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The Fourteenth International Conference on Sensor Technologies and Applications (SENSORCOMM
2020), held on November 21-25, 2020, was a multi-track event covering related topics on theory and
practice on wired and wireless sensors and sensor networks.

Sensors and sensor networks have become a highly active research area because of their potential of
providing diverse services to broad range of applications, not only on science and engineering, but
equally importantly on issues related to critical infrastructure protection and security, health care, the
environment, energy, food safety, and the potential impact on the quality of all areas of life.

Sensor networks and sensor-based systems support many applications today on the ground.
Underwater operations and applications are quite limited by comparison. Most applications refer to
remotely controlled submersibles and wide-area data collection systems at a coarse granularity.

In wireless sensor and micro-sensor networks energy consumption is a key factor for the sensor
lifetime and accuracy of information. Protocols and mechanisms have been proposed for energy
optimization considering various communication factors and types of applications. Conserving energy
and optimizing energy consumption are challenges in wireless sensor networks, requiring energy-
adaptive protocols, self-organization, and balanced forwarding mechanisms.

We take here the opportunity to warmly thank all the members of the SENSORCOMM 2020 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to SENSORCOMM 2020. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the SENSORCOMM 2020 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that SENSORCOMM 2020 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of sensor
technologies and applications.
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Energy Harvesting Wireless Sensor Network Edge Device Simulation Tool 

Cian O’Shea, Ross O’Halloran, Peter Haigh, Mike Hayes 
Tyndall National Institute 

Cork, Ireland 
Email: cian.oshea@tyndall.ie 

Abstract - Wireless Sensor Networks (WSN) are becoming 
widely adopted in many industries including health care, 
building energy management and conditional monitoring. As 
the scale of low-power sensor network deployments 
increases, the cost and complexity of battery replacement 
and disposal have become more significant and in time may 
become a barrier to adoption. Harvesting ambient energies 
provides a pathway to reducing dependence on batteries and 
for many application scenarios, may lead to autonomously 
powered sensors. This work describes a simulation tool that 
enables the user to predict the battery life of a wireless 
sensor that utilizes energy harvesting to supplement the 
battery power. To create this simulator, all aspects of a 
typical WSN edge device (node) were modelled including 
sensors, transceiver and microcontroller as well as the 
energy source components (batteries, solar (PV) cells, 
Thermoelectric Generators (TEG), supercapacitors and 
DC/DC converters). The tool allows the user to plug and 
play different pre-characterized devices as well as add user 
defined devices. The goal of this simulation tool is to provide 
a WSN installer with a methodology to deploy systems with 
optimum battery lifetime by scaling battery and energy 
harvesting component sizes appropriately for a given 
scenario. It also allows a component designer to examine 
trade-offs in system level performance versus device 
specifications for optimum battery lifetime.

Keywords – Wireless Sensor Network; Low-power 
sensor network; Internet of Things (IoT); Energy 
Harvester; simulation tool 

I. INTRODUCTION

With the ever-increasing push to have a more energy 
efficient environment, the retrofit of IoT edge devices, 
such as wireless sensors in, on or near equipment and its 
operating environment is becoming more prevalent to 
help gather data to achieve this goal. Commercial and 
residential buildings are now expected to meet better and 
higher standards of energy efficiency, with the Irish 
government mandating that all newly constructed 
buildings require at least 20% of the energy needs be 
sourced through renewable energy [1].   

The deployment of IoT devices is growing at an 
exponential rate. By 2025 there will be an estimated 75 
billion IoT devices worldwide [2] most of which, will be 
wireless. One of the biggest challenges that IoT devices 
face is battery life. With so many devices globally, this is 
a serious issue. According to the United States 
Environmental Protection Agency, roughly 90% of 
batteries are recycled [3]. By 2025, that still leaves 7.5 
billion batteries filling landfills and polluting the earth. 

Combine this with the environmental cost of mining the 
material used and the monetary cost of producing so 
many batteries, technologies such as energy harvesting 
that enable battery life to be extended are highly 
desirable. The simulation tool presented in this paper will 
allow a user to select from a range of different 
components to extend the battery life of their IoT end 
nodes by installing more cost effective, lower 
maintenance overhead and energy efficient device. 

Energy harvesting is the act of collecting ambient energy 
from the environment and either converting it into device-
ready electrical energy or storing it. The environment has 
readily available ambient sources of energy. Energy 
harvesting can be very beneficial for WSN nodes. This 
software tool will allow people to see the usefulness of 
energy harvesting and how real-world applications can be 
completely powered or have their battery life extended 
with the use of an energy harvesting system. This tool 
will encourage the use of ambient energies, particularly in 
applications that would greatly benefit from averting or 
prolonging the need for battery replacement, for example 
in hard to reach areas such as civil engineering structures 
and medical implants.  

In Section 2 this paper will present the simulation tool and 
discuss its operation. Section 3 will then describe WSN 
and the different components involved. Section 4 will 
present the user interface of the simulation tool and 
illustrate what a typical user would see. Sections 5 to 10 
will then describe each component and its 
characterization methods. The results in Section 11 will 
show a comparison between a real-world test and 
software simulation, showing the accuracy of the tool. 
The final Section will present the conclusions drawn and 
propose several possible directions for future work. 

II. SOFTWARE TOOL 

Energy harvesting is a common method used to extend 
the battery lifetime in WSN devices. The software 
application described in this paper has two purposes: 

1. It can be used by component designers to trade 
off system performance against component 
performance in an end node. 

2. It can also be used by a system integrator as a 
validation tool during the development process 
of the WSN system. It will allow a user to 
determine if the ambient energy available to the 

1Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-819-8
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device is enough to sustain it or prolong the 
battery lifetime for a desired period. 

One of the main goals of this software tool was to have 
the ability to predict lifetime for any given node. This 
allows a user to import any type of component to the 
software using the predetermined characterisation 
structure and predict the lifetime of the WSN node using a 
given combination of power generation, storage and 
consumption components.

III. WIRELESS SENSOR NETWORK

A WSN consists of a gateway, which receives all of the 
data from the connected nodes in the network and then 
transmits that data to the cloud, as shown in Figure 1. 

Figure 1. Example of a WSN.

The focus of this simulation tool is predicting the lifetime 
of the nodes in the network by importing characterized 
components and flowing that data through a set of 
equations to accurately predict the lifetime of the device. 
A typical node in a WSN that utilizes Energy Harvesting 
(EH-WSN) methods consists of the following parts; an 
energy harvester, a power-management IC, which 
includes a Maximum Power Point Tracker (MPPT), an 
energy storage device, a DC-DC converter and finally a 
sensor (or cluster of sensors). 

Figure 2 represents a block diagram of an EH-WSN. 

Figure 2. EH-WSN block diagram.

The energy harvester transducers that are available with 
the simulation tool developed are PV cells and TEGs. 
With the ambient energy available (e.g., light, heat) 
usually being quite limited and sporadic, any change in 
environmental conditions throughout the harvesting 
period can have a significant effect on the amount of 
energy that the EH (energy harvesting) transducers can 
provide. For this reason, an MPPT circuit is required to 
maximise the power output from the transducer to the 
load. Because of the uncertainty in available power from 

energy harvesting, an energy storage device is required to 
maintain constant power to the sensor node. An energy 
storage device can provide power to the load when the 
ambient energy is unavailable, but it can also, store excess 
energy when the transducers are harvesting more energy 
than the load requires. Supercapacitors, also known as 
ultracapacitors or double-layer capacitors, are commonly 
used in EH-WSNs as they have a higher power density 
than batteries and can operate without the need for 
additional charging circuitry. They also have a long 
operational lifetime, with charging and discharging of the 
device having little to no effect on it [4]. However, as the 
voltage in the device is varying, a DC-DC converter is 
required to maintain a stable voltage on the sensor node, 
which typically contains a receiver, transmitter and a 
microprocessor. Primary batteries are also used for energy 
storage, with the choice being dependent on application 
powering requirements. These additional batteries may 
also require a DC-DC converter. 

IV. GUI 

When the application launches, the user can vary any of 
the parameters in a WSN by selecting the button that 
corresponds to that section. These buttons can be seen in 
Figure 3.  

Figure 3. GUI buttons.

In Figure 4, the user can input the operating voltage and 
the average current consumption of the device which then 
gets sent to the main simulation file and awaits further 
data. 

2Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-819-8
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Figure 4. Sensor Node menu.

The two types of EH devices available in this simulation 
tool are PV cells and TEGs whose parameters can be 
modified in Figure 5. Other types can be easily added. 
The user can select which type and then either select from 
pre-characterised components in the tool or add a new 
component to the simulation. This allows users to import 
their own components to test their viability in a WSN 
system. The size of the components and ambient 
conditions must also be selected. 

Figure 5. EH menu.

Similar to the EH section, Figure 6 shows that the user 
can enter the parameters of the supercapacitor or import a 
new component. The minimum and turn on voltage of the 
supercapacitor can also be selected. This notifies the 
simulation that once the supercapacitor reaches the 
minimum voltage, it must be allowed time to recharge 

back to the turn on voltage and disconnected from the 
load. This allows the system to alternate between 
powering the sensor node using EH methods and using 
battery power. 

Figure 6. Supercapacitor menu.

Figure 7 shows a selection window for a DC-DC 
converter. As was mentioned previously, the system 
requires a DC-DC converter to maintain a constant 
voltage to the sensor node. Depending on the minimum 
and maximum input voltages of the device, it may 
influence the operating limits of the supercapacitor. The 
rated voltage of the supercapacitor should be checked to 
see if it is compatible with the DC-DC converter. 

Figure 7. DC-DC converter menu.

Once all of the parameters are selected, a simulation 
window is presented to the user. Figure 8 shows a 
complete simulation, illustrating the effects of the 
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minimum and turn-on voltages. Figure 9 compares the 
lifetime of the device when powered solely by battery 

(shown in red) and a battery-EH hybrid system (shown in 
blue). 

Figure 8. Supercapacitor voltage over time.

As the simulation is running, the graph presented in 
Figure 8 is shown. This allows the user to see when the 
supercapacitor reaches its minimum or maximum voltage 
and can alter the components to achieve the optimum 
power solution to the device, whether the supercapacitor 
is receiving too much energy or too little. It also allows 
the user to check whether or not the supercapacitor is 
sized correctly or the DC-DC converter suitable for the 
system. Figure 8 also shows that when the supercapacitor 
reaches the minimum voltage and there is no ambient 
energy available, the voltage continues to drop due to 
leakage current before the charging cycle starts again. 

Figure 9. Battery WSN vs. EH-WSN.

Altering the input parameters to the system allows the 
user to determine the optimised component setup to 
power the device. 

Once the simulation has begun, bars shown in Figures 10-
12 will present the ongoing conditions in the system over 
time. When there is no ambient energy available to the 
system (e.g., lights switched off), the yellow bar is 
depleted signalling that the supercapacitor is no longer 
receiving energy. This can be seen as the simulation is 

displayed. Figure 11 is a representation of the green circle 
shown in Figure 8. The device is receiving ambient 
energy and charging. Figure 12 is a representation of the 
red circle. There is no ambient energy available and the 
supercapacitor is roughly 50% charged. 

Figure 10. Simulation dynamic conditions.

Figure 11. Simulation dynamic conditions.

Figure 12. Simulation dynamic conditions.

As the WSN switches between the use of EH and the use 
of a battery, that too is shown to the user with the EH bar 
toggling on or off and the supercapacitor bar increasing or 

4Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-819-8
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decreasing. If the supercapacitor reaches the minimum 
voltage, it requires time to recharge, which switches the 
device to receive power from the battery. Figures 13 and 
14 represent when the device is receiving ambient energy 
or not respectively. 

Figure 13. Using EH indicator.

Figure 14. Using battery indicator.

What makes this different from other WSN simulators, is 
its ability to import new components and allow users to 
use their own or test components they are thinking of 
acquiring. The characterisation templates are included 
with the software and that data can mostly be found in the 
datasheets of the components or easily derived from some 
bench testing. 

V. ENERGY HARVESTER 

PV cells can be characterised by using what is termed “I-
V & P-V curves”. They represent the relationship 
between the electric current/power through the cell with 
the corresponding voltage for different light intensity 
levels. These curves can then be used to find the 
maximum power point. 

(a) 

(b)
Figure 15. (a) I-V curves for varying light intensity levels. (b) Output 

power for varying light intensity levels. 

Figure 15(a) shows how different lux levels can affect the 
current generated by the PV cell whilst Figure 15(b) 
presents the maximum output power of the PV cell for 
each lux value. An MPPT circuit can be used to help the 
PV cell operate at its maximum power point. 

Thermoelectric generators work by taking advantage of 
the Seebeck effect, which directly converts temperature 
difference into electricity. When heat is applied to one of 
the two conductors in the TEG, the temperature of 
electrons close to the surface begin to rise and flow 
towards the cooler surface creating current flow. When a 
temperature difference exists on the P-N junctions, a 
potential voltage difference between the hot and cold 
surfaces occurs [5]. 

Similarly to a PV cell, a TEG is also characterised using 
“I-V curves” and “P-V curves” and impedance matching 
circuits can be used to obtain a maximum power point, 
which can be seen in Figures 16 (a) & (b). 

5Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-819-8
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(a) 

(b) 
Figure 16. (a) I-V curves for varying temperature differences. (b) Output 

power for varying temperature differences.

VI. MAXIMUM POWER POINT TRACKER FOR PV 

The MPPT used in this simulation tool for PV is called 
Fractional Open-Circuit Voltage (FOCV). This method is 
based on the fact that the voltage of the PV cell at the 
maximum power point (VMPP) is approximately linearly 
proportional to the open-circuit voltage (VOC) and short-
circuit current (ISC) based on the following equations: 

����  ≈  �� ∗  ��� (1) 

����  ≈  �� ∗  ��� (2) 

where the value for �� ranges from 0.7-0.9 and �� ranges 
from 0.78-0.92 depending on the overall characteristics of 
the solar cell. 

 A flowchart of the FOCV algorithm is represented in 
Figure 17. 

Figure 17. Fractional Open-Circuit Voltage algorithm.

From [6]-[8], it was concluded that the FOCV method 
was the best fit for ultra-low-power sensor networks (sub 
mW power levels) with an accuracy rating of 96%, which 
is the value used in this simulation tool. 

���������������� ∗ 0.96 ≈  ���             (3) 

Where MPPCHARACTERIZED is maximum characterized 
power of the EH after it has gone through a MPPT circuit 
and PEH is the EH power used in the simulation. 

VII. ENERGY STORAGE 

For optimum energy efficiency, an energy storage device 
is required to store any excess energy generated by the 
energy harvester transducers. This stored power can then 
be used to power the sensor node when ambient energies 
are no longer available in order to prolong the lifetime of 
the battery. A battery is used when ambient energy is not 
available, and the power stored in the supercapacitor is 
depleted. In this simulation tool, a supercapacitor is 
modelled in unison with a single-use battery. Taking 
values, such as capacitance, rated voltage, leakage current 
and Equivalent Series Resistance (ESR), the energy in the 
supercapacitor can be simulated as it charges and 
discharges. ESR is a non-ideal characteristic of a 
supercapacitor and can cause problems when dealing with 
I2R losses and transients. The bigger the load transient, 
the larger the voltage drop due to ESR. The equations 
governing the supercapacitor in this simulation are shown 
in the results section. 

