
PATTERNS 2024

The Sixteenth International Conferences on Pervasive Patterns and Applications

ISBN: 978-1-68558-161-9

April 14 - 18, 2024

Venice, Italy

PATTERNS 2024 Editors

Geert Haerens, Faculty of Applied Economics Antwerp University, Belgium

Herwig Mannaert, University of Antwerp, Belgium

 1 / 39

PATTERNS 2024

Forward

The Sixteenth International Conferences on Pervasive Patterns and Applications (PATTERNS 2024), held
on April 14 – 18, 2024, continued a series of events targeting the application of advanced patterns, at-
large. In addition to support for patterns and pattern processing, special categories of patterns covering
ubiquity, software, security, communications, discovery and decision were considered. It is believed that
patterns play an important role on cognition, automation, and service computation and orchestration
areas. Antipatterns come as a normal output as needed lessons learned.

The conference had the following tracks:

 Patterns basics

 Patterns at work

 Discovery and decision patterns

 Medical and facial image patterns

 Tracking human patterns

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the PATTERNS 2024 technical
program committee, as well as the numerous reviewers. The creation of a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and effort to contribute to PATTERNS 2024. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the PATTERNS 2024 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope PATTERNS 2024 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the area of pervasive patterns and
applications. We also hope that Venice provided a pleasant environment during the conference and
everyone saved some time to enjoy this beautiful city.

PATTERNS 2024 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Wladyslaw Homenda, Warsaw University of Technology, Poland
Yuji Iwahori, Chubu University, Japan
Alexander Mirnig, University of Salzburg, Austria
George A. Papakostas, International Hellenic University – Kavala, Greece

 2 / 39

PATTERNS 2024 Publicity Chair

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

 3 / 39

PATTERNS 2024

Committee

PATTERNS 2024 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Wladyslaw Homenda, Warsaw University of Technology, Poland
Yuji Iwahori, Chubu University, Japan
Alexander Mirnig, University of Salzburg, Austria
George A. Papakostas, International Hellenic University – Kavala, Greece

PATTERNS 2024 Publicity Chair

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

PATTERNS 2024 Technical Program Committee

Andrea F. Abate, University of Salerno, Italy
Akshay Agarwal, IIIT Delhi, India
Carlos Alexandre Ferreira, INESC TEC, Portugal
Vijayan K. Asari, University of Dayton, USA
Danilo Avola, Sapienza University of Rome, Italy
Johanna Barzen, University of Stuttgart, Germany
Frederik Simon Bäumer, Bielefeld University of Applied Sciences, Germany
Martin Beisel, University of Stuttgart, Germany
Nadjia Benblidia, Saad Dahlab University - Blida1, Algeria
Anna Berlino, Consultant in Tourism Sciences and Valorization of Cultural and Tourism Systems, Italy
Fatma Bouhlel, University of Sfax, Tunisia
Uwe Breitenbücher, IAAS - University of Stuttgart, Germany
Alceu S. Britto, Pontifical Catholic University of Paranā (PUCPR), Brazil
Jean-Christophe Burie, L3i laboratory | La Rochelle University, France
Eliot Bytyçi, University of Prishtina "Hasan Prishtina", Kosovo
Isaac Caicedo-Castro, University of Córdoba, Colombia
Simone Cammarasana, CNR-IMATI, Genova, Italy
David Cárdenas-Peña, Universidad Tecnológica de Pereira, Colombia
Bidyut B. Chaudhuri, Indian Statistical Institute, India
Sneha Chaudhari, AI Organization | LinkedIn, USA
Diego Collazos, Universidad Nacional de Colombia sede Manizales, Colombia
Sergio Cruces, University of Seville, Spain
Mohamed Daoudi, Institut Mines-Telecom / Telecom Lille, France
Jacqueline Daykin, King's College London, UK / Aberystwyth University, Wales & Mauritius
Moussa Diaf, Mouloud Mammeri University, Algeria

 4 / 39

Chawki Djeddi, Université de Tébessa, Algeria
Ole Kristian Ekseth, NTNU & Eltorque, Norway
Eslam Farsimadan, University of Salerno, Italy
Eduardo B. Fernandez, Florida Atlantic University, USA
Tarek Frikha, Ecole Nationale d'Ingénieurs de Sfax, Tunisia
Michaela Geierhos, Research Institute CODE | Bundeswehr University Munich, Germany
Faouzi Ghorbel, National School of Computer Sciences of Tunisia/ CRISTAL Lab, Tunisia
Markus Goldstein, Ulm University of Applied Sciences, Germany
Eduardo Guerra, Free University of Bolzen-Bolzano, Italy
Abdenour Hacine-Gharbi, University of Bordj Bou Arreridj, Algeria
Geert Haerens, Engie, Belgium
Jean Hennebert, University of Applied Sciences HES-SO, Fribourg, Switzerland
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Wei-Chiang Hong, Asia Eastern University of Science and Technology, Taiwan
Kristina Host, University of Rijeka, Croatia
Marina Ivasic-Kos, University of Rijeka, Croatia
Yuji Iwahori, Chubu University, Japan
Francisco Jaime, University of Malaga, Spain
Agnieszka Jastrzebska, Warsaw University of Technology, Poland
Maria João Ferreira, Universidade Portucalense, Portugal
Hassan A. Karimi, University of Pittsburgh, USA
Joschka Kersting, Paderborn University, Germany
Christian Kohls, TH Köln, Germany
Vasileios Komianos, Ionian University, Corfu, Greece
Sylwia Kopczynska, Poznan University of Technology, Poland
Fritz Laux, Reutlingen University, Germany
Gyu Myoung Lee, Liverpool John Moores University, UK
Reynolds León Guerra, Advanced Technologies Application Center (CENATAV), Havana, Cuba
Frank Leymann, UniversityofStuttgart, Germany
Runze Li, University of California at Riverside, USA
Jiyuan Liu, National University of Defense Technology, China
Josep Lladós, Computer Vision Center - Universitat Autònoma de Barcelona, Spain
Himadri Majumder, G. H. Raisoni College of Engineering and Management, Pune, India
Herwig Mannaert, University of Antwerp, Belgium
Pierre-Francois Marteau, IRISA / Université Bretagne Sud, France
Ana Maria Mendonça, University of Porto / INESC TEC - INESC Technology and Science, Portugal
Abdelkrim Meziane, Research Center on Scientific and Technical Information - CERIST, Algeria
Mariofanna Milanova, University of Arkansas at Little Rock, USA
Alexander Mirnig, University of Salzburg, Austria
Fernando Moreira, Universidade Portucalense, Portugal
Antonio Muñoz, University of Malaga, Spain
Dinh-Luan Nguyen, Michigan State University, USA
Hidehiro Ohki, Oita University, Japan
Krzysztof Okarma, West Pomeranian University of Technology, Szczecin, Poland
Alessandro Ortis, University of Catania, Italy
Martina Paccini, CNR-IMATI, Italy
George A. Papakostas, Eastern Macedonia and Thrace Institute of Technology, Greece

