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SECURWARE 2019

Forward

The Thirteenth International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE 2019), held between October 27, 2019 and October 31, 2019 in Nice, France,
continued a series of events covering related topics on theory and practice on security, cryptography,
secure protocols, trust, privacy, confidentiality, vulnerability, intrusion detection and other areas related
to low enforcement, security data mining, malware models, etc.

Security, defined for ensuring protected communication among terminals and user applications
across public and private networks, is the core for guaranteeing confidentiality, privacy, and data
protection. Security affects business and individuals, raises the business risk, and requires a corporate
and individual culture. In the open business space offered by Internet, it is a need to improve defenses
against hackers, disgruntled employees, and commercial rivals. There is a required balance between the
effort and resources spent on security versus security achievements. Some vulnerability can be
addressed using the rule of 80:20, meaning 80% of the vulnerabilities can be addressed for 20% of the
costs. Other technical aspects are related to the communication speed versus complex and time
consuming cryptography/security mechanisms and protocols.

Digital Ecosystem is defined as an open decentralized information infrastructure where different
networked agents, such as enterprises (especially SMEs), intermediate actors, public bodies and end
users, cooperate and compete enabling the creation of new complex structures. In digital ecosystems,
the actors, their products and services can be seen as different organisms and species that are able to
evolve and adapt dynamically to changing market conditions.

Digital Ecosystems lie at the intersection between different disciplines and fields: industry, business,
social sciences, biology, and cutting edge ICT and its application driven research. They are supported by
several underlying technologies such as semantic web and ontology-based knowledge sharing, self-
organizing intelligent agents, peer-to-peer overlay networks, web services-based information platforms,
and recommender systems.

To enable safe digital ecosystem functioning, security and trust mechanisms become essential
components across all the technological layers. The aim is to bring together multidisciplinary research
that ranges from technical aspects to socio-economic models.

We take here the opportunity to warmly thank all the members of the SECURWARE 2019 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to SECURWARE 2019. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the SECURWARE 2019 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that SECURWARE 2019 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of security
information, systems and technologies. We also hope that Nice, France provided a pleasant
environment during the conference and everyone saved some time to enjoy the charm of the city.
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On the Compositionality of Dynamic Leakage
and Its Application to the Quantification Problem

Bao Trung Chu, Kenji Hashimoto, Hiroyuki Seki
Nagoya University, Japan

Email: trungchubao@sqlab.jp, {k-hasimt, seki}@i.nagoya-u.ac.jp

Abstract—Quantitative Information Flow (QIF), as summed up by
Smith (2019), is traditionally defined as the expected value of in-
formation leakage over all feasible program runs. The traditional
QIF fails to identify vulnerable programs where only a limited
number of runs leak large amount of information. As discussed
in Bielova (2016), a good notion for dynamic leakage and an
efficient way of computing the leakage are needed. To address
this problem, the authors have already proposed two notions for
dynamic leakage and a method of quantifying dynamic leakage
based on model counting. Inspired by the work of Kawamoto
et al. (2017), this paper proposes two efficient methods for
computing dynamic leakage, a compositional method along with
the sequential structure of a program and a parallel computation
based on the disjoint value domain decomposition. For the former,
we investigate both exact and approximated calculations. For
implementation, we utilize Binary Decision Diagrams (BDDs) and
deterministic Decomposable Negation Normal Forms (d-DNNFs)
to represent Boolean formulas in model counting. Finally, we
show experimental results on several examples.

Keywords–Dynamic leakage; Composition; Quantitative Infor-
mation Flow; BDD; d-DNNF.

I. INTRODUCTION

Since first coined by [15] in 1982, the noninterference
property has become one of the main criteria for software secu-
rity [1][5]. A program is said to satisfy noninterference if any
change in confidential information does not affect a publicly
observable output of that program. However, noninterference is
so strict that it blocks many useful, yet practically safe systems
and protocols, such as password checkers, anonymous voting
protocols, recommendation systems and so forth. Quantitative
Information Flow (QIF) was introduced to loosen the security
criterion in the sense that, instead of seeking if there is a case
that a confidential input affects a public output, computing
how large that effect is. That is, if the QIF of a program is
insignificant, the program is still judged as secure. Because of
its flexibility, QIF has gained much attention in recent years.
However, it has an inherent shortcoming, as shown in the
example below.

Example 1.1: Consider the following program taken from
[10].

if source < 16 then output← 8 + source
else output← 8

Assume source to be a non-negative 32-bits integer which
is uniformly distributed on that domain. Then, there are 16
possible values of output, ranging from 8 to 23. Observing
any number between 9 and 23 as an output reveals every-
thing about the confidential source, whilst observing 8 leaks
small information; there are many possible values of source
(0, 16, 17, 18, . . . , 232−1), which produce 8 as the output. QIF

is defined as the average of the leakage over all possible cases.
So, it fails to capture the above situation because we cannot
distinguish vulnerable and secure cases if we take the average.
Hence, as argued in [4], a notion for dynamic leakage should
reflect individual leakage caused by observing an output.

As illustrated in Figure 1, there are two different scenarios
of quantifying dynamic leakage. We call the first scenario,
which corresponds to diagram (A), Compute-on-Demand
(CoD), and the second, which corresponds to diagram (B),
Construct-in-Advance (CiA). A box surrounded by bold lines
represents a heavy-weighted process, which requires extensive
computing resources. The main difference between (A) and
(B) is the relative position of the heavy-weighted process, i.e.,
in (A), the process is put after augmenting an observed output
and then the process is run each time we need (on demand) to
compute dynamic leakage, or, in (B) the process is put before
augmenting an observed output (in advance) so that we run
the process only once for one program. In CoD, the heavy-
weighted process is a projected model counting, for which
off-the-shelf tools, such as SharpCDCL [32], DSharp-p [27]
and GPMC [28] can be used. In CiA, the heavy-weighted
process is the one that generates BDD [22] or d-DNNF
[13], which are data structures to represent Boolean formulas
given in Conjunctive Normal Form (CNF). Generally, it takes
time to generate BDD or d-DNNF but counting all solutions
(models) by using them is easy. CiA takes full advantage of
this characteristic. Consider again Example 1.1 above. The
set of all feasible pairs of (source, output) is 232. Even for
such a simple program, using BDD or d-DNNF to store all
those pairs is quite daunting in terms of both memory space
and speed. Therefore, for programs with simple structure but
a large number of input and output pairs, CoD works better
than CiA. On the other hand, CiA is preferable to CoD when
quantifying dynamic leakage is required many times on the
same program. However, CoD or CiA alone is not a solution
to the problem of scalability.

In this paper, we introduce two compositional methods for
computing dynamic leakage inspired by the work of Kawamoto
et al. [16] on the compositionality of static leakage. One
method is to utilize the sequential structure of a given program
P = P1;P2. We first analyze P2 and then compute the leakage
of P by analyzing P1 based on the result on P2. For the
sequential composition, besides the benign yet time-consuming
exact counting based on Breadth-First-Search (BFS), we also
investigate an approximated approach. For an upper bound of
the count, we leverage the results on each sub-program by
Max#SAT in [14]. For a lower bound of the count, we simply
use Depth-First-Search (DFS) with timeout, i.e., DFS will stop
when the execution time exceeds the predetermined timeout.

The other method we propose is based on the decomposi-

1Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7
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Figure 1. (A): Compute-on-Demand, (B): Construct-in-Advance.

tion of the value domain of a program. For example, we divide
the input domain as I = I1 ∪ I2 and the output domain as
O = O1 ∪O2 of a program P (I,O), compute the leakages of
P (Ii, Oj) for i = 1, 2 and j = 1, 2, then use them to compute
the leakage of the whole program P (I,O). This value domain
based decomposition has two merits. First, it is flexible yet
simple to adjust the components. Secondly, the exact dynamic
leakage of the composed program can be simply derived by
taking the sum of those of its components. Despite the fact
that the number of components can be large, this approach is
promising with parallel computing.

In summary, the contributions of this research are four-fold:

• We propose a compositional method for dynamic
leakage computation based on the sequential structure
inside a given program and the composability of the
leakage of the whole program from those of subpro-
grams.

• We propose another compositional method based on
value domains, which is suitable for parallel comput-
ing.

• We propose an approximated approach where we
upper bound the count using Max#SAT problem and
lower bound the count by DFS with predetermined
timeout.

• We prototype a tool that can do parallel computation
based on value domain decomposition and both exact
counting and approximated counting for the sequential
composition. By using the tool, we investigate feasi-
bility and advantages of the proposed compositional
methods for computing dynamic leakage of several
examples. The tool can be accessed freely via [26]. We
also consider to develop a more capable open source
analyzer based on this prototype in the future.

Related work Definitions of QIF: Smith [21] gives a com-
prehensive summary on entropy-based QIF, such as Shannon
entropy, guessing entropy and min entropy and compares them
in various scenarios. Clarkson et al. [11], on the other hand,
include the attacker’s belief into their model. Alvim et al. [3]
introduce a gain function to generalize information leakage
by separating the probability distribution and the impact of
individual information. Computational Complexity: Yasuoka
and Terauchi [24] prove complexity on computing QIF, in-
cluding PP -hardness of precisely quantifying QIF for loop-
free Boolean programs. Chadha and Ummels [8] show that
the QIF bounding problem of recursive Boolean programs is
EXPTIME-complete. Precise Calculation: In [17], Klebanov
et al. reduce the QIF calculation to #SAT problem projected
on a specific set of variables. On the other hand, Phan et al.

[20] reduce the QIF calculation to #SMT problem to leverage
existing Satisfiability Modulo Theory (SMT) solvers. Recently,
Val et al. [23] reported a SAT-based method that can scale to
programs of 10,000 lines of code. Approximated Calculation:
Approximation is a reasonable alternative for scalability. Köpf
and Rybalchenko [18] propose approximated QIF computa-
tion by sandwiching the precise QIF with lower and upper
bounds using randomization and abstraction, respectively, with
a provable confidence. LeakWatch, by Chothia et al. [9], also
gives an approximation with provable confidence by executing
a program multiple times. Its descendant, called HyLeak
[7], combines the randomization strategy of its ancestor with
precise analysis. Biondi et al. [6] utilize ApproxMC2, which
provides approximation on the number of models of a Boolean
formula in CNF by Markov Chain Monte Carlo method.
Composition of QIF: Another attempt to the scalability is
to break the system down into smaller fragments. In [16],
Kawamoto et al. introduce two parallel compositions: with
distinct inputs and with shared inputs, and give theoretical
bounds on the leakage of the main program using those of the
constituted sub-programs. Though our research was motivated
by [16], we focus on a sequential structure of a target program
and a decomposition of the value domain of the program while
[16] uses a parallel structure of the target. Dynamic Leakage:
Bielova [4] discusses the importance of dynamic leakage and
argues that any well-known QIF notion is not appropriate as
a notion for dynamic leakage. Recently, we proposed two
notions for dynamic leakage, QIF1 and QIF2 and gave some
results on computational complexity, as well as a quantifying
method based on model counting [10].

The rest of the paper is organized as follows. We review the
definition of dynamic leakage and describe our program model
in Section 2. Section 3 is dedicated to a method for computing
dynamic leakage based on the sequential composition and
also proposes approximation methods. Section 4 proposes a
parallel computation method based on value domain decompo-
sition. Section 5 evaluates the proposed compositional methods
including the comparison of CiA vs. CoD and exact vs.
approximated computation based on the experimental results.
Then, the paper is concluded in Section 6.

II. PRELIMINARIES

A. Dynamic leakage

The standard notion for static QIF is defined as the mutual
information between random variables S for secret input and
O for observable output:

QIF = H(S)−H(S|O) (1)

where H(S) is the entropy of S and H(S|O) is the expected
value of H(S|o), i.e., H(S|O) =

∑
o∈O p(o)H(S|o), and
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H(S|o) is the conditional entropy of S when observing an out-
put o. Shannon entropy and min-entropy are often used as the
definition of entropy, and in either case, H(S)−H(S|O) ≥ 0
always holds by definition.

In [4], the author discusses the appropriateness of the exist-
ing measures for dynamic QIF and points out their drawbacks,
especially, each of these measures may become negative. For
example, if we adopt H(S)−H(S|o) as a measure of dynamic
QIF, the measure may become negative depending on an
observed output value o.

Let P be a program with secret input variable S and
observable output variable O. For notational convenience, we
identify the names of program variables with the corresponding
random variables. Throughout the paper, we assume that a
program always terminates. The syntax and semantics of pro-
grams assumed in this paper will be given in the next section.
Hereafter, let S and O denote the finite sets of input values
and output values, respectively. For s ∈ S and o ∈ O, let
pSO(s, o), pO|S(o|s), pS|O(s|o), pS(s), pO(o) denote the joint
probability of s ∈ S and o ∈ O, the conditional probability
of o ∈ O given s ∈ S (the likelihood), the conditional
probability of s ∈ S given o ∈ O (the posterior probability),
the marginal probability of s ∈ S (the prior probability) and
the marginal probability of o ∈ O, respectively. We often omit
the subscripts as p(s, o) and p(o|s) if they are clear from the
context. By definition, p(s, o) = p(s|o)p(o) = p(o|s)p(s),
p(o) =

∑
s∈S p(s, o), p(s) =

∑
o∈O p(s, o).

We assume that (the source code of) P and the prior
probability p(s) (s ∈ S) are known to an attacker. For o ∈ O,
let preP (o) = {s ∈ S | p(s|o) > 0}, which is called the
preimage of o (by the program P ).

Considering the discussions in the literature, we define new
notions for dynamic QIF that satisfy the following require-
ments [10]:

(R1) Dynamic QIF should always be non-negative because
an attacker obtains some information (although some-
times very small or even zero) when he observes an
output of the program.

(R2) It is desirable that dynamic QIF is independent of a
secret input s ∈ S . Otherwise, the controller of the
system may change the behavior for protection based
on the estimated amount of the leakage that depends
on s, which may be a side channel for an attacker.

(R3) The new notion should be compatible with the ex-
isting notions when we restrict ourselves to special
cases, such as deterministic programs, uniformly dis-
tributed inputs, and taking the expected value.

The first notion is the self-information of the secret inputs
consistent with an observed output o ∈ O. Equivalently, the
attacker can narrow down the possible secret inputs after
observing o to the preimage of o by the program. We consider
the self-information of s ∈ S after the observation as the
logarithm of the probability of s divided by the sum of the
probabilities of the inputs in the preimage of o (see the
upper part of Figure 2, where bold lines indicate the mapping
between S and O that are taken into consideration when
defining QIF1/QIF2).

QIFP
1 (o) = − log(

∑
s′∈pre

P
(o)

p(s′)). (2)

The second notion is the self-information of the joint events
s′ ∈ S and an observed output o ∈ O (see the lower part of
Figure 2). This is equal to the self-information of o.

QIFP
2 (o) =− log(

∑
s′∈S

p(s′, o)) = − log p(o)

=− log p(s, o) + log p(s|o).
(3)
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Figure 2. QIF1 (the upper) and QIF2 (the lower)

Both notions are defined by considering how much self-
information values are reduced by observing an output. We
propose these two notions because there is a trade-off between
the easiness of calculation and the appropriateness [10].

Theorem 2.1 ([10]): If a program P is deterministic, for
every o ∈ O and s ∈ S,

QIFP
1 (o) = QIFP

2 (o) = − log p(o).

If input values are uniformly distributed, QIFP
1 (o) =

log |S|
|pre

P
(o)| for every o ∈ O. 2

B. Program model

We assume probabilistic programs where every vari-
able stores a natural number and the syntactical constructs
are assignment statement, conditional statement, probabilistic
choice, while loop and concatenation:

b ::= ⊥ | > | ¬b | b ∨ b | e < e

e ::= X | n | e+ e

c ::= skip | X ← e | if b then c else c end
| c r[]1−r c | while b do c end | c; c

where <,X, n,+ stand for a binary relation on natural num-
bers, a program variable, a constant natural number and a bi-
nary operation on natural numbers, respectively, and r is a con-
stant rational number representing the branching probability
for a choice command where 0 ≤ r ≤ 1. In the above BNFs,
objects derived from the syntactical categories b, e and c are
called conditions, expressions and commands, respectively. A
command X ← e assigns the value of expression e to variable
X . A command c1 r[]1−r c2 means that the program chooses
c1 with probability r and c2 with probability 1− r. Note that
this is the only probabilistic command. The semantics of the
other constructs are defined in the usual way.

A program P has the following syntax:

P ::= in ~S; out ~O; local ~Z; c | P ;P

where ~S, ~O, ~Z are sequences of variables which are dis-
joint from one another. A program is required to sat-
isfy the following constraints on variables. We first define
In(P ), Out(P ), Local(P ) for a program P as follows.
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• If P = in ~S; out ~O; local ~Z; c, we
define In(P ) = {V | V appears in ~S},
Out(P ) = {V | V appears in ~O} and
Local(P ) = {V | V appears in ~Z}. In this
case, we say P is a simple program. We require that
no varible in In(P ) appears on the left-hand side of
an assignment command in P , i.e., no input variable
is updated.

• If P = P1;P2, we define In(P ) = In(P1),
Out(P ) = Out(P2) where we require that In(P2) =
Out(P1) holds. We also define Local(P ) =
Local(P1) ∪ Local(P2) ∪Out(P1).

A program P is also written as P (S,O) where S and O are
enumerations of In(P ) and Out(P ), respectively. A program
P1;P2 represents the sequential composition of P1 and P2.
Note that the semantics of P1;P2 is defined in the same way
as that of the concatenation of commands c1; c2 except that
the input and output variables are not always shared by P1

and P2 in the sequential composition. If a program does not
have a probabilistic choice, it is deterministic.

III. SEQUENTIAL COMPOSITION

This section proposes a method of computing both exact
and approximated dynamic leakage by using sequential com-
position. For making the idea behind the proposed method
understandable, we first assume the programs under analysis
are deterministic with uniformly distributed input, so that the
problem of quantifying dynamic leakage is reduced to model
counting. Then, in the later part of this section, we will dis-
cuss the extensibility of the proposed method to probabilistic
programs with input of an arbitrary distribution.

A. Exact calculation

For a program P (S,O), an input value s ∈ S and a subset
S ′ of input values, let

postP (s) = {o | p(o|s) > 0},
postP (S ′) =

⋃
s∈S′

postP (s).

If P is deterministic and postP (s) = {o}, we write postP (s) =
o.

Let P = P1;P2 be a program. We assume that
In(P1), Out(P1), In(P2), Out(P2) are all singleton sets for
simplicity. This assumption does not lose generality; for exam-
ple, if In(P1) contains more than one variables, we instead in-
troduce a new input variable that stores the tuple consisting of a
value of each variable in In(P1). Let In(P ) = In(P1) = {S},
Out(P1) = In(P2) = {T}, Out(P ) = Out(P2) = {O}, and
let S, T ,O be the corresponding sets of values, respectively.
For a given o ∈ O, preP (o) and p(o), which are needed
to compute QIFP

1 (o) and QIFP
2 (o) (see (2) and (3)), can be

represented in terms of those of P1 and P2 as follows.

preP (o) =
⋃

t∈(pre
P2

(o)∩post
P1

(S))

preP1
(t), (4)

p(o) =
∑

s∈S,t∈T
p(s)p1(t|s)p2(o|t). (5)

1: Pre[2..n]← empty
2: Stack ← empty
3: level← n
4: acc count← 0
5: Push(Stack, o)
6: Pre[n]← EnumeratePre(Pn, o)
7: while not Stack.empty and execution time < timeout

do
8: if level = 1 then
9: acc count← acc count+ CntPre(P1, Stack.top)

10: level← level + 1
11: Pop(Stack)
12: else
13: v ← PickNotSelected(Pre[level])
14: if v = AllSelected then
15: level← level + 1
16: Pop(Stack)
17: else
18: Push(Stack, v)
19: level← level − 1
20: if level > 1 then
21: Pre[level]← EnumeratePre(Plevel, v)

22: return acc count

Figure 3. LowerBound(P1, · · · , Pn, o, timeout)

If p(s) is given, we can compute (4) by enumerating preP1
(t)

for t ∈ (preP2
(o) ∩ postP1

(S)) and also for (5). In practice,
preP (o) is computed by augmenting the information about
an observed output value to the CNF that represents P , as
illustrated in the flow of CiA and CoD in Figure 1. Then,
the preimage can be either enumerated or counted, up to
what is needed for the calculation. This approach can easily
be generalized to the sequential composition of more than
two programs, in which the enumeration is proceeded in
a Breadth-First-Search fashion. However, in this approach,
search space will often explode rapidly and lose the advantage
of composition. Therefore, we come up with an approximation,
which is explained in the next subsection, as an alternative.

B. Approximation

Let us assume that P (S,O) is deterministic and S is
uniformly distributed. In this subsection, we will derive both
upper-bound and lower-bound of |preP (o)|, which provide
lower-bound and upper-bound of QIFP

1 (o) = QIFP
2 (o) respec-

tively. In general, our method can be applied to the sequential
composition of more than two sub-programs.

1) Lower bound: To infer a lower bound of |preP (o)|, we
leverage Depth-First-Search (DFS) with a predefined timeout
such that the algorithm will stop when the execution time
exceeds the timeout and output the current result as the lower
bound. The method is illustrated in Figure 3. For a program
P = P1;P2; · · · ;Pn, an observable output o of the last sub-
program Pn and a predetermined timeout, the algorithm in
Figure 3 derives a lower bound of |preP (o)| by those n sub-
programs.

In Figure 3, CntPre(Q, o) counts |preQ(o)|, PickNotSe-
lected(Pre[i]) selects an element of Pre[i] that has not been
traversed yet or returns AllSelected if there is no such element,
and EnumeratePre(Pi, v) lists all elements in prePi

(v). Pre[i]
stores prePi

(oi) for some oi. For P1, it is not necessary to store
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1: Result← CntPre(Pn, o)
2: for i← 1 to n do
3: Result← Result ∗MaxCount(Pi)

4: return Result

Figure 4. UpperBound(P1, · · · , Pn, o)

its preimage because we need only the size of the preimage.
Lines 1 to 5 are for initialization. Line 6 enumerates prePn

(o).
Lines 7 to 21 constitute the main loop of the algorithm, which
is stopped either when the counting is done or when time is
up. When level = 1, lines 8 to 11 are executed and CntPre
will return preP1

(Stack.top) in which Stack.top is the input
of P2 that leads to output o of Pn, then back-propagate; lines
13 to 16 check if all elements in the preimage set of the current
level is already considered and if so, back-propagate, otherwise
push the next element onto the top of Stack and go to the next
level.

Theorem 3.1: In Figure 3, if P1, · · · , Pn are deterministic,
acc count, which is returned at line 22, is a lower bound of
the preimage size of o by P1, · · · , Pn. 2

2) Upper bound: For an upper bound of |preP (o)| we use
Max#SAT problem [14], which is defined as follows.

Definition 3.1: Given a propositional formula ϕ(X,Y, Z)
over sets of variables X , Y and Z, the Max#SAT problem is
to determine maxX#Y.∃Z.ϕ(X,Y, Z).

If we consider a program Q, In(Q), Out(Q) and Local(Q)
as ϕ, Y , X and Z respectively, then, the solution X to the
Max#SAT problem can be interpreted as the output value,
which has the biggest size of its preimage set. In other
words, maxX#Y.∃Z.ϕ(X,Y, Z) is an upper bound of the
size of preQ over all feasible outputs. Therefore, the product
of those upper bounds of |prePi

| over all i (1 ≤ i ≤ n) is
obviously an upper bound of |preP |. The algorithm in Figure
4 computes this upper bound where CntPre(Pn, o) returns
the size of the preimage of o by Pn. Notice that, to avoid
enumerating the preimages, which costs much computation
time, we count only |prePn

(o)|. For i = 1, ...n−1, we compute
MaxCount(Pi) as an upper bound for prePi

, regardless of the
corresponding output value. For prototyping, we used the tool
developed by the authors of [14], which produces estimated
bounds of Max#SAT with tunable confidence and precision.
As explained in [14], the tool samples output values of k-fold
self-composition of the original program. The greater k is, the
more precise the estimation is, but also the more complicated
the calculation of each sampling is. Note that MaxCount(Pi)
can be computed in advance only once. Though the precision
is not always good in general, this approach provides a rather
simple computation method. Also, note that the leakage is the
logarithm of the model count.

Theorem 3.2: In Figure 4, if P1, · · · , Pn are deterministic,
then Result, which is returned at line 4, is an upper bound of
the preimage size of o by P1, · · · , Pn. 2

C. Extensibility to Probablistic Programs

When a program is probabilistic, a single input value may
produce more than one output values. Therefore, when we
count the preimage set of a specific output value, an input
value may be counted multiple times, which results in an upper
approximation. Though this does not invalidate our proposed

algorithm, which computes an upper bound using Max#SAT,
it could degrade the precision.

For the algorithms of exact counting and lower bounding,
the following modifications will retain both their validity and
precision as presented above when analyzing probabilistic
programs. Notice that the algorithm in Figure 3 gives exact
count when timeout is sufficiently long.

• Maintain a list of distinct input values that produce
the observed output value o′. In line 9 of Figure
3, instead of only counting models, enumerate all
feasible input values, then update that list by adding
the new input values. As the result, the final set is
exactly the preimage set of o′.

• Provided the input distribution, i.e., the prior prob-
ability p(s) of each input value s, QIF1 can be
calculated by taking the logarithm of the sum of p(s)
for s belonging to the preimage set, which is already
computed by the above modification.

• Provided the channel matrix representing the condi-
tional probability p(o|s) of each output value o given
an input value s, QIF2 can be calculated by computing
the probability p(o′) that the observed output value o′

is produced.

IV. VALUE DOMAIN DECOMPOSITION

Another effective method for computing the dynamic leak-
age in a compositional way is to decompose the sets of
input values and output values into several subsets, compute
the leakage for the subprograms restricted to those subsets,
and compose the results to obtain the leakage of the whole
program. The difference between the parallel composition in
[16] and the proposed method is that in the former case, a
program under analysis itself is divided into two subprograms
that run in parallel, and in the latter case, the computation of
dynamic leakage is conducted in parallel by decomposing the
sets of input and output values.

Let P (S,O) be a program. Assume that the sets of input
values and output values, S and O, are decomposed into
mutually disjoint subsets as

S = S1 ] · · · ] Sk,
O = O1 ] · · · ] Ol.

For 1 ≤ i ≤ k and 1 ≤ j ≤ l, let Pij be the program
obtained from P by restricting the set of input values to Si
and the set of output values to Oj where if the output value
o of P for an input value s ∈ Si does not belong to Oj , the
output value of Pij for input s is undefined. In practice, this
disjoint decomposition can be done simply by augmenting the
program under analysis with appropriate constraints on input
and output.

By definition, for a given o ∈ Oj ,

preP (o) =
⋃

1≤i≤k

prePi,j
(o). (6)

By (2) and (3), we can compute QIF1 and QIF2 in a
compositional way.

By Theorem 2.1, if P is deterministic and the prior
probability of S is uniformly distributed, what we have to
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compute is |preP (o)|, which can be obtained by summing up
each |prePi,j

(o)| by (6):

|preP (o)| =
∑

1≤i≤k

|prePi,j
(o)|.

Otherwise, probabilistic programs with arbitrary input distri-
bution can be handled in a manner similar to the one described
in the last paragraph of the previous section.

V. EXPERIMENTS

This section will investigate answers for the following
questions: (1) How well does parallel computing based on
the value domain decomposition improve the performance? (2)
How well does sequential composition help improve the per-
formance? (3) How well does approximation in the sequential
composition work in terms of precision and speed? and (4) Is
CiA always better than CoD or vice versa? We will examine
those questions through a few examples: Grade protocol is for
question (1), Bit shuffle and Population count are for (2) and
(3), while (4) is considered based on both the former and the
latter. The benchmarks and prototype are public in [26].

A. Setting up

The experiments were conducted on Intel(R) Xeon(R) CPU
ES-1620 v3 @ 3.5GHz x 8 (4 cores x 2 threads), 32GB RAM,
CentOS Linux 7. For parallel computation, we use OpenMP
[12] library. At the very first phase, to transform C programs
into CNFs, we leveraged the well-known CBMC [25]. For the
construction of a BDD from a CNF and the model counting
and enumeration of the constructed BDD, we use an off-the-
shell tool PC2BDD [30]. We use PC2DDNNF [31] for the
d-DNNF counterpart. Both of the tools are developed by one
of the authors in another project. Besides, as the ordering of
Boolean variables of a CNF greatly affects the BDD generation
performance, we utilize FORCE [2] to optimize the ordering
before transforming a CNF into a BDD. We use MaxCount
[29] for estimating the answer of Max#SAT problem. We
implemented a tool for algorithms in Figure 3 and Figure 4,
as well as the exact count in sequential compositions in Java.

B. Grade protocol

This benchmark is taken from [19]. By this experiment, we
investigated how well parallel computation improves the per-
formance of counting models, hence of quantifying dynamic
leakage, in value domain decomposition. This benchmark sums
up (then takes the average of) the grades of a group of students
without revealing the grade of each student. We used the
benchmark with 4 students and 5 grades, and all variables
are of 16 bits. For model counting, we suppose the observed
output (the sum of students’ grades) to be 1, and hence the
number of models is 4. GPMC [28], one of the fastest tools
for quantifying dynamic leakage as shown in [10], was chosen
as the representative tool for CoD approach. We manually
decompose the original program into 4, 8 and 32 sub-programs
by adding constraints on input and output of the program
based on the value domain decomposition (the set of output
values is divided into 2 and the set of input values is divided
into 2, 4 or 16 disjoint subsets). Table I is divided into sub-
divisions corresponding to specific tasks: BDD construction,
d-DNNF construction and model counting based on different

approaches. In each sub-division, the bold number represents
the shortest execution time in each column (i.e., the same
number of decomposed sub-programs, but different numbers
of threads). ‘−’ represents cases when the number of threads is
greater than the number of sub-programs, which are obviously
meaningless to do experiments.

TABLE I. TIME FOR CONSTRUCTING DATA STRUCTURE AND
COUNTING MODEL.

n = 32 n = 8 n = 4 n = 1

BDD Construction

t = 32 218.53s − − −
t = 16 222.27s − − −
t = 8 237.54s 137.74s − −
t = 4 254.88s 144.55s 155.90s −
t = 2 376.21s 233.34s 214.65s −
t = 1 736.74s 450.85s 391.99s 243.85s

d-DNNF Construction

t = 32 93.17s − − −
t = 16 91.49s − − −
t = 8 107.31s 123.48s − −
t = 4 141.27s 147.79s 175.34s −
t = 2 215.92s 226.93s 247.45s −
t = 1 398.99s 391.67s 457.38s 304.88s

Model Counting
(CiA - BDD based)

t = 32 0.21s − − −
t = 16 0.22s − − −
t = 8 0.25s 0.13s − −
t = 4 0.30s 0.16s 0.16s −
t = 2 0.65s 0.31s 0.24s −
t = 1 0.86s 0.36s 0.31s 0.30s

Model Counting
(CiA - d-DNNF based)

t = 32 0.05s − − −
t = 16 0.05s − − −
t = 8 0.05s 0.01s − −
t = 4 0.07s 0.01s 0.01s −
t = 2 0.12s 0.02s 0.02s −
t = 1 0.18s 0.04s 0.03s 0.25s

Model Counting
(CoD - using GPMC) t = 1 − − − 44.69s

In Table I, n: number of sub-programs decomposed from
the original program; t: number of threads specified by
num thread compiling directive of OpenMP. Note that n = 1
means non-decomposition, t = 1 means a sequential execution
and the number of physical CPUs is 8. From Table I, we can
make the following inferences:

• As for the answer to question (1), parallel computing
speeds up the calculation several times
BDD Construction: 137.74s vs. 243.85s;
d-DNNF Construction: 91.49s vs. 304.88s;
Model Counting (CiA - BDD based): 0.13s vs. 0.30s.
to tens times
Model Counting (CiA - d-DNNF): 0.01s vs. 0.25s.

• In general, increasing the number of threads (up to the
number of sub-programs) does improve the execution
time in both the construction of BDD, d-DNNF and
the model counting.

• When the number of sub-programs is close to the num-
ber of physical CPUs, which is eight, the execution
time is among the best if not the best.

The performance with d-DNNF is better than that with BDD
in this example, but this seems due to the implementation of
the tools.
C. Bit shuffle and Population count

population count is the 16-bit version of the benchmark
of the same name given in [19]. In this experiment, the
original program is decomposed into three sub-programs in
such a way that each sub-program performs one bit operation
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of the original. Inspired by population count, we created the
benchmark bit shuffle, which consists of two steps: firstly it
counts the number of bit-ones in a given secret number (by
population count, actually we took the count modulo 6 to
increase the preimage size by the first part), then it shuffles
those bits to produce an output value. This original program
is divided into two sub-programs corresponding to the above-
mentioned two steps. Though bit shuffle is probabilistic (i.e.,
the shuffling part), the algorithm in Figure 3 still works,
because there is always only one possible input value (i.e.,
the number of bit-ones) for an output of the sub-program
corresponding to the latter step.

Table II shows execution times of constructing BDD and
d-DNNF for two sample programs. The last three columns:
non-decompose, decompose (serial) and decompose (parallel)
are execution time when computed for the original program,
computed sequentially and parallelly for the decomposed sub-
programs, respectively. Bold numbers are the best execution
times in those three.

For model counting, we let an output value be 3 (the
number of models is 13110) for bit shuffle and 7 (the num-
ber of models is 11440) for population count. Table III
presents the execution times for model counting where the
underlined numbers are the exact counts, the bold execution
times are the best results among approaches for the exact count
of each benchmark and the italic data are of approximated
calculations. The execution times for the lower bounds are
predetermined timeouts, which were designed to be 1/2, 1/5
and 1/10 of the time needed by the exact count, followed
by the time by CoD. In bit shuffle benchmark, lower bounds
based on d-DNNF were not improved (all are zero) even
when the timeout was increased. This happened because an
intermediate result of counting for one d-DNNF is unknown
until the counting completes while this benchmark contains
only two sub-programs and the size of the preimage by the
second sub-program is always one (i.e., the number of times
to count d-DNNFs is only two, one for the first sub-program
and one for the second one).

TABLE II. BDD AND d-DNNF CONSTRUCTION TIME FOR
DIFFERENT APPROACHES.

non-decompose decompose (serial) decompose (parallel)
BDD
Construction

bit shuffle >1 hour 33.90s 33.46s
population count 0.48s 0.66s 0.40s

d-DNNF
Construction

bit shuffle 424.64s 50.28s 48.39s
population count 1.19s 0.71s 0.69s

TABLE III. MODEL COUNTING: EXECUTION TIME AND THE
CHANGING OF APPROXIMATION PRECISION.

bit shuffle population count

CoD using GPMC (non-decompose) 0.49s 13110 0.09s 11440

CiA-BDD based
(decompose)

Exact count 1.47s 13110 10.98s 11440

Approximation Lower bound

0.75s 6243 5.5s 5776
0.30s 1918 2.2s 888
0.15s 574 1.1s 312
0.49s 3713 0.09s 0

Upper bound 0.02s 14025 0.07s 5898240

CiA-d-DNNF based
(decompose)

Exact count 0.27s 13110 3.50s 11440

Approximation Lower bound

0.13s 0 1.75s 4712
0.05s 0 0.70s 1314
0.03s 0 0.35s 52
0.49s 13110 0.09s 0

Upper bound 0.07s 14025 0.13s 5898240

From the experimental results, we obtain the following obser-
vations.

• As for the answer of question (2), in case of
bit shuffle, sequential composition helps speed up the
construction of BDD more than 100 times (33.46s vs.
> 1 hour) and d-DNNF more than 8 times (48.39s
vs. 424.64s). However, in case of population count,
the improvement is insignificant. For model counting,
in both of the samples, sequential composition either
helps just little or does not help.

• As for the answer of question (3), in case of upper
bound for bit shuffle, the precision is quite good.
However, it was extremely low for population count.
For both of the samples, the calculation was very fast.
For the lower bound, basically the precision gets better
with longer timeout. In addition, because leakage is
logarithm of model count, its upper bound and lower
bound are much tighter than those of model count.

Note that, when we compare CiA with CoD, it is reasonable
to ignore time of construction in CiA, because it happens only
at the first time, then the result can be reused. For the question
(4), in case of grade protocol, CiA shows a huge improvement
over CoD, which is more than 4000 times (0.01 s vs. 44.69
s). But in case of population count, CoD is superior to CiA
(0.09 s vs. 3.50 s). So, the answer is NO, i.e., sometimes CiA
is better and the other time CoD is.

VI. CONCLUSION

In this paper, we focused on the efficient computation of
dynamic leakage of a program and considered two approaches,
CoD and CiA. Then, we proposed two compositional methods,
namely, computation along with the sequential structure of
the program and parallel computation based on value do-
main decomposition. In the first method, we also proposed
approximations that give both lower bound and upper bound
of model counting. Our experimental results showed that: (1)
Parallel computation based on value domain decomposition
works well generally; (2) Sequential composition sometimes
helps significantly with construction of BDDs and d-DNNFs;
(3) The precision of upper bounds depends on the way of
decomposition while that of lower bound depends on the preset
timeout; and (4) Both CiA and CoD are important because
sometimes the former works better and the other times does
the latter. All decomposition in the experiments were done
manually. So, it is important to find a systematical way of
deciding and guiding to a good decomposition. This is left
as future work. One promising direction is to utilize static
analysis, such as symbolic execution and program invariant.
On the other hand, both BDD and d-DNNF have many
applications other than computing dynamic leakage, but there
is still a bottle neck at constructing them. The approach in this
paper, composition based on value domains, can be a hint to
speed up that process.
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Abstract—Recently, sophisticated cyber attacks targeting compa-
nies or governments have frequently occurred. With conventional
measures, e.g., intrusion detection system or firewalls, we cannot
protect our network completely because attackers act carefully to
pass through such conventional measures. Against such situation,
separated network is one of the effective countermeasures. It
divides an organization’s internal network into multiple segments
and performs fine access control among separated segments.
We have proposed an automated ACL (Access Control List)
generation system to support constructing separated networks
previously. However, this method focuses on the business conti-
nuity of the organization, and ACL will unconditionally permit
communication of a section where traffic is observed. Therefore,
we proposed a communication classifying system to judge the
necessity of communication and its protocol by a two-step
investigation. In the first step, the system judges the consistency
of the observed communication by examining the reasons why
conventional systems permitted the communication. In addition,
the system judges the validity of the communication by checking
the waiting state of its destination terminal in the second step. In
this paper, we implement the communication classifying system
we have proposed, and verify the feasibility of the system.
In the experiment, we applied the implemented system to a
prototype network consisting of nine clients and one file sharing
server (SMB (Server Message Block) protocol). As a result,
our system terminated most of the unintended communication
between clients and server precisely.

Keywords–Targeted Attacks; Network Separation; Access Con-
trol.

I. Introduction
Recently, cyber attacks targeting organizations such as

specific companies or countries have frequently occurred. Such
attacks are called targeted attacks, and unlike indiscriminate
attacks aimed at spreading simple malware, attackers attack
specific organizations with sophisticated groups which have
abundant funds. Therefore, attackers prepare dedicated mal-
ware for targets, and it is difficult to prevent attacks by
conventional measures, e.g., firewall and intrusion detection
system. Because of the above situation, recently, the focus of
countermeasures has been on the mitigation of damages such
as information leakage and file destruction after intrusion of
malwares [1].

One of the effective countermeasures against targeted at-
tacks is the use of a separated network [2]. It divides the
organization’s internal network into multiple segments and per-
forms fine access control among the divided segments. It can
prevent unintended communication among segments caused
by malware, e.g., lateral movement. In addition, when we
detect malwares, it can minimize the harmful effect to business
continuity because we can isolate only the infected segment.
However, it needs various information about networks, human

resources, business contents, and so on. So, we need a large
amount of cost to construct and manage a separated network.

Therefore, we have previously proposed an automated ACL
(Access Control List) generation system to support construct-
ing a separated network [3]. We call this system as “AAGS
(Automated ACL Generation System)” in this paper. It gen-
erates ACL based on user’s access authority to directories or
files. If a user has no access authority to directories or files
in a file server, the communication between the user and the
file server is prohibited. However, AAGS emphasizes business
continuity so that it permits all communications observed in
the network even if they are unnecessary. This method may
cause overly permits of unnecessary communication.

To avoid the overly permission, we have proposed a com-
munication classifying system [4]. We call this system as
“CCS (Communication Classifying System)” in this paper.
CCS judges the consistency of the communication occurring
in the network by analyzing the reason it was permitted. In ad-
dition, CCS judges the validity of communication which lacks
consistency by using stand-by states of destination terminals.
These investigations make it possible to avoid overly permitted
communication.

In this paper, to verify the feasibility of CCS, we im-
plemented AAGS and applied it to prototype network. The
network is constructed with real machines, and ACL, which
overly permits communication, is applied. In the experiment,
our proposal correctly judged most of the overly permitted
communication as unnecessary. However, there are several
misjudgements by the system, and we found several problems
of the system that became our future works.

In the following, Section II describes the related works.
In Section III, we will explain our proposed methods, AAGS
and CCS. Section IV describes the architecture of CCS, and
Section V describes its implementation. The experiments using
the implemented system are described in Section VI. Finally,
we summarize our work in Section VII.

II. Related Works
There are many researches for preventing malware activ-

ities in internal networks. Alessandro et al. have proposed a
method for modeling communication patterns of malwares that
perform lateral movement [5]. However, we need large cost
to employ this method because it is necessary to install a
communication analysis tool on all terminals. In the case of a
separated network, the spread of infection can be suppressed
without installing special tools on the terminal.

Methods to construct separated network have been widely
studied. Watanabe et al. proposed a VLAN (Virtual Local
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Area Network) configuration method [6]. In this method, they
monitor traffic in the network, and generate a network design
by using this monitoring information. When a certain amount
of traffic exceeding threshold among terminals is observed,
VLAN including these terminals is generated. Because it
can summarize the terminals frequently communicating with
each other, it is effective from the viewpoint of amount of
traffic volume. However, when a VLAN including an infected
terminal is generated, it cannot prevent malware activities in
that VLAN. There are many other researches to support con-
structing VLAN [7][8][9]. However, it is difficult to construct
fine access controls among VLANs.

In addition to the above researches, there are several
products, e.g., “VLAN .Config” [10], for constructing VLAN
automatically. By using such products, we can construct VLAN
easily, however, it is difficult to generate ACL.

III. Our Previous Research
A. Automated ACL Generation System

To support constructing networks, we proposed an auto-
mated ACL generation system (AAGS) previously [3]. AAGS
judges the necessity of communication sections based on
access authority of a user to files or directories in servers.
If a user has no access authority to all files in the server,
AAGS decides that a communication section between the user
and the server is unnecessary. The system gathers information
of access authorities by analyzing the information in directory
service server.

In addition, AAGS analyzes the mirrored packets of the in-
ternal network. Before applying the generated ACL, the system
revises it by using mirrored packets. Even if a communication
was judged as unnecessary previously, its new observation
calls reevaluation and then, the communication is judged
as necessary. Finally, based on the judgement, the system
generates ACL to permit all of the necessary communication
sections. It allows us to construct a separated network easily
by applying the generated ACL.

B. Problems
Because of such idea, AAGS permits all communication

observed in the network even if it is an unintentionally oc-
curring one. In other words, the system may generate ACL
which overly permits unnecessary communication sections.
Furthermore, the ACL generated by the system is only based
on source and destination IP addresses. Once the system judged
the communication section to be allowed, all communication
protocols on the section are permitted.

C. Communication Classifying System
In order to solve the problems of AAGS, we proposed a

communication classifying system (CCS) [4] that improves
ACL generated by AAGS. CCS investigates the consistency
between the communication observed in the network and the
reason why AAGS permitted such communication section. If
a communication lacks consistency, CCS performs additional
investigation. Because appropriate ports are listened at the
destination terminals if the communication is rightful, the
system performs a port scan to identify the listening port
and then, compares the observed communication protocols and
listening ports of destination terminals. These investigations
make CCS possible to detect illegal communication. In order

to permit only rightful communication, the system finally
generates a new ACL including prohibition of unnecessary
communication sections and protocols.

D. Assumption in CCS
We proposed CCS to complement our previous AAGS.

CCS assumes that the network is roughly divided into several
segments, and ACL generated by AAGS is applied to the
network. The applied ACL is stored in database (ACL DB)
by AAGS.

ACL DB that AAGS uses is extended by adding three new
columns. First, we added “Permitted Reason” to register the
reason why the communication is permitted, i.e., directory
service information, or communication analysis, or both of
them. AAGS uses the extended versions of DB so that the ACL
describes permitted communication sections, e.g., source IP
addresses, destination IP addresses, and Permitted Reason. The
remaining two columns are “Destination Port” and “Status”.
However, AAGS ignores other these two columns as empty
fields.

When CCS analyzes the communication section, it registers
“analyzed” to Status field of such communication section. If
there is only one record for the pair of source IP address
and destination IP address, and such record’s Status field is
empty, it is the first time for the proposed system to analyze
that communication section. If “analyzed” has been registered
to Status filed of a communication section, CCS omits the
analysis of the communication section.

In addition, we assume that protocols are accepted by an
administrator by ways different from AAGS. For example,
we proposed a Dynamic Access Control System permitting
communication that is overly prohibited [11]. CCS assumes
that “not_analyzed” is registered to Status filed of the commu-
nication section if any other systems or administrators permit
such communication. If the Status field is “not_analyzed”, CCS
analyzes the communication protocols in such section.

In this paper, to simplify the discussion, we assume that
all terminals are statically assigned IP addresses and such as-
signment information is managed in a directory service server.
However, our method can be easily applied to environments
that employ dynamically IP address assignment method, e.g.,
DHCP. We can control connected device’s communication by
identifying the user of the device with any authentication
method, e.g., IEEE 802.1X. For example, we can assign the
appropriate VLAN that the user should belong to, or update
ACL based on the assigned IP address.

IV. Architecture of Communication Classifying System
Figure 1 shows the architecture of CCS. The system con-

sists of five modules and the database extended in AAGS. The
details of each modules are described below.

1) Traffic Collector: This module receives all mirrored
packets generated in the internal network. This paper assumes
that the collection period of mirrored packets for investigation
is statically defined in advance, e.g., 1 day, 1 hour, and
10 minutes. After collecting mirrored packets, the module
generates a list of packet information including sets of source
IP address, destination IP address, and destination port from
collected packet. The generated list of packet information is
sent to the Consistency Judgement module.
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Figure 1. Architecture of Proposed System.

2) Consistency Judgment: First, when a list of packet
information is received, this module searches records of ACL
DB for each communication section by specifying each pair
of source and destination IP addresses. When the status field
is empty, the Consistency Judgment module analyzes all pro-
tocols captured in such communication section.

After extracting the subject of the communication for in-
vestigation, the Consistency Judgement module judges consis-
tency of such communication. The module finds the permitted
reason of such communication by checking ACL DB. As
shown in Table I, there are six combinations of collected
packet and communication reason. In the table, CA denotes
communication analysis. Because AAGS checks the necessity
of the file sharing communication by using a Directory Service
Information (DSI), the Consistency Judgment module classifies
the captured communication as SMB (Server Message Block)
protocol or Other Protocols. In this paper, we assume that only
SMB is used as file sharing communication protocol. SMB
uses multiple ports and protocols, e.g., 139/tcp and 445/tcp.
To simplify the discussion, we express these sets of all ports
by using the term “SMB protocol”.

TABLE I. COMBINATIONS OF PERMITTED REASON AND
COLLECTED PACKET.

Collected Packet Permitted Reason
DSI DSI+CA CA

SMB 1 2 3
Other Protocol 4 5 6

For the SMB protocol, combinations 1 and 2 of Table I have
consistency. To permit these communication, the Consistency
Judgement module sends this Packet Information to the Check
List Generator module. On the other hand, in combination
3, communication lacks consistency, because communication
of SMB protocol was observed even though there was no
access authority by DSI. However, file sharing may be con-
ducted among user’s terminals directly without management
by the directory service server. In order not to prohibit such
communication, the Consistency Judgement module sends this
Packet Information to the DPort Analysis module for additional
investigation.

In case of any other protocols than SMB, only combi-
nation 4 lacks consistency. The Packet Information of such
communication is sent to the Checklist Generator module to

prohibit such communication. Combinations 5 and 6 have
consistency, however, this module cannot determine sameness
of the communication protocol collected by Traffic Collector
and AAGS. The Packet Information of such communication is
sent to the DPort Analysis module, which conducts a detailed
investigation.

3) DPort Analysis: This module analyzes the normality
of the communication. We assume that the destination ter-
minal has to listen to the correct port of service for the
communication. According to such assumption, the module
judges normality of communication by using the current stand-
by states of destination terminals. There are several ways to
specify the listening ports of terminals, however, we adopt
port-scanning against destination terminals in this paper.

Based on the result of port-scanning, when the destination
port of a communication is listened on destination terminal,
DPort Analysis judges that communication is necessary. On
the other hand, the communication is judged as unnecessary if
the destination port is blocked. Finally, these judgement results
are sent to the Checklist Generator module with its packet
information.

4) Checklist Generator: This module receives the packet
information and judgement results from the Consistency Judg-
ment module or DPort Analysis module. The Checklist Gener-
ator module combines these packet information and its analysis
results, and generates a check list from these information
for administrators. The generated check list of the packet
information is sent to the Management Monitor module.

5) Management Monitor: Lists of the packet information
and judgement results are sent from the Checklist Generator
module to the Management Monitor module. This module
presents to the administrators the combined received lists.
Administrators check the list and authorize the permission or
prohibition of the communication section. Finally, the module
updates the ACL DB to register the authorized packet informa-
tion as “analyzed” value in the status field. After updating the
ACL DB, the ACL Applier in AAGS applies it to the network.

V. Implementation of Proposed System
This section describes the implementation of CSS. Figure

2 shows the basic structure of the modules and the data flow
among modules. In this system, the Traffic Collector module,
the Consistency Judgement module, and the DPort Analysis
module run as batch processing written with Python. We
adopt Node.js [12] as a Web server including the Checklist
Generator module and the Management Monitor. In addition,
we constructed an API server by using FastAPI [13] for
smoothing data exchanges between each modules and the ACL
DB.

In this paper, we implemented ACL DB and ACL Applier
that are included in AAGS. We use MySQL [14] for ACL DB.
By using the SDN (Software Designed Network) technique,
we realized the ACL applier. We assume that Open vSwitch
[15](OvS) is used as a network switch, and the SDN controller,
e.g., Trema [16], instructs the OvS to control packets in the
network.

In addition, all of these modules run on Docker [17],
which manages applications using a container type virtual
environment.
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A. Traffic Collector
This module receives mirrored packets and generates a

list of packet information. We configure the OvS in advance
to generate mirrors of all packets in the network and send
them to the Traffic Collector. The Traffic Collector executes
the tcpdump command and captures the mirrored packets sent
from OvS for a collection period. As mentioned in Section IV,
we set collection period as 10 minutes in this experiment.

The captured packets are saved as pcap files, and this
module extracts sets of source IP address, destination IP
address, and destination port for each packet from the pcap
file by using dpkt [18], which is a module of Python. Finally,
this module sends the extracted set as packet information to
the Consistency Judgement module.

B. Consistency Judgement
After receiving the list of packet information, this module

sends a request to the API server to search the record of
communication section in the ACL DB corresponding to
each packet information. In addition, this module checks the
destination ports of each packet information and classifies them
into SMB or other ports.

This module compares such destination ports and the
result of the record search, and judges the consistency of the
communication. When the module decides that the observed
communication is necessary or not, it sends the packet in-
formation of that communication section with the judgement
results to the Checklist Generator module. On the other hand,
if the module determines that detailed analysis is necessary, it
sends the packet information to the DPort Analysis module.

C. DPort Analysis
This module judges the normality of the communication

that is included in packet information sent from Consistency
Judgement module. To assess the listening ports of destination
terminals, it uses the nmap command. At this time, we use the
-S optional command of nmap to spoof the source IP address
of the observed communication.

Based on the results of nmap, if the proper service port of
packet information is listening at the destination terminal, the

module judges this communication is rightful and it is nec-
essary. Otherwise, the communication is judged unnecessary.
After such analysis, the same way as the Consistency Judge-
ment module determines that communication is necessary, the
DPort Analysis module sends the packet information and its
judgement results to the Checklist Generator module.

D. Checklist Generator and Management Monitor
The Checklist Generator module receives the packet infor-

mation and its judgement results from the Consistency Judge-
ment module and the DPort Analysis module. The Checklist
Generator combines these pieces of information about the
packet and generates the checklist of packet information.

The generated list of packet information is sent to the
Management Monitor, and, based on this list, a html page
is generated as interface for administrators by using React
[19]. Figure 3 shows a sample of the generated Web page for
administrators.

Figure 3. Sample of Management Monitor Web Page.

In this screen, there are two sections. The first section is
“Recommend: Open”. The communication sections displayed
in this section is judged as necessary. If the administrator
judges it as appropriate, he can authorize it by selecting “Open”
button. However, only the displayed ports are judged necessary
by the system, and all of other ports not displayed will be
prohibited. When administrators want to permit several ports
in addition to the system recommendation, they can insert
such ports into “Add Open Port” form. Otherwise, they use
the “Close” button to prohibit the displayed communication.

The other section is “Recommend: Close”. The system
judged communication displayed in this section is unnecessary.
If the administrator selects “Accept (Close)” button, all com-
munication in this section is prohibited. On the other hand,
when the “Reject (Open)” is selected, the ACL permits all
communication in this section. In addition, if the administrator
wants to permit several ports in this section, he/she has to insert
such ports into the “Add Open Port” form.

Finally, this module updates the ACL DB by using the API
server after the “Submit” button is clicked. As mentioned in
the next subsection V-E, the ACL DB stores only permitted
communication sections. In case of that all analyzed commu-
nication is judged as still permitted, the system updated the
status field of the flow_list table about such communication
section as analyzed. If only several ports will be permitted,
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in addition to the above update, those ports are inserted into
dst_port field.

On the other hand, if all protocols in the communication
section are judged as unnecessary, the module updates the ACL
DB to delete any record of such communication section in the
section_list table.

E. ACL DB (Extended)
As described in Section IV, we extended ACL DB. ACL

DB consists of two tables, “section_list” and “flow_list” shown
in Table II. The section_list table consists of four columns:
“id”, “src_ip”, “dst_ip”, and reason. The src_ip and the dst_ip
store the source IP address and destination IP address of
the communication section permitted by AAGS. The reason
column stores the permitted reason.

TABLE II. ACL DB (EXTENDED) TABLE SCHEMA.

Table Name Column Data Type Example
section_list id Integer 3

src_ip String 192.168.10.10
dst_ip String 192.168.20.20
reason String CA

flow_list section_id Integer 3
dst_port Integer 443
status String analyzed

The flow_list table consists of three columns that are “sec-
tion_id”, “dst_port”, and “status”. The value of the section_id
is corresponding to the id of section_list table. Permitted
destination ports in the communication section are stored in
the dst_port column. If the communication section is permitted
with no analyzation by CCS, “not_analyzed” is stored in the
status column. After analyzation by CCS, the value of status
is updated to “analyzed”.

F. ACL Applier
We use the SDN technique to implement the ACL Applier.

The OvS (Open vSwitch) is operating as core switch in the
network. We use Trema as OpenFlow controller to apply the
contents of ACL DB to the network.

VI. Evaluation Experiment
In order to evaluate the effectiveness of CCS, we applied

the implemented system to a prototype network. We verify that
if CCS can generate a ACL which prohibits the communication
sections overly permitted by AAGS.

A. Experimental Conditions
1) Network Structure: For the experiment, we prepared the

prototype network shown in Figure 4. The internal network is
divided into three client segments according to the departments
of the organization in addition to server segment.

There are three Windows 10 PCs in each segment, and
all of these PCs are assigned static IP addresses, e.g.,
192.168.10.10. Otherwise, in the server segment, there is only
one file server assigned 192.168.100.10.

We set Open vSwitch and each segment and router are
connected to this switch. In addition, Trema is assigned
192.168.200.10 and connected to the Open vSwitch directory.

Trema

Open vSwitch

Accounting 192.168.20.0/24

General Affairs 192.168.10.0/24 Sales 192.168.30.0/24

File Server 
192.168.100.10/24

192.168.200.10/24
default gateway

.10.10 .10.11 .10.12

.20.10 .20.11 .20.12

.30.10 .30.11 .30.12

The
Internet

• 192.168.10.254/24
• 192.168.20.254/24
• 192.168.30.254/24
• 192.168.100.254/24
• 192.168.200.254/24

Figure 4. Proto Type Network Architecture.

2) Access Control: We assumed that AAGS generated the
ACL, and we prepared the ACL shown in Table III. We
configured Trema to permit only the communication listed in
Table III in addition to the communications between the default
gateway and all the terminals.
TABLE III. LIST OF COMMUNICATION SECTIONS PERMITTED BY

PREVIOUS SYSTEM.
Source IP Address Destination IP Address Permitted Reason
192.168.10.10 192.168.100.10 DSI
192.168.20.10 192.168.100.10 DSI+CA
192.168.20.11 192.168.100.10 CA
192.168.30.11 192.168.100.10 CA

Although we did not prepare the directory service server
in the network, the file server controls permission to files
from users. In this experiment, we assume the terminals of
192.168.10.10 and 192.168.20.10 have access authority, and
we insert “DSI” as Permitted Reason in the records of these
communication sections.

In addition, we assume the presence of unintended commu-
nication between 192.168.20.10 and 192.168.100.10, and “CA”
is added to Permitted Reason of that section. Similarly, com-
munication sections from 192.168.20.11 and 192.168.30.11 to
192.168.100.10 are permitted because of unintended commu-
nication, and “CA” is registered as their Permitted Reason.

B. Experimental Method
The experiment was performed according to the following

procedure.

Step 1: Run the proposed system and start to collect mir-
rored packets in the network. In this experiment,
we set the collection period to be 10 minutes.

Step 2: In the collection period, terminals, i.e.,
192.168.10.10 and 192.168.20.10, access the
file server using the SMB protocol. In addition
to these terminals, the terminal of 192.168.20.11
which has no access authority also tries SMB
protocol communication with the file server.
Otherwise, http protocol communication to
the file server is conducted by terminals
192.168.20.10 and 192.168.30.11, although the
file server does not provide http service. In
addition, all nine client terminals access external
sites on the Internet that are assuming activities
of the organization.
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Step 3: After 10 minutes, the collection period ends and
the captured packets are analyzed by CCS. Based
on the analysis result, the system generates the
checklist and prepares the Web page.

Step 4: We check the result of the analysis by the pro-
posed system on the Web page, and authorize
them.

Step 5: Finally, the system applies the authorized ACL to
the internal network.

C. Results of Experiment
The result of analysis by the proposed system is shown

in Table IV. The legitimate SMB communication from
192.168.10.10 and 192.168.20.10 to the file server is judged
as necessary correctly. In addition, the system judge the
DNS protocol communication as necessary. However, it judges
unintentional SMB communication between 192.168.20.11 and
192.168.100.10 as necessary.

TABLE IV. ANALYSIS RESULT BY OUR PROPOSED SYSTEM.
Internal Network Communication that Occurred Result of

AnalysisSource IP Address Destination IP Address Destination Port
192.168.10.10 192.168.100.10 445 Open
192.168.20.10 192.168.100.10 445 Open
192.168.20.11 192.168.100.10 445 Open
192.168.10.12 192.168.10.254 53 Open
192.168.20.12 192.168.20.254 53 Open
192.168.30.10 192.168.30.254 53 Open
192.168.30.11 192.168.30.254 53 Open
192.168.30.12 192.168.30.254 53 Open
192.168.20.10 192.168.100.10 80 Close
192.168.30.11 192.168.100.10 80 Close
192.168.100.10 192.168.10.10 56591 Close
192.168.100.10 192.168.20.10 49977 Close
192.168.100.10 192.168.20.11 50253 Close
192.168.100.10 192.168.30.11 64131 Close
192.168.10.254 192.168.10.12 63489 Close
192.168.20.254 192.168.20.12 61236 Close

∼ ∼ ∼ Close

Otherwise, the system judges several communication sec-
tions as unnecessary. It includes unintended http communica-
tion and high port number communication which seem to be
returned packets.

D. Discussion
From the experimental result, we found that the pro-

posed system correctly judged legitimate communication as
necessary, i.e., SMB communication from 192.168.10.10 and
192.168.20.10 to 192.168.100.10. DNS concerned commu-
nication from clients to router is also judged as necessary
correctly. In addition, unintended communication, i.e., http
communication, is judged as unnecessary.

However, as the result of SMB communication between
192.168.20.11 and 192.168.100.10 shows, the proposed system
misjudges the necessity of communication in the specific
condition like this. This result shows the problem of CCS.
In this case, the DPort Analysis module analyzed the stand-
by state of 192.168.100.10 and judged it as necessary because
192.168.100.10 is a file server and it listened to SMB protocol
ports for legitimate communication. So, the proposed system
permits communication if the port of the destination terminal
is opened although the communication is unintended.

Such problem is not only in the case of the SMB protocol,
but it occurs in all services in which servers distinguish

legitimate users by an authentication process. For example, if
an unauthorized terminal attempts to access a Web server with
login authentication, CCS allows this unintended communica-
tion because the HTTP and HTTPS protocols are listened in the
Web server. Even when a service is provided to limited users in
the same network, the proposed system makes a misjudgement
and allows the communication.

If access controls are performed at terminals, this prob-
lem may not occur. To validate it, we conducted a further
experiment. We set iptables at 192.168.100.10 to reject all
communication not from 192.168.10.10 or 192.168.20.10, and
ran CCS under that condition. In this further experiment, SMB
communication between 192.168.20.11 and 192.168.100.10 is
correctly judged as unnecessary.

Another solution is prohibiting access from users who have
authentication process. By using authentication logs of each
service, we can check whether the user has succeeded in
authentication or not.

In addition to the above problem, the system displayed a lot
of communication judgement between all client terminals and
the router which is the default gateway of each segment. All
these communications look like returned packets. We should
not prohibit the returned packets, so these communications
should be ignored by the system. However, if CCS simply
permits all high port numbers communication, malware’s
communication using high port numbers is also permitted.
Therefore, we need a method to distinguish whether high port
communication is legitimate or not.

