that the proposed method enables a significant decrease of
up to 30 percent in the configuration distance.

Keywords-Self-organization; smallest-size address; self-
configuration; high-priority zone.

I. INTRODUCTION

Self-configuration in a Wireless Sensor Network (WSN) is
crucial for several key benefits. It facilitates the assignment
of unique identifiers to each sensor node, enabling individual
device identification and communication. Furthermore, self-
configuration enables the utilization of short-length addresses,
which significantly enhances energy efficiency by reducing the
overhead associated with data packet transmission. Because
sensing data can be only a few bytes long, address size becomes
a critical factor that directly influences the energy consumption
of each transmitted packet [1] [2] [3] [4].

Numerous methods of address configuration exist within
Internet of Things (IoT) networks and ad-hoc networks [5] [6]
[7]. Dynamic address assignment based configuration technique
is a practical and straightforward approach to assigning unique
addresses within an ad-hoc network [7] [8] [9]. For mobile ad-
hoc networks, mobility and network partitions pose significant
challenges in addressing and configuration. To address these
issues, numerous configuration methods have been developed
[10] [11].

On the other hand, sensor networks generally exhibit a static
topology but demand the use of short-length addresses or
sequence number for energy efficiency [3] [12] [13]. The
self-organized server-client functionality plays a key role
in the configuration of short-length addresses or sequence
numbers [2] [14] [15]. The unique and short-length address or
sequence number can be configured by a dynamic server-client
structure, which are self-organized among sensors. Wireless
mutlithop routing are employed for communication between

the address server and clients. The topological distance between
the server and an client is called the configuration distance.
The configuration distance can be represented by the route
length in terms of hops between the address client and server.

In this paper, we address the configuration distance problem
in a sensor network. A large configuration distance significantly
increases communication resource consumption and introduces
delays. This problem becomes particularly impactive in large
sensor networks.

To solve this problem, we propose a method that controls
the configuration correlation between sensor nodes. The basic
idea is that each client starts to configure an address with
a high priority by using a probability function to control its
access to the address server. The clients avoid initiating a
configuration request when the topological distance between
them is substantial, considering both spatial and temporal
aspects of network connectivity.

Numerical evaluations are carried out to validate the proposed
methods. We implelement the proposed scheme of prioritized
configuration in a C++ based simulation, with comparasion to
the basic method of dynamic server based configuration [2].
The evaluation results illustrate the significant effectiveness of
the proposed method in terms of configuration distance and
configuration overhead.

The rest of the paper is structured as follows. In Section
II, we present system model and basic concept. In Section III,
we introduce the proposed method of prioritized configuration
with spatial-temporal control. In Section IV, we introduce the
numerical evaluation and present evaluation results. Finally,
we conclude the article in Section V.

II. SYSTEM MODEL AND BASIC CONCEPT

A. Network Model

A sensor network can be represented as a graph G = (V,E),
where V involves sensor nodes, and E is the collection
of wireless links between sensors. Each sensor node has
capabilities of sensing, computing, and wireless communication.
The address of each sensor node is configurable. To save energy
consumption, the address of a sensor and its size can be set
up in an on-demand manner rather than being a predefined
long-size address before networking. Since sensor node has a
power constraint and short data size in transmission, the size
of address is not ignorable. In a self-organized sensor network,
sensor nodes are expected to cooperatively perform the role of
network infrastructure, automatically configuring sensor nodes
into network.
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B. The Basic Concept of Dynamic Configuration Organization
Method

The dynamic configuration organization method attempts
to configure a network-wide unique address for each sensor
node [2]. In order to use a potential smallest address space,
the self-configuration mechanism assigns address sequentially
from low to high without the overuse of address space. Such a
sequential assignment of node addresses desires a deterministic
operation rather than an opportunistic operation so as to keep
the consistency of address configuration in the self-organized
sensor networks. Hence, a self-organized server-client structure
is proposed. An address server is autonomously selected and
serves the address configuration with a term limit. After a
serving term expires, another sensor will be selected as the
address server.

C. Problem

The problem addressed in this paper is the configuration
distance problem in address configuration. The configuration
distance is measured by the route length of address request
and reply between address server and client. The configuration
distance has a significant impact on energy consumption as well
as the delay of address configuration. Meanwhile, the previous
methods have not considered the efficient management of routes
in the address configuration, leading to a scalability problem
of the route length between the address server and the sensors
that request an address.

Figure 1 shows an example of the configuration distance
problem in dynamic self-configuration. In Figure 1(a), S1 is
the address server. Node A, B, C, D are address clients that
successfully issue address requests to S1. Node D needs to
send the address request with a route length of 6, although
there are nodes near to the server.

In Figure 1(b), S2 (node B) is the address server, which
plays the server role after S1 transfers the server role to it.
Node E, F, G, H are address clients that successfully issue
address requests to S1. Node E needs to send requests with a
route length of 4 although there are nodes near to the server.