VIII. DC-DC CONVERTER 

When powering systems from ambient energy the 
designer should ensure that as much power as possible 
that is generated by the transducer is delivered to the load. 
Techniques to reduce power losses need to be employed. 
In this case the supercapacitor voltage will vary during 
charge and discharge, therefore a DC-DC converter is 

6Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-819-8
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required to ensure the load is supplied with the 
appropriate steady voltage level at maximum efficiency. 
The output power to the load is based entirely on the 
specified output voltage of the converter and the current 
consumption of the sensor node. The power required at 
the input is dependent on the voltage at the input. As the 
voltage at the input varies, so too does the efficiency of 
the converter. This also varies the power required from 
the supercapacitor to maintain constant power to the 
output.  In this software tool, the user selects an average 
efficiency rating of the converter and then integrates top 
and bottom thresholds. At these points, when the voltage 
reaches those levels, the efficiency changes. This can be 
further explained in table 1. 

TABLE I. DC-DC CONVERTER EFFICIENCY FOR DIFFERENT 
INPUT VOLTAGES 

Input Voltage Range 

(V) 

Efficiency  

(%) 

5 – 4.2 84.5 

4.2 – 3.6 86 

< 3.6 90 

� ≈  
����������∗ ����������

���������∗ ���������
       (4) 

where VoltageIN and CurrentIN are the input voltage and 
current to the DC-DC converter respectively (i.e., the 
WSN node).  

Furthermore: 

�������������� ����� ≈  
���� ����� 

�
       (5) 

Where “Supercapacitor Power” is power required by the 
supercapacitor to maintain constant power to the node. 
The efficiency value is also determined by the operating 
supercapacitor voltage. As the voltage in the 
supercapacitor changes with time, the efficiency at which 
the DC-DC converter converts the input power of the 
supercapacitor to the required power levels of the sensor 
node changes. 

IX. SENSOR NODE 

The sensors in these nodes typically have different 
operating modes, for which their period of operation is 
defined by their different duty cycles. The average power 
then depends on the power consumed in each operation 
mode as well as the time employed for each mode (i.e., 
the ‘duty cycle’). The simulation tool handles this by 
taking in the average current consumption level for a 

specific duty cycle and using the operating voltage to 
determine the power required. 

��� ����� = ������� ∗ ������� �������  (6)

X. SIMULATION 

To ensure that simulation results are accurate, the 
individual components need to be characterized in a 
uniform manner under operating conditions that reflect 
real life. The wide range of component types makes this 
challenging. However, by doing this, an extensive array 
of components can be catalogued and stored in the 
software for comparison and to assess their viability for 
different applications.

The simulation tool takes in CSV files containing the 
required information to model each component. These 
CSV files have data templates, which can be filled out 
and logged in the software. 

Figure 18. Component characterization templates.

Figure 18 shows the different templates for the energy 
harvester transducers, the energy storage devices, the DC-
DC converters and the sensor nodes. 

Other software tools that simulate WSNs are usually 
manufacturer specific. One of the unique selling features 
of this simulation tool is that it allows for myriads of 
combinations and offers the ability to add any type of 
component to the software. 

XI. RESULTS 

To test the accuracy of the simulation tool, a circuit was 
setup to power a LoPy4. The LoPy4 is a low-power radio 
module that is a typical communication device used in 
wireless sensors. The module supports, LoRa, Sigfox, 

7Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-819-8

SENSORCOMM 2020 : The Fourteenth International Conference on Sensor Technologies and Applications

                            14 / 44



Bluetooth and Wi-Fi. For these experiments it was set up 
using LoRa. 

Figure 19. LoPy4 Pycom Device. 

During the test, the device shown in Figure 19 was 
programmed to operate at 90mA. This device was then 
connected to a supercapacitor, which was then connected 
to a power supply. Figure 20 shows the circuit schematic 
of the performed test with the accompanying equations. 
The goal of this test was to measure the voltage of the 
supercapacitor as it charged and discharged to compare 
with a simulated test under the same conditions. The 
voltage across the supercapacitor was recorded using a 
Bluno V2.0 board with a ±0.15V error rate, connected to 
a laptop. 

Figure 20. Circuit schematic with equation block diagram.

While the ‘pycom’ device is disconnected and receiving 
power from the 3V3 supply, the 32Ohm power source 
mimics an EH transducer. The EH power being fed to the 
supercapacitor can be approximated using (7). In reality, 
this power is feeding both the supercapacitor and the DC-
DC converter that is operating in ‘no-load’ with the 
‘pycom’ disconnected but this is assumed to be very small 
relative to the current entering the supercapacitor based in 
quiescent current specifications for the DC-DC converter. 
Power is a product of current multiplied by voltage. With 
the voltage constantly varying, so too was the supply 
current. 

�(�)�� ≈ �(�)�� ∗ �(�)�                  (7)  

�(�)�� ≈  �(�)�� ∗  �
�������� �(�)��

����������
�      (8) 

Where V(t)SC is the voltage across the supercapacitor over 
time and VSUPPLY is the 5V supply voltage. 

When the ‘pycom’ is connected to the DC-DC converter, 
the current and voltage supplied at the input need to be 
calculated. With losses in the DC-DC converter, more 
power needs to be supplied than is drawn by the load. The 
“pycom” device was set at 3.3 volts consuming 90 mA. 
Using the efficiency equation for DC-DC converter in (4), 
with the known voltage across the supercapacitor, the 
current supplied by the supercapacitor can be acquired.  

However, as discussed previously the efficiency of the 
DC-DC converter is dependent on the input voltage. 
Using the information gathered from the datasheet, the 
efficiency can be calculated for different operating 
conditions. 

The results in table 1 can then be used to calculate the 
power supplied to the DC-DC converter and subsequent 
pycom load (i.e., the WSN node) when not operating off 
of the 3V3 battery. 

�(�)��� ≈  
�������������∗ �������������

�
       (9) 

�(�)��� ≈  
�.� ∗ �.��

�
                         (10) 

TABLE II. WSN NODE POWER REQUIREMENT FOR EACH DC-
DC CONVERTER EFICIENCY

Efficiency  

(%) 

�(�)���

W 

84.5 0.3515 

86 0.3453 

90 0.33 

To simplify equations, it is approximated that all of the 
current for the DC-DC converter comes from the 
supercapacitor and that the additional current coming 
from the 32Ohm resistor is very small. This should also 
offset most of the approximation error for the 
supercapacitor charge cycle. 

The leakage current in the supercapacitor was given in the 
datasheet as 25µA and equivalent series resistance of 
130mΩ. The leakage power can be calculated by 
multiplying leakage current by the voltage across the 
supercapacitor. 

�(�)����  ≈ �(�)�� ∗  ��������               (11) 
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Power dissipation due to ESR in the supercapacitor can be 

calculated by multiplying the ESR value by the square of 

operating current. 

�(�)��� ≈  ��� ∗  �(�)��
�                  (12)                                                                                 

All of these equations were then fed into (13). 

�(�)�� ≈ �(�������)��

+ �(�(�)�� − �(�)��� − �(�)����

�

�

− �(�)���)��
                                                       (13) 

where t is the entire period for a given sensing interval. 
When the supercapacitor has reached its minimum energy 
availability, the load is disconnected, allowing the 
supercapacitor to recharge. The “pycom” is switched to 
receive power from the battery. Using the circuit 
presented in Figure 20, when the load is disconnected, the 
DC-DC converter still receives current in the form of 
quiescent current and the supercapacitor continues to have 
leakage and ESR losses. This change in current is 
accounted for in (14), (15) and (16).   

�(�)�� ≈ �(�)�� ∗ �
������� − �(�)��

����������

− ������ ����������

     (14) 

�(�)��� ≈  0                      (15) 

�(�)��� ≈  ��� ∗ �
������� −  �(�)��

����������
−  ������ ���������

− ������

�

                (16)                                                                     

P(t)LEAK during this period is still governed by (11). 

From there, (17) is used to calculate the voltage in the 
supercapacitor and then graphed over time to allow the 
user to continually refine the component parameters in the 
software. 

�(�)�� ≈  �
�∗�(�)��

�
                     (17) 

Using the minimum voltage specifications from the DC-
DC converter of 1.52 volts, the supercapacitor was 
disconnected from the load and allowed to recharge once 

it reached that level. It would then switch back to 
powering the device once it reached 4.6 volts. Using these 
equations, the results from the simulation were gathered 
and compared to the real-life test in the following graph. 

Figure 21. Real-World vs. Simulation comparison.

Figure 21 shows the voltage over time in the 
supercapacitor for both the real-world and the simulated 
test as it charges and discharges. Based on these results, 
the simulation was able to match the supercapacitors 
discharge profile with 98.9% accuracy while the charge 
profile predicts with an 89.5% degree of accuracy. In both 
instances the general shape of the charge/discharge curve 
looks good except when charging between around 4 and 
4.5V, which also creates a net error in the predicted time 
constant that accumulates with each simulated cycle.

XII. CONCLUSION & FUTURE WORK 

In this paper, a simulation tool that predicts the power 
lifetime of energy-harvested wireless sensor networks is 
presented. Based on the comparison between a real-world 
scenario and the simulation data, it can be seen that the 
software can predict the lifetime of a wireless sensor 
network with a high degree of accuracy. However, there 
is a noticeable margin of error in the results. This is likely 
to be due to a combination of reasons. Firstly, as 
mentioned, a Bluno V2 board was used to measure the 
voltage in the “Real-World” test, which had a margin of 
error of ±0.15V. Also, while the resistor was measured to 
be exactly 32.77Ohms, the capacitance of the 
supercapacitor was taken from the datasheet as the rated 
capacitance. Some simplifying assumptions were used for 
charging such as taking all the current from the resistor to 
be entering the supercapacitor when in reality a small 
percentage will go into the DC-DC converter, acting in 
quiescent/no load mode. Correspondingly, it is 
approximated that when the supercapacitor is discharging 
that all the source current for the DC-DC converter comes 
from the supercapacitor. However, over a given cycle 
these approximations should more or less ‘balance out’ 
but cause a small net approximation error. 
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With the implementation of a standardised way of 
characterising components, this simulation tool provides a 
much faster method for finding the optimum power setup 
for a particular application. 

For future work, more in-depth analysis of the real-life 
charging and discharging currents should be undertaken 
via metrology and closer interaction with the 
supercapacitor vendor to understand device behaviour 
particularly in the 4-4.5V charging region. In particular 
the previously mentioned approximation error 
assumptions need to be validated and their magnitude 
assessed. The DC-DC converter will also be in ‘no load’ 
rather than quiescent operation so its characteristics in this 
mode need to be characterised.  This should lead to more 
accurate calculations in future iterations of the model. The 
way that the software is setup allows for this, as each 
component has its own separate function, allowing for 
individual component improvements to the system as a 
whole. This tool could also be available online where 
every component added to the system can be available for 
everyone to use.
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Abstract—Reducing energy consumption in Wireless Sensor 

Networks (WSN) is important in order to lengthen the network 

lifetime and reduce maintenance cost. Although its substantial 

contribution, the energy consumed to overhear is often omitted 

in energy calculations. However, here it is included to model the 

tradeoff between the expected number of transmissions, 

transmission range, number of hops, and overhearing, to 

discover the optimal distance between the nodes along the 

routing path. Our calculations show that to reduce energy 

consumption, the node should choose their successors close 

enough to prevent the expected number of transmissions from 

exceeding 1.4. The access protocol is Low Power Listening 

(LPL), and we also present a solution to reduce the energy 

consumption of the nodes that are crucial for maintaining an 

operational network, i.e., the nodes whose successor is the sink. 

Keywords-WSN; Energy; LPL; Energy-Modelling; Multi-

Hop; Overhearing 

I.  INTRODUCTION  

Wireless Sensor Networks (WSN) [1] are used in a wide 
range of areas from industrial applications [2] and smart grid 
[3][4] to healthcare [5], and used in all type of environments, 
from rural to urban areas [6]. The WSNs consist of sensor 
nodes that monitor their surroundings’ characteristics and 
relay collected information to a common central, generally 
called the sink. The network has several advantages such as 
flexibility, lack of wiring, and autonomous operation.  

One of the main issues related to WSN is energy 
consumption. The nodes constituting a WSN are generally 
low-cost battery-powered devices with limited energy 
capacity. Hence, reducing energy consumption is essential in 
order to extend the individual nodes’ lifetime, and maintain a 
well-functioning network [7]. The radio is the primary energy 
consumer [8][9]. During operation, the radio switches 
between various states such as receiving, transmission, idle 
and sleep, all of which consume different amounts of energy 
[4]. To save energy, the nods should remain in the sleep state 
whenever possible. One of the most frequently cited energy-
reducing approaches is the Low-Power-Listening (LPL) 
protocol [10][11], where nodes wake up periodically to sense 
the channel. To ensure successful data exchange, the senders 
transmit a preamble message to signal upcoming data 
transmission. The duration of the preamble must be long 
enough to ensure that the intended receiver hears it. This paper 
investigates further energy-reducing measures in networks 
running LPL. 

The total energy that is consumed to transmit data from a 
source to sink depends on several factors. First, all the nodes 
use energy to send their own generated data. Second, nodes 
along the routing path consume energy to receive and forward 
data. Third, overhearing nodes consume energy when they 
receive packets, which they afterward discard. These are the 
nodes located in the proximity of the path such that they are 
covered by the transmissions intended for different 
destinations. Forth, energy is wasted when packets fail to 
reach the sink and must be retransmitted. One of the factors 
that impact the packet delivery success is the distances 
between the successive nodes along the routing path. 
Successful packet delivery is likely when the distance is well 
within the transmission range. As the distance increases, the 
probability of success reduces until it gets unlikely as the 
distance increases beyond the transmission range. Thus, to 
maintain a high probability for successful delivery, the 
distance between the nodes along the path should be shorter 
than the transmission range. However, short distance means 
that the number of hops to reach the sink increases. Each hop 
increases the number of nodes that play an active part in 
forwarding the packet, increasing energy consumption. 
Another approach is, therefore, to increase the nodes’ 
transmission range. However, such a solution requires that 
each node along the path increases the output power, 
increasing energy consumption. Thus, there is an energy-
tradeoff between packet delivery-success, transmission range, 
and hop count. This paper investigates this energy-tradeoff.  

As well as minimizing the total energy consumed, it is 
important to balance the workload in the network to avoid 
early depletion of nodes. Depleted nodes cannot provide their 
own sensed data, and, as a more serious consequence they 
may lead to network partitioning. As data in WSNs are 
generally directed toward the sink, there is an innate energy 
imbalance in WSNs. That is, nodes in the proximity of the sink 
must forward data from nodes located further away such that 
the forwarding load increases with decreasing hop-count. 
Thus, the one-hop nodes deplete energy faster since they 
undergo the heaviest forwarding load. In addition, they are the 
most critical to keep the network connected. 