VII. Conclusion
In this paper, we implemented our proposed communica-

tion classifying system and applied it to a prototype network.
In the experiment, the system judged necessity of most of the
communication observed in the network correctly. As a result,
it was confirmed that the feasibility of the proposed system, and
most of the “overly permits of unnecessary communication”
that was a problem in our previous proposal Automated ACL
Generation System could be prohibited.

However, we found several problems from the experi-
mental result. First, our proposed system judges unintended
communication as necessary in a specific condition. When a
communication occurs in the internal network and destination
terminal provides service related to such communication, the
CCS permits the communication unconditionally. In addition,
the experimental result includes a lot of communication that is
returned packets. To ignore such returned packets, we have to
classify the communication as malware’s activity or returned
packet.

As future work, we have to propose methods to avoid mis-
judges and to classify the high destination port communication.
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Abstract—The anonymity of users during the authentication 

process for accessing computer-based Safety-Critical Systems 

(SCSs) is crucial for two reasons: (i) ever growing dependency 

of users on SCSs and (ii) Internet of Things (IoT), social media, 

and marketers put the privacy of users of SCS in jeopardy 

more than ever.  The goal of this research effort is to introduce 

and develop a novel neural network-based system that is able to 

(a) employ Extracted Eelectro-Cardiogram (ECG) feature 

vectors of the user as biometric credentials for authentication, 

(b) preserve the privacy of users during the authentication 

process and (c) attest the authenticity of clients on a continuous 

basis during the time that the SCS serves the client.  Such 

attestation is necessary to make sure the user, after initial 

successful authentication, has not been replaced by an entity 

with malicious intent.  Ten datasets with the total of 246,690 

synthesized ECG feature vectors were created to test the 

system.  These vectors were generated out of borrowed real 

ECG feature vectors for 90 users.  Each dataset had 2,169 

legitimate users’ credentials and 22,500 illegitimate ones. Our 

neural network-based system revealed the accuracy of 

(99.98%), precision of (100%), and sensitivity of (99.82%). 

 Keywords-Anonymous Authentication; Encryption; Neural 

Network; Dynamic Authentication; Neural Network-based 

Authentication; Continuous Attesting Authenticity.  

I. INTRODUCTION 

 The failure of Safety-Critical computer-based Systems 

(SCSs) may cause economic loss, loss of life, or both.  These 

systems are at work in every segment of society including 

banking, state and federal elections, business, travel, service, 

military, manufacturing, insurance, hospitals, medicine, etc.  

There is a large class of SCSs with the following desired 

properties: 

(a) Being accessed by a set of legitimate clients 

frequently,  

(b) Preserving the clients’ privacy during the 

authentication process,  

(c) Attesting the authenticity of clients on a continuous 

basis during the time that the SCS serves the client.   

The first property is innate in all SCSs because, in general, 

all SCSs are exposed to some degree of controlled access.  

The second property is crucial for two reasons: (i) ever 

growing dependency of users on SCSs and (ii) Internet of 

Things (IoT), social media, and marketers put the privacy of 

users of SCSs in jeopardy more than ever.   

 The second property also inherently proposes a major 

challenge. The challenge stems from the fact that the 

preservation of privacy and enforcement of security are at 

odds with each other. To support such oddity, the credentials 

by which a client seeks access to a SCS is transformed 

before being presented to the SCS.  The intention is to make 

sure that the actual credentials can neither be seen by the 

SCS nor can the SCS get the actual credentials through the 

process of reverse engineering. Therefore, the 

transformation process totally takes place on the client side.  

In addition, every time that client wishes to access the SCS, 

the transformed version of the credentials must be different, 

although the client credentials remains the same.  This is 

necessary to discourage any discovery attempt of the client 

credentials. At the SCS side, there is a depository of client 

credentials that are used for confirming the authenticity of 

the legitimate clients.  Since the client credentials are 

transformed, each credential in the SCS depository also 

needs to be transformed.  (Obviously, the transformation 

function used on the client side cannot be used on the SCS 

side.)  The similarities between the transformed client’s 

credentials and each one of the transformed credentials in 

the depository of the SCS are measured.  The authentication 

is confirmed if the similarities are above a predefined 

threshold.   

 The third property is an antidote to laxation of the SCS 

after initial authentication.  In other words, SCS requires a 

test of assurance that, during the period of service, the client 

has not been replaced by an entity with malicious intent.  

Although the credentials of the user are not changing during 

the service period, the transformation of the credentials has 

to change.  

 The goal of this research effort is to introduce and 

develop a novel neural network-based system that is able to 

(a) employ Extracted Electro-Cardiogram (ECG) feature 

vectors of a user as credentials for authentication, (b) 

preserve privacy and enforce the authentication process and 

(c) attest continuously the authenticity of clients who are 

using the SCS service.  Since the transformation functions 
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for transforming credentials on the client side and SCS side 

ought to be different, two new neural networks (one for the 

client side and one for the SCS side) are introduced.   

 One may ask why the ECG feature vectors are chosen 

for authentication. The answer is that ECG vectors are much 

less susceptible to compromise in comparison to the other 

biometric measures such as fingerprint, iris etc. [1].    

 The rest of the paper is organized as follows. The 

Previous Works are the subject of Section 2. The 

Methodology is presented in Section 3. The Empirical 

Results are discussed in Section 4. The Complexity Analysis 

of the system is the subject of Section 5.  The Conclusions 

and Future Research are covered in Section 6. 

II. PREVIOUS WORKS 

 Due to explosion of IoT and social media, privacy-

preserved authentication has received tremendous attention 

over the last two decades.  In general, four different 

paradigms are used: hamming distance paradigm, oblivious 

paradigm, zero-knowledge proof paradigm, verifiable 

common secret encoding paradigm, and hybrid paradigm.  

Secured weighted hamming distance and its modified 

versions are the nucleus of the hamming distance paradigm 

[2][3].    

 According to the oblivious paradigm, SCS has several 

strings of information and transfers one of the strings to the 

receiver and after that remains inattentive and or 

unconcerned (oblivious) about the transferred string of 

information [4][5]. 

   According to the zero-knowledge proof paradigm, the 

client is able to prove his/her credentials to the SCS many 

times using polynomial authentication [6]-[8].  

 According to the verifiable common secret encoding 

paradigm, clients are arranged in groups and groups are 

dynamically formed by using a set of public keys ids. The 

privacy of the client is preserved through proving that it is an 

active member of a certain group [9][10]. 

 According to the hybrid paradigm, a combination of 

more than one of the above mentioned paradigms are used 

[1] [11]-[13].  For example, a combination of hamming 

distance paradigm and oblivious paradigm are used 

frequently.  We introduce and evaluate a novel privacy-

preserved authentication paradigm—Neural Network-based 

paradigm. 

III. METHODOLOGY 

 The methodology for meeting the three-prong goal of 

this research is explained in detail in this section.  Let X be 

the binary vector of length N representing features for one 

biometric measurement of a user and also let  be a set of 

binary vectors on the SCS side that if the similarity of X 

with one of the elements in  is within an acceptable range 

then, X is valid.  We separately explain steps taken in both 

client side and SCS side to provide access to SCS while 

preserving the privacy of users in the following two 

subsections.   The reader needs to be reminded that 

providing access to SCS and preserving the privacy of users 

are the first two prongs of the goal for this study.   The 

details of the last prong of the goal are the subject of the 

third sub-section. 

A.  Actions on the Client Side 

 We take X and divide it into equal size sections of x1, . . 

., xn.  Let the number of bits in xi be m. We build a semi-feed 

forward neural network with two layers of input and output.  

A feed forward neural net is unidirectional.  That is, the 

difference between the output vector and target vector is not 

fed backward.  Therefore, the weight matrix for the 

connections between the nodes of input layer and the nodes 

of output layer do not change.  However, we call our neural 

network a semi-feed forward net because the weight matrix 

is updated after each input vector completes its journey 

through the net.  We shortly introduce the updating process 

for the weight matrix. 

 The input layer has (m+1) nodes (the extra node is a 

bias node) and output layer has only m nodes. Sections xi 

(for i = 1 to n) are used as input vectors to the net.  The input 

for the bias node is always one, as shown in Figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The client side feed forward neural network architecture 

 

The initial weight matrix, W is:  

 

 

 

W= 

 

 

 

 

 

Elements ai,i of W are calculated using (1), where d is a 

random integer value >2. 

 

ai,i = 2k-i+1, k  d*m+1  (1) 

 

Elements ei,j of W are calculated using (2), where ci,j is a 

non-negative integer random number less than 2m.  (cij is 

randomly generated for each ei,j.) 
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ei,j = ci,j*2m      (2)  

 

The output of j-th node of the output layer for the input 

vector of I is calculated using (3), where W*,j means the j-th 

column of weight matrix W.   

 

  oj = ∑ 𝐼𝑊∗,𝑗
𝑚
𝑗=1    (3) 

 

After an input vector completes the feed forward step, before 

the next input vector be fed to the net, all the eij elements of 

W are replaced by a new eij that is randomly generated using 

(2).  This is an extra effort in preserving the privacy of the 

client. 

 The input vector of xi generates an output vector that 

serves as a column of a new matrix.  That is, using the neural 

net for input vectors of xi (for i = 1 to n) generates a new 

matrix G such that the output for input vector xi is the i-th 

column of matrix G.  Therefore, G is a matrix of m rows and 

n columns.  Matrix G is the one that leaves the client side as 

the transformation of X.  SCS has neither the knowledge of 

input vectors nor weight matrix W and its updates.  

B.  Actions on the SCS side 

 The SCS receives only matrix G from the client side and 

the process of authentication is completed in two phases.  

Details of each phase are the subject of the following two 

subsections. 

1) Phase I: Let Y be one of the several existing binary 

vectors in the depository of the SCS side representing a user.  

We shortly introduce another semi-feed forward neural 

network (different from the one used on the client side) that 

transforms Y.  The differences between the transformed Y 

and transformed X are measured and if the difference is 

higher than an acceptable threshold then, X matches Y.  The 

same process is repeated for every users’ binary vectors until 

the authenticity of X is either validated or denied.  

 The vector Y is divided into equal size sections of y1, . . 

., yn such that the number of bits in yi is m. We convert yi to 

a matrix of m by 1 and as a result Y is converted to a matrix, 

Z, of m rows and n columns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2. The SCS side feed forward neural network architecture 

 We introduce the semi-feed forward neural network for 

use in the SCS side that is different from the one introduced 

for the client side.  The new neural net has three layers of 

input, hidden and output, as shown in Figure 2.  

 Two weight matrices are needed (one for connections 

between the nodes of input –hidden layers, W, and one for 

the connections between the nodes of hidden-output layers, 

V.)  Creating and updating processes of the weight matrices 

are also different from the one for the client side.  The input 

layer has (n+1) nodes (the extra node is a bias node), both 

the hidden layer and the output layer have n nodes.  Each 

row of matrix Z along with an input of 1(for the bias node) 

serves as input to the feed forward neural network. 

 The initial weight matrix, W, has n+1 rows and n 

columns and it is built in two steps.  During the first step, W 

= (2m-1)*W’, where W’ is an identity matrix of n X n.  

During the second step, the k-th row of G (k =1 for the 

initial weight matrix) is added to W to serve as the (n+1)th 

row of W.   The value of k is increased by one for each 

incoming input vector. 

 

 

 

 

W= 

 

 

 

 

For the first input vector, the initial W is used.  For the next 

input vector, W changes using (4) and (5). 

 

new(wij) = old(wij)/2    (4) 

(for i = 1 to m and j =1 to n)  

 

new(wij) = gk,j     (5) 

(for i = m+1, j = 1 to n, and k = k+1)    

    

The output of the j-th node of the hidden layer for the input 

vector of I is calculated using (1). 

 The weight matrix, V, for connections between nodes of 

the hidden layer and output layer has n rows and n columns.  

V is a binary matrix and it is randomly created such that 

every row and every column of V contains only one 1.  

Therefore, the total number of ones in V is equal to n.  For 

each input vector, a new V is randomly generated.  Let 

vector H be the output of the hidden layer nodes, the output 

of the j-th node in the output layer is calculated by (1). Using 

this neural net for all input vectors delivers a matrix of m 

rows and n columns, P.   

2) Phase II: Let the largest element in matrix P be L bits 

long when it is converted into binary.  We take the binary 

equivalence of p11, first element in P, and padded with zeros 

(if needed) to make its length equal to L.  We rotate the 

binary number to the left i=1 places and take the m+1 least 

bn 

 h1 n hn 

on o1 

w11        w1n               wn1         wnn    c11       c1n       

zi 

 b1  

bias 

 c1 

v11       v1n         vn1           vnn                    

a1 0       . . . . . . .   0 
0 a2 0    . . . . . . . 0 
0 0 a3   0  . . . . . 0 
  .   .   .   .   .   .   . 
  .   .   .   .   .   .   . 
0 0 0           . . . . . . . an  
gk,1 gk,2 gk,3        . . . . . . .        gk,n  
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significant bits as a value (q).  The counter h is set using (6), 

where r = q mod(2m  + 1).  

 

h = (mr+1)*Cos(r)  (6) 

 

The above process is repeated for each remaining element, 

pij, in P using (7). 

 

h = h + (mr+1)*Cos(r)  (7) 

 

The ultimate outcome of the second phase is h.  Let N be the 

length of X and, thus, the length of Y.  The threshold value 

T= m(N - ).  Let us explain what  is.  In reality, X and Y 

are extracted feature vectors of a biometric of interest for a 

user.  The extracted feature vectors are not always exactly 

the same and they may differ by negligible number of bits—

.  The value for  is selected in such a way that the ratio of 

/N is extremely small.  If h > T then, X and Y are matched.    

C.  Attestation 

 Our neural network-based system employs Extracted 

Electro-Cardiogram (ECG) feature vectors of users as 

credentials for authentication.  An ECG shows the electrical 

signals of a human heart as a waveform and it is unique for 

each individual.  The components of the ECG waveform are 

named P, Q, R, S, T, U, and V as illustrated in Figure 3.  

 The uniqueness of this waveform for each person makes 

it a vital biometric candidate for authentication.  The 

physical characteristics of the ECG such as relationships 

among R, Q, and S peaks individually or collectively, 

duration and shape of P, T, and U waves and their 

relationships (that represent depolarization and 

repolarization phases of human heart) may be used as 

features of an ECG.  To obtain such features: (i) several 

ECG waveforms of a person are recorded for a short period 

of time and (ii) recorded waveforms are analyzed using 

either fiducial points based approaches [14] [15] or pattern 

recognition based approaches [16][17], to conclude the 

features of ECG for the person. Such features are claimed to 

be independent of the heartrate [16]. 

 
 

 

 

 

 

Figure 3. Components of ECG waveform 

 To complete attestation, a portable health device with 

sensors that are able to read constantly the ECG waveforms 

of a person may be used.  Let us assume that the ECG of a 

person is read for t1 units of time.  These waveforms go to 

the process of ECG analysis for extraction of ECG features 

and the analysis process takes t2 units of time. The 

authentication process using the neural network-based 

paradigm takes t3 units of time.  Thus, for the very first 

reading of ECG, it takes t = t1 + t2 + t3 units of time that 

authentication be completed.  However, ECG reading is 

done by a different device than the one in charge of all 

computations; therefore, the attestation is repeated every t’ = 

t2 + t3 units of time, after the authentication is completed for 

the first reading of ECG. 

IV. EMPIRICAL RESULTS 

 For a given authentication system, let us assume that out 

of U1 number of users who have valid credentials only TP of 

them were positively authenticated by the system and, 

therefore, FN of them were rejected (U1 = TP+FN.)  Let us 

also assume that out of U2 number of users who have invalid 

credentials only TN of them were rejected by the system and, 

FP of them were not (U2 = TN+FP).  The accuracy, precision, 

and sensitivity of the authentication for the system are 

calculated using (8), (9), and (10), respectively.  

 

Accuracy = (TP+TN)/(U1+U2)  (8) 

Precision = TP/(TP+FP)   (9)   

  Sensitivity = TP/U1    (10)  

 

 Bhutra et al. [1] reported extraction of a 240-bit long 

feature vector from a person’s ECG that is recorded for 20 

seconds and digitized at 500 Hz with 12-bit resolution over a 

nominal ±10 mV range.  We assumed that the negligible 

number of bits is one ( = 1).  To examine the behavior of 

our neural network-based authentication, the test dataset was 

borrowed from [1]. This dataset included feature vectors for 

90 different eligible users and it was used as the depository 

of credentials on the SCS side.   

 For the client side, we repeated the following process 

for every one of the 90 feature vectors, FVi.  Out of the 240 

bits in FVi, randomly k (2  k  10) bits of the FVi were 

chosen and corrupted (i.e., flipped) to generate a new FVi.  

We generated 2500 new corrupted feature vectors out of 

each FVi and thus, the total of 225,000 corrupted ones out of 

the original 90 feature vectors.  (The reader needs to be 

reminded that the total possible corrupted vectors that can be 

created out of one FVi using 2  k  10, is more than 1017. 

We just randomly generate 2500 of them.)   Ten datasets of 

equal size were created randomly out of the corrupted 

feature vectors and named D1 . . . D10 such that Di contained 

22,500 corrupted vectors (invalid credentials).  

 Following the same procedure for k =1, the total of 

21,600 corrupted feature vectors generated using the original 

90 vectors.  The new corrupted vectors were treated as the 

original vectors with a negligible number of corrupted bits 

( = 1).  These vectors were randomly and equally added to 

the D1 . . . D10 such that every vector appeared in only one of 

the datasets.  (Each Di was expanded by 2160 new vectors.  

In addition the original 90 vectors were randomly and 

P                            T       U 

Q    S 

R 
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equally divided among the ten datasets such that each vector 

appeared in only one dataset.  As a result, each dataset Di 

had the total of 24,669 vectors of which 22500 of them were 

invalid and 2169 vectors were valid.    We measured the 

accuracy, precision, and sensitivity of our neural network-

based authentication approach using the ten datasets and 

results are shown in Table I.   

 
TABLE I: THE AVERAGES OF ACCURACY, PRECISION, AND 

SENSITIVITY MEASURES FOR OUR NEURAL NETWORK-
BASED AUTHENTICATION APPROACH USING THE TEN 

DATASETS OF D1 . . . D10. 

 
Dataset Accuracy Precision Sensitivity 

D1 100 100 99.95 

D2 99.99 100 99.91 

D3 99.96 100 99.54 

D4 100 100 99.95 

D5 99.97 100 99.63 

D6 100 100 99.95 

D7 99.97 100 99.68 

D8 99.98 100 99.72 

D9 99.99 100 99.91 

D10 99.99 100 99.91 

Average 99.98% 100% 99.82% 

 

 We also examined whether the rejection or acceptance 

of a feature vector was dependent on the locations of those 

bits that are different between the two transformed vectors of 

X and Y.  To explain further, let us assume that X and Y are 

both divided into 6 sections of (x1, x2, x3, x4, x5, and x6) 

and (y1, y2, y3, y4, y5, and y6) and each section is 3 bits 

long (thus, n = 6 and m = 3).  Let us also assume that the 

number of bits that are different between X and Y is 6.  

These six bits may have several different distributions within 

X.  For example, in one distribution, one bit is different in 

each corresponding section of xi and yi (for i =1 to 6).  In 

another distribution, all the bits in x1and x2 (total of 6 bits) 

are different from the bits in y1 and y2, respectively.  In a 

third distribution, two bits in each section of x1, x2, and x3, 

(total of 6 bits) are different from two bits in each section of 

y4, y5, and y6.  Is the authentication influenced by 

distribution of the different bits between the vectors of X 

and Y? 

 To find the answer to the proposed question we selected 

randomly one of the 90 original feature vectors, Vector Y. 

We used m = 4 and n =60 to create 4-bit long 60 sections for 

Y.  A new vector, X, was created. We assumed that the 

number of bits that are different between X and Y is Bi (for i 

= 3 to 30).  The vector Y was considered as the true 

credentials and vector X was the one in which distributions 

of Bi flipped bits took place.  For each Bi 200 different 

distributions of Bi flipped bits in Y were generated that 

collectively made a group of distributions for Bi—GBi.  Each 

vector in the group is a new X vector and all X vectors in the 

group have the same number of Bi bits that are different 

from Y.  The total number of distributions’ groups was 27.  

We used every new X against the true credentials vector Y 

and findings showed that the authentication process is not 

influenced by the locations of Bi flipped bits.  

V. COMPLEXITY ANALYSIS 

     On both the client side and the SCS side, the credentials 

are divided into n sections of m-bit long.   The weight matrix 

W, on the client side has m +1 rows and m columns.  

Therefore, smaller m means smaller W.  However, smaller 

m means larger n, which makes the weight matrices of W 

and V on the SCS side larger because they have n+1 rows 

and n columns.  As a result, in choosing n and m one may 

pay attention to the size of the weight matrices. The Reader 

needs to be reminded that the size of m and the number of 

input records are moving in two different directions.   

 Let us assume that N =  n and n >> m.  The worst case 

is when the size of m becomes equal to the size of n and the 

size of the weight matrix is, therefore, N2.  The time 

complexity for the neural network on the client side, the 

neural network of phase I on the SCS side, and computation 

of phase II of SCS are O(N2), O(2(N)2), and O(N2), 

respectively.   The total time complexity is O(4N2).  Since N 

is a very small number so is the time complexity.   

VI. CONCLUSIONS AND FUTURE RESEARCH      

 Two well-known paradigms of privacy based 

authentications are Zero Knowledge Proof (ZKP) and 

Verifiable Common Secrete Encoding (VCSE). In general, 

the former one uses a set of hardcoded parameters that are 

essential to its performance.  The device that runs ZKP could 

be profiled by a Side-Channel Attack [18], which in turn 

could be used to disclose the set of parameters.  The 

consequences of the parameters’ disclosure are 

compromising the device and subsequently back engineering 

the authentication secrets.  In contrast, our methodology (use 

of a neural network) creates a different set of weights every 

time it is used.  This means that no matter how much 

profiling is done, no intrinsic data can be compromised.   

 VCSE uses public/private key encryption.  It maintains 

anonymity by the use of a dummy list of keys, which is sent 

to the server.  The server encrypts every key in the list using 

the same session key, concatenates each encrypted key with 

the same random number, r, and returns the list to the client.   

The client, in turn, decrypts and sends back r to be validated 

by the server.  This makes the anonymity provided by VCSE 

considerable.  The problem is that due to the overhead, the 

VCSE consumes a large amount of system resource, which 

results in a slow execution especially on devices with a 

small amount of resources.  This is not the case with our 

neural network approach, which uses very little system 

resource to achieve anonymity.   

 In addition, our privacy preserving authentication 

approach also shows almost a perfect accuracy, precision, 

and sensitivity.   

 As future research, development of a neural network-

based hybrid authentication system is in progress that will be 
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tailored toward authentication at Boundaries of Cyber-

Physical Systems. 
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Abstract—Connecting client and server applications directly
via a transport connection allows the application of existing
security protocols directly, as known from classical Web
applications. Typically, Transport Layer Security (TLS) is
applied to protect the communication link end-to-end. This
approach is utilized in substation automation to protect the
Transmission Control Protocol (TCP)-based communication
between a substation controller and a protection relay applying
mutual authentication of the end-points. If a direct
communication link is not available, communication is realized
over an intermediary system. Providing end-to-end security
over multiple communication hops, including mutual endpoint
authentication (client and a target application service) as well
as integrity and confidentiality of communicated data deserves
specific attention, even if the communication hops with the
intermediary are protected hop-by-hop by security protocols
like TLS. In power system automation, this kind of
communication involving an intermediary is used with publish
subscribe protocols, e.g., when integrating Decentralized
Energy Resources (DER) or when integrating into the German
Smart Meter Gateway architecture. This paper investigates
existing solutions and specifically analyses the end-to-end
security approach defined for power system automation within
the International Electrotechnical Commission (IEC) and
motivates broader application in session-based communication
scenarios.

Keywords—security; device authentication; end-to-end
security; multi-hop security; IEC 62351 Publish/Subscribe.

I. INTRODUCTION

Security in power system communication is getting more
momentum, as energy supply is part of the critical
infrastructure. For critical infrastructures, the European
Network and Information System (NIS) Directive [1]
requires security measures to be supported by the system
operator. This directive has been ratified by the European
member states. Germany, for instance, has passed the
Information technology (IT) Security Act already in 2015
[2], which required the definition of domain-specific security
standards that have to be implemented by operators of
critical infrastructures. For the power system infrastructure,
the domain specific security standard is provided by ISO
27019 [3] in conjunction with the IT security catalog of the
German BNetzA [4]. Both documents target communication
security in terms of authentication of communicating entities

in addition to integrity and confidentiality protection of the
data exchange, but without specifying specific technical
means in terms of protocols to be used. Security
requirements for critical infrastructures are also defined
outside Europe, for instance in requirements specified by
NIST Cybersecurity framework [5] and specifically for the
power system infrastructure by the North American Energy
Reliability Council in the NERC Critical Infrastructure
Protection (CIP) standards [6]. These documents pose
similar requirements, which relate most often to the
processes of an operator and partly to supporting technology.
Common to all of the requirement documents is that
additional standards/specifications are necessary to address
the implementation of such requirements in components and
systems, while ensuring interoperability between different
vendor’s products.

One standard defining specific technical requirements is
provided by the framework IEC 62443 [7], describing
specifically in two distinct parts technical requirements for
different security levels, which relate to the strength of the
considered attacker. They also refer to security of
communicated data.

Besides these technical requirements, different standards
and draft standards exist, addressing communication security
covering standard requirements for entity authentication,
integrity protection and confidentiality protection. One
example for such a standard protecting specifically TCP
based communication is provided by the Transport Layer
Security Protocol (TLS 1.2 [8], TLS 1.3 [9]).

As analyzed in [10], the necessity to support
communication over multiple hops between two entities in
power system automation has been emphasized by the
support of Decentralized Energy Resources (DER).
Integrating DER into the current energy distribution network
requires to monitor and control these DER to a similar level
as centralized energy generation in power plants to keep the
stability of the power network. To cope with the fact that
DER are typically operated within a private operator network
protected by a firewall, the standard IEC 61850-8-2 [11]
defines a communication approach based on the eXtensible
Messaging and Presence Protocol – XMPP [12]. Here, both
sides, the DER controller, as well as the control center,
connect to an intermediate server node, which facilitates the
communication between both entities. In this specific case,
the standard IEC 62351-4 [13] ensures that the
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communication between the control center and the DER is
secured in an end-to-end fashion. Meanwhile, this standard
has been released and will be compared to other existing and
meanwhile developed solutions.

The remaining part of the paper is structured as follows.
Section II describes the communication overview and
derives high level security requirements. These requirements
are taken into consideration later in the description of the
security approach taken for the integration of DER into the
power system based on IEC 61850. Section III investigates a
selection of existing approaches to provide end-to-end
security (message-based and session-based methods).
Section IV provides more insight into the actual design and
application of the protocol defined in IEC 62351-4 to
motivate broader application. Section V concludes the paper
with an outlook.

II. COMMUNICATION ARCHITECTURE AND

DERIVATION OF SECURITY REQUIREMENTS

A. Communication architecture

For the discussion of end-to-end communication, the
integration of DER resources into a power system control
network is taken as example, see Figure 1. The lower part of
the figure shows the distributed generators (photovoltaic and
wind power) that are managed by the control function shown
in the upper part. All entities are connected via a
communication network in which the intermediary XMPP
server in the middle provides the connectivity between the
control center and the DER controller. The control function
may be located at a Distribution Network Operator, a virtual
power plant operator, or a smart energy market operator.

Figure 1. DER Integration based on IEC 61850 over XMPP

The data exchanged between the DER controller and the
control center comprises different types of data:

 Customer data, which may be identification
information, location data, consumption data or other
information belonging to the DER owner.

 Control data, which may be either commands issued by
the control center, or event and monitoring information
from the DER controller.

 Market data, which may be tariff information provided
from a marketplace via the control center or directly
(not shown in Figure 1) to the DER controller.

In the context of utilizing IEC 61850 to connect DER to a
control center, the communication between the DER
controller and the XMPP server is secured using TLS as
transport layer security protocol. The same holds for the
connection between the control center and the XMPP server.
Note that the XMPP server may belong to a different
administrative domain and may therefore not be trusted to
access the data exchanged between the DER controller and
the control center. Hence, the communication relation
between the DER controller and the control center is secured
at application layer using IEC 62351-4, which will be
analyzed in more detail in Section IV.

B. Derivation of Security Requirements

As stated in the introduction, there are different types of
security requirements stemming, on one hand, from the
obligation to comply with international and national
regulations. On the other hand, security requirements are
derived from the system architecture based on a risk-based
approach. The international industrial security standard IEC
62443 [7] is a security requirements framework jointly
developed by the International Electrotechnical Commission
(IEC) and the International Society of Automation (ISA99)
to address the need to design cybersecurity robustness and
resilience into Industrial Automation and Control Systems
(IACS). The standard covers both organizational and
technical aspects of security over the life cycle of systems. It
can be used in conjunction with ISO/IEC 27019 (the
Information Security Management System (ISMS) profile
for the energy domain based on ISO 27002) and with IEC
62351, providing specific security solutions. Here, the parts
IEC 62443-3-3 (focus on system security requirements) and
IEC 62443-4-2 (focus on component security requirements)
can be used in the context of a risk-based approach, as they
specify technical security requirements for four security
levels, corresponding to different strengths of an attacker.
For both views, system and component, foundational
requirements groups have been defined. For each of the
foundational requirements, several concrete technical
Security Requirements (SR) and Requirement Enhancements
(RE) to address a specific security level exist.

The overall approach applies to the systems and the
communication connections are shown in Figure 1. In the
context of this paper, the focus is placed on the
communication relations only, to address the specific target
of providing communication security over potentially
untrusted nodes. The protection of the communication is
addressed by different security requirements focusing on
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Figure 2. End-to-end-Security and hop-by-hop security according to IEC 62351-4

end-to-end security requirements and hop-to-hop security
requirements. Note that the hop-to-hop security requirements
contribute to the overall system security approach and may
be used in conjunction with the end-to-end security. Figure 2
shows the data exchange between the control center and the
DER controller via the XMPP server. The security
requirements comprise specifically:
 End-to-end authentication between the DER controller

and the control center to ensure identification and
authentication of the communicating endpoints.

 End-to-end integrity protection to ensure that data in
transit has not been tampered with (unauthorized
modification) between the DER controller and the
control center.

 End-to-end confidentiality protection to ensure that data
in transit has not been accessed (read) in an
unauthorized way by the XMPP server.

Hop-to-hop authentication between the XMPP client (DER
controller, control center) and the XMPP server is used to
identify and authenticate an intermediary system proxying
the end-to-end communication between the DER controller
and the control center.

III. SECURITY MEASURES ON APPLICATION LAYER

This section investigates a selection of existing end-to-
end security approaches, which can be used to provide
authentication, integrity, and confidentiality. Note that
XMPP enhancements to achieve end-to-end security between
the clients connected via the XMPP server have already been
discussed as part of [10] and are not further discussed here.
The IETF drafts discussed in this respect are already
outdated and have not been updated in the last two years.
Therefore, they are not considered further. In the following
examples of existing standards or standards in development
supporting end-to-end security on application layer, are
summarized. They are distinguished into message-based
approaches and session-based approaches. Message-based
approaches are independent of the actual communication

session and can be applied to single messages. Session-based
approaches are relying on a communication connection,
which comprises at least an initialization phase and a data
exchange phase. Both approaches have their merits, but also
certain drawbacks.

A. Message-based security

The following examples target the protection of single
messages and do not rely on an established communication
connection:

 IETF RFC 3923 [14] describes end-to-end signing and
object encryption utilizing S/MIME to protect the
messages exchanged over XMPP connections. This
approach is similar to using secure email. It provides
end-to-end authentication based on a digital signature
and confidentiality protection based on symmetric
encryption. As this approach targets message-based
communication, without a communication session it
will result in a higher per message overhead, as the
messages are protected using symmetric encryption,
while the key for the symmetric encryption is encrypted
with the recipient’s public key. This approach has two
drawbacks. It is performance intensive due to the use of
asymmetric operations and it is bound to RSA as
asymmetric algorithm. Newer algorithms like ECDSA
based on elliptic curves may not be used.

 W3C defined XML security may also be used to
address a secure data exchange on application layer.
There are two different standards available, which are
already utilized to provide security: XML Signatures
[15] and XML Encryption [16]. Both can be used in
conjunction, ideally on XML encoded data in so-called
XML elements and support the given security
requirements. XML encryption allows the encryption of
any type of data with symmetric and asymmetric
methods. XML signature on the other side applies
asymmetric methods to achieve integrity protection and
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non-repudiation. Note that there exist adequate
standards for the binary data representation.

 The IETF working group for JavaScript Object Signing
and Encryption (JOSE) defined two further standards,
which can be used to protect messages encoded in
JavaScript Object Notation (JSON). IETF RFC 7515
[17] specifies JSON Web Signatures, while IETF RFC
7516 [18] defines JSON Web Encryption. The
combination of both documents is similar to XML
documents developed by W3C for specific JSON
encoding.

 A further IETF standard is provided with RFC 8152
[19] defining authentication, integrity protection, and
confidentiality protection for Concise Binary Object
Representation (CBOR), which enhanced the data
model of JSON with a binary representation. This
approach allows for enveloping and encryption of
arbitrary message blocks.

B. Session-based security

The following examples target the protection of
communication sessions for application data exchanges. For
this, it is assumed that a communication session is
established between two entities during which both
participants can authenticate and negotiate a set of session
keys for protecting further communication. This approach
has the advantage for consecutive communication to result in
less overhead for the bulk data handling as part of the
communication session. This is due to the fact that the
combination of symmetric encryption and an additional
integrity protection or the direct application of authenticated
encryption has a much better performance instead of
invoking asymmetric cryptography on a per packet base.

 IETF draft on Application Layer TLS [20] leverages the
existence of a TLS implementation on the
communicating entities. The approach utilizes the
option of TLS stacks to create and process TLS records
based on access to the byte buffer. Based on this, the
TLS packets may be transmitted over arbitrary transport
connections. This approach has the advantage that the
application layer security immediately benefits from
new cipher suites and cryptographic algorithm support
by the underlying TLS stack. In addition, several TLS
stacks allow key material export using the approach
defined in IETF RFC 5705 [21] to leverage the TLS
key agreement and to utilize the negotiated key in the
context of other protocols.

 Signal [22] is a protocol used in messaging systems,
which allows to establish a secure session based on an
authenticated triple Diffie Hellman key agreement in
which EdDSA signatures are employed for integrity
protection during the key establishment phase. The
negotiated key material is applied to protect the
integrity and confidentiality of the established session

based on the Double Ratchet algorithm. Note that peer
authentication is not directly supported by signal.

 Off-the-Record (OTR [23]) is a further protocol used in
messenger applications to ensure integrity and
confidentiality. In versions 2 and 3 of the protocol, peer
authentication is also supported. Here, shared keys are
utilized to achieve the authentication.

 Application Layer Transport Security (ALTS [24]) has
been developed by Google in 2017 and is utilized to
secure Remote Procedure Calls (RPC). The protocol is
defined in a similar way as TLS, consisting of a
handshake protocol and a record protocol. It allows for
mutual authentication and session integrity and
confidentiality. Authentication is bound to an entity
rather than an instance (e.g., hostname) as the approach
targets mainly cloud environments. Note that there are
tradeoffs to TLS described in the specification [24],
which relate to privacy concerns for the handshake
messages and perfect forward secrecy. Note that these
properties are supported out of the box in TLS 1.3, but
not in TLS 1.2 and below.

IV. END-TO-END SECURITY DESIGN IN IEC 62351-4

As described in Section II.B, the security requirements
for providing an application layer end-to-end security
supporting DER integration can be summarized as:

 Mutual peer authentication between the DER controller
and the control center. As existing security measures
described in the context of IEC 62351 always rely on
authentication using X.509 certificates, being intended
for authentication, too.

 Session key management between the communicating
peers supporting initial key agreement providing perfect
forward secrecy as well as key update.

 Integrity protection of exchanged data to ensure that
data in transit has not been tampered with.

 Optionally, confidentiality protection to ensure that an
intermediary cannot access the content of the data
exchange.

Note that it should be possible to use either distinct
algorithms for integrity and confidentiality or a combined
approach (authenticated encryption).

The standard IEC 62351-4 was updated in 2018 and
specifies a transport security profile and an application
security profile. The application security targets the
provisioning of end-to-end security, as outlined by the
requirements above. The following description depicts the
protocol.

A. Precondition

The involved endpoints are expected to possess a
certificate and corresponding private key as well as a root
certificate trusted by both sides (e.g., bound to the operator)
and a common set of Diffie Hellman base parameter.
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Figure 3. End-to-end-Security and hop-by-hop security according to IEC 62351-4

Additionally, a protocol is assumed that supports session
initiation. In the specific example, this is provided by the
Manufacturing Message Specification (MMS [25]) using the
MMS Initiate and MMS Initate Response messages.

B. Session Handling

The session handling can be distinguished into the initial
key agreement during the session initialization and a key
update phase. Both sequences are shown in Figure 3. At the
beginning of the session, both sides generate a Diffie
Hellman key pair to be used in the key agreement resulting
in an ephemeral Diffie-Hellman secret. All data necessary
for the establishment of the security association between
both peers are kept in a data structure called clear token (as
the data s transmitted n clear, but integrity protected). From
each of the handshake messages a fingerprint is taken using a
hash function. The hash is calculated over the concatenation
of the current message and the hash of the previous message
(the first message uses “0” for the previous message). This
fingerprint is used to ensure the right order of messages and
to provide additional randomness to the messages. This
“running” hash was inspired by the TLS handshake [8].
Upon reception of the initiation message, the receiver
verifies the signature, calculates the fingerprint and generates
the response message, from which again the fingerprint is
taken. After providing the signed response to the imitator,
both sides can calculate the Diffie-Hellman secret and utilize
it together with the running hash over the response message
as input for the hash based key derivation function HKDF.
This will generate different keys per direction for integrity

protection and confidentiality protection, resulting in four
keys. The keys are applied according to the security
association.

The key update can be done using a single message.
Figure 3 shows the key update triggered by the control
center. As in the initial step, the control center generates a
fresh Diffie Hellman key pair and utilizes the already
received and stored Diffie-Hellman key from the DER
controller to immediately to calculate a new Diffie-Hellman
secret and the resulting set of updated session keys. Once
this message is received by the DER controller, it can
calculate the updated set of keys.

C. Packet construction

Figure 4 shows the packet construction and how the
different parts of the messages are protected. Note that
during the initial handshake, the clear token is only integrity
protected. As stated before, the clear token carries all
cryptographic parameter necessary to establish the security
association.

Figure 4. Application of IEC 62351-4 end-to-end security

26Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                           37 / 144



V. CONCLUSIONS

The lean approach taken in IEC 62351-4 as described in
Section IV establishes an end-to-end security session
between two communicating peers with mutual entity
authentication resulting in session keys being applied for
end-to-end message integrity and confidentiality.

Two points should be obeyed when applying the
discussed approach. First, the initial key agreement results in
an ephemeral set of session keys, as both sides are expected
to generate fresh Diffie Hellman parameters. The key update
performed in a single message initiated by either peer results
in a semi-static Diffie Hellman key agreement. Depending
on the security requirements, the receiver may initiate
another key update to ensure the freshness of his Diffie
Hellman parameters. The second point relates to potential
privacy requirements. The initial key agreement utilizes a
clear-text token, which is only integrity protected. Thus, all
information contained in the token is potentially readable by
an intermediary. As the clear token also contains certificate
information, it may allow to identify the communication end
points.

This paper described an approach of handling end-to-end
security over intermediate nodes from a system point of
view, by investigating existing security requirements and
existing solutions. The paper focused on the description of
the end-to-end security approach defined in IEC 62351-4
from a general perspective protecting higher layer session-
based communication in an end-to-end fashion, to motivate
the re-use of this lean approach in other scenarios or protocol
frameworks in industrial communication. As an outlook to
this, it is intended to apply the described approach also to
other publish-subscribe protocols utilized in automation
scenarios like MQTT or AMQP.
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Abstract—Breaches of private data have been occurring at an 
alarming rate, to the embarrassment and expense of companies 
that hold the data. It would appear that in each breach, the 
attack surface for the data has been sufficiently large to attract 
attackers. Reducing this attack surface is a way to lessen the 
likelihood of breaches. This paper presents methods for 
reducing the attack surface of private data held in the online 
computer systems of  organizations. The methods are applied to 
a software system’s  architecture early in the design process, as 
an approach for designing-in security. This work defines the 
attack surface for the data, and then uses this definition to 
obtain a formula for calculating the attack surface. The 
definition further leads to identifying methods that can be used 
to reduce the attack surface. Reducing the attack surface may 
not prevent breaches, but it will make them less likely to occur.  

Keywords-privacy; private data; breaches; attack surface 
identification; attack surface reduction. 

I.  INTRODUCTION 
Breaches of private data held by companies and other 

types of organizations have been occurring at an alarming rate. 
Consider the following sampling of recent breaches [1]: 

• August 21 – September 5, 2018: British Airways, 
380,000 customers affected; card payment 
information stolen; the airline’s website and app were 
hacked. 

• January 1, 2016 – December 22, 2017: Orbitz, 
880,000 customers affected; payment card 
information and personal data (billing addresses, 
phone numbers, emails) stolen; the company’s 
website was hacked. 

• May 1, 2015 – July 4, 2018: SingHealth, 1.5 million 
users affected; names and addresses in the Singapore 
government’s health database, and some histories of 
dispensed medicine were stolen; also, the prime 
minister of Singapore was specifically targeted; 
hackers orchestrated a deliberate, well-planned 
attack. 

• August 20, 2018: T-Mobile, about 2 million users 
affected; a group of hackers accessed T-Mobile 
servers through an application programming interface 
and stole encrypted passwords and personal data, 

including account numbers, billing information, and 
email addresses. 

Apparently, the attack surface for the data that was breached, 
or the number of ways that the data could be accessed and 
stolen, was sufficiently large and attractive to the attackers. 

Given the rate of recent data breaches, it is clear that more 
needs to be done to reduce the probability of a data breach 
occurring. The objective of this work is to derive methods for 
reducing the attack surface of private data held in online (i.e., 
connected to the Internet) computer systems of organizations. 
The methods are obtained from consideration of the definition 
of the attack surface, which in turn is based on how an attack 
happens. This definition also leads to a straightforward 
formula for calculating the size of the attack surface, which 
can be used to verify that use of the methods does indeed 
reduce the attack surface. The methods focus on reducing the 
attack surface by altering the system architecture, rather than 
the deployment of add-on security appliances, such as 
firewalls and intrusion detection systems. The methods are 
meant to be applied at the early stages of design within a 
software development cycle, as part of the Design for Security 
toolset. 

This paper is organized as follows. Section II explains 
private data, attacks, attack surface, and how to calculate the 
size of the attack surface. Section III derives methods for 
reducing the attack surface based on its definition. Section IV 
illustrates the methods using an application example. Section 
V describes related work, and Section VI presents conclusions 
and future work. 

II. PRIVATE DATA, ATTACKS, AND ATTACK SURFACE 

A. Private Data, Attacks, and Attack Surface 
Private Data (PD), also known as personal data, is data 

about an individual, can identify that individual, and is owned 
by that individual [2]. For example, an individual’s driver 
license number, passport number, or credit card number can 
each be used to identify the individual and are therefore 
considered as private data. The individual’s privacy then 
refers to his/her ability to control the collection (what personal 
data and collected by which party), purpose of collection, 
retention, and disclosure of that data, as stated in the 
individual’s privacy preferences [2]. 
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DEFINITION 1: An attack is any action carried out against 
an organization’s computer system that, if successful, results 
in the system being compromised.  

This work focuses on attacks that compromise the PD held 
in the online systems of organizations. The attacker who 
launches an attack may be internal (inside attacker) or external 
(outside attacker) to the organization. This work applies to 
both types of attackers. An internal attacker usually has easier 
access to the targets of his/her attack and he/she may hide 
his/her attacks in the guise of normal duty.  

Salter et al. [3] give an interesting insight into what 
enables a successful attack: “Any successful attack has three 
steps: One, diagnose the system to identify some attack. Two, 
gain the necessary access. And three, execute the attack. To 
protect a system, only one of these three steps needs to be 
blocked.” Thus, an attack surface must contain a target that 
the attacker deems worthy of attack (suit his/her purpose for 
the attack) and that target must be accessible to the attacker. 
For this work, the target that is potentially worthy of attack is 
the PD that is accessible to attackers. In a computer system, 
this PD is either moving (travelling from one location to 
another), at rest (stored), or being used (by some process). 
This leads to the following definition of attack surface: 

DEFINITION 2: The attack surface for private data 
contained in an online computer system is the set of all 
locations in the system that contain attacker accessible PD in 
the clear, where the PD is moving, at rest, or being processed. 

Figure 1 shows an example attack surface.        
  
 
 
 
 
 
 
 
 
 
 
                             
 
 
 
 
 
 
 
 

 
In Definition 2, “attacker accessible PD” means that the 

attacker is able to exfiltrate the PD using some agent of 
attack, such as malware against stored PD and PD being 
processed, or a man-in-the-middle attack against a link 
containing moving PD.  

An alternative definition of attack surface for PD 
contained in a computer system is the set of ways the attacker 
has to exfiltrate the PD. However, given the complexity of 

computer systems and the fact that the tools available to the 
attacker to use in his/her attacks are unknown to us, it is next 
to impossible to determine this set.  On the other hand, 
locations that contain attacker accessible PD are easier to 
identify.  Since an exfiltration must be from a location that 
contains PD, the set of such exfiltrations depends on the set 
of such locations. The larger the set of locations, the larger 
the set of exfiltrations. The smaller the set of locations, the 
smaller the set of exfiltrations. Therefore, Definition 2 in a 
sense includes this alternative definition, but in addition, is 
more easily applied. 

As mentioned above, in the first step of a successful 
attack, the attacker diagnoses the system to identify the attack 
[3].  A smaller attack surface will make this step more 
difficult for the attacker. Therefore, a smaller attack surface 
corresponds to higher security, which is why we wish to 
reduce the attack surface. Definition 2 also gives rise to this 
conclusion: a smaller attack surface means a smaller number 
of locations that contain PD, which in turn means fewer 
opportunities for exfiltration of the PD, or in other words, 
higher security.  

Definition 2 is consistent with the intuitive understanding 
of an attack surface, which is “the set of ways in which an 
adversary can enter the system and potentially cause damage” 
[4]. Each “way” corresponds to a location in Definition 2 that 
in turn corresponds to methods for exfiltrating PD from the 
location.  

B. Calculating the Size of the Attack Surface 
It would be useful to have a numerical value for the size 

of the attack surface, since then we could a) compare attack 
surfaces at different stages of development to see if the 
system’s security is getting better or worse, b) compare attack 
surfaces of different systems when choosing a system for 
purchase, and c) easily see if actions taken to reduce the attack 
surface have indeed reduced it.  

As mentioned above, private data held in a computer 
system can be in the following three states: moving, at rest, or 
being processed. These states correspond respectively, within 
a computer system, to PD that is moving along a link, PD that 
is stored in a data store, and PD that is being processed. Thus, 
the locations in Definition 2 refer to links, datastores, and 
processes that contain attacker accessible PD. Definition 2 
then leads naturally to the following formula for calculating 
the size of the attack surface for private data.  

Let N be the size of the attack surface for PD. Let m, n, and 
k be the number of links, data stores, and processes, 
respectively, that contain attacker accessible PD in the clear. 
Then 

 
𝑁 = 𝑚 + 𝑛 + 𝑘 

 
Equation (1) says that the size N of the attack surface is 

found by adding up the number of attacker accessible 
locations in the system that contain PD, namely: the number 
m of links, the number n of data stores, and the number k of 
processes, all of which contain attacker accessible PD. This 
equation follows directly from Definition 2, by simply 
replacing “attack surface” with “size of the attack surface” and 

(1) 

Figure 1. Example attack surface consisting of the set of all 6 attacker 
accessible locations in the system that contain PD in the clear.  

Internet 

Computer 
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29Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                           40 / 144



“set” with “size of the set” in that definition. Applying this 
equation to Figure 1 gives an attack surface of size N = m + n 
+ k = 2 + 2 + 2 = 6.  

III. REDUCING THE ATTACK SURFACE 

A. Methods for Redusing the Attack Surface 
Equation (1) implies that the attack surface will decrease 

if and only if any or all of the quantities m, n, or k decrease. 
Therefore, the attack surface may be reduced by the following 
methods, where each method decreases m, n, or k: 

 
a) Make a PD location useless to the attacker. 
b) Combine two or more PD locations into a single PD 

location.  
c) Deny the attacker access to a PD location.  
d) Remove a PD location from the system. 
 
The following explains these methods in greater detail 

and describes how they may be carried out. 

a) Make a PD Location Useless to the Attacker 
As mentioned above, in the first step of a successful attack, 

the attacker diagnoses the system to identify an attack, or in 
our case, the PD target for the attack. In this diagnosis, it is 
reasonable to assume that the attacker will ignore any target 
that he/she finds useless for his/her purposes. Such targets 
may be removed from the attack surface. Some ways to make 
a PD target useless to an attacker are: 
• Obfuscate (e.g., encrypt) the PD at the location. The 

attacker will not want to exfiltrate PD that cannot be 
read. The computer system will need to able to de-
obfuscate the data securely for its own purposes. 

• Anonymize the PD at the location. Again, the attacker 
will not want PD that cannot be linked to individuals, 
since it is this linking that adds value to the data, e.g., 
for advertising purposes. The computer system will 
need to be able to de-anonymize the data securely for 
its own purposes. 

To illustrate, obfuscating one data store and one process in 
Figure 1 results in Figure 2, where the obfuscated data store 
and the obfuscated process have been removed from the attack 
surface. It can be seen that the attack surface in Figure 2 is 
reduced (size 4) relative to the attack surface of Figure 1 (size 
6).  

b) Combine Two or More PD Locations into a Single PD 
Location 

This method will decrease the number of PD locations 
and reduce the size of the attack surface per (1). Additional 
data links may need to be implemented in the system’s design 
to carry PD that was previously carried by links to/from the 
locations that were combined. In addition, changes to the 
software logic may be needed for data stores or processes that 
were combined to accomplish reading or storing the data in 
the combined location (for combined data stores), or new 
processing of data in the combined location. (for combined 
processes). To illustrate, combining two data stores into one 

data store and combining two processes into one process in 
Figure 1 also results in the reduced attack surface shown in 
Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

c) Deny the Attacker Access to a  PD Location 
It may be possible to have some PD locations offline, thus 

denying the attacker access to these locations. For example, 
this may be possible for certain self-contained processing, 
such as analytics, that can be done using PD that is offline. In 
this case, all data stores, processes, and data links involved 
solely in such offline processing may be removed from the 
attack surface of the system to which these locations originally 
belonged, and re-constituted into an offline system. It may be 
necessary to update the offline PD data stores periodically 
using data from the system that is online. This update will 
need to be done in a secure fashion, perhaps by transferring 
the data manually using disks, after making sure that no 
malware can infect the offline system via this transfer. 
Although the destination locations are offline, it may still be 
possible for transferred malware to exfiltrate the offline data, 
e.g., hiding the data in the disks that are used for transfer and 
then transmitting the data once the disks are on the online part 
of the system. 

d) Remove a PD Location from the System 
Another way to reduce the attack surface is to remove a 

PD location from the system by deciding that the PD in the 
location is no longer required. For example, a company that 
stores the credit card information of its customers for their 
convenience may decide to stop storing this information, and 
instead, ask the customer for their credit card information 
every time the customer goes through checkout. This is in 
general a good decision, to avoid storing PD that may get 
compromised, at the cost of a little inconvenience. In this case, 
the associated credit card PD datastore would no longer be 
needed, and would be removed from the attack surface. 
Another example is the removal of a process that periodically 
sends customers the status of their order. The process uses PD 
consisting of the customer’s name and email address to send 
the status. Suppose that this process is no longer necessary 
because the customer can now use a new Web interface to 

Internet 

Computer 
System 

 
Attacker 

Figure 2. Resulting reduced attack surface of size 4 after obfuscating or 
combining locations in Figure 1.   

Legend: 

PD data store 

Process using PD 

Link with PD flow 
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check order status. Removal of this process from the system 
removes it from the attack surface. Interestingly, removal of a 
PD location can also result in removing other PD locations 
that are connected to the location that is removed. For 
example, the removal of a PD data store or a process that uses 
PD can result in also removing connected PD locations, such 
as the links that carry PD, or a PD data store that the removed 
process was exclusively using. Thus, removing a PD location 
not only removes that location from the attack surface but can 
also lead to removing other PD locations further reducing the 
attack surface. 

B. Applying the Methods 
Since the above methods operate on attacker accessible 

PD locations, it is recommended that they be applied in the 
second phase of two phases, where the attacker accessible PD 
locations are identified in the first phase. These phases are 
carried out on an architectural representation of the online 
system, such as a Data Flow Diagram (DFD) [5] (see the 
application example in Section IV). The phases are as follows. 
• Phase 1: Identify PD locations by tracing the flow of 

private data in the online computer system, looking for 
where PD enters the system, where PD flows (links), 
where it is stored (data stores), and where it is used 
(processes). Identifying the PD locations by tracing the 
flow of PD in the system implies that there are paths to 
the PD that an attacker can use to exfiltrate the PD. We 
therefore conclude that all PD locations found in this 
manner in an online system are attacker accessible PD 
locations. Given the ingenuity of attackers (the 
exfiltration could even be aided by an insider of the 
organization that owns the computer system, through 
social engineering), this conclusion is valid.  

• Phase 2: Apply the above methods to the attacker 
accessible PD locations found in Phase 1, where possible, 
while considering the potential negative effects on the 
following aspects of the system: 

— Performance 
— Reliability and dependability 
— Ease of maintenance 
— Implementation cost 

For example, encryption or anonymization incurs extra 
overhead, combining data stores may introduce a 
performance bottleneck since the newly combined data 
store will now need to additionally support data accesses 
that were originally shared among the data stores that 
were combined. Combining PD locations in general may 
reduce modularity and lead to extra effort needed to 
maintain the system. A general guiding rule is to look for 
opportunities to apply the methods where the potential 
negative effects mentioned above are minimal. It may be 
more efficient to consider method a) last, since the other 
methods can add/delete links that are candidates for 
method a).  

Carrying out the above phases clearly requires knowledge 
of the computer system in terms of identifying the PD 
locations. Some basic knowledge of security would also be 

advantageous. These skills should be found within the 
software development team responsible for developing the 
system, perhaps with a little security training if needed. 

IV. APPLICATION EXAMPLE 
This section illustrates how to apply the methods for 

reducing the attack surface for private data using an example 
computer system for an online seller of merchandise (e.g., 
Amazon.com). Suppose this system is at the beginning stages 
of development and that the development team has produced 
a DFD showing how both private and non-private data will 
flow, be stored, and used in the system. This DFD is shown in 
Figure 3.  

The system in Figure 3 allows the customer to enter his/her 
“name”, “address”, “email”, “item selected” for purchase, and  
“credit card info” for payment. These comprise the PD for this 
example. Five processes cooperate to provide the 
functionality for the system. One datastore stores the 
customers’ private data; another datastore contains inventory 
data, i.e., what items are in stock. The system is an online 
system since it is for an online seller. The PD locations will be 
found by tracing the flow of PD in the system (described 
below). Thus, all PD locations in the system are attacker 
accessible PD locations, as noted above in the description of 
Phase 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Applying Phase 1 in Section III B, we trace the flow of 

private data from the point where the data enters the system at 
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Figure 3. DFD for online seller system, showing how data 
flows, are stored, and used.  
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process 1. From there, the PD passes through process 1 and is 
stored in the customer datastore. After this datastore, the PD 
is split up with the “credit card info” going to process 4 to be 
used, and the “name”, “address”, “email”, and “item selected” 
going to process 2, where the “item selected” datum is used, 
and “name” and “address” are passed to process 5 to print the 
shipping label, whereas “email” is passed to process 3 to send 
the customer the shipping status. Thus, we can identify the PD 
locations as links, datastores, and processes through which the 
PD passes, is stored, and used. These attacker accessible PD 
locations are shown in Table I. 

TABLE I.  ATTACKER ACCESSIBLE PD LOCATIONS IN FIGURE 3 

 Links Datastores Processes 
1 link into process 1  customer datastore process 1 
2 link out of process 1  process 2 
3 link from customer 

datastore to process 2 
 process 3 

4 link from customer 
datastore to process 4 

 process 4 

5 link into process 5  process 5 
6 link into process 3   

 
Table I shows that there are 6 attacker accessible PD link 

locations, 1 attacker accessible PD datastore, and 5 attacker 
accessible PD processes. For Figure 3, prior to the application 
of the above methods, (1) gives the size N of the attack surface 
for private data as N = m + n + k = 6 + 1 + 5 = 12. 

Applying Phase 2 in Section III B, we first use the above 
methods on the attacker accessible locations in Table I, as 
follows: 

• Using method b), combine process 3 with process 2; 
this was seen to have negligible impact on 
performance and an acceptable reduction in 
modularity. 

• Using method b), combine process 5 with process 2; 
this was also seen to have negligible impact on 
performance and an acceptable reduction in 
modularity. 

• Using method d), remove the customer datastore 
from the system; it was decided that storing customer 
PD was not needed (customer purchase history can 
be stored securely on the customer’s device by the 
seller’s app and later retrieved by the seller’s 
website). 

These changes result in the DFD shown in Figure 4. Table II 
gives the attacker accessible PD locations corresponding to 
Figure 4. 

Table II shows that there are 3 attacker accessible PD link 
locations and 3 attacker accessible PD processes. For Figure 
4, (1) gives the size N of the attack surface for private data as 
N = m + n + k = 3 + 0 + 3 = 6. Thus, the application of methods 
b) and d) have reduced the attack surface from 12 to 6. 

We can further reduce the attack surface as follows: 
• Using method a), obfuscate (encrypt) the links in 

Table II; the impact on performance due to the extra 
over head is deemed acceptable. 

• Using method a), obfuscate (encrypt) the PD in the 
processes shown in Table II; here, the impact on 
performance and the cost involved for extra code to 
handle encryption/decryption were considered 
unacceptable, and  this reduction step was not done. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE II.  ATTACKER ACCESSIBLE PD LOCATIONS IN FIGURE 4 

 Links Datastores Processes 
1 link into process 1   process 1 
2 link from process 1 to 

process 2 
 process 2 

3 link from process 1 to 
process 4 

 process 4 

Table III shows the remaining attacker accessible PD 
locations after applying method a) to the links in Table II. The 
new attack surface is of size N = m + n + k = 0 + 0 + 3 = 3. 
The application of the methods in Section III has improved the 
security of private data in the system by reducing the size of 
the attack surface from 12 to 3. 

Comparing Figure 4 to Figure 3, reducing the attack 
surface requires the following architectural changes to the 
system: a) reducing the number of processes from 5 to 3 by 
eliminating processes 3 and 5, b) changing the functionality of 
processes 1 and 2, and c) eliminating the customer database. 
As noted above, the implications of these changes were 
accepted by the development team. 

TABLE III.  REMAINING ATTACKER ACCESSIBLE PD LOCATIONS IN 
FIGURE 4 AFTER OBFUSCATING THE LINKS IN TABLE II 

 Links Datastores Processes 
1   process 1 
2   process 2 
3   process 4 
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Figure 4. DFD for online seller system after combining 
processes and removing the customer data store. 

payment 
status 
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The size of the attack surface obtained by applying the 
above methods depends on which methods were applied and 
the order in which they were applied. In particular, it may 
depend on the available opportunities for applying method b). 
For example, by using only method a) (obfuscation) on the 
locations in Table I and assuming that it is not advisable to 
apply method a) to the processes due to unacceptable impacts 
on performance and costs, we obtain an attack surface of size 
5 (for the remaining 5 processes since the obfuscated links and 
datastore would have been removed from the attack surface), 
which is larger than the attack surface of size 3 obtained above 
by opportunistically first applying method b). This is the 
rationale for the comment made in the description of Phase 2 
above, that it may be more efficient to consider applying 
method a) last.  

V. RELATED WORK 
Most closely related to this work is this author’s previous 

work on reducing the attack surface [6]. However, this 
previous work differs from the current work in at least the 
following ways: a) the previous work deals with sensitive data 
(including private data) whereas the current work focuses on 
private data, b) the previous work proposes a graphical model 
with which to identify the attack surface whereas the current 
work does not require any such model, c) the previous work 
reduces the attack surface by requiring the developer to learn 
and modify the graphical model whereas the current work has 
no such requirement. 

Some of the following related works deal with attack 
surface identification and reduction at the code or binary 
levels, whereas this work deals with it at the architectural 
level. A few of these works reduce the attack surface by 
removing unnecessary code or features similar to the removal 
of PD locations in this work. A. Kurmus et al. [7] look at 
reducing the attack surface of commodity OS kernels by 
identifying code that is not used and removing it or 
preventing it from executing. T. Kroes et al. [8] investigate 
reducing the attack surface through dynamic binary lifting, 
removal of unnecessary features, and recompilation. R. Ando 
[9] presents work on attack surface reduction through call 
graph enumeration in which attackable call graphs are 
removed. S. N. Bukhari et al. [10] propose reducing the attack 
surface corresponding to cross-site scripting by employing 
secure coding practices. G.V. Neville-Neil [11] writes that 
“the best way to reduce the attack surface of a piece of 
software is to remove any unnecessary code”. M. Sherman 
[12] looks at attack surface identification only and 
investigates attack surfaces for mobile devices. This author 
claims that mobile devices exhibit attack surfaces in 
capabilities, such as communication, computation, and 
sensors, that are generally not considered in current secure 
coding recommendations. 

Some works propose to increase security through attack 
surface expansion rather than attack surface reduction. For 
cloud services, T. Al-Salah et al. [13] propose three attack 
surface expansion approaches that use decoy virtual 
machines co-existing with the real virtual machines in the 
same physical host. They claim that simulation shows that 
adding the decoy virtual machines can significantly reduce 

the attackers’ success rate. For enterprise networks, K. Sun 
and S. Jajodia [14] propose a new mechanism that expands 
the attack surface, so that attackers have difficulty in 
identifying the real attack surface from the much larger 
expanded attack surface. Note that these works do not 
contradict reducing the attack surface to improve security, 
since the real attack surface is not expanded. The attack 
surface only appears to be expanded due to the addition of 
decoys.  