 5 / 39

Maria Antonietta Pascali, CNR - Institute of Clinical Physiology, Italy
Giuseppe Patane', CNR-IMATI, Italy
Dietrich Paulus, Universität Koblenz - Landau, Germany
Agostino Poggi, University of Parma, Italy
Vinay Pondenkandath, University of Fribourg, Switzerland
Beatrice Portelli, University of Udine, Italy
Chengyi Qu, Florida Gulf Coast University, USA
Claudia Raibulet, University of Milano-Bicocca, Italy
Jean-Yves Ramel, PolytechTours - Université de Tours, France
Giuliana Ramella, CNR - National Research Council, Italy
Ali Reza Alaei, School of Business and Tourism, Australia
Theresa-Marie Rhyne, Independent Visualization Consultant, USA
Jamal Riffi, FSDM | USMBA,Fez, Morocco
Alessandro Rizzi, Università degli Studi di Milano, Italy
Gustavo Rossi, UNLP, Argentina
Sangita Roy, Thapar Institute of Engineering and Technology, India
Carsten Rudolph, Monash University, Australia
Muhammad Sarfraz, Kuwait University, Kuwait
Friedhelm Schwenker, Ulm University, Germany
Isabel Seruca, Portucalense University, Porto, Portugal
Abhishek Sharma, Rush University Medical Center, USA
Kaushik Das Sharma, University of Calcutta, India
Diksha Shukla, University of Wyoming, USA
Md. Maruf Hossain Shuvo, Khulna University of Engineering & Technology (KUET), Bangladesh
Marjana Prifti Skënduli, University of New York, Tirana, Albania
Jan Spoor, Karlsruhe Institute of Technology, Germany
Marek Suchánek, Czech Technical University in Prague, Czech Republic
Shanyu Tang, University of West London, UK
J. A. Tenreiro Machado, Polytechnic of Porto, Portugal
Jamal Toutouh, University of Malaga, Spain
Alexander Troussov, Russian Presidential Academy of National Economy and Public Administration
(RANEPA), Russia
Hiroyasu Usami, Chubu University, Japan
Mario Vento, University of Salerno, Italy
Stella Vetova, Technical University of Sofia, Bulgaria
Panagiotis Vlamos, Ionian University, Greece
Sulaiman Khail Waheedullah, Slovak University of Technology in Bratislava, Czech Republic
Huiling Wang, Tampere University, Finland
Hazem Wannous, UniversityofLille | IMT Lille Douai, France
Jens Weber, Baden-Wuerttemberg Cooperative State University Loerrach, Germany
Beilei Xu, Rochester Data Science Consortium | University of Rochester, USA
Longzhi Yang, Northumbria University, UK
Ziming Zhang, Worcester Polytechnic Institute, USA
Hicham Zougagh, University Sultan Moulay Slimane, Morocco
Ester Zumpano, University of Calabria, Italy

 6 / 39

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 39

Table of Contents

Systematic Rejuvenation of a Budgeting Application over 10 years: A Case Study
Chetak Kandaswamy and Jan Verelst

1

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case
Christophe De Clercq and Jan Verelst

6

Toward a Rejuvenation Factory for Software Landscapes
Herwig Mannaert, Tim Van Waes, and Frederic Hannes

13

Converging Clean Architecture with Normalized Systems
Gerco Koks

19

Warm-Starting Patterns for Quantum Algorithms
Felix Truger, Johanna Barzen, Martin Beisel, Frank Leymann, and Vladimir Yussupov

25

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 39

Systematic Rejuvenation of a Budgeting Application over 10 years: A Case Study

Chetak Kandaswamy, Jan Verelst

Department of Management Information Systems
Faculty of Business and Economics

University of Antwerp, Belgium
Email: jan.verelst@uantwerpen.be

Abstract—Normalized Systems (NS) theory has recently been
proposed as a means of increasing software agility. NS theory
posits that software evolvability, or the ease with which software
can be changed, can be achieved by adhering to a set of theorems
that result in a specific and evolvable software architecture,
based on the use of NS-specific code generators called expanders.
While the theoretical contributions of NS theory have been
well-documented in previous research, there are few reports
on real-life cases where NS theory has been employed. This
paper documents a development project that demonstrates the
feasibility of the NS approach for building evolvable software and
highlights the benefits of a real-life NS development project over
a period of more than 10 years, in which the system was built and
afterwards regenerated using the NS code generators. The results
confirm the feasibility of systematically regenerating information
systems in Java over time with limited resources, eliminating or
drastically reducing the need for rebuilds from scratch, in order
to deal with structure degradation of information systems, more
specifically for information systems of limited size and complexity,
which are commonplace in today’s digital economy.

Keywords-Normalized Systems; Evolvability; Agility; Software
Rejuvenation

I. INTRODUCTION

In recent years, there has been a growing body of research
on agile software development. While this research has yielded
valuable insights into improving agile development processes,
there has been comparatively less focus on enhancing the
agility of the software itself. Important Agile frameworks,
such as the Scaled Agile Framework (SAFe), define Agile
Architecture as a set of values and principles that support the
active evolution of the design and architecture of a system
while implementing new capabilities. This definition points
more in the direction of a process than it does in assuring
that the system itself will be agile. In that respect, Agile
Architecting is a better term to refer to an agile way of
doing architecture, and Agile Architecture could point to the
intentionality of creating an evolving system.

Normalized Systems (NS) theory has recently been pro-
posed as a means of increasing software agility. NS posits that
software evolvability, or the ease with which software can be
changed, can be achieved by adhering to a set of theorems
that result in a specific and evolvable software architecture.
This architecture offers systems theoretical stable responses to
changing business and/or technical requirements. NS theory
has been refined and extended over the years and has been
implemented in several software projects. While the theoretical

contributions of NS theory have been well-documented in
previous research, there are few reports on real-life cases
where NS theory has been employed.

This paper documents a development project that demon-
strates the feasibility of the NS approach for building a
Budgeting application and maintaining it over a period of 10
years.

The paper is structured as follows. In Section II, we review
the concepts behind NS theory and software rejuvenation.
Section III will provide information about the Budgeting
application and an overview of the different changes applied
to the application over a period of 10 years. In Section IV, we
will discuss the Budgeting application from the perspective
of the owner of the application, the Province of Antwerp, and
report their reflections on the past 10 years. Section V presents
our conclusions.

II. FUNDAMENTALS OF NS THEORY

Software architectures should be able to evolve as busi-
ness and technical requirements change over time. In NS
theory, evolvability is measured by a lack of Combinatorial
Effects (CE) in software architectures. Combinatorial Effects
constitute a specific kind of ripple effects: when the impact
of a change, measured in the number of impacted modules,
depends not only on the type of change but also on the size
of the software system, a Combinatorial Effect occurs. NS
theory assumes that software undergoes unlimited evolution
(i.e., that both new and changed requirements will make a
software system increase in size over time), which makes
Combinatorial Effects very harmful to software evolvability.
Indeed, if changes to a system depend on the size of the
growing system, these changes become harder to handle (i.e.,
requiring more work and therefore lowering the evolvability
of the system).

NS theory is built on principles from systems theory (sta-
bility) and statistical thermodynamics (entropy). In systems
theory, a system is stable if it has bounded input leading
to bounded output (BIBO). NS theory applies this idea to
software design as a bounded change in functionality should
only cause a bounded change in the software. In systems
theory, stability is measured at infinity. NS theory considers
systems that grow infinitely large over time and will go
through infinitely many changes. According to NS theory,
a system is stable towards changes, if it does not have CE,

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 9 / 39

meaning that the effect of a change only depends on the type
of change and not on the system size.

NS theory suggests four theorems and five elements as the
basis for creating evolvable software through pattern expansion
of the elements. The theorems have been proven formally, and
provide a set of design guidelines that must be followed strictly
in order to avoid Combinatorial Effects. The NS elements
offer a set of predefined higher-level structures, patterns, or
“building blocks”, that provide functionality while conforming
to all NS theorems. Therefore, they constitute a blueprint for
implementing the core functionalities of realistic information
systems.

A. NS Theorems

NS theory proposes four theorems that describe the nec-
essary conditions for software to be free of Combinatorial
Effects:

• Separation of Concerns
• Data Version Transparency
• Action Version Transparency
• Separation of States

Violation of any of these 4 theorems will lead to Combinatorial
Effects and thus less evolvable software under change.

B. NS Elements

Consistently adhering to the four NS theorems seems very
challenging for developers because of several reasons. First,
following the NS theorems leads to a fine-grained software
structure as concerns and states are separated, which does
introduce some development overhead that may slow down the
development process. Second, the theorems must be followed
all the time, which is problematic in a context where human
programmers work under varying project conditions, including
(occasionally) limited time and budgets. Third, the accidental
introduction of Combinatorial Effects results in an exponential
increase of rework that needs to be done at a later time.

Five elements were therefore proposed which make the
realization of NS applications more feasible, as they can
be instantiated by code generators called expanders. These
elements are carefully engineered patterns that comply with
the four NS theorems and that can be used as essential building
blocks for a wide variety of applications. The elements are
named according to the elementary functionality they offer:
data element, action element, workflow element, connector
element, and trigger element.

• Data Element: the structured composition of software
constructs to encapsulate data into a module (including
get- and set methods, persistency, exhibiting version
transparency,etc.).

• Action Element: the structured composition of software
constructs to encapsulate an action into a module.