To alleviate this imbalance, we suggest to reduce the one-
hop nodes energy consumption by preventing them from 
transmitting the preamble. Remember, the preamble 
transmission is used to wake up and prepare the intended 
receivers to read the upcoming data packet. However, the sink 
is always awake and ready to receive.  
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The contribution of this paper is to investigate the tradeoff 
between the number of re-transmissions, transmission range, 
the number of overhearing nodes, and number of hops in WSN 
to discover an energy optimal distance between the 
consecutive nodes along the path. In addition, we suggest a 
simple approach to reduce energy consumption in networks 
running LPL. The scheme is verified by simulations, and 
shows that energy consumption is substantially reduced. 

The rest of the paper is organized as follows. Section 2 
presents related works. Section 3 presents the energy model 
for one-hop transmission, while Section 4 presents the model 
for multihop transmission. The energy optimal transmission 
range is calculated in Section 5.  Section 6 presents a model to 
calculate the energy consumed for nodes at various hop-
counts, followed by an approach to reduce the one-hop nodes’ 
energy consumption in Section 7. Section 8 presents the 
conclusion. 

II. RELATED WORK  

In order to develop energy-efficient solutions for WSN, it 
is essential to understand the energy consumption of the 
individual nodes. Modelling of the energy-consuming activity 
provides valuable insight into this aspect.  

The energy consumed is proportional to the time the nodes 
spend in the active state to transmit and receive. As the 
controller of the various radio states [12], the MAC protocol 
is important to reduce energy usage. A common MAC layer 
method to save energy is to switch to the sleep state whenever 
possible [13]. However, to keep a WSN network connected 
and operational, the nodes must periodically switch to the 
active state. During the active periods, the nodes listen for 
transmissions, and they may exchange synchronization 
information [14]. The energy consumed for such periodic 
wakeups is included in the model presented in [15], which 
calculates the energy consumption for communication, 
acquisition, and processing. The model is used to illustrate 
how energy is reduced with a reduced number of active 
periods. A solution to reduce the need for periodic listening is 
to apply always-on wakeup radios with very low power 
consumption [16]. The always-on radio activates the central 
part of the nodes only when it detects activity on the medium. 
Although an interesting solution, it will not reduce the number 
of overheard transmissions, and the solution makes the nodes 
more complex.    

Several models for energy consumption in WSN are found 
in the literature. A stochastic model that estimates the 
expected energy consumed, and the expected lifetime of WSN 
nodes, is presented in [17]. The model is based on the time the 
nodes spend in various states such as sleeping, sensing, and 
relay. The communication is based on CSMA/CA. The 
deterministic energy bounds associated with maximum and 
minimum energy consumption are presented in the paper. In 
[18], a framework for modelling MAC protocols is presented. 
The framework can be used for energy calculations that are 
based on an absorbing Markov chain analysis. An analytical 
energy model that demonstrates the impact of the various parts 
of the PHY and MAC layer, is presented in [19]. A receiver-
initiated communication protocol is used, where the receivers 
periodically wake-up and transmit a wakeup beacon to signal 

that they are ready to receive. Testbed measurements that 
isolate hardware and software consumption are performed to 
understand the energy consumption and validate the model. It 
shows a relative error of 8% compared to the real energy 
estimate. A common aspect of these models is the focus on 
MAC-related activities related to switching between different 
states.  

An energy consumption model that also includes 
overhearing is presented in [20]. The energy consumption is 
modeled both for sender- and receiver-initiated asynchronous 
MAC protocols, as well as synchronous MAC protocols for 
multimedia sensor networks. They found that the receiver- 
initiated protocols generally outperform sender-initiated 
protocols, although LPL performs well under low sampling 
rates. A weakness of the calculations is that the LPL protocol 
modeled is very conservative, since only full preamble is 
considered.   

Increased transmission range increases the senders’ 
energy consumption. In addition, both the number of 
overhearing nodes and collision probability increase. The 
overhearing nodes waste energy to receive data addressed to 
neighboring nodes, and collisions require re-transmission. A 
number of analytical models are suggested to understand the 
energy impact of the transmission range. In [21], they use 
energy models to minimize the energy consumption of the 
nodes while meeting the delay constraints. The energy model 
suggested in [22] calculates the total energy consumed per 
successfully received bit. They study the tradeoff between 
energy per successfully received bit and the energy used for 
transmission. They find a single energy-optimal transmission 
range that is validated using real data. In [23], the energy 
consumption as a function of transmission range is modeled 
and used to balance the energy consumption among the nodes 
when new versions of programs are broadcasted throughout 
the network. Energy dissipation is modeled to study the 
impact of transmission power on both the data and the ACK 
packets in [24]. They assume a TDMA based communication 
model. When the data packets are much larger than the ACK 
packets, the latter should be sent with the highest possible 
output power to improve their delivery reliability. The reason 
is that higher output power increases the packet delivery-
success probability.     

There is an energy-tradeoff between transmission range, 
the number of overhearing nodes, and the number of hops 
between source and destination. Increased transmission range 
may decrease the number of transmissions and the number of 
hops toward the sink. However, the number of overhearing 
nodes, as well as the transmission energy consumption, 
increase. The hop count is considered in [25], where the 
transmission range is adjusted to balance the energy when 
transmitting data in multi-sink networks. In [26], overhearing 
is included, and the conclusion is that the transmission range 
should be short to reduce the number of overhearing nodes 
and reduce the collisions probability. In contrast, twelve 
reasons for having a long transmission range are listed in [27]. 
One of the main reasons listed is that a longer transmission 
range makes the routing path closer to the Euclidian distance. 
However, overhearing would be a limiting factor since 
receiving consumes energy in the same order of magnitude as 
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transmitting in WSN. In this paper, we investigate the effect 
of reducing overhearing. In addition, we take loss probability 
and routing distance to sink into consideration.  

III. ENERGY MODEL FOR ONE-HOP TRANSMISSION 

In this section, the energy consumed during one-hop 
transmission is modeled. The communication protocol 
applied is LPL, which is a preamble-based protocol where 
nodes periodically wake up to listen for activity [10][11][28]. 
Between the wakeup periods, the nodes remain in sleep mode. 
A preamble message is used to inform the neighboring nodes 
to stay awake to receive the message that is about to be sent. 
Its length is defined by the nodes with the longest sleep period 
to ensure that all nodes are informed. Upon receiving a 
preamble, the node remains active, listening for the rest of the 
preamble and the upcoming message.  

Assuming that the sleeping time of the nodes is 
approximately equal, the nodes will, on average receive half 
of the preamble. For all the nodes except the intended receiver, 
this is a waste of energy. In order to reduce the energy 
consumed to receive the preamble, the preamble can be 
divided into small preamble-fractions containing the 
receiver’s address and the start-time for the data-packet 
transmission [29]. In this way, the overhearing nodes can enter 
sleep mode after receiving a preamble-fraction. In addition, 
the intended receiver is no longer required to stay awake to 
receive the whole preamble. Rather, it can receive a fraction 
and then enter sleep mode until data transmission. We call this 
method divided-preamble.  

To model the energy consumption, we assume a network 
that uses divided-preamble LPL. Figure 1 illustrates packet 
transmission for such a network. We assume that there are 
four nodes, named N1, N2, N3, and N4, which all hear each 
other’s transmissions. The red squares represent a data-packet 
that is sent from node N1 to N3. The dark blue squares 
represent the preamble, which is sent just before the associated 
data-packets. The duration of one complete preamble is p. 
Note that divided-preamble is used, thus the blue preamble 
squares are divided into fractions of length Δp. The preamble 
must be long enough to ensure that each node wakes up and 
listens for activity at least once per preamble. Otherwise, they 
may lose a preamble transmission. The light blue shaded 
squares are the time periods when the nodes are in sleep mode. 
The periodic, green squares, named LT, are the time when 
nodes listen for activity. Hence, LT must appear at least once 
per period p. The orange squares illustrate that the nodes 
received and read one of the preamble-fractions. Only the 
receiver wakes up to receive the data-packet, illustrated by the 
red square on node N3’s timeline.  

The nodes affected by one-hop transmission are the 
transmitting and receiving node, and the nodes overhearing 
the transmission. The transmission time for the packet is b. 
The power consumed for transmission consists of a fixed part, 
k1, plus an offset, k2, that is proportional to the radiated power 
[23][30]. The transmission range is d. A preamble, p, is 
transmitted prior to each data-packet, b. Thus, the energy 
consumption for transmission is (k1+k2d2)ꞏ(b+p), represented 
by the first term in our model in (1). The second term in (1) 
calculates the energy consumed by the intended receiver as it 

receives the data packet. Receiving and listening consume a 
fixed amount of power, k3. The preamble-fraction has a time 
duration Δp. It contains the receiver’s address and the start-
time for packet transmission. We assume that Δp includes 
both the preamble-fraction and the small interframe spacing 
between the fractions. The node density is λ. Thus, the number 
of nodes covered by the transmission is λꞏπd2. On the average, 
all nodes covered by the transmission receive 1.5ꞏΔp. The 
reason is that the nodes must receive a whole preamble-
fraction but they wake up at a random time. That is, it is 
equally likely that a node wakes up at any point during the 
preamble-fraction transmission. However, it must receive the 
complete preamble-fraction to be able to read its content. 
Thus, if a node wakes up after transmission of a preamble-
fraction has started, it must remain in the receiving state until 
it receives the subsequent complete preamble-fraction. The 
nodes will, therefore, on average, receive one half preamble-
fraction in addition to the complete fraction that it is able to 
read. The energy consumed is represented by the last term in 
(1). The number of overhearing nodes is calculated based on 
the node density, the transmitting node is accounted for by 
subtracting one. Thus, the energy that is consumed per one-
hop communication is:  

 
𝐸 =  (𝑘1 + 𝑘2𝑑2)(𝑏 + 𝑝) + 𝑘3𝑏 + 

1.5𝛥𝑝(𝑘3𝜋𝜆𝑑2 − 1)     (1) 

 

IV. ENERGY MODEL CONSIDERING MULTIHOP 

COMMUNICATION AND LOSS PROBABILITY 

Our focus is the energy consumed during data forwarding 
from source to sink.  The goal is to investigate the impact that 
both overhearing, transmission range and re-transmission 
have on the energy optimal transmission range. Short 
transmission ranges increase the number of hops between 
source and destination, increasing the number of 
transmissions, thus also the total number of re-transmissions 
is likely to increase. Re-transmissions increase energy 
consumption. Increasing the transmission range reduces the 
number of hops. The disadvantage is the increasing 
transmission energy consumption, and the number of  

  
Figure 1. Packet transmission and reception in LPL using divided-
preamble.  
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TABLE 1 LIST OF PARAMETERS AND ACRONYMS 

Symbol Meaning 

k1 Energy consumed to transmit, fixed part 

k2 Energy consumed to transmit, proportional to radiated power 

k3 Energy consumed to receive 

λ Node density 

d Transmission range 

p Preamble  

b Data packet  

Δp Preamble-fraction 

q Packet loss rate 

x Distance between communicating nodes  

x0 Knee value 

x1 Border area width 

N Number of nodes along a path 

m Number of transmission trials 

D Distance to sink 

h Hop-count distance to the sink 

nh Number of nodes at hop distance h 

Txnh Number of transmissions for a node at hop-count nh 

ETX Expected number of transmissions 

PDR Packet delivery rate 

SD Successor distance factor, x = x0ꞏSD 

 overhearing nodes increases due to a larger area covered 
by each transmission. The impact of the overhearing nodes is 
determined by how much of the transmission is being 
overheard.  

A receiver experiences increasing re-transmissions when 
it is located at the border area of the sender’s transmission 
range [31]. We use the model presented in [32] to define the 
border area. The model is used to create the graph on the left-
hand side of Figure 2, where the x-axis represents the distance 
between the sender and the receiver. The y-axis represents the 
Packet Delivery Rate (PDR). In the figure, the transmission 
range is approximately 10 m. The PDR equals 1 when the 
distance between the sender and the receiver is much shorter 
than the transmission range. However, at distances in the 
vicinity of the transmission range, there is a transient area 
where the PDR starts to change and bends towards zero. This 
is the border area. The distance between a transmitter and its 
border area increases with increasing transmission power. 
Hence, the number of re-transmissions can be reduced by 
increasing the transmission energy.  

Based on the border-area discussion above, the total 
number of re-transmissions along the path from source to sink 
depends on the nodes’ transmission range and the associated 
hop-to-hop distance, i.e., the distance between the 
transmitting node and its successor. Assuming equal 

transmission power and hop distances, the expected number 
of transmissions (ETX) along a path is [31] found to be: 

 

        𝐸𝑇𝑋[𝑁] =
1−𝑞𝑚−(1−𝑞𝑚)𝑁

𝑞𝑚(1−𝑞)
       (2) 

 
N is the number of nodes along the path, which is equal to 

the distance to the sink, D, divided by transmission range, d. 
The factor m denotes the maximum number of transmission 
trials, i.e., the maximum number of re-transmissions is (m-1). 
The parameter named q, denotes the packet loss rate. q = 1- 
PDR, and PDR(x) is given by [32]: 

 

                       𝑃𝐷𝑅(𝑥) =
1

1+𝑒

𝑥−𝑥0
𝑥1

                                 (3) 

 
x is the distance between the transmitting node and its 

successor, and x1 defines the width of the border area. x0 is in 
the middle of the border area, i.e., x0 is the knee value as 
shown in Figure 2. The expected number of transmissions 
along a path, ETX[N], depends on the packet loss rate q. The 
energy consumed for transmitting a packet from source to sink 
can be found by introducing ETX[N] in (1):  

 
𝐸 = 𝐸𝑇𝑋[𝑁][ (𝑘1 + 𝑘2𝑑2)(𝑏 + 𝑝) + 𝑘3𝑏 +

                          1.5𝛥𝑝(𝑘3𝜋𝜆𝑑2 − 1)]         (4) 
 
 Equation (4) shows that ETX[N] has an important impact 

on energy consumption. ETX[N] increases both with the 
number of hops along the path toward the sink, and when the 
distance between sender and successor nodes approaches and 
enters the border area. The distance to x0 can be increased by 
increasing the transmission power, thus the tradeoff between 
hop-count, packet delivery rate (here represented by ETX), 
overhearing, and transmission range. The tradeoff is 
investigated in the next section. 

V. ENERGY OPTIMAL TRANSMISSION 

We use (4) to investigate the tradeoff between hop-count, 
packet delivery rate, overhearing, and transmission range. It is 
assumed to be an equal distance between the sender and the 
receiver for each hop along the path from the source node to 
the sink. The right-hand side of Figure 2 illustrates the sender-
receiver distance for one of these individual hops along the 
path. The blue node represents one sender, and the blue circle 
represents the associated knee-point value, x0, for the sender’s 
transmission range. The red dot represents a receiver at a 
distance to the sender, its distance is outside the knee-point 
value. In order to model this sender-receiver distance, we 
choose to represent it as the knee-point value times a constant. 
The constant is named Successor Distance factor (SD), i.e., x 
= x0ꞏSD. Hence, the red node has SD higher than 1. A node 
located on the blue circle will have SD = 1 and a node located 
inside the blue circle would have a SD lower than 1.  