VI. CONCLUSIONS AND FUTURE WORK 
This work has presented methods for reducing the attack 

surface for private data held within an online computer 
system. The methods are intended to be applied at the 
architectural level early in the development cycle prior to 
coding, as part of the Design for Security toolset.  

Applying the methods does not require developers to 
learn a new model or a new coding language. Apart from the 
methods themselves, which are straightforward, a minimal 
level of security knowledge is needed, in order to understand 
the concept of attack surface, the purpose of the methods, and 
how they work. Knowledge of the computer system is the 
major requirement, but developers already have this 
knowledge. Although the methods themselves are 
straightforward, applying them can be challenging in terms 
of their impact on performance, ease of maintenance, and so 
on, as mentioned above. 

Future work includes refining the methods from 
developer feedback, obtained perhaps through workshops 
and trials. Other future work consists of investigating new 
methods for reducing the attack surface and looking at tools 
that could indicate a method’s impact on such aspects as 
performance, reliability, ease of maintenance, and 
implementation costs. 

REFERENCES 
[1] Business Insider, “The 21 Scariest Data Breaches of 2018,” 

[retrieved: Sept., 2019] https://www.businessinsider.com/data-
hacks-breaches-biggest-of-2018-2018-12 

[2] G. Yee, “Visualization and Prioritization of Privacy Risks in 
Software Systems,” International Journal on Advances in 
Security, issn 1942-2636, vol. 10, no. 1&2, pp. 14-25, 2017, 
[retrieved: Sept., 2019] http://www.iariajournals.org/security/  

[3] C. Salter, O. Sami Saydjari, B. Schneier, and J. Wallner, 
“Towards a Secure System Engineering Methodology,” 
Proceedings of New Security Paradigms Workshop, Sept. 
1998, pp. 2-10. 

[4] P. K. Manadhata and J. M. Wing, “An Attack Surface Metric,” 
IEEE Transactions on Software Engineering, vol. 37, no. 3, pp. 
371-386, May/June, 2011. 

[5] T. DeMarco, Structured Analysis and System Specification, 
Prentice Hall, May, 1979. 

[6] G. Yee, “Modeling and Reducing the Attack Surface in 
Software Systems,” Proceedings, 11th Workshop on 
Modelling in Software Engineering (MiSE’2019), May 2019, 
pp. 55-62. 

[7] A. Kurmus, A. Sorniotti, and R. Kapitza, “Attack Surface 
Reduction for Commodity OS Kernels: Trimmed Garden 
Plants May Attract Less Bugs,” Proceedings of the Fourth 

33Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                           44 / 144



European Workshop on System Security (EUROSEC ’11), 
April 2011, article no. 6 (no page number available). 

[8] T. Kroes et al., “BinRec: Attack Surface Reduction Through 
Dynamic Binary Recovery,” Proceedings of the 2018 
Workshop on Forming an Ecosystem Around Software 
Transformation (FEAST ’18), October 2018, pp. 8-13. 

[9] R. Ando, “Automated Reduction of Attack Surface Using Call 
Graph Enumeration,” Proceedings of the 2018 2nd 
International Conference on Management Engineering, 
Software Engineering and Service Sciences (ICMSS 2018), 
January 2018, pp. 118-121. 

[10] S. N. Bukhari, M. A. Dar, and U. Iqbal, “Reducing Attack 
Surface Corresponding to Type 1 Cross-Site Scripting Attacks 
Using Secure Development Life Cycle Practices,” Proceedings 
of the 4th International Conference on Advances in Electrical, 
Electronics, Information, Communication and Bio-Informatics 
(AEEICB-18), February 2018, pp. 1-4. 

[11] G. V. Neville-Neil, “Reducing the Attack Surface,” 
Communications of the ACM, vol. 61, issue 2, pp. 27-28, 
February 2018. 

[12] M. Sherman, “Attack Surfaces for Mobile Devices,” 
Proceedings of the 2nd International Workshop on Software 
Development Lifecycle for Mobile (DeMobile 2014), 
November 2014, pp. 5-8. 

[13] T. Al-Salah, L. Hong, and S. Shetty, “Attack Surface 
Expansion Using Decoys to Protect Virtualized Infrastructure,” 
Proceedings of the 2017 IEEE International Conference on 
Edge Computing (EDGE), June 2017, pp. 216-219. 

[14] K. Sun and S. Jajodia, “Protecting Enterprise Networks 
through Attack Surface Expansion,” Proceedings of the 2014 
Workshop on Cyber Security Analytics, Intelligence and 
Automation (SafeConfig ’14), November 2014, pp. 29-32.

 

34Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                           45 / 144



Implementation of MQTT/CoAP Honeypots and Analysis of Observed Data

Hajime Shimada

Information Technology Center, Nagoya University
Nagoya-shi, Japan

Email: shimada@itc.nagoya-u.ac.jp

Katsutaka Ito

Meitetsucom Co., LTD
Nagoya-shi, Japan,

Email: itokatu@net.itc.nagoya-u.ac.jp

Hirokazu Hasegawa

Information Strategy Office, Nagoya University
Nagoya-shi, Japan

Email: hasegawa@icts.nagoya-u.ac.jp

Yukiko Yamaguchi

Information Technology Center, Nagoya University
Nagoya-shi, Japan

Email: yamaguchi@itc.nagoya-u.ac.jp

Abstract—Recently, there are many systems that utilize Internet
of Things (IoT) effectively. Those systems often use simple IoT-
aimed protocols, such as Message Queue Telemetry Transport
(MQTT) or Constrained Application Protocol (CoAP). However,
recent cyber-attacks have been targeting IoT systems (e.g., the
“Mirai” malware) so we are concerned that malicious persons
could also exploit IoT-aimed protocols in cyber-attacks. Thus,
we proposed MQTT/CoAP honeypots to observe possible cyber-
attack or scouting activities related to cyber-attack. To imitate
real IoT systems, the proposed honeypots hold imitated sensing
data which is updated periodically. Also, to avoid ill use by
attackers, the proposed honeypot accepts update requests from
the Internet, but the updated value is only visible to the same
request source IP (Internet Protocol) address. The proposed
honeypots were deployed in December 2016 (MQTT) and August
2017 (CoAP) and requests were observed from the Internet
continuously. We observed several mysterious requests to both
MQTT and CoAP honeypots. We observed that the MQTT
honeypot received some non-MQTT protocol based requests to
1883/tcp and some of them are wrongly interpreted as MQTT
protocol. We determined that an effective MQTT server must be
robustly implemented to handle there types of requests.

Keywords–Honeypot; Internet of Things; MQTT; CoAP.

I. INTRODUCTION

In recent years, there are many systems that utilize Inter-
net of Things (IoT) effectively. Many of those systems use
common protocol to transfer data, such as HTTP (Hyper-Text
Transfer Protocol), however, such protocols were developed
for transferring comparatively rich content that include a large
amount of overhead even when sending small amounts of data.
In some cases, the size of the protocol header becomes larger
than the size of the sending data. As a result, some systems use
simple IoT-aimed protocols, such as Message Queue Teleme-
try Transport (MQTT) and Constrained Application Protocol
(CoAP) to reduce overhead [1][2].

However, recent cyber-attacks have been targeting IoT
systems so we are concerned that malicious persons could
also exploit IoT-aimed protocols in cyber-attacks. The use of
those protocols is comparatively small, so there may exist
many insecure servers which use those protocols. A number

of services gather the opened ports and services of a server
and list them via a Web service for security notice (e.g.,
Shodan [3]). However, such services can also be used by an
attacker to explore servers, including the servers using IoT-
aimed protocols.

In this paper, we report on the results of our previously
proposed MQTT/CoAP honeypots to observe possible cyber-
attacks or scouting activities related to cyber-attacks. To imitate
real IoT systems, the proposed honeypots hold fake sensing
data that are updated periodically. To avoid ill use by attackers,
the proposed honeypot accepts update requests from the Inter-
net but the updated value is only visible to the same IP (Internet
Protocol) address that sent the updating request. This function
can avoid ill use for a malware’s Command and Control server.
Also, we set the data transfer limit per hour to prevent DoS
(Denial of Service) attacks (registering attack destinations as
subscribers).

The MQTT version of the proposed honeypot was deployed
in December 2016, and we presented our initial report at a
domestic meeting in March 2017 [4]. We deployed our CoAP
version in August 2017 and continuously observed requests
from the Internet. Unfortunately, we lost data recorded after
November 15, 2017 due to both system failure and careless
backup treatment. So, the data that we could analyze are
from December 1, 2016 to October 30, 2017 from the MQTT
honeypot and from August 1, 2017 to October 30, 2017 from
the CoAP honeypot. The analyzed results show that requests
for MQTT were several times larger than those of CoAP in
a month, but many of them came from security companies.
We observed mysterious requests originating from 3 different
countries with the same payload in around 2000 second
intervals without following the standards of the protocol. We
considered these requests to be attempts for unauthorized
access or to attack the server.

The rest of the paper is organized as follows. Section II
introduces related works about honeypots for IoT systems. Sec-
tion III introduces the characteristics of IoT-aimed protocols
that we cover in our proposed honeypot. We introduce our
proposal and implementations in Section IV. Section V shows
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gathered accesses with the proposed honeypot and analysis
results. Finally, we conclude and introduce future works in
Section VI.

II. RELATED WORKS

Some honeypots implement IoT-aimed protocols as a part
of their functions. A honeypot named Dionaea[5][6] has a
MQTT module as a third party implementation. A generic
low-interaction honeypot named glutton [7] also has a MQTT
module. However, these honeypots only gather requests arrived
to opened ports and cannot imitate a real IoT system.

Some studies have focused on honeypots that mimic IoT
devices. Some of those honeypots gather information from at-
tacks via telnet (23/tcp). Pa et al. proposed IoTPot[8][9] which
analyze attacks by emulating telnet connection of various IoT
devices. They detected 106 distinct types of malware from
5 malware families. Their observations were only limited to
telnet so that our research differs in that we cover multiple IoT-
aimed protocols. Wang et al. proposed ThingPot [10] which
emulates multiple protocol servers including several IoT-aimed
protocols, such as MQTT, CoAP, and Advanced Message
Queuing Protocol (AMQP). But their emulation is limited to
the server level and not the system level so that attackers can
easily determine that it is a honeypot by checking the topics
in the honeypot. Luo et al. proposed IoTCandyJar [11] which
emulates multiple protocol servers including several IoT-aimed
protocols, similar to ThingPot.

In this paper, we introduce a proposal of IoT honeypot
system that imitates real IoT systems by registering fake sens-
ing values periodically. We operated the systems over a long
period to gather data on MQTT and CoAP connections, which
were treated as being in the “minor connection category” in
prior studies.

III. INTRODUCTION OF IOT-AIMED PROTOCOLS

A. MQTT: Message Queue Telemetry Protocol
Message Queue Telemetry Transport (MQTT) [12] is a

broker-based publish/subscribe-type messaging protocol. It can
use both 1883/tcp and 1883/udp for implementation, but TCP
is widely used. A fixed header of MQTT is only 2 bytes so
that it is suitable for IoT devices and networks with limitations
on processor and network performance.

An outline of MQTT usage is shown in Figure 1. The
MQTT server is called a broker and clients are separated into
publishers and subscribers. A subscriber sends a request to the
broker by indicating the topic, and the broker sends the topic
to all subscribers when a publisher sends a corresponding topic
to the broker. Topics in a MQTT system are organized with
a hierarchical structure similar to a directory in a file system
(e.g., /8F/room806/temperature). The subscriber can use the
wildcard “+” to represent a hierarchy to indicate multiple
topics (e.g., /7F/+/humidity). The wildcard “#” can be used
to represent all lower hierarchies to indicate multiple topics
(e.g., /6F/#) or by itself to obtain all topics. The published
message is discarded after distribution to the subscriber in
the MQTT basic configuration. However, the MQTT has a
retaining function that keeps the latest published topic in the
broker and sends it to a new subscriber if they request the
topic.

MQTT has 3 levels of QoS (Quality of Service) which
are described as at most once, at least once, and exactly

Broker

Publisher 1 Publisher 2 Publisher M.....
.....

(1) Subscribe request

(2) Publish message

(3) Send message
Subscriber 1 Subscriber 2 Subscriber N

.....

.....

Figure 1. Outline of MQTT usage

TABLE I. METHODS OF CoAP AND CORRESPONDING RESPONSES

Response from server
Method Resource exists Resource does not exists
GET 2.05 Content 4.04 Not Found
PUT 2.04 Changed 4.04 Not Found
POST 2.04 Content 4.03 Created
DELETE 2.02 Deleted 4.04 Not Found

once, respectively. The QoS is present on both the publisher’s
and the subscriber’s sides, and they are only valid between
publisher/subscriber and broker.

B. CoAP: Constrained Application Protocol
Constrained Application Protocol (CoAP) [13] is a simpli-

fied HTTP protocol based on UDP. Similar to MQTT, CoAP
prepares a server to share messages between clients. Table
I shows usable methods for CoAP clients and corresponding
responses from the server. The client can manipulate resources
by using both a URI (Uniform Resource Identifier) and
method.

The client can obtain all resources with a “GET /.well-
known/core” request. By adding the “observe” option to the
GET method, the server automatically sends any updated data.

IV. PROPOSAL OF HONEYPOTS

A. Concept of Implementation
Both MQTT and CoAP utilizes the server layer to gather

data. So, a server with a fixed IP address becomes the target
of a cyber-attack.

Figure 2 shows the concept of a honeypot implementation.
The honeypot imitates a server using IoT-aimed protocols
and accepts arbitrary requests from the Internet. To capture
all requests received by the server, including out of standard
requests (e.g., requests with other protocols), we capture whole
packets that come to the honeypot at the layer 4 (TCP/UDP)
level and send them to the analyzer module. To imitate a real
IoT system, we prepare a fake data registration module that
periodically registers fake IoT sensor node data (e.g., temper-
ature, barometric pressure, CO2 cardinality) to the honeypot.

The honeypot system also has to consider ill use of the
honeypot by smart attackers. Possible malicious usages of the
honeypot server and countermeasures are listed below.

a) Exploit honeypot process vulnerability to occupy
server: By exploiting vulnerabilities in a server’s processes
and utilizing privilege escalation methods, an attacker can
sometimes occupy servers. To limit the occupation range and
stop the occupied server easily, we executed the honeypot on a
Virtual Machine (VM) that can easily be stopped from a VM
host. The packet capture module is placed on another VM
host to achieve continuous capture even if the honeypot VM
has been occupied by the attacker.
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Figure 2. Concept of Implementation

b) Utilize as Command and Control server of malware:
Command and Control server is the core server of a Botnet
or Remote Administration Trojan type malware in which an
attacker can use versatile servers for it even social networking
services (e.g., Twitter, Slack). To avoid this type of ill use, we
add a limitation to the server that an updated value is only
visible from an IP address that sent the update request.

c) DoS attack to other host: Both MQTT and CoAP
have a “distribute newly registered data to subscribers” mode
which an attacker can use for DoS attacks by registering
attack destinations as subscribers. To avoid this type of ill
use, we modified the server source code to not distribute
newly registered data even if those options have been enabled.
Furthermore, we limit the outbound traffic rate at the VM host
side.

d) Malicious message to IoT clients: There is possi-
bility that some attacker may exploit other clients (fake data
publisher module) by registering some malicious data to the
honeypot. We implemented a fake data publisher module as an
independent VM and only execute registration actions to the
broker VM (no read action).

B. Detailed implementation of MQTT Honeypot

Figure 3 shows a detailed implementation of the MQTT
honeypot. As discussed in Section IV-A, we separated the
honeypot VM and fake data publisher VM. Furthermore,
captured traffic is sent to the other host, to avoid suffering from
VM host aiming attacks. Thus, we utilized 3 network domains,
such as an Internet connection domain (133.x.x.x/26), fake data
publisher connection domain (192.168.10.0/24), and analysis
host connection domain (192.168.5.0/24).

We utilized mosquitto [14] which is a famous open source
MQTT broker implementation, with the modifications de-
scribed in Section IV-A. The fake data publisher and analyzer
were implemented as a Python script with the paho-mqtt [15]
module. We used tcpdump for the packet capture module.

The fake data publisher module publishes data to im-
itate a sensor network for a building energy management
system. The topic format is organized as “/floor number/
room number/sensing data.” The floor number has 5 varia-
tions as represented by the “8F” notation. The room number
has 17 variations as represented by the “708” notation. The
sensing data has 3 variations, such as temperature, humid-
ity, and pressure. An example topic is represented by the
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Figure 3. Detailed implementation of MQTT honeypot

TABLE II. HONEYPOT HOSTS

Host name Type Deployment day
IBmonitor.net.... MQTT December 1, 2016
freezermonitor.net.... CoAP August 1, 2017
co2monitor.net.... CoAP August 1, 2017
furnacemonitor.net.... CoAP August 1, 2017

“/8F/708/temperature” notation. All published data are regis-
tered with a retaining notification so that the attacker can see
the fake data anytime.

C. Detailed implementation of CoAP Honeypot

The implementation of the CoAP honeypot is very similar
to that of the MQTT honeypot so that the basic organization is
identical to the one shown in Figure 3. We implemented “one
topic to one CoAP server” so that the number of honeypot
VMs and fake date register VMs are multiplied from those
shown in Figure 3. This enable us to increase the number
of honeypots to capture requests from different IP addresses.
Note that either “multiple topic to one server” or “one topic to
one server” can be selected from both the MQTT and CoAP
honeypot. Instead of using the paho-mqtt module, as shown in
Figure 3, we utilized Python with the aiocoap [16] module in
the CoAP server, fake data registration client, and analyzer.

V. ANALYSIS

A. Honeypot Setup

We created 1 MQTT honeypot and 3 CoAP honeypots,
as shown in Table II. The MQTT honeypot utilized topics of
the MQTT server to aggregate several fake sensor results into
one MQTT server. Detailed topics on the MQTT server are
shown in Section IV-B. We placed one topic on each CoAP
server so that we prepared 3 CoAP servers. We added the
word “monitor” to a part of the hostname, as shown in Table II.
These hostnames emphasises that the hosts are monitor servers
of an IoT system. The hostnames are registered to DNS before
the observation term.

We deployed the MQTT and CoAP honeypots on different
dates. This is why the deployment days differ. Unfortunately,
due to both honeypot VM host failure and careless initializa-
tion of the backup host, we lost data after November 15, 2017
so that the following analysis was performed with data up until
October 30, 2017.
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Figure 4. Number of MQTT requests per month

TABLE III. MQTT ACCESS SOURCES AT TCP SYN LEVEL (MORE THAN 3 TIMES)

Rank IP address block or domain Num of access Organization
1 185.35.63.0/24 274 Security research team of Switzerland company
2 185.35.6.0/24 264 Security research team of Switzerland company
3 census.shodan.io 79 Shodan
4 134.147.202.0/24 76 Security research team of German university
5 members.linode.com 43 Hosting service A
6 zare.com 27 Hosting service B
7 180.149.126.0/24 20 Mongolian ISP A
8 180.149.125.0/24 15 Mongolian ISP B
9 research-scanner-dfn86.syssec.rub.de 12 Security research team of German university
10 150.100.253.0/24 10 Academic Network
11 188.166.165.0/24 6 Cloud service A
12 106.75.81.0/24 4 Cloud service B
13 182.86.142.0/24 3 Chinese ISP A
13 vmobile.jp 3 Japanese ISP A

B. Analysis of MQTT
We analyzed gathered MQTT requests minutely with net-

mqtt-trace version 1.14 and Wireshark version 2.4.1.
1) Number of Requests: Figure 4 shows the number of

the MQTT requests per month. The vertical axis shows the
number of requests and the horizontal axis shows the months
and types of request, such as MQTT connect requests (Con.),
MQTT subscribe requests (Sub.), and MQTT ping requests
(Pin.), respectively. The four layers per bar graph show a
breakdown of the top 3 access sources shown in Section V-B2
and others. As shown in Figure 4, the request counts increased
largely in August 2017. This is a result of a sudden large
amount of requests from a German university, which is also
described in Section V-B2. However, those request counts
suddenly decreases in September 2017 including from other
sources. This is possibly as result of the honeypots suddenly
being omitted from Shodan’s search result.

2) Source of Accesses: Table III shows slightly anonymized
access sources attempting to access the MQTT honeypots at
the TCP (Transmission Control Protocol) level more than 3
times. We counted TCP SYN packets from the Internet so
that the counts listed in Table III include non-MQTT requests
(e.g., send data of other protocols after the TCP handshake has
been established). Thus, the sum of requests is a larger number
than that shown in Figure 4. As shown at ranks 1, 2, 3, 4,
and 9, security companies, services, and researchers frequently
accessed the honeypot. We also plotted a breakdown of the
top 3 access sources in Figure 4. As shown in the figure, the
German university frequently accessed in August 2017, but did
not access them at any other time. A Switzerland company sent

continuous MQTT connect requests, but finished in September
2017 when the honeypots were omitted from Shodan. Shodan
sent both continuous connect and subscribe requests.

However, as shown from lower ranks, tens of accesses
came from ISPs (Internet Service Provider), hosting services,
and cloud services. We also received mysterious accesses to
the CoAP honeypots from ISPs (see Section V-C) so that
those accesses may contain accesses from persons interested
in exploiting MQTT or having a remotely dominated PC or
server. There are 7 sources that accessed the honeypots twice
and 28 sources that accessed them only once. Most of them
were ISPs and so on, which indicates that a number of them
were possible malicious sources.

3) Notable Accesses in MQTT: Below, we present the no-
table accesses to MQTT including minor visitors. As described
below, a MQTT server that is exposed to the Internet receives
non-MQTT requests to the 1883/tcp port and some of them
were wrongly interpreted as MQTT requests. An effective
MQTT server must be robustly implemented to handle these
types of requests.

a) HTTP request after TCP establishment: We ob-
served sent HTTP requests (starts from “GET HTTP/1.x...”)
after TCP establishment 7 times. 3 of them came from the
vmobile.jp domain and the remaining 4 came from mem-
bers.linode.com domain. In this case, character “G (0x47)” of
“GET” word is treated as “MQTT Publish Ack Flag (0x47)”
on the MQTT server so that we wrongly interpreted it as a
mysterious MQTT connection.

b) SOAP request with MQTT Publish flag: We observed
the following SOAP (Simple Object Access Protocol) request
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with the MQTT publish flag from the members.linode.com
domain 3 times and from Cloud service A once. In this case,
the character “<(0x3c)” of the “<soap:” notation is treated
as “MQTT Publish Message Flag (0x3c)” on the MQTT
server. This request also causes “crash at decode module
in Publish.pm” error under the net-mqtt-trace program based
analysis. Similar problems are likely to occur on the server
side if the MQTT server has the same vulnerability.

<soap:Envelope
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<operationID>00000001-00000001</operationID>
</soap:Header><soap:Body>
<RetrieveServiceContent xmlns="urn:internalvim25">
<_this xsi:type="ManagedObjectReference"
type="ServiceInstance">ServiceInstance</_this>
</RetrieveServiceContent>
</soap:Body></soap:Envelope>

c) Multiple different protocol based requests recorded
simultaneously: We observed the arrival of multiple different
TCP-based protocol requests to 1883/tcp port from same IP
address (zare.com) in the same day. The requests consisted of
at least the following requests.

• HTTP protocols that started with “GET HTTP/1.0”
or“GET /nice ports,/Tri\nity.txt.bak HTTP/1.0”.

• SMB protocol that started with “PC NETWORK PRO-
GRAM 1.0...”.

• SIP protocol that started with “OPTIONS sip:nm
SIP/2.0 Via: SIP/2.0/TCP nm;branch=foo...”.

• Possible streaming protocol that started with “MM-
SNSPlayer/9.0.0.2980;...”.

• Mysterious protocol that started with “dobjectClass0”.
• Mysterious protocol that started with “(CON-

NECT DATA=(COMMAND=version))”.
• Mysterious protocol that started with

“random1random2random3random4/”.

d) Simultaneous requests from 2 domains: We observed
that several domain pairs sent simultaneous requests. The detail
of the requests is as follows. First, a part of the domain pair
executes a TCP level observation that only sends SYN (does
not reply to ACK even if the honeypot sends SYN/ACK) or
sends SYN and RST (sends RST after SYN/ACK has arrived).
Then, around 2000 seconds later, the other domain of the
domain pair establishes a TCP connection and sends a MQTT
connection request. Below, we present the pair of request
sources. Source 3) achieved short intervals between requests,
such as 7 or 8 seconds.

1) 185.35.62.0/24 and 185.35.63.0/24: 257 times
2) Mongolian ISP A and Mongolian ISP B: 13 times
3) amazonaws.com and 71.6.216.0/24: 2 times
4) 106.75.5.0/24 and sendclould.org: 1 time
5) 112.193.170.0/24 and 125.76.61.0/24: 1 time
6) 163data.com.cn and 175.152.30.0/24: 1 time

e) UDP MQTT request: Although MQTT permits UDP
(User Datagram Protocol) requests, we recorded very few of
them. We received 2 UDP MQTT requests from Chinese ISP
A domain. The content of both requests are the same 41 bytes

TABLE IV. NUMBER OF CoAP REQUESTS PER MONTH

Month Number of requests
August 2017 42
September 2017 45
October 2017 51

but we could not understand their purpose. The requested IP
address also sent a TCP request on the same day.

30:27:02:01:00:04:06:70:75:62:6c:69:63:a0:1a:02:02:
6f:0c:02:01:00:02:01:00:30:0e:30:0c:06:08:2b:06:01:
02:01:01:01:00:05:00)

f) QoS of MQTT: MQTT has 3 levels of QoS which
are described as at most once, at least once, and exactly once,
respectively. In observation, all connections and MQTT ping
requests came with at most once and all subscribe requests
came at least one.

g) Read topics of MQTT: We observed read-all requests
which are the simplest request, 70 times. However, we also
observed some cross topic type requests indicating that some
access source recognized a topic and sent requests about
corresponding topic. The number of cross topic type requests
for /humidity, /pressure, and /temperature were 6, 19, and 7,
respectively. Such a MQTT interaction based analysis is cannot
obtain prior works listed in Section II.

C. Analysis of CoAP

We analyzed gathered CoAP requests minutely with Wire-
shark version 2.4.1.

1) Number of Requests: Table IV shows the number of
requests to the 3 CoAP honeypots. The number of requests
are the aggregated result of the 3 CoAP honeypots because the
number of requests were limited. Thus, the average number of
requests to one honeypot becomes one-third of the recorded
value. The number of requests are also limited because the
observation term was only 3 months.

2) Source of Accesses and Request Pattern: Table V shows
slightly shaded all access sources to CoAP honeypots. They
are separated into 3 large amount ones and 3 small amount
ones. In large amount ones, Shodan is also seen in MQTT
honeypot, but the left 2 access source were not seen in MQTT
honeypot.

Table VI shows the request patterns in CoAP request pack-
ets from the analysis result of Wireshark. The large amount
access sources have the same characteristics to the observed
data on the MQTT honeypot, in which attempts were made
to read data on the server. However, the last row of Table VI
shows quite strange requests. We could not analyze the content
of those requests, and their sizes were 542 bytes, which is
comparatively larger than that of the frequent requests shown
in large amount accesses.

Figure 5 shows the detail of the requests categorized as
“Unknown 127” by Wireshark. There are three requests from
different IP addresses to different CoAP honeypots. These 3
source IP addresses are also listed as rank 4, 5 and 6 in Table
V. As shown in Table V, the IP addresses are existing ISPs
of different countries so that this series of requests are quite
dubious. We estimated that those accesses were attempting to
exploit vulnerabilities of some devices.
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TABLE V. ALL CoAP ACCESS SOURCES

Rank IP address block or domain Num of access Request size (bytes) Organization
1 customer.tdc.net 93 63 Danish Telecommunication
2 census.shodan.io 30 65 Shodan
3 185.121.173.0/24 9 60 In & Datacenter service
4 jogjaringan.net.id 2 542 Indonesian ISP
5 115.78.226.0/24 2 542 Vietnamese ISP
6 78.164.12.0/24 2 542 Turkish ISP

TABLE VI. REQUEST PATTERN OF CoAP

Request Source domain
CON, GET, /.well-known/core Danish Telecommunication
CON, GET, End of Block #0, /.well-known/core Shodan
CON, GET, / In & Datacenter service
Unknown 127 3 ISPs

Figure 5. Mysterious CoAP requests from 3 different country ISPs to the 3
CoAP honeypots on the same day

VI. CONCLUSION

We introduced how to create and operate honeypots that ob-
serve IoT-aimed protocols in this paper. We also presented the
analysis result of 11 months of MQTT honeypot observations
and 3 months of CoAP honeypot observations. The observation
results show that MQTT seems to get greater interest than
CoAP on the basis of access count. However, we also observed
mysterious CoAP requests so that we believe that we have

to take care for both protocols. Furthermore, we observed
that the honeypot received some non-MQTT protocol based
requests to 1883/tcp and some of them are wrongly interpreted
as the MQTT protocol, which indicates that an effective MQTT
server must be robustly implemented to handle these types of
requests.

For future works, we first have to restart the observation
and continue them for the long term because we lost more than
a year’s worth of data, as explained in Section I. Second, there
are many other IoT-aimed protocols (e.g., Advanced Message
Queuing Protocol that uses 5672/TCP) so that we are planning
to implement them as honeypots.
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Abstract—While the Internet of Things (IoT) is a key driver for
Smart Services that greatly facilitate our everyday life, it also
poses a serious threat to privacy. Smart Services collect and
analyze a vast amount of (partly private) data and thus gain
valuable insights concerning their users. To prevent this, users
have to balance service quality (i. e., reveal a lot of private data)
and privacy (i. e., waive many features). Current IoT privacy
approaches do not reflect this discrepancy properly and are often
too restrictive as a consequence. For this reason, we introduce
VAULT, a new approach for the protection of private data. VAULT
is tailored to time series data as used by the IoT. It achieves
a good tradeoff between service quality and privacy. For this
purpose, VAULT applies five different privacy techniques. Our
implementation of VAULT adopts a Privacy by Design approach.

Keywords–Privacy; Time Series; Projection; Selection; Aggrega-
tion; Interpolation; Smoothing; Information Emphasization; Noise.

I. INTRODUCTION

The ever-increasing popularity of the Internet of Things
(IoT) is both, a blessing and a curse. On the one hand, sensors
built into everyday objects enable to monitor entities (e. g., a
machine or a person) permanently and very precisely. Since the
gathered data are always tagged with a time stamp, the data of
different sources can be combined to obtain a comprehensive
chronological profile of the monitored entity. Subsequent
analyses can provide even more profound knowledge about
the entity. The IoT is therefore an enabler for Smart Services
from a wide variety of domains, including Smart Homes, Smart
Cars, and Smart Health. Such services are a great benefit for
the users as they facilitate their daily life [1].

On the other hand, these great capabilities of such services
pose a great danger at the same time. In particular, if the
monitored entity is a natural person, his or her privacy is at
risk. Users are often not even aware of the coherences between
gathered data and insights derivable them. However, Smart
Services not only have access to the data of a single user but
to the data of a vast number of users. This even enables them
to learn from the behavior of these users and to predict future
behavior patterns of different users [2].

For this reason, the General Data Protection Regulation of
the EU (GDPR, see [3]) tries to provide guidance to meet the
interests of both, service providers (in terms of data quality)
and users (in terms of privacy requirements) [4]. Nevertheless,
the user is faced with the difficult task of balancing service
quality and privacy. The more data a user shares with a service,
the better is its service quality, as it is thereby able to perform

more precise analyses and thus establish a more profound
knowledge base. Its users, however, are fully exposed in the
process. Whereas, if a user conceals all data that could reveal
private information, his or her privacy is protected effectively—
yet, the service is practically useless as a result [5].

Today’s privacy approaches for the IoT contribute little to
solve this dilemma, as they suffer from three critical flaws.
a) Users are often overwhelmed by these approaches, as the
coherences between gathered data and derivable knowledge are
not comprehensible. That is, if the user grants a service access
to two seemingly harmless data sources, the combination of
these two sources might provide new insights. b) These privacy
approaches completely ignore service quality. They focus solely
on concealing certain, possibly private data, and as a result
the service quality is often considerably, yet unnecessarily
impaired. c) These privacy approaches are only applicable to
certain application scenarios and analysis methods. As a result,
users need a variety of different privacy solutions to make all
of their Smart Services privacy-aware.

To this end, we make the following three contributions:
(1) We introduce a privacy approach towards high-utility
time series data, called VAULT . VAULT is a concept for the
protection of personal data, which achieves a good compromise
between service quality and privacy and optimizes both of these
aspects. Furthermore, specifying privacy requirements is still
very simple for the user. (2) We present five different privacy
techniques that are applied in VAULT. These techniques are
tailored to the analysis methods applied to time series data as
Smart Services mainly handle such data. (3) We describe an
implementation of VAULT based on InfluxDB [6]. Yet, VAULT
is completely independent from its data source, i. e., InfluxDB
can be replaced by any data source providing time series data.

The remainder of this paper is as follows: In Section II, we
introduce a sample use case from the Ambient Assisted Living
(AAL) domain. Using this example, we identify requirements a
privacy system has to meet in order to be effective for Smart
Services. Section III discusses whether the related work meets
these requirements. We introduce our concept for VAULT and
the applied privacy techniques in Section IV. An implementation
of this concept is given in Section V. In Section VI, we
assess VAULT according to our identified requirements. Finally,
Section VII concludes this paper.

II. RUNNING EXAMPLE

An application field, in which the IoT facilitates the users’
daily routines by having access to highly sensitive data, is
the healthcare domain. Sensors enable patients to monitor
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themselves permanently, while their physicians and other parties
involved obtain the processed data tailored to their requirements.
In the following, we illustrate this using an AAL use case.

Due to an aging population, the World Health Organization
has introduced the paradigm of active ageing to enable elderly
people to remain involved in social life. A key aspect in this
respect is, that they are not pulled from their familiar surround-
ings (e. g., by accommodating them in a care facility) and that
there is no loss of autonomy. AAL achieves this via sensors
acting as permanently present but invisible caregivers [7].

An AAL platform offers wide-ranging monitoring services.
Special metering devices are capable to monitor medical data
continuously (e. g., blood glucose or weight). Physicians are
informed about them and are then able to adjust the medication
remotely. For some of these health parameters, they require the
chronological progression with high accuracy (e. g., blood glu-
cose), while for others an approximate progression is sufficient
and single values are negligible (e. g., weight). It is also possible
to check remotely, whether the required medication has been
taken. Yet, this information is not required to be transferred
permanently. It is sufficient to inform physicians if the medicine
is not taken several times in a row. Fall detection is realized
via wearables. This enables to alert a caregiver immediately
if a senior has fallen and needs help. For this purpose, the
data from the gyroscope, the accelerometer, and the position
sensor are analyzed. In addition, the location where the fall
occurred has to be determined, e. g., if the “fall” occurred in
bed, it may have been a false alarm and the senior just went
to sleep. Although location data has to be analyzed for this
purpose, the caregiver must not be allowed to access this data.
However, relatives with guardianship should be informed of the
senior’s whereabouts (e. g., if s/he is suffering from dementia
and wander around confused and disoriented) [8].

This example illustrates that Smart Services gather a variety
of private data. The GDPR must thus be observed in such
use cases [9]. For instance, it requires data minimization [Art.
5(1)(c)]. Caregivers only have to be informed when a senior
has fallen, whereas permanent access to the his or her location
is not required for them. Yet, relatives need access to this
data, if they are the senior’s guardian. This is regulated by
the purpose limitation [Art. 5(1)(b)]. Service providers have
to ensure the accuracy of the processed data [Art. 5(1)(d)].
To make this feasible, privacy measures must not arbitrarily
manipulate sensor data. Especially when particularly sensitive
data, such as health data, is involved, the data subject must give
explicit consent to their processing [Art. 9(2)(a)]. A solution
with respect to these legal obligations is given in Article 25:
Technical measures are postulated to ensure privacy compliance,
i. e., Smart Services monitor and regulate themselves by default
(Privacy by Design). To be effective, such a technical privacy
solution has to meet the following five requirements:
R1 Individual Privacy Enhancement. Each user has differ-

ent privacy requirements. While some people have no
concerns about sharing their location data, others consider
this kind of data as highly sensitive. Thus, every user has
to be able to decide individually what information s/he
wants to reveal, i. e., make available to a service.

R2 Utility Preservation. However, not only privacy require-
ments need to be considered. Users also have to decide
which services they want to use and what data the
respective service requires in order to operate. Only if the

service receives these data in a sufficient accuracy and
quantity, the user receives the expected service quality.

R3 Privacy and Data Quality Harmonization. Privacy and
service quality, however, are by no means independent
objectives. Enhancing privacy significantly impairs service
quality and vice versa. A privacy system therefore has to
consider both aspects equally to achieve Pareto optimality.

R4 Privacy Method Adaption. To make this possible, a
privacy system has to be able to adapt its privacy methods
to the service quality requested by a user. That is, the
privacy system has to select a method which matches a
service’s specific data quality and quantity requirements.

R5 Dynamic Policy Application. The application of the
privacy requirements has to be dynamic, i. e., before a
service gets access to data, its properties must be checked
(e. g., a relative only gets access to a senior’s location if
s/he is his or her guardian at the time of the request).

III. RELATED WORK

In the following, we review current privacy approaches for
the IoT and assess them with regard to our running example.

Access Control: The most basic approach to ensure
privacy is access control. In role-based access control, each
involved party is assigned to a specific role (e. g., physician). A
party can be assigned to several roles at the same time. Access
rights to certain data sources are granted to these roles instead
of individual users. Although this approach sounds promising at
first as there are few roles (compared to the number of parties),
and thus the number of access rights which have to be specified
is reduced, it is not flexible enough for the IoT due to its
fixed pre-defined roles [10]. Assigning access rights to certain
attributes is significantly more dynamic. Attribute-based access
control validates any kind of attribute at runtime (e. g., attributes
that describe the party requesting data access or that party’s
current context). Data access is only granted if these attributes
meet the data subject’s authorization requirements [11]. This
way, it is possible to model that relatives only have access to a
senior’s location data if they currently have the guardianship.

Nevertheless, pure access control approaches are far too
restrictive and thus severely limit service quality. The user
can only make a binary decision—either s/he grants or denies
access to a data source. A fine adjustment, however, is not
possible (e. g., reduce accuracy of the data or add mock data).

Attribute-based Privacy: To address this problem, a filter
can be integrated into a data source. So, particular attributes
of the data provided by that source can be filtered out, if they
reveal private information. This enables users to specify, e. g.,
that their medical metering device still provides access to their
blood glucose level, but not the blood oxygen level. Each filter
can optionally be linked to a spatiotemporal context to specify
when it should be active [12]. Such a filter can also be tailored
to the respective data source. Instead of fully filtering out
certain attributes, they can be replaced by mocked but realistic
data, in terms of, e. g., value range and distribution [13].

A fundamental problem of these approaches is that they
do not take chronological aspects inherent in this kind of data
into account. Often, isolated data values do not pose a privacy
threat. Only a sequence of single values results in a privacy-
relevant pattern (e. g., a sequence of singular gyroscope and
acceleration data results in an activity pattern). Yet, users have
to filter all data of the concerning attribute in these approaches
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to ensure that such patterns are concealed. As a result, services
depending on this type of data become non-functional.

Pattern-based Privacy: The intent of pattern-based
privacy approaches is to conceal complex private information
from a Smart Service without unnecessarily restricting its
service quality. For this purpose, Complex Event Processing
(CEP) is used. In CEP, no individual sensor values are
considered, but higher-order events represented by a sequence of
values within a given time window [14]. For instance, the event
“senior leaves home” is a sequence of location data representing
a motion vector heading away from the house. That way, users
specify private patterns that must not be revealed and public
patterns that are critical in terms of service quality. CEP is
able to recognize these patterns and then private patterns are
concealed by chronologically reordering some of the sensor
values. A utility metric identifies the best permutation in terms
of maximizing both, privacy and service quality [15].

Pattern-based privacy approaches are therefore particularly
effective for maximizing service quality. They can also conceal
patterns of any complexity consisting of sequences of individual
values. However, such an approach is ineffective with respect to
the principle of data minimization. By reordering, all individual
values are still sent to the Smart Service. As it is known what
kind of information is required by the service (via the public
patterns), data could be pre-processed accordingly (e. g., by
aggregating or tampering it) without affecting its service quality.
For instance, to detect the pattern “senior leaves home”, a
Boolean statement whether this event occurred is sufficient—
the whereabouts prior to this event are not required. Yet, this
is not considered by pattern-based privacy approaches.

Statistical Privacy: Differential privacy is applicable to
the IoT, e. g., in the context of Smart Grids [16]. There, data
remains on each user’s Smart Meter, while energy suppliers
only receive aggregated data. It is ensured that no information
about an individual user can be derived from the statistical
analysis of this data. Yet, this kind of anonymization is only
useful when information about a large group of users is required.
It is not applicable to a use case like AAL, as in such a scenario
sensor data must be evaluated for each user individually.

IV. VAULT CONCEPT

Our review of related work shows that none of these
approaches is by itself effective in ensuring both, privacy and
service quality. So, we combine and extend these concepts to
provide a privacy concept that is tailored to IoT time series
data, called VAULT. Figure 1 shows its concept and workflow.

To ensure service quality, a service has to define its quality
requirements (1). These include, e. g., which data a service
requires and with what accuracy these data are required. Thus,
the quality requirements correspond to the basic idea of the
public pattern. In addition, a service description is mandatory
that identifies the service, e. g., the service name, its execution
environment, or the service owner (1). This description is used
to authenticate to VAULT. Like attribute-based access control,
permissions in VAULT are not linked to a specific service, but
to a set of its attributes. For instance, different permissions
may apply to the same service depending on the country where
it is hosted. The data subjects specify which permissions are
assigned (2). To this end, s/he provides a high-level description
of his or her privacy requirements in natural language. Similar to
the privacy patterns, s/he only has to describe which knowledge
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Figure 1. Concept of and Workflow for Data Access via VAULT.

must not be disclosed. A model in VAULT indicates from which
data this knowledge can be derived (e. g., ACCESSORS [17]
can be used to model these correlations). Based on this model,
machine learning can automatically derive permissions from
these privacy requirements [18]. As VAULT provides different
privacy techniques depending on the respective service (i. e., in
accordance with its quality and privacy requirements), the time
series data has to be initially prepared accordingly (3). (1) to
(3) are independent tasks and can be carried out in any order.

If a service requests data access, VAULT first checks its
service description (i. e., attributes of the service) and which
permissions (i. e., privacy requirements) are linked to it. They
are then consolidated with its quality requirements (4). Based
on these two requirement specifications, an appropriate VAULT
privacy technique is selected (5). Subsequently, the request is
executed, and the results are sent back to the service (6).

VAULT relies on existing techniques, which are already
used for processing and analyzing time series data, to ensure
privacy. As a result, the impact on service quality should be
negligible. We discuss the following five privacy techniques:

Projection, Selection, and Aggregation: The most basic
privacy technique used in VAULT is the application of relational
algebra operators. A projection constrains the number of
attributes whereas a selection filters out certain tuples of
a data source entirely. As the data sources we consider
in VAULT provide time series data, a selection operator is
therefore synonymous with specifying a specific time frame.
An aggregation can be used to consolidate the analyzed data
(e. g., via set operators such as average or sum). Smart Services
use these operators anyway to select the data that is relevant
to them and thus reduce the huge amount of available data.
VAULT is therefore able to restrict the available data according
to the quality requirements of a service via theses operators in
order to ensure privacy. For instance, a service gets only access
to certain sensor values, certain days, or summarized data.

Data Interpolation: When dealing with sensor data, one
has to reckon that sensors occasionally deliver no or incorrect
values due to technical problems. To ensure that the data are
still processed correctly, strategies must be implemented to deal
with these missing and incorrect readings. For this purpose,
these incorrect readings have to be substituted with artificial, yet
realistic data. On the one hand, interpolation techniques can be
used to smooth the temporal progression of the values, assuming
that the sensor signal describes a continuous function [19]. On
the other hand, it is possible to use machine learning to make

43Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                           54 / 144



Interpolated Data
Raw DataHigh Information Value

Figure 2. Application of a Spline Interpolation to Time Series Data.

predictions regarding the progression of the values. Missing
values or outliers (in terms of values exceeding or falling below
a threshold) can then be substituted with these predictions.
We use these data cleansing techniques in VAULT to ensure
privacy. In certain situations, outliers have a particularly high
information value and are therefore considered as particularly
sensitive data. Figure 2 shows the time course of a senior’s
whereabouts indicated as the distance to his or her home (blue
line). S/he walks the same distance every day. One day, however,
s/he changes this routine, which is a decisive information. For
instance, if a service only needs to monitor that a senior takes
a walk every day, VAULT first uses outlier detection to identify
data points with high information value, deletes them, and then
fills the resulting gap via spline interpolation (red line).

Data Smoothing: While data interpolation is well-suited
for eliminating a few isolated outliers, sensor data can also
be noisy as a total. Analyzing noisy data is often difficult and
leads to poor results. So, the noise component is removed
from the data by means of filters. Especially if the examined
data contains some periodicity, which is often the case with
AAL data due to regular daily routines, Fourier transforms are
well-suited for noise reduction. This creates a band filter effect,
i. e., certain interference frequencies can be attenuated [20].
Figure 3 shows the effect of a Discrete Cosine Transform on
a noisy signal (blue line). The output is a smoothed signal
(red line). However, this data cleansing method can also be
used to protect private data. The transform removes details
from the time series data and less information is shared with
requesting services. Nevertheless, the actual data progression
is still available to them with great accuracy.

Information Emphasization: Using wavelet transform,
noise can even be filtered out to such an extent that only data
with a high information value remains in the signal (e. g., peaks
or turning points). For this purpose, the data progression is
compared with a basic function, the so-called wavelet. This
window function defines the weighting of each signal value
in subsequent analyses. The Continuous Wavelet Transform
constantly varies the parameters of this mother wavelet to obtain
a band of daughter wavelets. This facilitates a particularly
selective filtering and compression of the data [20]. In Figure 4,

Discrete Cosine Transform
Raw Data

Figure 3. Application of a Fourier Transform to Time Series Data.

Figure 4. Time-Frequency Representation of Noisy Time Series Data.

the noisy sensor signal (upper half of the figure) is converted
into a time-frequency representation (lower half of the figure)
using the Mexican Hat Wavelet as mother wavelet. Relevant
data segments are exposed in this representation (light and dark
zones). For instance, if the signal represents blood glucose
levels, these zones indicate hypoglycemia or hyperglycemia,
respectively. The information about the occurrence of these
events is sufficient to generate appropriate recommendations
concerning medication and treatment schedule. The exact
glucose values need not be disclosed to a caregiver for this
purpose. This increases privacy as no details in the data are
available to third parties.

Adding Noise: A completely different privacy approach
is adding noise to a signal on purpose. In Figure 5, Gaussian
noise is added to formerly noise-free sensor data (blue line).
That is, the noise in the resulting data is Gaussian-distributed
(red line). So, actual values are concealed in a set of corrupted
values. Although the general data progression is still noticeable,
details and characteristics of the data are hidden by the noise.
For instance, activity patterns are thus still recognizable despite
the noise, whereas characteristics on how a senior performs
that activity are concealed. While this initially sounds like a
deterioration in data quality, it can even have a positive effect
on certain data analyses. For instance, noise can cause chaotic
dynamics within data. Therefore, if deterministic chaos is to be
expected in a data set (e. g., data on the course of a disease), but
it is not noticeable as too little data are available, adding noise
can be useful in this regard to improve analysis results [21].

V. VAULT IMPLEMENTATION

There are three implementation strategies for the realization
of the VAULT concept, which are shown in Figure 6.

Query pre-processing rewrites queries before execution and
adds further constraints to eliminate private information from
the result set. This is well-suited for simple privacy techniques
such as projection or selection. Yet, these query adaptations
become complex for more advanced privacy techniques. Then,

Noisy Data
Raw Data

Figure 5. Adding Gaussian Noise to Time Series Data.
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Figure 6. Implementation Strategies for the Privacy Techniques in VAULT.

errors are likely to occur when automatically rewriting queries.
These errors compromise privacy as well as service quality.

Result post-processing enables a thorough control of a
query’s result set. That way, it can be filtered before forwarding
it to the data consumer. However, a query can add hidden
information to its result set. For instance, if the weight must
not be revealed, a data consumer could query all data entries
where the weight is 𝑥 kg (without including the weight itself
in the result set). Then, s/he repeats the query and increases
𝑥 successively. Thus, s/he knows the weight for each entry
implicitly, although it never explicitly appeared in the result
set. Result post-processing is not able to detect and prevent
this.

Due to the shortcomings of those strategies, we use data
pre-processing in VAULT. This strategy pre-processes all data
by removing or obscuring private data. Queries are not executed
on the original data, but on this purged data. However, this data
pre-processing increases the runtime. Yet, as Smart Services
often use recurring queries, which are known due to their
service descriptions, the runtime can be improved by using
materialized views to persist the pre-processed data in advance.

Figure 7 shows how we realized the VAULT concept
following the data pre-processing strategy. VAULT introduces
a database abstraction layer to strictly isolate services from
data sources. From a service’s perspective, it therefore seems
that it directly interacts with a data source and it is not aware
of the privacy techniques applied to the data [22], [23].

Before using a service for the first time, it must define
its quality requirements and the user must specify the privacy
requirements. As this needs to be done only once (unless
requirements change), these steps are not shown in Figure 7.

A registered service authenticates to VAULT with its
attributes (a). To prevent a service from getting too many
permissions by falsifying its attributes, Gritti, Önen, and Molva
[24] introduce a process for verifying these attributes. This
approach takes into account that the privacy of the service
has to be ensured as well, as the attributes might contain
private information about the service provider. This approach
is therefore a valuable supplement to the authentication process
of a data provisioning platform, such as VAULT [25]. If a
service is authorized to use VAULT, its queries are temporarily
stored in a query buffer (b). VAULT checks in the access
policy which quality requirements this service has, and which
permissions are granted to its attributes (c). Then, a utility
metric is used to search for privacy techniques that maximize
both, privacy and service quality (d). Basically, it compares
how much information relevant to the service is concealed and
how much private data is disclosed when a particular privacy
technique is applied. Additionally, the user can determine via a
weight, whether his or her focus is more on privacy or service
quality [26]. We implemented each of the privacy techniques
presented in Section IV as Python scripts. These scripts are
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Figure 7. Implementation of and Query Processing in VAULT.

made available to VAULT in an archive. Further scripts and
thus privacy techniques can be added to the archive to extend
the functionality of VAULT. The utility metric selects the most
suitable scripts and forwards them to the Obfuscator (e). The
Obfuscator merges the scripts and adjusts them according to the
service (f). It then applies the resulting script to the affected time
series data (g). In our prototype, we use InfluxDB. However,
due to the database abstraction any other time series database
can be used as well. The privacy-purged data are made available
in materialized views (h) and the queries stored in the query
buffer are executed on them (i). Then, the database abstraction
layer—which, in analogy to the result post-processing strategy,
performs a final audit (j)—returns the results to the service (k).

Without any loss of generality, a time series database is
used in VAULT. Yet, VAULT can also be applied to a stream
processing system for time series data, such as Kapacitor [6].

VI. ASSESSMENT

Having presented VAULT’s concept and implementation,
we now need to evaluate whether it meets the requirements
towards a privacy system for Smart Services (see Section II).

In VAULT, each user is able to specify his or her individual
privacy requirements. Since this is done in natural language and
the mapping to actual data sources can be realized automatically,
the configuration is also user-friendly. That way, users are
enabled to specify their privacy requirements very precisely
and VAULT fulfills these requirements as good as possible (R1).

VAULT also preserves the utility of a service when it is
compatible with the privacy requirements. This is made possible
by the specification of the service’s quality requirements. This
ensures that the service receives usable data in terms of quantity
and quality. That is not the case with approaches working only
with data suppression or mock data, which have a sustainably
negative impact on these two parameters (R2).

The utility metric applied in VAULT balances privacy and
quality requirements against each other and determines the
best configuration. It aims to maximize both, the amount
of concealed private data as well as the amount of revealed
information, which is relevant to the service. As it might not
be possible to maximize both of these values at the same time,
at least Pareto optimality is achieved. The user can also weight,
which of these objectives should be preferred by VAULT (R3).
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To this end, VAULT provides five different privacy tech-
niques that are tailored to IoT time series data. Each of these
techniques deals with different privacy aspects. Furthermore,
these techniques can be extended and combined so that a
suitable technique can be found for every use case (R4).

In VAULT, permissions (and thus the applied privacy
techniques) are not assigned to a service, but to a specific
combination of its attributes. This enables a considerably more
dynamic permission assignment (R5).

Thus, VAULT fulfills all requirements towards a privacy
system for time series data as processed by Smart Services.

VII. CONCLUSION

The tremendous progress that IoT-enabled devices have
made in recent years in terms of computing power, transmission
speed, and sensor technology provides the technical foundation
for a wide range of IoT applications. Such Smart Services
affect all aspects of our daily lives (e. g., Smart Homes, Smart
Cars, and Smart Health). In order to enjoy the benefits of these
services, however, users have to disclose a lot of data, some of
which revealing highly sensitive information. However, current
privacy approaches are not adapted to the specific characteristics
of time series data as processed by Smart Services, making them
unnecessarily restrictive. As a result, users have to disclose too
much private information in order to prevent that the service
quality deteriorates too much.

In this paper, we therefore introduce VAULT, a new privacy
concept for time series data. If data are queried by a service,
VAULT considers besides privacy requirements also quality
requirements of this service towards the data. This includes,
among other things, what data is required, what accuracy this
data must have, and how the data is pre-processed by the service.
VAULT then selects a privacy technology fitting to this pre-
processing. For instance, projection, selection, and information
emphasization are suitable for data reduction, whereas data
interpolation and data smoothing can be used as noise filters
or for outlier suppression. Thus, VAULT can find a good ratio
between privacy and service quality. In our prototype, five
privacy techniques are implemented as Python scripts. However,
these scripts can be combined, and more scripts can be added
if needed. As a result, the service quality can be increased for
any type of service and the privacy can be enhanced. VAULT
can be applied to time series databases (e. g., InfluxDB) as
well as stream processing systems for time series data (e. g.,
Kapacitor). That is, VAULT meets the request of the GDPR
for a manageable Privacy by Design solution for the IoT.

As part of future work, the performance of the VAULT
prototype has to be evaluated thoroughly in terms of processing
time and data throughput.
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Abstract—Android malware authors have increasingly relied on
techniques to hinder dynamic analysis of their apps by hiding
their malicious payloads or by scheduling their execution based
on complex conditions. Consequently, researchers devise different
approaches to bypass such conditions and stimulate the malicious
behaviors embedded within the Android malware. Despite the
availability of different behavior stimulation approaches and
dynamic analysis tools that implement them, they are seldom
empirically evaluated to assess their applicability and effective-
ness. In this paper, we survey the literature to identify different
behavior stimulation approaches and assess the performance of
three tools implementing them against four datasets of synthetic
and real-world malware. Using the obtained results, we highlight
significant limitations of such analysis tools, including their in-
stability and their inability to stimulate scheduled behaviors even
in automatically generated synthetic malware. Those limitations
enable simple approaches based on the random manipulation of
an app’s User Interface (UI) to outperform more sophisticated
behavior stimulation approaches. We aspire that our results
instigate the adoption of more rigorous evaluation methods that
ensure the stability of newly-devised analysis tools across different
platforms and their effectiveness against real-world Android
malware.

Keywords–Android Security; Application Analysis; Malware
Detection.

I. INTRODUCTION

Android malware authors utilize different techniques to
hinder static analysis of their apps, such as anti-debugging
techniques [1], code obfuscation and encryption [2], dynamic
code loading [3], and triggering and scheduling [4] [5]. How-
ever, more recently, malware authors have increasingly relied
on evasion techniques to hinder dynamic analysis as well [1].
For example, Wei et al. found that the majority of malicious
apps they gathered and analyzed utilized schedulers to delay
the execution of their payloads [5]. Consequently, researchers
have devised different approaches to identify suspicious seg-
ments within Android apps and stimulate (i.e., execute) them,
such as in [6]–[10]. We refer to these approaches as behavior
stimulation approaches. Stimulating suspicious behaviors helps
detection methods understand the true intentions of an app, and
classify it correctly as malicious or benign [11].

In describing their stimulation approaches, and the dynamic
analysis tools that implement them, researchers tend to focus
on distancing their work from the previous work by, for exam-
ple, enumerating the new features offered by their tools or the
limitations of prior work their new tools tackle. Furthermore,
approaches are usually evaluated using either a few samples
[7] [9] [10] or mainly using synthetic malware datasets [6],
to allow for a more in-depth description of the concepts upon
which the approaches are built.

Unfortunately, this renders it difficult for other researchers
to assess the applicability and effectiveness of the current be-
havior stimulation approaches against Android malware found
in the wild. In particular, the answers to the following questions
are unknown to researchers: (Q1) How well can the current
behavior stimulation tools stimulate scheduled malicious be-
haviors embedded in (synthetic) Android malware? (Q2) How
difficult is it to trigger malicious behaviors dwelling in Android
malware found in the wild (e.g., app marketplaces)? And (Q3)
What are the limitations that face some of the current analysis
tools and their behavior stimulation approaches?

To answer such questions, we conducted preliminary ex-
periments performed on (1) synthetic malicious apps that im-
plement schedulers, and (2) random samples drawn from real-
world Android malware datasets (i.e., Piggybacking [12] and
AMD [5]). In those experiments, we compared the performance
of three tools that represent different behavior stimulation
approaches according to three criteria, viz. the time taken to
analyze an app, whether a tool undermines the stability of an
app (e.g., causes it to crash), and whether a tool managed to
unveil the malicious code segments embedded within an app.

The results we obtained from our preliminary experiments
suggest the following. Firstly, we found that a noticeable
number of the behavior stimulation tools we surveyed are (a)
poorly documented, which makes it difficult to set them up
and configure them, and (b) did not deliver the functionalities
described in their papers. Secondly, none of the tools we
used during our experiments managed to stimulate malicious
behaviors guarded by primitive schedulers (i.e., time-based
triggers), embedded in synthetic malware generated by the
repackaging tool, Repackman [4]. Thirdly, our results imply
that Android malware authors implement their instances in
a manner that exhibits some of their malicious behaviors
without schedulers, especially malicious apps belonging to the
less subtle types of Adware and Riskware. This enables
primitive tools (e.g., the ones that interact with an app’s UI),
to outperform more sophisticated counterparts in terms of the
aforementioned three criteria.

In summary, our contributions are:

• We survey the literature to identify the existing and
available Android malware dynamic analysis tools
that implement behavior stimulation approaches and
categorize them according to such approaches (Section
II).

• The conducted experiments revealed that the tools
used during evaluation–including those mainly de-
signed to bypass schedulers–were unable to stimulate
malicious behaviors protected by simple time-based
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triggers. We found that maintaining the stability of
test apps is more important than the complexity of a
tool’s stimulation approach as it increases its chances
to stimulate malicious behaviors in malware (Sections
III and IV).

• We share with the research community the results
of our experiments to verify, reproduce, and improve
upon our findings.

II. STIMULATION APPROACHES

We surveyed the literature in pursuit of dynamic anal-
ysis tools that (a) implement any behavior stimulation ap-
proach, and (b) are designed to analyze Android malware
or, at least, accommodate for malicious apps. Tools such as
TriggerScope [13], for instance, which identifies logic-
based triggers embedded within an Android app, but does not
include modules to stimulate behaviors within the app were
ruled out. Using such criteria, we so far managed to identify
11 dynamic analysis tools with behavior stimulation modules,
as seen in Table I. Those tools implemented three approaches
to behavior stimulation that we refer to as random UI manip-
ulation, forcing execution, and environment adaptation.

In addition to investigating the stimulation approach
adopted by different analysis tools, we studied the techniques
they use to target suspicious code segments within an app
(Code Targeting), the mechanisms they utilize to execute the
identified targets (Code Triggering), whether they require any
modifications to the apps under test or the systems on which
they are analyzed (Invasiveness), the programming language
level they operate on (Operation Level), and whether they
provide any documentation or source code to the research
community (Availability+Maintainability). In the following
sections, we briefly explain those strategies and techniques and
how different tools utilize them.

A. Random UI Manipulation

The random manipulation of an app’s user interface is the
most primitive of stimulation approaches. Tools adopting this
approach usually do not implement any strategies to target
code segments within apps. Instead, the majority of such tools
randomly interact with the graphical user interface elements of
apps (e.g., Button or TextField), and their background
components (e.g., Service or BroadcastReceiver), to
instigate (suspicious) runtime behaviors. Consequently, ran-
dom UI manipulation tools usually do not implement any
automatic strategies to trigger specific segments of code. Such
responsibility is delegated to the user in the form of scripts
that define sequences of interactions with app components
(e.g., start Activity A, then tap Button B, then broadcast
Intent I) [16] [17].

The lack of code targeting and triggering strategies implies
that random UI manipulation tools are, by and large, non-
invasive. That is, apart from injecting logging statements into
an app, such tools do not require any modifications to the app
under test or the test environment to function. Furthermore,
random UI manipulation tools tend to solely operate on apps’
(graphical) components, without the need to explore or analyze
the apps’ codebases.

B. Forcing Execution

In Android apps, some code segments are implemented to
execute only if some conditions are satisfied. For example,
updates usually require devices to be connected to the internet
via WiFi and the devices to be plugged in for charging.
Forcing execution tools are designed to bypass any conditions
that prevent the code of interest from executing, effectively
forcing it to execute. We identified two main methods to
force the execution of code segments. The tools GroddDroid
[10] and Harvester [18] replace any conditional statements
leading to the target code with unconditional ones, whereas
Droid-AntiRM [19] and ARES [6] alter the boolean ex-
pressions of such conditional statements to values that lead
to the execution of the target code. The majority of forcing
execution tools maintain lists that define the Android Appli-
cation Programming Interface (API) calls they should pursue
in an app’s code and attempt to execute. The API methods in
those lists are known to be often utilized by malware (e.g.,
sentTextMessage) [7] [10].

Forcing execution tools usually operate on a low-level
representation of an app’s code (e.g., DEX bytecode), and
utilize different techniques including slicing [18] and control-
/data-flow analysis [10] [19], to find paths between entry points
in the code (e.g., the app’s main activity), and the target API
calls. Modifying the apps’ code implies app-level invasiveness.
Moreover, some tools, such as ARES, require the modification
of the test environment as well to generate trace logs that might
reveal previously unforeseen execution paths.