• Workflow Element: the structured composition of soft-
ware constructs describing the sequence in which a set
of action elements should be performed to fulfill a flow,
into a module.

• Connector Element: the structured composition of soft-
ware constructs into a module allowing external systems
to interact with the NS system without calling compo-
nents in a stateless way.

• Trigger Element: the structured composition of software
constructs into a module that controls the states of the
system and checks whether any action element should be
triggered accordingly, e.g., based on time conditions.

The element not only provides core functionality (such as
persistency of data, execution of an action, etc.) but also
addresses the cross-cutting concerns that each of these core
functionalities require to function properly. As cross-cutting
concerns cut through every element, they require careful
separation from other concerns in order not to introduce
Combinatorial Effects.

C. Element Expansion

An application is mainly composed of a set of data, ac-
tion, workflow, connector, and trigger elements that realize
its requirements. An NS expander instantiates the software
elements into source code for the specific application. The
expanded code will provide functionalities specified in the
application definition and constitutes a fine-grained modular
structure that follows the NS theorems (see Figure 1) and is
therefore free from combinatorial effects. This generated part
of an application is also called the skeleton of the application.

Next, remaining functionality, such as the business logic for
the application, is manually programmed or customized inside
the expanded modules, at pre-defined locations. This func-
tionality is called a customization or crafting. The presence
of combinatorial effects in this manually programmed part of
the application, depends on the adherence of the individual
programmer to the NS theorems. However, a strength of this
approach is that the only location where Combinatorial Effects
can be introduced, is in the customized code.

Figure 1. Requirements expressed in an XML description file, used as input
for element expansion

D. Harvesting and Software Rejuvenation

The expanded skeleton has some pre-defined places where
customizations can be made. To keep these customizations
from being lost when the application is re-expanded at a

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 10 / 39

later time, these customizations are gathered and put back
when the application is re-expanded. This process of gathering
and putting back the customizations is called harvesting and
injection.

The application can be re-expanded for different reasons.
For example, the code templates of the elements are improved
(bug fixes, performance improvements, new versions of sup-
porting technologies, or changes in the technology, such as a
new persistence framework, etc.).

The purpose of software rejuvenation is to carry out the
harvesting and injection process routinely to ensure that the
improvements of the 5 element code templates are incorpo-
rated into the skeleton of the application.

In our experience, in a Java environment, expansion pro-
duces more than 80% of the code of a production-ready
application. The expanded code can be called boiler-plate-
code, but it is more complex than what is usually meant
by that term because it deals with cross-cutting concerns
such as persistency, remote access, logging and security at
an advanced level. The manual production of such code often
is time consuming. Using NS expansion, this time can now
be spent on, e.g., the constant improvement of the element
code templates, the development of new code templates that
make the elements compatible with new technologies, and on
meticulous coding of the business logic. The changes in the
elements can be applied to all expanded applications, giving
the concept of code reuse a new meaning. A modification
on a code template by one developer can be used by all
developers on all their applications, with minimal impact,
thanks to the rejuvenation process. Figure 2 summarizes the
NS development process.

Figure 2. The NS development process

III. THE USE CASE: PROVINCE OF ANTWERP
BUDGETING APPLICATION

In this section, we first describe the Budgeting Application
at a functional level, and then describe the evolution and
rejuvenation process that took place over the course of about
10 years. This case study is based on interviews with the
Head of IT Projects of the Province of Antwerp as well
as the programmers who were involved in development and
maintenance.

A. The Application

As a case study for software rejuvenation, we selected a
Budgeting application of a local Belgian government. The ap-

plication was built because the existing financial ERP package
was difficult to adapt to the specifics of Belgian government
budgeting regulations. The application was first built using
NS technology in 2012 and is currently still in use. The
functional requirements of the application are budget creation
and management, expense tracking and control, managing
different revenue streams, forecasting and planning, reporting
and analysis, compliance and audit trail, integration with
financial systems, data security, and privacy.

This Budgeting application has played a crucial role in
enhancing transparency, accountability, and efficiency in the
budgeting process. It has enabled the government to monitor
and manage its financial resources effectively, ensure compli-
ance with fiscal policies, and make data-driven decisions to
allocate resources efficiently. This application has integrated
well with the existing financial systems used by government
entities, such as accounting software or Enterprise Resource
Planning (ERP) systems. This integration has ensured data
consistency and has reduced manual data entry.

The functional requirements are easily explained using
the Entity Relationship Diagram (ERD) shown in Figure 3.
The diagram shows the Budget as the central data element
instance of the application. The Budget element is defined
by a combination of the following 11 data elements: Article,
Budget type, Budget change, Budget year, Cell, Domain,
Product, Recording, Service, Supplier, and Team. The unique
combination of these 11 parameters is the key to the budget
in its most basic manifestation.

The current budget is an aggregation of many sub-budgets
over time along with the combination of the above parameters
in real-time for data integrity reasons. The calculated current
budget is not stored in the database to avoid error propagation
which may lead to faulty data. The most granular budget is
calculated based on the following data elements: Article, Bud-
get type, Budget change, Budget year, Department, Domain,
and Product instances as visualized on the left of the figure.
The specific budget belongs to a single department, activity,
etc. The activity is grouped with the Economic groups, which
in turn makes the Budget estimate.

B. Application evolution and rejuvenation

Over the past 10 years, the Budgeting application has been
subject to many changes. Although the business logic of the
application, mainly driven by legislation, required only one
major update over this period, the number of changes in user
functionalities were more frequent. Both changes in legislation
and user functionalities required new code customizations.
Also, there have been many changes to the element code
templates. They have been updated based on feedback from
customers (bug reports, performance issues, etc.) and the
changing technological landscape (new operating system ver-
sions, database updates, programming language evolutions,
application server changes and even the switch in deployment
methods from onsite to cloud).

Figure 4 summarizes the software rejuvenation of the
Budgeting application over the past 10 years. The efforts

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 11 / 39

Figure 3. ERD model of the Budgeting application

required to perform technology updates using rejuvenation add
up to a total of 5 days over 10 years. Between 2012 and
2019, the technologies used by the application have endured,
which contributes to the relatively limited effort required. The
rejuvenation mainly included updates of the element code
templates, benefiting from the continuous evolution of element
code template improvements done by other developers. In
2019, a significant update at the technology side happened:
a change in the programming language version, application
server, and frontend technology. The total effort was 2 man-
days to accomodate these changes. In 2023, the changes in
technology were even more profound as the programming lan-
guage version, frontend, database, application server, and de-
ployment method (container instead of server-based) changed.
The effort was only 1 man-day. In summary, the skeleton of
the Budgeting application was rejuvenated several times over
the past 10 years, each time requiring an effort in terms of
one to several man-days, which can be considered a limited
investment to incorporate all the benefits of a rejuvenation
described above.

The total time invested in changes to customizations or
craftings adds up to 50 man-days from application conception
(2012) to the current state (2023). The effort of implementing
new customizations (new legislation in 2014) and user func-
tionalities (2014, 2015 and 2019) can be considered similar
to whatever development method and/or technology was used
in the industry at that time, which is unsurprising as this
essentially manually written code in an NS application.

In summary, over a period of 10 years, the total effort of
change has been 28 man-days, of which 23 have been purely
functional changes and 5 due to rejuvenation. These figures
confirm and even outperform estimations that were made about
the development effort of this very same application in 2014
(see Figure 5) [4].

IV. VOICE OF THE CUSTOMER

This section is based on interviews with the Head of IT
Projects and Solutions at the Province of Antwerp.

1) On the advantages of Rejuvenation using NS framework:
“The main advantage for us was the speed that can be gained
with the rejuvenation of the application. Because the process
of expansion and re-injection is fully automated and fast, a
new version can be put in place and the actual functionality
can be tested instead of also having to validate and test the
boiler-plate code.”

2) On developing with or without NS: “We have no real
data concerning the effective difference between development
with or without NS. In my opinion, if we did not use NS,
the first change of the application in 2014 (new budgeting
legislation), would have resulted in building a new application,
instead of just rejuvenating the existing one. Such a rebuild
would have probably taken 50 man-days. While with rejuve-
nation, we only had a few days of functional testing to do.”.

3) On Maintenance cost: The maintenance of 6 different
applications at the Province of Antwerp built using the NS
methods (including the Budgeting application) required only
4 man-days of maintenance operations both in 2021 and in
2022 (across all 6 applications).