The parameter values used in the calculations are the 
values presented in [30]. The values are based on the 
CC1000_radio [33]. For CC1000, k3 and k2 are in the same 
order of magnitude while k2 is much lower than k3. Other 
radios may have different numerical values. However, the 

  
Figure 2. The left-hand side of the figure shows the PDR for increasing 
distance between sender and receiver. The small blue circle in the center 

of the right-hand side figure illustrates a transmitting node, and the blue 

outer circle is the knee-point boarder line for the transmission.  
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characteristics are similar among WSN nodes [8][23]. Hence, 
our calculations present a general trend.   The values for k1, k2 
and k3 are 36.1µJ/bit, 0.06 pJ/bit/m2 and 37.5 µJ/bit 
respectively. The preamble-time, p, is normalized with respect 
to data-packet time, b. The transmission range d = 10m and 
the node density λ = 0.015. The preamble-length is 5ꞏdata-
packet length. The distance to the sink is set to D = 50m and 
the maximum number of re-transmissions is m = 20.  

In the calculations, the successor node is located at x =  
x0ꞏSD. Thus, the number of nodes along a path is N = round-
up-upward(D/x). Calculating energy consumed the 
overhearing nodes is challenging. The reason is that some are 
located inside x0, but do not receive the preamble or are not 
able to correctly decode the preamble. The same apply for 
some of the nodes that are located in the border area beyond 
x0. As an average, assume that all nodes inside x0 receive the 
preamble.  

Figure 3 shows the energy consumption changes as 
transmission range increases. The y-axis represents the energy 
consumption and the x-axis represents the transmission range 
knee value, x0. That is, moving toward higher x-axis values, 
the transmission power increases, and thus the transmission 
range. ETXper-hop changes with transmission range and is 
calculated using equations presented in [32], see reference for 
explanation: ETX(m) = (1-qm)/(1-q). The figure shows three 
different graphs representing three different SD parameters. 
For the blue graph SD = 0.5 (ETXper-hop = 1.19), for the 
orange graph the SD = 0.75 (ETXper-hop = 1.43) and for the 
yellow graph SD = 1.25 (ETXper-hop = 3.3).   

First, we concentrate on the impact of SD distance. The 
smallest SD, the blue graph, generally gives the highest 
consumption. The reason is that low SD gives short hop-to-
hop distances such that the number of hops from source to sink 
is high. Remember, each hop adds at least one packet 
transmission, causing energy to increase due to transmission, 
receiving, and overhearing. When SD increases, the hop-
count decreases, reducing the energy consumed. However, as 
the SD is further increased, the increase in ETX[N] cancels 
the positive effect of the reduced number of hops, because the 
successor is too far into the border area.  The energy 
consumption for SD = 1.25 is generally higher than for SD = 

0.75 although the hop-count for SD = 1.25 is the lowest due 
to the long sender-to-receiver distance. Performing the 
calculations with various SD shows that energy consumption 
is lowest when SD is about 0.75 (ETXper-hop = 1.4). That is, 
the successor nodes should be chosen so far into the border 
area that the ETXper-hop = 1.4. The result is comparable to 
the discussions and findings in [10], where energy 
minimization for LPL in noisy environments is investigated. 
It is found that noise-triggered false wakeups can be a 
dominant energy consumption factor. In our case, overhearing 
causes unnecessary wakeups, which does not provide any 
valuable information, thus it should be limited.      

Furthermore, Figure 3 shows that there exists an energy 
optimal transmission range. It is mainly determined by the 
overhearing nodes’ energy consumption. The optimal 
transmission range is more pronounced and shorter as Δp 
(fraction of preamble received by neighboring nodes) 
increases. The graph to the right in Figure 3 has the highest 
Δp and the shortest and most pronounced optimal 
transmission range. The reason is that increased Δp causes 
increased energy consumption among overhearing nodes, 
because they receive a larger fraction of the transmitted 
preamble. Combined with the fact that the number of 
overhearing nodes increases quadratic with distance, the 
energy optimal transmission range is reduced to reduce the 
impact of overhearing. When Δp is low, the optimal 
transmission range is less pronounced and longer because the 
impact of overhearing is much lower. The optimal 
transmission range is about 10m for λ = 0.015. Thus, the 
average number of nodes covered by the transmission is 4.71, 
which may be too few to keep the network connected [34]. 
The conclusion is that it is energy efficient to keep the 
transmission range short, considering that the range is long 
enough to keep the network connected. Other parameter 
values would give other results. For instance, there is no 
pronounced energy optimal transmission range if Δp is 
reduced to below 0.02 while the other parameters are kept 
unchanged. Reducing the preamble, p, to data-packet size has 
the same effect of making the optimum-point less pronounced. 
On the contrary, increasing the node density makes it more 
pronounced. However, the energy optimal distance, between 
a node and its successor, is the distance where ETXper-hop is 
1.4. This applies for all the various parameter settings. 
Deciding a distance that gives ETXper-hop = 1.4 is not 
realistic in real-world scenarios since environmental 
characteristics are prone both to temporal and spatial changes. 
In addition, the parameter settings both for the radio as well as 
other parameters such as packet size would vary, resulting in 
a slightly different optimal ETXper-hop. However, our result 
shows a valid trend, the optimal distance between successor 
nodes should not be too far into the border area, i.e., the area 
where the PDR starts to change and bends towards zero.  

We observe a sawtooth shape of the curves in Figure 3. 
The reason for this shape is that the number of overhearing 
nodes increases, initially, with increasing transmission range, 
as seen in the smooth increasing energy consumption. The 
abrupt drop occurs as the path decreases by one link. The 
reduced number of hops gives a sharp reduction in 
overhearing energy consumption since the number of 

  
 

Figure 3. Energy consumption related to transmission range. The left-hand 
side of the figure shows the energy consumed when the preamble-fraction 

that overhearing nodes receive is 0.1 times the complete preamble. The 

figure on the right-hand side shows the results when overhearing nodes 
receive 0.5 times the complete preamble.   
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transmissions is reduced. The deepest sawtooth decrease in 
energy consumption occurs for the longest transmission 
ranges. The reason is that the longest transmission range 
covers the highest number of overhearing nodes.          

VI. ENERGY BALANCE IN WSN 

Although LPL is an efficient method to reduce the energy 
consumption in WSN, there is an energy imbalance in energy 
consumption among the nodes. The energy consumption due 
to forwarding increases towards the sink. The reason is that 
nodes closer to the sink must forward packets from nodes 
further away from the sink. The consequence is that the one-
hop nodes experience the highest energy-cost due to their 
packet forwarding.  

To investigate energy consumption versus hop-count, we 
assume a fair workload balance between the nodes. Fair 
means equal load-balanced among the nodes at a given hop-
count. Assume that the nodes' transmission range is d and h 
represent the hop-count distance to the sink. The number of 
nodes located (h+1) hops from the sink is equal to the number 
of nodes inside the donut-shaped area with an outer radius of 
dꞏ(h+1) and an inner radius of dꞏh. The number of nodes in 
the donut-shaped-area is found by multiplying its area with the 
node density, λ: 

 

𝑛ℎ+1 = 𝜋𝜆 [((ℎ + 1) ∗ 𝑑)
2

−  (ℎ𝑑)2]  = 𝜋𝜆(2ℎ + 1)𝑑2  (5) 

 
The number of nodes located h+2 hop from the sink is: 
 

𝑛ℎ+2 = 𝜋𝜆 [((ℎ + 2)𝑑)
2

− ((ℎ + 1)𝑑)
2

] 

                          = 𝜋𝜆(2ℎ + 3)𝑑2        (6) 

 
Nodes at hop-count h forwards data on behalf of a given 

number of nodes at hop-count h+1. The average number of 
nodes use a given node at hop-count h is:  

 

                                  
𝑛ℎ+2

𝑛ℎ+1
=

2ℎ+3

2ℎ+1
         (7) 

 
A node at hop-count h transmits one of its packets, in 

addition, it transmits (nh+1)/(nh) packets from its one-hop 
predecessors. The total number of transmissions for a node at 
hop-count nh is, therefore: 

 

                       𝑇𝑥𝑛ℎ = 1 +
𝑛ℎ+2

𝑛ℎ+1
ꞏ𝑇𝑥𝑛(ℎ+1)       (8) 

 
Based on (8), we find the energy consumed for nodes at a 

given hop-count is presented in (9). The first term in (9) 
represents the transmission energy. The second term 
represents the energy used to receive packets for forwarding, 
remember, the preamble is received for each received data-
packet. Besides, the nodes overhear neighbors’ transmissions. 
Some of the overheard neighbors are located at the same hop-
count distances from the sink as the overhearing node, while 
some are located at adjacent hop-count distances. Assuming 
that the contribution from all these three hop-count distances 

is equal, the number of transmissions overheard is as 
expressed in the first parenthesis of the last term in (9). 
However, each packet is received twice for nearby neighbors: 
once when the neighbor receives it, once when the neighbor 
transmits it. Other neighbors’ packets are overheard only 
once: when the neighbor transmits it. As a first approximation, 
we assume that half of each overheard packet is received 
twice, hence, the 1.5-factor in front of the parenthesis in (9). 
Thus, to investigate the energy imbalance, the energy 
consumed for a node at hop-count x can be calculated as: 

 
 𝐸 = 𝑇𝑥𝑛ℎ[ (𝑘1 + 𝑘2𝑑2)(𝑏 + 𝑝)] + 𝑘3(𝑇𝑥𝑛ℎ − 1) ∙ 

         (𝑏 + 1.5𝛥𝑝) + 1.5(
𝑇𝑥𝑛𝑥−1+𝑇𝑥𝑛𝑥+𝑇𝑥𝑛𝑥+1

3
)(𝑘31.5𝛥𝑝)   (9) 

 

VII. BALANCING ENERGY CONSUMPTION 

Although LPL is an efficient energy reduction method in 
WSN, the energy imbalance persists among the nodes. Caused 
by the forwarding load discussed above, the one-hop nodes 
consume much more energy than the other nodes. However, 
messages sent from the one-hop nodes are destined to the sink, 
which is always active. Therefore, in order to save energy, we 
suggest canceling the preamble from the one-hop nodes. The 
nodes are aware of their identity as one-hop nodes by looking 
in the routing table: their successor nodes are the sink, and 
their distance to the sink is one hop.   

Simulations are performed to compare when all nodes 
apply the same divided-preamble LPL algorithm against the 
case when the one-hop nodes are prevented from transmitting 
the preamble. The parameter investigated is total energy 
consumption. The simulation is performed in Omnet++ [35].   

The applied routing metric is hop-count, and each node 
generates 100 data packets during each simulation. The 
preamble time is four times the duration of a data packet. The 
preamble-fraction packets are one-tenth of the data-packet 
size. We have used a fixed number for receiving power 
consumption. The transmission power consumption is also 
fixed since the transmission range is equal for all nodes. 
Energy consumed for overhearing is not considered because 
the number of overhearing packets would be equal for both 
scenarios: The number of packets transmitted is equal for 
approaches, and, although the one-hop nodes do not transmit 
preamble, neighbors must receive and read all overheard 
packets in order to decide whether the packet is destined for 
them.   205 nodes are randomly distributed in an area of 1000 
m times 1000 m. The transmission range of all nodes is 141 
m.  

The simulation results are shown on the left-hand side of 
Figure 4. Every simulation point presented in the graphs 
represents the average value of 100 simulation runs with 
different seeds for random deployment of nodes. The red 
curve shows the simulation result when the one-hop nodes are 
prevented from transmitting preamble, while the blue curve 
shows the energy consumed when the one-hop nodes behave 
equal to the other nodes, i.e., transmit preamble. The 
continuous curves represent average values, and the marks 
over and below represent the 95% confidence interval.  
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The simulations show that one-hop nodes’ energy 
consumption is reduced by about 50% when the one-hop 
nodes are prevented from transmitting the preamble. 
Calculations using (9) verify the simulated result, as shown on 
the figure’s right-hand side. To what extent the energy is 
reduced depends on various factors, the main being the ratio 
of preamble size to data-packet size. Less energy is saved 
when the preamble is shorter. For instance, the energy saving 
is reduced to 19% if the preamble to data-packet-size is 
reduced to 0.5. Avoiding preamble transmission would reduce 
one-hop nodes’ energy consumption, which are the most 
critical nodes to keep the network connected. Preventing 
transmission of the preamble is equal to reducing the duty-
cycle of the nodes, and our result complies with the results in 
[36], where duty cycling is used to manage the delay as well 
as energy consumption of the nodes. The duty-cycle of the 
hot-spot nodes, which equals to the one-hop nodes, is kept low 
compared to the duty-cycle of nodes in non-hotspots areas.   

VIII.  CONCLUSION 

To reduce the energy consumed in multihop transmission 
in WSN the tradeoff between number of re-transmissions, 
overhearing, number of hops, and transmission range are 
investigated. Due to improved packet delivery rate (PDR), 
less energy is wasted on re-transmissions when the distance 
between senders and receivers along the routing paths is 
reduced. However, the number of hops to reach the sink is 
increased such that more nodes must use energy to forward 
the data. Another solution is to increase the nodes’ output 
power to increase the distance to where the PDR starts to fail. 
In this way, the distance between senders and receivers can 
increase without introducing more re-transmissions. 
However, each transmission consumes more energy. In 
addition, the overhearing nodes must be considered. Their 
contribution to energy consumption increases with the number 
of nodes covered by the transmissions, number of 
transmissions, and the size of the received packet. 
Investigating the tradeoff between all mentioned factors, we 
find that the optimal solution is for the nodes to choose their 
successors at a distance that gives an expected number of 
transmissions, ETXper-hop, of approximately 1.4. In addition, 
we suggest and show that energy is efficiently reduced if 
nodes whose successor is the sink, are prevented form 
transmitting preamble. The preamble can be omitted since the 
sink is always awake and ready to receive. Reducing these 
nodes energy consumption is crucial in order to avoid network 
partitioning.  

Future work on energy consumption in WSN will focus on 
more intelligent forwarding. Nodes will predict the traffic 
patterns to optimize their own duty-cycle and prevent 
overhearing.    
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Abstract—A method for an inductive communication and lo-
calization system for wireless sensors in internally illuminated
photobioreactors is presented here. The communication is imple-
mented through an on-off switched hartley-oscillator where its
inductance is used as transmitting coil for the wireless sensor
data. As modulation technique, the on-off keying is used. The
magnetic field of the transmitting coil is sensed from outside the
reactor with special designed receivers in order to evaluate the
magnetic field components of the transmitting coil in all three
spatial directions at one position. This enables the localization
of the transmitting coil and thus the localization of the wireless
sensor. A prototype has been implemented and test measurements
performed with a two receiver setup. Additionally simulations
were performed in order to see the accuracy improvement of the
localization by using more receivers.

Keywords–wireless sensors; inductive localization; inductive
communication.

I. INTRODUCTION

We already presented a wireless internal illumination sys-
tem for photobioreactors in past [1]. The internal illumination
of photobioreactors is needed due to the low penetration depth
of light in the reactor medium. This novel illumination sys-
tem consists of small wireless, inductively powered luminous
spheres called Wireless Light Emitters (WLEs). The fact that
the WLEs have the same overall density as water enables them
to float in the reactor medium. The external magnetic field
used to power the WLEs is generated by field coils driven
by a class-E amplifier. The frequency of the alternating field
is 178 kHz. The archived flux density in the photobioreactor
amounts to approx. B = 1 mT [1]–[3].