After modification, the paths to target code should be
unobstructed with any (boolean) conditions, and the target code
should execute after simple, random interaction of the apps UI
(e.g., using tools like Monkey). Some forcing execution tools
embed a controller activity into the modified app, which calls
the functions along the path leading to the target code [18].

C. Environment Adaptation

Environment adaptation attempts to trigger the target code
without modifying an app’s control flow or structure. To
do that, tools adopting this approach alter the environment
surrounding the app to steer its execution towards the targeted
code. For example, if the target code needs access to the
device’s Global Positioning System (GPS) module to execute,
the analysis tool would switch on the location services and
grant the app any necessary permissions.

Environment adaption analysis tools rely on user-defined
target code usually in the format of API calls to identify target
code. Once identified, a path from an app’s entry point to the
target code is calculated, and variables along this path are
included in constraints generated using symbolic execution
[7]–[9]. The symbolic variables in such constraints depict
values read from files, statuses returned after querying system
modules, or variables inside the app’s code.

During runtime, environment adaptation tools make sure
that the symbolic variables in those constraints have values
that steer an app towards the target code. Instead of altering the
environment itself to influence the symbolic variables, current
environment adaptation tools intercept the values returned from
the system or queried resource, and replace them with the
values required to execute the target code.
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TABLE I. A SUMMARY OF THE IDENTIFIED ANDROID MALWARE DYNAMIC ANALYSIS TOOLS THAT IMPLEMENT A BEHAVIOR
STIMULATION APPROACH. THE TOOLS WE UTILIZED DURING OUR EXPERIMENTS ARE HIGHLIGHTED IN RED.
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SmartDroid [14]
CopperDroid [15]
Droidbot [16] Apr’19

Droidmate-2 [17] Jun’19
GroddDroid [10]
Harvester [18]

Droid-AntiRM [19]
ARES [6] Apr’18

IntelliDroid [9] Dec’16
FuzzDroid [7] Feb’17
Malton [8]

To calculate the aforementioned constraints, the analysis
tools usually operate on a low-level representation of the
apps’ code, such as DEX bytecode [7] [9] or on native code
executed on Android Runtime (ART) layer [8]. In terms of
invasiveness, Malton does not modify the apps or their testing
environments, IntelliDroid needs a modified version of
the Android operating system to include a service that feeds
the app during execution with the values required to satisfy
the constraints, and FuzzDroid injects logging statements
into the apps for a similar purpose along with tracking the
execution paths.

III. EXPERIMENTS

a) Tools: Out of the 11 tools we identified so far, only
six offered their source code or executables to the research
community, which we attempted to install, configure, and test.
Unfortunately, half of the remaining tools (i.e., three tools),
either (a) were incomplete and needed a further extension
before being used, or (b) did not deliver the functionality
described in their respective papers. For example, the tool
FuzzDroid needed to be extended to accommodate for
different types of sensitive API calls apart from Short Message
Service (SMS)-related ones. Furthermore, after obtaining the
source code of the tool ARES, following the instructions
available on its website to compile a customized version of the
Android kernel, setting up and running it against the EvaDroid
dataset, we could not reproduce the results reported in its
paper [6], primarily because the tool did not manage to trigger
the payloads in such apps. Consequently, we ran our experi-
ments using the three remaining tools, namely Droidbot,
GroddDroid, and IntelliDroid, which fortunately re-
spectively represent the stimulation approaches of random UI
manipulation, forcing execution, and environment adaptation.

b) Datasets: We ran the aforementioned three tools
against four datasets of synthetic and real Android mali-
cious apps. The first dataset we considered is EvaDroid [6],
which comprises 24 manually-developed, synthetic malicious
apps that implement different types of schedulers (e.g., time-
based, virtualization fingerprinters, battery status checkers,
etc.). The second dataset, referred to as Repackman, comprises
30 synthetic malicious apps automatically generated using the

Repackman tool [4] by grafting trigger-protected malicious
payloads into benign apps from the Google Play store. The
third dataset is a random sample of 30 malicious apps drawn
from the Piggybacking dataset, which includes real-world
Android repackaged malware [12]. The distribution of malware
types in this dataset is Adware (63%), Riskware (17%),
Trojan (16.1%), and Spyware (3%). Lastly, we drew a
random sample of 130 malicious apps out of 24,553 from
the AMD dataset including different families and types of
Android malware (e.g., Adware (57.7%), Trojan (27.78%),
and Ransomware (8.74%)) [5].

A. Results
Table II summarizes the results obtained from our ex-

periments. For each dataset, we calculated the average time
taken (in seconds) by each tool to analyze an app (AT), the
percentage of apps that were successfully analyzed (AA), and
whether the malicious payloads embedded within the apps
were triggered (PT) and found in the logs of the successfully
analyzed apps. The time taken by Droidbot to analyze apps
seems constant across different datasets because we allowed
the tool to run for five minutes per app.

We defined an analysis to be successful if a tool that
monitors the API calls issued by an app during runtime,
Droidmon [20], managed to generate a log for an app.
Droidmon monitors a defined list of API calls that (a)
interact with sensitive system resources (e.g., user contacts),
or (b) are known to be widely-adopted by malicious apps
(e.g., sending and receiving SMS messages). We made sure to
synchronize the lists of API calls targeted by GroddDroid
and IntelliDroid and monitored by Droidmon itself.
This means that stimulation tools, for example, GroddDroid,
would attempt to target and execute the same API calls that are
monitored and logged by Droidmon. Such synchronization
is the only modification we made to the analysis tools. To
automate the process of analysis, we wrote scripts that iterate
over the apps in a dataset, launches the analysis tool, and
downloads any logs generated by Droidmon from the virtual
device on which the analysis was performed. We manually
examined the generated Droidmon logs of each analyzed app
to inspect whether any of its malicious payload(s) have exhib-
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TABLE II. A SUMMARY OF THE RESULTS OBTAINED FROM OUR EXPERIMENTS.

Dataset EvaDroid Repackman Piggybacking AMD
AT AA PT AT AA PT AT AA PT AT AA PT

Droidbot 305.6 100% 17% 304.45 100% 0% 305.89 96.67% 86.20% 306.34 76.15% 54.54%
GroddDroid 104.45 100% 37% 1434.2 40% 0% 2629.22 66.33% 68.42% 209.26 57.69% 46.67%

IntelliDroid N/A 100% 33% N/A 43% 0% N/A 46.67% 71.42% N/A 79.23% 42.67%

ited. For the synthetic malware datasets, the inspection was
straightforward, especially since the malicious payloads were
merely logging messages or Toast messages that indicate the
execution of the targeted code (e.g., Evil Payload Triggered!!).
We made sure that the analysis tools and Droidmon do indeed
target and monitor such logging statements, respectively. As
for apps in the Piggybacking and AMD datasets, we relied on
the information available on VirusTotal [21] or provided
by the dataset authors about the apps’ behaviors.

IV. DISCUSSION

In this section, we attempt to answer the research questions
(Q1), (Q2), and (Q3) that we postulated in Section I.

Q1

How well can the current behavior stimulation tools stimu-
late scheduled malicious behaviors embedded in (synthetic)
Android malware?

On the EvaDroid dataset, despite managing to outperform
their simpler counterpart, Droidbot, the more sophisticated
analysis tools GroddDroid and IntelliDroid performed
mediocrely on such dataset, given the simplicity of its apps and
the schedulers they utilize. Moreover, we noticed that some of
the tools managed to analyze and trigger the payloads in apps
that other tools did not manage to either successfully analyze or
to reveal their payloads. For example, GroddDroid managed
to uniquely trigger the payloads in the apps accelH and
network1, whereas IntelliDroid triggered the payloads
in adbPortDetector, installedApps, qemuFingerprinting, and
uptime. Collectively, the three tools successfully analyzed and
triggered the payloads in 13 (54%) out of 24 apps in the
EvaDroid dataset, which continues to be a less than expected
percentage.

The performance of all tools worsened on the Repackman
dataset. While this can be expected from simple approaches
as Droidbot’s, this result is indeed not expected from
GroddDroid and IntelliDroid. One possible reason
of failing to trigger such payloads is the inability of the
GroddDroid and IntelliDroid to successfully analyze
around 60% of the apps in the dataset, which might be
a result of runtime errors rather than technical shortcom-
ings. Upon futher investigation, we found that apps tested
using GroddDroid did not generate any Droidmon logs
as they encountered various types of runtime exceptions,
mostly related to calling methods in classes that are yet to be
loaded (e.g., java.lang.NullPointerException and
android.os.DeadObjectException). A possible rea-
son behind this behavior could be GroddDroid’s technique
of skipping over specific code segments and conditions in order
to execute the targeted code. As for IntelliDroid, unlike

GroddDroid, we did not find any evidence of crashes in the
system logs we downloaded from the virtual devices. In other
words, failure to target and/or trigger any payloads in the apps
might be due to some deficiencies in the tool’s approach. We
consider the failure of both tools to trigger such payloads as
a significant source of concern, given the ability to generate
hundreds of malicious apps using such automated method and
the simplicity of the triggers injected into those apps.

The tools’ performances on the AMD dataset are indeed
more balanced, yet raise other concerns. The majority of mali-
cious apps in this dataset makes use of schedulers that delay the
execution of the apps’ malicious payloads [5]. So, we expected
Droidbot to be outperformed by the other tools in terms of
triggering scheduled malicious payloads. However, as implied
by the (PT), Droidbot slightly outperformed GroddDroid and
IntelliDroid. Similar to the EvaDroid dataset, we found
that the three tools complemented one another in terms of apps
they uniquely managed to trigger their payloads. Between the
three tools, the payloads of 122 (93.84%) out of 130 apps
were successfully triggered. We investigated the apps that tools
uniquely analyzed and triggered in pursuit of patterns that
might indicate the strengths of some of the tools.

On the one hand, Droidbot managed to uniquely trigger
the payloads in three apps that belong to different malware
types (i.e., Ransomware, Trojan, and Adware). The other
tools could not identify any code to target within such apps. On
the other hand, GroddDroid and IntelliDroid managed
to trigger malicious payloads in 19 apps that Droidbot did
not manage to trigger. We found the payloads in ten of those
apps were uniquely triggered by IntelliDroid, whereas
six were uniquely triggered by GroddDroid.

In pursuit of any differences between the apps success-
fully analyzed by each tool, we consulted VirusTotal
and retrieved the labels given by different scanners to
each app, the last time an app was modified (i.e., roughly
its development date), and the Android Software Develop-
ment Kit (SDK) versions an app supports according to its
AndroidManifest.xml file. Firstly, the VirusTotal labels
did not reveal any patterns vis-à-vis the malware families or
types that each tool excels at analyzing. In other words, we
could not find any evidence that suggests, for example, that
GroddDroid can uniquely trigger payloads embedded in
Trojans or the DroidKungFu malware family. The tools
also shared the average year in which a malicious app was
last modified and presumably developed viz., 2013, and the
average minimum SDK supported by the apps they uniquely
triggered their payloads (i.e., API level 6).

The results we observed imply, we argue, that the suc-
cess of a tool to trigger the payloads in any given mali-
cious app hinges on the app itself (e.g., its functionalities,
utilized permissions, used libraries, etc.). Furthermore, the
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poor performance of older tools such as GroddDroid and
IntelliDroid on apps in the Repackman dataset, which
are newer than those in other datasets, implies that such tools
do not generalize to newer apps with newer technologies (e.g.,
runtime permissions), or are meant to run on newer versions
of Android. Consequently, as discussed earlier, the analysis of
any given app should be carried out collectively using different
analysis tools to increase the likelihood of successful analysis
and payload triggering.

Q2

How difficult is it to trigger malicious behaviors dwelling in
Android malware found in the wild (e.g., app marketplaces)?

To answer (Q2), we use the performance of Droidbot
on the Piggybacking and AMD datasets as an indication of
the difficulty to trigger the malicious payloads in an app.
If Droidbot’s simple random UI manipulation stimulation
approach stimulates any malicious behaviors in an app, we
infer that complex schedulers did not protect such malicious
behaviors and, hence, were easy to stimulate. The decent
performance of Droidbot’s simple random UI manipulation
implies that authors of Android malware in the Piggybacking
dataset did not graft the legitimate apps they repackaged
with sophisticated schedulers. We found that the majority
of the malicious apps in the Piggybacking dataset comprise
Adware, which usually focuses on the monetary gain rather
than stealth and sophistication [12]. That is to say, the authors
of Adware would rather trigger their malicious or potentially
unwanted payloads as soon as possible to maximize their
profit than hide the true intentions of their apps, especially
since displaying more advertisements or implicitly rerouting
their revenues does not bother device users or interrupt their
usage as much as other more notorious breeds of malware
(e.g., Ransomware). In this context, albeit unexpected, the
performance of Droidbot is not necessarily surprising.
Droidbot’s performance is not replicated in case of the AMD
dataset, which implies the use of more sophisticated schedulers
and triggers. Nevertheless, given the simplicity of its approach,
the tool managed to trigger the malicious payloads embedded
within more than 50% of the dataset’s apps. Similar to the
Piggybacking dataset, the majority of malware types in AMD
is Adware, which may have facilitated the tool’s task.

So, we argue that using stimulation approaches as simple
as random UI manipulation, a subset of the malicious behav-
iors found in some real-world Android malware types (e.g.,
Adware) or indications of their presence (e.g., fingerprinting
the device), might be revealed. Otherwise, the existence of
(complex) schedulers in apps noticeably hinders the perfor-
mance of all tools.

Q3

What are the limitations that face some of the current analysis
tools and their behavior stimulation approaches?

In addressing (Q3), we identified the following limitations
facing the analysis tools we examined so far. Firstly, apart from
Droidbot, the utilized tools were either too slow in targeting
code and devising strategies to trigger it or required manual
operation, such as IntelliDroid (hence the N/A in Table

II). Secondly, the approaches adopted by GroddDroid and
IntelliDroid, seemed to have undermined the stability
of the apps, which hindered their successful analysis. Being
a pre-requisite for payload triggering, we believe that this
has negatively affected the ability of such tools to trigger
payloads. Lastly, we noticed that all tools could only analyze
apps compatible with the Android versions that the tools target.
That is to say, the tools seem to be limited to the environments
within which they were implemented and evaluated. With the
lack of maintainability, the analysis tools we examined cease
to cope with the frequently changing structures and behaviors
of Android (malicious) apps, rendering them obsolete within
a few years.

V. LIMITATIONS AND FUTURE WORK

a) Dataset Size: As discussed in Section III, one of the
main criteria in evaluating the performance of a behavior stim-
ulation approach is its ability to trigger malicious behaviors
embedded within the apps. To make sure that payloads have
indeed triggered, especially in real-world malware, we manu-
ally inspected the Droidmon logs generated by the dynamic
analysis tool. Using the entire corpus of the Piggybacking
and AMD datasets and the logs generated from their apps by
each of the three analysis tools means manually analyzing
around 77,859 logs. So, we randomly selected apps from those
datasets for our experiments, in order to have a sample that,
we argue, represents the entire population of apps, their trends,
triggers, and payloads.

b) Subset of Tools: The second limitation is the uti-
lization of a subset of dynamic analysis tools we identified in
Section II: out of 11 analysis tools, we ran our experiments
using three tools. In order not to mistakenly claim that a
particular tool is incapable of stimulating malicious behaviors
during our preliminary experiments, we only considered tools
that we could set up correctly, and that exhibit the behaviors
described in their corresponding papers.

c) Future Work: Our future work is planned to address
the aforementioned two limitations. Firstly, we wish to increase
the sizes of the datasets we use during our experiments.
The challenge, however, is to devise a method to semi-
automatically investigate the logs generated for different apps,
and decide upon whether the payloads residing in the apps have
triggered. Secondly, we wish to continue surveying the liter-
ature for more dynamic analysis tools in pursuit of different
approaches to behavior stimulation. Along with the tools we
already identified, we wish to re-run our experiments on larger
datasets of Android malware. As for tools we did not manage
to set up or execute, we wish to investigate the reasons behind
their unexpected behaviors after consulting their developers.

VI. RELATED WORK

In [22], Sadeghi et al. perform a large scale study on the
approaches and techniques used to assess the security of An-
droid apps in general. Among the plethora of tools discussed
in this study, dynamic analysis tools that implement behavior
stimulation approaches (e.g., GroddDroid), are discussed.
However, the study does not consider behavior stimulation as
a technique to distinguish between tools and, hence, does not
discuss it. Tam et al., in [1], do consider behavior stimulation
approaches in surveying the literature for static and dynamic
tools and discuss those specifically built to analyze Android
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malware (e.g., CopperDroid). Richter [23] surveys different
Android malware analysis tools and attempts to compare
them concerning their weaknesses and limitations. In other
words, without conducting any experiments, Richter studies
the features and approaches offered and adopted by different
tools (e.g., Harvester), and speculates the challenges that
might face them. Lastly, Hoffmann et al. survey the literature
for different analysis tools used to analyze Android (malicious)
apps [2]. They focus, however, on the resilience of such
analysis tools against obfuscation.

There are two main differences between our work and
the aforementioned related work. Firstly, we focus on the
approaches adopted by some dynamic analysis tools to increase
the chance of stimulating malicious behaviors in Android apps.
The majority of research efforts that survey dynamic analysis
tools tend to ignore such approaches. Those that do consider
it, such as [1], do not delve into comparing them. Secondly,
to the best of our knowledge, there are no approaches that
attempt to empirically compare the performance of different
analysis tools against Android malware, even using small or
sample datasets, which we do in this paper.

VII. CONCLUSION

Despite the existence of different behavior stimulation
approaches, the research community does not possess any
empirical studies on any scale that assess their applicability or
effectiveness against (synthetic) Android malware. To address
this gap, we surveyed the literature, identified three behavior
stimulation approaches adopted by dynamic analysis tools,
and assessed the performance of three tools representing them
against four datasets of synthetic and real-world Android
malware.

The results of our preliminary experiments suggest that,
despite competing with more sophisticated behavior stimu-
lation approaches, a simple approach based on the random
manipulation of an app’s UI can help reveal (subsets of)
the malicious behaviors it contains. This proved to be the
case with certain families of malware (e.g., Adware and
Ransomware), whose authors usually do not implement
complex schedulers to protect their malicious payloads. More
importantly, our experiments revealed that all the utilized tools
did not manage to trigger any time-scheduled payloads in
synthetic malware generated by the automatic repackaging tool
Repackman. Lastly, without maintaining a tool’s code and
adapting it to newer versions of Android, dynamic analysis
tools seem to be suited to analyze a particular set of malicious
apps viz., ones that were implemented for the same Android
API version.
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Abstract— The aim of this work is to enhance the side channel
information that is revealed by the power consumption of a
Field Programmable Gate Array (FPGA). An initial measure-
ment setup is proposed for measuring the signal quality, and
then adjustments and modifications to the hardware are done
to enhance this quality. Once an acceptable signal is measura-
ble, data is gathered and useful information in this raw data is
determined using a standard leakage assessment methodology.
The used methodology generates a quantitative score regard-
ing the presence of useful information in the raw data, and can
therefore indicate whether a system is vulnerable to side chan-
nel attacks or not. In this work, several modifications are pre-
sented along with their effect on the captured signal’s quality
and the amount of useful information in the collected raw data.

Keywords- FPGA; Side Channel Attack; Test Vector Leakage
Assessment; Advanced Encryption Standard; Power Analysis.

I. INTRODUCTION

Even though modern key-based encryption algorithms
are in theory considered as mathematically secure, this as-
sumption is not valid for their respective implementations.
Sophisticated techniques like Side Channel Attacks (SCAs)
can take advantage of certain implementation characteristics
to reveal secret information of their inner state [1] - pp.180,
which then, in turn, can be used to reconstruct the crypto-
graphic key in use [2]. As the name states, this kind of attack
is performed on side channels, information channels, which
unintentionally disclose internal information of a device.
Common side channels are power consumption, execution
time, acoustic and ElectroMagnetic (EM) radiation [1] -
pp.181. A power analysis attack for example exploits the
data-dependent nature of the switching activity of a crypto-
graphic implementation. Since these attacks can be non-
invasive and only use information extracted from physical
observation, it is difficult to detect them and consequently
one cannot be sure if a secret key is already compromised
[2].

The most common side channel analysis is power based,
which is also the focus of this work. A measurement setup is
presented that gathers side channel information leaked from
the power consumption of an FPGA board. The board is
modified in multiple stages, while collecting data on every
stage and conducting analysis on it to evaluate each modifi-
cation. The evaluation is performed by collecting side chan-
nel information of an Advanced Encryption Standard (AES)

implementation running on an FPGA and rating it according
to its impact. Contrary to other works in this field [3]-[7],
this paper focuses on FPGA evaluation boards that have
higher similarity with commercially available products,
rather than using boards designed for physical security anal-
ysis of cryptographic modules, such as SCA Standard Eval-
uation Board (SASEBO) and SCA User Reference Architec-
ture (SAKURA) board [7]. One example board designed
specifically for security analysis is the SAKURA-X, which is
equipped with a Xilinx Kintex-7 FPGA for cryptographic
circuits and a Spartan-6 as control unit. Usually, the focus of
measurement setups based on these boards is the security
evaluation of an algorithm’s implementation and correspond-
ing countermeasures. Performing side channel attacks on
them is considerably easier, which is also a reason why they
are not used in practice [7].

This work aims to depict possible obstacles while prepar-
ing off-the-shelf FPGA boards for side channel attacks and
show how to overcome them. Rather than performing a suc-
cessful key extraction itself, it should support other research-
ers at successfully leveraging all available side channel in-
formation. The main contributions of this work are:

 a systematic modification approach for a state of the
art FPGA evaluation board to enable power-based
side channel attacks,

 an improvement of common measurement setups by
FPGA board modifications, e.g., replacing resistors
and removing capacitors,

 an improvement of common measurement setups by
optimizing soft parameters, such as logic frequency,

 quantifying the quality of a measured signal for spe-
cific modifications and

 assessing the amount of useful information within
captured raw data, once the signal reaches an ac-
ceptable level of quality.

The rest of the paper is organized as follows. Section II
presents related work. The measurement setup is explained
in Section III, while improvements of the setup are presented
in Section IV. Section V presents an evaluation of the meas-
urement data. Finally, Section VI provides a conclusion.

II. RELATED WORK

The first published work on SCA goes back to Kocher in
1996, where it was shown that the variation in execution
time of an algorithm can leak information [8]. This leakage
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information can be used to extract secret keys used in the
algorithm. SCAs can be classified in several ways; this work
will refer to the classification presented by Zhou and Feng in
[9], which is based on the following three criteria.

 Control over the computation process: According to
this classification, an SCA can be an active attack if
the attacker influences the behavior of the system
and observes the difference in the operation or in-
formation leaked. A passive attack, on the other
hand, refers to SCAs where the attacker does not in-
terfere with the operation of the target system. Fault
Injection (FI) attacks are an example of the former,
while power analysis attacks are of the later type.

 Way of accessing the module: This classification di-
vides SCAs into three different types, namely inva-
sive, semi-invasive and non-invasive attacks [10].
These types refer to the degree of tampering done to
the system for acquiring information. Non-invasive,
being the lowest degree equals no hardware modifi-
cation. On the other hand, invasive attack means ex-
tensive modification that could include depackaging
the Integrated Circuit (IC), capacitor removal or
changing resistors.

 Methods used in the analysis process: This third
classification is based on the process used to analyze
the acquired data. The attack could be characterized
as Simple SCA (SSCA) if there is a direct relation
between the leakage information and the secret.
However, if SSCA is not possible due to high noise,
statistical methods can be used to extract the secret.
Such attacks will be classified as Differential SCA
(DSCA) [9].

Zhou and Feng in [9] also discussed known SCAs,
which are timing, fault, power analysis, Electro-Magnetic
(EM), acoustic, visible light, error message, frequency-
based, cache-based and scan-based attacks. The measure-
ment setup and modifications presented in this work are
intended for power analysis. They require some modifica-
tion to the board and use statistical methods for information
analysis, but they do not control the algorithm’s execution.
Consequently, our setup can be used for passive semi-
invasive differential SCA. The term “differential” in this
case should not be confused with Differential Power Analy-
sis (DPA) [13]. In power-based SCAs, Simple Power Anal-
ysis (SPA) comes under SSCA, while DPA, Correlational
Power Analysis (CPA) [11] and Test Vector Leakage As-
sessment (TVLA) [17][18] come under the category of
DSCA.

SPAs interpret the power consumption measurements di-
rectly, which means that the attacker tries to extract a key
using one or few traces [12]. In practice, these attacks are
not considered a major threat because they require detailed
knowledge of the implementation of the cryptographic algo-
rithm. In contrast, DPA does not require detailed knowledge
of the target setup and can extract a key even if traces con-
tain noise [12]. A trace is a set of measurement points that
are measured during execution of the target algorithm, in

this case AES. CPA, introduced by Brier et al. [11] and
currently the most commonly used SCA, is based on the
estimated correlation between the power traces of a hypo-
thetical model and measured power traces.

In this work, evaluation of the leaked information is
done using TVLA [18]. TVLA was first introduced in 2011
in Non-Invasive Attack Testing Workshop [17]. This ap-
proach requires execution of a cryptographic algorithm with
pre-specified input vectors and then performs statistical tests
on the measured power consumption. These tests produce
scores, which can clearly show whether a cryptographic
algorithm is leaking sensitive information or not. The ad-
vantage of performing TVLA analysis is that it is faster by
multiple orders of magnitude in comparison to key extrac-
tion attacks, such as DPA and CPA. In addition, it is also
real-time meaning the test can be performed as the meas-
urement data is being collected. Between the two types of
TVLA tests, this work utilizes general TVLA, which com-
pares measurements from a device performing AES on fixed
inputs and from a device performing AES on random inputs.
According to [18], non-specific tests are most successful in
leakage assessment.

For executing a successful attack, authors in [14]
showed that removing decoupling capacitors and powering
the device from accumulators via linear stabilizers make the
environment ideal. They were able to extract the key by
analyzing just 5,000 traces. The target device used in this
attack was a Spartan 3E Starter Board. Moradi et al. in [16]
presented a successful SCA on Virtex 4 and Virtex 5 Xilinx
devices by targeting the internal bitstream decryption en-
gine. In addition, a comparison of SASEBO and SAKURA
boards, discussed earlier, is presented by Nomata et al. in
[6], where it is said that one thousand to two thousand
waveforms are required for obtaining all bytes of the key
with SASEBO-G, SASEBO-GII and SAKURA-G boards.
On SAKURA-X, additional amplification of the waveform
is required to extract keys. SASEBO-G comes with a Xilinx
Virtex-II, SASEBO-GII with a Xilinx Virtex-5, SAKURA-
G with a Xilinx Spartan-6 and SAKURA-X with a Kintex-7
[7]. Our work is different from the rest as we are targeting a
comparatively newer FPGA placed on a Xilinx Evaluation
Board rather than on a FPGA board designed for side chan-
nel analysis specifically.

III. MEASUREMENT SETUP

A. Target Cryptographic Algorithm

In the measurement setup, the target algorithm is a
hardware implementation of AES [15] with 128-bit key
length. Implementation executes within 13 clock cycles,
where the round keys are generated in the first two, and then
a round of AES is executed during each clock. The 16 S-
boxes of the Byte Substitution (BS) Layer are implemented
as lookup tables and are executed in parallel in one clock
that should make the attack harder in comparison to an im-
plementation that executes one S-box per clock. AES is
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packaged in the Advanced Extensible Interface (AXI) and
communication between AXI-wrapped AES on the FPGA
and host computer is realized via a JTAG-to-AXI interface.

B. Basics of Power Analysis

The power consumption of FPGAs, as with all integrat-
ed circuits, is divided into dynamic and static power. Dy-
namic Power Consumption (DPC) is caused by changes of
signal values, while static power is always present even
when no signal transitions occurs [24]. DPC can be correlat-
ed with specific bits [1] - pp. 300. At a fixed point in time,
an output signal of a Complementary Metal-Oxide-
Semiconductor (CMOS) cell can perform one of four transi-
tions [12] - pp. 29. The transitions 0→0 (P00) and 1→1 (P11)
cause only static power consumption, while 0→1 (P01) and
1→0 (P10) consume both static and dynamic power. The
exact values of P00, P01, P10 and P11 depend on the cell type
and process technology, but generally P00 ≈ P11 << P01, P10.
In addition, they depend on the data being processed [12] –
pp. 29.

Since registers in digital circuits are typically synchro-
nized by a clock signal, a current flow is caused by the sim-
ultaneous switching of the logic cells at each rising edge of
the clock. This current flow or the respective voltage drop
can be measured using a digital oscilloscope and thus electri-
cal signals can be recorded over a certain period. To measure
characteristics such as power or current with an oscilloscope,
it is necessary to generate a voltage signal that is proportion-
al to these characteristics. In a measurement setup for power
analysis attacks, there are two common ways for SCAs to
generate a voltage signal that is proportional to the power
consumption of the cryptographic device. It can either be
generated by placing a small measurement resistor between
negative (VSS) or positive supply voltage (VDD) of the device
and the source or ground. The current flowing through this
resistor causes a voltage that can then be measured.

The structure of all hardware components for doing so
and their communication is shown in Figure 1. An AES
implementation on the FPGA is triggered to encrypt multiple
plaintexts while the attached oscilloscope measures the con-
sumed power and transfers all captured data to a host ma-
chine.
The target device is a Xilinx Zynq-7000 All Programmable
SoC ZC702 Evaluation Kit v1. This board contains a Zynq-
7000 XC7Z020-1CLG484C with 85,000 logic cells.

Figure 1. Measurement Setup

The Zynq-7000 series integrates an ARM Cortex-A9
based processor and a 28nm programming logic (PL). The
evaluation board includes Low Pin Count - FPGA Mezza-
nine Card (FMC) connections to attach an FMC debug
board. This is used to connect the digital channels of the
oscilloscope.

Additionally, the board has three power controllers, each
managing several switching regulators. The power control-
lers are PMBus-compliant system controllers from Texas
Instruments. This allows the voltage and current levels to be
set [25]. Every controller monitors different voltages. One is
responsible for the core voltages, one for the auxiliary volt-
ages and the third for the 3.3 V and 2.5 V supply voltages.
The core voltage includes VCCINT and VCCPINT among others.
VCCINT is the 1V internal supply voltage for the PL [26] and
therefore the target voltage for power analysis attacks on the
PL. The evaluation board by default contains a meas-
urement resistor connected to a voltage amplifier that can be
used for this purpose.

A Keysight MSO9104A oscilloscope with a resolution of
8 bits, a bandwidth of 1GHz and up to 20 GS/s sampling rate
is used to perform the actual measurement. The settings of
this oscilloscope are adjusted to match the target AES algo-
rithm. The horizontal resolution is set to equal the period of
one full AES round. For vertical resolution, the entire verti-
cal range of the oscilloscope is used. The signal is sampled
with a Keysight N2750A active differential probe with 1.5
GHz bandwidth. The tip of the probe is soldered to the corre-
sponding measuring point on the board.

Test data in form of plaintexts is generated according to
the TVLA specifications and sent to an AES core implemen-
tation on the programmable logic, utilizing a 128-bit sym-
metric key. A measurement is started at the beginning of
every first AES round and all results are transferred back as
raw data using Ethernet. Each measurement consists of an
averaging of the same plaintext, which is performed directly
on the oscilloscope. Figure 2 shows the resulting measure-
ment plot.

Figure 2. Measured voltage signal using the original setup for a single
AES run (left) and an average of 128 AES runs (right) respectively.

IV. IMPROVING THE MEASUREMENT SETUP

In order to perform a power analysis attack, the captured
data needs to meet certain quality standards. Data quality
can be compared using peak-to-peak voltage (VP2P) during
execution of AES encryption, which should be at least 3mV
according to related measurements on a SAKURA-X board
[6] in order to allow successful power analysis attacks. The
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initial measurement, shown in Figure 2, shows ten peaks
corresponding to the ten AES rounds performed. The signal
quality is not sufficient to isolate intermediate computations
like S-Box calculation, which are typically needed for dif-
ferential power analysis, therefore no VP2P can be calculat-
ed.

In order to improve data quality, multiple changes are
possible. First, the internal measuring resistor can be re-
placed to generate a higher voltage drop and therefore a
stronger signal. Secondly, the supply voltage VCCINT can be
stabilized by using an external power source to eliminate
unrelated fluctuations [21]. Finally, fluctuations related to
the actual AES execution can be amplified by removing
capacitors from the board. The descriptions and results of
the individual steps are discussed in the following sections.

A. Replacement of the Internal Measuring Resistor

As explained before, a measuring resistor is needed to
generate an observable signal, where the exact resistance has
to be chosen in a prudent manner. A higher value means
higher voltage fluctuation, which is easier to measure [21].
However, the voltage drop across the resistor reduces the
voltage that arrives at the cryptographic circuit. This in turn
results in a lower power consumption of the cryptographic
device, making it harder to measure. Therefore, a suitable
trade-off has to be found for the resistance. Due to the very
low resistance of the internal resistor, the resulting voltage
drop is comparably low; consequently, it should be replaced.
Based on experiments with other boards [19] [20], a
and a resistor respectively is evaluated for best results.
The plotted data is shown in Figure 3 and Figure 4. Even
though the single AES rounds are still not visible using high-
er resistance, the VP2P amplitude increased to roughly 1mV
(0.1 ) or 1.5mV (1 ). Since the 1 resistor yields better
results it will be used in all subsequent experiments.

Figure 3. Measured voltage signal using a 0.1 for a single AES run
(left) and an average of 128 AES runs (right) respectively.

Figure 4. Measured voltage signal using a 1 for a single AES run
(left) and an average of 128 AES runs (right) respectively.

B. External Power Supply

Using an external power supply can further improve
measurement quality by reducing noise on the voltage line,
i.e., VCCINT and VCCPINT [22] – pp. 6. Therefore, an Agilent
66319D Power Supply Unit (PSU) is used to power the pro-
grammable logic instead of the internal power supply. This,
however, interrupts the FPGA’s power-on sequence; hence,
it must be taken care of manually. For the programming
logic, the required power-on sequence is VCCINT → VCCBRAM

→ VCCAUX → VCCO, meaning the PSU has to be switched on
before the FPGA board. The switch-off sequence conse-
quently is in reverse order [26]. This change results in a
voltage amplitude of up to 2.3mV, as can be seen in Figure 5
(right). Moreover, this time the single S-Box calculations are
visible in the signal.

Figure 5. Average measured voltage signal using an external power
supply for 128 AES runs (left) and detailed zoom of the signal (right).

C. Removing Capacitors

As can be seen in Figure 5 (left), the voltage signal is al-
most constant on a larger scale. This is due to multiple ca-
pacitors between VCCINT and GND, which effectively prevent
the power consumption from fluctuating – they smooth the
signal. This causes a masking of the required power infor-
mation and thus prevents power analysis attacks [23][28].
TABLE 1 provides an overview of all relevant capacitors
named according to device schematic.

TABLE 1. CAPACITORS BETWEEN VCCINT AND FPGA

Label Capacity Removed Label Capacity Removed

C306 330µF C237 4.7µF ✓

C167 100µF C356 0.47µF ✓

C168 100µF C357 0.47µF ✓

C169 100µF ✓ C358 0.47µF ✓

C139 47µF ✓ C359 0.47µF ✓

C233 4.7µF ✓ C360 0.47µF ✓

C234 4.7µF ✓ C361 0.47µF ✓

C235 4.7µF ✓ C362 0.47µF ✓

C236 4.7µF ✓

To overcome this limitation, capacitors are removed if
possible. Some are necessary to ensure correct operation of
the FPGA. Again, the voltage is measured and plotted in
Figure 6. Compared to Figure 5 the individual AES rounds
are visible now. The VP2P signal amplitude increases to 3mV.
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Figure 6. Average measured voltage signal using an external power
supply for 128 AES runs (left) and detailed zoom of the signal (right).

D. Reducing AES Clock Frequency

High clock frequencies can cause the power consumption
signals to overlap in successive clock cycles, resulting in
noise in the measured data [12] - pp. 58. Quality of the
measured traces can therefore be further improved by lower-
ing the clock frequency of the cryptographic algorithm. Con-
sequently, the clock frequency is reduced from 30MHz to
3.125MHz. In order to keep the scenario as realistic as possi-
ble [6][12] - pp. 58 and [1] - pp.296, the frequency is not
lowered further. Average results for 128 measurement are
shown in Figure 7 next to the result for a frequency of
30MHz as comparison. The signal amplitude is clearly in-
creased, now ranging up to 4.3mV.

Figure 7. Average measured voltage using a frequency of 3.125 MHz
for a 128AES runs (right). Results with f=30MHz for comparison (left).

This section concludes here with TABLE 2, showing results
after each modification. The final value of 3.16mV shows
that the quality of the captured signal is high and is compa-
rable to the P2P value of 3mV reported in [6] using SA-
KURA-X Board.

TABLE 2. P2P VOLTAGE SUMMARY OF ALL MODIFICATION

Steps
P2P Voltage

(mV)
P2P Moving

Average1 (mV)

R = 5mΩ, f = 30MHz N/A N/A

R = 100mΩ, f = 30MHz 1.01 0.66

R = 1Ω, f = 30MHz 1.57 0.95

R = 1Ω, f = 30MHz, External power 
supply

2.32 0.74

R = 1Ω, f = 30MHz, External power 
supply, Capacitors removed

3.14 1.90

R = 1Ω, f = 3.125MHz, External 
power supply, Capacitors removed

4.37 3.16

1n = 50.

V. EVALUATION OF SIDE CHANNEL INFORMATION

Until now, the paper presented several modifications and
their effect on the quality of a captured signal. In this section,
we will evaluate how much information is leaked by the
cryptographic module after each modification.

For this, a general TVLA test is performed, which is
conducted on two different sets of plaintext, i.e., random and
fixed [17]. Encryption is performed on the random as well as
on the fixed plaintext with the same key, and the measure-
ment data is randomized for eliminating time dependent
distortions. According to [17], if the test score is higher than
4.5 or lower than -4.5, the test is failed meaning the device is
leaking enough information for a successful attack.

A. External Power Supply and 1Ω Measuring Resistor 

Measurement data from the setup with 1Ω measuring re-
sistor and external power supply is used to conduct a first
general TVLA test. For fixed and for random input, n traces
are collected. Two independent t-tests are performed; one by
comparing the first half of traces from both data sets and
another using the second half.

As shown in Figure 8, the maximum values of the first t-
test after about 20,000 traces are briefly above the threshold
of 4.5. However, because the values of the second t-test are
below the limit, the test is passed. General TVLA is then
applied to all measurements that is 60,000 random and
60,000 fixed inputs, which results in maximum t-value of
6.49.

Figure 8. General TVLA test with external power supply

B. Removing Capacitors

Measurement data from the setup with external power
supply, replaced internal resistor and removed capacitors is
analyzed with TVLA as well. The test score crossed the
value of 4.5 after 2,373 TVLA traces and stayed above that
threshold afterwards, as can be seen in Figure 9. This corre-
sponds to the calculation of t-tests for 9,492 measured traces
(one TVLA trace is composed of four measured traces).
When the test is applied to all 120,000 traces, a maximum
test score of 28.45 results.
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Figure 9. General TVLA test after removing the capacitors.

C. Reduced Clock Frequency and Vertical Resolution

Two more parameters, namely AES clock frequency and
vertical resolution, are adjusted in order to get a better
TVLA score. TVLA is applied on the measurement data
while reducing clock frequency to 3.125MHz and setting the
vertical limit to 5.9mV/div including all the previous modi-
fications. This results in a maximum t-value of 14.23, which
is lower than the 28.45 with a clock frequency of 30MHz
and 5.9mV/div vertical resolution. However, when the ver-
tical resolution is adjusted to 2.3mV/div using Zone Trigger
[29][30], a maximum t-value of 60.58 is achieved which can
be seen in Figure 10. This is the highest t-value reached by
any modification presented in this paper.

Figure 10. General TVLA test with external power supply, removed
capacitors, 3.125MHz frequency.

The maximum t-values for all the modifications are
summarized in TABLE 3. The t-value achieved with the
final measurement setup is 60.58, which is comparably
lower than 190 achieved on a SAKURA-G Board. However,
the higher value could be attributed to the 65nm technology
node of the Xilinx Virtex-5 used on the SASEBO-GII board
[7][17].

TABLE 3. MAXIMUM T-VALUE SUMMARY FOR ALL MODIFICA-
TIONS

Modification Resistor
(Ω)

Frequency
(MHz)

Vertical
Resolution
(mV/div)

Max.
T-Value

Ext. Power Supply 1 30 5.9 6.49

Ext. Power Supply
and Cap. Removed

1 30 5.9 28.45

1 3.125 5.9 14.23

Ext. Power Supply,
Cap. Removed and
Zone Trigger [29]
for Vertical Resolu-
tion adjustment

1 3.125 2.3 60.58

VI. CONCLUSION

This work presents steps to implement a measurement
setup that can capture leakage information. The target hard-
ware, a commercial off-the-shelf board, is modified iterative-
ly and the parameters of the setup are adjusted to acquire a
higher quality signal for post processing. To compare the
quality of the signal, the peak-to-peak amplitude is used. The
resulting peak-to-peak voltage is 3.16mV, which is compa-
rable to SAKURA-X Board's P2P value that is approx. 3mV.
Once an acceptable quality of signal is achieved, measure-
ment data is gathered, which is then put through a methodol-
ogy to check whether the data contains useful information or
not. For this purpose, Test Vector Leakage Assessment is
used. The result of each modification and adjustment is
shown for both cases, i.e., signal quality and leakage infor-
mation. However, results of the general TVLA test show a
relatively low t-value (60.58) in comparison to a SASEBO-
GII board, which could be attributed to the smaller 28nm
node of the device under target. The setup could be further
tweaked to increase the t-value if necessary, though the cur-
rent t-value already suggests that the platform is vulnerable
to power analysis attacks.
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Abstract—This paper proposes a new multiple-image
encryption algorithm based on spectral fusion of images
and new chaotic generators. Logistic-May (LM), May-
Gaussian (MG) and Gaussian-Gompertz (GG) were used
as chaotic generators for their good properties in order
to correct the flaws of 1D chaotic maps (Logistic, May,
Gaussian, Gompertz) when used individually. Firstly,
the Discrete Cosine Transformation (DCT) and the low-
passed filter of appropriate size are used to combine the
target images in the spectral domain in two different
multiplex images. Secondly, each of the two images is
concatenated into blocks of small size, which are mixed
by changing their position following the order generated
by a chaotic sequence from Logistic-May system (LM).
Finally, the fusion of both scrambled images is achieved
by a nonlinear mathematical expression based on
Cramer’s rule to obtain two hybrid encrypted images.
The security analysis and experimental simulations
confirmed that the proposed algorithm has a good
encryption performance; it can encrypt a large number
of images of different types while maintaining a reduced
Mean Square Error (MSE) after decryption.

Keywords—Spectral fusion; chaotic generators; image
encryption.

I. INTRODUCTION

Several image encryption algorithms are being
developed today to meet privacy needs in multimedia
communications. With the rapid expansion of the Internet,
innovative technologies and cryptanalysis, it has become
necessary to build new and appropriate cryptosystems for
secured data transfer, especially for digital images.
Especially today, a large quantity of images is produced in
various fields and exchanged through different channels,
favouring the development of Multiple Images Encryption
(MIE) instead of Single Image Encryption (SIE).

In literature, many encryption algorithms, such as
International Data Encryption Algorithm (IDEA), Advanced
Encryption Standard (AES) and Data Encryption Standard
(DES) have been proposed [1]. However, these standard
algorithms do not seem to be appropriate for image
encryption, because of the intrinsic features of images, such
as huge data capacity, high redundancy, strong correlation
among adjacent pixels and low entropy [2]. Some basic
properties of chaotic systems such as the sensitivity to the
initial condition and control parameters, sensitivity to plain
text, ergodicity and randomness behaviour, meet the
requirements for a good cryptosystem. Consequently,
several cryptosystems were developed by researchers, based
on chaotic systems because the latter provided a good
combination of speed, high security, complexity, reasonable
computational overheads and computational power [3].
With these features, chaotic-based cryptosystems have
excellent properties of confusion and diffusion, which are
desirable in cryptography. Therefore, many techniques
involving different chaotic systems have been published [2]-
[12][23], and can be divided into one-dimensional (1D)
chaotic maps and high-dimensional (HD) chaotic maps.

Among the chaotic encryption algorithms developed,
the ones using a one-dimensional (1D) chaotic system like
Logistic, Tent, and Sine map have proven to have the
advantages of high-level efficiency, simplicity and high-
speed encryption. 1D chaotic structures have been widely
used [4] due to their simple structures, as opposed to the
complex ones of higher dimensional chaotic system (which
causes a relative slowness in computation). However, some
schemes using the 1D map have been broken due to their
weakness like non-uniform data output, small key space,
periodic data output, and poor ergodicity properties for
some ranges of control parameters [5][6]. To overcome this
drawback, some researchers state that the 1D chaotic map
should not be used alone [7][8]. Others proposed new 1D
chaotic systems with better properties like Spatiotemporal
chaos in [9], coupled with the 1D chaotic map [6], the
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Nonlinear Chaotic map Algorithm (NCA) [10], and more
recently, nonlinear combinations of two different 1D chaotic
maps [3][11][12]. For example, Y. Abanda and A. Tiedeu
[3] combined outputs of Duffing and Colpitts chaotic
systems to encrypt grey and colour images. Y. P. Kamdeu
and A. Tiedeu [11] proposed a fast and secured encryption
scheme using new 1D chaotic systems obtained from
Logistic, May, Gaussian and Gompertz maps. In [12], M. A.
Chenaghlu et al. proposed a polynomial combination of 1D
chaotic maps for image encryption using dynamic functions
generation.

Recently, in order to increase the efficiency of
cryptosystems for multiple images, some authors proposed
algorithms integrating the concept of fusion or mixing
images as a step in the encryption process. Image fusion has
been proven to have potential for encryption in the spatial or
frequency domain. In the last 8 years, much effort has been
devoted to compressing and encrypting images at the same
time [13], which is considered as a new way of decreasing
the quantity of data to be transmitted and guarding the use
of data against unauthorized access. In particular, the
Discrete Cosine Transformation (DCT) is employed as a
useful tool for spectral fusion in most of these methods. The
widely used application DCT for image compression is
mainly based on its energy compaction property, which
means that the low-frequency coefficients are located
around the top-left corner of its spectral plane. In 2018, M.
Jridi and A. Alfalou [14] proposed an algorithm to enhance
an existing optical Simultaneous Fusion, Compression and
Encryption (SFCE) scheme [15] in terms of real-time
requirements, bandwidth occupation and encryption
robustness. In [16], S. Dongfeng et al. proposed a novel
technique for simultaneous fusion, imaging and encryption
of multiple objects using a single-pixel detector. This
algorithm achieves good performance in terms of robustness
as the number of images to multiplex increases, but suffered
from reduced key space and good quality of images
recovered. I. Mehra and N. K. Nishchal [17] proposed an
image fusion encryption based on wavelets for securing
multiple images through asymmetric keys. It offers a large
key space, which enhances the security of the system. In
2016, Y. Qin et al. [18] proposed an Optical Multiple-Image
Encryption scheme in diffractive imaging using spectral
fusion and nonlinear operations.

More recently, X. Zhang and X. Wang [19][20]
proposed two schemes of Multiple-Image Encryption
(MIE): the first algorithm based on mixed image element
and permutation, and the second MIE algorithm based on
mixed image element and chaos. The cryptosystem shows
good performances, but can be improved in terms of
compression to reduce the size of the multiplex big image
when the number of target images increases. In [21], G. L.
Zhu and X. Q. Zhang proposed an encryption algorithm of
mixed image element based on an elliptic curve
cryptosystem. Experimental results and theoretical analysis
show that the algorithm possesses a large key space and can

accomplish a high level of security concerning information
interaction on the network platform, but the encryption and
decryption computational time is long. In 2013, A. M.
Abdalla and A. A. Tamimi [22] proposed a new algorithm,
which mixes two or more images of different types and
sizes by using a shuffling procedure combined with S-box
substitution to perform a lossless image encryption. Here,
the process of mixing image combines stream cipher with
block cipher, on the byte level.

After analysing most MIE algorithms operating in the
spectral domain, the robustness of the cryptosystem
increases with the number of input images. Consequently,
the quality of decrypted images is degraded. Therefore, it is
important to design cryptosystems which can keep a good
compromise between a large number of images to encrypt, a
small MSE after decryption and a good performance in
terms of robustness and efficiency.

As a result, this paper suggests a new MIE algorithm
based on the spectral fusion of different types of images of
same size using Discrete Cosine Transformation (DCT)
associated with a low-passed filter and chaotic maps. The
proposed scheme has several strengths: it is robust, uses
chaotic maps with good properties, encrypts a large number
of images into two hybrid ciphered images, and the quality
of the reconstructed images is good (reduced MSE). The
encryption process comprises three main steps: in the first
step, target images are fused into two images through DCT
and low-passed filter. In the second step, the small blocks
with the size of (4 X 4) images are permuted in a certain
order. In the last step, which is the diffusion phase, the two
scrambled images are fused by a nonlinear mathematical
expression based on Cramer’s rule to obtain two hybrid
encrypted images. The key generation of the cryptosystem is
made dependent on the plain images.

The rest of the paper is organized as follows: Section 2
presents an overview of chaotic generators used in the
cryptosystem while in Section 3, spectral fusion of plain
images is detailed. The proposed encryption/decryption
scheme is given in Section 4. In Section 5, experimental
results and algorithm analyses are presented, then compared
with others in the literature. We end with a conclusion in
Section 6.

II. BRIEF REVIEW ON 1D CHAOTIC SYSTEMS USED

A. 1D Logistic, May, Gaussian and Gompertz maps

The equations of 1D Logistic, May, Gaussian and
Gompertz maps are described from (1) to (4), respectively.

1) 1D Logistic map

 1 1n n nx rx x   (1)

where  0,1nx  is the discrete state of the output chaotic

sequence and r is the control parameter with values in the
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range [0, 4]. The chaotic behaviour of the Logistic map is
observed in the range [3.5, 4].

2) May map

  1 exp 1n n nx x a x   (2)

where  0,10.9nx  and the control parameter a belongs

to the range [0, 5].

3) Gaussian map

 2
1 expn nx x c    (3)

 where α  [4.7, 17], c[-1, 1].

4) Gompertz map

1 lnn n nx bx x   (4)

where the control parameter b  [0, e ], e =2.71829…
and is the exponential function.

B. Combination of new 1D chaotic maps

The chaotic properties of 1D Logistic, May, Gaussian
and Gompertz maps are not suitable to build a secure
cryptosystem when they are used alone. To solve this
problem, Y. Zhou et al. [23] proposed to combine the
different seed maps. Figure 1 shows the new map obtained
from a nonlinear combination of two different 1D chaotic
maps.

Figure 1. New chaotic scheme.

1) Logistic-May map (LM)
Its equation is defined by (5)

 
1

exp ( 9)(1 )
mod 2

( 5) (1 )

n n

n

n n

x r x
x

r x x


   
     

(5)

where  0,1nx  and  0,5r . From its bifurcation

diagram, we can observe that chaotic properties are
excellent within [0, 5], with a maximum Lyaponuv
exponent equal to 8.3.

2) May-Gaussian (MG)
Equation (6) defines the May-Gaussian (MG) map
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where  0,1nx  ,  0,5r , 4.7,17   . From its

bifurcation diagram, the Lyaponuv exponents are positive
and belong to the range [2.5, 5.6].

3) Gaussian-Gompertz
It is defined by (7)

 2

1

( 5 26)
exp

mod24

( 5 26) log

n
n

n n

r
x

x

r x x




 
   

   

(7)

where  0,1nx  ,  0,5r , 4.7,17   . It has a

mean Lyaponuv exponent around 2.5
Figure 2 illustrates the bifurcation diagram and the

Lyaponuv exponent graphics of these maps. Referring to
Figure 2, all the previous 1D chaotic systems present a
wider chaotic range and a more uniform distribution of their
density functions. Furthermore, the maximum Lyaponuv
exponent values obtained are respectively 8.1, 5.6 and 2.5.
Then, these combined 1D systems are more suitable for
secure and high-speed encryption if the encryption
algorithm is built around a good algebraic structure.

Figure 2. Bifurcation diagrams and Lyaponuv exponent graphics of
combined chaotic maps, (a) and (c) Logistic-May, (b) and (d) May-

Gaussian, (e) and (f) Gaussian-Gompertz.
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III. SPECTRAL FUSION OF TARGET IMAGES

We consider N target images of size ( , )M M , which

are combined with two images, each containing  / 2N

target images. As described in [24], Discrete Cosine
Transformation (DCT) is first applied separately to each of
the target images. Secondly, every spectrum is multiplied by
a low-passed filter, of size (M’, M’) pixels, positioned in its
upper left corner. In this way, a block containing the
relevant information for reconstructing every target image is
obtained. At this step, the compression rate Cr is:

Cr = 1 – (size of multiplexed DCT spectral plane) /size of N
inputs images

Cr = 1 – (M2 / NM2) = 1 – (1 / N) (8)

Then, after all of these target images are grouped together
by a way of simple addition, the inverse Discrete Cosine
Transform (IDCT) of the multiplex image is performed. To
avoid information overlap, these blocks are shifted by a
rotation before spectral multiplexing. Figure 3 illustrates the
description of the process. It should be noted that the
capability of multiplexing can be increased by appropriately
selecting the filter size. The smaller the filter size is, the
more images can be multiplexed, but the quality of
recovered images may be worse. To keep a good quality of
reconstructed images while maintaining a large number of
target images to encrypt, we chose to group these images in
two multiplex images of the same size.

IV. PROPOSED ENCRYPTION/DECRYPTION SCHEME

This section presents the proposed cryptosystem, which
comprises blocks-permutation and diffusion steps using
Chaotic generators. Figure 4 illustrates the entire process.

A. Blocks-Permutation

The plain image is each of the two multiplex images
obtained in Section 3. The plain image is decomposed into
small blocks of the same size; let us choose blocks size of
( 4 4 ) pixels. In fact, increasing the number of blocks by
using smaller block size resulted in a lower correlation and
higher entropy; then, the intelligible information contained
in the image will be reduced.

The permutation of blocks is realised as follows:

1. Divide the plain image I of size M M into k

blocks size of ( 4 4 ), with
4 4

M M
k  

2. Use initial condition and control parameters x01, r01

of Logistic-May system to generate a chaotic

sequence by iterating k times (5). The values of

the sequence X obtained are ranged in a row vector

P of size (1, )k .

3. Repeat step 2 to generate a new sequence, using

new initial condition and control parameters x02

and r02. This second sequence is to permute the

small blocks of the second multiplex image.

4. Sort the chaotic sequence P in ascending order, and

get a new sequence

   ' ; , ..., '' ' '1 2
P PP P Pt t tki k

  .Therefore, the

sequence x01, r01, x02, r02 is the permutation of the

sequence 1, 2,…, k.
5. Number all the blocks of the plain image obtained

in step 1, and adjust their positions with the

previous permutation of step 3. Then, the image
obtained is a block image permuted.

Figure 3. Spectral fusion of target images.

63Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                           74 / 144



Figure 4. Encryption scheme.

The values x01, r01, x02, r02 are calculated through (9) and
(10). In this process, we subdivide each multiplex image Ii,
(i=1,2) in two parts P1 and P2 of same size.

x0i = (x0 + mean (Ii)/255)mod1 (9)

r0i= r0 + 0.1 max(S1, S2)/N M 29 (10)

where, S1 is the sum of pixels’ intensities of the first part P1

of the multiplex image Ii, and S2 for P2.
x0 ϵ [0, 0.9], r ϵ [0, 4.9]. 

B. Diffusion of the scrambled images

1) Description of the fusion process

At this level, the two scrambled images are combined in
order to create the final hybrid encrypted images that would 
be difficult to crack. The May-Gaussian and Gaussian-
Gompertz systems (6) and (7) are used as pseudo random
generators to generate two chaotic sequences after
2M*2M iterations. These values are arranged in two arrays
W and T of sizes 2M*2M, respectively, where M represents
the number of rows and columns of each scrambled image.
W and T are converted into real values in unit 8 format;
(W=uint8(W  255); T=uint8(T  255)). The initial
conditions and control parameters of the two pseudo
random numbers generators are xp1, rp1 and xp2, rp2, α,
respectively, for May-Gaussian and Gaussian-Gompertz
systems. These parameters are determined with (11) and
(12).

xpi = (x0 + 0.1mean (Ii)/256) (11)

rpi = r + 0.1 [(min(Ii +1)/max(Ii +2)] (12)

where mean (Ii) represents the average of the pixels’
intensities values of multiplex image Ii, (i=1,2); max (Ii) and
min (Ii) are, respectively, maximum and minimum pixel’s
intensities values of Ii. x0 ϵ [0, 0.9], r ϵ [0, 4.9]. 

The arrays W and T are divided into four sub-blocks of same
size M M.

The two scrambled images I1 and I2 are linearly combined
with the sub-blocks of W and T using the following
equations:
C1[i, j] = [(w11 I1[i, j] +w12 I2[i, j]) mod256

 floor(t11 t21) 1015)] (14)

C2[i, j] = [(w21 I1[i, j] +w22 I2[i, j]) mod256

 floor(t12 t22) 1015)] (15)

where C1[i, j] and C2[i, j] are the two encrypted hybrid
images of the cryptosystem, and  is the bit wise XOR
operator. The mixed product tij tji in the above relations
enhances the quality of the merged images.

2) Decryption process

At the receiver end, the encrypted images are first
decomposed using Cramer’s rule in order to recover the
scrambled images. Knowing the fusion keys (xp1, rp1, xp2,
rp2, α), the receiver can get the images I1 and I2 by solving
the system of equations below:

    

  
    

  

, ,1 11 2 12 256

15
101 11 21

, ,1 21 2 22 256

15
102 12 22

I i j w I i j w
mod

C floor t t

I i j w I i j w
mod

C floor t t

  

 

  

 













(16)

Then, the two multiplex images can be obtained easily by
decrypting I1 and I2 through reverse permutation operations.
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V. EXPERIMENTAL RESULTS AND ALGORITHM

ANALYSIS

Numerical simulation experiments have been carried
out to verify the proposed encryption method using
MATLAB 2016 b platform on a PC with Core (TM) i7-
353U processor of 2.5GHz. We first take 8 images with
512×512 pixels and 256 grey levels as the target images
to be encrypted, which are combined in two multiplex
images as shown in Figure 6 (a-h), respectively. The
compression ratio Cr is 0.75 for each multiplex image.
The size of low-passed filter is (M’, M’) = (256,256)
pixels. Results are analysed more in terms of statistical
attack, differential attack, quality of decrypted images and
speed. We chose the different values as keys of the
proposed cryptosystem:
x01 = 0.351482953177765; x02 = 0.972970074275508;
r01 =4.988242173292221; r02 = 4.909240772131021; xp1

= 0.363606938668312; xp2 =
0.890363879273465; rp1 = 4.841585120587438; rp2 =
4.738149127386060;  = 6.187.

The size of the filter (M’, M’) and the number of
target images N constitute additional parameters of the
key.

A. Statistical analysis

1) Histogram
The histogram of a noise-like-image must be

uniform. As one can see in Figure 5, the histogram of the
multiplex encrypted images is uniform.

Figure 5. Encrypted images and their histograms. (a) multiplexed image
1, (b) multiplexed image 2.

Figure 6. Plain and combined images. (a-d) images combined in multiplex image 1, (e-h) images combined in multiplex image 2 (i) Multiplex image 1
before IDCT. 2 (j) Multiplex image 1 after IDCT.
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2) Correlation analysis
In the encrypted image, there must be a very poor

correlation between neighbouring pixels in every direction,
for this one to resist statistical attack. The common method
is to calculate the correlation coefficient Cr of randomly
chosen 5000 pairs of pixels in horizontal (HC), vertical
(VC) and diagonal (DC) direction using (17).

2 2

1 1 1

2 2

2 2

1 1 1 1

( ) ( )

K K K

i i i i
i i i

K K K K

i i i i
i i i i

K X Y X Y

Cr

K X X N Y Y

  

   

  


      

                   

  

   

(17)

where X and Y are grey scale values of two adjacent pixels
in the image, K is the number of pair of pixels. Cr is the

value of correlation belonging to the range [-1, 1]. Cr tends
to be 1 or -1 for strong correlation and tends to be 0 for
every poor correlation. Table 1 shows the calculated
correlation coefficient of 512 512 cameraman in every
direction. A mean value of the proposed encryption
algorithm is about 0.0035, which tends to be zero.

Figure 7 shows how grey values of cameraman
correlated with the horizontal, vertical and diagonal
direction. Statistical attack through correlation analysis
between adjacent pixels cannot help to break the proposed
encryption algorithm.

TABLE I. CORRELATION COEFFICIENT

Image Size Test Plain
image

Encrypted
image

Cameraman (512
512)

HC
VC
DC

0.9314
0.9400
0.8931

0.0023
0.051

-0.003

3) Information entropy analysis
The information entropy gives an account of the quantum

of randomness present in a message (m) as follows:

1 12
( ) ( ) ( )log 20 ( )

k

H m p mii p mi





(18)

where p(mi) represents the probability of symbol mi, K is the
number of bits of the message and 2K all possible values.
For a 256-grayscale image, the pixel data has 28 possible
values and the ideal entropy of a true random image must be
8. Table 2 shows entropy values of some images of the
proposed encryption algorithm very close to 8, as expected.

TABLE II. INFORMATION ENTROPY OF SOME PLAIN IMAGES
AND THEIR CIPHER IMAGE.

Gray image Proposed
algorithm

[20]
(2017)

[19]
(2017)

Cameraman
(512 512)

7.9993 - -

Lena
(512 512)

7.9993 7.9993 7.9992

Peppers
(512 512)

7.9994 7.9992 -

B. Key analysis

             Key space size is the total number of different keys 
that can be used in an encryption algorithm. A good
encryption algorithm needs to contain sufficiently large 
key space to make the brute-force attack infeasible. The
high sensitive to initial conditions inherent to any
chaotic system, i.e., exponential divergence of chaotic
trajectories, ensure high security.