4) On NS vs. Low Code: As the proprietary budgeting
tool was to be used by only 20 users, low-code and no-code
platforms could also have been considered as development
platforms, as they allow users to create applications using
a minimal amount of coding. At the time of development
(2012), such platforms were not considered by the Province
of Antwerp. Revisiting the NS vs. low-code decision at this
point in time, can be done based on a number of criteria. First,
it is important to note that stakeholders from the Province of
Antwerp required specific customizations for the Budgeting
application, potentially causing low-code platforms to be chal-
lenged in terms of customization, scalability, and flexibility.
Second, if an organization builds applications heavily reliant
on the low-code platform’s proprietary features or architecture,
migrating to a different platform or transitioning away from
the platform can be difficult and time-consuming.

5) On NS vs. Shadow IT: The Budgeting application is
not a challenging and complex application, and one might be
tempted to turn to the usage of a MS Excel or MS Access-
based application, completely created and maintained by the
business, instead of IT. The Province of Antwerp did not go
down this path as they already had some years of experience in
doing their budgeting work in MS Excel and noticed important
drawbacks such as the fragility of the solution, dependence on
a few people who master the implementation of the business
logic in MS Excel and high maintenance cost.

V. CONCLUSION

In this paper, we discussed how the NS theory can be
applied to rejuvenating a Budgeting application, which es-
sentially is a small CRUDS application, which was built
using the NS expanders. Over this period, this application has
undergone multiple functional and non-functional, technical

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 12 / 39

Figure 4. Summary of Software Rejuvenation for 10 Years

Figure 5. Comparison of estimated development time [4]

changes. The technical changes were limited in the sense that
updates from technologies were required, but no major shifts
to other technologies. Nonetheless, in a time where many
applications are rebuilt after 5-10 years, it is interesting to
see that it is feasible to see that rejuvenation is feasible over
a period of 10 years, with the skeleton of the application
being updated to the most recent version of the underlying
technologies. This suggests that the increased use of code
generators holds significant promise for the future.

REFERENCES

[1] H. Mannaert, J. Verelst, and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design”, Koppa Publishing, ISBN 978-90-77160-09-1, 2016.

[2] H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability”, Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011.

[3] P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst, “Po-
sitioning the normalized systems theory in a design theory framework”,
Lecture notes in business information processing, Springer, ISSN 1865-
1348-142, pp. 43-63, 2013.

[4] G. Oorts, et al., “Building Evolvable Software Using Normalized
Systems Theory: A Case Study”, Proceedings of the annual Hawaii
international conference on system sciences, ISBN 978-1-4799-2504-9,
pp. 4760-4769, 2014.

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 13 / 39

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

Christophe De Clercq

Research and Development
fulcra bv, Belgium

Email: christophe.de.clercq@fulcra.be

Jan Verelst

Department of Management Information Systems
Faculty of Business and Economics

University of Antwerp, Belgium
Email: jan.verelst@uantwerpen.be

Abstract—Applications with evolvability issues, becoming less
and less modifiable over time, are considered legacy. At some
point, refactoring such applications is no longer a viable solution,
and a rebuild lurks around the corner. However, without a clear
architecture that will enforce evolvability, the new application
risks becoming non-evolvable over time. Re-building an existing
application offers little business value; migrating from old to
new can be complicated. Normalized Systems (NS) theory aims to
create software systems exhibiting a proven degree of evolvability.
One would benefit from building legacy systems according to
this theory if legacy systems are to be rebuilt. In this paper,
we will present a real-life use case of an application exhibiting
non-evolvable behaviour and how this application is being mi-
grated gradually into an evolvable application through NS-based
software expansion. We will also address the extra value that
NS-based software expansion brings in the migration scenario,
allowing the combination of old and new features in the newly
built application.

Keywords—NS; Rejuventation; Software Migration

I. INTRODUCTION

The research on agile software development has increased
in the last few years. This research has helped to improve
the agile development methods, but there has not been much
attention paid to making the software more agile.

Agile Architecture, as defined by key agile frameworks such
as Scaled Agile Framework (SAFe) [1], is a set of values and
principles that guide the ongoing development of the design
and architecture of a system while adding new capabilities.
This definition describes more of a process than a guarantee
that the system being built will be agile, meaning the ability
to change. An agile architecture is an architecture that can
change. It is a feature of a system that requires deliberate
design. Therefore, agile architecting is a better term to describe
an agile approach to architecture, and agile architecture should
indicate the intentionality to create a dynamic system.

Normalized Systems (NS) theory aims to increase software
agility by designing software systems with agile architectures.
Software evolvability, or how easily software can be modified,
can be achieved by following a set of theorems that lead to a
specific and evolvable software architecture. NS theory has
been developed and improved over time. It is fully based
on theoretical foundations and has been applied in several
software projects. Previous research has documented the the-
oretical contributions of NS theory well, but there are few
studies on real-life cases where NS theory has been used. This

paper reports on a development project that shows the viability
of the NS theory method for creating evolvable software and
emphasizes the advantages of a real-life NS development
project. We show how NS can help with an information
system migration use case, and how it can make the target
system adaptable. The paper is organized as follows: Section II
explains the basics of NS, and Section III summarises software
migration strategies. Section IV presents the use case, and
Section V discusses the benefits of NS in this scenario. We
conclude the paper in Section VI.

II. FUNDAMENTALS OF NS THEORY

Software should be able to evolve as business requirements
change over time. In NS theory [2], the lack of Combinatorial
Effects measures evolvability. When the impact of a change
depends not only on the type of the change but also on the size
of the system it affects, we talk about a Combinatorial Effect.
The NS theory assumes that software undergoes unlimited
changes over time, so Combinatorial Effects harm software
evolvability. Indeed, if changes to a system depend on the
size of the growing system, these changes become harder to
handle (i.e., requiring more work and therefore lowering the
evolvability of the system).

NS theory is built on classic system engineering and sta-
tistical entropy principles. In classic system engineering, a
system is stable if it has Bounded Input leading to Bounded
Output (BIBO). NS theory applies this idea to software design,
as a limited change in functionality should cause a limited
change in the software. In classic system engineering, stability
is measured at infinity. NS theory considers infinitely large
systems that will go through infinitely many changes. A system
is stable for NS, if it does not have Combinatorial Effects,
meaning that the effect of change only depends on the kind
of change and not on the system size.

NS theory suggests four theorems and five extendable
elements as the basis for creating evolvable software through
pattern expansion of the elements. The theorems are proven
formally, giving a set of required conditions that must be
followed strictly to avoid Combinatorial Effects. The NS theo-
rems have been applied in NS elements. These elements offer a
set of predefined higher-level structures, patterns, or “building
blocks” that provide a clear blueprint for implementing the

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 14 / 39

core functionalities of realistic information systems, following
the four theorems.

A. NS Theorems

NS theory [2] is based on four theorems that dictate the
necessary conditions for software to be free of Combinatorial
Effects.

• Separation of Concerns
• Data Version Transparency
• Action Version Transparency
• Separation of States

Violation of any of these 4 theorems will lead to Combinatorial
Effects and, thus, non-evolvable software under change.

B. NS Elements

Consistently adhering to the four NS theorems is very chal-
lenging for developers. First, following the NS theorems leads
to a fine-grained software structure. Creating such a structure
introduces some development overhead that may be considered
slowing down the development process. Secondly, the rules
must be followed constantly, robotically, as a violation will
lead to the introduction of Combinatorial Effects. Humans are
not well suited for this kind of work. Thirdly, the accidental
introduction of Combinatorial Effects results in an exponential
increase of rework that needs to be done.

Five expandable elements [3] [4] were proposed, which
make the realization of NS applications more feasible. These
elements are carefully engineered patterns that comply with
the four NS theorems, and that can be used as essential
building blocks for various applications: data element, action
element, workflow element, connector element, and trigger
element.

• Data Element: the structured composition of software
constructs to encapsulate a data construct into an isolated
module (including get- and set methods, persistency,
exhibiting version transparency, etc.).

• Action Elements: the structured composition of software
constructs to encapsulate an action construct into an
isolated module.