For a better control of the processes inside the reactor, a
further step is the measurement of crucial parameters such as
temperature, salinity or oxygen concentration using wireless
traceable sensors. Currently used setups use fixed sensors
where drill holes or other reactor modifications are needed
to install them. Using wireless sensors, those modifications
are no more needed. In a similar project [4] they presented
battery powered wireless sensor-spheres for bioreactors, which
transmit their measured values using the 433 MHz frequency
band. The sensors in our project will be powered through
the inductive link used to power the WLEs. The traceability
enables a spatial resolution of the measured values. The
communication link is implemented as a separate inductive
link with a carrier frequency of 297 kHz and is therefore

1.66 times higher than the frequency of the power supply
field. This is to avoid interferences caused by harmonics. The
mathematical description of the magnetic dipole field is used
to solve the traceability task. Thereby the magnetic field of
the data transmitting coil is measured in order to calculate the
transmitter position. We already presented the design of our
transmitter in another publication [5]. Now, we will take a
closer look at the traceability task and the receiver design.

In Section II the chosen data transmission method and the
used modulation technique are described. The model equations
used to describe the magnetic field of a coil in order to derive
the equation system used to solve the localization task are
also presented in Section II. The receiver architecture, the
receiver electronics, the measurement setup and the receiver
arrangement are presented in Section III. In Section IV the
results of preliminary localization measurements are shown.
We also performed simulations to analyze the improvement in
the localization accuracy by using more then two receivers.
The simulation method and the simulation results are listed in
Section V followed by the conclusion in Section VI.

II. PRELIMINARY WORK

For the sensor data transmission and for solving the local-
ization task the well defined properties of magnetic fields are
used.

A. Data Transmission
The propagation characteristics of magnetic fields do not

differ between water and air due to their similar magnetic
permeabilities [6]. The radio frequency data transmission, on
the other hand suffers from high attenuations in underwater
environments [7]. Common used methods for underwater data
exchange systems are also the acoustic and the optical data
transmission [8]–[10]. We choose the magneto-inductive data
transmission since the acoustic and the optical methods are
not well suited for our aim. The optical method would not be
feasible due to the many obstacles in the reactor; for example
the WLEs or the algae. The acoustic method is unsuitable due
to the physical separation between transmitter and receiver
by the reactor wall. As modulation technique, in order to
overlap a digital signal on a carrier wave, we use the on-off
keying. This is implemented by switching a hartley-oscillator
on and off. The sensor data stream is currently simulated with
a bit-generator. The bit-generator is a square wave generator
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based on the integrated circuit LM555. The high level of the
generated square wave represents the 1-bit and the low level
the 0-bit. This signal is used as control signal to switch the
hartley-oscillator on and off.

B. Inductive Localization
The magnetic field of a coil with N turns modelled as a

dipole field can be described by its radial (Hr) and tangential
(Ht) components like shown in (1) and (2), where A is the
cross section area of the coil, I = i cos(ωt) the exciting
current, % is the radial distance from the coil centre and ζ
the off axis angle [11].

Hr =
NIA

2π%3
cos ζ (1)

Ht =
NIA

4π%3
sin ζ (2)

Equation (3) is the coupling equation between a transmitter
and a receiver where both of them have the same orientation
(~ex−rx = ~ex−tx and ~ey−rx ‖ ~ey−tx and ~ez−rx ‖ ~ez−tx) [11].

~frx =

(
C

%3

)
S~ftx (3)

S = diag(1 − 0.5 − 0.5) (4)

In (3), the transmitter signal vector is referred to as ~ftx and
the receiver signal vector as ~frx. % is the distance between them
and C is a constant factor derived from the receiver parameters
(coil properties, signal gain). To simplify the localization task,
the transmitter coil is assumed to be always aligned with a
global z-coordinate like shown in Figure 1. By measuring the
x-, y- and z-components of the magnetic field at one position
it’s possible to calculate a direction vector ~r defined by the
angles α and β (see Figure 1) that points from the measuring
point to the transmitter position. By measuring the x, y and z
magnetic field components at two or more defined positions
the localization of the transmitter coil can be calculated by
finding the point where the direction vectors of all measuring
points comes closest to each other (ideally the intersection).
Expanding (3) with the rotation matrix around the z-axis (Tα)

transmitter

receiver

transmitter

receiver

x

z

y
y

x

z

β α

~r ~r

Figure 1. Transmitter-receiver alignment

and the rotation matrix around the y-axis (Tβ), we get (5),
which describes the coupling between the transmitter and
a receiver in our setup. Solving (5) for the angles α and
β enables us to calculate the direction vector ~r. Since we
do only transmit in z-direction the transmitter signal vector
~ftx = [0 0 a]T is an unknown value a in z-direction. The

value is assumed as unknown since the transmitting power
depends on the actual position of the transmitting coil in the
photobioreactor. ~frx contains the measured field components
in x- y- and z-direction.

~frx =

(
C

%3

)
Tα
−1Tβ

−1STβTα
~ftx (5)

We calculate the vector ~r (as an unit vector) from the ratios
of the components of the receiver signal vector ~frx, for that
reason the constant factor C/%3 in (5) is omitted.

III. EXPERIMENTAL SETUP

In order to solve the localization task described by (5)
in Section II, the receivers need the ability to measure the
magnetic field in all three spatial directions at a defined
position. This section discusses the design and the arrangement
of the receivers as well as the measurement setup used to
perform preliminary localization measurements.

A. Design of the reciver
We developed a receiver design with three coils where each

of them are placed orthogonally to the other two (like shown in
Figure 2) in order to measure the x-, y-, and z-components of
the transmitter magnetic field at one point. The first version of
the receiver electronic circuit was based on a LC-Tank tuned
to the transmitter frequency. Therefore, each receiver coil was
connected in parallel with a capacitor and a resistance. In

Figure 2. Receiver coils

contrast to the theory, the mutual inductances between the
orthogonally placed coils are not zero in practice. The use
of LC-Tanks as a main receiver architecture was therefore
dismissed since they lead to mutual oscillations of the three
oscillators because of the existing minimal mutual inductions.
So, we choose to use an active resonant filter tuned to the
transmitter frequency in order to amplify the signal which
is inducted in each receiver coil. Figure 3 shows its circuit
where the receiver coil would be connected to the pin Vin.
The filter amplifies the signal at the resonant frequency by the
gain factor of |G| ≈ 200 as can be seen from its frequency
response in Figure 4. In order to enable a manual calibration
of the resonant frequency, the capacitor C1 (see Figure 3) has
been realized as a parallel connection of a variable capacitor
and a fixed one. The resistance R1 has been realized as a
potentiometer to enable an adjustment of the gain factor.

B. Arrangement of the receivers
By calculating the angles α and β with (5), we get multiple

possible solutions for the direction vector ~r per receiver. The
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reason for that is the rotation symmetry of the magnetic field of
a round coil. Positioning the receivers at crucial positions, the
possible solutions can be diminished to one useful solution for
each receiver. If the receiver is placed at a corner of the region
of interest, the number of possible solutions for the direction
vector is automatically diminished to one. Figure 5 shows the
arrangement used for the first localization measurements. The

receiver 1

receiver 2

transmitter

~r1

~r2

x

y
z

Figure 5. Receiver arrangement

receiver signals were digitalized with the National Instruments
USB6366 I/O device. The software Matlab by MathWorks is
used to control the I/O device and for solving (5) in order to
calculate the transmitter position.

IV. MEASUREMENT RESULTS

We performed localization mesurements with a two re-
ceiver setup like shown in Figure 5. The height (z) and width
(x) of our setup construction is 50 cm, the depth (y) is 30 cm.
The setup is entirely made out of plastic materials in order to
not influence the magnetic field. We performed measurements
with the same x- and y-positions at different heights. The
measured positions are compared to the exact ones in Figure 6

for a constant height of z = 25 cm. The maximum absolute
errors per coordinate for the measurements shown in Figure 6
are:

• max abs. error x-coordinate = 3.9 cm
• max abs. error y-coordinate = 2.4 cm
• max abs. error z-coordinate = 4.7 cm

Figure 7 shows the mean values of all relative errors
(x-, y-, and z-coordinates) referred to the test setup dimen-
sions for different heights (the five x- and y-coordinates are
the same at each height).
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Figure 7. Mean values of the relative errors of all three coordinates at
different heights

V. SIMULATION: ACCURACY IMPROVEMENT BY USING
THREE OR MORE RECEIVERS

We performed preliminary simulations where the differ-
ences in accuracy were calculated between a two receiver setup
and a setup with three or more receivers in order to get an idea
about the improvement of the overall accuracy. We use Matlab
by MathWorks to calculate the signal amplitudes in x-, y-, and
z-direction for each receiver, for a given transmitter position.
With the calculated amplitudes sinus signals where generated
and three types of noise/signal interferences where added:

• variation of the signal amplitude
• overlap of the power supply magnetic field signal
• overlap of white noise

For the simulations no. 1 and 2 in Table I, the signal amplitude
is varied using random values in the range between 0 and
5% of the calculated exact amplitude. White noise is added
using random values in the range between 0 and 50% of
the signal amplitude and the power supply signal is added
with the same amplitude as the calculated clean receiver
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signal amplitude. For the simulations no. 3 and 4, the signal
amplitude is varied randomly in the range between 0 and 15%.
The other parameters were left as for measurements no. 1 and
2. With these constrains the difference vector ~d between the
calculated position and the exact position is determined for
over 7000 transmitter positions in our region of interest shown
in Figure 5. The third receiver is placed in the upper right
corner over the receiver 2. The fourth receiver is placed in the
lower front left corner and the fifth receiver in the upper back
right corner of our region of interest. As a measure of accuracy
we use the length of the difference vectors between the exact
and the calculated positions. In Table I the mean values of the
difference vector lengths of all measurements are listed for
setups with two to five receivers. It can be seen that the length
of the difference vectors decreases by more than half if the
setup with two receivers is compared to the setup with three
receivers. By using more than three receivers the improvement
gets smaller.

TABLE I. MEAN VALUES IN CM OF THE DIFFERENCE VECTORS FOR THE
TWO RECEIVER SETUP AND THE THREE RECEIVER SETUP

sim. sig. ampli. calc. mean |~d| mean |~d| mean |~d| mean |~d|
no. variation pos. 2 rec. 3 rec. 4 rec. 5 rec.

1 max. 5% 7057 3.52 cm 1.55 cm 1.31 cm 1.02 cm
2 max. 5% 7057 3.51 cm 1.55 cm 1.29 cm 1.01 cm
3 max. 15% 7057 10.53 cm 4.62 cm 3.83 cm 3.09 cm
4 max. 15% 7057 10.38 cm 4.50 cm 3.89 cm 3.07 cm

VI. CONCLUSION

For the measurements described in Section IV, the major
deviations from the exact position can be found in the z-
coordinate. It can be seen from Figure 7 that the overall highest
accuracy is reached at approx. half the height (z-coordinate)
between receiver 1 and receiver 2. For low z-coordinates or
for high z-coordinates the distance to one receiver gets bigger
and the accuracy gets lower.

The feasibility of the method has been shown. The future
aim is to improve the overall accuracy. We already showed in
Section V that the inaccuracy can diminished by more then a
half by using a third receiver.

The position of the transmitter is now calculated by eval-
uating the ratios of the components of the receiver signal
vector ~frx individually for each receiver. In future, in order
to improve the accuracy, the sum of the amplitudes will be
compared between the receivers, this should yield additional
information about the sensor position. The orientation of the
receiver plays an important role on the overall accuracy of
this system. For the case that the receiver is not aligned with
the overall coordinate system, the coupling equation between
the transmitter and the receiver has to be adopted by adding
some more rotation matrices for the three receiver orientation
angles. In future work our approach will be to calculate
an optimization for the receiver orientation and position in
order to minimize the susceptibility to overall inaccuracies.
Imperfections in the orientation of the transmitter also leads
to measurement inaccuracies. To counteract this problem, a
solution could be the search for a minimum in the coupling
equation expanded by the rotation matrices for a transmitter
inclination using the position coordinates calculated with the
(5) as initial values.
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Abstract—Mobile Edge Computing (MEC) in cellular networks
aims to bring computational capabilities close to end-users to
reduce the latency of applications on the Internet of Things
(IoT). This is particularly crucial to computation-intensive IoT
broadband applications (e.g., video analytics, augmented reality,
etc.) demanding a data processing task to be performed within a
given time threshold. In this regard, the task offloading problem
has been investigated in the literature in order to achieve an
appropriate trade-off between energy and latency. However, there
is a need for the joint design of task offloading mechanisms and
cell selection algorithm as a mean to select the most appropriate
to each device in order to meet delay requirements and fulfill
resource constraints at the MEC server site. In this paper, we
present the foreseen framework to tackle such a challenging
problem.

Keywords–Delay-sensitive applications, internet of things, mo-
bile edge computing, offloading.

I. INTRODUCTION

The Internet of Things (IoT) is the most recent evolution of
the Internet technologies and services. In this novel paradigm,
everyday objects will be equipped with communication, com-
puting and sensing capabilities to collect data from their
environment. The analysis of the collected data is expected to
enable knowledge-based decisions and to produce value-added
services in domains like healthcare, manufacturing, logistics,
etc. Broadly speaking, IoT applications in such domains could
be categorized according to the communication requirements
(i.e., data throughput, data volume, latency, etc.), or in terms
of the IoT device capabilities (low-cost fixed/mobile sensor,
smartphone, wearable, etc.). In this context, the fifth generation
(5G) mobile communication system will play a key role in the
IoT ecosystem by providing wireless connectivity to IoT mo-
bile devices dispersed over large areas and demanding stringent
Quality of Service (QoS) levels. For instance, the 5G network
is expected to support a major IoT market segment related
to next-generation broadband and critical services having low
delay requirements and heavy computational-resource needs.
Towards providing flexible support of these IoT applications’
categories, enabling cellular technologies, such as 5G new
radio (NR), Long-Term Evolution (LTE) for Machine Type
Communication (MTC), a.k.a. LTE-M, and Narrowband IoT
(NB-IoT) have been proposed. Additionally, in order to reduce
service latencies, the Mobile Edge Computing (MEC) aims to
bring storage and computational resources close to end devices
in the Radio Access Network (RAN) [1]. This implies the

deployment of MEC servers co-located in the cell site with
the Base Station (BS). This allows reducing the round-trip
latency for applications that offload data from terminals to
the network for data processing purposes and wait for the
outcomes. Such a data processing is preferred to be performed
at the network edge in order to avoid sending big amounts of
traffic from the network edge through the backhaul towards
more distant central computing resources (i.e., mobile cloud
computing paradigm). In this sense, one of the main challenges
is that MEC servers are generally known to be constrained by
the amount of computation resources, implying that they might
be easily overloaded due to intensive computation requests
from IoT broadband applications. Another important resource
constraint in the RAN is the available radio resources.