Figure 7. Pixel value distribution of plain and cipher cameraman (512 512). (a-c) plain images, (d-f) ciphered image
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According to [19], a key size of 1030 is sufficient. The
proposed encryption algorithm actually does have some
of the following secret keys: the initial values x01, x02, xp1,
xp2 and control parameters r01, r02, rp1, rp2 and  of the
chaotic systems used; the number N of target images and
the size ' 'M M of the filter. We suppose that the
computer precision is 10-15, so the key space is greater
than 1015  9 = 10135. Therefore, this key space is large
enough to resist the brute-force attack. Moreover, key
sensitivity analysis has been carried out, but the results
are not presented here for reasons of space. These results
confirm that by changing only one bit in any parameter of
the key, it is not possible to recover the plain images.

C. Sensitivity analysis

1) Differential attack analysis
An excellent encryption algorithm should have the

desirable property of spreading the influence of slight 
change to the plain text over as much of the cipher text as
possible. The sensitivity of a cryptosystem is evaluated
through Number of Pixel Change Rate (NPCR) (19) and
Unified Average Change Intensity (UACI) (20) criteria,
which consist in testing the influence of one-pixel change
of a plain image in the resulting cipher image.

( , )
,

100%

D i j
i j

NPCR
W H



 


(19)

( , )( , )1 1 2
100%

, 255

i ji j CC
UACI

i jW H



 


 
 
 
  

(20)

where C1 and C2 are two images with same size W H . If

C1(i, j) # C2(i, j) then ( , ) 1D i j  , otherwise, ( , ) 0D i j  .

Table 3 gives the measurement of NCPR and UACI
between two cipher images of cameraman, Lena and
peppers, when a Least Significant Bit (LSB) changed on
grey value in the last pixel’s position. We can notice that
the values obtained are around the mean of 99.61 for
NCPR and 33.49 for UACI. This result shows that a slight
change to the original images will result in a great change
in all the encrypted images. The results also imply that the
proposed algorithm has an excellent ability to resist the
differential attack.

TABLE III. NCPR AND UACI MEASURE AFTER A LSB CHANGE.

Image Test
Cameraman
(512 512)

NCPR 99.62
UACI 33.54

Lena
(512 512)

NCPR 99.62
UACI 33.46

Peppers
(512 512)

NCPR 99.63
UACI 33.47

2) Quality of reconstructed images
As the number of target images to encrypt increases,

the quality of recovered images decreases. In order to
reduce the NMSE between plain and decrypted images
and enlarge the number of target images, we grouped
them into two multiplexed images before encryption. To
evaluate quantitatively the quality of decrypted image, we
used the normalized mean square error (NMSE) between
the original image and the decrypted image. The NMSE is
defined as:

 

 

2

( , ) ( , )
1 1

2

( , )
1 1

N M
i j i jI ID Ei j

NMSE
N M

i jI Ei j

  
 



 
 

(21)

where M×N are the size of the image, ID(i, j) and IE(i, j)
are the values of the decrypted image and the original
image at the pixel (i, j), respectively. Table 4 presents the
values of NMSE of a 512 512 Lena image for different
total number of target images. From this table, we can
observe that for N=16 target images combined in one
multiplex image, i.e., 32 images to encrypt by the
proposed cryptosystem, the NMSE is still reduced, which
attests the good quality of reconstructed images and good
performances of the proposed cryptosystem.

TABLE IV. NMSE OF 512 512 LENA IMAGE

Number of
target image
(N2)

4 2 9 2 16 2

NMSE 0.00082 0.0019 0.00376

D. Encryption/decryption time

Table 5 reports a comparison of encryption time by
the proposed algorithm with some recent works in
literature for different images. The algorithm written
under Matlab platform was not optimized. The computer
time consumption is 0.27389 s, which is smaller than
those of [19][24].

TABLE V. ENCRYPTION TIME IN SECONDS.

Number
of
Images

Proposed
algorithm

[19]
(2017)

[20]
(2017)

[24]
2016

08 or 09
Size
512 512

0.27389 0.7103 0.191 11.66

67Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                           78 / 144



VI. CONCLUSION

In this paper, an image encryption algorithm based
on spectral fusion of multiple images and new chaotic
generators is proposed. Logistic-May (LM), Gaussian-
Gompertz (GG) and May-Gaussian (MG) systems were
used as chaotic generators in the processes of confusion
and diffusion. The target images were firstly combined in
two multiplex images of same size through DCT and a
Low-passed filter. Secondly, the previous images are
scrambled by permuting the blocks size of ( 4 4 ) of each
multiplex image. Finally, the later scrambled images are
fused by a nonlinear mathematical expression based on
Cramer’s rule to obtain two hybrid encrypted images. The
evaluation metrics of the proposed cryptosystem NCPR,
UACI, correlation coefficient, entropy, key space and
NMSE are amongst the best values in literature. More
interestingly, the proposed cryptosystem can encrypt 32
target images simultaneously with a small NMSE
 3.710-3, and encrypted images are sensitive to the key.
The proposed encryption algorithm can surely guarantee
security and speed of all types of digital data transfer in a
digital network.
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Abstract—Measuring the security of cryptographic systems (algo-
rithms, protocols, software and hardware implementations etc.)
is a difficult task. There does not exist one simple and easy
to measure value that could be used to evaluate the relative
strength of different cryptographic systems. On the other hand,
there are more and more use cases where protections granted
by cryptographic systems are needed. In some cases, there
are certification and classification requirements for the use of
cryptosystems that would benefit from good measures. Also new
standards are being created for cryptography, usually based on
competitions, where the proposals are evaluated based on some
criteria. In this paper, we describe a taxonomy of the multiple
metrics that can be associated with cryptographic systems and
evaluate them based on a number of different attributes. We
also reflect our taxonomy to the decisions made in several
cryptographic standardisation competitions.

Keywords–Cryptography; Security metrics; Taxonomy; Compe-
titions; Cryptographic systems

I. INTRODUCTION

Cryptography is a key element in establishing trust in
our digital society. Having reliable and correctly functioning
cryptographic systems is necessary to realise many of the
services that we all use in our everyday lives. Cryptography
has thus become a crucial part of our critical infrastructures.

Cryptographic systems are built from different types of
building blocks and designed to provide many different secu-
rity goals depending on their anticipated usage. The security
of the system depends on the theoretical algorithms and as-
sumptions on their security proofs, the programming languages
used to realise them, the platforms and operating systems that
these programs utilise, and the hardware that runs all these.
Thus, it is very difficult to give commensurate, yet simple
measurements on the security of cryptographic systems.

Having such a simple metric would have great implica-
tions for developers and decision makers. A simple metric
would benefit both standardisation and certification efforts
that involve cryptographic systems and implementations. If an
absolute metric could be devised, comparing different options
would become a small exercise in comparing the values that
these metrics give for different choices of cryptosystems. Alas,
such a metric is not yet available and it might be nearly
impossible to provide one.

However, there are many measures that are used to evaluate
cryptographic protocols. The most notable one is the key length
of a given algorithm. There are many reports, which give
recommendations for key lengths for different algorithms in

different contexts (e.g., [1]–[3]). These are mainly to be seen as
lower limits for the key lengths of different cryptosystems and
as such they offer only limited information on the security of
a cryptosystem implementation. Existing efforts towards more
comprehensive understanding of the traits of the cryptosystems
by classifying cryptosystems from the metric perspective in-
clude metrics for algorithm security [4], and metrics from the
attackers’ point of view [5]. But a comprehensive metric, with
commensurate components, is still not available.

In this paper, we survey the many different metrics for
measuring the security of cryptographic systems and categorise
them into four different categories. In Section II, we define
some concepts used throughout this paper. In Section III,
we discuss the properties of each measure and present an
overview of our findings. For some measures, it is possible
to have an ordering and for others it is not. We also study
some competitions on cryptographic standards and how they
have used different metrics in the decision making process
in Section IV. Furthermore, in Section V, we discuss the
possibilities, gaps and the necessity of having good metrics for
cryptographic systems. Finally, in Section VI, we discuss the
future work needed to realise better metrics for cryptographic
systems and give conclusions of our research.

II. ATTRIBUTES OF CRYPTOGRAPHIC METRICS

In this paper, we use the term cryptosystem to mean any al-
gorithm or implementation that aims to provide cryptographic
security for some defined target. Here, the cryptosystem can
be a primitive, such as a hash function, or a fully-fledged file
encryption software or a protocol for network security, e.g.,
Transport Layer Security (TLS) or something in between.

A metric is a way to measure some part or the totality of
the security of a cryptosystem. A metric can have numerical
values or it can be a qualitative description.

We also define some attributes that each metric can have.
A metric is measurable if there is a standard convention on
how the metric is measured and this is uniform across all
applications of the metric (e.g., kilograms for weight). A metric
is semi-measurable if there are several different conventions on
how to measure the metric and some of these are not readily
comparable with each other. In some cases the metric is non-
measurable, which means that a standard for measurement
does not exist or that the different values that the metric can
have are not comparable in meaningful ways.

Another attribute is practical relevance. This measures
how much the metric has practical relevance in evaluating the
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security of the cryptosystem. Some metrics are relevant in the
theoretical frameworks and some metrics are more relevant in
the practical world, where the cryptosystems are applied. An
example of a very practical metric is the amount of memory
required to attack a cryptosystem. A more theoretical metric
is the proof framework, where a system is proven secure. In
the theoretical world there is a big distinction, whether a proof
is for example in the random oracle model or in the standard
model, but the differences between these two do not manifest
themselves as practical attacks in implementations.

We also make a distinction between quantitative and quali-
tative metrics. Quantitative metrics give a numerical or several
numerical values to the cryptosystem and qualitative metrics
give a description of the state of the cryptosystem.

III. CATEGORIES OF CRYPTOGRAPHIC MEASURES

This section presents our taxonomy of metrics for crypto-
graphic systems. An overview of the taxonomy is presented in
Table I.

A. Adversarial Model Metrics

Cryptology and especially cryptographic theory aims to
formalize, how cryptographic algorithms work and withstand
cryptanalysis. Due to the need for rigorous formalisms in
cryptographic theory, the models used need to be very detailed,
and yet general with respect to adversarial behaviour. We use
the term algorithmic metrics to refer to metrics that involve
cryptosystems independently of their realization in code or
hardware. Algorithmic metrics are here divided to adversarial
model metrics (Section III-A) and proof framework metrics
(Section III-B).

As an example, consider the combination of the metrics
in the following common concept: INDistinguishability under
Chosen Ciphertext Attack or IND-CCA [6]. We observe here
the following independent metrics:

• Adversarial goal: distinguish between random strings and
actual ciphertext.

• Adversarially available information: a polynomial
amount of information, before and after the cryptographic
transformation.

• Adversarial degrees of freedom of actions include choos-
ing the ciphertext-plaintext pairs adaptively (excluding the
keys).

In addition to the three metrics above, we consider ad-
versarial resources, which the designer of the cryptosystem
expects the attackers to be able to wield. The four above
metrics together are related to the adversarial model.

The adversarial resources consist of computing power and
available memory. They are mostly well-defined and accessible
metrics, with practical relevance.

Computing power is addressed here in both of its forms:
exact attack complexities, and approximate or asymptotic
complexities. Cryptographic theory rarely elaborates the adver-
sarial models down to the detail of exact number of operations
required to break the system. Instead, asymptotic estimates are
given, and often even they are described only on the level of
computational complexity classes.

In the case of exact complexities, values can be given, e.g.,
as the amount of floating point operations per second (FLOPS).
In quantum computing, the unit can be based on, e.g., the
amount of universal qubits and gates in the quantum computer.
This metric is measurable and quantitative.

In the latter case, where the complexity class border is
crossed, literature usually refers to different “computational
models”, the most common being Bounded-error Probabilistic
Polynomial time (BPP), where polynomially bound, proba-
bilistic Turing machines are expected. Other notable models
include Bounded-error Quantum Polynomial-time (BQP) for
quantum computers; and statistical, or unconditional security
model, where the adversary is given limitless computational
power. This metric is semi-measurable (as the exact relations
between complexity classes are not known) and qualitative.

As the exact running time estimates can only be fixed
once a cryptosystem is fully instantiated and parametrized,
we consider this measure to consist of two subclasses of
the whole: instantiated and non-instantiated computing power
(asymptotic notations can be computed to exact metrics once
the parameters, such as key size, are fixed).

Memory is the amount of memory that the attack requires.
Analogously to the computing power, we divide this into two
subclasses: instantiated (measurable and quantitative) and non-
instantiated (semi-measurable and qualitative). Memory can
also have some effect on the computing power needed for
the attack. Some example memory complexity classes could
be LOGSPACE and PSPACE.

Adversarially available information is the amount and type
of data that the attack needs or is allowed for the adversary.
We distinguish here at least six different types: pre-crypto (data
before encryption, signing or other cryptographic transforma-
tion), post-crypto, secret key-material (symmetric or private
asymmetric), protocol runs, setup parameters and simulation
environment master. The four first ones are measured in bits,
bytes or messages/keys/runs, the last two are discussed as
follows:

• The access to setup parameters becomes relevant in cryp-
tographic protocols, giving rise to, e.g., variants of Uni-
versal Composability (UC): Joint UC [7] and Global UC
[8]. Possible value space could be {local/global,
per protocol/several runs}.

• The control of the master process, which in crypto-
graphic protocol security proofs models to what degree
the adversary is able to control the (unspecified) protocol
environment (resulting in yet other UC variants [9]).
Possible value space could be {Sim+Adv, Advonly,
Env, *}.

Adversarial goals need to be rigorously formalized,
which usually results in case-specific definitions, and almost
all values for the metric are incomparable, making it both
qualitative and semi-measurable only. An example value
space for typical goals is {Semantic deduction,
Information Leak, Local deduction, Global
deduction, Total Break}.

Adversarial degrees of freedom of action refer here to what
the adversarial model is expecting the adversary to do. We
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TABLE I. CATEGORIES AND PROPERTIES OF DIFFERENT METRICS OF CRYPTOGRAPHIC SYSTEMS.

Main category Subcategory Type Measurable Quantitative / Qualitative Relevance

Adversarial model Degrees of freedom yes Qualitative P
Corruption power Num. of principals yes Quantitative T
Corruption power Degree of corruption semi Qualitative T
Security game compliance semi Qualitative T

Adversarial available information Pre-crypto yes Quantitative P
Post-crypto yes Quantitative P
Secret key material yes Quantitative P
Protocol runs semi Quantitative P
Setup parameters semi Qualitative T
Simulation environment semi Qualitative T

Adversarial goal semi Qualitative P
Adversarial resources Computation power Instantiated yes Quantitative P

Computation power Non-instantiated semi Qualitative T
Memory Instantiated yes Quantitative P
Memory Non-instantiated semi Qualitative T

Proof framework Complexity & security assumptions semi Qualitative T
Abstraction assumptions Type semi Qualitative T

Num. of assumptions yes Quantitative T
Maturity of assumptions no Qualitative T

Methodology Tightness yes Quantitative P
Rigor semi Qualitative T

Verification Key length Bits for criteria compliance yes Quantitative P
and maturity Assurance levels Assurance standard or profile yes Qualitative P

Level, e.g. EAL yes Quantitative P
Coverage Percentage of tests yes Quantitative P
Method efficiency Number of detected vulnerabilities yes Quantitative P
Human efficiency Academic research semi Quantitative P
Verification time Time since released for evaluation yes Quantitative P

Size and efforts of eval. community yes Quantitative P
Readiness level Technology readiness level yes Quantitative T

Integration readiness level yes Quantitative T
System readiness level yes Quantitative T
PETS maturity model yes Qualitative P

Cost and Time costs Execution overhead yes Quantitative P
performance Communication overhead yes Quantitative P

Memory costs Run-time yes Quantitative P
Storage yes Quantitative P
Communication yes Quantitative P

Implementation complexity Size of software semi Qualitative P
Dedicated hardware requirements semi Qualitative P

Energy efficiency Algorithm complexity dependent yes Quantitative P
Hardware platform dependent yes Quantitative P

propose to divide the degrees of freedom into three: General,
Corruption power and Game compliance.

Corruption power. In interactive protocols, the adversary
is also assumed to be able to access and/or modify the private
information of some of the principals. This is called corruption,
and depending on the scheme, only a certain number of
principals are allowed to be corrupted. Sometimes even more
fine-grained “corruptive power” is allowed [10]. The example
values of this metric could include a (quantitative) percent-
age of corrupted principals and a (qualitative) description of
the degree of corruption within one principal (see [10] for
subprotocol-level detail).

For the general metrics, cryptographic formalisms differ in
the amount of principals: Single-party settings (conventional
encryption and signatures) and multiparty settings (protocols).
As we show below, the multi-party setting does not bring that
many new metrics per sé.

In the single-party setting, only one or fixed, integral set
of cryptographic transformations (a black box) are usually
considered. In this case, the adversary may be able to observe
some or all of the inputs, or to choose (possibly adaptively)

some or all of them. Note that we consider modification of
inputs and other adversarially available information to belong
to the “choosing” process. Some of the possible values in the
single-party setting would then be ’Observe’, ’Choose’
and ’Choose adaptively’, in increasing order.

In the multi-party setting, i.e., protocols, the situation with
adversarial behaviour appears at first sight to be more complex,
as the security models are more varied. In the Dolev-Yao model
[11], the principle is that the “attacker carries the message”,
or that the adversary is free to read, modify, add and delete
protocol messages and corrupt protocol principals (in effect
stealing their private key material). However, the convention
we made in the single-party setting already covers the deletion,
modification and adding of protocol messages, global setup
parameters modification and protocol environment control,
since the ability to choose message (/parameters/environment
properties) for a single party translates to all of the above. We
thus conclude that we have not identified more metrics from
the multi-party setting.

Game compliance. Many of the formalisms in crypto-
graphic security can be divided into two: game-based ap-
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proaches and simulation-based approaches. Game-based ap-
proaches are basically a protocol, which try to model the
adversarial behaviour in some commonly thought scenarios.
Simulation-based approaches try to enable showing security
irrespective of the adversarial behaviour. The best the attacker
can do, is to perform the idealized, non-cryptographic tasks
assigned to replace crypto in the simulation (SIM) model.

In the metrics, we consider this distinction to be an
adversarial degree of freedom in the sense that the adversary
is either constrained to follow some security game protocol, or
not. The values could be, for example {Game-App, Game-
Gen, SIM}, making a further distinction between general
security games and very application-specific games.

B. Security Proof Framework Metrics

Proof framework is the framework in which the security
proof is conducted. This includes multiple assumptions (for
abstractions of certain functions and for the complexity of
several mathematical problems), the rigor used and the proof
methodology.

A metric clearly tied to the proof methodology is tightness
of the proof. This concept indicates, how exactly the resource
needs for different phases of the proof are estimated. This
metric is measurable and quantitative, as typical asymptotical
O(f(n)) expressions are used here.

Complexity assumptions are the foundation of many types
of cryptographic proofs. They are assumptions on the hardness
of different mathematical problems, usually that their time-
complexity is superpolynomial in the security parameter. These
assumptions can have several metrics:

• Assumption’s time-complexity. The metric is measurable,
quantitative and practical, as it directly affects key size.
The metric is expressed with the Big-Oh-notation (e.g.,
O(f(n))).

• Type, if the assumption belongs to a known sequence of
implications (e.g., Decisional Diffie-Hellman (DDH) ⇐
Computational Diffie-Hellman (CDH) ⇐ Discrete Log
(DL) problem.) A possible common labelling borrows
from the general ordering for several problems, where
decisional problems (DDH) are usually easier than com-
putational problems (CDH), and finally the primitive
inversion problem (DL): {decisional, computa-
tional/search, inversion}. This metric is semi-
measurable and qualitative.

Abstraction assumptions cover, how much the proof
methodology uses abstractions, what kind of type they present
and their maturity. Typical abstractions give different functions
as ideal oracles, the most famous probably being the Random
Oracle Model (ROM, [12] with variations in [13] and [14]).
Many other oracles exist as well, e.g., the Generic Group
Model (GGM) [15], the Ideal Cipher Model (ICM) [16],
and the Common reference string model [17]. Sometimes
the oracles are implicit, such as the Dolev-Yao modelling on
encryption operations (which are assumed to be secure). If no
abstractions are used, the proof is said to be conducted in the
Standard Model (SM).

The actual metrics are proposed as follows:

• The number of abstractions used. For a proof in SM this
would be zero. Different abstractions would be weighed
differently depending on their maturity and suitability for
the cryptosystem

• Assumption maturity (we consider this to be in the
verification category and not elaborated more here)

• Type. Not all of the abstraction are equal, as there are
some known relations among them (e.g., ICM and ROM
have been proven equal in some cases [18]). We then
postulate, that like with the complexity assumptions,
there is a common metric able to classify abstraction
assumptions as well, but we leave it for future study.

Rigor refers to the level of detail of the proof, its compli-
ance to commonly used proof techniques and the assurance in
the validity of the proof. Many schemes outside the cryptologic
community often rely on pure heuristics, others merely state
that the scheme is essentially similar to an earlier scheme and
overlook the security proof completely. Many other systems
are too complex to contain fully rigorous proofs in single
conference papers, making the authors only outline the proofs.
Ideally, proofs should be fully detailed, and externally verified.
The value space for this metric would then be {Heuristic,
Referenced, Outlined, Full, Verified}.

C. Verification and maturity metrics

The strength and correctness of cryptographic implemen-
tations can be verified with different testing methods and
tools. For instance, independent or national laboratories have
product certification frameworks and programs for verifying
that implementations have required functionality and behave
as expected with different inputs.

As already mentioned in the introduction, key length is
one of the most used metrics for cryptosystem security. In our
taxonomy, key length considers the maturity and verification
level that a cryptosystem has. It is an indicator that shows if the
security parameters of a cryptosystem are up to the standards,
which are defined for that cryptosystem and its use. It is a
measurable, quantitative and practical metric.

Assurance Levels are measurements indicating system’s se-
curity when compared against common or standard evaluation
and testing requirements. For instance, Evaluation Assurance
Level (EAL) is a seven point-scale metric used by the Common
Criteria (CC) [19] security evaluation framework for imple-
mentations; Common Criteria’s Protection Profile is simpler
two point-scale (compliant/non-compliant) metric for specific
product categories; Cryptographic Algorithm Validation Pro-
gram (CAVP) [20] defines functional and statistical tests for
algorithms with a two-point (pass-fail) scale; Cryptographic
Module Validation Program (CMVP) [21] defines validation
tests for hardware implementations in four point scale (i.e.,
FIPS 140-2 security levels); and ISO 29128 [22] Protocol
Assurance Levels define requirements for the scope and au-
tomation of formal modelling and verification of cryptographic
protocols. In addition to the generic frameworks, there also
exist frameworks that are specific for industry field or for
an area of cryptography. For instance, the Payment Card
Industry [23] has defined its own test requirements for two
point scale evaluation of cryptographic hardware modules and
National Institute of Standards and Technology (NIST) has
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specified [24] a large suite for randomness testing. Verification
metrics describe the coverage and effectiveness of the verifi-
cation and testing actions that the cryptographic product has
passed. Assurance levels are semi-measurable and quantitative
metrics.

Coverage refers to the percentage of potentially vulnerable
areas that are tested or verified. Coverage is complete coverage
if every area with potential vulnerabilities are verified. The
areas that can be tested include, e.g., functionality, interfaces
and protocols, randomness, susceptibility to side-channel and
fault injection attacks, life-cycle, as well as susceptibility to
physical tampering and to reversing of obfuscated functionality
attacks. Existing test suites, validation program requirements
or common criteria profiles can be utilized when estimating
whether all relevant areas are included to verification and
whether all tests for the relevant areas are executed. This metric
is measurable and quantitative.

Effectiveness of verification methodologies - such as re-
quirement specifications, test patterns, statistical testing tools,
formal analysis methods, and simulation tools - refers to
design or implementation failures that can be detected with the
given methodology. The effectiveness depends on the available
software and hardware facilities, as well as on the quality of
the processes in the evaluating community or laboratory. A
straightforward quantitative and measurable metric of effec-
tiveness is the amount of failures that are detected with the
method. When different testing methods are available, it is also
possible to estimate false positive and false negative ratios.

Effectiveness of human verification depends on the skills
of human evaluators for verification and testing. These capa-
bilities can be measured, e.g., by looking at the experience
and education of evaluators, as well as past performance and
reputation. Quantitative and measurable metrics for human
verification include experience in years, number of performed
evaluations, as well as the scientific author metrics (number of
fresh related publications).

Verification time refers to the hours, months, or years
that have been spend on exploring the cryptographic solution
against vulnerabilities. Time accumulates from intensive prod-
uct evaluations as well as from the verification and testing
by scientific and user community during the system lifetime.
The older and more dispersed the system is, the less unknown
weaknesses it is likely to have. This is a quantitative and
measurable metric.

The maturity metrics measure how ready and suitable a
cryptosystem is. This can be a metric for a specific com-
ponent as in Technology Readiness Levels (TRL) or a more
comprehensive metric of a whole systems, such as the PETS
maturity metric [25]. Some of these metrics are more complex
derivations of the TRL, such as Systems Readiness Level
(SRL) [26] and Integration Readiness Level (IRL) [27].

TRL measures the readiness of a single component. This
metric is measurable and quantitative. IRL measures the
readiness of components to be integrated to form a more
complex system. This metric is measurable and quantitative.
SRL measures the readiness of a complete system based on
the TRLs and IRLs of the different components. The metric is
measurable (if normalized) and quantitative.

PETS maturity metric is a measure for the quality and
readiness of privacy enhancing technologies [25]. The mea-
surement is carried out with both measurable indicators (such
as the number of papers/patents and lines of code) and a more
heuristic evaluation by experts. There is a defined procedure
on how to reach consensus on possibly differing evaluations
by experts. In some sense, this is similar to the jury evaluation
used in some cryptographic standardisation competitions. In
the PETS maturity metric, the evaluation is open and transpar-
ent, whereas in some cryptographic competitions this is not the
case. The PETS maturity metric is measurable and qualitative.

D. Cost and performance metrics

The feasibility of cryptographic products depends not
only of their security strength, but also other factors that
are measured using cost and performance metrics. Cost and
performance metrics can be calculated for the whole system
or separately for an individual role (e.g., decrypter, encrypter,
signer, verifier). Asymmetric cost division between roles may
be beneficial, e.g., in cloud or Internet of Things scenarios
where another party has more resources available for crypto-
graphic operations.

Time costs originate from the computations, such as key
generation, encryption and decryption, as well as public and
private key operations, and from communications, where cryp-
tography causes additional overhead, expands communication
and negotiations. Time costs can be estimated by counting
elementary operations that a cryptographic solution implies.
This is a quantitative and measurable metric.

Size costs relate to the need for run-time and storage mem-
ory, as well as to the communication bandwidth. They depend
on the sizes of keying material, ciphertexts, and signatures, as
well as on run-time memory requirements of algorithms. This
is a quantitative and measurable metric.

Implementation complexity relates to the size and costs
of software or hardware implementations. A key attribute
is whether the solution is suitable for standard computing
platforms (e.g., Intel x86 or ARM-based) or whether it requires
specialized hardware. An important attribute is also whether
the performance of the algorithm can be improved with special
hardware, such as parallel platforms or extended instruction
sets. Complexity can be estimated either by counting lines
of code or by counting required hardware resources like gate
counts. This is a semi-measurable (as there are many ways to
measure complexity) and qualitative metric. Energy efficiency
depends on use of computing, memory, and communication
resources and their cost in different platforms. This is a
measurable and quantitative metric.

IV. ANALYZING METRICS IN CRYPTOGRAPHIC
COMPETITIONS

One way to evaluate our taxonomy of metrics is to take a
look at the different competitions for cryptosystems. For this,
we evaluated 8 different competitions and the rationales that
they used to select the winning algorithm(s). The chosen com-
petitions are Advanced Encryption Standard (AES) [28], New
European Schemes for Signatures, Integrity, and Encryption
(NESSIE) [29], Cryptography Research and Evaluation Com-
mittees (Cryptrec) [30], the ECRYPT Stream Cipher Project
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(eStream), NIST hash function competition [31], Password
Hashing Competition (PHC) [32], Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness
(CAESAR) [33], and Post-Quantum Cryptography Standard-
ization (PQCS) [34].

A. AES competition

The goal of NIST’s AES competition was to specify an un-
classified, publicly disclosed encryption algorithm capable of
protecting sensitive government information well into the next
century. The algorithm would have to implement symmetric
key cryptography as a block cipher and support a block size
of 128 bits and key sizes of 128, 192, and 256 bits.

Competition started in January 1997 and lasted 46 months.
There were 21 submissions. The winner was Rijndael which
was renamed to AES, the other finalists were Serpent, Twofish,
RC6 and MARS. Initial evaluation criteria were security, cost,
and algorithm and implementation characteristics. Final criteria
were general security, software implementations, restricted-
space environments, hardware implementations, attacks on
implementations, encryption versus decryption, key agility,
other versatility and flexibility, and potential for instruction
level parallelism [35].

NIST stated that the most emphasis in AES competition
was on security. Rather than having government agencies
scientists test and measure the security of each algorithm,
they asked the public cryptographic community for help.
Members of the cryptography community tested each algo-
rithm’s resistance to cryptoanalysis. Cryptoanalysis included
testing each algorithm’s security against known practical and
theoretical attacks. The public also analysed the algorithms by
determining the mathematical soundness. None of the finalists
were statistically distinguishable from a random function. The
team at NIST carefully considered the public analyses and used
the results of these analyses when evaluating the algorithms.
Measuring cost included licensing requirements, computational
efficiency, and memory requirements. The algorithm character-
istics and implementation criteria included flexibility, hardware
and software suitability, and simplicity [36].

There were no known attacks on any of the five finalists at
the time of the judging, so other, less palpable measures were
used to determine security of the ciphers. When comparing
hardware and software performance of the finalists, Rijndael
and Twofish exhibited very similar results. The Rijndael imple-
mentation was clearly the simpler of two and shared close ties
with an ancestor cipher, Square, that had received a significant
amount of analysis, while Twofish had no such ancestor [28].

B. Cryptography standardization projects

NESSIE and Cryptrec projects were inspired by the AES
competition. The goal of the NESSIE project was to identify
secure cryptographic primitives. Competition started in March
2000 and lasted 36 months. There were 42 submissions and
twelve algorithms were chosen for the final portfolio. Initial
evaluation criteria were long-term security, market require-
ments, efficiency and flexibility.

The goal of the Cryptrec project was to evaluate and recom-
mend cryptographic techniques for government and industrial

use. Competition started in May 2000 and lasted 34 months.
Out of 63 submissions, ten algorithms were chosen for the final
portfolio. Initial criteria for evaluation were security, cost, and
algorithm and implementation characteristics.

The goal of eStream project was to identify new stream ci-
phers suitable for widespread adoption, because in the NESSIE
project all stream ciphers failed. Competition started in Octo-
ber 2004 and lasted 43 months. There were 34 submissions
and seven algorithms were chosen in the final portfolio. Initial
criteria were security, performance, simplicity and flexibility,
justification and analysis, and quality of documentation.

C. Hash algorithm competitions

The goal of the NIST hash function competition was to
develop a new hash function called Secure Hash Algorithm
3 (SHA-3). The competition started in November 2007 and
lasted 60 months. There were 51 submissions. The winner was
Keccak which was renamed to SHA-3. Other finalists were
BLAKE, Grøstl, JH, and Skei. Initial criterion were security,
cost, and algorithm and implementation characteristics. Final
criteria were performance, security, analysis and diversity [31].

The goal of PHC was to find password hash functions that
can be recognized as a recommended standard. Competition
started in January 2013 and lasted 31 months. There were 24
submissions. The winner was Argon2 and the other finalists
were Catena, Lyra2, Makwa, yescrypt. Initial criterion were
security, efficiency, and simplicity. Final criteria were de-
fence against GPU/FPGA/ASIC attacks, defence against time-
memory tradeoffs, defence against side-channel leaks, defence
against cryptanalytic attacks, elegance and simplicity of de-
sign, quality of the documentation, quality of the reference
implementation, general soundness and simplicity, originality
and innovation [32].

D. Recent competitions

The goal of CAESAR competition was to find new authen-
ticated ciphers in three different categories. The competition
started in January 2013 and lasted 74 months. There were 57
submissions and six were chosen for the final portfolio. The
winners in the three use cases were Ascon for lightweight
applications, AEGIS-128 for high-performance applications
and Deoxys-II for defence in depth [33].

The goal of PQCS competition [34] is to standardize
post-quantum cryptography to replace the current public key
cryptosystems that can be broken with a quantum computer,
e.g., [37]. The competition started in January 2017 and got
69 submissions. Initial criteria were security, cost and per-
formance, and algorithm and implementation. The goal is to
find suitable methods for digital signatures and key exchange,
which are the two major use cases for public key cryptography.

E. Comparative analysis

Many of the security metrics, which were presented in the
previous section, were present in the standardization compe-
titions in different ways. As there has not been a uniform
approach over the different competitions towards the metrics
that our taxonomy describes, we have condensed the view
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especially with regards to the adversarial model and proof
framework categories.

Table II summarizes our interpretation of the mapping be-
tween metrics and competitions. We looked at the metrics from
three perspectives. First, we considered the main motivations
to (new) standards, i.e., whether a low value for the metric in
a predecessor standard (or a missing standard) was the reason
for starting the competition in the first place. There were two
main motivations: the development of adversarial capabilities
which obsoleted earlier standards and the new security goals
previously unaddressed by standards. Motivations are marked
in the table with M. Secondly, we looked if competitions
explicitly or implicitly expressed qualitative or quantitative
requirements as their selection criteria. The existence of these
metrics are marked in the table with E and I, respectively.
Thirdly, we looked at publicly available measurable statistics
that illustrated the verification efficiency of competitions. In
particular, we evaluated the effectiveness of human verifi-
cation by looking at the number of scientific articles that
were published during the competition or the year after and
that were returned by a Google Scholar query: ”’competition
name’ candidate cryptography”, which was performed on May
10th 2019. The relation between the amount of winners and
candidates was listed as a metric of verification method; it is
not an indication of failure detection rates but an indication of
interest, which often leads to better results.

V. DISCUSSION

Measuring the security of systems is still a very difficult
task even though the area has been researched for a long
time and the interest has been increasing in recent years.
Measuring the security and strength of cryptosystems seems
to be even harder, because there are so many different metrics
and variables involved and these also interact in many ways.
Furthermore, the notion of security is very much context
dependent. Even a secure cryptographic primitive used in
a wrong context provides very little security. An insecure
primitive in a wrong context provides even less security, e.g.,
[38].

Cryptographic metrics have lots of interdependencies.
Some metrics directly or indirectly derive from other metrics,
while other metrics are atomic responses to one particular
requirement, capability, or threat. For instance, the key length
is a derived metric whose value is motivated by the devel-
opment of adversarial resources, limited by cost metrics, and
defined by security proofs, assumptions and goals. In general,
there is a trade-off between cost and performance metrics
and many of the algorithmic metrics. Time and memory costs
decrease directly with the corresponding adversarial resources.
Higher adversarial capacities necessitates higher key lengths,
complexity, stronger proofs and computation models. Each
maturity metric depends directly on several of the algorithmic
and verification metrics.

To illustrate the complexity of the situation, we have
generated Figure 1. It depicts the different dependencies we
have found in our taxonomy as arcs. The arcs are asymmetric
and should be read left-to-right on the top part of the figure and
right-to-left on the bottom of the figure. Bolder arcs indicate a
more linear relationship, while thinner and lighter arcs indicate

Figure 1. The complexity of the inter-metric dependencies.

that the dependency is not very linear. The abbreviations
stand for Adversarial Model (AM), Proof Framework (PF),
Verification and Maturity (V&M) and Cost and Performance
(C&P).

Our taxonomy is open for new inter-metric derivatives. For
instance, there are some measures that we have chosen, due to
simplicity, not to present in our taxonomy as their own separate
metrics. One is the total (monetary) cost of an attack as a
resource metric. It could be argued that this is one of the most
relevant metrics there is. On the other hand, it is also derivative
of the attack resource metrics that have been included in our
taxonomy. Another such quantity is time, which we see as a
part of the computing power metrics.

Competitions must grade each candidate in order to deter-
mine the winner. This overall grade must be one-dimensional
and cannot be formulated directly by counting averages, as
units of measurements are not uniform and different compe-
titions have had different valuations for their metrics. Formal
means for grading exist. In particular, weighted average sum
of each measurement is multiplied with a weight factor, which
normalizes the scale and reflects metric’s importance, and then
divided with the sum of weight factors. The difficulty is in
deciding which metrics get the most weight and how the
qualitative metrics incorporate into the whole measurement.
The decision regarding the weights of different metrics is
contextual and depends on threat models and use cases.
Qualitative metrics transform into numerical values with level-
based grading criteria, which also depends on the context. In
addition, thresholds are used in overall grading: some metrics
must reach some minimal level to enable eligibility but do not
affect overall grade.

One limitation of the standardisation competitions is that
they usually consider only quite low level cryptosystems
(block/stream ciphers, hash functions etc.) and not more com-
plex systems or protocols. More complex cryptosystems, such
as the TLS protocol, are formed through more traditional
standardisation efforts. There we might expect to see different
utilisation of the different metrics and perhaps more complex
rationale for the decisions that are made. It seems from our
results, that much of the consideration is given also to the cost
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TABLE II. METRICS IN CRYPTOGRAPHIC STANDARDIZATION COMPETITIONS

Metric AES NESSIE CRYPTREC eStream SHA-3 PHC CAESAR PQCS

Adversarial model M - - - M - - M
Key length 128,192,256 - - 128, 80 - - - -
Complexity I (security analysis by community)
Security goal E M,E M,E M,E E M,E E E
Computational model Classical and Quantum
Method efficiency (winners/candidates) 1/21 12/42 10/63 7/34 1/51 1/24 6/57 ?/69
Human efficiency (peer-review papers) 539 179 349 46 1400 83 1400 803
Verification time 1997-2001 2000-03 2000-03 2004-09 2007-13 2013-17 2014-19 2016-
Readiness level TRL 4 (prototype for laboratory validation)
Time costs E E E M,E E E E E
Memory costs E I E M,E E I E E
Implementation complexity E E E E E E M,E E
Energy efficiency I I I I I I I I

and performance metrics. This is understandable because the
winning algorithms are to become widely deployed standards.

In practice, none of the competitions has explicitly formu-
lated their selection criteria or weights. Instead, all competi-
tions have provided high-level instructions and delegated final
grading to individual jurors who may have their own criteria.
Typically, competitions explicitly or implicitly specify security
goals, as well as adversarial models and assumed resources, but
requirements related to other security and feasibility metrics
are qualitative with few exceptions such as the key length
targets for eStream and AES.

VI. CONCLUSION AND FUTURE WORK

This paper describes a taxonomy of different types of met-
rics that can be used to evaluate the security of cryptosystems.
Our taxonomy has four categories: Adversarial model metrics,
Proof framework metrics, Verification and maturity metrics,
and Cost and performance metrics. It can be seen that different
metrics have different attributes and that many of the most
relevant metrics are not easy to measure and compare.

The evaluation of the competitions for cryptographic stan-
dards against our taxonomy shows that there are many com-
monalities between competitions, but there is no predefined set
of metrics that the submissions are evaluated against. Thus,
there is a need to continue research in this direction. This
should lead towards a more standardised set of relevant and
easy to use metrics for cryptosystems.

There is a lot of room for future work in this area. Our
taxonomy provides an overview of the different metrics and
their attributes, but we are still a long way from building
and proposing a comprehensive metric for measuring cryp-
tosystems. This is the major goal for future work in this
area. One possible interesting direction for future research
could be to utilise the TRL, IRL and SRL measures to more
complex cryptosystems. The concepts have been tested in other
fields, but in cryptography and cryptosystems they have not
been studied yet. If this approach would be successful, we
would have a potentially very general metric for measuring
cryptosystems that could be used in many different contexts.
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Abstract—Genome sequences search is useful, for example,
in clinical applications where a care provider needs to select
a treatment option for a patient based on the exact kind of
cancer the patient might have. However, privacy protection for
genome analysis is one of the most important issues in the area
of medical genomics. In such a situation, only homomorphic
encryption is a desirable technology to be used for this application
because it is non-interactive. Privacy-preserving genome sequence
search using homomorphic encryption has been a practical
challenge because of the scalability issues driven by the depth of
computations that need to be supported for privacy-preserving
genome sequence search. Comparison and analysis of system
designs for such a system are important for us to put them
in practical use. Therefore, in this work, we build off of earlier
researches for genome sequence search to design, then implement
and compare each approach. We particularly focus on the
differences in the main calculation time on the server and the
data transfer overhead. Our results show that each design has
different trade-offs and characteristics.

Keywords— Homomorphic Encryption; Genome Sequence;
Secure Search; Privacy; Cloud Computing.

I. Introduction

Ever since the Human Genome Project [1] and the 1000
Genomes Project [2] have begun publishing catalogs of
human variation and genotype data, genomic data analytics
have found increasingly practical and important use in
various fields. Privacy challenges associated with analytics on
genomic data have been exacerbated by recent innovations that
made it much less expensive to handle genetic information.
Furthermore, it is difficult for hospitals or research institutes
that have genome databases to publish the complete data
because of the privacy issues, and also it is not desirable
for researchers to make their work-in-progress work public.
Therefore, it is needed to keep both genome database contents
and the user’s query in private. However, because genomic
data is potentially voluminous, making scalability challenges
are important when analyzing genetic data, especially when
needed to be done in a privacy-preserving manner.

Of particular interest, genomic search applications look
for some specific sub-strings, thus driving the need for a
system that can conduct privacy-preserving string searches

on vast amounts of genome data. Generic cloud computing
environments are not feasible to address this need due to
security and privacy concerns engendered by multi-tenancy,
and the cloud may be managed by unknown and un-trusted
individuals. A simple solution to the cloud-based storage of
privacy-sensitive genomic information is to use encryption. If
this system is built with common symmetric- or public-key
encryption, the decryption key would be passed to the cloud
to enable analytics, thus creating a privacy concern. Only
homomorphic encryption techniques enable non-interactive
computation on the data when it is encrypted. Fully
Homomorphic Encryption (FHE) supports non-interactive
computation on encrypted data. Hence, FHE allows a client
to upload a corpus of genomic data to a high-performance
off-premise computation environment and then search on that
genomic data without leaking its private information to the
computation host. However, search operations are considered
to be ”deep”, meaning they are not efficient when running on
homomorphically encrypted data.

Prior efforts show some methods that use FHE to protect
privacy [3][4]. In these methods, encrypted data is uploaded
to a cloud for privacy-preserving non-interactive computation
without decryption. Although there have been attempts
to accelerate these systems by introducing decentralized
computing, such as in [5] as well, the calculation costs on
the cloud are still too large to put into practice.

In this paper, we implement the privacy-preserving genome
sequences search system in multiple designs based on the
previous work [3][4] and compare their performance to explore
design trade-offs. In Section II we introduce the motivating
application of privacy-preserving genome sequences search. In
Section III, we introduce relevant features of FHE techniques.
In Section IV, we provide a broad overview of relevant
prior work. In Section V, we discuss designs trade-offs and
approaches that we build on and explore. In Section VI, we
discuss our implementation and experimental settings and then
show experimental results. In Section VII, we analyze the
results of our experimentation. In Section VIII, we conclude
this research and discuss future directions.
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II. Genome Sequence Search Application

The goal of an application for the privacy-preserving
genome sequences search is for clients to query if there are
matches between a query string and the data in a genome
database stored on an off-site server [6]. Genomic data are
composed of sequences of 4 different kinds of nucleotides
– A, G, C, and T –, therefore, we can regard this genome
sequences search as a 4-kind character search [5].

A representation of this operation is seen in Figure 1.

Figure 1. Genome sequences search

We assume a secure model of a privacy-preserving
genome search system with a cloud environment, where the
outsourcing system is implemented in the client-server style.
Its representation is shown in Figure 2.

Figure 2. Application overview

A server holds a set of genome sequences data aligned
by each sample in a database. This means that it is possible
to search every sample in a specific position of the genome
sequence. Clients send the inquiry to a server to calculate
the matches between the query and the database held by the
server. The query sent by the client includes not only the
encrypted string that the client wants to search the genome
sequence for but also some other parameters such as a public
key for calculations and multiple starting points of the search
for genome data strings (search positions). By designating
multiple positions including dummy ones, clients can hide the
actual one the clients use from the server. On receiving an
inquiry from a client, the server conducts match searching on
the data with FHE calculations, and then transmits the result
to the client. The result transmitted by the server indicates
whether there are any matches between the query string and
genome sequences or not.

III. Fully Homomorphic Encryption (FHE)

As discussed in Section I, we leverage FHE to provide
privacy-preserving genome sequences search. As seen
respectively in (1) and (2), these homomorphisms are called
the Additive Homomorphism (which supports addition over
encrypted data), and the Multiplicative Homomorphism (which
supports multiplication over encrypted data.)

Additive/Multiplicative Homomorphism� �
Encrypt(m) ⊕ Encrypt(n) = Encrypt(m + n) (1)
Encrypt(m) ⊗ Encrypt(n) = Encrypt(m × n) (2)� �

FHE supports both of these homomorphism properties. By
leveraging these properties, users can support the evaluation
of polynomial circuits over ciphertexts analogous to how they
would support similar circuits evaluated on plaintexts.

FHE was first proposed by Rivest et al. in 1987 [7] but
was not known to be feasible until a candidate scheme was
discovered by Gentry in 2009 [8]. This first scheme leverages
polynomial rings and ideal lattices, and the encrypted text is
constructed by encrypted data and random noise to guarantee
its difficulty to decrypt without the appropriate secret key. This
early scheme was computationally inefficient, for example,
the ciphertext of this implementation would be 1 GB on
encrypting 1 bit data. There have been tremendous recent
strides in developing increasingly more efficient schemes and
their implementations. For example, Lu et al. [9] show a
scheme that supports a comparison homomorphism in addition
to addition and multiplication homomorphisms.

There are still many large challenges with FHE. For
example, noise accumulates in ciphertexts when computations
are performed on them. As this noise grows, the ciphertexts
eventually cannot be decrypted correctly after too many
computations are performed. The random noise in ciphertexts
grow additively with additive operations and multiplicatively
with every multiplication operation. This noise growth would
normally limit the size of computations that could be
performed with FHE. However, there is a special method
called bootstrapping, which reduces the noise embedded in a
ciphertext, with the drawback that the bootstrapping operations
are extremely computationally intensive.

Note that many practical applications of FHE schemes
use a limited version of FHE without bootstrapping. The
”reduced” version of FHE is called Somewhat Homomorphic
Encryption (SHE or SwHE) [10]. This is the ability to conduct
some simple calculations that can be derived with one-time
multiplication and multiple times addition, such as the inner
product of the vector, distribution, and correlation.
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IV. PreviousWork

A. PBWT-sec

Several previous attempts have been made to realize
practical privacy-preserving genome sequences search.
PBWT-sec [6] is an efficient two-party prefix much-counting
protocol that combines Additive Homomorphic Encryption
(AHE) and an efficient data structure for much searching
called Positional-Burrows Wheeler Transform (PBWT)
[11]. The server of PBWT-sec has a genome sequences
database as PBWT style, that is transformed from an original
aligned genome sequences database. In its searching phase,
the server access to a look-up vector that is derived from
PBWT recursively. This is named Recursive Oblivious
Transfer (ROT) [11]. When the query string length is l, ROT
consists of l times vector-lookups, which needs l rounds of
communication between the client and the server. PBWT-sec
also devises the idea that the client passes multiple amounts
of search positions, which includes dummy ones, to a server
to preserve the privacy of clients with hiding the positions that
the client uses. Although AHE can be used as an encryption
method, according to this work [6], it is considered that
preventing genome data leakage with AHE is difficult because
we cannot conduct complex calculations with it.

B. Genome sequences search with FHE

While FHE engenders a much longer computation time
than that of AHE, we can extend the PBWT-sec approach
to use computation methods that search with wildcards and
compute statistics based on the search result by building
genome sequences search with FHE.

There are two relevant prior attempts by Ishimaki et al.
[3][4]. First, one [3] proposes multi-round privacy-preserving
genome sequence searches with FHE based on PBWT-sec
[6]. This approach replaces additive homomorphic methods
in PBWT-sec with fully homomorphic methods and also
introduces the packing technique proposed by Smart et al.
[12]. The other [4] propose an efficient approach for one-round
search with FHE by introducing bootstrapping and reducing
the runtime of the system by optimizing the calculation
procedure. These two work use HElib [13] and its BGV
implementation as a software library for FHE calculations.
The detail of the system design that is proposed by each work
is discussed in Section V.

C. FHE scheme comparison for genome sequences search

There is another work we have done for privacy-preserving
genome sequences search [14]. In the paper, we implemented
multiple designs of genome search systems in two schemes,
BFV [15] in PALISADE [16] and BGV [17] in HElib [13],
and then compared their calculation time on the server. There
is a myriad of options and design trade-offs associated with the
application of homomorphic encryption in this domain-driven,
not only design trade-offs but also scheme selection, choices
in data encoding, even encryption software library.

V. Design and Trade-offs

A. Design 1

First, we introduce the Design 1, proposed by [3], shown
in Figure 3 below.

Figure 3. Application Design 1

(1) The client encrypts one character of the query string and
then passes the resulting ciphertext to the server with
other parameters.

(2) The server then performs FHE computations and then
returns the result to the client.

(3) The client decrypts the intermediate result.
(4) The client encrypts the next character of the query using

the result and sends it to the server.
(5) Repeat (2)-(4) as many times as the length of the query.

There are two approaches to support the needed depth of
computation to avoid incorrect decryption: limiting the depth
of FHE computations to keep the noise in ciphertexts less than
noise threshold for correct decryption, or adopting bootstrap to
reduce noise in ciphertexts. In this design, the server operates
over a single character at a time, and thus the client gains the
final result by comparing the results for all query characters.
This reduces the depth of computation on the server and
enables reduced noise to remove the need for bootstrapping.
However, computation costs on the clients and communication
costs between the client and the server increase as the length of
the query increases. Since each communication involves large
data transfer, this design is inappropriate for the clients with
limited communication resources and requires that the clients
both be available and have appropriate computation resources
for repeated encryption and decryption.

B. Design 2-1 and Design 2-2

Next, we introduce Design 2-1 and Design 2-2. The server
in both Design 2-1 and Design 2-2 supports the whole string
search to address the issues Design 1 has. Thus Design 2-1
and Design 2-2 are more appropriate for the client with limited
computation power as compared to Design 1. However, the
data size of ciphertexts as welll as FHE calculation costs on
the server of Design 2-1 and Design 2-2 are much greater than
that of Design 1.
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There are two general approaches to support the large
computation depth needed on the server of Design 2. Design
2-1, proposed by [4], reduces the noise by bootstrapping as
shown in Figure 4.

Figure 4. Application Design 2-1

(1) The client encrypts the whole query string and then
passes the encrypted query string with supporting
parameters to the server.

(2) The server performs FHE computations and reset noise
with bootstrap accordingly.

(3) The server transmits the encrypted result to the client.
(4) The client gains a result by decrypting the received data.

The server in Design 2-1 can operate the whole string search
by adopting the method called bootstrap. Bootstrap can reset
the noise in the ciphertexts while each bootstrapping operation
causes expensive overhead. Previous work [4] proposed the
approach to minimize the number of bootstrapping with the
parameters for a reduced number of calculations.

Alternatively, Design 2-2 sets sufficiently large parameters
to ensure correct decryption within a limited (but large)
number of operations as shown in Figure 5.

Figure 5. Applicatin Design 2-2

(1) The client encrypts the whole query string and then
passes the encrypted query string with supporting
parameters to the server.

(2) The server performs FHE computations with large
parameters.

(3) The server transmits the encrypted result to the client.
(4) The client gains a result by decrypting the received data.

Design 2-2 is a more naive approach that sets sufficiently
large parameters so that no bootstrap is needed. Using the
parameters for the larger number of operations deteriorates
the performance of all the arithmetic operations, while each
bootstrapping operation costs expensive overhead.

VI. Experimentation

Based on previous work, we implement Design 1, Design
2-1 and Design 2-2 discussed in Section V and then compare
them on real-world data.

A. Problem settings

The genomic data used for this experiment are
Single-Nucleotide Polymorphism (SNP) [18] sequences
from the 1,000 Genomes Project [2]. This data provide
the representation of where variations from a reference
genome are likely to appear, without showing entire genome
sequences. In our experimental setting, the number of
genomic data samples is 2185 and the number of characters
per sample is 10,000. The range of the query length is 1–6,
and clients designate just one search position.

B. System overview

We implemented the privacy-preserving genome sequences
search system in multiple designs discussed in Section V in
C++. As a software library for homomorphic encryption, we
adopted HElib [13]. Both systems adopt the Chinese Reminder
Theorem (CRT) packing technique by Smart et al. [12] as well.
Experiments were conducted on the machines that have the
specification shown in Table I and parameters used for these
experiments are summarized in Table II.

TABLE I. EXPERIMENTAL ENVIRONMENT

OS CentOS 6.9

Server CPU Intel®Xeon®Processor E5-2643 v3 (3.4GHz)
6 Cores × 2 Sockets

Main Memory 512GB
SSD 80GB
HDD 2TB

TABLE II. PARAMETERS FOR THE EXPERIMENTS

Design Parameter L

Design 1 8

Design 2-1 23

Design 2-2 9 * (query length)

C. Experimentation Results

We ran each experiment three times and calculated the
average of results.

Figures 6-7 show each graph of the average client-to-server
and server-to-client data transfer overhead (volume of data) of
Design 1, Design 2-1 and Design 2-2 shown in Figures 3-5,
based on the length of the query. Figure 8 shows the average
execution time on the server of Design 2-1 and Design 2-2
based on the length of the query.
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Figure 6. Client-to-server data transfer overhead

Figure 7. Server-to-client data transfer overhead

Figure 8. Average execution time of the main calculation on the server of
Design 2-1 and Design 2-2 by the length of query

VII. Analysis of Experimental Results

A. Data transfer overhead

First, we compare client-to-server and server-to-client data
transfer overhead (volume of data) by each application design.
According to the result, Figures 6-7 show the opposite things:
the smallest client-to-server data transfer overhead and the
largest server-to-client data transfer overhead are those of
Design 1.

We can regard server-to-client data transfer overhead as
a more important one because it is assumed that the server
has plenty of resources while the clients have poor ones,
meaning that Design 2 would be more suitable for the client
with less computation resource. However, it is needed to
evaluate more kinds of values from more points of view
to examine the best application design for the client with
particular specification; we should compare not only the
client-to-server and server-to-client data transfer overheads but
also data transfer time between clients and server and the
homomorphic calculation time on clients.

B. Execution time

Next, to compare Design 2-1 and Design 2-2 in detail, we
compare the execution time of the main calculation on the
server. Figure 8 shows the result for this comparison. It can be
observed that the main calculation time on the server of Design
2-1 increases linearly while that of Design 2-2 increases in the
multiplier.

This result is because of the parameters used for this
experimentation shown in Table II. Although we can use
the same parameters for FHE calculation in Design 2-1, the
parameters for that in Design 2-2 need to get larger as the
length of query increases to guarantee correct decryption
without using bootstrap nor the noise in the ciphertext of FHE
exceeding the threshold. However, it is also indicated that the
calculation time on Design 2-2 is faster than that on Design
2-1 with a shorter length of the query. This means that it is
better to switch the design to use according to the query and
some other parameters.

VIII. Conclusion and Discussion

Comparison and analysis of system designs for systems
is important to put them in practical use. Therefore, in this
paper, we implemented and compared multiple designs for
the client-server style system for privacy-preserving genome
sequences search with BGV in HElib based on prior work. Our
results show three things: the calculation costs on the clients
in Design 1 increases more as the length of query increases,
the calculation costs on the server in Design 2 increases more
as the length of query increases, and it depends on the length
of query and some other parameters that decide which design
is the more suitable in Design 2-1 and Design 2-2. As future
work, we plan to compare the execution time on the clients and
data transfer time with a limited resource of clients, as well
as the execution time on the server and data transfer size.
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Abstract—Return-oriented-programming is widely used for soft-
ware exploits, and ten years after its academic description, little
to no protection is deployed most of the time. Performance
trade-offs or insufficient protection often results in no protection
deployment. Address space layout randomisation is a basic
protection that just increases the complexity of writing attacks
but does not prevent code-reuse exploits. Its overhead is negligible
enough to justify its deployment. These protections come after
software development, and are implemented in the compiler or
via binary modification. Usually, each binary is either critical
and protected or not critical and not protected. This decision
results from a usage criterion, like gzip, or if it exposes network
interfaces, like apache. In this paper, we go through multiple
views to expose elements that make it possible to compare binaries
with respect to their available code-reuse components. We look at
these elements to underline what part of the production process
of a binary can increase or decrease its quantitative inclusion of
code reuse components. With this evaluation, we expose certain
disparities introduced by production tools, by the language used
to write applications or even because of the targeted platform.
We also show how hardware architectures affect this statistical
measurement.

Keywords–Return-Oriented-Programming; ROP; Code-reuse
exploits.

I. INTRODUCTION

With hardware protection against code injection, software
exploitation is widely based on code reuse. Starting with
return-to-libc then generalised with Return Oriented Program-
ming (ROP) [1], the class of code reuse attacks allows an
intruder to recreate any arbitrary program by hijacking the
control flow of a host application. To construct such an exploit,
the needed instructions have to be found in the target binary.
A group of instructions used during such a hijack is called
a gadget. A more precise description of a gadget is provided
in Section II. Address Space Layout Randomisation (ASLR)
makes such a task more difficult, since it allows memory
layout to be randomised when an application is started. The
search of useful instructions must be done at runtime. But
ASLR has been shown as not to be efficient enough for
full protection, and can be bypassed, for example with blind
ROP [2]. In a common playground, such as a JavaScript jail in
a browser, process memory reading cannot be prevented and
ASLR becomes less effective, as shown for example in the
Spectre exploit [3].

For x86, solutions have been proposed [4]–[6] to protect
an application against these attacks. These solutions guaran-
tee that the execution will follow a legitimate control flow.

However, they introduce more overhead in execution time than
what can be accepted for general-purpose programs. Protecting
only the relevant part of a program is an appealing way to
reduce the induced overhead, which is done to some extents in
[6]. The authors propose different selection criteria for level
of protected code pointers and arbitrary jumps, giving some
trade-off between performance and security.

Despite all this work, we lack a way to measure the
effectiveness of these types of protection on security. It is
difficult to compare two binaries, protected or not, with regard
to a notion of ROP-class sensitivity. From a performance per-
spective, unified benchmarks are commonly used to evaluate
the costs induced by the deployment of a protection. The
efficiency of a given protection is more difficult to measure.
Nothing exists to measure effectiveness beyond trying to write
exploits, manually or with human intervention and this is
hardly scalable. We develop this idea in Section III.

More generally, during the creation of an application, a lot
of choices must be made. For example, we have to choose the
language to write our application, the operating system it will
be deployed on and, in some case, the hardware the application
will support. The influence of such choices on the availability
of control flow hijacks in the final binary is not known.

Brown et al. [7] have highlighted how debloating tools
affect sensitivity to control flow hijack. They have shown
that using the gadget number is not enough to define a
security metric. Furthermore, they propose a binary production
process that relies on a human to validate a significant security
improvement. Such a process clearly does not scale and cannot
be integrated in a software-automated build process.

While debloating influences the available gadgets in an
application, this is probably the case as well for other steps of
binary production. We want to know which tool or technology
choices (compiler, language, etc.) have an effect, positive or
negative, on these available gadgets. Instead of finding and
exploring any combination of possible production tools for an
application, we chose to select a wide range of systems. On
those systems, we analyse available binaries to see if we can
characterise the production process by the resulting available
gadgets. We explore how different production setups affect the
notion of gadget density. We investigate what is available to
an attacker to craft a control flow hijack payload and what
characterises a given binary with regard to code reuse exploits.
The objective is to extract information from deployed binaries
on living systems to provide recommendations for building
applications that are more resistant to code reuse attacks. We
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study how the target execution environment for binaries affects
the quantity and diversity of elements presented to write an
exploit.

Then, the influence of environment on the quantitative
measurement of code reuse availability is identified. The goal
is to characterise how different steps of a process, from
software creation to execution, could be leveraged to reduce the
number of ROP components exposed by an application. This
paper presents the method we used to define this quantitative
measurement, which allows us to distinguish which binaries
provide the most elements to write code reuse exploits.

This article starts by explaining how control flow hijack
attacks are written in Section II, with a focus on the basic
elements that compose these attacks. We then continue with
the methodology used to retrieve these gadgets from binaries
in Section IV. In Section V, we explore how gadgets are
distributed among analysed binaries, in order to identify those
that are used most often and study their diversity. Then,
we analyse the disparity in binaries, given their hardware
architecture or system environment (for example, the runtime
Linux distribution). In Section V-D, we highlight which binary
production steps influence the availability of control flow
hijack components. In the end, we also show that a ROP
chain crafted to target a given application built on two similar
systems is unlikely to work on both.

II. CONTROL FLOW HIJACKING

The idea behind control flow hijacking is the use of
hardware processor operational behaviour to trick it out of
the normal flow. One known method to hijack control flow
is ROP, first described by Shacham [1]. ROP is a paradigm
which allows generating a completely new application using
the existing set of instructions of a given software. Exploits
written with ROP need an entry point to start the attack,
as detailed at the end of this section, in the threat model
paragraph. Examples given in this section use the x86 family
architecture but other architectures can be targeted by these
attacks.

A program can be decomposed into multiple sequences of
instructions linked by control flow instructions defining where
the execution continues. These instructions can be function
calls, system calls, jumps or returns.

During a control flow hijack, addresses used by control
flow instructions are corrupted to divert the flow toward
libc functions – for return-to-libc attacks. Return
oriented programming uses small subsets of available code
instead of full functions. These subsets are called gadgets.
For example, mov rdi, qword ptr [rbx]; call rdi is
a gadget found in some x86_64 applications.

ROP is the construction of an application by chaining
gadgets together, effectively using only present and legitimate
code. A ROP chain is created by corrupting the memory with
a sequence of addresses pointing toward such elements. If
the execution stack is corrupted, a return instruction is
used to chain the gadgets. On hardware architecture without
this return instruction, other instructions are used to build
similar hijacks of a program execution. These constructions
are shown for x86 and SPARC in [8] and for ARM in [9].

While the term ROP is used only for return-terminated
gadgets, COP (Call-Oriented Programming) is for call-
terminated ones and JOP (Jump-Oriented Programming) is for
jmp-terminated ones. We also consider system call gadgets in
our statistical analysis, amongst all other gadgets. Non-control
data flow hijacks are out of the scope of this paper.