• Workflow Element: the structured composition of soft-
ware constructs describing the sequence in which action
elements should be performed to fulfil a flow into an
isolated module.

• Connector Element: the structured composition of soft-
ware constructs into an isolated module allowing external
systems to interact with the NS system without calling
components statelessly.

• Trigger Element: the structured composition of software
constructs into an isolated module that controls the states
of the system and checks whether any action element
should be triggered accordingly.

The element provides core functionalities (data, actions,
etc.) and addresses the Cross-Cutting Concerns that each
of these core functionalities requires to properly function.
As Cross-Cutting Concerns cut through every element, they

require careful implementation to not introduce Combinatorial
Effects.

C. Element Expansion

An application comprises a set of data, action, workflow,
connector, and trigger elements that define its requirements.
The NS expander is a technology that will generate code in-
stances of high-level patterns for the specific application. The
expanded code will provide generic functionalities specified in
the application definition and will be a fine-grained modular
structure that follows the NS theorems (see Figure 1).

The business logic for the application is now manually
programmed inside the expanded modules at pre-defined lo-
cations. The result is an application that implements a certain
required business logic and has a fine-grained modular struc-
ture. As the generated structure of the code is NS compliant,
we know that the code is evolvable for all anticipated change
drivers corresponding to the underlying NS elements. The only
location where Combinatorial Effects can be introduced is in
the customized code.

Fig. 1. Requirements expressed in an XML description file, used as input for
element expansion.

D. Harvesting and Software Rejuvenation

The expanded code has some pre-defined places where
changes can be made. To keep these changes from being lost
when the application is expanded again, the expander can
gather them and put them back when the application is re-
expanded. Gathering and putting back the changes is called
harvesting and injection.

The application can be re-expanded for different reasons.
For example, the code templates of the elements are improved
(fix bugs, make faster, etc.), new Cross-Cutting Concerns (add
a new logging feature) are included, or a change in technology
(use a new persistence framework) is supported.

Software rejuvenation aims to carry out the harvesting
and injection process routinely to ensure that the constant
enhancements on the element code templates are incorporated
into the application.

Code expansion produces more than 80% of the code of
the application. The expanded code can be called boiler-plate-
code, but it is more complex than what is usually meant by that
term because it deals with Cross-Cutting Concerns. Manually

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 15 / 39

producing this code takes a lot of time. Using NS expansion,
this time can now be spent on the constant improvement of the
code templates, the development of new code templates that
make the elements compatible with new technologies, and on
meticulous coding of the business logic. The changes in the
elements can be applied to all expanded applications, giving
the concept of code reuse a new meaning. A modification on a
code template by one developer can be used by all developers
on all their applications with minimal impact, thanks to the
rejuvenation process.

III. FUNDAMENTALS OF SOFTWARE MIGRATION
STRATEGIES

Software systems are supposed to change over time as
the business environment changes. When a system has issues
following the changes, it is marked as legacy.

In [5], a legacy information system is defined as any
information system that significantly resists modification and
change. The main reasons for becoming legacy are the lack of
system flexibility (the very definition of legacy) and the lack
of skills to change the system.

Information Systems are closely linked with the technolo-
gies they depend on, which also evolve. These changes are
not driven by the business context but by the progress and
shifts in technology and its market. When some technologies
lose their support from the providers, their expertise will also
disappear, leading to a shortage of skilled resources to make
the necessary changes to the information system.

If a system is outdated but the business still needs to change
and improve, the only solution is to redesign the system and
move it to a new platform.

Formally, re-engineering is the examination and alteration
of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form. Re-engineering
generally includes some form of reverse engineering (to
achieve a more abstract description) followed by some more
form of forward engineering or restructuring (from [5]).

Usually, the re-engineering of a new system will involve
not only current functionalities but also future functionalities.
Re-engineering provides the old and new requirements, while
migration builds and uses the new system that replaces the
legacy one.

Figure 2 shows the three activities that are part of the
migration process:

• The transformation of the conceptual information schema
(S)

• The data transformation (D)
• The programming code transformation (T)
The order of the three migration activities can vary, affecting

when the target system is ready for end users. The literature
defines the following generic methods:

• Database first: migrate data first, then migrate program-
ming gradually, and go live when all programming mi-
grations are done.

• Database last: migrate programming first, go live when
all data is migrated.

Fig. 2. Conceptual schema conversion strategy (from [5])

• Composite database: migrate data and functionality to-
gether, and go live when both are migrated.

• Chicken Little strategy: like a composite database but
keep both legacy and replacement systems running si-
multaneously.

• Big bang methodology: develop a new system, stop the
old system, migrate data, and start a new system.

• Butterfly methodology: big bang with data synchroniza-
tion techniques to reduce data migration time and down-
time.

Each of these strategies has advantages and disadvantages. We
refer to [6] for more details.

IV. USE CASE: CONNECTING-EXPERTISE

This paper presents a case study of migrating a legacy
information system using NS principles and NS expan-
sion/rejuvenation, which helped overcome some of the lim-
itations of the selected migration strategy.

We begin by providing a functional view of the legacy
system, followed by a technical view. We then discuss the
legacy system’s evolvability problems, justify the need for a
new system, and describe how the transition from old to new
occurred.

A. Functional perspective

Connecting-Expertise is a company that provides a software
platform called CE VMS that helps to improve and simplify
the sourcing, assigning, and management of an organization’s
workforce. Connecting Expertise uses a software platform to
connect job-seekers and job-suppliers quickly and efficiently.

When a job-seeker (seeking a human resource for a job)
and a job-supplier (supplying a human resource for a job) find
each other on the platform, the platform handles the necessary
administrative steps to make someone work effectively, such
as creating assignments, creating and processing timesheets,
and invoicing based on timesheets.

The business model of Connecting-Expertise combines a
buyer-funded model, where a job-seeker pays a license or a
fee per hour worked by a consultant to use the platform, and
a vendor-funded model, where a job-supplier pays per hour
worked by a consultant.

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 16 / 39

B. Technical perspective

The first version of CE VMS dates from 2007. CE VMS’s
core comprises a web server that uses PHP and a MariaDB
MySQL backend DB. The application has components such
as DTO/DAO classes (for data storage, access, and exchange),
HTML view templates, and CLI scripts for running back-
ground processes.

In 2017,, some CE VMS kernel features were separated
and moved to a new PHP server with a Zend Apigility API
framework. This setup is called CE2 VMS. The APIs are
only for internal use (not accessible by the job-seekers and
suppliers systems) and even though the features provided by
the API are not part of the CE VMS kernel, both kernel and
API framework use common code (like the data access logic,
as they both connect to the same database). The shared code
is in a library that both the kernel and the APIs use, but some
code, like DTO and DTA classes, exist in both the kernel and
the library.

The queuing system is a key component of the current
system, as it transfers tasks that take a long time from the
web application to specialized processing servers. The tasks
that take a long time are placed in a queue processed by node.js
scripts. These scripts will invoke the relevant (internal) APIs,
communicate with the DB, and even call external APIs of CE2
VMS users’ systems. An overview of the technical architecture
can be found in Figure 3 .

Fig. 3. CE2 VMS technical architecture.

C. Maintainability and evolvability issues

The following sections will describe the main problems
affecting the system’s maintainability and evolvability: the
code base, code quality, technical architecture, scalability, and
functionality. Each of these areas will be explained in more
detail below.

1) Code base: The code base was developed without proper
coding standards that were maintained and followed. First, the
SOLID principles [7] were suggested as a coding standard at
some point, but the standard is not systematically applied and
verified, leading to many violations. Second, current coding
practices led to highly coupled code because of the use of
global variables and the absence of interfaces. Third, many
classes are long and complex, and a lot of unused code
has not been removed. Fourth, consistent naming conventions
for database elements and attributes are missing. Finally, we
reiterate the previous point of code duplication between the
kernel and the libraries and the lack of standard frameworks
that could help structure the system and the code.

2) Code Quality: The code has quality problems because
there are no coding standards. First, there is no testing plan
to test each class or component of the application. Second,
doing functional acceptance tests is hard because the code
is complex. One needs to know many technical details (like
how the queue works, DB queries, and manual running of
background jobs to do end-to-end tests). Third, security coding
practices are not used, so the code is vulnerable to common
security risks like SQL injection because input data is not
validated properly. Finally, releasing a new version is a big
deal instead of a routine, often needing last-minute fixes, even
when acceptance testing seems good.