Under such a distributed computing environment, the task
offloading problem has been subject of study in the literature
aiming to determine if a given task is computed locally (at
the mobile device) or at the network edge. However, as
intensive computation tasks are energy-consuming, on-device
computation approaches severely affect the lifetime of battery-
limited devices. In order to address these challenges, different
computation task models for full or partial data offloading
have been explored in the literature [2], where some degrees
of freedom could be allowed by considering soft deadline
requirements (i.e., portions of data to be computed after a
time threshold). The task offloading problem aims to achieve
a trade-off between energy efficiency at mobile devices and
end-to-end delay of applications. This latter aspect involves
the appropriate modeling of delay components for data pro-
cessing (at the mobile device or network edge node) and
data transmission over wireless channel. At this regard, the
task offloading problem it is commonly analyzed under the
assumption that each mobile device is already assigned to
a MEC server according to a cell selection criterion aimed
to optimize radio link efficiency (e.g., minimum path loss,
max-SINR, etc.). Nevertheless, such cell selection approaches
neglect other aspects that could greatly influence the obtained
Quality of Service (QoS), such as selecting an overloaded
MEC server or a BS with exhausted radio resources.

In this paper, we describe our work in progress where the
aim is to develop an integral framework to jointly optimize
the offloading decisions and the cell selection. Specifically,
we formulate an optimization problem aimed to determine
the most appropriate serving cell to each device attending
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to: a) radio channel bandwidth in the cell, and b) computing
capacity of the MEC server, and c) energy constraints of
mobile devices. We aim to determine the cell selection solution
that provides the minimum the system performance delay
in MEC-based IoT scenarios. Such a framework involves a
number of challenges. First, the algorithms to be developed
should work in distributed computing environments, imply-
ing that each edge node should perform resource allocation
decisions independently based on local information. To this
end, distributed iterative algorithms based on a pricing-based
scheme (where the assignment process behaves as a bidding
process that iteratively allocate edge resources to end users)
are considered as a potential algorithmic solution. Second,
realizing low-latency and energy-efficient in MEC scenarios
demand joint radio and computational management schemes.
It is well known that wireless channel conditions (path loss,
interference, etc.) affects the amount of energy consumption
required for data offloading. That is, poor channel conditions
are likely to lead to low achievable data rate at the air interface,
implying and increased energy consumption at the mobile
device as well as transmission latency.

Attending to the aforementioned arguments, this paper
presents a work in progress that aims at investigating integrated
task offloading and cell selection approaches able to, for
instance, select a given cell with favorable channel conditions
to perform data offloading. The rest of the paper is organized
as follows. Section II presents the related work. Section III
presents the foreseen technical approach. Section IV details
the envisioned contributions and also concludes the paper.

II. STATE OF THE ART

The task offloading problem has been studied in the litera-
ture with the aim of determine the appropriated site to perform
the task processing according to the conditions observed in the
system (i.e., energy constraints, latency requirements, channel
conditions, computing capabilities). Some of the proposed
solutions are based on greedy solutions, heuristics and well-
known approaches from the literature. Several research works
have tackled the task offloading problem in MEC-like system
deployments. The most relevant approaches proposed so far
are summarized in Table I, focusing on key aspects such
as energy and latency requirements, type of task offloading
(full or partial), algorithm type. We also highlight that the
vast majority of existing approaches does not include the cell
selection problem (i.e., tasks offloading is tackled assumed for
a given cell selection solution). In what follows, we provide a
brief analysis of the related work.

Huang et al. [3] proposed an algorithm to dynamically
perform the task offloading process taking into account the
wireless status. This approach is based on the Lyapunov
optimization algorithm, which aims to improve the energy
consumption [4], while satisfies the execution time required
for mobile application. However, the authors do not consider
the support of IoT devices in the cellular system. Similarly,
Zhang et al. [5] proposed a mechanism to minimize the energy
consumption during task offloading with MEC, although this
work provides a support of multiple devices under a 5G hetero-
geneous network, it does not consider the main IoT scenarios
for task offloading and assume that the MEC servers are not
constrained. The results demonstrated that energy consumption
can differ with the number of mobile devices, so there is

not a lineal relation between them. Yu et al. [6] proposed an
algorithm for task offloading dynamically. The main objective
of this approach is to minimize the cost generated by the
network through the development of supervised deep learning
model. In contrast to other proposals, this implementation is
modeled as a classification problem to search an alternative
for task offloading process considering the network conditions.
Similarly, Chen et al. [7] proposed an adaptative algorithm for
task offloading at the same time it considers the capabilities
MEC paradigm offer. The algorithm dynamically decide when
to perform the task offloading process based on the network
status. According to the authors, this work was evaluated with
two real world applications: license plates recognition and
voice recognition. As a result, the algorithm reduces the energy
consumption without considering the capacity restrictions of
the MEC server.

As shown in Table I, a drawback of existing approaches
is that are proposed for centralized solutions where based
on the complete information of the system determines the
offloading of the tasks. Furthermore, most of the studied works
do not consider the joint cell selection and delay minimization
problem, instead they assume a previous assignment, which is
mainly based on greedy solutions. In this sense, our envisioned
solution described in the next section aims to design a joint cell
selection and delay minimization algorithm, which operating
in a distributed way at each BS determines the appropriated BS
to offload the task according to delay and energy constraints.

III. FORESEEN RESEARCH WORK

This research aims to investigate novel joint cell selection
and task offloading solutions to provide enhanced support of
delay-sensitive services demanding computation-intensive ca-
pabilities. This section presents the foreseen technical approach
towards this challenging problem. Namely, we present the
system model and the corresponding optimization problem that
we are targeting.

A. System Model
The system model is illustrated in Figure 1. We consider a

cellular deployment with N cell sites and M IoT devices in the
service area. In each cell site, a MEC server is assumed to be
co-located with the BS equipment. Accordingly, the following
resource constraints per site are considered: a) radio channel
bandwidth used in the BS, and b) computing capacity of the
MEC server. In addition, in line with LTE/4G and NR/5G
radio interfaces, we assume OFDMA as an access method
in the air interface so that the total system bandwidth W is
divided into K resource blocks according to a frequency reuse
pattern. Therefore, the amount of radio resources is defined in
terms of the Kj resource blocks assigned to each BS j ∈ N .
Finally, it is worth clarifying that backhaul resources are not
considered in the present modelling as all tasks are assumed to
be processed either at the mobile device or the network edge.
In other words, in collaborative approaches between edge and
cloud computing resources, the described system model could
be easily extended by assuming that each cell site is connected
to the network core and central clouds by means of a backhaul
network with finite link bandwidth at each BS.

Additionally, we assume that each IoT device i have
specific delay and computation requirements to process task
Ai, which cannot be partitioned and should be processed as
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TABLE I. SUMMARY OF RELATED WORK.

Author Year Cell Selection Algorithm Task Offloading
Type

Saved
Energy

Reduce
Latency

Xiang et al. [8] 2019 No Fragment algorithm
for data processing Full No Yes

Ning et al. [9] 2019 No Hybrid offloading
algorithm Full No No

Sun et al. [10] 2019 No Hybrid offloading
algorithm Partial No Yes

Chen et al. [7] 2019 No Adaptative offloading
algorithm Full Yes Yes

Sun et al. [11] 2018 No Greedy algorithm Full Yes Yes

Wu et al. [12] 2018 No
Offloading algorithm
based on environment

identification
Partial Yes No

Yu et al. [6] 2017 No Heuristic Partial Yes No

Deng et al. [13] 2016 No Adaptative offloading
algorithm for multiple users Full No No

Zhang et al. [5] 2016 No Efficient computing
algorithm Partial Yes No

Huang et al. [3] 2012 No
Dynamic data

offloading algorithm
in IoT devices

Partial Yes Yes

Figure 1. System Model.

a whole either at the mobile device or edge node collocated
with the cell j serving the device (e.g., video stream analysis
[2]). Each computation task is modeled using a three-field
notation Ai(L

UL
i,j , γi,j , D

req
i ), where LUL

i,j is the input data file
(in bits) to be transferred through the uplink wireless channel
to the selected edge node j, γi,j denotes the workload (CPU
cycles/bit) for processing one-bit data, and Dreq

i is the hard
deadline imposed by the application to further process the
file and receive the corresponding response. In this sense, as
illustrated in Figure 1, the total delay experienced by a file
from a given device can be expressed as:

Dij = ϕiD
proc
i + [(1− ϕi)(D

TxUL
i,j +DEdgeProc

i,j +DTxDL
i,j )]

(1)
where ϕi ∈ {0, 1} is a variable that is equal to 1 if the task
is processed locally at the device i, or 0 if it is offloaded
to the mobile edge for processing purposes. Moreover, the
terms DTxUL

i,j and DTxDL
i,j denote the transmission delays in

the uplink and downlink, respectively, which can be derived
based on the corresponding transmission rates and the length
of the data to be offloaded. Notice that LDL

ij << LUL
ij could

be assumed due that the response from the edge server to the
mobile device is smaller in size than the data offloaded to

the MEC server. Furthermore, Dproc
i and DEdgeProc

i,j are the
delay observed if the task is processed at the mobile device or
MEC server, respectively. Following the formulation presented
in [14], we define the processing delay Dproc

i and DEdgeProc
i,j

as follows:

Dproc
i =

LUL
i,j γi,j

CDevice
i

(2)

where CDevice
i denotes the computing capacity (CPU cy-

cles/sec) of the mobile device. Similarly, the processing delay
at the MEC server can be computed as follows:

DEdgeProc
ij =

LUL
i,j γi,j

CEdge
i,j

(3)

where CEdge
i,j denotes the amount of computing resources (CPU

cycles/sec.) assigned by the edge node j to process the task of
device i. Furthermore, we can estimate the energy consumption
for the task processing at the mobile device as follows [15]:

Ei = (LUL
i γi)fi (4)

where fi denotes the required energy to process one bit at
the mobile device. The residual energy could provide an
appropriate hint to decide if a task is offloaded or computed
locally. In addition, Equation (4) could be extended to include
the energy consumption required to transmit the task to the BS
node.

B. Problem Formulation
Let bi,j = 1 the variable denoting whether or not device i

is associated with BS computing node j to offload tasks. The
joint cell selection and task offloading is that of determining
the most appropriate assignment B = {bi,j} in order to mini-
mize total delay of all devices while satisfying the computing
resources at each node j as well as the energy constraint of IoT
devices. The problem formulation can be written as follows:
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min
N∑
j=1

M∑
i=1

Dijbi,j (5)

s.t.
M∑
i=1

CEdge
i,j bi,j ≤ 1, j = 1, . . . , N (6)

Dij ≤ Dreq
i , i = 1, . . . ,M (7)

N∑
j=1

bi,j ≤ 1, i = 1, . . . ,M (8)

bi,j ∈ {0, 1} (9)

where (5) is the objective function defined in terms of delay
experienced by the application. In the case of constraint (6),
for each connected user node j will allocate an amount of
computing resources denoted as CEdge

i,j , so the allocation of
a total of devices to an edge node should not exceed the
maximum available computing capacity. In the constraint (7),
the delay Di,j refers to the sum of various delay components
considering the processing time (in MEC node j or locally on
device i) and transmission time on the wireless interface. In
either case, the total delay must satisfy the latency requirement
of the application.

The problem (5)-(9) is a combinatorial optimization prob-
lem due to the binary variable bi,j , so that solving the problem
with exact algorithms may be difficult even for a small number
of N and M . We aim to refine such a problem in order to make
it more tractable, e.g., reducing the number of constraints and
to model the association process as a message passing based on
pricing values of BSs. In that way, dual decomposition theory
could be applied to design a distributed approach to solve
the above problem. More specifically, the above formulated
problem could be refined depending on the implementation
and validation of the envisioned algorithms. In order to narrow
down the joint cell selection and task offloading problem, we
consider the following Research Questions (RQ):

• RQ1: ¿Is it possible to design a cell selection criteria to
steer device associations based on radio/computation
conditions at the MEC servers and delay requirements
of applications?

• RQ2: ¿How to design an efficient distributed cell
selection algorithm that operating with network partial
state information could find the optimal assignment of
communication and computation resources in order to
minimize the system delay?

• RQ3: ¿How to properly model a decision making
mechanism to determine if a task should be processed
locally, at the MEC server or a partial offloading?

We aim to conduct Montecarlo simulations to evaluate the
performance of our joint cell selection and task offloading
approach. Moreover, two task offloading approaches from
the literature will be used for benchmarking purposes. The
evaluation will be carried out in terms of the total average
delay achieved by the algorithms when offloading the tasks to
the edge server or computed locally at the mobile device. On
the one hand, we are interested in analyzing the suitability of
assigning mobile device i to edge server j in order to meet

the delay requirement imposed by task Ai. In this sense, we
aim to demonstrate that a cell selection procedure that accounts
for computing capacity of edge servers and delay requirements
from mobile devices, lead to better performance in terms of
overall system delay. Hence, a set of simulations varying the
available system bandwidth and the delay requirements from
applications are considered in the experimental analysis. On
the other hand, we want to evaluate the computing delay
conditions associated to the task processing under the variation
of the availability of computing capabilities at the devices and
the MEC servers. At this regard, we aim to compare the pro-
posed solution with related works from the literature that are
based on both computing and joint computing-communication
constraints.

IV. CONCLUSION AND FUTURE WORKS

In order to complement the design of task offloading
schemes in MEC scenarios, we studied the integration of
wireless channel conditions into a joint formulation. In par-
ticular, we have described the design of a joint task offloading
and cell selection schemes able to determine the serving
cell (MEC server) to each mobile device taking into account
device and network resource constraints and QoS requirements
of applications. We have discussed that the design of task
offloading solutions it is commonly tackled from a mobile
computing perspective (i.e., reduce energy consumption, etc.),
whereas few attention has been paid on how the cell selection
procedure would severely impact the observed latency due to,
for instance, the assignment of a device to an overloaded cell.
Taking this into account, we presented a work in progress
towards a novel task offloading and cell selection framework to
drive the assignment decisions based on applications’ require-
ments and the availability of radio and computing resources
at the MEC servers. Finally, we described the experimental
simulation to be used for validating our proposed approach.
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Abstract— Smoking remains one of the top 3 causes of illness in 

the US; it is one of top 5 causes of fire hazards in a home and is 

the single most preventable cause of illness and premature 

death in the US. The use of Deep Neural Networks (DNN) is 

demonstrated to detect cigarette smoke much sooner and with 

much higher accuracy than conventional smoke/carbon 

monoxide detectors used today. The hardware demonstration 

and prototype engages machine learning to not only 

discriminate cigarettes from other sources of smoke and 

carbon monoxide such as burning coal, wood or food – 

typically not possible with conventional smoke detectors, but 

also to accurately detect cigarette smoke produced in a room 

from a single cigarette when concentrations of component 

gases of cigarette smoke are extremely low. Our prototype also 

demonstrates the opportunity to classify and discriminate 

different levels of toxicity and flammability for spaces used by 

different people. 

Keywords- DNN; IoT; Cigarette; Toxic; Detection; Sensors 

I.  INTRODUCTION 

Secondhand smoke is a serious health hazard causing 
more than 41,000 deaths per year [1]. Secondhand smoke is 
not risk-free and even short-term exposure can potentially 
increase the risk of heart attacks. Secondhand smoke 
contains chemicals known to be harmful. These include 
formaldehyde, benzene, vinyl chloride, arsenic ammonia and 
hydrogen cyanide [2]. Smoking is not just a health hazard 
but also a significant fire hazard. The National Fire 
Protection Association (NFPA) reports [3] During 2012-
2016, an estimated annual average of 18,100 (5%) or, one in 
20 home (5%) structure fires were started by smoking 
materials. These fires caused almost one in four (23%) home 
fire deaths, and one in 10 (10%) home fire injuries. 