Threat Model: In the context of an attack following
the ROP paradigm, few basic hypotheses are made on what
intruders can do. The capabilities given to them are arbitrarily
read in the process binary, which is not a strong hypothesis.
For writing, we assume W XOR X is enforced, meaning that
writing and executing are mutually exclusive. We also make
the assumption that the executable part of a given program
cannot be corrupted, but any write that does not violate this
property is available. We also assume that a memory corruption
allowing a ROP chain execution to be started is available.
If the application is written in a memory-safe language, a
side channel attack – either hardware or software – can be
used to initiate the chain. We also make the assumption that
attackers have an idea of what they attack, and have some
knowledge on which gadgets they can find, expecting that
hardware architecture is known.

III. RELATED WORK

In a first approach, we looked for a measurement of ROP
effectiveness, apart from Turing-completeness of the set of
gadgets found, which has been demonstrated if code base is
sufficient enough, like the standard C library [8]. The objective
here is to look at how different protections measure their
results, not for performance overhead introduced but regarding
ROP gadget availability.

Schwartz et al. proposed Q [10], a tool that hardens any
ROP exploit to be resistant to ASLR. The tool effectiveness is
proven by testing on which program they can construct a chain.
Based on semantic analysis of gadgets without side effects,
they managed to construct a chain automatically on a large set
of /usr/bin of a given Linux system. However, the only
metric that is used to measure the sensitivity of a given binary
is the success of their tool to craft a chain. They also provide a
statistical study on semantic gadgets available in their surveyed
binaries, with just a short discussion.

Dullien et al. proposed another tool to look for gadgets in
cross-platform environments [11]. The effectiveness of their
solution is demonstrated by checking the Turing-completeness
of the gadget set found in one binary on three different ARM
platforms. The chosen binary is a core library linked with most
applications and no other measurement is proposed.

Keromytis et al. published a protection against ROP [12] on
a part of the binary. The published tool is evaluated in terms of
both performance and security. The efficiency of the protection
is tested using known software to create ROP payloads and
gadgets, Q [10] and Mona [13]. They used two different results
to evaluate the effectiveness of the protection. The first one is
the ability to craft a chain automatically with these tools on the
protected binary. The second one is the count of gadgets which
were found by the two softwares and which are removed in
the protected part of the binary.

In a similar way, published protections like [14], [15] or
debloating techniques [16] often use either automatic crafting
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failure as an effectiveness measurement, with either Q [10],
ROPgadget [17] or a custom tool. The default crafted chain is a
shell spawning, but the failure or success of the craft on a given
binary does not provide much information about its protection.
Another chain, which brings as much harm, could be poten-
tially (hand)crafted without being detected by this method of
evaluation. The second method used to evaluate protections is
the enumeration of available gadgets and reduction observed
before and after the protection in question is applied. To do
so, either Q output is used or custom processes are built. Even
when a common tool is used, methods of comparison differ,
implying some lack of common ground with respect to security
benchmarks.

IV. GADGET DENSITY MEASUREMENT

A gadget is a sequence of instructions terminated by a
jump, as defined earlier. For our analysis, a gadget is at
most five instructions long, including the jump, following [8].
Furthermore Homescu et al. [18] have shown that one-byte
instructions can be enough to achieve Turing-completeness.
Therefore, all subsequences of a gadget are relevant. So for
a five-instruction long gadget, all sub-gadgets of one up to
five instructions are counted as different gadgets. As a result,
each control flow instruction can generate up to five different
gadgets. A gadget of size one is limited to a control flow
instruction. For example, call rdi; can be used alone if a
preceding gadget in the chain already set the content of the
register rdi to a desired value. We also want to keep them
for checking control flow instruction diversity. The basic ret
instructions are not considered, as such gadgets are not relevant
(i.e., they do nothing).

In this article, gadget classification is purely based on op-
codes. Two gadgets that are similar semantically but different
syntactically are considered distinct in the measurement. For
example, pop rax;ret and pop rbx;ret are distinct.

The semantic analysis of gadgets is outside of the scope of
this study. It has been demonstrated [10] that some arithmetic
gadgets can be chained in order to create missing stores, load
or any other needed gadgets. All gadgets are treated equally
in the scope of this analysis whether they produce side effects
or are just not usable at all.

Different metrics are used in this comparison. To fairly
compare binaries of different sizes, the number of gadgets
found in a binary is normalised with the size of its executable
section. We define two densities with these measurements:
unique gadget density, which represents the number of distinct
gadgets present in a binary, and total gadget density, which
includes all occurrences of each gadget in an executable file.

These metrics are used to identify how easy it is to attack
a binary using control flow hijacking, given its production
context. The context is composed of hardware architecture
at first, completed by its target environment and its creation
process. This creation process is decomposed to identify the
role that each step plays in the evolution of the gadget density
of a binary.

Methodology: The search for gadgets in a binary is
done using a tool, ROPgadget [17], based on the library
Capstone for assembly parsing. Even though some ar-
chitectures are not supported by the highest-level tool we

used, adding support for more instructions in the future is
not excluded, as the library supports many more hardware
platforms. On top of that, we have developed software for data
aggregation and process automation, which enables an easy
process to integrate more binaries for analysis, or to extract
some data subsets.

V. EXPERIMENTS

This section contains an analysis of how gadgets are
distributed in a binary, and of how different binaries react
regarding the characteristics of gadgets exposed to an attacker.

Analysed binaries come from different Linux distributions
and platforms. All binaries from /usr/bin are used. Most
systems have various applications installed, from system util-
ities to window managers or web servers. We tried to have
a lot of diversity in target usage of these applications to
avoid any bias that may exist, for example due to applications
needing more I/O accesses. All analysed binaries are the
executables without their libraries, except if they are statically
linked. If a program is statically compiled, we did not try
to isolate what comes from the linked libraries and what
is specific to the application, and we analyse it as a single
binary. We excluded any standard libraries in this analysis,
and other dynamically linked libraries. Given that libc and
other libraries are so heavy, we assume that if someone wants
to protect an application, they will either build without relying
on such libraries, or will use static compilation. We focus on
binary specific gadgets, to avoid an already known Turing-
complete set.

The Linux distributions and platforms analysed – with
the snapshot date when relevant – are the following: Fedora
26 (2018-01-19), Ubuntu 16.04 (2017-10-10), Debian Testing
(2018-01-15), Debian 9.3 (2018-01-12), Gentoo (2017-09-07),
Arch (2017-11-23), Buildroot, RISC & CISC (2018-02-05),
Tar 1.30 (multiple compilation flag combinations) and Firefox
(all release versions from 4.0 to 65.0b9).

Around 10 500 binaries went through this process, which
was run on a dedicated platform. The dataset was created on
an Intel® Xeon® CPU E5-2640 clocked at 2.4 GHz. Parsing
the whole set of binaries takes around 48 hours to complete.

A. Binary Gadget Density Measurement

There is a correlation between the size of a binary and its
number of gadgets. As shown in Figure 1, both unique gadgets
and total gadgets increase quite linearly on a log scale with
the size of the executable section (ES) of a binary. From really
small binaries (less than 1 kB of ES), to large ones (more than
10MB of ES), executable size is correlated with new gadgets,
despite greater variation on small binaries. Analysed binaries
present non-negligible variations in gadget count, in a window
which is not correlated with ES size.

The interesting part is that while increasing in size, the
number of unique gadgets keeps increasing. Intuitively, most
gadgets would already be present in a binary when ES is above
a certain threshold, and a slower increase or stagnation would
be observed. Such behaviour is not observed, as binaries keep
introducing new gadgets regularly as they grow in size. A
normalised number of gadgets relative to its ES, in kB, has
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Figure 1. Gadgets found depending on the size of the executable sections

been taken as a first quantitative indicator for comparison of
multiple binaries regarding ROP-class availability.

Both these total and unique gadget densities increase with
size, as shown in Figure 2. Two tendencies stand out. First, a
group of binaries has a ratio between the two densities around
1, meaning each gadget is rarely present more than once.
Second, the binaries have a ratio that increases with their ES
size. Amongst all these binaries, some have an extreme ratio,
like Quasselcore, coming from Gentoo Linux, with a ratio
of 6.2. The most impressive one is gregorio, from Arch
Linux, which has a ratio of 8.89, around 3 times the average
of the binaries with similar ES size. For example, coming from
a different platform, ARM32, grep has a ratio of 1.17. Such
a disparity in density ratio is limited to neither architecture
change nor binary size. For instance, a gap is observed between
clang (Arch Linux, x86_64), and darcs (Ubuntu 16.04,
x86_64) with 5.2 and 2.2 for 23MB and 19MB of ES size,
respectively.

On the code reuse availability that a binary could present,
all binaries are not equal regarding what they provide to an
attacker to craft an exploit. There are some extreme cases, but
the global distribution shows a lot of binaries outside common
trend. Moreover, an application can provide more or fewer
gadgets. For example, screen, a binary available on all Linux
systems analysed, does not have the same number of gadgets,
either total or unique, and even has a changing ratio. On three
architectures (SPARC v8 and leon, ARM32), the density ratio
of this binary is around 1.20, 2.1 for ARM64, while it is
around 2.50 on i386 & x86_64 architectures. These disparities
are explored in the following sections, to observe how either
system, in Section V-D, or hardware targets, in Section V-C,
affect software on its control flow hijack elements.

B. Gadget representation

This section studies the diversity of gadgets amongst bina-
ries on the x86_64 architecture. This architecture is selected
because it represents 10 100 binaries out of 10 516. The goal
is to determine how different a ROP chain would have to be,
to execute the same attack on two distinct binaries.

Most available gadgets across all binaries are just manip-

ulations that pop stack values into registers, i.e., pop r14;
pop r15; ret. Such gadgets are available in most binaries.
There is only around 1% of our binaries that do not contain
these gadgets. Most gadgets are not shared amongst the
binaries, with only 16% of them in 2 or more binaries.

In our sample, some binaries expose a lot of the same
gadgets. One gadget is used extensively by a few binaries, by
a large margin compared to the other most popular gadgets.
This gadget comes from binaries that share an interesting
property, namely they are written with the Qt framework (like
Quasselcore).

To evaluate the predominance of ROP gadgets in a binary
compared to other kinds of gadgets, we isolated the ones that
are terminated by any instruction except return. An excerpt
of the results is shown in Table I. For this categorisation
of gadgets, few stand out for their statistical usage. The
two most used gadgets come exclusively from binaries of
programs written in the programming language OCaml, with
an above-average frequency. No C/C++ compiler generated
these gadgets, nor did any other compiler used to produce
one of the analysed binaries. We identified some but not all
compilers used to generate our binaries, including go, rust,
gcc or clang. This gadget can be used as a signature of
OCaml binaries in our dataset.

The presence of these particular behaviours is not limited
to these compilers and libraries. In a first attempt to identify
software engineering choices influencing the gadget density,
the production process of tar and a small graphical game
have been modified to ensure a given compilation option set.
Two compilers were used (gcc and clang) with the usual
options. In this limited sample, the influence of a compilation
option on gadget density does not depend on the compiled
application. The effect of a given option has a similar effect
on both applications. The choice of a compiler did result in
different behaviour. This implies that the compilation process
(the choice of the compiler and its options) cannot be neglected
when designing an application to be less sensitive to code
reuse, and should not depend on the application.

Since these results only concern the x86_64 architecture, it
is planned to check whether such behaviour can be observed
with other hardware architectures. For now, our sample size of
binaries from other architectures is too small and too specific
to be relevant for a comparison with x86_64 figures.

C. Hardware Influence

This section shows the impact that hardware architecture
has on different measurements of gadgets in binaries. In
Section V-B, we explained that x86_64 binaries were overrep-
resented. Therefore some bias may exist in the given results.

TABLE I. MOST USED GADGETS NOT TERMINATED BY A RETURN

Gadget Nb of occurrence Nb binaries Avg Occurrence
mov rdi, qword ptr [rbx] ; call rdi 43 737 54 809.94
mov edi, dword ptr [rbx] ; call rdi 43 202 54 800.04
mov rdi, rbx ; call rax 22 559 698 32.32
mov edi, ebx ; call rax 22 536 786 28.67
add eax, edx ; jmp rax 16 770 1173 14.30
add rax, rdx ; jmp rax 16 624 1168 14.23
add edx, eax ; jmp rdx 15 132 455 33.26
add rdx, rax ; jmp rdx 15 003 398 37.70
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Figure 2. Ratio of total to unique gadgets by hardware architecture

Figure 2 presents the ratio between total and unique gadgets
for all 10 516 binaries. It uses two colours to highlight the
differences between the type of architectures, RISC –ARM
(32 & 64 bits), SPARCv8– and CISC –x86 (32 & 64 bits).
The main difference in behaviour between the two groups is
the diversity of gadgets in RISC binaries. They rarely have a
ratio above two, and the ratio does not increase with ES size.
Binaries that target x86 family platform have a higher variance
in gadget density ratio. The bigger the x86_64 binary ES size,
the more often their gadgets appear.

Buildroot is a Linux distribution which targets embed-
ded systems. A system can be built with a list of packages
with a constant configuration from one hardware architecture
to another. With a fixed compiler and its options, the only
parameter that differs from build to build is the target architec-
ture. Binaries are compared respectively on each architecture,
to observe the differences in density.

Comparing these Buildroot, few differences are present
between architectures. Sometimes the average of unique gadget
density displayed by a system is more than twice the density on
its counterpart, like between i386 and ARM32. An interesting
result is that architecture family is not sufficient to classify a
system with respect to its ROP availability. For example, even
if there are more unique gadgets on i386 than ARM32, the
comparison between their 64-bit counterpart gives an opposite
result, with a lot more on ARM64. The availability of more
instructions on ARM64 may be the reason for this evolution,
but this is only a hypothesis that has to be explored further.

Even if what causes such behaviour is not known, it is
certain that hardware architecture has a great effect on diversity
and density in the quantitative measurement of ROP availabil-
ity on these systems. Since gadgets cannot be compared across
architectures on a syntax basis, semantics would be required
to expand the discussion on hardware influence.

D. Disparities in deployment environments

In some Linux communities, security is the main focus,
while in other performance or stability are privileged. This
influences the choice of an application version and the pro-
duction process of the binaries. For instance, in Fedora and
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Figure 3. Percentage of shared gadgets on both Fedora and Ubuntu

Red Hat Enterprise [19], there are recommendations on which
gcc compilation flags to use to publish a package. This section
looks into different distributions to identify the influence that it
can have on binary gadget density. We chose different types of
distributions. Some use rolling release, where each application
is updated with upstream updates, and others are stable or
on a slow update cycle. We added some initially uninstalled
packages to have better coverage for comparison.

For the purpose of comparison, only the content of
/usr/bin is used in the five distributions. To compare two
distributions, a binary is searched on both, and if it exists on
only one, it is discarded from the result. If it is available on
both distributions, the density of unique and total gadgets are
compared. Then results are aggregated.

On average, only a small deviation can be observed be-
tween two distributions, around a few percent, and standard
deviation between 25 and 30 percentage points increase or
reduction in density on two distributions. Despite the majority
of binaries showing little to no differences in density between
two distributions, others bring up more questions, with up to
three times more gadget density in one environment.

In some cases, there is only a small difference in version,
like minor version or just a distribution patch that differs. On
top of that, compilation flags and compilers can also vary
between distributions. A lot of different behaviours are ob-
served, since there is a huge sample of contributors involved in
development and packaging. Compilation flags can be chosen
for technical reasons, or due to distribution directives given to
maintainers, or even users who change these themselves.

Having high average differences in density between two
Linux distributions is not sufficient to evaluate the usability
of a crafted chain on a similar binary from one to the other.
A program available on both systems may contain different
gadgets even if it exposes a similar density. Figure 3 presents
the extent to which a Fedora desktop distribution and its
Ubuntu counterpart share gadgets.

First, with only 37% (around 600 gadgets) of shared
gadgets on average between two distributions for a binary,
the ability to create an easily distributable chain becomes
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compromised. An attack would probably have to use different
gadgets for each target distribution. The low re-usability of a
given chain is reinforced by the fact that only a few binaries
between systems have up to 75% shared gadgets, and way
more than half of those analysed do not even reach 50%.
Few variations in a software production process can result in
enough variations to reduce the portability of a code reuse
exploit.

E. Results

These experiments have shown multiple parameters that
have a significant influence on gadget density. A wide disparity
of density amongst binaries is observed. Interestingly, the
bigger a binary gets, the more unique gadgets it has.

We have also seen that despite gadgets being widely
available on all hardware architectures, gadget availability is
influenced by these architectures. Specifically, RISC architec-
tures tend to have a gadget available only once per binary.

The results also highlighted the fact that the whole pro-
duction environment has a role in the creation of gadgets.
Some impactful steps are, amongst others, the choice of the
source language, its compiler and the compilation options. This
step can reduce or increase density, but most importantly they
affect the variety and type of gadgets one can find in a binary.
This fact is reinforced by the disparity in gadgets found in
two binaries from the same application produced for distinct
environments, shown in the last section. As a consequence, it
is very unlikely to be able to port a given ROP chain at a low
cost from a system to another.

VI. CONCLUSION AND FUTURE WORK

In this paper, using a statistical analysis, we highlighted the
influence of the binary production process on the number and
density of gadgets. While this does not provide a direct security
metric, it shows that code reuse has to be taken into account
at an early stage of application design. Understanding what
impacts the number of gadgets may lead to better protection,
a more suitable protection, or one with less overhead.

The next step to expand this work is to consider the
semantics of gadgets, to check whether each design decision
has the same effect on density for gadgets with similar
semantics. We have started to work on a measurement of
semantic diversity, to ease the comparison of binaries. We
also plan to improve the dataset of analysed programs, with
more diverse source languages, and complete the dataset with
more RISC binaries. We have seen limitations of our dataset
with respect to hardware architecture in Section V-C, with the
over-representation of x86_64. The diversity of gadgets has
been inspected only with this architecture. We will expand this
analysis to other available architectures. We plan to complete
the study on compilation options, compilers and languages,
started in Section V-B, with, for example, the addition of
applications written in a memory-safe language like rust.
The enhancement of the dataset is important to confirm what
is shown on a small scale here. It would help confirm that
other systems (POSIX compliant or not) behave differently
than those in Section V-D. With enough information on what
impacts the number of gadgets, an application could be built
with guidelines to become less sensitive to code reuse exploits.
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Abstract—Commercial off the shelf small Unmanned Aerial
Vehicle (UAV) market has grown immensely in popularity within
the hobbyist and military inventories. The same core mission set
from the hobbyists directly relates to global military strategy
in the modern age, with priority on short range, low cost,
real time aerial imaging and limited modular payloads. These
small devices have the added perks of a small cross section,
low heat signature, and a variety of transmitters to send real-
time data over short distances. As with all new advances within
the technological fields, security is a second-thought to reaching
the market as soon as viable. New research is showing growing
exploits and vulnerabilities, from individual small UAVs guidance
and autopilot controls to the mobile ground station devices
which may be as simple as a cellphone application. Research
calls producers to fix and engineer the small UAVs to protect
consumers, but consumers are left in the dark to the protections
installed when buying new or used vehicles. At current date,
there is no marketed or accredited risk index for small UAVs,
but current research in similar realms of traditional Information
Technologies, Cyber-Physical Systems, and Cyber Insurance give
insight to significant factors required for future small UAV risk
assessment and prioritize lessons learned. In this research, three
fields of risk frameworks are analyzed to determine applicability
to UAV security risk and key components that must be analyzed
by a proper UAV framework. This analysis demonstrates that
no adjoining field’s framework can be directly applied without
significant loss of fidelity and that further research is required
to index risks of UAVs.

Keywords—UAV; cybersecurity; quantitative; risk assessment;
COTS.

I. INTRODUCTION

Cybersecurity is the Herculean task to prevent all adversarial
attacks over Information Technology (IT) devices and errors
that release or lose information deemed valuable to an orga-
nization or individual. As computer devices have exploded in
variety and distribution around the globe, the protection task
has grown and absolute security has become accepted to be
a myth, though due diligence has been seen to reduce and
delay incidents. IT devices have diverged into a multitude of
subcategories, including Cyber-Physical Systems (CPSs) and
further subsection Small Unmanned Aerial Vehicles (sUAVs).
While many techniques used to map and defend IT may be
extended to sUAVs, CPSs in general have significant differ-
ences in internal architecture, external networking, and overall
mission sets that effect how effective and important common
techniques are to cybersecurity. One aspect of cybersecurity is
risk categorization of individual devices and the conglomera-
tion on a network, which relies on common rating measures

for comparison. IT devices still struggle with communication
of security characteristics, though certain brands have made
strides to separate themselves from the market share. As new
vulnerabilities and exploitations accumulate for sUAVs, the
industry will find the consumer base increasing in desire for
quick and equal rating to make purchasing decisions based on
their planned mission set.

Unmanned Aerial Vehicles (UAVs) have been historically
built for military applications and continued by hobbyist
enthusiasm. By definition, UAV includes any device that can
sustain flight autonomously, which separates it from similar
sub-cultures of Remotely Piloted Vehicles (RPVs) and drones
[1]. UAVs are usually able to either maintain a hover or move
completely via computer navigation, whereas RPVs require
control instructions throughout flight and drones have limited
mission and sophistication [1]. The first UAV is most likely to
be considered a kite or balloon that could maintain flight when
tied off and have some control input from the ground. Cameras
were first attached to kites in 1887 by Douglas Archibald as a
form of reconnaissance and William Eddy used the same con-
traption during the Spanish-American War for reconnaissance
[1]. As UAV operations and innovations continued through the
Vietnam War, Desert Storm, and especially the global war on
Terror, the size, mission, and shape of UAVs have evolved to
support military needs. Criminal uses have also grown with
UAV prevalence with ingenious modifications matching latest
exploits [2]. The market share of small UAVs is made up
of 70% DJI brand, followed by 7% Parrot, 7% Yuneec [3],
showing a strangle hold of Chinese controlled manufacturers
for consumers to take note.

UAVs take a multitude of forms and designs based on
mission and user base, from hand-held copters to jet-powered
light aircraft. For sUAV, all follow the general component
break out as seen in Figure 1, with four common components
on the device and a ground station of some sort. The Basic
System is a generalized term for the Operating System (OS),
which is usually coded by brand per vehicle and allows
near real time control. The weapon component has been
seen within military operations, though the vast majority of
sUAVs are used for military or hobbyist reconnaissance with
the sensor component. As defined for UAV, some form of
autonomous control will be built into the vehicle’s navigation.
The ground station is split into the Operators component and
Communication links, though, with sUAVs, these are typically
contained within the same device, a tablet or laptop.
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Fig. 1. Components of Typical UAV [4].

The exact definitions between sizing tiers have not been
standardized between countries though, practically speaking,
they consist in some format of very small, small, medium, and
large. Very small UAVs exist at a miniaturization of aerody-
namics that result in very low Reynolds numbers, meaning the
wing interacts with the air more similarly to a fin through water
due to viscosity, and are usually less than 20 inches in any
dimension. Small UAVs tend to be a range of popular model
aircraft used by hobbyists and have at least one dimension
greater than 20 inches. While shorter in range, their size allows
for access or angle of attack by altitude not normally available
to individuals. Medium and Large UAVs are too large for an
individual to carry and may even use full runways like light
aircraft, which allows for heavier payloads and greater mission
duration. sUAVs fly by the same aerodynamics as manned
aircraft using lift and drag, plus control for pitch, roll, and
yaw. Their internal architecture, however, differs greatly by
removing the human pilot directly from the vehicle. Instead of
a pilot and sensors, sUAVs are controlled by varying autonomy
of their autopilot. Autopilots vary greatly by manufacturer,
with the most common DJI autopilots closed-source and their
specific rules hidden [2].

The rest of the paper is structured as follows. Section

II explores current common rating systems for traditional
IT, Supervisory Control and Data Collection (SCADA), and
Insurance markets with a focus on aspects that do translate
to the sUAV inventory. Section III builds out from the con-
glomeration of related rating indexes the important aspects that
are required for a sUAV specific cybersecurity rating. Section
IV analyzes each of the fields for their applicability to small
UAVs risk assessment for potential adaptation. We conclude
our work in Section V.

II. RELATED WORK

No current physical or cyber security accreditation exists for
UAVs. Accreditation similar to the European and American
automobile safety assessments, which use a number of stars
to describe and compare the intrinsic safety quality for the
vehicle, would meet the demand. Since no current process
exists to calculate risk, quantitative or qualitative, for sUAVs,
there are no star ratings present on the market to be assigned to
any sUAV, much less compare models. Adding to the issue,
aerial vehicles were engineered for operational effectiveness
first then marketed with minimal consideration for adversarial
interference. Cyber incidents with and against UAVs have
been limited with the most well-known consisting of the
Iranian incident [4] and current research into hacking UAV
controls. While the debate is still out on whether the United
States RQ-170 was captured by Electronic Warfare (EW) or
cyber means [4], the incident highlights the vulnerability of
UAVs in a combat zone and the need for security in future
models to maintain integrity for mission success. With 15,000
UAVs being sold in the United States every month as of
2015 [5], the availability and use of exploitations on these
devices is expected to also rise as effort to reward ratio grows.
Research into the vulnerability of sUAVs has also increased
with a multitude of research showing specific risk in areas of
Denial of Service (DoS) [6], Global Positioning System (GPS)
spoofing [7], and control hijacking [8]. No security specific
components have been added to UAVs in response, other than
patches and more secure software or additional navigational
components for the autopilot to internally cross-check location.

A. Traditional Risk Assessment

UAVs are most simply flying computer systems. Traditional
risk assessments have been around since the early 2000s
[9] and have almost solely focused on business devices and
networks. While Network Security Risk Model (NSRM) [10]
and Information Security Risk Analysis Method (ISRAM) [9]
are some of the oldest quantitative risk assessment models,
Common Vulnerability Scoring System V3 (CVSSv3) is the
most utilized today [11].

CVSSv3 is an “open framework for communicating the
characteristics and severity of software vulnerabilities [12].”
The score is based on three different metrics of a Base ranging
from 0.0 to 10.0, tempered by Temporal and Environmental
metrics. CVSSv3 is owned and managed by FIRST Inc. and
is a heavy provider to the National Vulnerability Database
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(NVD). CVSS first gained large-scale usage under their ver-
sion 2 score which determined only a base score through
metrics for Access Vector, Access Complexity, Authentica-
tion, Confidentiality Impact, Integrity Impact, and Availability
Impact. Each metric was given a rating from up to three
varying responses of severity. CVSSv2 was criticized heavily
for vulnerability scoring diversity compared to experimental,
lack of interdependence scoring of networks, and lack of
correlation between proposed mitigations and actual score
improvements [11]. CVSSv3 added mandatory components
for Privileges Required, User interaction, and Scope, plus the
temporal and environmental metrics to influence the overall
score. The current version has grown in use for vulnerability
scoring, but still struggles with high false positive rates, poor
predictability of future incidents, high sensitivity in regards
to Availability Impact compared to all other impacts, and is
heavily influenced by software type [13]. Built from CVSSv3,
NVD has been found to lack in predicting mean time to
next vulnerability due to the Common Vulnerability and Ex-
ploitations (CVEs) recording poor and inconsistent data by
vendor and an increasing trend across vendors of zero-days
[14]. CVSSv3 is the starting point for determining known
vulnerabilities present within a UAV, but the embedded nature
of a component, the wide brand difference within a single
UAV, and unique mission sets of UAVs mean CVSSv3 is not
very likely to give a good perspective at actual risk.

B. Industrial CPS and SCADA

At the other end of the spectrum for security indexing,
sUAVs could be related to larger CPSs which have recently
seen a surge in research to secure their unique networks.
Industrial CPS and SCADA have been utilized to gradually re-
duce required human interaction in safety-compromised work
areas and in largely distributed networks. Physical sensors
that used to require eyes to read, determine system state,
and adjust actuators to keep processes within safety limits
and manufacturing effectiveness, now are read by network
adapters, ran through Programmable Logic Controller (PLC)
that determine state, then send signals to actuators to finish the
feedback loop. Human-Machine Interface (HMI) screens give
real-time display of system state to allow minimum human
interaction to keep our modern society running smoothly.
SCADA systems are owned by corporations to produce or
deliver their products to consumers, and therefore the networks
are not the products directly as seen by home computers or
even work stations which are most commonly modelled by IT
networks. As CPS stations are utilitarian and usually connected
to physical sensors for input, protection schemes need to adjust
for their physical process monitoring, closed control loops,
attack sophistication, and legacy technology [16]. The first
two categories define differences in attack vectors for cyber to
cyber or cyber to physical exploitation. Regular IT exploitation
follows a typical path that ends at an IT node with information
or is valuable in itself, but industrial CPS exploitation usually
requires exploitation to continue further to influence physical
processes to either ruin or shut down systems [17]. This leads

to attack sophistication differences between IT and SCADA
risk, since physical process manipulation via PLCs require
intense understanding of systems that are only present in the
operational world. While the attack vectors require unique
background, the computer systems monitoring and running
the physical processes are commonly characterized by legacy
equipment with many known vulnerabilities. IT cybersecurity
practices push for upgrade cycles on a regular basis to keep
with manufactures’ patching, however industrial systems do
not upgrade nearly as often and require much larger investment
capital to change out systems that are considered permanent
fixtures.

Research into adding cybersecurity to CPS systems skyrock-
eted after the discovery of the sophisticated Stuxnet virus in a
nuclear plant. The nuclear plant in question has been studied,
with its cybersecurity posture matching industry standards and
much of the IT standards [18]. Risk assessments building
from this impetus and for more than just nuclear realm have
been trying to grasp the new methods to exploit processes.
Most standardized methods merely cover the cyber to cyber
and physical to physical exploitation, which arguably cover
the easiest and most common historical attacks [19]. Stuxnet
introduced publicly the possibilities of cyber to physical ex-
ploitation while little is known of possible physical to cyber
vectors. To cover the cyber to physical risk, the most common
technique is through Bayesian networks with attach trees and
Markov chains [20]. A major drive to Bayesian networks is
the complex states that physical processes may enter, which
differ on Mean Time to Shut Down (MTTSD). While the
probabilities to reach across the IT network to the PLCs
follow well-documented methods and means through NVD or
CVSSv3, detection and vectors at the PLCs require expert
weighting and most likely proprietary input [19]. This method
for a rating has been worked out for the nuclear industry in
the form of Cyber Security Risk Index (CSRI) where all the
possible physical sensor states have been propagated and the
penetration testing is impossible for other methods of rating
risk [21]. Detection before shut down is limited within indus-
trial CPS to IT Intrusion Detection Systems (IDSs) that are
built to overcome the unique aspects within industrial networks
[16]. Even with research progressing to better characterize
the risk statically and dynamically present in industrial CPS,
there are no open-source rating systems in circulation, though
cybersecurity companies specializing in control systems are
starting to use them to better define current risk and prioritize
defensive actions. While a SCADA risk index has potential
for use within the UAV community, the lack of open-source
index, smaller scale, and shorter lifespan of systems reduce
direct applicability to sUAVs.

C. Cybersecurity Insurance

As a growing variation of quantitative cyber risk, insurance
policies have been diverting some of the risk of exploitation
since 1997 when the Internet use globally was only 1.7% of the
population [22]. Insurance companies function on a strategy
of taking premiums upfront to cover the risk of failure in the
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Fig. 2. Five phases of the Cyber Risk Scoring and Mitigation (CRISM) tool [15].

future and spread out the cost for the user, whether for disaster,
health care, or cyber attack. The Internet has since exploded in
size with the total cyber market estimated at $3 to 3.5 billion
in 2017 [23], with cyber crimes costing the global economy an
estimated $450 billion in 2016 [24]. The companies that issued
the total cyber insurance premiums totaling $1.35 billion in
2016 [25] did so based more on an abstract perception of
risk due to a lack of historical data to determine probability
and actual monetary damage for previous attacks, especially
when the damage is information theft or leakage [26]. The
most common and simple equation for insurance is based on
historical average of cost per incident times the probability
of incident in the near future [15], which requires the very
information that is lacking or obscured for cyber incidents.
To reconcile this discrepancy in information, several research
models have been developed to validate insurance investment
and fewer have published methods of quantitative risk indexes.
Cyber insurance is possible and good for security as long as the
premiums imposed are tied directly to self-protection strategies
employed by the organization [27]. For quantifying this risk
versus protections, the largest issue is not previous historical
data which will continue to grow over time, but mapping all
possible attack vectors in the insured system which requires
knowledge of all locations of valuable information and em-
ployee accesses and habits [28].

The most promising methods to grasp the state of a network
are presented by the Cyber Risk Scoring and Mitigation tool
(CRISM) which operates as a specially designed IDS [15].
This method used in cyber insurance is designed for IT
networks where the CVSSv3 and NVD provide comprehensive
insight to network vulnerabilities and usage probabilities,
though was inspired by driver insurance programs where users
installed a device to provide additional information to the
insurance company for lower premiums. The ability to add an

IDS to a Commercial Off The Shelf (COTS) UAV is most
likely impossible due to size or tampering with warranty,
therefore CRISM can not be directly applied to UAV risk
indexing. However, their analytic model is very promising
in its flexibility to include varying components. As shown in
Figure 2, CRISM has five phases.

1) Mapping: The first step is static analysis of the system to
determine all components and links with all currently reported
vulnerabilities. This mapping phase consists of determining
the data and control links (if different) at a physical and
protocol layer, operating system of both ground station and
UAV, avionic and embedded systems controlling the UAV,
and environment that the UAV lives in for connections and
external (not necessarily adversary) radio waves.

2) Vulnerabilities: With all of the mapping laid out stati-
cally, the vulnerabilities that are known across all components
are then expounded. At the communication links, vulnerabil-
ities can consist of protocol flaws, susceptibility to jamming,
and leakage of information. At the OS component, vulnerabil-
ities are better laid out via CVSSv3 and NVD such that the
software and hardware vulnerabilities are better reported. The
navigation vulnerabilities are based on the probability of false
signals being accepted and the combination of sensors relied
on reduces risk. Sensors such as Inertial Navigational System
(INS) that are much more difficult to spoof than GPS reduce
the cyber risk of system, but only if properly checked by the
autopilot and the programmed failure state.

3) Attack Vectors: With the mapping and tabulation of
known vulnerabilities, attack vectors can be determined by
common methods through the entire system and the probability
of attacks can be estimated. Attack vectors can be initialized
only at input ports, whether on ground station or UAV. Vectors
are trimmed by forward progress and ability to cause an effect
on the mission.
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4) Bayesian Network (BN) Graphs: Bayesian networks are
then utilized to build out each vector across nodes to determine
probability of forward progress and exploitation probability
either through probabilities chosen by the organization or
experts in the field.

5) Scoring: Lastly, scoring is completed by tabulating the
probabilities of exploitation and its effect to the mission.
CVSSv3 does present a usable index for consumers and
manufactures, however, it is a vulnerability severity assessment
and not a direct correlation to risk indexing.

III. METHODOLOGY

Three areas of comparison between these fields of risk as-
sessment that are generally recognized as core to determining
viability are as follows: usability, cost, and ease-to-understand
results [29]. Of these, usability will be further examined by
traits of required expertise, flexibility to modifications, and
coverage of device and network risk, which compose specific
UAV risk components. These criteria should provide a more
detailed view into the described fields before determining
applicability.

Each of the fields specifically utilize their designated risk
assessments simply for the reason that they work for their
devices. These tools meet an understood baseline that they
are effective, but fall short when sUAVs are the subject. Any
assessment that meets, but does not have the potential to
exceed this baseline, is rated “Yellow” per category. Within
categories, it is possible for the field’s tool to fall below this
baseline and miss key components for a sUAV risk assessment
tool, which would then be rated “Red”. In the opposite manner,
some fields that properly account for sUAV characteristics and
calculate risk indices on par with with that field’s specific
devices are to be labelled “Green”. A “Green” rating is not to
insinuate that all sUAV risk is completely accounted for, but
that the tool reaches its own performance baseline with UAVs
also.

IV. ANALYSIS

As seen from the build out of other markets’ rating systems,
the validity of the rating is based on how holistic the system
is examined. The layout of components and a cybersecurity
risk index for sUAVs requires additional consideration for
adjacent devices and networks plus the environment that the
device is operating in since sUAVs are mobile. With swarm
research as a far end of connectivity of a sUAV, these flying
computers use wireless communications that broadcast over
the open air to connect to their ground station and to other
UAVs. A rating needs to include some factor of the security
of these other devices and the connection protocol that allows
communications, especially if another ground station or UAV
can gain operational control. The environment aspect is made
of the inherit radio waves that may or may not interfere with
communications and control of the UAV. The data link itself
may be secure, but consideration for the country, locale, or
altitude may change collision rate or noise on the channel
and thus effect security. Table I shows analyzed applicability

of each cybersecurity field to sUAV characteristics, if directly
applied.

TABLE I
INDEX APPLICABILITY TO SMALL UAVS.

Expertise Flexibility Coverage Cost Readability
Traditional Yellow Red Yellow Yellow Green

ICS Yellow Red Green Yellow Red
Insurance Yellow Green Yellow Red Green

CVSSv3 is built for traditional IT systems, especially for
common computer components and software that the com-
munity can test and submit vulnerabilities. The sUAV field
uses more embedded systems that either run on proprietary
hardware or software, and the devices operate much more
frequently on ad hoc networks where a simple modifier for
environment and temporal scores is imprecise and lacking.
Industrial Control System (ICS) and SCADA vulnerability
tests take into account the physical aspects influenced by
and can effect cyber devices as seen in sUAV, however
the static and unique natures of SCADA systems show an
underestimation for new exploits and most quantitative indices
are close held by organizations selling services. Additionally,
the unique fluidity of networking and device modification
would require near continuous recalculation of risk or initial
calculation for every configuration. The insurance-spawned
CRISM shows theoretical promise, especially within its an-
alytic approach, though the IDS portion needs adaptation to
the UAV field before the tool would be truely useful. Since
the market share is dominated by proprietary minded brands,
the IDS in question may need to be network only, which will
reduce its effectiveness but still provide live insight into the
inherit risk. Many of the holes of CVSSv3 also carry over
to the insurance field since the tool borrows heavily from
the same IT databases for vulnerability assessment. While
CVSSv3 and SCADA indices have more operational data
backing approaches, CRISM requires additional research, data
comparison, and marketing before being viable main-stream,
which is where a sUAV risk index will be of greatest use to
the consumers.

V. CONCLUSION AND FUTURE WORK

Small UAVs do not have a quantitative risk assessment that
meets the baseline of accuracy for their unique characteristics.
Current risk assessments focus on either the standard desktop
configurations of hardware and software as with the traditional
CVSSv3 or the network with ICS and insurance’s CRISM. Of
the three fields, the CRISM tool shows promise for attaining
fidelity on sUAVs, but would need significant work to adapt
to the ad hoc wireless networking and UAV specific protocols.
Connected, CVSSv3 requires significant addition of UAV
vulnerability signatures to be useful.

Future work in the field of sUAV risk assessment requires
the building of a quantitative equation for the flying devices
or the adaptation from a parallel assessment, as discussed
at length in this research. Analytical scoring of a sampling
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of UAVs then would provide validity to the assessment. It
is unknown at this time if an analytic only scoring would
provide the best results by providing ease of use in light
of highly proprietary brands defining the market. A CRISM-
like adaptation needs validation through either live testing on
single and networked UAVs or at least hardware in the loop
simulation. Hardware in the loop is vital to simulation with
UAVs due to the physical responses of the system to cyber
effects. Without considering the physical response, many of
the detection methods of cyber to cyber and cyber to physical
attacks are lost.

Scoring, at this point, is more for internal comparison,
but the future expectation is to provide a medium for the
manufacture or market to convey the risks inherent in dif-
ferent hardware and software configurations to consumers. By
providing a single metric based on mission, the buyer may
be better informed based on their individual level of risk
acceptance, which may be then offset by insurance premiums.
Until a risk assessment becomes accredited, consumers will be
reliant on manufacturer advertisement and personal expertise
to compare the risk being introduced to their mission sets.

ACKNOWLEDGMENT

Disclaimer: The views expressed in this paper are those of
the authors and do not necessarily reflect the official policy or
position of the Air Force, the Department of Defense, or the
U.S. Government. PA Case Number: 88ABW-2019-2852.

REFERENCES

[1] P. G. Fahlstrom and T. J. Gleason, “History and overview,” in Intro-
duction to UAV Systems, 4th ed. West Sussex, United Kingdom: John
Wiley Sons, Ltd, 2012, pp. 3–31.

[2] A. Roder, K.-K. R. Choo, and N.-A. Le-Khac, “Unmanned Aerial
Vehicle Forensic Investigation Process: Dji Phantom 3 Drone As A
Case Study,” Digital Investigations, pp. 1–14, 2018. [Online]. Available:
http://arxiv.org/abs/1804.08649

[3] Z. Valentak, “Drone market share analysis predictions for 2018: Dji
dominates, parrot and yuneec slowly catching up,” Drones Globe,
2017, [Retrieved September 2019]. [Online]. Available: http://www.
dronesglobe. com/news/drone-market-share-analysis-predictions-2018

[4] K. Hartmann and K. Giles, “UAV exploitation: A new domain for cyber
power,” International Conference on Cyber Conflict, CYCON, vol. 2016-
Augus, pp. 205–221, 2016.

[5] A. Karp, “Congress to hold uav safety hearing oct. 7,” 2015, [Retrieved:
September 2019]. [Online]. Available: http://atwonline.com/government-
affairs/congress-hold-uav-safety-hearing-oct-7

[6] T. Vuong, A. Filippoupolitis, G. Loukas, and D. Gan, “Physical indica-
tors of cyber attacks against a rescue robot,” 2014 IEEE International
Conference on Pervasive Computing and Communication Workshops,
pp. 338–343, 2014.

[7] D. P. Shepard, J. A. Bhatti, T. E. Humphreys, and A. A. Fansler,
“Evaluation of Smart Grid and Civilian UAV Vulnerability to GPS
Spoofing Attacks,” Ion Gnss 2012, pp. 3591–3605, 2012.

[8] T. Reed, J. Geis, and S. Dietrich, “SkyNET: a 3G-enabled mobile attack
drone and stealth botmaster,” Proceedings of the 5th USENIX conference
on Offensive technologies (WOOT11), p. 4, 2011.

[9] B. Karabacak and I. Sogukpina, “Isram: Information security risk
analysis method,” Computers Security, vol. 24.2, pp. 147–159, 2005.

[10] M. H. Henry and Y. Y. Haimes., “Comprehensive network security risk
model for process control networks,” Risk Analysis: An International
Journal, vol. 29.2, pp. 223–248, 2009.

[11] K. Scarfone and P. Mell, “An analysis of CVSS version 2 vulnerability
scoring,” in 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, ESEM 2009, 2009, pp. 516–525.

[12] FiRST, “Common Vulnerability Scoring System V3,” 2015, [Retrieved:
September 2019]. [Online]. Available: https://www.first.org/cvss/cvss-
v30-specification-v1.8.pdf

[13] A. A. Younis and Y. K. Malaiya, “Comparing and Evaluating CVSS
Base Metrics and Microsoft Rating System,” in Proceedings - 2015 IEEE
International Conference on Software Quality, Reliability and Security,
QRS 2015. Institute of Electrical and Electronics Engineers Inc., 2015,
pp. 252–261.

[14] S. Zhang, X. Ou, and D. Caragea, “Predicting Cyber Risks through
National Vulnerability Database,” Information Security Journal, vol. 24,
no. 4-6, pp. 194–206, 2015.

[15] S. Shetty, M. McShane, L. Zhang, J. P. Kesan, C. A. Kamhoua, K. Kwiat,
and L. L. Njilla, “Reducing Informational Disadvantages to Improve
Cyber Risk Management,” Geneva Papers on Risk and Insurance: Issues
and Practice, 2018.

[16] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys, vol. 46, no. 4,
pp. 1–29, 2014.

[17] A. J. Chaves, “Increasing Cyber Resiliency of Industrial Control Sys-
tems,” Thesis and Dissertations, vol. 1563, 2017.

[18] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho, “Stuxnet under
the microscope,” ESET, 2010.

[19] K. Huang, C. Zhou, Y. C. Tian, S. Yang, and Y. Qin, “Assessing the
physical impact of cyberattacks on industrial cyber-physical systems,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 8153–
8162, 2018.

[20] S. Haque, M. Keffeler, and T. Atkison, “An Evolutionary Approach of
Attack Graphs and Attack Trees: A Survey of Attack Modeling,” in
International Conference on Security and Management, 2017, pp. 224–
229.

[21] J. Shin, H. Son, and G. Heo, “Cyber Security Risk Evaluation of a
Nuclear I&C Using BN and ET,” Nuclear Engineering and Technology,
vol. 49, no. 3, pp. 517–524, 2017.

[22] B. Brown, “The ever-evolving nature of cyber
coverage,” 2014, [Retrieved: September 2019]. [On-
line]. Available: https://www.insurancejournal.com/magazines/mag-
features/2014/09/22/340633.htm

[23] C. Stanley, “Cyber market estimate,” 2017, interview: 2017-06-26.
[24] L. Graham, “Cybercrime costs the global economy $450

billion: Ceo,” 2017, [Retrieved: September 2019]. [On-
line]. Available: https://www.cnbc.com/2017/02/07/cybercrime-costs-
the-global-economy-450-billion-ceo.html

[25] InsuranceJournal.com, “Cyber insurance premium volume
grew 35% to $1.3 billion in 2016,” 2017,
[Retrieved: September 2019]. [Online]. Available:
https://www.insurancejournal.com/news/national/2017/06/23/455508.htm

[26] J. Yin, “Cyber insurance: Why is the market still largely
untapped?” 2015, [Retrieved: September 2019]. [Online]. Avail-
able: http://www.aei.org/publication/cyber-insurance-why-is-the-market-
still-largely-untapped

[27] J. Bolot and M. Lelarge, “Cyber Insurance as an Incentive for Internet
Security,” Tech. Rep.

[28] A. Panou, C. Xenakis, and C. Ntantogian, “RiSKi: A Framework for
Modeling Cyber Threats to Estimate Risk for Data Breach Insurance,”
Association for Computing Machinery, 2017.

[29] I. Stine, M. Rice, S. Dunlap, and J. Pecarina, “A cyber risk
scoring system for medical devices,” International Journal of Critical
Infrastructure Protection, vol. 19, pp. 32–46, 2017. [Online]. Available:
https://doi.org/10.1016/j.ijcip.2017.04.001

95Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                         106 / 144



A Study about FP-growth on a Distributed System

Using Homomorphic Encryption

Mayuko Tanemura

Master School of Computer Science
Ochanomizu University

Tokyo, Japan
Email: mtanemura@is.ocha.ac.jp

Masato Oguchi

Ochanomizu University
Tokyo, Japan

Email: oguchi@is.ocha.ac.jp

Abstract—Large data collections, such as big data, are utilized and
analyzed in business.Because large-scale data calculations require
a computer system with high processing power, it is practical
to outsource the processing to an external server. However,
especially when consigning confidential data, such as personal
information, it is important to take measures against information
leakage. There are various methods, such as data anonymization
processing for privacy protection, but in this research, as a
method of data confidentiality protection, a Fully Homomorphic
Encryption (FHE) that can be calculated in an encrypted state is
used. As in a previous study, P3CC (Privacy Preserving Protocol
for Counting Candidates) is used, which applies FHE to a client-
server type system that performs frequent pattern mining with
the Apriori algorithm. To implement this system, the Apriori
algorithm is changed to the FP-growth (frequent pattern growth)
algorithm in our research work, and the results are compared
with those of the existing method using the Apriori algorithm.

Keywords–Fully Homomorphic Encryption; Data Mining; Dis-
tributed System.

I. INTRODUCTION

Big data and large-scale data have been utilized in various
fields of business. To perform calculations that deal with large-
size data, a computer system with a high processing power is
required. When it is difficult to provide such a system, external
computing resources, such as the cloud can be used. In that
case, it is necessary to take sufficient measures to prevent the
leakage of the information to be transmitted during the con-
signment processing of data, such as personal information and
medical data, for which it is necessary to ensure confidentiality.
When the processing of confidential information is outsourced,
it is possible to perform addition and multiplication calculation
processing without showing plaintext data to the consignee
server by using fully homomorphic encryption (FHE). There-
fore, there is an expectation that data can be entrusted even if
transmitted by a server that is not reliable. As an application
example of FHE, Liu et al.’s P3CC [1] performed the frequent
pattern mining of transaction data by the Apriori algorithm;
studies on speeding up the approach have also been conducted
[2] [3], in addition to distributed processing using the FUP
(Fast Update) algorithm [4], as described in Section IV. In
this research, we implement the system of frequent pattern
mining but with the part processed by the FP-growth algorithm
instead of by Apriori, and we compare the results with those
of previous studies. The remainder of this paper is organized

as follows. Sections II and III introduce related technologies.
In Section IV, some of the previous researches are shown.
Sections VI and VII-A are about the experiment conducted
in this research. Finally, in Section VIII, the conclusion and
future plans are stated.

II. FULLY HOMOMORPHIC ENCRYPTION

A. Overview
Privacy homomorphism was firstly proposed by Rivest et

al. [5]. They proposed privacy homomorphism as the property
of being able to perform operations while being encrypted.
FHE is an encryption method that combines the features of
additive homomorphism and multiplicative homomorphism.

This approach has the function of a public key cryptosys-
tem, and capabilities for the addition and multiplication of
ciphertexts in an encrypted state are established. In other
words, it is possible to manipulate the plaintext before it is
decrypted by computing the ciphertexts. Therefore, by using
FHE, there is an expectation that calculation processing can be
outsourced without showing plaintext data to the outsourced
server.

For FHE, Gentry proposed a lattice-based implementation
method in 2009 [6]. In each ciphertext, random noise is added
to increase the indecipherability of the encryption.

The problem is that the computational complexity of the
process can be massive because of the large data size of the ci-
phertext and key, and the value of the noise increases each time
the ciphertext is calculated. If the noise exceeds the threshold,
the decryption becomes impossible. The noise value increases
significantly, especially when performing multiplication. By
performing a bootstrapping process, it is possible to refresh
the noise of the ciphertext, but this process also requires a
large amount of calculation.

B. Leveled FHE
Leveled FHE is an implementation of FHE that does

not use bootstrapping, and it was proposed by Brakerski et
al. [7]. Leveled FHE is a structure of perfect homomorphic
cryptography that can evaluate the result of a logic circuit of
fixed depth L. If the calculation logic circuit depth is small
enough for the level given in advance, there is no need to do
bootstrapping. This study uses Leveled FHE, so it does not
use bootstrapping.
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III. FREQUENT PATTERN MINING

Frequent pattern mining is a method aimed at extracting
correlation rules from a large quantity of data. This study deals
with transaction data.

In the frequent pattern mining used in this research, which
item is included in each transaction is represented as a binary
matrix. Frequent item sets are extracted based on whether the
support value is greater than or equal to the given minimum
support value. The support value of each item set is the ratio
of the number of transactions including the item set to the
total number of transactions. Apriori and FP-growth are typical
algorithms for frequent pattern mining. The outline of each
algorithm is provided below.

A. Apriori
Apriori algorithm was proposed by Agrawal et al. in 1993

[8]. Apriori is a breadth-first search algorithm that compares
the support value III with the given minimum support value
in order to acquire the list of frequent item set from size
of 1. Apriori is used in the previous research described in
Section IV. Even if there are few types of items, the number
of possible combinations of items can be massive. To reduce
the calculation amount, pruning is adopted. For example, if
the support value of an item set of item length n is less than
the minimum support value, it is determined that the pattern
of item length n + 1 including the item set is not frequent
anymore. The implementation of Apriori is relatively easy.

B. FP-growth
FP-growth is another algorithm used to extract frequent

item sets. In contrast to Apriori, FP-growth is a depth-first
search. The results of these two algorithms, the list of
frequent itemsets, will correspond to each other. The process
of FP-growth is different from Apriori in terms of the data
structure; it uses tree-structured data to search for frequent
itemsets. First, the database is scanned, and the transaction
data are stored in the tree structure of a prefix tree called
FP-tree. Then, frequent patterns are found by scanning the
tree. It is different from Apriori in that it does not enumerate
the frequent item set candidates. Depending on the data
size and data characteristics, there is an expectation that the
search can be made more efficient than Apriori, in which the
enumeration of frequent items becomes a bottleneck. The
implementation is also more complex than that of Apriori.
FP-tree is defined as follows [9]:

1) It consists of one root labeled as ”null”, a set of
item prefix subtrees as the children of the root, and
a frequent-item header table.

2) Each node in the item prefix subtree consists of three
fields: item-name, count, and nodelink, where item-
name registers which item this node represents, count
registers the number of transactions represented by
the portion of the path reaching this node, and node-
link links to the next node in the FP-tree carrying the
same item-name, or null if there is none.

3) Each entry in the frequent-item header table consists
of two fields, (1) item-name and (2) head of node-
link, which points to the first node in the FP-tree
carrying the item-name.

To construct an FP-tree, transaction data and minimum
support values are needed as input data. To pick the frequent
item sets, scan the constructed FP-tree recursively.

IV. PREVIOUS RESEARCH

An outline of the previous research on secure data mining
using FHE is provided below. The algorithm for frequent pat-
tern mining adopted in all of the previous research mentioned
in this section is Apriori.

A. P3CC

P3CC is a secure method for a frequent pattern mining
consignment system using FHE proposed by Liu et al. [1].
Comparing operations between ciphertexts are difficult when
FHE is used. Therefore, when the values of ciphertexts need
to be compared, they are sent back to the client machine. To
reduce the data size of the ciphertext, the numbers of items and
transactions are not encrypted, and only a binary matrix that
represents which items each transaction includes is encrypted.
Furthermore, adding dummy data on the client side prevents
the guessing of plaintext data from the server.

B. Speedup of P3CC with Cipher Text Packing and Cipher
Text Caching

Imabayashi et al. [2] proposed a method to speed up P3CC
by introducing a packing scheme by Smart and Vercauteren
[10]. The method reduced the amount of ciphertext and the
multiplication of ciphertexts using ciphertext packing by en-
crypting multiple integers as a vector. As a result, the process
achieved a 10-fold speedup compared to the case without
packing. This method can be applied not only to Apriori, but
also to secure search and other data mining algorithms. Then,
they proposed a method of caching a ciphertext to reduce the
space-time complexity of frequent pattern mining with FHE.
It is shown that the proposed method can greatly reduce the
execution time and memory usage of Apriori by P3CC, and the
effect is larger when the data set is large or when a dummy
set is added. In particular, when the number of transactions
is 10,000, a 430-fold faster speed and 94.7 % memory usage
reduction are realized compared to P3CC [3].

C. Implementation of P3CC in a distributed environment and
speeding up update with FUP algorithm

Yamamoto et al. [4] implemented a secure data mining
system using the FUP algorithm to speed up Apriori
algorithm when the database is updated [4]. They also applied
a master/worker-type distributed processing to speed up
the system. Item set division was applied to the distributed
processing method. As a result, the execution time of the
recalculation when the FUP algorithm is introduced at the time
of the database update can be shortened by approximately
3- to 4-fold compared with recalculation by the Apriori
algorithm. Additionally, due to the decentralized processing,
the calculation time on the master side is reduced according
to the number of distributed machines.
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Figure 1. execution time when FP-growth was used (Client)

V. IMPLEMENTATION OF SECURE FREQUENT PATTERN
MINING

In this research, a system like the one presented Figure 1 is
used. In this study, a master-worker (master-slave) distributed
system is adopted for processing on the server. The number of
workers is set from 1 to 4. Two algorithms of frequent pattern
mining are used in this system: FP-growth and Apriori (from
previous research). For both programs, we used ciphertext
packing based on previous research [2] by Imabayashi et
al. [2]. The program using Apriori is the one produced by
Yamamoto et al. [4]. This system was implemented in C++,
the library of the FHE is Helib [11], and the distributed/parallel
processing library is MPI [12].

The following shows the processing for each system using
the two types of algorithms.

A. Outline of processing using Apriori
The process is partially delegated to the server, as indicated

in Section IV. The procedure is shown below.

1) Preparing data on the client
a) Encrypt transaction data with FHE.
b) Create candidate items and send them to the

server.
2) Consigned processing on the server

a) Receive encrypted data from client and cal-
culate support value of item without de-
cryption. Then, send the result back to the
client. In this process, master-worker type
distributed processing is performed.

3) Comparison with minimum support value on the
client

a) Receive file from the server
b) Retrieve items whose support value is equal

to or greater than the minimum support
value.

c) Return to procedure 1b and send the candi-
date whose item set size is one larger. Repeat
until the number of candidates is 0.

B. Outline of processing using FP-growth
When using FP-growth, the procedure is similar to the

process with Apriori in the first step. In this program, the
calculation of the support value of the item, which is the first
step of the construction of FP-tree, is consigned to the server,
while the construction and scanning of the FP-tree are done on
the client machine. Because it is necessary to perform many

comparison operations to construct and scan an FP-tree, in this
research, these processes were performed on the client. Even
if the process on the client is not finished, the server ends the
program after sending the support value calculation result to
the client. The procedure FP-tree construction and scanning is
shown below.

1) Preparing data on the client
a) Encrypt transaction data with FHE.
b) Create candidate items and send them to the

server.
2) Consigned processing on the server

a) Receive encrypted data from client and cal-
culate support value of item without de-
cryption. Then, send the result back to the
client. In this process, master-worker type
distributed processing is performed.

3) FP-tree construction on client
a) Receive file from the server.
b) Retrieve items whose support value is equal

to or greater than the minimum support
value.

c) Sort the items in the order of occurrence and
recreate the transaction excluding the items
that are not frequent.

d) Construct an FP-tree.
4) FP-tree scanning on the client

a) Scan the constructed FP-tree and output the
result.

VI. EXPERIMENT

A. Experiment outline
The client program and server program were run on each

computer using two computers in the same network. We
confirm the execution time by changing the minimum support
value and the number of transactions.

B. Experiment environment
The performance of the computer used in the experiment

is shown in Table I.

TABLE I. DETAILS OF THE MACHINE USED IN THE EXPERIMENT

OS CentOS 6.9
CPU Intel R© Xeon R© Processor E5-2643 v3 3.6 GHz

6 core 12 threads
Memory 512 GB

One machine of the type shown in the Table I was used as
a client and a server. On the server side, as shown in Section
V, master-worker type distributed processing is performed, but
in this experiment, it is fixed to one. Additionally, the worker
runs on the same machine as the master.

C. Experiment method
1) Investigation of the lowest possible level for experimen-

tal data: For each transaction data, when minimum support
value is 0.01, an experiment was conducted with the possible
lowest level. In this case, the lowest level represents the lowest
one that the cyphertext can be normally decoded until the
end of the calculation. The level was specified by trial. In
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all experiments in this study, the level is set to 17 in Apriori
and 3 in FP-growth. These values of the level are the lowest
that can be applied to each method. If the levels are lower than
these values, execution will be end with a decode error.

2) Measurement of Execution time: The execution time was
measured for each combination of input data and minimum
support value.

3) Measurement of Resource Usage: CPU and memory
usage are measured by dstat command.

D. Input data
The input data in this experiment were artificially created.

Data generation was performed using IBM Quest Synthetic
Data Generator, and the parameters were generated by speci-
fying the average item length, the maximum pattern size, the
number of item types, and the number of transactions.

TABLE II. PARAMETERS OF INPUT DATA

Average transaction length 5
Maximum pattern size 5
Number of item types 30
Number of transactions 9900

The value of each parameter is specified as shown in Table
II.

VII. RESULTS AND DISCUSSION

A. Results
The execution time shown is the average of three trials

for each parameter. Figure 2 shows the execution time on the
client when FP-growth is used.

Figure 2. execution time when FP-growth was used (Client)

The execution time on the client side decreases almost
monotonically as the support value increases. It is the FP-
tree scan that is most affected by the computation time, and
this changes with the size of the tree created. The creation
time of the tree itself ends in linear time, but the scanning
requires recursive processing, so when the minimum support
value is small, the calculation time tends to jump. In the
current implementation, the calculation time on the server side
is approximately 10 seconds and hardly changes because the
process is the same if the data are the same.

Second, the execution time when FP-growth was dis-
tributed is shown in Figure 3.
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Figure 3. execution time when FP-growth was used (distributed)

The communication time increases as the number of work-
ers increases. However, since there were few parts of the
processing that were entrusted to the servers, the overhead was
large and the distribution effect was not so great.

A comparison between two programs with the two different
algorithms is shown in Figure 4.

1 2 3 4
apriori_all (client) 4186.500679 2428.341623 1514.817209 1199.619227
apriori_all (master) 4186.503753 2432.53919 1516.405 1203.901466
fpgrowth_all (client) 75.27033631 78.58226927 76.31201235 76.60046299
fpgrowth_all (master) 10.53994807 12.60987329 11.67660824 13.92486667
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Figure 4. comparison of execution time between the programs using Apriori
and FP-growth

The minimum value of the required level differs signif-
icantly between the systems using the two algorithms. This
difference directly affects the size of the ciphertext and the
execution time.

Figure 5 and Figure 6 show a comparison of the resources
used by the client’s machine. The data is measured when it is
run with four workers and minimum support value is 0.05. In
the system by Apriori, the CPU utilization peaked at the timing
of receiving data. In FP-growth, after receiving data, FP-tree
scan is performed in the part where the value is continuously
10%. In addition, the memory usage rate continued to be high
during entrustment processing in both programs.

B. Discussion
When Apriori is used, once the transaction data are en-

crypted, re-decryption is not performed every time when data
is exchanged with the server. Therefore, as the number of loops
of the calculation increases, in other words, as the maximum
value of the frequent item set length increases, the amount of
noise in the ciphertext increases. To prevent decryption error, it
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Figure 6. comparison of memory usage amount between the programs using
Apriori and FP-growth

is necessary to set the value of the ciphertext level sufficiently
large in advance.

On the other hand, in this implemetation, transaction data
exchange with the server is performed only once in FP-growth;
the initial value of the level needs to be able to calculate the
support value only one time, so the required level compared
with Apriori is smaller.

In addition, it can be seen that the increase in the number
of candidate item sets more strongly affects the required
level than the number of transactions due to the change in
the support value. It can be confirmed that the execution
time of FP-growth is approximately 100-fold smaller than the
execution time of Apriori at maximum. The execution time
is longer in Apriori’s system. The higher the level is, the
larger the size of the ciphertext, and the amount of processing
could also be large. In FP-growth, although the amount of
computation in scanning of the FP-tree is also large, it was
found that it is extremely small when compared with the
processing of the ciphertext in this experiment.