III. PRIORITIZED CONFIGURATION METHOD WITH
SPATIAL-TEMPORAL CONTROL

We propose a spatial-temporal control based prioritized
configuration method to the reduce the configuration distance.
In a self-configuration procedure of a WSN, the server-client
interaction is carried out using address request (AREQ),
and address reply (AREP). For a sensor node, it needs to
issue an AREQ to the address server with configuration
contention among other sensor nodes. The proposed method
differentiates the priority of configuration contention among
sensors according to the topological distances between the
address server and address clients.

As shown in Figure 4, there is a high priority zone around
each address server. The priority zone contains a set of sensors
that have a short topological distance to the address server.
In the example shown in the figure, the radius of the high
priority zone is two hops. The sensors in the high priority zone

S1

Address server

Address client to 
the  server

(a) Address configuration with server 1

S2

Address server
Address client to 

the server

A

C

D

B

E

F

G

H

S1

B

(b) Address configuration with server 2

Figure 1. Configuration distance problem in the address configuration of a
large WSN.

are assigned with a higher probability to obtain configured
addresses from the address server than sensors outside the
zone. In the example shown in Figure 4(a), the sensors A, B,
C, D in the high-priority zone have the addresses configured
by server 1. After the role of address server is shifted to server
2, sensors E, F, G, H, which are in the high priority zone have
their addresses configured by the address server 2.

Algorithm 1 introduces the proposed algorithm for configura-
tion control at sensor nodes of address clients. For each address
server, address clients have different priorities to request the
configuration response. Suppose that there is a time pool for a
sensor node to issue an AREQ in a server term. In each time
slot, a sensor node that has no address, attempts to request
an address from the server. At time slot i in a server term, a
node contents for a configuration seat by a probability control
mechanism. The state of the configuration seat refers to whether
the node can issue an AREQ in the time slot. There is a default
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number pool in the range of (0, T imepool1) for each node. A
node randomly selects a control number from the configuration
number pool. If the selected number matches with a predefined
small number such as 1, the state configuration seat is then set
to 1.

Therefore, to control the configuration probability based on
the control number, we design a priority-based method based
on the topological distance to the address server. According to
the topological distance to the address server, the node zone
is divided into two parts. The first part is the high priority
zone, which is the set ZoneH that contains sensor[i] with the
topological distance TopoDist(i, ServerNow) < Threshold.
The second part is the low priority zone, which is the set
ZoneL that contains the sensor[j] with the topological distance
TopoDist(j, ServerNow) > Threshold. The Threshold
can be set to a certain value such as 3 hops, 5 hops, and
so on.

In the high priority zone, the control number is generated as
ControlNum = Rand(0, T imepool2), where Timepool2 =
Timepool1

k
, where k is an integer such as 10. The hit prob-

ability of configuration state being 1 is 1/(Timepool1/k) =
k/T imepool1. In the low priority zone, the control number is
generated as ControlNum = Rand(0, T imepool1). The hit
probability of configuration state being 1 is 1/T imepool1.

Algorithm 2 shows the dynamic configuration method based
on the server term control at address servers. Note that, in a
Self-configuration of a WSN, the server-client interaction is
carried out in address request and address reply. The server term
control allows the dynamic generation of address servers among
sensors, enabling the energy balancing for the configuration
service at address servers. The locality AREQ and AREQ brings
out merits of short route-length, low resource consumption, as
well as low vulnerability to transmission failure and recovery
cost.

IV. NUMERICAL EVALUATION

We carry numerical evaluation by C++ based simulation,
in which the proposed method is implemented. The basic
simulation setup is described in Table I. Two approaches are
studied: the basic method of dynamic server based configuration
[2], and the proposed scheme of prioritized configuration. The
main metric employed in the simulation is the configuration
distance in terms of hops, and the configuration overhead. The
main evaluation target is to verify the efficiency of address or
sequence auto-configuration in terms of configuration distance
and configuration overhead. Figure 5 shows the setup of
topoplogy of the network with 90 nodes in the evaluation.
The second network scenario that employs 160 nodes has a
topology of the same width of 100 m to the network with 90
nodes, but with a height of 160 m.

Figure 6 shows the average configuration distance (route
length of AREQ/AREP) of sensor nodes in the scenario in
which the network size is set to 90. For the conventional method
of dynamic server based configuration, the average route length
of configuration is about 6. In the proposed method of the

Figure 1 shows the example of configuration dis-
tance problem in the dynamic self-configuration. In
Figure 1(a), S1 is the address server. Node A,B,C,D
are address clients that successfully issue address
requests to S1. The node D needs to send the
address request with a route length of 6, although
there are nodes near to the server.