Conventional smoke detectors are mostly responsive to 

carbon monoxide and generally trigger an alarm when the 

concentration of carbon monoxide exceeds a given 

threshold. These detectors are also generally agnostic to the 

source of carbon monoxide and cannot discriminate 

cigarettes from burning coal, wood or food. The urgency to 

detect cigarette smoke – especially for people vulnerable to 

secondhand smoke or other toxic gases is much higher and 

warrants a trigger at a much earlier time. The trigger should 

also not require the concentration of cigarette smoke in the 

air to be as high as conventional detectors since early 

warning can potentially remove the source of cigarette 

smoke in areas especially sensitive to second hand smoke 

such as Hospitals. The detection of cigarette smoke should 

also be consistently accurate even at low concentrations of 

the components of cigarette smoke such as hydrogen 

cyanide, formaldehyde, benzene and carbon monoxide. 
The rest of the paper is structured as follows: Sections II 

& III describe conventional gas detector technology, 
methods and their weakness. Sections IV and V describe our 
prototype hardware used with AI algorithms instead and 
measurements. Section VI discusses the Training accuracy 
and loss of our DNN algorithms. 

II. CONVENTIONAL DETECTOR TECHNOLOGY AND USE 

Conventional gas detectors have evolved in their 
technology and how they are used as the need to detect CO 
and fires is emphasized by NFPA regulations.  

A. Technology 

Conventional gas detectors use a metal oxide sensor to 
measure the concentration of specific gases. Typically 
employed to prevent toxic exposure and fire, these cover a 
range of gases in the flammable and toxic range but most 
detectors include CO sensors. The metal oxide sensor 
technologies [4] work by engaging the relationship between 
electrical conductivity and oxygen partial pressure of a metal 
oxide sensor. The resistance of the sensor correlates to the 
concentration of the reducing gas. MQ Sensor modules 
include op-amp comparators and digital output pins to 
provide an indication of the presence of gases. Where a 
quantified measure of the amount of gas (in ppm) is needed, 
the bare sensor is used in conjunction with a microcontroller. 

B. Methods and Limitations 

The sensors used in Google Nest (2nd gen) [5] include the 
Smoke Split-spectrum sensor that detects the presence of 
smoke in the air using two wavelengths of light to look for 
smoke. An infrared light is used to detect larger particles 
generated by slow, smoldering fires, while a blue light 
detects smaller particles created by fast fires. All of 
commercially available sensors rely on the sensor itself to 
identify smoke, fires, flammable or toxic gases. Their 
common weakness is that detection of smoke, fire occurs too 
late when the premises are already on fire or when the 
concentrations of toxic/flammable gases are already 
dangerously high to be able to trigger the sensor. The 
primary cause for home structure fires – unextinguished and 
undetected cigarette butts cannot be detected by conventional 
detectors simply because the concentrations of emissions 
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produced by a single cigarette are too low to trigger 
conventional detectors. 

III. SENSORS AND METHODS USED 

We used industry standard MQ sensors but our methods 

to detect toxic and flammable gases relied on measurements 

of changes in patterns of component gas concentrations and 

their recognition instead of direct measurements of gas 

concentrations.  

A. Pattern Recognition 

Pattern recognition works well for toxic gases that have 

signature patterns of component gases – as typically found 

in cigarette smoke or vape. Gases found in hospitals 

(Anesthetic’s, aerosolized medications and chemicals used 

as a fixative such as formaldehyde, toulene etc.), Waste 

water treatment plants, Restaurants (CO, CO2, N2, CH4), 

Mechanical/boiler rooms (refrigerants), Pharmaceutical 

Labs (HCN), Oil refineries (BTEX), Cold storage (NH3) 

and Industrial manufacturing. These classifications help 

Hospitals, Workplaces and Schools to monitor toxicity and 

flammability according to the tolerance people have in 

designated areas to cigarette smoke or other toxic gas 

emissions  

B. Detection Thresholds 

Our prototype enables accurate detection of a toxic 
emission at much lower concentrations of component gases 
of the emission by using Classifiers trained to detect 
signature patterns of small changes in these component gas 
concentrations as measured by MQ sensors using neural 
networks.. 

IV. MICROCONTROLLER HARDWARE USED 

The easiest way to be able to control and automate the 
measurement tasks and sequence of data acquisition from an 
array of sensors is the use of an inexpensive 8b 
Microcontroller – the primary component of an IoT system. 

 
 
 
 
Figure 1. Microcontrollers with an arrays of Gas sensors are used to build a  
                Classifier (top).  Measurement flowchart (at right) 

 

A. IoT System Hardware 

The IoT type hardware we assembled uses three 8-b 

RISC Microcontrollers (ATmega2560 in the Arduino mega 

Dev Board) that can concurrently support 16 sensor IO to 

collect training data (Figure 1). Conventional sensors used 

consume significant current (150 mA/sensor at 5V) to heat 

sensors before they can function. Since the Dev Board 

sources insufficient current to support all 12 sensors used 

(Table 1) to capture training datasets, three ‘off-the-shelf’ 

Dev Boards were engaged to build this prototype. Air was 

sampled once every 2 seconds by the sensor array to balance 

size of dataset Vs accuracy delivered. A NodeMCU WiFi 

module is used to drive sensed data wirelessly for training 

and/or inference. C-code was developed to read and print the 

values the sensors sampled every second.  

TABLE I: SENSITIVITIES OF AN ARRAY OF GAS SENSORS TO EACH COMPONENT GAS MEASURED BY A SENSOR [7] 
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Data from the sensor array was normalized. By scaling data 

between 0 and 1, the classifier can read the data more 

effectively and converge faster [6]  

B. Building a Classifier using a DNN 

The algorithm used to build this classifier was a Deep 

Neural Network (DNN). A Deep Neural Network is a certain 

kind of ML algorithm that is represented as a hierarchical 

(layered) organization of neurons (similar to the neurons in 

the brain) with connections to other neurons [6]. Input data is 

passed through the first layer of the DNN and the hidden 

layers until it reaches the output layer, which is where the 

DNN makes a prediction on how to classify the input data 

[6]. The DNN recognizes patterns in the data and learns how 

to classify accurately through a learning process which is 

updating the weights of the neural network through a 

mechanism called Backpropagation.  

The sensor dataset is a quantitative measure of the 

concentrations of a unique combination of different gases 

corresponding to a given source (See Table 1).  The DNN is 

used to classify the source of the gases emitted using this 

data from multiple sensors. The combination of component 

gases in the corresponding sources measured across several 

sensors are compiled into ‘training data’ and passed through 

the DNN. The DNN then learns how to detect the source 

given the pattern detected by the gas sensor array of the 

component gas combinations. Prior to the classifier learning 

the data, the data was split into two parts: the training set and 

the testing set. The testing set was not used in training and 

was only used to measure the accuracy of the DNN 

classifier. The testing set accuracy tells us how well or badly 

the classifier performed, which gives insight into how to 

fine-tune the hyperparameters of the DNN. 
For the DNN to be able to perform on the data with high 

accuracy the parameters had to be fine-tuned. After multiple 
trials the most optimal parameters for the DNN were having 
4 layers-14 nodes in the first layer, 13 in the second, 5 in the 
third, and 1 in the fourth. Also, a dropout chance of 20% was 
added after every layer before the output. Furthermore, the 
activation function used for every layer except the output 
layer was ReLU (Rectified Linear Unit); the activation 
method for the output layer was a Sigmoid function 

C. Measurement Setup 

We used a large space (garage) that measures 32’ x 20.3’ 
with a 10.5’ ceiling. The area and volume of this space is 650 
sq ft and 7K ft3. We flushed the air in garage with multiple 
exhaust fans, and then closed doors giving sensor array 
enough time to reach a stable unchanging reading as 
representative of environment (Figure 1). Smoke rises 
upwards due to it being at a higher temperature when 
emitted. However, it settles as it cools in the air with sensors 
placed in our test space a few feet off the ground 
demonstrating sufficient sensitivity within 300 seconds of 
lighting the cigarette 

V. MEASUREMENTS 

Our measurements had a primary goal of characterizing 
the patterns in component gas concentrations from toxic, 
flammable and similar but non-toxic emissions such as 
burning food or incense while also providing enough 
‘training’ to the neural network to discriminate gas detection 
at different levels of toxicity, flammability and also be able 
to recognize post priori the presence of toxic emissions at a 
previous time.  

A. Speed of Source Detection 

We lighted a cigarette and used a bulb syringe to ‘puff’ 

at the lighted cigarette/vape (neither of us smoke) to emulate 

emissions typically seen from a cigarette/Vape for 9 

minutes. We observed the first response of the sensor to gas 

emissions from any source was proportional to the distance 

the source was from the sensor. We conclude that the 

response time of the sensor is limited by the time it takes for 

component gases of the source to diffuse through the air to 

the sensor. The minimum time it takes for the sensor array 

to correctly identify the emission source is characterized as 

the speed of gas detection. 

 

 
Figure 2. Changes registered in sensor array are different – Cigarette Vs   

Vape patterns can be discriminated by Classifier (MQ5   

 responsive to CO as well. 

Two peaks were observed at very small changes in 

concentrations (from a single cigarette/vape) (Fig 2). The 

first peak registers initial contact at sensors of cigarette/vape 

emissions followed by diffusion away from sensor. The 

second peak registers extinguishing cigarette/vape, diffusion 

time after extinguishing at the Sensor  

B. Residual Gas Component Patterns 

Initial data is captured by the sensors and processed as a 
training set given the sensitivities of each sensor to 
component gases of the toxic emission (Table 1). We then 
extinguished the cigarette/vape, continued measuring sensor 
data for another 10–500 minutes to characterize cigarette 
smoke ‘residue’ post cigarette extinguishing (Figure 3). 
Classifiers using this data can detect cigarette smoke that 
lingers from the previous 24 hours after the cigarette was 
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extinguished – useful in hospitals, hotels, schools to classify 
toxicity of spaces to be used by different people. 

C. Cigarettes Vs Burning Food 

Emissions from Burning Food (Figure 4) are relatively 
harmless but trip conventional smoke/CO detectors anyways. 
Measurement data sets from burning food train the neural 
network to learn these patterns from burning food and 
discriminate it from Cigarette/Vape emissions 

 
Figure 3. Cigarette emission residual component gases in room characterized 

for its signature pattern that persists long after cigarette extinguished. 

  
Use of Pattern Recognition thus eliminates ‘False 

Alarms’ from CO detection in the ambient when 
conventional detectors are calibrated to trigger at low CO 
concentrations 

 
Figure 4: Classifier to discriminate Burning Food emissions from 

Cigarette emissions sensed by sensor array 

Figure 5. Speed of Source detection, reproducibility and consistency of 

Cigarette emissions Classifier demonstrated with measurements of 2 

different levels of toxicity using the same source (Cigarettes). 

D. Toxicity Level Classification 

The Sensor array response to 1 cigarette is similar to 
emission from 3 Cigarettes emissions. Classifiers built using 
these measurements can discriminate between different 
levels of. toxicity (Figure 5). 

From the above observations, we demonstrate that 
cigarette smoke gas component density patterns at even 
small concentrations (from a single cigarette) that are 
detected by the sensors, are sufficient for the DNN to 
correctly classify the emission source as a cigarette – 
enabling a DNN based gas detection to be much faster than 
conventional smoke detectors that rely exclusively on CO 
gas concentration as the threshold for detection.  

VI. ACCURACY OF CLASSIFIERS 

The algorithm to train a DNN classifier is described in this 
section 

A. Training Loss and Accuracy of Classifier 

To train a DNN classifier the training data has to be split 

into an “X_train” dataset and “Y_train” dataset. The 

“X_train” dataset consists of just the sensor readings as a 

function of time.  The “Y_train” dataset consists only of the 

corresponding source name. While the DNN classifier was 

training on “X_train” and “Y_train” the classifier gave two 

different metrics: the training accuracy and the training loss, 

which were for each epoch. An epoch is one cycle through 

the full training data [9]. Three different classifiers were 

created. The first classifier was built to detect between 1 

cigarette Vs 3 cigarette emissions (Fig 6a, 6b), the second 

was built to discriminate between 1 cigarette Vs 1 vape (Fig 

7a, 7b), and the third was built to discriminate between a 

Cigarette or Vape Vs Burning food emissions (Fig 8a, 8b). 

The training accuracy reached >95% accuracy for all three 

classifiers (Figure 6b, 7b & 8b).  

The training loss, which was calculated using binary 

cross-entropy, reached ~19% [Fig 7a] and ~10%[Fig 8a] 

after ten epochs for the first and second classifiers 

respectively. And for the third classifier, the training loss 

reached around ~8% (Figure 8a) after only 5 epochs. The 

training loss could have decreased to below 5% - however, 

to prevent the classifier from overfitting, the epochs were 

shortened up until the training loss for the third classifier 

reached a minimum of at least 10%. To test how well the 

classifier will perform on data it has never seen, the testing 

set was broken into the X_test and Y_test sets 
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(a) 

 

(b) 

Figure 6. Training Vs Number of epochs in Classifier for 1 Vs 3 Cigarette 

emissions to discriminate Cigarette emissions at different levels of toxicity 

for (a) Accuracy and (b) Loss 

  The training loss, which was calculated using binary cross-

entropy, reached ~19% [Fig 7a] and ~10%[Fig 8a] after ten 

epochs for the first and second classifiers respectively. And 

for the third classifier, the training loss reached around ~8% 

(Figure 8a) after only 5 epochs. The training loss could 

have decreased to below 5% - however, to prevent the 

classifier from overfitting, the epochs were shortened up 

until the training loss for the third classifier reached a 

minimum of at least 10%. To test how well the classifier 

will perform on data it has never seen, the testing set was 

broken into the X_test and Y_test sets. 

 

(a) 

 

(b) 

Figure 7: Training Vs Number of epochs in Classifier for Cigarette Vs 

Vape emissions to discriminate Cigarette emissions with similarly toxic 
emissions from Vape for (a) Accuracy and (b) Loss 

The X_test only consists of never before seen data (by the 

classifiers) that only contains the sensor readings of the 

gases. The “Y_test” dataset only contains the corresponding 

sources of the “X_test”. 