In the experiment, it is confirmed that the difference in
the results between the two different systems was not only
due to the difference in the algorithm itself but the difference
in implementation also had a relatively large effect. In the
current implementation using FP-growth, although the system
using Apriori exchanges with the server multiple times, the
portion of the processing entrusted to the server is small. The
amount of the process dealing with cyphertext is generally

large, so when the number of processes used to manipulate
the ciphertext is reduced, a large difference is observed in the
execution time.

VIII. CONCLUSION AND FUTURE PLANS

A system doing frequent pattern mining by the FP-growth
algorithm using a FHE was implemented. Then, the execution
time and the amount of resource usage of this system were
measured, and they were compared with previous system using
the Apriori algorithm. In the comparison of the execution
time, the system using FP-growth was approximately 100-fold
faster than the system of the previous research. This result is
considered to be the reason for much of the difference between
the implementation of the system, rather than the algorithm
itself. In the future, to improve the FP-growth system, it is
considered necessary to reduce the number of times of the
transmission and reception of the ciphertext data between the
client and the server when increasing the ratio of processing
on the server.
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Abstract—In the changing landscape where an increasing number
of organizations deploy smart devices to their networks, one of the
greatest challenges they face is security. While the use of Internet
of Things (IoT) has enabled new capabilities, such as ease of
access, remote control, and interoperability, it has also introduced
new attack vectors. For example, due to the limited hardware
capacity, IoT devices lack the additional computational resources
required for security, such as data encryption. As a result, gaining
access to the data associated with the IoT devices becomes almost
trivial assuming the adversary has physical access to the device
or logical access to the network. Unfortunately, the production
of the IoT devices cannot be effectively regulated without a
governing policy, leaving the burden to secure the devices to the
end users. To help mitigate the vulnerabilities stemming from
the hardware limitations of IoT devices, we present Internet of
Things Active Management Unit (IoTAMU), a defensive model to
obscure the sensitive data sent over Wi-Fi. As a proof of concept,
we first show that the video stream created by one of the most
popular IoT cameras being sold on Amazon can be recreated via
passive sniffing. Then, we present an automated tool to extract
the video stream from network traffic. In 100 percent of test
cases, the tool was able to extract a recognizable video stream
from captured network traffic. Finally, we propose IoTAMU, a
central management agent which acts as the network proxy for
the vulnerable IoT devices to both obfuscate the network traffic
by mimicking real devices, and to serve as an encryption agent
for the devices with limited computational capacity. The model
requires minimum set up for the users, and is compatible with
any device that is configurable over Wi-Fi. IoTAMU will help
pioneer easily deployable user-end security agents to protect the
confidentiality in smart home networks.

Keywords–Internet of Things (IoT); data security; network
obfuscation; Wi-Fi camera.

I. INTRODUCTION

The term Internet of Things (IoT) represents a wave
of embedded technologies with the added functionality of
connectivity. Since its inception, IoT has infiltrated numerous
public sectors in Industrial Control Systems (ICS), cities,
healthcare, and government [1]; according to the International
Data Corporation, the IoT industry is projected to reach 1.2
trillion dollars by the year 2022 [2]. However, the rapid
growth of the industry is rivaled by the increasing number
of vulnerabilities that are discovered in the devices. As the
devices continue to be deployed in critical infrastructures and
national institutions, investigating secure policies for the use
of IoT becomes one of the priorities for organizations such as
the U.S. Department of Defense [3].

Embedded systems found in automotives, Supervisory
Control and Data Acquisition (SCADA) systems, among oth-
ers, were originally designed to function as closed systems. By
connecting those systems to the Internet, the devices presented
numerous vulnerabilities that cannot be easily defended. The
dangers of these design deficiencies were highlighted in a 2015
study on the infotainment system found in modern vehicles,
which discovered a vulnerability that allowed an adversary
to gain remote control of the vehicle [4]. Security experts
have recognized the security flaws in IoT devices and have
investigated potential attack surfaces to help the manufacturers
and the users to mitigate them, including the effort by the Open
Web Application Security Project (OWASP) [5]. However, the
hardware limitations of the devices often become the bottle-
neck for meaningful security measures such as encryption,
which requires large computational power. Security is therefore
left in large part to the end users.

Currently, one of the most common modes of communica-
tion for IoT devices is Wi-Fi [1]. While the security of Wi-Fi
has improved after transitioning from the Wired Equivalent Pri-
vacy (WEP) standard to Wireless Protected Access 2 (WPA2)
[6], there still exists vulnerabilities that allow an adversary to
gain access to the network through publicly available password
cracking tools such as Aircrack-ng [7] and Cain [9]. One of
the vulnerabilities of many IoT devices is that they send and
receive data in the clear, allowing an attacker with Wi-Fi access
to passively sniff the network traffic.

In this study, we reverse engineer one of the most popular
wireless cameras on Amazon to illustrate its vulnerability to
eavesdropping. Numerous studies, including those of [10]-[12],
have demonstrated vulnerabilities that exist in network cam-
eras. In particular, Ostrom and Sambamoorthy [11] showcase a
series of attacks that can be launched against IoT cameras via
Address Resolution Protocol (ARP) cache poisoning, a com-
mon technique to eavesdrop on network traffic between hosts
[13]. This study highlights the pervasiveness of eavesdropping
via passive network scans 10 years after the DEFCON talk.

Over the years, researchers have sought out ways to
mitigate the inherent security threats present in IoT net-
works. These approaches include Local Area Network (LAN)
management schemes via Software Defined Networks (SDN)
[14][15], deployment of encryption gateways [16][17], and
obfuscating network traffic by sending crafted traffic [18].
While the SDN approach prevents a compromised device or
a malicious host from further attacks, it does not prevent
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a bystander from passively eavesdropping on the network
traffic. Using encryption gateways prevents an adversary from
eavesdropping on sensitive data such as those of IoT cameras.
However, the proposed methods of [16] utilize a cloud archi-
tecture, which does not provide an end-to-end protection of
the communication. The recently proposed edge computing
approach of [17] implements security agents with greater
computational capacity on edge devices such as a wireless
router. But the framework requires the modification of the
IoT device’s existing protocols. Lastly, the authors of [18]
demonstrate the feasibility of IoT device fingerprinting from
encrypted Wi-Fi traffic; they are able to infer the duration and
time in which a user is present in a smart home. They defeat
device fingerprinting and information leakage in a smart home
by spoofing Wi-Fi traffic to mimic the IoT devices using a
Raspberry Pi. This study presents IoTAMU, a defense a model
that couples encryption agents and network traffic spoofing to
enhance the confidentiality of an IoT network.

This research provides the following contributions:

• We exploit an eavesdrop vulnerability in a popular IoT
camera

• We present an automated tool to extract the H.264
video stream from network traffic

• We introduce Internet of Things Active Management
Unit (IoTAMU): a data confidentiality model for IoT
networks that performs network traffic obfuscation and
application level encryption

The rest of the paper is structured as follows: Section
2 describes the threat model in which the experiment was
designed, and Section 3 presents the vulnerabilities found
in an IoT camera and the results of reverse engineering its
proprietary protocol. Section 4 presents the design of IoTAMU.
Finally, Section 5 concludes the paper and discusses future
work.

II. THREAT MODEL

The threat model of this study consists of the following:

• A smart home network set up by a user which consists
of a central router acting as the Access Point (AP)
[19] to connect different IoT devices via Wi-Fi secured
with WPA2

• A user accessing the video feed from an IoT camera
at a remote location via an application provided by
the vendor

• An adversary in proximity to the smart home who
has gained access to the network by cracking the
WPA2 preshared key and passively sniffing the net-
work [20][21]

Other modes of wireless communications for IoT such as
Zigbee [22], and Bluetooth [23] exist, but they are out of scope
of this study.

After gaining access to the network, the adversary pas-
sively sniffs the network traffic and analyzes the data without
detection with Wireshark [24]. Because many IoT devices
send unencrypted data over the network [5], the adversary
collects sensitive information without authorized access to the
device. As highlighted in [25], there are numerous attacks
that an adversary can perform after gaining access to a target

network. However, this study focuses on compromise of data
confidentiality as a result of eavesdropping in an unprotected
network.

Figure 1. Communication in smart home networks with and without
IoTAMU.

The primary goal of IoTAMU is to protect sensitive data
in transit to and from an IoT device. Figure 1 depicts a
smart home network with and without the use of IoTAMU.
As previously mentioned, a typical smart home network is
vulnerable to eavesdropping as it exchanges unencrypted data.
IoTAMU is a security agent located between the devices and
the router, encrypting their communication. It is paired with a
decryption agent on the other end of the communication that
sits on the device the user uses to interact with the IoT devices.
The IoTAMU also performs periodic spoofing to deter device
fingerprinting and obfuscate the network data from sniffers.

III. INVESTIGATING THE VULNERABILITIES OF AN IOT
CAMERA

As a proof of concept, we investigate the vulnerability of
the network protocol for Wansview Wireless 1080P Security
Camera model Q3 being sold on Amazon [26]. As of Septem-
ber 18, 2019 it holds the Amazons Choice label on the website
for the keywords “wi-fi baby monitor” with more than 3,000
customer reviews of average 4.1 out of 5-star rating scale. A
comprehensive list of tools used in this work is summarized
in Table 1.

A. Experimental Setup
As shown in Figure 2, the IoT camera is connected to the

router via Wi-Fi and communicates with the vendor application
(Wansview) running on an Android device (Samsung Galaxy
S8) over the 4G network provided by the cellular provider
(T-Mobile in this case). In proximity to the smart home is
an adversary on a laptop (Lenovo Thinkpad) running Kali as
its operating system. An Alfa wireless card is connected to
the laptop to capture the network traffic in the smart home.
The captured data is then passed into Wireshark for decoding
and analysis. There are methods publicly available to gain
root access to the camera with its admin credentials [27],
which has been verified by the authors. However, this study
focuses on passive network sniffing which does not require
direct interaction with the device.

B. Sniffing the Network Traffic from IoT
To sniff the network traffic, the Alfa card connected to the

laptop was first set to monitor mode via Airmon-ng [7]. Then,
Airodump-ng was used to identify the Internet Protocol (IP)
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TABLE I. LIST OF TOOLS USED

Name Version Description
Motorola Router MG7540 Router that connects the IoT camera to the Internet via Wi-Fi
Lenovo Thinkpad W541 I7-4910MQ (Kali 2018.4) Laptop used for sniffing network traffic
Wansview Wireless Camera Q3S (X Series) IoT camera
Samsung Galaxy S8 SM-G950U1 (Android version 9) Smartphone to remotely control the camera
Alfa Card AWUS036NHA Wireless network interface controller to send and receive 802.11 traffic
Wireshark 2.6.8 Software used for packet analysis
Airodump-ng 1.5.2 Software used to capture network traffic
Aireplay-ng 1.5.2 Software used to inject network traffic
Airmon-ng 1.5.2 Software used to configure the wireless card for network sniffing
Wansview 1.0.16 Mobile application to interact with IoT Camera
Python 3.5.2 Programming language used for automated H.264 video extraction

Figure 2. An overview of the experimental setup.

[8] address of the router acting as the AP. Next, Airodump-
ng is used again to record network traffic associated with
the target router, and Aireplay-ng was used to send spoofed
deauthentication messages to the IoT camera to capture the
WPA 4-way handshake between the router and the camera.
The messages in the handshake are used by Wireshark along
with the WPA2 preshared key to decode the encrypted Wi-Fi
messages. For the purpose of this experiment, it is assumed that
the adversary has gained access to the WPA2 preshared key.
While gathering network data, the user in a remote location
accessed the camera feed through the mobile application. After
a period of time, the sniffer was stopped and the recorded
data was viewed in Wireshark for analysis. In order to view
the encrypted Wi-Fi data in Wireshark, the preshared key
for WPA2 was input under the IEEE 802.11 decryption key
setting.

C. Decoding the Video Stream Protocol
When the video stream was initiated from the remote user,

the camera first performed a Domain Name System (DNS) [28]
lookup of its cloud server followed by a series of network dis-
covery protocols including Simple Service Discovery Protocol
(SSDP) [29]. Its primary transport protocol was User Datagram
Protocol (UDP), which is often used for transportation of time-
sensitive data like video streams [19].

Determining the initial start time of video stream was
clear within Wireshark, highlighted by the jump in the length
of payload from mostly sub-100 range to 1,032 bytes. At
first glance, Wireshark was unable to determine the type of
data being transmitted. However, exporting one of the 1,032

payload and analyzing its entropy showed a steep downward
slope suggesting that the payload was not encrypted (Figure
3). Upon further inspection, the first packet of the stream
contained the file signature of a JPEG image, which can be
recognized by the characters “JFIF”. The subsequent packets
showed that the video was transferred as an H.264 [30] stream,
suggesting that the initial JPEG image corresponds to the
thumbnail image shown in the Android application.

Figure 3. Entropy of a sample payload during video stream.

Once the video stream began, on top of the stream data,
the UDP payloads also contained various control information
consisting of a 4-to-8-byte block header and an optional
block that varied from 0 to 40 bytes. Figure 4 illustrates the
breakdown of the proprietary protocol in all packets. The first
byte of the payload was a fixed value of 0xf1, which was
followed by either 0xd0, 0xd1, 0xe0, 0xe1. The control
byte 0xd0 was used in payloads with stream data, whereas
0xd1 served as acknowledgement packets analogous to the
Transmission Control Protocol (TCP) [19] counterpart. 0xe0,
and 0xe1 were sent out by both the server and the client,
always followed by a 2-byte zero padding, representing a keep
alive signal to leave the stream open to prevent replay attacks.
The next two varying bytes represented the length of the
payload following the two bytes (i.e., length of UDP payload
in bytes - 4 bytes). They were followed by a 0xd100 for any
data part of the JPEG image, 0xd101 for H.264 video stream,
and 0xd102 for MPEG Audio Data Transport Stream (ADTS)
[31] data. The final two bytes in the 8-byte header represented
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Figure 4. Breakdown of a UDP packet payload during camera stream.

Figure 5. A snapshot of the reconstructed video stream.

the sequence number of the data to follow in a data stream
packet, or the number of packets being acknowledged in an
ACK packet.

There were a few variations of the optional overhead
following the 8-byte header depending on the type of packet.
However, for the purpose of extracting the video feed, we
were only required to determine that the optional header for
the packet containing the JPEG header was 8 bytes, and the
optional header for the packet containing the H.264 and the
audio header was 32 bytes. Any stream data directly following
the initial headers did not contain optional headers. There were,
however, optional 32-byte headers for H.264 packets that were
not the first in the series of packets. These headers could be
distinguished by the 0x55aa sequence following the first 8-
byte header, and pertinent data could be correctly extracted by
filtering for the specific sequence.

The aforementioned header information was used to build
an automated H.264 videos stream extraction tool written in
Python [32] to recreate the video stream (Figure 5) from a
pcap capture file without having physical access to the camera
or its credentials. The tool was able to extract a recognizable
video stream from the pcap file in 100 percent of the test cases.

Due to the inconsistent nature of Wi-Fi traffic and the
unreliability of UDP, the reconstructed video feed was not a
perfect replication of the video data stream sniffed en route
to the mobile application. As previously identified in [5], the

eavesdrop vulnerability found in this research showcases its
pervasiveness in IoT devices. This security flaw can easily be
taken advantage by a malicious insider or a determined adver-
sary; it warrants further research to mitigate this vulnerability.

IV. IOTAMU DESIGN

To mitigate the eavesdrop vulnerability created by un-
encrypted application-level traffic, we propose IoTAMU, a
central network gateway for IoT. Its setup in a typical smart
home is depicted in Figure 6. In an end-to-end communication
involving a smart home, as shown in Figure 2, there are
two ends of traffic an adversary can capture: data exchanged
between the IoT device and the cloud, and those between the
remote interface and the cloud. However, the easier of the two
end hosts is the smart home end of the communication, because
the IoT devices are often stationary, and remain static in the
network.

Figure 6. An overview of the IoTAMU model in a smart home network.

IoTAMU will protect this vulnerable end of the commu-
nication by serving as the network proxy to all IoT devices
present in the network to encrypt their application level traffic
before forwarding it to the router. The proxy can be easily
set up in the network by designating it as the default gateway
for the IoT devices through the Dynamic Host Configuration
Protocol (DHCP) [33] in the LAN. The encryption agent
within IoTAMU will be paired with a decryption agent living
on the other host as a background process, often with enough
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computational capacity to perform encryption and decryption
(e.g., computer, smartphone) by itself. IoTMU will consist
of the following capabilities: (1) Authentication, (2) Access
control list (3) Encryption, and finally (4) Spoofing.

The encryption agents will be accessed and configured (i.e.,
add or remove devices) through an authentication mechanism
via username and password set by the user. In addition, to
ensure only the intended devices are communicating with it,
IoTAMU will store an access control list based on the network
signatures of the IoT devices such as Media Access Control
(MAC) address [34], IP address, etc. This does not in fact
prevent an adversary from spoofing one of the IoT devices
to communicate with the gateway. But since the intention of
the gateway is data confidentiality, its vulnerability to spoofing
will not affect its functionality.

Similar to the approach taken by [16], the encryption can be
performed through Public Key Encryption (PKI). This requires
the exchange of keys between IoTAMU in the smart home
network and each of the encryption agents residing in the other
end host. The encryption agents for the end hosts can take the
form of a smart phone application that runs in the background
or an executable on a computer. Initially, each participating
hosts will exchange their public keys in a certificate signed by
a common entity whose public key will be preinstalled on the
agents. All subsequent traffic will be encrypted and decrypted
using the private key and the public key of the end hosts.
The use of PKI will prevent a bystander from intercepting
a common key to decrypt the messages. Although taking an
approach like SSL, which uses PKI to exchange session keys
and using symmetric keys for later exchanges may lessen the
computational demand, it is vulnerable to man-in-the-middle
attacks [13], which defeats the purpose of IoTAMU.

Finally, the IoTAMU will periodically send out spoofed
Wi-Fi traffic to mimic certain device types. Spoofing network
traffic substantiated by the research in [18] will help fortify
the network against fingerprinting and information leakage
in a smart home. It will also protect the unencrypted data
being exchanged between IoTAMU and the IoT devices by
concealing the actual communication among spoofed traffic.
Creation of spoofed packets can be variations on the following
criteria:

• Length of the payload in the network
• Frequency and timing of the packets sent
• Spoofing unused IP address in the network
• Spoofing a plausible MAC addresses of certain ven-

dors to mimic device types

Using the aforementioned criteria, a central IoT gate-
way design will help secure a smart home network without
changing any existing protocols or relying on the vendors
for security. The latency and the packet overhead imposed
by encryption and the effect of periodic spoofing on network
congestion is left for future investigation.

V. CONCLUSION

This paper discusses the vulnerabilities of IoT devices in a
smart home network. We demonstrated the eavesdrop vulner-
ability in the Wansview IoT camera by reverse engineering
its proprietary communication protocol, and by creating an
automated tool to extract the H.264 stream created by the

camera. The proposed design of IoTAMU mitigates this vulner-
ability for the IoT devices in smart homes through encryption
and spoofing. As it does not rely on any existing protocols,
IoTAMU can be implemented for the varying protocols utilized
by the IoT devices to easily deploy in smart home networks.
Development of a Wireshark dissector for the proprietary
protocol, the implementation of IoTAMU, and the analysis of
its performance is left as future work.
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Abstract—With the increasing amount of Internet of Things
(IoT) devices in smart homes, insecure and old devices are leading
to big security issues. A private network can be attacked over
an insecure IoT device, to use it in a botnet or infect it with
ransomware and compromise the whole network. Non-technical
users do not know which devices in their homes are secure
and how to keep track of all the old and new ones. We have
built a typical smart home as a test environment to evaluate
a scoring system for the security of the whole network. First,
all devices are discovered with nmap and then all the possible
information, like the open ports or the Wi-Fi technology, are
retrieved. In the next step, all the information leads to an overall
score for each device. Combined together, the final score for
the whole network is created. A non-technical user can now
determine, if the network is secure or not. We show the proof of
concept of the scoring system with our test environment. However,
some challenges exist. Not all information can be retrieved by
just scanning the devices over the network. Some devices just
return hostnames like “ESP 6A786B”. It is nearly impossible
to tell the kind of device and the manufacturer. Additionally, no
information about the running firmware is provided. To calculate
a meaningful score, much more information has to be collected.
To collect the missing data, we introduce the first version of a new,
open standard for IoT Device IdentificAtion and RecoGnition
(IoTAG). This JSON based model provides all the important
information about the device. Besides the device name, type and
the manufacturer, it shows a list of the services, the firmware
version and the supported encryption. IoTAG allows to create an
overview of the whole IoT network and the development of an
automated scoring system. In the future, additional information
about security vulnerabilities can be collected from the Internet,
to warn the user about insecure devices.

Keywords—Internet of Things; device identification; open stan-
dard; IoTAG; security rating.

I. INTRODUCTION

Internet of Things (IoT) is an ongoing innovation and trend
in nearly all industries and smart homes. The development
is extremely fast and most of the time, the security risks
of IoT networks are underestimated or not even taken into
account at all. This leads to insecure devices, e.g., with missing
encryption or authentication. Overall, a large number of IoT

devices in general, are critical to operate. Some risks are
comparable harmless attacks, which just destroy the device,
but others can lead to hijacking of complete company networks
[1] [2].

To avoid these problems, the user should be able to tell
which devices are in the network and if they are running with
the latest software. Currently, there are no existing systems
for automated device scanning. It is possible to obtain parts
of the required information in single steps. For example, the
network scanners Nmap [3] or Fing [4] can be used for finding
addressable network ports. But the results of this scans will
not be analyzed or evaluated. To help a non-technical user, an
easy to use scoring system for IoT devices is necessary.

The first scan of a network detects all the containing IoT
devices. Each detected device gets a security rank based on the
provided meta data, information collected by the scanner itself
and a database of known vulnerabilities, which are collected
from multiple publicly available sources. All the ranks together
will provide an overall network rank. The scanner should be
able to show the rank, a list of all known vulnerabilities and
general risks of the IoT setup to the user.

The goal of this project is to identify requirements for
the development of a standard, which provides the needed
metadata and also checks the authenticity of the received
information. In this paper, we present the first version of
IoTAG. The paper is structured as follows. Section II describes
the related work. Section III introduces our hardware setup and
device scanning, while Section IV defines the security criteria.
Section V shows the device rating and Section VI the results.
The standard IoTAG is presented in Section VII, followed by
a conclusion in Section VIII.

II. RELATED WORK

One possible solution for IoT device identification uses
device fingerprints. Miettinen et al. [5] are categorizing and
classifying (secure and insecure) IoT devices by device fin-
gerprint. Another research project [6] is developing a sys-
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tem for anomaly recognition (smart home networks). There
are several publications [7]–[10] covering the subject device
identification with device fingerprints and similar approaches.
These publications are demonstrating working approaches for
the detection of IoT devices in a network. However, it is not
possible to identify detailed information such as the current
firmware version or a device ID for further recognition.

Some researchers provide mechanisms to evaluate the secu-
rity and privacy for IoT devices with different security ratings.
One very similar approach [11] uses protocols, open ports and
the encryption to create the rating. But it is not very flexible
and user-friendly because of the missing weighting of each
criteria and the missing overall score of the network. Park et
al. [12] and Ali et al. [13] are offering a very good approach
for the focus of the risk, which can be used to evaluate the
weighting. Both papers do not provide a rating, but a list of
security requirements in IoT services. Another approach uses
vulnerabilities and known exploits to generate a metric value
for the security of an IoT device [14].

With the Device Description Language for the T in IoT from
Khaled et al. [15] and the Thing Description as Enabler of
Semantic Interoperability on the Web of Things from Kaebisch
et al. [16], there are some publications, proposing a machine
readable description for IoT devices. These descriptions are
only for the functionality of a device and cover information
like the turn off command. With IoTAG, we do not want to get
the functions of a device, instead we want to get the security
characteristics. It is possible to extend these descriptions with
our IoTAG information.

This paper extends the initial work of Hinterberger, intro-
ducing the evaluation criteria and scanning methods for the
device rating [17], with further research and the new IoTAG
standard.

III. HARDWARE SETUP AND DEVICE SCANNING

We have built a small smart home environment with ten
devices, as seen in Table I and started a network scan to
detect all the connected devices. Some devices reply with their
hostname, but, in most cases, the response contains something
like “ESP” or it is totally missing. In the next step, a deeper
scan with “nmap -p 1-65535 192.168.0.0/24” is performed.
Additional information about the devices on port 80 HTTP
and a list of all open TCP (Transmission Control Protocol)
and UDP (User Datagram Protocol) ports are shown in Table
II. With this information, we can give more details about the
running services and the device communication. For example,
with an open port 80, an unencrypted connection is likely.

However, with all the given information, it is still impossible
to detect the exact devices. The iPhone and Google Home mini
are detectable with their hostname, but only if the hostname
is not changed.

IV. SECURITY CRITERIA

In order to define a test scheme that can be applied indi-
vidually to any device, it is necessary to develop a procedure
that allows the security risks to be assessed separately for each

TABLE I. HARDWARE OVERVIEW

device hostname
Amazon Echo 2 amazon-183e3c119
Apple iPhone 5 Kluges-iPhone
Floureon M32B
Google Home mini Google-Home-Mini
Grandstream GXP1610
Raspberry Pi 3 Model B raspberrypi
Sonoff Wi-Fi Smart Switch ESP 6A768B
Wi-Fi Smart Bulb ESP 4C3210
Wi-Fi Smart Plug ESP 3D1EB6
Wi-Fi Touch Switch ESP 469ACF

TABLE II. OVERVIEW OF OPEN AND RESTRICTED PORTS

Raspberry Pi 3 Model B
port state service reason
22 TCP open ssh syn-ack
53 TCP open domain syn-ack
Sonoff Wi-Fi Smart Switch
port state service reason

restricted
Wi-Fi Touch Switch
port state service reason
8081 TCP open blackice-

icecap
syn-ack

Wi-Fi Smart Plug
port state service reason
10000 TCP open snet-

sensor-
mgmt

syn-ack

Grandstream GXP1610
port state service reason
22 TCP open ssh syn-ack
80 TCP open http syn-ack

device. Afterwards, the individual assessments can be offset
against each other in order to obtain the overall assessment of
a device.

For the evaluation scheme, a three-level point system is
defined as the basis for evaluation. If a security criterion is
completely violated, the equipment in question is assessed zero
points in that category. For non-critical violations one point
and for no violations two points are awarded. Several individ-
ual evaluations are offset against each other by calculating an
average value. It should be noted that individual categories can
be weighted differently. The used security criteria are listed in
Table III and described as follows in detail.

A. Wi-Fi technology

As the encryption technology for wireless networks, the
WPA2 (Wi-Fi Protected Access) and WPA3 standards are
rated with the highest score. Networks based on the WPA or
WEP (Wired Equivalent Privacy) standard cannot be classified
as secure because the “RC4” encryption method used, is no
longer state of the art and considered as broken [18].

B. Services

This evaluation criterion deals with the services provided
at network level and can be used to communicate with the
respective device. In particular, it checks whether the com-
munication procedures offered are based on encryption. The
assessment is based on a presorting of known services and

108Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                         119 / 144



TABLE III. SECURITY CRITERIA

audit criteria score
radio technology

WPA/WEP or no encryption 0
WPA2/WPA3 2
Bluetooth version 0-2
ZigBee version 0-2

manufacturer
unknown manufacturer 0
usual patch time 0-2
experience 0-2
known unpatched devices 0-2
bug bounty program 0/2

services
service default port comment
HTTP 80 unencrypted login details 0
MQTT 1883 unencrypted control data 0
UPnP 49152/1900 firewall manipulation 0
rtsp 554 unencrypted video data 0
SIP 5060 unencrypted 0
service default port comment
HTTPS 443 encrypted 2
MQTTS 8883 encrypted 2
SCP 10001 encrypted 2
SIPS 5061 encrypted 2
SSH 22 encrypted 2

LAN and WAN communication
service default port comment
HTTP 80 unencrypted login details 0
MQTT 1883 unencrypted control data 0
UPnP 49152/1900 firewall manipulation 0
rtsp 554 unencrypted video data 0
SIP 5060 unencrypted 0
service default port comment
HTTPS 443 encrypted 2
MQTTS 8883 encrypted 2
SCP 10001 encrypted 2
SIPS 5061 encrypted 2
SSH 22 encrypted 2

other
vulnerable to replay attacks 0
create own Wi-Fi 0
data retrieval without authentication 0
vulnerable to jamming 0-2
vulnerable to Denial of Service (DoS) 0-2
insecure configuration 0
continuous device number 0-2
known vulnerabilities 0
support lifetime 0-2
insecure / default password 0/2
software version 0-2
technical guidelines 0-2
certification 0-2

protocols in black and white lists. Services on the black-list
are rated with zero points, services on the white-list with two
points and unknown services with one point.

C. Communication

As with device services, device communication is tested for
the use of encryption methods. Since the used protocols cannot
be queried by scanning the devices, the current communication
must be analyzed. In addition to the encryption technology, it
is also possible to check the number of external resources
a device communicates with and where they are located.
Predefined protocol lists are also used for this evaluation
criterion. The communication is separated in LAN (local area
network) and WAN (Wide area network), to cover the different

security requirements. In Table III, both are displayed in the
same section.

D. Default passwords

The use of standard passwords assigned by device manu-
facturers, that can be applied to multiple devices, is a major
problem with the safety of IoT devices. It is important to check
whether authentication on a device is possible using known
passwords. In this case, the device is considered to be at risk
and should therefore be evaluated with zero points.

E. Firmware version

Known security vulnerabilities are often stored in public ac-
cessible databases and can be accessed by potential attackers.
A known outdated software version of a device can be used
for systematic attacks. It must be possible to check which
software version is running on a device and whether updates
are available for it. If no updates are available and security
gaps are known for the existing software, the device must be
classified as severely endangered. If updates are available but
not installed, they are considered to be at risk, otherwise they
are considered to be safe.

V. DEVICE RATING

In this section, we describe the proceeding to receive the
information for all the security criteria and how they are rated
in detail.

A. Wi-Fi technology

The encryption technology of the wireless network can
be queried in the router configuration. In the case of our
experimental environment, the task of the router is taken
over by a Raspberry Pi as Wi-Fi access point. The setup
query is made via the configuration file of the access point
software “hostapd”. Thus, the configuration is done in the file
“/etc/hostapd”. The entry “wpa=2” indicates the exclusive use
of the WPA2 standard. This leads to a score of two points for
each device. If an unsafe technology is used, this will also
affect the evaluation of each individual device, as the entire
network will be endangered. In this case, all devices have to
be rated with zero points in this category.

B. Services

The running services are checked by scanning the network
components. For this purpose, Nmap is used for both TCP
and UDP connections [19]. The scan might produce the output
shown in Table IV.

TABLE IV. PORT SCAN

port protocol
22 ssh
80 http
5060 sip

Based on these results, the device can be rated. The already
mentioned categorization lists are used. The example in Table
IV leads to a rating with 0.66 points, because http and sip are
rated with zero and ssh with two points.
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C. Communication

The communication of the devices to external resources
is analyzed by recording and analyzing the network traffic.
Existing technologies, like the tshark [20] software, are used.
From the communication packets, the MAC address of the
local resource, source and destination port, as well as the
used protocols, are extracted. Incoming and outgoing traffic
are handled separately. Analogous to the evaluation of the
services, the evaluation of the communication is also based on
predefined protocol lists. With the scan results in the output
shown in Table V, the device will be rated with zero points in
this category.

TABLE V. COMMUNICATION SCAN

source device destination port protocol
00:11:22:33:44:55 5060 sip

D. Default passwords

In order to check whether an insecure password has been
configured for a device, a dictionary attack against the cor-
responding device is carried out with the aid of the THC-
Hydra [21] software. Both the user name and the password
are attacked with known and frequently used terms. The
required specification for which type of service a login should
be performed, is taken from the previous service scan. The
software tests all possible combinations with a brute force
attack. If a device turns out to be vulnerable, it is highly
vulnerable. Otherwise, it will be classified as harmless. If we
consider an ssh login with “root” as the user and a well-known
default password like “admin” as possible, this would lead to
an rating with zero points.

An undefined handling of nonstandard, manufacturer-
specific login procedures can lead to a problem with this kind
of password check. For each specific procedure, a separate
test algorithm must be developed, which may require adapta-
tion after a software update by the device manufacturer. As
an example of a manufacturer-specific login procedure, the
challenge-response-mechanism that AVM uses for the Web
interface of their Fritz!Box Routers can be mentioned [22].

E. Firmware

It was not possible to develop an automated procedure
for checking the firmware version, because of the lack of
a standardized interface for querying information about the
device software. The use of Nmap makes rough assumptions
about the operating system of a device possible. But these
are not sufficient for a valid risk assessment due to the
gross inaccuracies. Furthermore, Nmap is only able to identify
systems where an identification has already taken place [23].
It would be possible to create a Nmap fingerprint for each
network device and include it in the database for system
identification, but this procedure is not relevant in practice,
as it requires specific knowledge of the software. Also, it
is not guaranteed that the detection characteristics will not
change after a software update, making it impossible to clearly

determine the version. The same applies to independent test
procedures, developed outside Nmap.

F. Overall rating

After all ratings have been performed, an overall rating
for a device can be calculated, by determining the average
score. This score describes the vulnerability of a device based
on Table VI. A ports score of 0.66 points, a communication
score of 0.00 points and a password score of 0.00 points will
lead to an overall device rating of 0.22 points and indicates a
highly vulnerable device. The average score is used to compare
the different devices. If we used the minimum score, each
device would get zero points. Normally, the weakest point is
attacked, but every missing or insecure security criteria does
not necessary lead to a vulnerability.

TABLE VI. VULNERABILITY CATEGORIES

score category
0.00 to 0.80 high vulnerability
0.81 to 1.80 moderate vulnerability
1.81 to 2.00 small vulnerability

VI. RESULTS

To validate the concept of the rating system, the following
devices have been evaluated: Amazon Echo 2 (1), Apple
iPhone 5 (2), Floureon M32B (3), Google Home mini (4),
Renkforce RenkCast (5), Sonoff Wi-Fi Smart Switch (6), Wi-
Fi Smart Bulb (7), Wi-Fi Smart Plug (8) and Wi-Fi Touch
Switch (9). Exemplary (not final) results can be found in Table
VII (a dash indicates the parameter was not determined on
that device). Afterwards, the devices were manually tested
regarding their security. The evaluation has been compared
with the previous determined scores. The conclusion is an
overall success: the scoring fits the manual evaluation most of
the time. This proves that the scoring system fulfills its purpose
and can be used as a time saving way to rate the security of
IoT devices. The process of scoring can be automated once the
information is collected, which helps speeding up the security
rating of an IoT network.

TABLE VII. EXAMPLE RESULTS

parameter 1 2 3 4 5 6 7 8 9
Wi-Fi encryption 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
services 1.00 2.00 0.33 1.00 2.00 2.00 1.00 2.00 2.00
LAN communication 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
WAN communication 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
wired connection 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
cloud only 1.00 - 2.00 1.00 2.00 - - - -
default password 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00
overall score 1.57 1.83 1.62 1.57 1.86 1.83 1.67 1.83 1.83

With all the device scores, an overall network score can
be achieved by taking the lowest single device score. The
weakness of a network is always defined by its weakest device.

After we evaluated the scoring system, we tried to find a
solution for an automated process to gather all the necessary
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information. As stated in Section III, a completely auto-
mated scan without any additional information is not reliable.
Therefore, we introduce an Open Standard for IoT Device
Identification and Recognition (IoTAG), which will allow an
automated and secure way to identify and index all IoT devices
in a certain network.

VII. IOTAG

Every IoT device should provide detailed information about
itself and the current running software and firmware version.
This enables an easy overview of the network and the security
level with the previously shown device rating. We suggest
to use a Transport Layer Security (TLS) 1.3 request to get
the device information from the device. The response should
use the JavaScript Object Notation (JSON) as standardized
in ECMA-404 [24] and RFC 8259 [25]. JSON is faster
to progress and uses less storage than for instance XML
[26]. This benefits low powered IoT devices with restricted
hardware.

The following information should be provided by the de-
vice:

• device ID
• device name
• device type
• manufacturer
• connectivity (e.g., Ethernet, Wi-Fi, Bluetooth, ...)
• firmware version
• firmware update URL
• software version (client)
• software update URL (client)
• auto updates enabled
• services and associated ports
• supported encryption
The device ID should be unique for each device, to allow a

recognition. The device name can be extended with a revision
number to ensure an exact assignment through multiple device
versions.

Some possible device types are:
• sensor
• control
• camera
• smart TV
• smart speaker
• entertainment
• gaming
• household
• lightning
The device types are not exhaustive and can be extended.

The manufacturer should allow a clear assignment to the
responsible company. With a list of all the connectivity, the se-
curity rating can be extended and new threads in transmission
technologies can be reported in a timely manner.

The firmware and possible existing client software version is
very important for the scoring and to keep the whole network
up to date. Additional to the version, a Uniform Resource

Locator (URL), should be given. This URL must provide the
current version and a secondary link to the new software
version. This enables a third device to check the software
version. In addition, the current auto update setting should be
provided. In case this function is disabled, a security warning
can be displayed.

As described in Section V, services and associated ports are
a big part of the scoring system. The information about all
running services improves the score and enables the possibility
to check the proper configuration of the device. The protocol
version can be used to identify outdated versions.

To check if the device can be used in a secure network,
information about the supported encryption is necessary. This
can be used to detect old devices with insecure encryption
algorithms or exclude devices with no encryption at all.

The following data provides an example for the Google
Home mini:

{
"ID": "af0eb0335f952132b4e65999a373ce20",
"name": "Home Mini revX",
"type": "smart speaker",
"manufacturer": "Google LLC",
"connectivity": {

"Wi-Fi": {
"802.11": {

"b": true,
"g": true,
"n": true,
"ac": true

},
"frequencies": {

"2.4": true,
"5": true

}
},
"bluetooth": "4.1"

},
"firmwareVersion": "1.27.090",
"firmwareURL": "https://support.google.com/

googlehome/answer/7365257?hl=en",
"softwareVersion": "",
"softwareURL": "",
"autoUpdatesEnabled": true,
"services": [

{
"name": "http",
"port": "8008",
"protocol": "tcp",
"protocolVersion": "",
"softwareVersion": ""

},
{

"name": "ajp13",
"port": "8009",
"protocol": "tcp",
"protocolVersion": "",
"softwareVersion": ""

},
{

"name": "https-alt",
"port": "8443",
"protocol": "tcp",
"protocolVersion": "",
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"softwareVersion": ""
},
{

"name": "cslistener",
"port": "9000",
"protocol": "tcp",
"protocolVersion": "",
"softwareVersion": ""

},
{

"name": "scp-config",
"port": "10001",
"protocol": "tcp",
"protocolVersion": "",
"softwareVersion": ""

}
],
"encryption" : {

...
}

}

These information provides no authenticity. Every device
can send false IoTAG data and an attacker can impersonate a
harmless device. Because of this, it is strongly recommended
to sign this information with a private key, which can be trusted
and verified over a public key infrastructure.

If an attacker has access to the network and uses the
provided information from IoTAG to scan for insecure or
unpatched devices, it brings out the importance for software
and firmware updates. If all the devices use IoTAG, a central
gateway (e.g., the router) can periodical check all devices. In
case of a new vulnerability or missing software updates, the
gateway can send a security warning or temporary disable the
communication with the insecure device.

VIII. CONCLUSION AND FUTURE WORK

The operation of a secure IoT network in the context of a
smart home is currently not possible for non-technical users.
One solution can be the reoccurring scoring of the network.
First, the complete network is scanned and all devices are rated
with different criteria. With this device scoring, an overall
score for the network is calculated, which is easy to read by
a non-technical user. These ratings can be used to improve
the security by updating old firmware or software versions,
as well as replacing old, insecure devices with new ones.
By performing this scan and rating on a daily basis, a quick
response to new threads is possible. In the future, we plan to
improve this approach by scanning vulnerability databases. If
a new vulnerability emerges for a device in the network, the
user can be warned immediately.

For an accurate and detailed device identification and recog-
nition, the new standard IoTAG must be implemented by
every manufacturer. State of the art network scans can not
provide enough information to rate the security of a device.
For example, with nmap it is possible to guess the running
services but not their software version.

We are currently working on a test environment and appli-
cation to demonstrate the benefits of IoTAG. However, for this
tool to be widely used, we need the feedback and cooperation

of IoT manufacturers. Also, we are planning to improve the
network scoring system by testing it on further networks.

REFERENCES

[1] D. Goodin, Rash of in-the-wild attacks permanently destroys poorly
secured IoT devices, Ars Technica, 2017. [Online]. Available
from: https://arstechnica.com/information-technology/2017/04/rash-of-
in-the-wild-attacks-permanently-detroys-poorly-secured-iot-devices/ [re-
trieved: 05, 2019].

[2] J. Wallen, Five nightmarish attacks that show the risks
of IoT security, ZDNet, 2017. [Online]. Available from:
https://www.zdnet.com/article/5-nightmarish-attacks-that-show-the-
risks-of-iot-security/ [retrieved: 09, 2019].

[3] G. Lyon, Nmap: the Network Mapper - Free Security Scanner. [Online].
Available from: https://nmap.org [retrieved: 10, 2019].

[4] Fing Limited, Fing - IoT device intelligence for the connected world.
[Online]. Available from: https://www.fing.com [retrieved: 10, 2019].

[5] M. Miettinen et al., “IOT SENTINEL Demo: Automated Device-Type
Identification for Security Enforcement in IoT”, IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pp. 2511-
2514, 2017.

[6] T. D. Nguyen et al., “DOT: A Federated Self-learning Anomaly Detec-
tion System for IoT”, CoRR, pp. 756-767, 2019.

[7] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting”, IEEE Trans. Dependable Secure Comput., vol. 2, no.
2, pp. 93108, April 2005.

[8] J. Cache, Fingerprinting 802.11 implementations via statistical analysis
of the duration field, Uninformed, org 5, 2006.

[9] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. Van Randwyk, and D.
Sicker, “Passive data link layer 802.11 wireless device driver fingerprint-
ing”, in USENIX Security Symposium, USENIX, pp. 167-178, 2006.

[10] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identifi-
cation with radiometric signatures”, International Conference on Mobile
Computing and Networking, ACM, pp. 116127, 2008.

[11] F. Loiy, A. Sivanathany, H. H. Gharakheiliy, A. Radford, and V. Sivara-
man, “Systematically Evaluating Security and Privacy for Consumer IoT
Devices”, IoT S&P 2017, pp. 1-6, 2017.

[12] K. C. Park and D. Shin, “Security assessment framework for IoT
service”, Telecommun Syst, pp. 193209, 2017.

[13] B. Ali and A. I. Awad, “Cyber and Physical Security Vulnerability
Assessment for IoT-Based Smart Homes”, sensors journal, vol 18(3),
pp. 817, 2018.

[14] R. I. Bonilla, J. Crow, L. Basantes, and L. Cruz, “A Metric for Measuring
IoT Devices Security Levels”, IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, pp. 704-709, 2017.

[15] A. E. Khaled, H. Abdelsalam, L. Wyatt, and L. Choonhwa, “IoT-DDL
device description language for the T in IoT”, IEEE Access 6, pp. 24048-
24063, 2018.

[16] S. Kaebisch and A. Darko, “Thing description as enabler of semantic
interoperability on the Web of Things”, IoT Semantic Interoperability
Workshop, pp. 1-3, 2016.

[17] L. Hinterberger, “Automated Risk Analysis of IoT-Infrastructures”, Ap-
plied Research Conference, pp. 586-588, 2019.

[18] J. Schmidt, Cryptography in IT - recommendations on encryption and
procedures, Kryptographie in der IT - Empfehlungen zu Verschlues-
selung und Verfahren, 2017. [Online]. Available from: https://www.heise
.de/security/artikel/Kryptographie-in-der-IT-Empfehlungen-zu-Verschlu
esselung-und-Verfahren-3221002.html [retrieved: 09, 2019].

[19] G. Lyon, Service and version detection, Dienst- und Versionserken-
nung. [Online]. Available from: https://nmap.org/man/de/man-version-
detection.html [retrieved: 09, 2019].

[20] Wireshark Foundation, tshark - Dump and analyze network traf-
fic. [Online]. Available from: https://www.wireshark.org/docs/man-
pages/tshark.html [retrieved: 10, 2019].

[21] The Hacker’s Choice, thc-hydra. [Online]. Available from:
https://github.com/vanhauser-thc/thc-hydra [retrieved: 10, 2019].

[22] AVM GmbH, Login to the FRITZ!Box Web Interface, 2018. [Online].
Available from: https://avm.de/fileadmin/user upload/Global/Service/S
chnittstellen/ Session-ID english 13Nov18.pdf [retrieved: 07, 2019].

[23] G. Lyon, OS Detection - Nmap Network Scanning. [Online]. Avail-
able from: https://nmap.org/book/man-os-detection.html [retrieved: 09,
2019].

112Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                         123 / 144



[24] Ecma International, ECMA-404: The JSON Data Interchange Syntax,
2017.

[25] Internet Engineering Task Force (IETF), The JavaScript Object Nota-
tion (JSON) Data Interchange Format, https://tools.ietf.org/html/rfc8259,
2017.

[26] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, Comparison
of JSON and XML Data Interchange Formats: A Case Study, CAINE,
2009.

113Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                         124 / 144



Automotive Network Protocol Detection for Supporting Penetration Testing
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Abstract—Currently, the automotive industry aims to integrate
security into the vehicle development process. In this process, a
vehicle is analyzed for possible security threats in order to develop
security concepts or security measures. Another important aspect
in vehicle security development is security testing. Penetration
testing is often used for this purpose. In penetration testing,
a tester acts from the perspective of an attacker and tries to
violate security properties of a vehicle through attacks (tests)
in order to uncover possible vulnerabilities. Since this task is
usually performed as a black box test with little knowledge
about the system, penetration testing is a highly experience-based
activity. Due to this, an automation of this process is hard to
achieve. In this paper, we want to support the penetration testing
process and its automation by introducing an extension of our
automotive portscanner tool. This scanner was developed to scan
vehicle networks, which are different from typical Information
Technology (IT) networks, in order to extract information about
the vehicle. Our tool is able to gather Electronic Control Units
(ECUs) installed in a vehicle, as well as diagnostic services and
subfunctions they provide. This functionality is extended by an
automatic detection of transport and diagnostic protocols used in
vehicles. With this knowledge, new use cases and functionalities
like fuzzing or an automated generation of penetration test cases
can be realized.

Keywords–Automotive Security; Penetration Testing; Automa-
tion; Network Protocols.

I. INTRODUCTION

A trend towards autonomous driving is currently pursued
in the automotive industry [1]. This increases the number
of sensors and actuators installed in vehicles, as well as the
complexity of internal and external communication of vehicle
components. The required communication with the outside
world for autonomous driving results in an increased risk of
security attacks. This has already been demonstrated by various
research groups [2]–[8]. Attacks were carried out on vehicles
in which it was possible to manipulate actuators, which had
an influence on driving physics, such as steering and braking
systems. Since only a few methods have been established in
the automotive sector to protect against such attacks, a high
effort is currently being invested in research and development
of security measures, standards and processes. The devel-
opment partnership AUTomotive Open System ARchitecture
(AUTOSAR) presented a measure to secure internal vehicle
networks with Secure Onboard Communication (SecOC) [9],
which enables authenticated communication of the vehicle’s
internal bus systems. In January 2016, Society of Automotive
Engineers (SAE) International published SAE J3061 (Cyber-
security Guidebook for Cyber-Physical Vehicle Systems) [10],
a guideline in which security was integrated into the vehicle
development process. In this process, a vehicle is analyzed for
possible security threats in order to develop security concepts

or security measures. Another important aspect in vehicle
security development is security testing. In addition to the ver-
ification of implemented security measures, this also includes
testing the vehicle for vulnerabilities. Penetration testing [11]
is often used for this purpose. In penetration testing, a tester
acts from the perspective of an attacker. The tester tries to
violate security properties of a vehicle through attacks (tests)
in order to uncover possible vulnerabilities. Penetration tests
can be carried out as black box tests, without any information
about the internal function of a system, or as white box tests
in case of knowledge about the internal function. Especially
in case of black box tests, the success of a penetration test
depends on the experience of a tester, since there is limited
knowledge about the system.

Problem: Penetration testing can be time consuming and
potential vulnerabilities could be missed, depending on avail-
able system information. It is an explorative test method
which highly depends on a tester’s experience. As a result,
an automation of this process is hard to achieve.

Approach: We present a way to support the process of
penetration testing through a tool-based solution. Our auto-
motive portscanner, which was introduced in the past [12],
serves as a basis. This scanner was developed in order to scan
vehicle networks, since they differ from IT networks by used
communication technologies, protocols and operating systems.
Our tool is used to support the information gathering process
and it is able to gather ECUs installed in a vehicle, as well as
their diagnostic services and subfunctions.

Contribution: We extend the functionality of our portscan-
ner by an automatic detection of transport and diagnostic
protocols which delivers additional information about a vehicle
and its internal structure. This leads to a greater coverage when
extracting vehicle data. We show how this can contribute to an
automation of penetration testing subprocesses by presenting
use cases which are possible with the knowledge about a
vehicle’s transport and diagnostic protocols. As a result, new
functionalities like automated testing of attacks or fuzzing [13]
based on these transport and diagnostic protocols can be
realized.

This work is structured as follows: In Section II, we
discuss existing vehicle network communication systems and
relevant transport and diagnostic protocols. Furthermore, we
present basic penetration testing processes and automotive
related adaptions. In Section III, we present our automotive
portscanner, as well as its extension for automatic protocol de-
tection and resulting use cases. We also illustrate, how ECUs,
transport protocols and diagnostic protocols are automatically
detected. To point out how this can contribute to support
automated penetration tests, we present different functionalities
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in Section IV, which can be realized by our automatic protocol
detection. Finally, we summarize our results in Section V and
present planned future work.

II. BACKGROUND

In this section, we want to give a short overview of a
vehicle’s network and its communication systems, as well as
the process of penetration testing and how it is performed in
the automotive domain.

A. Vehicle Network Protocols
The Open Systems Interconnection (OSI) layer model [14]

is used for a structured description of communication systems.
It describes seven different layers which include specific tasks
of message transmission. Since we focus on transport and
diagnostic protocols for automotive communication systems,
the relevant layers for our purposes are: physical layer (1), data
link layer (2), transport layer (4) and application layer (7). The
layers 1 and 2 are represented by the used communication sys-
tems. There are different communication systems in a vehicle,
like FlexRay [15], Controller Area Network (CAN) [16], Local
Interconnect Network (LIN) [17], Ethernet [18] and Media
Oriented System Transport (MOST) [19]. These systems are
used for various applications and have different properties.
FlexRay is a cyclic network communication system which is
used for applications requiring high data rates (10 Mbit/s).
MOST and Ethernet are mainly applied for multimedia pur-
poses with even higher data rates. LIN is a serial network
protocol which connects components like sensors and ECUs.
For the automotive sector, CAN [16] is one of the most
important and commonly used bus systems. It is a bitstream-
oriented bus system, using twisted pair wires as physical
medium. CAN is a broadcast system in which each message
is uniquely characterized by an identifier. Since it is currently
the most used bus system in the automotive domain, we first
focus on CAN for the automated protocol detection. To explain
the functionality of that mechanism, this paper is focused
on CAN-based transport and diagnostic protocols. Transport
protocols represent the fourth layer of the OSI layer model.
They are required to transfer data larger than the maximum
message length. This is particularly necessary for diagnostic
applications and flash programming of ECUs. A further task
of the transport protocols is to control time intervals between
individual data packages. Transport protocols are also used to
forward messages via gateways to networks with a different
address space. The widespread protocols are International Or-
ganization for Standardization Transport Protocol (ISOTP) [20]
and SAE J1939 [21], which are standardized, and Transport
Protocol (TP) 2.0 [22], which is a proprietary protocol of
vehicle manufacturer Volkswagen. ISOTP and TP 2.0 come
into operation for passenger cars, whereas the SAE J1939
protocol is used for commercial vehicles. The application layer
is represented by diagnostic protocols. Diagnostic protocols
use a so-called Service Identifier (SID) [23] to select different
diagnostic services an ECU offers. To understand their func-
tionality, the communication principle is shown in Figure 1.
An external diagnostic testing device runs as a client, whereas
the ECU runs as a server. To start a diagnostic communication,
the diagnostic testing device has to send a diagnostic request
message to an ECU. This request contains a SID and a
subfunction which is necessary to address diagnostic services
like reading the error memory. The addressed ECU can answer

with a positive or negative response. A positive response is
characterized by the addition of value 0x40 to the SID. A
negative response is characterized by an Error-ID (0x7F), the
original SID and a Response Code that contains the reason for
the negative reponse.

Figure 1. Request and response scheme of automotive diagnostic protocols.

The following three diagnostic protocols are relevant: Key-
word Protocol (KWP) 2000 [24], Unified Diagnostic Services
(UDS) [23] and On-Board Diagnostics (OBD) [25]. These
protocols are standardized and similar to each other, since all of
them follow the communication principle in Figure 1. To sum
up, there are three relevant components in vehicle networks:
the communication systems, tranport protocols and diagnostic
protocols. The transport protocol is embedded into the data
field of the communication system message and the diagnostic
protocol is embedded into the transport protocol.

B. Penetration Testing
Penetration tests are carried out on running systems and

take place in the late phases of the development cycle. Usu-
ally, these tests are black box tests, since the tester has no
knowledge of the internal functionality of the system. Thus, the
tester acts from the attacker’s point of view. Several standards
and guidelines have been published for conducting penetration
tests. Pure penetration testing standards can be seen as a part
of security assessment methods, whereas security assessment
methods describe a comprehensive assessment of the security
of a system or company. Examples for security assessment
guides are National Institute of Standards and Technology
(NIST) SP 800-115 (Technical Guide to Information Security
Testing and Assessment) [26], Open Source Security Testing
Methodology Manual (OSSTMM) 3 [27], Information Systems
Security Assessment Framework (ISSAF) [28] and Open Web
Application Security Project (OWASP) Testing Guide [29].
An example of a pure penetration testing standard is the
Penetration Testing Execution Standard (PTES) [30], which is
intended to support companies and security service providers
in conducting penetration tests. A methodology for security
testing in the automotive sector is presented in the disser-
tation [31] with Automotive Security Testing Methodology
(ASTM), which is divided into five areas: planning phase,
detection phase, safe state analysis, moving vehicle analysis,
documentation and review. The methodology covers the typical
phases of the aforementioned methods and transfers them to
the automotive sector, especially the vehicle networking of
the control units. Our portscanner is used as an examplary
tool for the information gathering phase (detection phase).
Vehicle penetration testing has also been addressed in other
works. Bayer et al. [32] address penetration testing as a part
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of practical automotive security testing. In [33], they classify
penetration testing as a parallel test method to functional
testing, fuzz testing and vulnerability testing, distinguishing
between hardware, software, backend and network penetration
testing and also considering organizational aspects. In [34],
Bayer et al. present an approach for the realization of a
penetration testing framework for CAN networks which is
based on the work mentioned above and enables a systematic
approach for penetration testers. This approach is demonstrated
by two examples in which a reverse engineering of CAN
identifiers and an exploitation of UDS diagnostic commands
is carried out. Another approach to penetration testing was
presented by Smith [35]. An overview of possible CAN tools
was presented by Pozzobon et al. [36] and Sintsov [37].
Additionally, Dürrwang et al. [38] emphasise the benefits of
penetration testing in the automotive sector by exploiting a
vulnerability they found in an airbag ECU with a systematic
penetration testing process.

III. APPROACH

In this section, our automotive portscanner and its ex-
tension for an automated detection of a vehicle’s network
protocols is introduced.

A. Automotive Portscanner
The portscanner’s purpose is to detect ECUs in a vehicle

and to search for offered diagnostic services and subservices,
as well as specific data from an ECU. The tool operates without
the knowledge of any manufacturer specific information by the
user and can be connected to the OBD connector, as shown in
Figure 2, and also directly to a bus system.

Figure 2. The portscanner sends diagnostic requests to the car to gather
ECUs, their diagnostic services and subservices.

In the first step, the portscanner uses an exhaustive search
method to detect all ECUs inside a vehicle network. There-
fore, standard diagnostic requests, as defined in International
Organization for Standardisation (ISO) 14229, are sequencially
sent to every possible CAN Identifier (ID). If a response
to a request is received (positive or negative), an ECU is
identified. In the next step, supported diagnostic services are
identified. Similar to the ECU identification process before,
every possible SID is checked by sending diagnostic requests
to every detected ECU. A service is supported if there is
a positive or negative response to a request. As a last step,
subservices of all found diagnostic services are identified by
sending diagnostic requests to every possible subservice for
all supported services of each ECU. A challenge with the
portscanner is the variation of transport protocols that can be

used in vehicle networks. ISOTP in combination with OBD
is required by law for diagnostic purposes. However, specific
areas are reserved for vehicle manufacturers in diagnostic
standards. For example, transport protocols, such as TP 2.0 are
used for these diagnostic requests in vehicles of Volkswagen
AG. An example of current capabilities of the portscanner is
given in [31], where the tool was applied on two vehicles.
On the first vehicle, our portscanner could find 47 ECUs, 380
diagnostic services and 1,924 subservices within 48 minutes
and 27 seconds. On the second vehicle, it could find 43
ECUs, 282 diagnostic services and 2,538 subservices within
36 minutes and 5 seconds. A further evaluation across several
vehicle types and manufacturers will have to be carried out
in the future. The portscanner functionality is extended by
an automatic protocol detection in order to achieve a greater
coverage during the extraction of vehicle data.

B. Automatic Protocol Detection
To operate the portscanner in an automated way, it is

necessary to know the used transport protocol and type of
CAN identifiers. Unfortunately, this information is unknown by
default. Because of that, we decided to develop an automatic
protocol detection to extend the functionality of our portscan-
ner. At first, a differentiation between 11-bit and 29-bit CAN
bus systems is necessary. The 11-bit CAN system is refered to
as CAN 2.0A, while a 29-bit system is refered to as CAN 2.0B.
Both formats are specified in [16]. A differentiation between
these formats can be made by the Identifier Extension (IDE)
bit, which is a part of the control field of a CAN message.
On this account, the tool monitors the CAN bus and checks
if the IDE bit is dominant (value 0) or recessive (value 1). A
dominant bit signals the usage of the standard 11-bit format.
After the ID format is known, transport and diagnostic pro-
tocols can be identified. As mentioned in Section II, relevant
diagnostic protocols (UDS, OBD, KWP 2000) follow the same
scheme, which is illustrated in Figure 1. The main difference
between these protocols are the services they address. This
results in different SID areas that can be called. In order to
identify supported diagnostic protocols, requests have to be
sent to vehicle ECUs in which potential SIDs are addressed.
In case of a response to a SID, the service and its related
diagnostic protocol is supported. Since diagnostic protocols
are embedded in a transport protocol format, the identification
of these protocols can be executed at the same time. In
order to identify a transport protocol, the exhaustive search
attempt of the portscanner is extended. The method starts
by sending diagnostic requests embedded in every possible
transport protocol (ISOTP, TP 2.0, SAE J1939). If there is a
response (positive or negative) to one of the combinations,
the used transport protocol is supported. In Figure 3, this
process is illustrated for 11-bit CAN IDs. If the CAN ID is
in range 0x7E0 to 0x7EF, it concerns OBD, since that range
is reserved for this diagnostic protocol combined with ISOTP.
If the CAN ID is not in that range, we have to check for
the transport protocol by checking the CAN frame for ISOTP
and TP 2.0 formats. After the transport protocol is recognized,
the diganostic protocol support for UDS and KWP 2000 is
checked. After the diagnostic protocol is recognized, the next
CAN frame with the next CAN ID can be evaluated until all
IDs are checked. It should be mentioned that more than one
transport protocol can be used within a communication system.
For example, even if CAN uses ISOTP, it can additionally use
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TP 2.0. The same applies for diagnostic protocols.

Figure 3. Protocol detection procedure for 11-bit CAN IDs.

This possibility is not shown in Figure 3 due to clearness
of the process illustration. Based on the CAN ID, it is possible
to reduce the number of potential protocol combinations. For
example, since SAE J1939 is only defined for 29-bit systems,
it has not to be considered for 11-bit CAN systems. Another
reduction can be made for 29-bit CAN IDs. In theory, there
are 229 possible IDs for these systems, so an exhaustive
search on a 29-bit identifier is not feasible in practice. In
order to bypass this problem, the specifications of diagnostic
protocols are used. For diagnostic purposes, 29-bit CAN IDs
have a specified structure. For ISO 15765, the ID structure is
illustrated in Figure 4. As can be seen, there is a differentiation
between Source and Destination Address. Source Address is
the testers (portscanners) address, which is usually set to
0xF1. Destination Address is the address of an ECU. Since
a Destination Address only consists of 11 bit, the number

of possible identifiers is reduced to 211, which is equal to
CAN 2.0A 11-bit IDs. The SAE J1939 protocol has a similar
structure in which the Destination Address only consists of
8 bit, so there are just 28 possible identifiers. These two
specifications lead to a significant reduction of the original
229 possible CAN IDs.

Figure 4. 29-bit CAN identifier in ISO 15765.

C. Example
To illustrate how the protocol detection works, its function-

ality is described with an example of a 11-bit CAN system,
which is shown in Table I. This example follows the control
flow shown in Figure 3 and distinguishes three iterations. In
the first iteration (line 1 in Table I) of the example, the protocol
detection for ISOTP in combination with OBD is explained.
The second iteration (line 2) explains the protocol detection
for ISOTP in combination with UDS. The last iteration (line
3) shows the detection for ISOTP in combination with KWP
2000. For conciseness reasons, we decided not to show an
example of the protocol detection for TP 2.0 or ISOTP in case
of a message segmentation (more than 8 data bytes), since the
structure of these transport protocols is far more complex and
would go beyond the scope of this publication.

TABLE I. EXAMPLE OF THE AUTOMATIC PROTOCOL DETECTION BY
SENDING DIFFERENT REQUESTS AS DESCRIBED IN FIGURE 3 (NUMBERS

ARE IN HEXADECIMAL FORMAT).