In Figure 1(b), S2 (node B) is the address server,
which plays the server role after S1 transfers server
role to it. Node E,F,G,H are address clients that
successfully issue address requests to S1. The node
E needs to send requests with a route length of 4
although there are nodes near to the server.

III. PRIORITIZED CONFIGURATION METHOD
WITH SPATIAL-TEMPORAL CONTROL

The Algorithm. ?? introduces the proposed al-
gorithm for configuration control at sensor nodes
of address clients. For each address server, address
clients have different priorities to request the con-
figuration response. The Algorithm. 1 shows the
dynamic configuration method of dynamic address-
servers. In a Self-configuration of a WSN, the
server-client interaction is carried out in address
request (AREQ), and address reply (AREP). The
locality AREQ and AREQ brings out merits of
short route-length, low resource consumption, as
well as low vulnerability to transmission failure and
recovery cost.

We proposed a spatial-temporal control based
prioritized configuration method to the reduce the
configuration distance. For a sensor node, it needs
to issue an AREQ to the address server with con-
figuration contention among other sensor nodes.
The proposed method differentiates the priority of
configuration contention among sensors according
to the topological distances between the address
server and address clients.

As shown in Fig. 2, there is a high priority
zone around each address server. The priority zone
contains a set of sensors that have a short topolog-
ical distance, to the address server. In the example
shown in the figure, the radius of the high priority
zone is two hops. The sensors in the high priority
zone are assigned with a higher probability to obtain
configured addresses from the address server than

Algorithm 1 Prioritized configuration control at
each sensor node.

1: Input: network topology, Timepool1, TimePool2

2: T imepool2← T imepool1

K
3: if ConfigurationState == 0 then
4: if InHighPriorityState == 1 then
5: ConfigSeat← Random(0, T imepool2)
6: end if
7: if InHighPriorityState == 0 then
8: ConfigSeat← Random(0, T imepool1)
9: end if

10: if ConfigurationSeat == HitNum then
11: Issue a request to the address server
12: end if
13: if
14: Obtaining an address from the server then
15: ConfigurationState← 1
16: end if
17: end if

Algorithm 2 Serving term control.
1: Data Input: Serving term, network topology
2: for i = 1→ N do
3: ConfigurationState[i]← 0
4: end for
5: ServerID1← RandomlySelectedID
6: ConfigurationFinishState← 0
7: while ConfigurationFinshState == 0 do
8: if ServerRotationState == 0 then
9: Configuration of the selected nodes

10: if ServingCount == Term then
11: ServerRotationState← 1
12: LastID ← LastConfiguredID
13: NextServerID ← LastID
14: end if
15: Update ConfigurationFinshState
16: Update server rotation state
17: end if
18: end while

sensors outside the zone. In the example shown in
Fig. 2(a), the sensor A, B, C, D in the high-priority
zone have the addresses configured by the server1.
After the role of address server is shifted to the
server 2, sensors E,F,G, H, which are in the high
priority zone have their addresses configured by the
address server 2.

Suppose that there is a time pool for a sensor
node to issue an AREQ in a server term. In each
time slot, a sensor node that has no address, at-

Figure 2. Algorithm of prioritized configuration control at each sensor node.

Figure 1 shows the example of configuration dis-
tance problem in the dynamic self-configuration. In
Figure 1(a), S1 is the address server. Node A,B,C,D
are address clients that successfully issue address
requests to S1. The node D needs to send the
address request with a route length of 6, although
there are nodes near to the server.

In Figure 1(b), S2 (node B) is the address server,
which plays the server role after S1 transfers server
role to it. Node E,F,G,H are address clients that
successfully issue address requests to S1. The node
E needs to send requests with a route length of 4
although there are nodes near to the server.

III. PRIORITIZED CONFIGURATION METHOD
WITH SPATIAL-TEMPORAL CONTROL

The Algorithm. ?? introduces the proposed al-
gorithm for configuration control at sensor nodes
of address clients. For each address server, address
clients have different priorities to request the con-
figuration response. The Algorithm. 1 shows the
dynamic configuration method of dynamic address-
servers. In a Self-configuration of a WSN, the
server-client interaction is carried out in address
request (AREQ), and address reply (AREP). The
locality AREQ and AREQ brings out merits of
short route-length, low resource consumption, as
well as low vulnerability to transmission failure and
recovery cost.

We proposed a spatial-temporal control based
prioritized configuration method to the reduce the
configuration distance. For a sensor node, it needs
to issue an AREQ to the address server with con-
figuration contention among other sensor nodes.
The proposed method differentiates the priority of
configuration contention among sensors according
to the topological distances between the address
server and address clients.

As shown in Fig. 2, there is a high priority
zone around each address server. The priority zone
contains a set of sensors that have a short topolog-
ical distance, to the address server. In the example
shown in the figure, the radius of the high priority
zone is two hops. The sensors in the high priority
zone are assigned with a higher probability to obtain
configured addresses from the address server than

Algorithm 1 Prioritized configuration control at
each sensor node.