 

(a) 

 

(b) 

Figure 8: Training Vs Number of epochs in Classifier for Cigarette Vs 

Vape emissions to discriminate Cigarette emissions with similarly toxic 
emissions from Vape for (a) Accuracy and (b) Loss 

The “X_test” was passed through the classifier and 

the resulting predictions are named “Y_predictions”. The 

“Y_predictions” and “Y_test” matched 100% accurately to 

each other. This is plausible given that the training accuracy 

reached >95% as shown in Figure 6b,7b & 8b 
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VII. CONCLUSIONS AND FUTURE WORK 

We demonstrate, using a simple inexpensive IoT system, 
equipped with an array of gas sensors and WiFi connectivity, 
the ability of a DNN to quickly identify a toxic gas by 
recognizing patterns in the concentrations of its component 
gases. These patterns are recognized at very low component 
gas concentrations enabling a DNN based gas array sensor 
to provide early and accurate detection while toxic emissions 
still have low concentrations. The DNN based detection is 
also limited only by the speed of toxic gas diffusion to the 
sensor arrays enabling the toxic gas detection to take place 
much sooner than conventional smoke/CO/gas sensor-based 
detectors 
We see the need to extend these intelligent sensors to 
function as a distributed network of a few hundred IoT 
devices in a hospital or school for example, driving data 
wirelessly to a common AI hardware platform that could also 
support other AI workloads in the building as the use of AI 
proliferates.  
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IMPAQT Miniaturized Underwater Acoustic Telemetry Platform: 

Transmitter Node System Design 

 
Abstract—The marine environment and its natural resources 

are an essential part of the geographical ecosystem and a great 

food source for humans. In recent years, terrestrial wireless 

sensor networks and Internet of Things (IoT)  technologies have 

developed rapidly; however, due to the limitation of signal 

propagation in water, there is less development and 

advancement in the underwater sensors network domain. 

IMPAQT is a European research project aiming at the 

development of the technologies and methods to promote and 

support inland, coastal zone and offshore Integrated Multi-

Trophic Aquaculture (IMTA) sites. As part of the IMPAQT 

project, a novel underwater acoustic telemetry platform has 

been proposed and is under development, to provide a method 

to collect and transmit sensors data underwater. The proposed 

platform architecture consists of several ultrasonic transmitter 

sensor nodes and a gateway buoy as a data aggregator interface. 

Transmitter nodes will collect and log underwater sensor data 

and transmit it at regular intervals to the gateway buoy and the 

gateway buoy will send the collected data to a data management 

system using a Long Range (LoRa) communication link. The 

IMPAQT Transmitter node has an integrated accelerometer 

sensor, a temperature sensor, and a pressure sensor onboard. 

There is also an Infrared Data Association protocol (IrDA) 

interface that can be used to attach any external auxiliary sensor 

module to the transmitter node and configure the transmitter 

node to collect the external module’s data. The current version 

of the transmitter node under development can be attached to 

seaweed, or it can be used as a floating sensor node in the water 

and due to its small size and weight design it almost has no 

impact on the working environment. In this paper, the 

background of the miniaturized underwater sensors is studied, 

and design method of the transmitter node is discussed. Future 

work will focus on the test and deployment of the transmitter 

and gateway in marine deployments.  

Keywords- Biotelemetry; Underwater communication; 

Underwater sensors network; underwater sensor node;  

I.  INTRODUCTION 

According to the latest United Nations world population 

estimation, by the year 2050, the population of the earth will 

reach approximately 10 billion people [1], and this increase 

will result in higher demand for food and consequently 

seafood as it is one of the main source of food and nutrition 

for many people. In the past, capture fisheries productions 

were the primary source of the seafood, but this has been 

changed in 2012, where aquaculture production volumes 

exceeded that of the capture fisheries, and it is seen to be 

increasing rapidly in recent years to meet demand [2]. To 

provide more sustainability, reduce environmental impacts, 

and promote economic gains, integrated multi-trophic 

aquaculture (IMTA) is gaining popularity among marine 

farmers. In IMTA, farmers combine fed species (e.g., fish, 

shrimp, oysters) with extractive species (e.g., seaweed, 

mussels), and extractive species will use the by-products of 

the fed species, reducing the environmental impact of the 

sites and also to provide commercial profit to the farmers.  

IMPAQT is a European project aimed at promoting and 

supporting the development of IMTA sites by providing a 

multi-purpose, multi-sensing, and multi-functional data 

management platform.  To provide accurate and relevant 

information about the underwater environment, a novel 

miniaturized low-power and low-cost underwater transmitter 

node and a gateway buoy receiver have been proposed and is 

being evaluated to collect information from sensors and 

transmit it to the inland data aggregators. The transmitter 

node has integrated onboard sensors, and it is capable of 

interfacing with external sensor modules using the optical 

IrDA protocol. 

The IMPAQT underwater telemetry platform is an 

ongoing project, and currently, various design parameters 

and solutions are under evaluation and development. 

In section II, the current state of the related research 

projects studied. Section III describes the development of the 

transmitter node circuit, design parameters and, also power 

analysis of the circuit. Section IV addresses the current state 

of the project and plans for improvements. 

II. BACKGROUND AND RELATED WORK 

With the rapidly increasing and evolving aquaculture 

market sector, it is essential to monitor and analyze the effects 

of the methods that have been used in aquaculture, to reduce 

the costs and improve stability and sustainability of the sites. 

There is experimental monitoring in the labs and tanks. 

However, due to the differences between the experimental 

environment and real aquaculture environments, it is hard to 

compare accurately, especially when it comes to the biasing 
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caused by the handling of marine animals [3]. In [4], authors 

proposed the concept of Precision Fish Farming intending to 

use scientific methods to manage the fish production by 

enabling farmers to monitor, control and document the 

biological process in fish farms. With the advancement of 

chemistry and electrical sensing technologies, it is now 

possible to develop miniaturized attached sensor devices to 

track and study the natural behaviour of marine animals and 

plants in their cultural environment. 

To achieve the goal mentioned earlier, in [5], authors 

describe the development of an ultra-low-power sensor 

device, AE-FishBIT, for monitoring physical activities and 

respiratory frequency of the farmed fish, using the onboard 

accelerometer sensor, attached to the fish, and logging the 

sensors’ information. AE-FishBIT is not able to transmit the 

data, and the fish is required to be captured to download the 

sensors data, however, due to its form factor and size, it is 

easy to attach and detach the device to the operculum of the 

fish. Almeida et al. [6] monitored the behaviour of Lusitanian 

toadfish using accelerometry data provided by the externally 

attached AccelTag, which was able to log, recognize and 

transmit behaviour type of the fish.  

There are also devices for tracking the movement of the 

fish in dams, fisheries, and cages, shown in Figure 1. In [7], 

authors have developed the Juvenile Salmon Acoustic 

Telemetry System (JSATS), to identify and track the 

movement of juvenile salmon in dams and rivers. JSATS tags 

are extremely compact, with a length of 15mm and a diameter 

of 3.38mm, which allows them to be injected using a needle 

into the body of the fish. They can transmit ultrasonic pings 

for a year with a 15-second ping interval. But JSATS tags are 

only capable of transmitting a pre-programmed unique 

identification code and temperature data, and they are not 

able to provide any other sensor data. 

Another method to monitor the marine environment is to 

use unmanned underwater vehicles. SeaSmart has introduced 

three patented wireless drones to collect environmental data, 

for instance, oxygen, salinity, biomass, and temperature, by 

travelling through the cage to collect data and returning to 

surface to transmit the collected information. [8]. 

There are also efforts on monitoring IMTA and 

aquaculture sites using remote sensing technologies, in [9], 

authors have used multi-sensor (satellite, unmanned aerial 

vehicle, and ground  spectroradiometer) remote sensing 

techniques to monitor seaweed aquaculture in the Yellow 

Sea.  

III. MATERIALS AND METHOD 

The focus of IMPAQT telemetry project is on IMTA 

sites, where all sensors will be deployed in a bounded area, 

and it is considered that the gateway buoy will be in a 

maximum distance of 100m from each sensor tag. 

In Figure 2, the IMPAQT telemetry system is shown, 

and in this paper, the design method of the transmitter node 

will be discussed. The goal of the transmitter is to transmit 

sensors data provided by its internal sensors or externally 

connected sensor to the gateway buoy using acoustic waves. 

The IMPAQT transmitter node needs to be miniaturized to 

minimize its impact on the deployment environment. 

Considering the size and power consumption of the tag, 

accordingly, the block diagram design in Figure 3, and 

associated system design is suggested. Regarding the receiver 

aspect of the transceiver system, the buoy mounted gateway 

board is an application specific system designed in 

conjunction with the transmitter board described in detail in 

this publication. It is anticipated that the full transceiver 

system (gateway and transmitter) and its deployment will be 

described in full in a follow on publication. 

A. Transducer material selection 

PZT materials are one of the most widely used 

piezoelectric materials, and they have been used in different 

applications, in particular as fish tags [6][7][10]. In [11], four 

types of PZT materials’ (Customized Type VI, Type VI, Type 

I and Type II) energy consumption, source-level, and 

frequency response has been compared. From the energy 

consumption aspect, PZT Type VI consume more energy 

comparing to other types, but they also provide better source 

level and frequency response compared to others. By 

comparing the results, type VI had a good balance between 

the source level and power consumption; consequently, for 

designing the JSATS tags, they have used PZT Type VI 

material.  

A B 

Figure 1.  (A) JSATS Tags   (B) AE-FishBIT tags 

Figure 2.  IMPAQT telemetry platform 
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For IMPAQT transmitter tags, a PZT type VI 

(SMC3H3F380) from STEMiNC Inc, with an outer diameter 

of 3mm and height of 3mm, with the resonance frequency of 

380 KHz ± 15KHz has been selected.  

B.  Transducer driver 

To estimate the required driving voltage for the piezo 

transducer to provide sufficient detection range, it is 

necessary to study underwater acoustic models and signal 

absorption loss. The sound emitted by the piezo transducers 

is attenuated by two main factors, viscous absorption factor, 

and chemical relaxation effect. The selected piezo material 

resonance frequency is at 380KHz, and at this frequency, 

viscous absorption and magnesium sulphate relaxation effect 

is significant, which can be estimated by the following 

simplified formula [12] : 

 

𝛼 = 0.106
𝑓1𝑓2

𝑓2 + 𝑓1
2 ⅇ(𝑝𝐻−8) 0.56⁄  

 +0.52 ( 1 +
𝑇

43
) (

𝑆

35
)

𝑓2𝑓2

𝑓2 + 𝑓2
2 ⅇ−𝑧∕6 

 

 +0.00049𝑓2ⅇ−(
𝑇

27
+

𝑍

17
)
   (1) 

 

Where in the proposed design and operating 

environment, f=380KHz (Piezo resonance frequency), T = 

8°C (water temperature), S = 35ppt (seawater salinity), pH = 

8.1 (current ocean pH level [13]), z = 50m (estimated 

working depth), and relevant relaxation frequencies are: 

 

 𝑓1 = 0.78 (
𝑆

35
)

1

2
ⅇ

𝑇

26   (for boron), (2) 

 𝑓2 = 42ⅇ
𝑇

17 (for magnesium) . (3) 

 

Using (1) by substituting the parameters, the absorption 

loss of 92.4 dB per kilometer has been estimated for an 

infinitely narrow acoustic beam, however, practical beams 

spread as they propagate through the water, in order to 

mitigate the spreading loss, (4) can be used for the 

transmission loss at the distance of R [14]: 

 

 𝑇𝐿 = 𝑇𝐿1 +  𝛼𝑅,  (4) 

 

 𝑇𝐿1 = 20logR ,  (5) 

In the IMPAQT project, a maximum distance of 100m 

is considered between the transmitter and receiver nodes, 

which leads to an overall transmission loss of 49.2 dB at 

100m.  

To provide an adequate sound level, a voltage booster 

circuit has been implemented using TPS61040 controller, 

which can boost the 2.5-3.7v (LiPo cell voltage) up to 28v. 

 The average current of the piezo transducer can be 

estimated by (6) [15] : 

 𝐼𝐴𝑣𝑔 =
2𝑄

𝑇
= 2𝐶𝑉𝑓  (6) 

Where Q = Charge in the piezoelectric transducer, 

T=Period of the driving signal, C= 70pF (Static capacitance), 

V = 20v (Driving voltage), F = 380KHz (Resonance 

frequency). Using the parameters of the selected piezo 

material, the average current would be about 1mA. 

 The tag’s sound level can be programmed using the 

IrDA interface based on the use case.  ADG1438 analog 

switch IC has been used to drive the piezo terminals at the 

boosted voltage using PWM modulation provided by the 

microcontroller. 

C. Sensors and external interface 

 An accelerometer sensor (LIS3DH), and a pressure and 

temperature sensor (MS5837-30BA) are included in the 

IMPAQT transmitter tag to monitor the aquaculture 

environment and tag movement. TFBS4650 is also selected 

as the external sensors interface, where auxiliary sensor 

boards and modules can communicate with the transmitter 

tag to transmit their sensor value to the gateway buoy, at real-

time or at predefined intervals. External sensor modules can 

also trigger the tag’s microcontroller to wake up and read the 

external sensors data using the low-power infrared wake-up 

circuit. The evaluation boards and IrDA transceiver have 

been shown in Figure 4. 

D. Power consumption and battery management 

The transmitter tag runs on a 260mAh LiPo battery 

(Part number:LP551246). There is a compact battery charger 

and a battery supervisor circuit on the board, to charge and 

cut off the battery in the case of full discharge.   

Considering the 260mA battery, total sleep current of 

6.34uA (refer to Table I which is based on data available on 

individual product datasheets), the maximum current of about 

Component Sleep 

current 

(μA) 

Typical supply 

current (μA) 

Max supply 

current (μA) 

BQ24040 1 1 6 

LTC2935 0.5 0.5 0.5 

TPS6104 1 25 25 

NCP170AMX300 0.5 0.9 0.9 

TFBS4650 0.01 75 2000 

ADG1436 1 170 280 

STM32L062x 0.23 312 780 

MS5837-30BA 0.1 20 1250 

LIS3DH 2 2 11 

Piezo 0 1000 1000 

Figure 3.  Block diagram of IMPAQT Acoustic Transmitter Node  

TABLE I COMPONENTS POWER CONSUMPTION 
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5.3 mA when sampling all sensors, and about 1.6mA while 

transmitting the data, based on user configuration the battery 

life can last from two weeks to three months. 

To maximize the battery life, the tag can be 

programmed via IrDA interface to wake up and read the 

sensors data at regular intervals, while also an external sensor 

or module can force the tag to wake-up using the wake-up 

circuit.  

IV. CONCLUSION AND FUTURE WORK 

The proposed telemetry method, using a transmitter and 

a gateway buoy can help farmers and researchers to monitor 

and analyze underwater water environment. The proposed 

transmitter tag incorporates an accelerometer, a temperature 

sensor and a pressure sensor. However, the main novelty of 

this work is its size and that it is designed to be attachable to 

other sensors and modules. This project is a work in progress, 

and it is considered to improve aquaculture sites monitoring 

as a part of IMPAQT project, which is ongoing. 

Currently, the transceiver system prototype boards, 

shown in Figure 4, have been developed and evaluated in air 

and 200 bit per second achieved using binary phase-shift 

keying and On-Off keying modulations at 40KHz frequency. 

It is expected that by using 380KHz piezo materials, the 

bitrate will increase significantly, which will reduce the 

overall battery consumption and lead to more frequent data 

capturing and transmitting. Based on the components that 

have been selected, it is estimated that the final dimension of 

the tag would be less than 5 cm x 2 cm x 2 cm. This system 

will be tested in an aquatic environment and reported on in a 

subsequent publication. 

In future, more studies can be done on the optimization 

of the battery consumption, bitrate improvement and more 

miniaturized design. Also, there would be an opportunity to 

connect the tag to the sensors developed by other colleagues 

in IMPAQT project to provide a better understanding of 

underwater environments. 
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Figure 4.  IMPAQT telemetry platform evaluation board 
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