3) Technical Architecture: The technical architecture docu-
mentation (the infrastructure, system software, and networking
used) is not consistent, complete, or coherent. This might
account for the redundancies observed, such as using two
different indexing databases, two worker systems, two in-
voicing systems, and a custom approach to connecting with
external systems. The reason for having two different technical
environments for serving the BE and UK markets is not
justified and leads to double maintenance. There is a strong
dependency between the code base and the underlying techni-
cal infrastructure. Changing underlying technical components
(such as the DB) is very difficult because of the lack of
abstraction of the technologies used (tight coupling between c
code and Maria DB).

4) Scalability: A system that can cope with a growing
amount of work by adding resources has scalability. The
current environment has some components that are hard to
scale. First, the DB (MariaDB – MySQL) is not clustered (no
load balancing option, and it is on the same server as the web
server, which means they share the server resources). Second,
the file storage area for timesheet uploads is only accessible
from the web server, so all background processes that need
these files (like the background invoicing process) must also
run on the web server (which also shares the resources).
Third, the Xapian indexation system does not work across
the network, and it has to run on the web server, just like the
current job executer (Jenkins). There is also resource sharing
here. Lastly, the application does not use caching mechanisms,
which leads to unnecessary DB queries.

5) Functionality: The system is complicated to set up for
new clients. They frequently need new application settings,

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 17 / 39

reports, or even application functions. This makes it hard to
expand the application to more customers (for example, in a
new country). The system also has a limitation on the currency:
some system modules only support the Euro.

D. The Need for Change

Connecting-Expertise needs to enable integration with the
backend systems of job-seekers and suppliers to remain com-
petitive as a platform. However, this development is hindered
by current issues of evolvability. Connecting-Expertise faces
a challenge: how can CE2 VM offer integration with external
systems, along with existing and new functionalities, without
affecting the current CE2 VMS platform and creating a whole
new CE platform from scratch?

1) New setup: In 2021, a new system, called CE3 VMS,
was being put forward. It consists of a set of external APIs that
provide integration functionalities with job-seeker and supplier
systems. These APIs call a new set of internal APIs, which
expose the new CE data model.

As we discussed, the CE2 VMS data model is inconsistent
and lacks anthropomorphism. For CE3 VM, a new data
model that follows the NS evolvability principles is being
put forward. Connecting-Expertise decided to create a set of
APIs that would enable external integration and calls toward
the CE3 VMS. These APIs would interact with internal APIs
that expose existing CE2 VMS functionalities, new CE3 VMS
functionalities, and the new CE3 VMS data model. In the next
sections, we will explain the reason for an NS approach, the
new CE3 VMS data model, the conversion from CE3 VMS to
the CE2 VMS data model, the overall transition strategy from
CE2 VMS to CE3 VMS, and the benefit of rejuvenation.

2) NS Expansion approach: Connecting-Expertise realized
that their platform had issues with adaptability. Connecting-
Expertise liked the NS approach but was not completely
convinced about using NS Expansion with the NSX tools
[8]. Two methods were compared: building the new CE3
system following the NS principles or the CE3 system with the
NSX tools. Essentially, this means deciding between working
with or without software expansion. All stakeholders were
informed about both methods and a qualitative comparison
was done by the stakeholders. The result of this comparison
(see Figure 4) was that an expansion-based method using the
NSX tools, was preferred. It should be noted that this was a
qualitative comparison, which needs to be verified again once
implementation starts and/or finishes (see Section V).

3) CE3 VMS Data Model: CE3 VMS does not rebuild ex-
isting functionalities. Instead, it uses the CE3 VMS data model
to call existing functionalities (as a data exchange format) and
converts the CE3 VMS data model to the CE2 VMS data
model so that the corresponding CE2 VMS functionalities can
be used. Data already in CE2 VMS is accessed/stored via APIs
on CE3 VMS. Only when new functionalities on CE3 VMS
introduce new data types, the data will be stored and accessed
in the CE3 VMS-specific database.

CE3 VMS uses two types of data elements. One is for CE3
VMS native data, which can only be accessed and used by

Fig. 4. Implementing CE2 with or without Software Expansion.

CE3 VMS, called a CE3 data element. Another is for data
in CE2 VMS that CE3 VMS exposes through a CE3/CE2
data element. The CE3/CE2 data elements transform the less
anthropomorphic CE2 data elements into a data structure
according to NS principles. The CE2 data element will be
aggregating a certain amount of CE3/CE2 data elements.
Figure 5 shows an example modelled in ArchiMate. The
diagram shows a data object d A CE2 that is an aggregation
of d a1 CE3/CE2, d a2 CE3/CE2 and d a3 CE3/CE2, and
accessible via CE2 and CE3, while data object d b CE3 is
only accessible via CE3. Transformers are used to convert the
CE2 data object and CE2/CE3 data objects.

Fig. 5. Transformation of data objects between CE2 and CE3.

Fig. 6. Transformer as a Cross-Cutting Concern of the CE3/CE2 data element
type.

4) The Transformer Cross-Cutting Concern: The trans-
formers deal with a Cross-Cutting Concern that affects both
CE2 and CE3. They are special classes that belong to the
CE3/CE2 data elements of CE3 VMS.

All the expanded CE3/CE2 data elements have a transformer
inside them as a Cross-Cutting Concern. The transformer’s role
is to map the CE3 data model to the CE2 data model. When
an instantiated CE3/CE2 data element performs persist/retrieve
actions, the transformer will change the CE3 data into the CE2
format - like an ETL operation - and then do the persist/retrieve
action on the CE2 database. This approach requires the CE3

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 18 / 39

Fig. 7. Migration of data from CE2 VMS to CE3 VMS.

and CE2 data models to be unambiguously mappable. This
was ensured during the design of the CE3 data model. Figure 6
shows the difference between the 2 data element types.

A feature available on CE2 VMS will use the data elements
created on CE2 VMS. The same feature can be accessed from
CE3 VMS through the CE3/CE2 data elements. When all
users of this feature switch from using it on CE2 VMSand
start using it on CE3 VMS (moving users from the old to the
new platform for that feature), it is time to also move all the
relevant data from the CE2 VMS database to the CE3 VMS
database. The transformers will help with this migration.

A migration task would just get the CE2 data through the
CE3/CE2 data element and save it into a CE3 data element.
After this migration task is done, the feature that needs this
data will only use the native CE3 data element, making a
smooth transition from one system to the other. Figure 7
explains the process.

5) Rejuvenation and Transformation: To create CE3 VMS,
a connection with CE2 VMS had to be embedded in the code.
The parts of the code that handle this connection are in the
transformation classes. These classes belong to the CE3/CE2
data elements. When setting up the meta-model used as the
basis for the code expansion, data elements will be marked
as either type CE3/CE2 or type CE3. All transformation
classes are then included in the expansion. When a data
structure does not need to be linked to both CE2 and CE3
anymore, it is enough to specify this in the meta-model and
re-expand. CE3 data elements will be applied at that point,
and the transformers are no longer required. The process of
re-expansion that improves the element structures is called
rejuvenation. In this case, the rejuvenation process eliminates
all code and connections to CE2, removing the link to legacy.

V. DISCUSSION

In this section, we will discuss different aspects of the
migration approach. We will start with the choice of NS
expansion, followed by the value of a phased migration. We
will end by comparing this migration approach with a generic
migration approach called Chicken Little [6].

A. The choice for NS Expansion

In Section IV-D2, we explained why Connecting-Expertise
chose to use NS Expansion compared to standard program-
ming using the NS principles as guidelines. We asked the
Connecting-Expertise’s lead developer, Sven Beterams, if the
estimated gains of using NS Expansion also materialized
during project delivery. He confirmed that thanks to NS Expan-
sion, the development went faster, the code quality improved
considerably, and the data model was anthropomorphic and
consistent. The development of the backend was greatly im-
proved and the phased migration approach was made possible
thanks to NS Expansion/Rejuvenation.