Message ID Data Identified
ISOTP OBD Request 7E0 02 01 05 00 00 00 00 00 ISOTP,
ISOTP OBD Response 7E8 06 41 05 22 AA 00 D5 00 OBD
ISOTP UDS Request 602 02 10 03 00 00 00 00 00 ISOTP,
ISOTP UDS Response 630 04 40 03 00 CD 00 00 00 UDS
ISOTP KWP 2000 Request 604 02 1A 01 00 00 00 00 00 ISOTP,
ISOTP KWP 2000 Response 6A0 06 5A 01 00 89 23 41 00 KWP 2000

In the first iteration (line 1), a diagnostic request based on
ISOTP and OBD is sent on CAN. Since there is a response to
this request and the CAN ID is in range 0x7E0 to 0x7EF, the
transport protocol ISOTP and the diagnostic protocol OBD
is supported. The second iteration (line 2) is similar to the
first one. The difference is the diagnostic protocol used for the
request, which is UDS now. The CAN ID of the reponse is not
in the OBD ID range, so according to Figure 3 the response is
checked for ISOTP, which is supported, since the reponse has
the format of this transport protocol. After that, the diagnostic
protocol has to be recognized. The requested service (SID =
0x10) and its subservice (0x03) is a UDS specific service,
so the diagnostic protocol is UDS. The last iteration (line 3)
contains a diagnostic request based on ISOTP and KWP 2000.
The detection works similar to the former two iterations. Since
the requested service (SID = 0x1A) is a KWP 2000 specific
service, the diagnostic protocol is KWP 2000. It should be
mentioned that presented transport and diagnostic protocols
are relatively complex, so the example in Table I and detection
process in Figure 3 can differ for some protocol combinations
or detection functions. UDS, for example, is a replacement
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for KWP 2000 and many services between those protocols
have the same SID, so in this case a differentiation has to
be made at the level of subservices. Another difference could
be more physical when considering the baudrate of the bus
system. For example, UDS does not prescribe a baudrate, in
contrast to OBD. We do not want to go into too much detail
of the special protocol properties. Instead, we want to focus
on the use cases our automatic protocol detection can enable
for penetration testing, which is described in next Section.

IV. USE CASES

In this section, use cases of the portscanner and its auto-
matic protocol detection for penetration testing purposes are
presented.

A. Gathering ECUs, Services, Subservices and Vehicle Data
The possibility to extract information about existing ECUs,

its diagnostic services and subservices has been described
before and is part of the portscanner functionality. Another
feature facilitates the extraction of vehicle data like fault
memory, chassis number, or ECU firmware versions. This
can be done by requesting diagnostic services. Further, the
extension to support an automatic protocol detection enables
our tool to achieve a greater coverage by gathering even more
vehicle information including prescribed and manufacturer-
specific diagnostic functions. This is an advantage for pen-
etration testing, as it enables the tester to obtain far more
information about the vehicle which is particularly relevant
for black box penetration tests.

B. Reverse Engineering of the Routing Table
Normally, a diagnostic tester is connected to the OBD

connector of a vehicle. For vehicles, which usually have several
bus systems, these bus systems are separated via gateways,
whereas each gateway is responsible for mapping the message
format of one bus system to the message format of another bus
system (for example CAN to LIN). If a diagnostic request is
sent to a control unit that is connected to the OBD connector
via several gateways and bus systems, diagnostic messages
have to be routed via these connections to the target ECU. This
routing is determined during the development of the vehicle
in form of a routing table, which is not known to testers.
From a penetration testing point of view, reverse engineering
of that table can be accomplished with the automatic protocol
detection by sending a diagnostic request to observe the
message routing on the bus systems between OBD connector,
gateways and target ECUs. However, it should be mentioned
that this requires a physical connection to these bus systems.

C. Automatic Test Case Generation
Based on recognized vehicle network protocols, it is pos-

sible to automatically derive test cases. This can be done
on the basis of known vulnerabilities which can be used
for an exploitation of diagnostic services that were attacked
in the past. Many of the attacks mentioned in Section I
are based on exploited diagnostic services [2]–[4]. Therefore,
this information can be used as data input for the automatic
generation of test cases. Another possible data input could
be our own collection [39] of vulnerabilities and attacks on
vehicles, which was classified in form of a taxonomy [40], to
support penetration testing.

D. Fuzzing
In fuzzing, an attempt is made to test a system for its

susceptibility to errors or robustness by entering random or
modified data [13]. This method can uncover new vulnera-
bilities in a system. The usage of fuzzing techniques in the
automotive sector has been shown in [41] in which fuzzing is
performed using the data bytes of CAN messages, or in [42]
in which the fuzzing tool beSTORM was extended by the
Controller Area Network Flexible Datarate (CAN FD) [43]
protocol. Another fuzzing tool in the automotive industry is
CaringCaribou, which was developed as part of the HEAl-
ing Vulnerabilities to ENhance Software Security and Safety
(HEAVENS) research project [44]. By knowing the transport
and diagnostic protocols, the input sequence for fuzzing can be
specified based on the given information by simply changing
the data within these protocols.
E. Vulnerability Scanning

Another use case incorporates vulnerability scanning in
which a system is scanned for known security vulnerabili-
ties. Through an automatic detection of supported vehicular
network protocols, the scanning process can be automated.
Vulnerability databases can serve as data input for our tool.
The Karlsruhe University of Applied Sciences [45] currently
aims to develop such a database for the automotive sector
as part of the Security For Connected, Autonomous caRs
(SecForCARs) [46] project.
F. Exploitation Tool

Considering the aforementioned features, our tool could
be extended to an exploitation tool, with which it is possible
to exploit found vulnerabilities, in order to carry out an actual
attack on the vehicle. Therefore, the tool could actively support
the process of penetration testing and its partial automation.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an extension of our automotive
portscanner [12] by introducing an automatic protocol detec-
tion for vehicle networks. The automatic protocol detection re-
sults in new use cases, which allow an extension of penetration
test activities by additional functions. This especially supports
black box penetration tests and enables a partial automation of
the process. Since only the use cases Gathering ECUs, Ser-
vices, Subservices and Vehicle Data and Reverse Engineering
of the Routing Table are realized currently, future work could
include the extension of our tool by further use cases. To put
the aforementioned use cases into practice, an incorporation
of further bus systems into our tool is required. Examples
are LIN, Ethernet, CAN FD and FlexRay. These bus systems
partially use different protocols like User Datagram Protocol
(UDP) [47] and Transmission Control Protocol (TCP) [48] for
the transport layer or Diagnostics over IP (DoIP) [49] for the
application layer of Ethernet. An extension of our tool by these
protocols could be conceivable. Since there have been several
remote attacks on vehicles, another extension could include
an implementation of wireless technologies to our tool, so the
risk for this type of attack can be assessed. In this way, the
portscanner can be extended to a useful penetration testing tool
for vehicle networks.

ACKNOWLEDGEMENTS

This work has been developed in the project SAFE ME
ASAP (reference number: 03FH011IX5) that is partly funded
by the German ministry of education and research (BMBF).

118Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                         129 / 144



REFERENCES

[1] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, ”Autonomes Fahren:
technische, rechtliche und gesellschaftliche Aspekte [Autonomous Driv-
ing: Technical, Legal and Social Aspects]”. Springer-Verlag, 2015.

[2] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Def Con, vol. 21, 2013, pp. 260–264.

[3] ——, “A survey of remote automotive attack surfaces,” Black Hat USA,
vol. 2014, 2014.

[4] ——, “Remote exploitation of an unaltered passenger vehicle,” Black
Hat USA, vol. 2015, 2015.

[5] Keen Lab, “Experimental Security Assessment of BMW Cars: A
Summary Report,” 2017.

[6] K. Mahaffey, “Hacking a Tesla Model S: What we found and what
we learned,” 2015, https://blog.lookout.com/hacking-a-tesla. [accessed:
2019-09-03].

[7] K. Koscher et al., “Experimental Security Analysis of a Modern
Automobile,” in 2010 IEEE Symposium on Security and Privacy. IEEE,
5/16/2010 - 5/19/2010, pp. 447–462.

[8] S. Checkoway et al., “Comprehensive Experimental Analyses of Auto-
motive Attack Surfaces,” in USENIX Security Symposium, 2011.

[9] AUTOSAR, “Specification of Secure Onboard Communication,”
2018, https://www.autosar.org/fileadmin/user upload/standards/classic/
4-3/AUTOSAR SWS SecureOnboardCommunication.pdf. [accessed:
2019-09-03].

[10] SAE Vehicle Electrical System Security Committee, “SAE J3061-
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems,” SAE-
Society of Automotive Engineers, 2016.

[11] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,”
IEEE Security & Privacy, vol. 3, no. 1, 2005, pp. 84–87.
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Abstract—Certificate Transparency (CT) requires that every cer-
tificate which is issued by a certificate authority must be publicly
logged. While a CT log can be untrusted in theory, it relies on
the assumption that every client observes and cryptographically
verifies the same log. As such, some form of gossip mechanism is
needed in practice. Despite CT being adopted by several major
browser vendors, no gossip mechanism is widely deployed. We
suggest an aggregation-based gossip mechanism that passively
observes cryptographic material that CT logs emit in plaintext,
aggregating at packet processors (such as routers and switches) to
periodically verify log consistency off-path. In other words, gossip
is provided as-a-service by the network. Our proposal can be
implemented for a variety of programmable packet processors at
line-speed without aggregation distinguishers (throughput), and,
based on 20 days of RIPE Atlas measurements that represent
clients from 3500 autonomous systems, we show that significant
protection against split-viewing CT logs can be achieved with a
realistic threat model and an incremental deployment scenario.

Keywords–Certificate Transparency; Gossip; P4; XDP.

I. INTRODUCTION

The HyperText Transfer Protocol Secure (HTTPS) ecosys-
tem is going through a paradigm shift. As opposed to blindly
trusting that Certificate Authorities (CAs) only issue certifi-
cates to the rightful domain owners—a model known for its
weakest-link security [1]—transparency into the set of issued
certificates is incrementally being required by major browser
vendors [2][3]. This transparency is forced and takes the form
of Certificate Transparency (CT) logs: the idea is to reject
any Transport Layer Security (TLS) certificate that have yet
to be publicly logged, such that domain owners can monitor
the logs for client-accepted certificates to detect certificate mis-
issuance after the fact [4]. While the requirement of certificate
logging is a significant improvement to the HTTPS ecosystem,
the underlying problem of trusting CAs cannot be solved
by the status quo of trusted CT logs (described further in
Section II-A). Therefore, it is paramount that nobody needs
to trust these logs once incremental deployments are matured.

CT is formalized and cryptographically verifiable [5], sup-
porting inclusion and consistency proofs. This means that a
client can verify whether a log is operated correctly: said
certificates are included in the log, and nothing is being
removed or modified. Despite the ability to cryptographically
verify these two properties, there are no assurances that ev-
erybody observes the same log [4][6]. For example, certificate
mis-issuance would not be detected by a domain owner that
monitors the logs if fraudulently issued certificates are shown
to the clients selectively. A log that serves different versions
of itself is said to present a split view [7]. Unless such log
misbehaviour can be detected, we must trust it not to happen.

The solution to the split viewing problem is a gossip
mechanism which ensures that everybody observes the same
consistent log [4]. This assumption is simple in theory but
remarkably hard in practice due to client privacy, varying threat
models, and deployment challenges [7][8]. While Google
started on a package that supports minimal gossip [9] and
the mechanisms of Nordberg et al. [7], there is “next to
no deployment in the wild” [10]. To this end, we propose
a gossip mechanism that helps detecting split-view attacks
retroactively based on the idea of packet processors, such as
routers and middleboxes, that aggregate Signed Tree Heads
(STHs)—succinct representations of the logs’ states—that are
exposed to the network in plaintext. The aggregated STHs
are then used to challenge the logs to prove consistency via
an off-path, such that the logs cannot distinguish between
challenges that come from different aggregators. Given this
indistinguishability assumption, it is non-trivial to serve a
consistent split-view to an unknown location [11]. Thus, all
aggregators must be on the same view, and accordingly all
clients that are covered by these aggregators must also be on
the same view despite not doing any explicit gossip themselves
because gossip is provided as-a-service by the network. An
isolated client (i.e., untrusted network path to the aggregator)
is notably beyond reach of any retroactive gossip [8].

The premise of having STHs in plaintext is controversial
given current trends to encrypt transport protocols, which is
otherwise an approach that combats inspection of network
traffic and protocol ossification [12][13]. We argue that keeping
gossip related material in plaintext to support aggregation-
based gossip comes with few downsides though: it is easy
to implement, there are no major negative privacy impacts,
and it would offer significant protection for a large portion
of the Internet with a realistic threat model despite relatively
small deployment efforts. The three main limitations are no
protection against isolated clients, reliance on clients that
fetch STHs from the logs in plaintext, and possible concerns
surrounding protocol ossification [13]. Our contributions are:

• Design and security considerations for a network-
based gossip mechanism that passively aggregates
STHs to verify log consistency off-path (Section III).

• Generic implementations of the aggregation step using
Programming Protocol independent Packet Processors
(P4) [14] and eXpress Data Path (XDP) [15] for plain-
text STHs, supporting line-speed packet processing on
systems that range from switches, routers, network
interface cards, and Linux (Section IV).

• A simulation based on RIPE Atlas measurements that
evaluate the impact of deploying aggregation-based
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gossip at Autonomous Systems (ASes) and Internet
Exchange Points (IXPs). Our evaluation shows that
incremental roll-out at well-connected locations would
protect a significant portion of all Internet clients from
undetected split views (Section V).

Besides the sections referenced above, the paper introduces
necessary background in Section II and provides discussion,
conclusion, and future work in Sections VI–VIII. A full version
with additional implementation details is available online [16].

II. BACKGROUND

First, additional prerequisites are provided on CT and the
status quo, then the techniques which allow us to program
custom packet processors are introduced.

A. Certificate Transparency
The main motivation of CT is that the CA ecosystem is

error-prone [17]: a CA can normally issue certificates for any
domain name, and given that there are hundreds of trusted
CAs an attacker only needs to target the weakest link [1].
While the requirement of CT logging all certificates cannot
prevent mis-issuance proactively, it allows anyone to detect it
retroactively by monitoring the logs [4]. After a log promises to
include a certificate by issuing a Signed Certificate Timestamp
(SCT), a new STH including the appended certificate must be
issued within a Maximum Merge Delay (MMD). Typically,
logs use 24 hour MMDs. Should non-included SCTs and/or
inconsistent STHs be found, binding evidence of misbehaviour
exists because these statements are digitally signed by the logs.
Other than MMD a log’s policy defines parameters such as
STH frequency: the number of STHs that can be issued during
an MMD, making it harder to track clients [7].

CT is being deployed across Apple’s platform [2] and
Google’s Chrome [3]. The status quo is to trust a CA-signed
certificate if it is accompanied by two or more SCTs, thereby
relying on at least one log to append each certificate so that
mis-issuance can be detected by monitors that inspect the logs.
The next step of this incremental deployment is to verify that
these certificates are logged by querying for inclusion [18], and
that the log’s append-only property is respected by challenging
the log to prove STH consistency. Finally, to fully distrust CT
logs we need mechanisms that detect split-views. One such
mechanism which is based on programmable packet processors
(introduced next) is presented in Section III, and it is compared
to related work on CT gossip in Section VI.

B. Programmable Data Planes
Packet processors such as switches, routers, and network

interface cards are typically integrated tightly using customized
hardware and application-specific integrated circuits. This in-
flexible design limits the potential for innovation and leads to
long product upgrade cycles, where it takes years to introduce
new processing capabilities and support for different protocols
and header fields (mostly following lengthy standardization
cycles). The recent shift towards flexible match+action packet-
processing pipelines—including Reconfigurable Match Tables
(RMT) [19], Intel FlexPipe [20], Cavium XPliant packet
Architecture (XPA) [21], and Barefoot Tofino [22]—now have
the potential to change the way in which packet processing
hardware is implemented: it enables programmability using
high-level languages, such as P4, while at the same time
maintaining performance comparable to fixed-function chips.

1) P4: The main goal of P4 is to simplify programming
of protocol-independent packet processors by providing an
abstract programming model for the network data plane [14].
In this setting, the functionality of a packet processing device
is specified without assuming any hardwired protocols and
headers. Consequently, a P4 program must parse headers and
connect the values of those protocol fields to the actions
that should be executed based on a pipeline of reconfigurable
match+action tables. Based on the specified P4 code, a front-
end compiler generates a high-level intermediate representation
that a back-end compiler uses to create a target-dependent
program representation. Compilers are available for several
platforms, including the software-based simple switch architec-
ture [23], SDNet for Xilinx’s NetFPGA (Field-Programmable
Gate Array) boards [24], and Netronome’s smart network
interfaces [25]. It is also possible to compile basic P4 programs
into eBPF byte code [26].

2) XDP: The Berkeley Packet Filter (BPF) is a Linux-
based packet filtering mechanism [27]. Verified bytecode is
injected from user space, and executed for each received
packet in kernel space by a just-in-time compiler. Extended
BPF (eBPF) enhances the original BPF concept, enabling
faster runtime and many new features. For example, an eBPF
program can be attached to the Linux traffic control tool tc,
and additional hooks were defined for XDP [15]. In contrast to
the Intel Data Plane Development Kit (DPDK), which runs in
user space and completely controls a given network interface
that supports a DPDK driver, XDP cooperates with the Linux
stack to achieve fast, programmable, and reconfigurable packet
processing using C-like programs.

III. DESIGN

An overview of aggregation-based gossip is shown in
Figure 1. The setting consists of logs that send plaintext
STHs to clients over a network, and, as part of the network,
inline packet processors passively aggregate observed STHs
to their own off-path challengers which challenge the logs to
prove consistency. A log cannot present split views to different
clients that share an aggregating vantage point because it
would trivially be detected by that vantage point’s challenger.
A log also cannot present a persistent split view to different
challengers because they are off-path in the sense that they
are indistinguishable from one another. This means that every
client that is covered by an aggregator must be on the same
view because at least one challenger will otherwise detect an
inconsistency and report it. A client that is not directly covered
by an aggregator may receive indirect protection in the form
of herd immunity. This is discussed in Section VII-D.

A. Threat Model and Security Notion
The overarching threat is undetectable domain imperson-

ation (ex-post) by an attacker that is capable of compromising
at least one CA and a sufficient number of CT logs to convince
a client into accepting a forged certificate. We assume that
any illegitimately issued certificate would be detected by the
legitimate domain owner through self or delegated third-party
monitoring. This means that an attacker must either provide
a split view towards the victim or the monitoring entity. We
also assume that clients query the logs for certificate inclusion
based on STHs that they acquire from the logs via plaintext
mechanisms that packet processors can observe, and that some
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Figure 1. Packet processor that aggregates plaintext STHs for off-path verification.

other entities than challengers process STHs using the chosen
off-paths (SectionVII-A). We do not account for the fact that
CA compromises may be detected by other means, focusing
solely on split-viewing CT logs.

1) Limitations: Our gossip mechanism is limited to STHs
that packet processors can observe. As such, a client isolated
by an attacker is not protected. We limit ourselves to attackers
that act over a network some distance (in the sense of network
path length) from a client in plaintext so that aggregation
can take place. Our limitations and assumptions are further
discussed in Section VII-A.

2) Attackers: Exceptionally powerful attackers can isolate
clients, but clients are not necessarily easy to isolate for a
significant number of relevant attackers. Isolation may require
physical control over a device [28], clients may be using
anonymity networks like Tor where path selection is inherently
unpredictable [29], or sufficiently large parts of the network
cannot be controlled to ensure that no aggregation takes
place. This may be the case if we consider a nation state
actor attacking another nation state actor, the prevalence of
edge security middleboxes, and that home routers or network
interfaces nearby the clients could aggregate. Any attacker that
cannot account for these considerations is within our threat
model.

3) Security Notion: To bypass our approach towards gos-
sip, an adaptive attacker may attempt to actively probe the
network for aggregating packet processors. This leads us to
the key security notion: aggregation indistinguishability. An
attacker should not be able to determine if a packet processor
is aggregating STHs. The importance of aggregation indistin-
guishability motivates the design of our gossip mechanism into
two distinct components: aggregation that takes place inline at
packet processors, and periodic off-path log challenging that
checks whether the observed STHs are consistent.

B. Packet Processor Aggregation
An aggregating packet-processor determines for each

packet if it is STH-related. If so, the packet is cloned and sent
to a challenging component for off-path verification. The exact
definition of STH-related depends on the plaintext source,
but it is ultimately the process of inspecting multiple packet
headers such as transport protocol and port number. It should
be noted that the original packet must not be dropped or
modified. For example, an aggregator would have a trivial
aggregation distinguisher if it dropped any malformed STH.

For each aggregating packet processor, we have to take
IP fragmentation into consideration. Recall that IP fragmenta-
tion usually occurs when a packet is larger than the Max-
imum Transmission Unit (MTU), splitting it into multiple

smaller IP packets that are reassembled at the destination host.
Normally, an STH should not be fragmented because it is
much smaller than the de-facto minimum MTU of (at least)
576 bytes [30][31], but an attacker could use fragmentation to
intentionally spread expected headers across multiple packets.
Assuming stateless packet processing, an aggregator cannot
identify such fragmented packets as STH-related because some
header would be absent (cf. stateless firewalls). All tiny frag-
ments should therefore be aggregated to account for intentional
IP fragmentation, which appears to have little or no impact
on normal traffic because tiny fragments are anomalies [32].
The threat of multi-path fragmentation is discussed in Sec-
tion VII-A.

Large traffic loads must also be taken into account. If an
aggregating packet processor degrades in performance as the
portion of STH-related traffic increases, a distant attacker may
probe for such behaviour to determine if a path contains an
aggregator. Each implementation must therefore be evaluated
individually for such behaviour, and, if trivial aggregation
distinguishers exist, this needs to be solved. For example,
STH-related traffic could be aggregated probabilistically to
reduce the amount of work. Another option is to load-balance
the traffic before aggregation, i.e., avoid worst-case loads that
cannot be handled.

C. Off-Path Log Challenging
A challenger is setup to listen for aggregated traffic,

reassembling IP fragments and storing the aggregated STHs
for periodic off-path verification. Periodic off-path verification
means that the challenger challenges the log based on its own
(off-path fetched) STHs and the observed (aggregated) STHs
to verify log consistency periodically, e.g., every day. The
definition of off-path is that the challenger must not be linkable
to its aggregating packet processor(s) or any other challenger
(including itself). Without an off-path, there is no gossip step
amongst aggregator-challenger instances that are operated by
different actors, and our approach towards gossip would only
assert that clients behind the same vantage point observe
the same logs. If a log cannot distinguish between different
challengers due to the use of off-paths, however, it is non-
trivial to maintain a targeted split-view towards an unknown
location. Therefore, we get a form of implicit gossip [11]
because at least one challenger would detect an inconsistency
unless everybody observes the same log. If every challenger
observes the same log, so does every client that is covered
by an aggregating packet processor. Notably, the challenger
component does not run inline to avoid timing distinguish-
ers. Note that there are other important considerations when
implementing a challenger, as discussed in Section VII-A.
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IV. DISTINGUISHABILITY EXPERIMENTS

There are many different ways to implement the aggre-
gation step. We decided to use P4 and XDP because a
large variety of programmable packet processors support these
languages (Section II-B). The aggregated plaintext source is
assumed to be CT-over-DNS [33], which means that a client
obtains STHs by fetching IN TXT resource records. Since
languages for programmable packet processors are somewhat
restricted, we facilitated packet processing by requiring that
at most one STH is sent per UDP packet. This is reasonable
because logs should only have one most recent STH. A DNS
STH is roughly 170 bytes without any packet headers and
should normally not be fragmented, but to ensure that we
do not miss any intentionally fragmented STHs we aggregate
every tiny fragment. We did not implement the challenging
component because it is relatively easy given an existing off-
path. Should any scalability issue arise for the challenger there
is nothing that prevents a distributed front-end that processes
the aggregated material before storage. Storage is not an issue
because there are only a limited amount of unique STHs per
day and log (one new STH per hour is a common policy, and
browsers recognize ≈ 40 logs). Further implementation details
can be found online [16][34].

A. Setup
We used a test-bed consisting of a traffic generator, a traffic

receiver, and an aggregating target in between. The first target
is a P4-enabled NetFPGA SUME board that runs an adapted
version of our P4 reference implementation. The second target
is a net-next kernel v4.17.0-rc6 Linux machine that runs XDP
on one core with a 10 Gb SFP+ X520 82599ES Intel card,
a 3.6 GHz Intel Core i7-4790 CPU, and 16 GB of RAM
at 1600 MHz (Hynix/Hyundai). We would like to determine
whether there are any aggregation distinguishers as the fraction
of STHs (experiment 1) and tiny fragments (experiment 2) in
the traffic is increased from 0–100%, i.e., does performance
degrade as a function of STH-related rate? Non-fragmented
STH packets are 411 bytes (we used excessively large DNS
headers to maximize the packet parsing overhead), and tiny
fragments are 64 bytes. All background traffic has the same
packet sizes but is not deemed STH-related.

B. Results
Figure 2a shows throughput as a function of STH-related

rate for the P4-enabled NetFPGA. While we were unable
to observe any distinguisher between normal routing and
the edge case of 100% aggregation for non-fragmented STH
packets, there is a small constant throughput difference for
tiny fragments (7.5 Kbps). This is a non-negligible program
distinguisher if a packet processor is physically isolated as in
our benchmark, i.e., something other than a routing program
is running but it is not necessarily an aggregator because
performance does not degrade as a function of increased STH-
related rate. However, we found such degradation behaviour for
the single-core XDP case (Figure 2b). If line-speed is higher
than 2 Gbps, STHs could be aggregated probabilistically or
traffic could be load-balanced to overcome this issue.

C. Lessons learned
P4-NetFPGA provides aggregation indistinguishability re-

gardless of STH load. For XDP, it depends on the scenario:
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Figure 2. Throughput as a function of STH-related traffic that is aggregated.

what is the line-rate criteria and how many cores are available.
For example, five cores support 10 Gbps aggregation indistin-
guishability without probabilistic filtering or load balancing.

V. ESTIMATED IMPACT OF DEPLOYMENT

We conducted 20 daily traceroute measurements during the
spring of 2018 on the RIPE Atlas platform to evaluate the
effectiveness of aggregation-based gossip. The basic idea is to
look at client coverage as central ASes and IXPs aggregate
STHs. If any significant client coverage can be achieved, the
likelihood of pulling off an undetected split-view will be small.

A. Setup
We scheduled RIPE Atlas measurements from roughly

3500 unique ASes that represent 40% of the IPv4 space,
trace-routing Google’s authoritative CT-over-DNS server and
NORDUnet’s CT log to simulate clients that fetch DNS STHs
in plaintext. Each traceroute result is a list of traversed IPs, and
it can be translated into the corresponding ASes and IXPs using
public data sets [35][36]. In other words, traversed ASes and
IXPs can be determined for each probe. Since we are interested
in client coverage as ASes and IXPs aggregate, each probe is
weighted by the IPv4 space of its AS. While an IP address
is an imperfect representation of a client, e.g., an IP may be
unused or reused, it gives a decent idea of how significant it
is to cover a given probe.

B. Results
Figure 3 shows AS/IXP path length and stability from the

probes to the targets. If the AS path length is one, a single
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AS is traversed before reaching the target. It is evident that an
AS path tends to be one hop longer towards NORDUnet than
Google because there is a rough off-by-one offset on the x-
axis. A similar trend of greater path length towards NORDUnet
can be observed for IXPs. For example, 74.0% of all paths
traversed no IXP towards Google, but 58.5% of all paths
traversed a single IXP towards NORDUnet. These results can
be explained by infrastructural differences of our targets: since
Google is a worldwide actor an average path should be shorter
than compared to a region-restricted actor like NORDUnet. We
also observed that AS and IXP paths tend to be quite stable
over 20 days (the duration of our measurements). In other
words, if AS a and b are traversed it is unlikely to suddenly
be routed via AS c.

Figure 4 shows coverage of the RIPE Atlas network as 1...n
actors aggregate STHs. For example, 100% and 50% coverage
means that at least 40% and 20% of the full IPv4 space
is covered. The aggregating ASes and IXPs were selected
based on the most commonly traversed vantage points in
our measurements (Pop), as well as CAIDA’s largest AS
ranking [37]. We found that more coverage is achieved when
targeting NORDUnet than Google. This is expected given that
the paths tend to be longer. Further, if CAIDA’s top-32 enabled
aggregation the coverage would be significant towards Google
(31.6%) and NORDUnet (58.1%).

C. Lessons learned
A vast majority of all clients traverse at least one AS that

could aggregate. It is relatively rare to traverse IXPs towards
Google but not NORDUnet. We also learned that paths tends to
be stable, which means that the time until split view detection
would be at least 20 days if it is possible to find an un-
protected client. This increases the importance of aggregation
indistinguishability. Finally, we identified vantage points that
are commonly traversed using Pop, and these vantage points
are represented well by CAIDA’s independent AS ranking.
Little opt-in from ASes and IXPs provides significant coverage
against an attacker that is relatively close to a client (cf.
world-wide infrastructure of Google). Although we got better
coverage for NORDUnet, any weak attacker would approach

Google’s coverage by renting infrastructure nearby. Any weak
attacker could also circumvent IXP aggregation by detecting
the IXP itself [38]. As such, top-ranked AS aggregation should
give the best split-view protection.

VI. RELATED WORK

Earlier approaches towards CT gossip are categorized as
proactive or retroactive in Figure 5. We consider an approach
proactive if gossip takes place before SCTs and/or STHs reach
the broader audience of clients. Syta et al. proposed proactive
witness cosigning, in which an STH is collectively signed by
a large number of witnesses and at most a fraction of those
can be faulty to ensure that a benevolent witness observed an
STH [8]. STH cross-logging [9][39][40] is similar in that an
STH must be proactively disclosed in another transparency log
to be trusted, avoiding any additional cosigning infrastructure
at the cost of reducing the size and diversity of the witnessing
group. Tomescu and Devadas [41] suggested a similar cross-
logging scheme, but split-view detection is instead reduced to
the difficulty of forking the Bitcoin blockchain (big-O cost
of downloading all block headers as a TLS client). The final
proactive approach is STH pushing, where a trusted third-party
pushes the same verified STH history to a base of clients [18].

We consider a gossip mechanism retroactive if gossip takes
place after SCTs and/or STHs reach the broader audience
of clients. Chuat et al. proposed that TLS clients and TLS
servers be modified to pool exchanged STHs and relevant
consistency proofs [6]. Nordberg et al. continued this line of
work, suggesting privacy-preserving client-server pollination
of fresh STHs [7]. Nordberg et al. also proposed that clients
feedback SCTs and certificate chains on every server revisit,
and that trusted auditor relationships could be engaged if
privacy need not be protected. The latter is somewhat similar
to the formalized client-monitor gossip of Chase and Meik-
lejohn [43], as well as the CT honey bee project where a
client process fetches and submits STHs to a pre-compiled
list of auditors [42]. Laurie suggested that a client can resolve
privacy-sensitive SCTs to privacy-insensitive STHs via DNS
(which are easier to gossip) [33]. Private information retrievals
could likely achieve something similar [44]. Assuming that
TLS clients are indistinguishable from one another, split-view
detection could also be implicit as proposed by Gunn et al.
for the verifiable key-value store CONIKS [11][45].

Given that aggregation-based gossip takes place after an
STH is issued, it is a retroactive approach. As such, we
cannot protect an isolated client from split-views [8]. Similar
to STH pooling and STH pollination, we rely on client-driven
communication and an existing infrastructure of packet pro-
cessors to aggregate. Our off-path verification is based on the
same multi-path probing and indistinguishability assumptions
as Gunn et al. [11][46][47]. Further, given that aggregation is
application neutral and deployable on hosts, it could provide
gossip for the CT honey bee project (assuming plaintext STHs)
and any other transparency application like Trillian [48]. An-
other benefit when compared to browsing-centric and vendor-
specific approaches is that a plethora of HTTPS clients are
covered, ranging from niche web browsers to command line
tools and embedded libraries that are vital to protect but
yet lack the resources of major browser vendors [49][50].
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STH pushing [18]
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STH pooling [6][7]

Trusted auditing [7]

SCT feedback [7]

CT honey bee [42]

Figure 5. A categorization of approaches towards CT gossip.

Our approach coexists well with witness cosigning and cross-
logging due to different threat models, but not necessarily STH
pushing if the secure channel is encrypted (no need to fetch
what a trusted party provides).

VII. DISCUSSION

Next, we discuss assumptions, limitations and deployment,
showing that our approach towards retroactive gossip can be
deployed to detect split-views by many relevant attackers with
relatively little effort. The main drawback is reliance on clients
fetching STHs in plaintext, e.g., using CT-over-DNS [33].

A. Assumptions and Limitations

Aggregation-based gossip is limited to network traffic that
packet processors can observe. The strongest type of attacker
in this setting—who can completely isolate a client—trivially
defeats our gossip mechanism and other retroactive approaches
in the literature (see Section VI). A weaker attacker cannot
isolate a client, but is located nearby in a network path length
sense. This limits the opportunity for packet processor aggre-
gation, but an attacker cannot rule it out given aggregation
indistinguishability. Section IV showed based on performance
that it is non-trivial to distinguish between (non-)aggregating
packet processors on two different targets using P4 and XDP.
Off-path challengers must also be indistinguishable from one
another to achieve implicit gossip. While we suggested the use
of anonymity networks like Tor, a prerequisite is that this is
in and of itself not an aggregation distinguisher. Therefore, we
assume that other entities also use off-paths to fetch and verify
STHs. The fact that a unique STH is not audited from an off-
path could also be an aggregation distinguisher. To avoid this
we could rely on a verifiable STH history [51] and wait until
the next MMD to audit or simply monitor the full log so that
consistency proofs are unnecessary.

The existence of multiple network paths are fundamental
to the structure and functioning of the Internet. A weak
attacker may use IP fragmentation such that each individual
STH fragment is injected from a different location to make
aggregation harder, approaching the capabilities of a stronger
attacker that is located closer to the client. This is further ex-
acerbated by the deployment of multi-path transport protocols
like MPTCP (which can also be fragmented). Looking back
at our RIPE Atlas measurements in Section V, the results
towards Google’s world-wide infrastructure better represent
an active attacker that takes some measures to circumvent
aggregation by approaching a client nearby the edge. Given
that the likelihood of aggregation is high if any IXP is present
(Figure 4), aggregation at well-connected IXPs are most likely
to be circumvented.

B. Deployment
Besides aggregating at strategic locations in the Internet’s

backbone, Internet Service Providers (ISPs) and enterprise
networks have the opportunity to protect all of their clients
with relatively little effort. Deployment of special-purpose
middleboxes are already prevalent in these environments, and
then the inconvenience of fragmentation tends to go away due
to features such as packet reassembly. Further, an attacker
cannot trivially circumvent the edge of a network topology—
especially not if aggregation takes place on an end-system: all
fragments are needed to reassemble a packet, which means that
multi-path fragmentation is no longer a threat. If aggregation-
based gossip is deployed on an end-system, STHs could be
hooked using other approaches than P4/XDP. For example,
shim-layers that intercept TLS certificates higher up in the
networking stack were already proposed by Bates et al. [52]
and O’Neill et al. [53]. In this setting, an end-system is viewed
as the aggregating packet processor, and it reports back to an
off-path challenger that may be a local process running on
the same system or a remote entity, e.g., a TelCo could host
challengers that collect aggregated STHs from smartphones.

While we looked at programming physical packet pro-
cessors like routers, STH aggregation could be approached
in hypervisors and software switches [54] to protect many
virtual hosts. If CT-over-DNS is used to fetch STHs, it would
be promising to output DNS server caches to implement the
aggregation step. Similar to DNS servers, so called Tor exist
relays also operate DNS caches. In other words, P4 and XDP
are only examples of how to instantiate the aggregation step.
Depending on the used plaintext source, packet processor, and
network topology other approaches may be more suitable, e.g.,
C for vendor-specific middleboxes.

C. Retroactive Gossip Benefits From Plaintext
As opposed to an Internet core that only forwards IP pack-

ets, extra functionality is often embedded which causes com-
plex processing dependencies and protocol ossification [13].
Many security and protocol issues were found for middle-
boxes that provides extra functionality [12][55], resulting in
the mindset that everything should be encrypted [55]. Our
work is controversial because it goes against this mindset and
advocates that STHs should be communicated in plaintext. We
argue that this makes sense in the context of STHs due to the
absence of privacy concerns and because the entire point of
gossip is to make STHs available (rather than end-to-end). The
idea of intentionally exposing information to the network is not
new, e.g., MPQUIC is designed to support traffic shaping [56].

While we used CT-over-DNS as a plaintext source,
there is a push towards DNS-over-TLS [57] and DNS-over-
HTTPS [58]. Wide use of these approaches could undermine
our gossip mechanism, but ironically the security of TLS could
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be jeopardized unless gossip is deployed. In other words,
long term gossip is an essential component of CT and other
transparency logs to avoid becoming yet another class of
trusted third-parties. If proactive approaches such as witness
cosigning are rejected in favour of retroactive mechanisms,
then ensuring that STHs are widely spread and easily acces-
sible is vital. An STH needs no secrecy if the appropriate
measures are taken to make it privacy-insensitive [7]. While
secure channels also provide integrity and replay protection,
an STH is already signed by logs and freshness is covered
by MMDs, as well as issue frequency to protect privacy. A
valid argument against exposing any plaintext to the network is
protocol ossification. We emphasize that our design motivates
why packet processors should fail open: otherwise there is
no aggregation indistinguishability. Note that there are other
plaintext sources than CT-over-DNS that could be aggregated.
However, if these sources require stream-reassembly it is gen-
erally hard to process in languages such as P4 and XDP [59].

D. Indistinguishability and Herd Immunity
An attacker that gains control over a CT log is bound to

be more risk averse than an attacker that compromises a CA.
There is an order of magnitude fewer logs than CAs, and client
vendors are likely going to be exceptionally picky when it
comes to accepted and rejected logs. We have already seen
examples of this, including Google Chrome disqualifying logs
that made mistakes: Izenpe used the same key for production
and testing [60], and Venafi suffered from an unfortunate
power outage [61]. Risk averse attackers combined with packet
processors that are aggregation indistinguishable may lead
to herd immunity: despite a significant fraction of clients
that lack aggregators, indirect protection may be provided
because the risk of eventual detection is unacceptable to many
attackers. Hof and Carle [40] and Nordberg et al. [7] discussed
herd immunity briefly before us. While herd immunity is
promising, it should be noted that aggregation distinguishable
packet processors at the edge of a network topology may be
acceptable for some. In other words, if an aggregator cannot
be circumvented but it is detectable split-views would still be
deterred against covered clients if the challenger is off-path.

VIII. CONCLUSION AND FUTURE WORK

Wide spread modifications of TLS clients are inevitable
to support CT gossip. We propose that these modifications
include challenging the logs to prove certificate inclusion based
on STHs fetched in plaintext, thereby enabling the traversed
packet processors to assist in split view detection retroactively
by aggregating STHs for periodic off-path verification. Our re-
sults show that the aggregation-step can be implemented with-
out throughput-based distinguishers for a distant attacker, and
that our approach offers rapid incremental deployment with
high impact on a significant fraction of Internet users. Beyond
being an application neutral approach that is complementary
to proactive gossip, a compelling aspect is that core packet
processors are used (rather than clients) as a key building
block: should a consistency issue arise, it is already in the
hands of an actor that is better equipped to investigate the cause
manually. Further, considering that far from all TLS clients are
backed by big browser vendors (not to mention other use-cases
of transparency logs in general) it is likely a long-term win to
avoid pushing complex retroactive gossip logic into all the

different types of clients when there are orders of magnitudes
fewer packet processors that could aggregate to their own off-
path challengers. Future work includes different instantiations
of the aggregation step and evaluating whether aggregation
indistinguishability is provided based on throughput and/or
latency. The setting may also change in some scenarios, e.g., if
DNS caches are aggregated the transport need not be plaintext.
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Abstract—This paper reviews the state of the art for incorpo-
rating Mobile Devices, Industrial Control Systems, and Internet
of Things systems into present risk analysis framework models.
Internet of Things devices present unique risks to a network due
to their highly connective and physically interactive nature. This
physical influence can be leveraged to access peripherals beyond
the immediate scope of the network, or to gain unauthorized
access to systems which would not otherwise be accessible. A 2017
Government Accountability Office report on the current state of
Internet of Things device security noted a lack of dedicated policy
and guidance within the United States government cybersecurity
risk assessment construct and similar private sector equivalents.
Surveyed in this paper are 28 original frameworks designed to
be implemented in enterprise networks. In this research the
comparison of frameworks is analyzed to assess each system’s
ability to provide risk analysis for Internet of Things devices.
The research categories are level of implementation, quantitative
or qualitative scoring matrix, and support for future develop-
ment. This survey demonstrates there are few risk management
frameworks currently available which attempt to incorporate
both cyber-physical systems and enterprise architecture in a large
scale network.

Keywords— IoT; RMF; cybersecurity; risk; ICS.

I. INTRODUCTION

Industrial Control Systems (ICS) and Internet of Things
(IoT) devices have infiltrated most networks that would tra-
ditionally be classified as enterprise networks. Their unprece-
dented rise in popularity has made it challenging for compa-
nies to assess and mitigate the additional risk.

IoT devices present unique risks to a network due to their
highly connective and often cyber-physical nature. This phys-
ical influence can be leveraged to gain unauthorized access to
systems which would not otherwise be accessible.

The United States (U.S.) Government Accountability Office
(GAO), an independent and nonpartisan U.S. Congressional
watchdog organization, provides objective and reliable infor-
mation to the government regarding work and spending prac-
tices. GAO focuses on identifying problems and proposes so-
lutions [32]. In July 2017, GAO released a report titled Internet
of Things: Enhanced Assessments and Guidance Are Needed to
Address Security Risks in DOD in order to highlight shortcom-
ings in most current operational risk assessment frameworks to
include those implemented by the U.S. Department of Defense
(DOD). The report includes security concerns with Mobile

Devices, Supervisory Control and Data Acquisition (SCADA),
Programmable Logic Controllers (PLC), and Remote Terminal
Units (RTU) in the U.S. DOD [32].

GAO noted a lack of dedicated policy and guidance within
the U.S. government cybersecurity risk assessment construct
and similar private sector equivalents. In the report, GAO
defines IoT devices as any personal wearable fitness device,
portable electronic device, smartphone, or infrastructure device
related to industrial control systems [32].

Present DOD Instructional Guidance does not address IoT
devices sufficiently [32]. Furthermore, no single DOD entity
is responsible for the security of IoT systems, and the primary
guidance on IoT security is the strategic directive to establish
an operations security program. This paper furthers the re-
search done by GAO in order to expand the scope of analysis
beyond the U.S. DOD and into the greater field of published
cyber risk solutions.

A risk analysis methodology must account for more than
just traditional enterprise network components in order to mit-
igate the risks presented by an unregulated or loosely defined
set of devices on an otherwise secure network. The purpose of
this survey is to analyze the pace of development and compare
the strengths and weaknesses of each analyzed framework
with regard to IoT and ICS devices. 27 original cyber risk
assessment and management models will be compared based
on their method of risk scoring, level of implementation, and
future development plans. These metrics will be used to gauge
the effectiveness of a framework when accounting for devices
which may not be consistently part of the secure baseline,
or may not be commonly patched and secured. The ability
of a risk analysis model to incorporate these common, but
otherwise difficult to attribute systems will be compared in
order to determine the state of the art. Frameworks published
from as early as 2002 were identified and assessed for their
ability to adapt to IoT devices. This paper analyzes the extent
that network risk analysis and management frameworks have
adapted to this evolving threat terrain. Section II outlines the
risk framework models and their attributes, Section III presents
the methods used to analyze and evaluate the frameworks
in order to make appropriate comparisons, and Section IV
provides an assessment of the current state of the art in order to
then make recommendations for future research. We conclude
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this work in Section V.

II. RELATED WORK

A. Risk Management Framework (RMF)

The primary risk assessment and management framework
used by the U.S. Military and DOD to conduct mission
assurance is the cybersecurity Risk Management Framework
(RMF) developed by the National Institute of Standards and
Technology (NIST). NIST RMF is a 6 step qualitative analysis
method for assessing risk. It establishes a secure baseline
through identifying controls that are to be updated as changes
are detected [1]. Common NIST RMF implementation policy
requires end users to disable the impertinent network compo-
nents of most IoT devices, but this can encourage subversion
of the RMF process for personal and government devices by
dis-associating some capabilities from the network and the
secure baseline. This presents heightened risk levels that are
left unaccounted for in the overall assessment [32]. Qualitative
frameworks such as RMF rely on scanning tools and strict
Information Assurance (IA) policy to prevent unauthorized
activity. These security measures can be subverted by IoT
devices because they often have limited up-time, minimal
support, a notable lack of associated scanning tools, and a
smaller footprint for vulnerability testing [32]. Note: The NIST
Cybersecurity Framework (CSF) and RMF are different, and
CSF is directed at a higher level of protection specific to
Critical Infrastructure (CI) not analyzed in this paper.

B. Control Objectives for Information and related Technology
(COBIT) 5

COBIT 5 is the latest COBIT version analyzed. It was
developed by the Information Systems Audit and Control As-
sociation (ISACA) and is a qualitative framework designed to
provide top-down security of a business sized network. It relies
on control objectives to build out the security requirements,
and the level of security is assessed by maturity models.
COBIT follows a purpose built model which is intended to
allow for only necessary systems to be on the network in order
to minimize risk [2] [34] . COBIT 2019 has been announced
and is expected to address IoT more directly [22].

C. ISO27K Series

Published the International Organization for Standardiza-
tion (ISO) and the International Electrotechnical Commission
(IEC), the ISO/IEC 27000 series is a large framework of
best practices. It provides a security control based qualitative
framework with significant modularity for varying levels of
implementation similar to the NIST RMF and COBIT. The
strength of this model is its inherent ability to scale to the
needs of the network, but allows for weaknesses where the
framework is not fully implemented. It is currently in extensive
use [3] [19].

D. Information Security Maturity Model (ISMM) (2011)

The ISMM model was created by analyzing eight existing
models: NIST, Information Security Management Maturity
Model (ISM3), Generic Security Maturity Model (GSMM),
Gartner’s Information Security Awarness Maturity Model
(GISMM), SUNY’s Information Security Initiatives (ISI), IBM
Security Framework, Citigroup’s Information Security Evalu-
ation Maturity Model (ISEM), and Information Security Man-
agement System (ISMS) Maturity Capability Model. ISMM
assesses the security requirements of an organization and
then assigns a maturity level that will provide the correct
balance of security and accessibility. They propose a method
of quantifying risk at a very abstracted level, but the model
itself is primarily a qualitative system to initiate compulsory
levels of security [21].

E. Information Security Maturity Model (ISMM) (2017)

This ISMM model was also created following a com-
parison of several current implementations of risk modeling
frameworks to include NIST RMF, COBIT, and ISO 27001.
ISMM attempts to directly map each capability provided by
current models to determine the most mature framework.
The findings discovered weaknesses in all frameworks, and
a single composite framework was introduced as a solution
which provides all capabilities of currently implementations
in one system. The framework is still at a theoretical stage
of implementation, but has the potential to create a more
complete qualitative solution [1].

F. Operationally Critical Threat, Asset, and Vulnerability
Evaluation (OCTAVE)

1) OCTAVE (original): OCTAVE is a self directed risk
management solution for large enterprises. It relies on the
network staff’s knowledge of critical systems and components
to create a secure baseline. The weakness of this system is it
is outdated (2003) and reliant on having an expert team with
significant resources. There have not been significant updates
to OCTAVE following the release of OCTAVE-Allegro and it
could now be considered a legacy framework [4].

2) OCTAVE-S: OCTAVE-S is designed as a smaller scale
implementation of OCTAVE, but suffers from several similar
pitfalls. A manually created baseline that is updated as
changes are observed cannot be easily adapted. OCTAVE-S
provides additional structure for a less experienced team,
but at the expense of significant system constraints as the
implementation matures [4].

3) OCTAVE-Allegro: Allegro attempts to make risk man-
agement system more approachable than the original models.
The complexity level of OCTAVE Allegro is lowered and the
system is shifted to a more information-centric container based
approach. Allegro is one of the first qualitative systems to
incorporate an abstracted level of quantitative analysis using
the containers as network elements. Due to the still largely
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qualitative nature of Allegro, it can have issues with implemen-
tation consistency. This can be especially challenging when
accounting for IoT devices [10].

G. Holistic Cyber Security Implementation Framework (HCS-
IF)

Atoum introduces HCS-IF in an attempt to create a more
complete approach to risk management that avoids the frag-
mented stovepipe nature that developed over several iterations
of abstracted quantification in many risk management frame-
works. The HCS-IF has not yet been tested, but has potential
value to be assessed in future studies [6].

H. IoT/M2M

Cisco introduces the IoT/M2M framework in order to
address the rising challenge of securing networks saturated
with relatively insecure IoT devices. The downside to this
otherwise very effective model is the cost and difficulty in
building a network from essentially the ground up as opposed
to introducing new security measures to an existing network.
It is a qualitative zero trust approach to security that attempts
to limit the access of IoT devices in order to prevent them
from being leveraged to influence otherwise secure devices.
Live network evaluation has not yet been published [14].

I. Mobius

Mobius creates a quantifiable model which allows for risk
calculations to be made using custom designed profiles for
each device. The weakness is in the scaling and implemen-
tation relative to more modern tools. It requires extensive
expertise to properly employ, and additional development to
account for IoT devices [12].

J. Online Services Security Framework (OSSF)

The OSSF framework is designed to manage risk in an
enterprise network offering online services. It provides the
structure to create a secure baseline for both the provider and
the consumer, but inherently must be configured by the end
user. It accounts for broadly connected devices like IoT well,
but it is limited in its application until it can be expanded to
more diverse networks [24].

K. The CORAS Method

The CORAS approach is an 8 step model-based solution
which allows a great deal of flexibility in implementation. A
risk evaluation matrix is populated using CORAS that provides
both high and low level analysis, but at the cost of significant
labor as the baseline is constantly redefined when IoT devices
are introduced [23].

L. Threat Agent Risk Assessment (TARA) (2009)

TARA was created by Intel and uses a calculation matrix to
predict which agents pose the highest risk to the network. The
output is then cross-referenced with known vulnerabilities and
controls to mitigate risk. A meaningful published application
of the TARA system has not been identified during this survey
[26].

M. Threat Assessment & Remediation Analysis (TARA)(2011)

The MITRE Corporation created the TARA system to secure
specific networks known to be of interest to potential actors.
TARA uses a scoring model to identify probability of attack
and potential attack vectors. It is difficult to scale, but can
provide very sophisticated assessments if the cybersecurity
budget is sufficiently large [35].

N. CCTA Risk Analysis and Management Method (CRAMM)

CRAMM is a framework designed by the United King-
dom (UK) Central Computer and Telecommunications Agency
(CCTA). It is a relatively outdated method of providing quali-
tative analysis across multiple asset groups and requires them
to be built out on a per-network basis. This makes the modular
construction useful, but at the cost of significant overhead to
implement. It has been implemented in many countries, but
has not been updated since CRAMM 5 in 2003 [36].

O. Cyber Assessment Framework (CAF) 2.0

Created by the UK National Cyber Security Centre (NCSC),
the CAF is a model based risk assessment system similar to
NIST RMF which provides extensibility across many devices
and network types including SCADA [33]. The framework
is very new without published academic assessment, but has
been adopted at an international level with a particular focus
on SCADA and business IT systems [31].

P. Cyber Risk Scoring and Mitigation (CRISM)

CRISM uses Bayesian graphs to build an end-to-end au-
tomated capability which can provide security scores and
prioritized mitigation plans. A high level of automation is
achieved which makes implementation much simpler for small
teams. Additional testing and development has the potential to
create a powerful tool [29].

Q. Network Security Risk Model (NSRM)

NSRM relies on establishing a secure baseline and com-
paring risk levels after the introduction of each new device.
This method is relatively outdated and labor intensive, but
can provide good results if it is effectively implemented. It is
targeted at Process Control Networks (PCN) which have less
variance, and is not suitable for a large enterprise network
[18].

R. Cyber Physical Systems Security (CPSS)

DiMase identified the need for a Cyber-Physical System
(CPS) centric risk framework to account for the rise in CPS
devices across enterprise networks. It relies on a heuristics
based approach rather than a secure baseline to provide an
initial level of security, and over time creates an operational
baseline. Extensive future development is required before
fielding on a large network [13].

130Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

                         141 / 144



S. Harmonized Threat & Risk Assessment (HTRA)

Published by the Canadian Government, HTRA provides
a risk management framework which expounds rapid ad-
justments to account for quickly evolving threat terrain, but
still implements a traditional secure baseline structure. HTRA
suffers from the same pitfalls of most large frameworks in that
the size of the network often determines how effectively the
model is implemented [17].

T. System-Fault Risk (SFR)

The qualitative framework created by Ye accounts for sev-
eral layers of interconnection by creating multiple attack origin
classification models. It is modular and capable of extension
into nearly any device that operates on a network, but at
extreme cost. It is not primarily intended to be used as a full
enterprise solution [37].

U. Hierarchical Model Based Risk Assessment

Baiardi introduces a framework based on security depen-
dency hypergraphs which have the capability to identify attack
paths which an analyst may miss in a qualitative assessment.
Tools for basic implementation were developed but not widely
tested in a live network [7].

V. Patel & Ziveri Model

The model is a quantitative system which depends on pre-
determined types of attacks and devices. Additional research
would be required in order to account for anything outside of
the current scope of the model. It is presently designed for
implementation in SCADA networks, and does not account
well for IoT or any attack that is not within the matrix [25].

W. IBM Security Framework

The IBM security blueprint stovepipes security into domains
which are broken down further into distinct objectives and
services. Each sub-domain is then to be implemented accord-
ing to industry best practices [8]. An update in 2014 showed
successful results in several live networks [9].

X. Information Security Risk Analysis Method (ISRAM)

ISRAM is an attempt to bridge the gap between the over-
whelming challenge of implementing a quantitative model on
a complex network and the inconsistencies of a qualitative
model. While sound in theory, the product still suffers from
the extensibility issues faces by quantitative models [20].

Y. Amin Cyber-Physical Security (CPS) Model

Amin attempts to create a quantitative framework to address
the risks presented by cyber-phsyical systems on a network,
but struggles to account for all components simultaneously in
a large composite model [5].

Z. Cybernomics

Cybernomics is an attempt to incorporate cyber risk man-
agement and economic modeling to build a quantifiable frame-
work which can be scaled to a larger enterprise network. It
provides a more network centric portfolio, and in turn may be
capable of providing sound IoT accountability. Live network
testing is anticipated in a future publication [28].

III. METHODOLOGY

Four primary elements common to each framework are
evaluated. This establishes a basic standard used to make
comparisons, and highlights several key differences between
otherwise similar methods. These attributes are mapped and
graded to determine the level of efficacy provided. It is
challenging to conduct a full pairwise comparison between
any two models due to their inability to target IoT devices
at all. Nearly all models surveyed neglected to take special
measures towards securing IoT devices versus other enterprise
components. This led to a largely qualitative analysis of the
merits of each model, with models that have a particularly
outstanding system being highlighted in Section IV.

A. Quantitative vs. Qualitative

Each framework surveyed was classified as either primarily
qualitative, or quantitative. The constraints of the quantitative
model are similar to the strengths of a qualitative model,
and vice versa. Quantitative models often provide unparalleled
modeling at the expense of scalability. In order to classify a
framework as quantitative, it needed to exhibit device based
calculations. Any framework which used only abstractions for
a quantitative analysis was relegated to the qualitative category.

B. Level of Implementation

Models are assigned an implementation score of high, low,
or N/A in order to account for the broad range of real-world
testing frameworks have received. A framework with hundreds
of implementations and years of feedback will have more data
points to evaluate than a network which is conceptual or in
its first live network test. Many surveyed frameworks that are
recently published have not yet been employed in a significant
capacity on a live network.

C. Age and Support Level

Risk assessment frameworks which no longer have a robust
implementation or supporting entity may no longer be viable.
It is important to consider that legacy models may no longer
provide adequate security.

D. Overall Rating

The current standard for a risk assessment framework is
a qualitative model which relies on robust security policy
and patching processes alongside vulnerability scanning and
security controls. These methods are suitable for securing a
traditional enterprise network, but fall short when IoT devices
are introduced. Any framework that meets, but does not have
the potential to exceed this baseline is rated “Yellow”. Yellow
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rated models are relatively good assessments of cyber risk,
but do not manage IoT devices well. Any framework which
is unable to achieve the same level of network protection
as the current generation of frameworks are rated “Red”.
Models which have made a meaningful step towards properly
accounting for IoT devices within enterprise networks will
be rated “Green”. The rating of green does not mean that
they have fully accounted for IoT devices, but that it is an
advancement over most currently implemented models.

IV. ANALYSIS OF RISK ASSESSMENT FRAMEWORKS

TABLE 1. RISK FRAMEWORK COMPARISON

Framework Analysis
Reviewed Framework Rating Implementation Year
*Amin CPS Model [5] Red N/A 2013

†CAF [33] Yellow High 2018
†COBIT 5 [3] [34] Yellow High 2012

†CORAS [30] Red Low 2003
†CPSS [13] Red N/A 2015

*CRAMM [36] Red Low 2003
*CRISM [29] Green N/A 2018

*Cybernomics [28] Green N/A 2017
†HCS-IF [6] Green N/A 2014

†*Hierarchical Model [7] Red N/A 2009
†HTRA [17] Yellow High 2007

†IBM Framework [8] Yellow Low 2010
†IoT/M2M [14] Green N/A 2016

†ISO27K [3] [19] Yellow High 2005
*ISRAM [20] Red N/A 2005

†ISSM [1] Green N/A 2017
†ISSM [21] Yellow Low 2011

*Mobius [12] Red N/A 2002
†NIST [27] Yellow High 2015

*NSRM [18] Red N/A 2009
†OCTAVE [4] Red Low 2003

†OCTAVE-S [4] Red Low 2003
†OCTAVE-Allegro [10] Red Low 2007

†OSSF [24] Green N/A 2017
*Patel & Ziveri Model [25] Red N/A 2010

†SFR [37] Red N/A 2005
†*TARA (Intel) [26] Yellow Low 2009

†*TARA (MITRE) [35] Yellow Low 2011
†Indicates Qualitative *Indicates Quantitative

A. Common Framework Pitfalls

No surveyed model rated “green” for IoT advancement has
been implemented in a live network. Similarly, all models
rated “high” for implementation scored “yellow” in IoT ad-
vancement. This overwhelmingly indicates that the state of
the art has not yet accounted for IoT properly, and no single
framework can be recommended as an immediate solution
to the IoT problem. The current model of a qualitative risk
assessment may no longer be viable as IoT devices continue to
become more critically integrated into networks. Each qualita-
tive model surveyed attempts to use only existing resources to
secure the IoT threat vector. In order to continue using existing
risk models, it is necessary to either invest in new architecture
to account for the largely unknown vulnerabilities presented
by current off the shelf IoT systems, or incorporate only IoT
systems which have been subjected to a much higher degree
of security analysis. The current model of minimal support

and small device marketshare footprint is unlikely to result in
a solution to the IoT problem.

B. IoT Advancements
It is imperative that security development be proactive due

to the increasingly vital role that IoT devices have in enterprise
networks. Among the most promising proposed models is
the zero trust approach in the IoT/M2M framework. Rather
than attempt to impose enterprise security methods on IoT
devices, it attempts to section them off as much as possible
into other network segments. This is not a full solution, but
it may prove more effective than current implementations.
The frameworks that have the ability to accurately model
risks to ICS and IoT systems primarily have implemented a
quantitative risk assessment approach, but no solution has been
able to provide cost-effective coverage to a larger network.
The primary weakness to this solution is some devices will
eventually have to have a trusted relationship, and this will lead
to inevitable vulnerabilities. This method is at best a technique
to shrink the attack surface of a network, and does not fully
mitigate the risk of IoT devices.

C. Proposed Solutions
Two courses of action for securing IoT devices based on

the analysis of the 28 frameworks surveyed are:
1) Short Term: Use network segmentation and a zero trust

model: IoT devices cannot be considered trusted or secure by
a risk analysis model until a more robust vulnerability assess-
ment process can be developed. Designing network architec-
ture to create the smallest foothold possible for compromised
IoT devices may be an effective short term solution. Potential
examples of this would be creating an IoT device Virtual
Local Area Network (VLAN), De-Militarized Zone (DMZ),
or using bastions as IoT interface servers. Similarly, isolating
IoT devices from domain credentials and trust settings is also
vital to ensuring that a vulnerable IoT device does minimized
damage if exploited.

2) Long Term: Increase viability of quantifiable risk as-
sessment frameworks with Machine Learning: Quantitative
frameworks have demonstrated the highest level of potential
risk analysis, but are not capable of modeling large networks in
their present state. The next iteration of quantitative framework
must solve this problem in order for them to become viable.
This could be accomplished by using machine learning to
implement their risk algorithm, and to develop the individ-
ual device profiles. This direction would require substantial
resources to establish, but potentially yield lower operating
costs. The threat profile and logical/physical location of a
device would be inputted, and the risk profile of the network
could be automatically adjusted to compensate for the addition.
This system would also allow for very accurate projections of
security level in proposed architecture developments, as well
as software migrations and patching.

V. CONCLUSION AND FUTURE WORK

The breakdown of findings shows significant shortcomings
in all state of the art risk assessment frameworks. No de-
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velopmental model was identified that could be considered
deployment ready with capabilities clearly exceeding those of
the current generation of qualitative system. Several proposed
frameworks with the ability to incorporate both cyber-physical
systems and enterprise architecture in a large scale network
were reviewed, but none have been tested in a live environ-
ment. At this time, there is still a significant need for research
on methods to incorporate IoT devices into enterprise net-
works without losing either accessibility or security. The scale
and diversity of IoT has been insurmountable for qualitative
models, but future research developing Proposed Solution 1).
may yield significant advancements. A significant change in
funding or ease of implementation will be necessary in order
to drastically alter the current risk assessment terrain away
from qualitative models. Minimal published research on the
application of machine learning to cyber risk assessment was
identified, but this avenue of research outlined in Proposed
Solution 2). is one of the primary methods of making the
quantitative model viable again.
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