1: Input: network topology, Timepool1, TimePool2

2: T imepool2← T imepool1

K
3: if ConfigurationState == 0 then
4: if InHighPriorityState == 1 then
5: ConfigSeat← Random(0, T imepool2)
6: end if
7: if InHighPriorityState == 0 then
8: ConfigSeat← Random(0, T imepool1)
9: end if

10: if ConfigurationSeat == HitNum then
11: Issue a request to the address server
12: end if
13: if
14: Obtaining an address from the server then
15: ConfigurationState← 1
16: end if
17: end if

Algorithm 2 Serving term control.
1: Data Input: Serving term, network topology
2: for i = 1→ N do
3: ConfigurationState[i]← 0
4: end for
5: ServerID1← RandomlySelectedID
6: ConfigurationFinishState← 0
7: while ConfigurationFinshState == 0 do
8: if ServerRotationState == 0 then
9: Configuration of the selected nodes

10: if ServingCount == Term then
11: ServerRotationState← 1
12: LastID ← LastConfiguredID
13: NextServerID ← LastID
14: end if
15: Update ConfigurationFinshState
16: Update server rotation state
17: end if
18: end while

sensors outside the zone. In the example shown in
Fig. 2(a), the sensor A, B, C, D in the high-priority
zone have the addresses configured by the server1.
After the role of address server is shifted to the
server 2, sensors E,F,G, H, which are in the high
priority zone have their addresses configured by the
address server 2.

Suppose that there is a time pool for a sensor
node to issue an AREQ in a server term. In each
time slot, a sensor node that has no address, at-

Figure 3. The algorithm of serving term control at the self-organized address
servers.

prioritized configuration, the shortest configuration distance is
achieved when the radius of the high-priority zone is set to 5
hops. With high-priority zone being set to 5 hops, the the results
of configuration distance is 4.11 hops, which reduces 30 percent
of configuration distance (route length) in the configuration. A
very small priority-zone leads to the few nodes are enabled for
prioritized configuration. A very large priority-zone weakens
the impact of prioritized effect in configuration, leading to
that the node faraway from the address server also have high
probability to get an address being successfully configured
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Figure 4. Dynamic priority-zone based configuration control.

from the address server.
Figure 7 shows the average configuration distance (route

length) of sensor nodes in the scenario in which the network
size is set to 160. For the conventional method, the average

TABLE I. SIMULATION SETUP.

Basic Simulation Setup
Parameters Setup
Number of nodes in the network 90, 160
Server term 10
Communication range 10 m
Timepool1 200
Timepool2 20
Rounds of simulation 50

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

Figure 5. Evaluation scenario of 90 nodes.

route length of configuration is about 8.27. In the proposed
method of the prioritized configuration, the shortest configura-
tion distance is achieved when the radius of the high-priority
zone is set to 5 and 6 hops. With the high-priority zones being
set to 5 and 6 hops, the results of configuration distance is 5.47
hops, which reduces more than 33 percent of configuration
distance in the configuration.

Figure 8 shows the average configuration overhead of sensor
nodes in the the network with 90 nodes. For the conventional
method of dynamic server based configuration, the average
configuration overhead is about 5332. In the proposed method
of the prioritized configuration, the minimum configuration
overhead is achieved when the radius of the high-priority zone
is set to 5 hops. With the setup of the optimal priority zone,
the results of configuration overhead is 3803, which reduces 27
percent of configuration overhead in the configuration compared
with the convention approach.

Figure 9 shows the average configuration overhead of sensor
nodes in the the network with 160 nodes. For the conventional
method of dynamic server based configuration, the average
configuration overhead is about 16891. In the proposed method
of the prioritized configuration, the minimum configuration
overhead is achieved when the radius of the high-priority zone
is set to 5 hops. With the setup of the optimal priority zone, the
results of configuration overhead is 12210, which reduces 28
percent of configuration overhead in the configuration compared
with the convention approach.

V. CONCLUSION AND FUTURE WORK

This paper addressed the configuration distance problem
in a self-organized WSN. The large WSN desires a short
configuration distance to avoid the large resources consumption
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Figure 6. Average route length in network with 90 nodes.
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Figure 7. Average route length in network with 160 nodes.

and link delay in auto-configuration of small-size addresses.
We propose a prioritized configuration method with probability
control based on spatial-temporal association between address
clients and server. The evaluation results show the effectiveness
of the proposed method in reducing the configuration distance.
We find that there is an optimal setup of high-priority zone for
the configuration to enable the shortest configuration distance.
The short configuration distance is considered to have a
significant impact on reducing the configuration delay and
energy consumption at sensor nodes. Future work includes the
study of adaptive setup of the priority zone for optimizing the
configuration performance.
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