B. Migration Approach

The usage of the transformers plays an essential role in
the migration from CE2 VMS toward CE3 VMS. The idea of
gradually shifting functionalities from one system to another
while keeping both live is referred to as the Chicken Little
approach (see [6]). The main drawback of using this approach
is the need for gateways between the source and target system.
These gateways must be meticulously designed and consis-
tently implemented, which can be daunting. NS Expansion
mitigates the downsides of doing Chicken Little dramatically.
The gateways are implemented using the transformer classes
that are part of the data elements. Using NS Expansion ensures
that each gateway/transformer is identical in structure and

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 19 / 39

usage. The transformers can evolve, and all modifications and
improvements can be quickly and easily redeployed using re-
expansion/rejuvenation. When functionality is fully migrated
from the source to the target system, there is no longer the
need to keep the gateways in place. With classic coding
practices, the manual removal of the gateways comes with
risks. Accidental removal of too much could result in broken
functionalities. Insufficient removal results in traces of legacy
code in a brand-new system. With NS Expansion, it suffices
to perform a rejuvenation cycle to replace the code templates
that contain transformers with code templates without trans-
formers. All traces of legacy are removed in a consistent and
precise way.

C. Phased migration

Connecting-Expertise wanted to avoid a big-bang migration.
The transformer approach facilitated this even more. The ease
with which the final migration of data can be performed (as
described in Figure 7) is thanks to the usage of the transformer
Cross-Cutting Concern and the ability to rejuvenate the code
and erase all links to legacy after final migration. Without the
NS Expansion approach, this task would be much harder.

VI. CONCLUSION

This paper presented a real-life case where software mi-
gration is facilitated by NS Expansion. We introduced NS,
NS Expansion, and a general overview of software migration
approaches. We presented the Connecting-Expertise use case,
where a mission-critical platform needed to evolve while
keeping the existing system operational. We have shown that
addressing the migration as a Cross-Cutting Concern, using
transformer classes embedded in data elements, combined with
NS Expansion and rejuvenation, can mitigate some of the
major drawbacks of a phased migration.

ACKNOWLEDGMENT

The authors would like to thank Sven Beterams from
Connecting-Expertise, for sharing his knowledge of the ap-
plications. We would also like to thank Chetak Kandaswamy
for collecting and structuring the material required to create
this paper.

REFERENCES

[1] SAFe Framework, [Online], Available: www.scaledagileframework.com,
[retrieved: April, 2024]

[2] H. Mannaert, J. Verelst, and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design”, ISBN 978-90-77160-09-1, 2016

[3] H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability”, Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011

[4] P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst, “Po-
sitioning the normalized systems theory in a design theory framework”,
Lecture notes in business information processing, ISSN 1865-1348-142,
pp. 43-63, 2013

[5] S. Demeyer and T. Mens, “Software Evolution“, ISBN 978-3-540-
76439-7, 2008

[6] A. Sivagnana Ganesan and T. Chithralekha, “A Comparative Review
of Migration of Legacy Systems“, International Journal of Engineering
Research & Technology (IJERT), ISSN 2278-0181, Volume 6, Issue 02,
February 2017

[7] R. Martin, ”Clean Architecture”, ISBN-13 978-0-13-449416-6, 2017
[8] NSX, [Online], Available: www.normalizedsystems.org, [retrieved:

April, 2024]

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 20 / 39

Toward a Rejuvenation Factory for Software Landscapes

Herwig Mannaert

Normalized Systems Institute
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Tim Van Waes and Frédéric Hannes

Research and Development
NSX bv, Belgium

Email: tim.van.waes@nsx.normalizedsystems.org

Abstract—The agile paradigm has become the default method-
ology for the delivery of software-based products. While there is
a widespread belief that this methodology has numerous benefits,
including improved and timely delivery of software projects,
it can be argued that the lack of an overall architecture to
which developers must adhere can result in increased technical
debt. Through its normative structure of software application
skeletons, NST (Normalized Systems Theory) provides a possible
mechanism to manage the delicate balance between intentional
architecture and emerging design. Moreover, the systematic
rejuvenation of application skeletons, featuring harvesting and
re-injection of custom code, enables to accommodate not only
changes in the functional model, but also in the software
skeletons, including the technology frameworks that are used.
In this contribution, we describe the setup and operations of an
NST rejuvenation factory, where dozens of software applications
are being developed using agile methodologies, and rejuvenated
on an approximately weekly basis. Both the size of the application
models, codebase, and technologies, and their evolution in time,
are presented. The achieved levels of agility, and the realized
abilities to change are discussed, as well as the current limitations
and some future work to address them.

Index Terms—Software Evolvability; Software Factories; Nor-
malized Systems Theory; Case Study.

I. INTRODUCTION

The agile paradigm has become the default methodology for
software development. While there is a widespread belief that
this methodology has numerous benefits, including improved
and timely delivery of software projects, it can be argued that
the lack of an overall architecture may result in increased
technical debt and reduced evolvability. Normalized Systems
Theory (NST) aims to provide higher levels of evolvability
through its normative structure of software application skele-
tons. This underlying architecture could serve as a mechanism
to manage the delicate balance between evolvable architecture
and agile design. In this paper, we conduct a case study to
investigate this potential by studying the evolvability behavior
of a software factory that operates in an agile way, while
adhering to the NST architecture to realize evolvability.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss some related work and the
methodology. In Section III, we describe the issues related to
software evolvability, and the way NST aims to provide higher
levels of evolvability. We present the structure, operations,
and possibilities of a software factory based on NST in

Section IV. In Section V, we present the case study analyzing
the realized software evolvability in a specific NST software
factory. Finally, we discuss some conclusions and future work
in Section VI.

II. RELATED WORK AND METHODOLOGY

In this paper, we investigate whether NST is able to realize
the substantial improvement in evolvability that it proposes, by
studying its application at scale in a state-of-the-art software
factory. Section III gives an overview of related work on the
deep issues regarding software maintenance and evolution, and
on the way that NST aims to address some of these issues in
a structured way. In Section IV, we go through some related
work on current state-of-the-art software factories.

The methodology of this paper is based on Design Science
Research [1]. The artifact that we consider is the NST method-
ology aimed at the development of software applications that
exhibit higher levels of evolvability. We conduct an observa-
tional case study to investigate whether the application of this
methodology at scale in a software factory is able to realize
the envisaged evolvability. While the operations of the NST
software factory contribute to the relevance cycle by applying
NST to the appropriate environment, this case study aims to
contribute to the rigor cycle by extending the knowledge base.

III. THE PREMISE OF NORMALIZED SYSTEMS THEORY

In this section, we introduce NST as a theoretical basis to
obtain higher levels of evolvability in information systems, and
the approach to realize its promise through a code generation
or expansion framework.

A. On Software Maintenance and Evolvability

Software maintenance is not merely about fixing defects.
While originally three categories of maintenance were de-
fined, i.e., corrective, adaptive, and perfective maintenance [2],
modern standards also include preventive maintenance. Stud-
ies have indicated that about eighty percent of maintenance
effort is used for non-corrective actions and functionality
enhancements [3] [4]. This means that software maintenance
is intimately related to software evolution, even though users
often perpetuate its reduction to bug fixing by submitting
enhancements as problem reports.

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 21 / 39

Software evolution and evolvability were studied in depth
by Manny Lehman over a long period of time, leading to the
insight that maintenance is really an evolutionary development,
and to the formulation of Lehman’s Laws. One of these laws,
the Law of increasing complexity [5], states that systems,
as they evolve, grow more complex and more difficult to
maintain, unless some action such as code refactoring is taken
to reduce the complexity. Though never formally proven, this
empirical law is widely accepted by software developers.

While the evolvability of information systems (IS) is consid-
ered as an important attribute determining the agility and there-
fore the survival chances of organizations, it has traditionally
not received much attention within the IS research area [6].
More recently, software maintenance and evolution have at-
tracted more attention through the introduction of concepts like
technical debt, representing the need for refactoring to reduce
structure degradation, and maintenance debt, corresponding to
maintenance needs generated by dependencies on external IT
factors such as libraries, platforms and tools, that have become
obsolescent [7].

B. Normalized Systems Software Applications

Normalized Systems Theory (NST) was developed by ap-
plying the concept of stability from systems theory to the
evolution of engineering artifacts such as software systems.
It operationalizes the concept of systems theoretic stability,
i.e., a bounded input should result in a bounded output, in the
context of information systems development and maintenance,
by demanding that a bounded set of changes should only result
in a bounded impact to the software, or, that the impact of
changes to an information system should not be dependent
on the size of the system to which they are applied, but only
on the size of the changes to be performed [8] [9]. Changes
causing an impact dependent on the size of the system are
called combinatorial effects. Being a major factor limiting
the evolvability of information systems, these combinatorial
effects are considered to be one of the mechanisms causing
the structure degradation described by Manny Lehman.

The theory derives four theorems and formally proves that
any violation of these theorems will result in combinatorial
effects, thereby hampering evolvability [8] [9] [10]:

• Separation of Concerns: no two concerns or change
drivers should be combined in a software construct.

• Action Version Transparency: invoking new versions of
processing functions should not demand changes.

• Data Version Transparency: exchanging new versions of
data objects should not demand changes.

• Separation of States: no two processing functions should
be sequenced without keeping state.

The application of these theorems to software applications
results in very fine-grained modular structures within these
applications. The theory also proposes a set of design pat-
terns, and presents a constructive proof that these patterns
are free of combinatorial effects with respect to a number

of basic changes. Specifically, NST proposes five elements,
i.e., detailed design patterns, and argues that instantiations of
these elements are sufficient to build the main functionality of
information systems [9] [10] [11]:

• data elements to store and retrieve data entities.
• action elements to perform operations on data entities.
• workflow elements to orchestrate the operations on data.
• connector elements to interface with users and systems.
• trigger elements to drive and activate operations.

Implementing and enforcing detailed design patterns of fine-
grained modular structures is, in general, difficult to achieve by
manual programming. Therefore, an implementation of mod-
ular code generators, called expanders, was made to generate
information systems based on NST. The development of such a
Normalized Systems (NS) information system starts by defining
a set of data, task and workflow elements. Based on the
detailed design patterns, the expanders generate source code
for the various elements that are defined. The code generation
mechanism, called expansion, is quite straightforward, i.e.,
simply instantiating parametrized copies of a set of coding
templates. The generated code makes up the evolvable skeleton
of the information system. It is in general complemented with
custom code or craftings to add non-standard functionality
not provided by the skeletons. These craftings may reside in
separate classes, or placed at well specified places identified
by anchors within the generated boiler plate code.

C. Variability Dimensions and Evolvability

Information Systems generated by an NS expansion process
consist of application skeletons that are free of combinatorial
effects with respect to a set of basic changes [9]. This entails
a number of evolvability characteristics, essentially based on
the separation of four variability dimensions as schematically
visualized in Figure 1. While we have discussed elsewhere
[12] [13] in more detail how such an application with separate
variability dimensions can evolve throughout time, we briefly
describe here these dimensions.

First, as represented at the upper left side of the figure, the
skeletons are based on the models or mirrors of the required
information system such as data models and workflows. As the
model can have multiple versions throughout time (e.g., being
updated or complemented), it constitutes a first dimension of
variability or evolvability.

Second, the expanders (represented by the big blue icon
in the figure) generate application skeletons by instantiating
the various class templates, taking the specifications of the
model as parameters. As these expanders, or rather template
skeletons, can have multiple versions throughout time (e.g.,
solving bugs or offering additional features), they represent a
second dimension of variability or evolvability.

Third, as represented in the upper right side of the figure,
the skeletons use a number of frameworks or utilities to
take care of several so-called cross-cutting concerns. As these
frameworks and the generated adapter code, specified through

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 22 / 39

Figure 1. A graphical representation of four variability dimensions within a Normalized Systems application codebase.

infrastructure settings, can have multiple versions throughout
time (e.g., new versions of existing frameworks or alternative
frameworks), these settings or frameworks represent a third
dimension of variability or evolvability.

Fourth, as represented in the lower left of the figure, custom
code or craftings are used to enrich the generated skeletons.
These craftings are harvested into a separate repository to en-
able their re-injection into a newly generated application skele-
ton. As these craftings can have multiple versions throughout
time (e.g., improvements or additional features), they represent
a fourth dimension of variability or evolvability.

To summarize, NS software applications as represented in
Figure 1, exhibit four different and independent variability
dimensions. This means that the concept of the “version”
of an NS application is more refined, as the version of an
application codebase corresponds to a specific combination
of four different versions representing the four variability
dimensions [13]. Given certain constraints, e.g., certain ver-
sions of the expanders do not (yet) support certain versions
of the frameworks, the versions of the different dimensions
are independent and can be used in various combinations.
Conceptually, with M , E, I and C referring to the number of
available model versions, the number of expander versions,
the number of infrastructure settings, and crafting versions
respectively, the total set of possible versions V of a particular
NST application could become equal to:

V = M × E × I × C

This is an example of a quite fundamental principle stating that
the thorough decoupling of concerns can realize exponential
gains in their recombination potential, leading to higher levels
of evolvability and variability [9].

IV. A NORMALIZED SYSTEMS SOFTWARE FACTORY

In this section, we describe how expansion and rejuvenation
are integrated into the Normalized Systems software factory,
and discuss the different rejuvenation modes.

A. Integrating Expansion in a Software Factory

The production and/or assembly of software in a more
industrial way has been pursued for many decades. It dates
back at least to 1968 with the work of Doug McIlroy on
mass produced software components [14], and is currently
associated with terms like Software Product Lines (SPLs)
and Software Factories. The term Software Factory is for
instance defined by Greenfield et al. as a software product
line that configures extensive tools, processes, and content
using a template based on a schema to automate the develop-
ment and maintenance of variants of an archetypical product
by adapting, assembling, and configuring framework-based
components [15]. However, the systematic reuse of software
artifacts is not a trivial task facing may different issues, as was
for instance recently argued by Saeed [16].

These issues become even more challenging when in-
tegrating a code generation environment into such a soft-
ware factory. Many existing code generation technologies,
identified with terms like Model-Driven Engineering (MDE),
Model-Driven Architecture (MDA), Low-Code Development
Platforms (LCDP), amd No-Code Development Platforms
(NCDP), enable programmers to create software applications
by interactively defining domain models that drive code gen-
eration. However, in general these technologies do not support
the harvesting of custom code and their re-injection into newer
regenerated versions of the software. A software factory based
on NST on the other hand, has to support this harvesting
and re-injection of custom code in order to enable the proper
separation of the various dimensions of variability.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 23 / 39

B. From CI/CD Toward Continuous Rejuvenation

The current mainstream approach to organize and control
the operations of so-called software factories is a methodology
called DevOps to integrate and automate the work of software
development (Dev) and IT operations (Ops). As stated by
Ravi Yarlagadda, Through DevOps, there is an assumption
that all functions can be carried out, controlled, and managed
in a central place using a simple code [17]. In accordance
with the main purpose of such a DevOps environment, it is
often called a Continuous Integration, Continuous Delivery
(CI/CD), or Continuous Integration, Continuous Deployment
infrastructure. The various tools used in such an infrastructure,
being both commercial and open source, are in general quite
numerous and versatile. While the technical community often
focusses on these tools, it needs to be stressed that DevOps is
essentially a methodology striving to improve the collaboration
and integration between development and operations teams.

In an NS software factory, the CI/CD infrastructure needs to
contain an expansion cycle before the build phase. The control
structure of such an NS CI/CD infrastructure is schematically
represented in Figure 2, and described in more detail in [18].
Of course, the modular code generators or expanders are being
built, integrated and tested themselves in a CI/CD infrastruc-
ture. As the CI/CD pipelines of expanders and information
systems are integrated, rejuvenation, i.e., application skeletons
that are regenerated with new versions of expander templates,
becomes part of the CI/CD infrastructure. In that sense,
we obtain a Continuous Integration, Continuous Deployment,
Continuous Rejuvenation (CI/CD/CR) infrastructure.

C. Normalized Systems Rejuvenation Modes

Having an infrastructure that includes rejuvenation of the
application skeletons, we are now able to distinguish dif-
ferent modes of structural rejuvenation. Conceptually, this
corresponds to evolutions and improvements in the variability
dimensions of expander templates and external frameworks,
while allowing respectively modelers and programmers to
further improve and extend the model and the custom code.

First, various external frameworks can be upgraded to
new versions. This includes both minor version upgrades,
or even patches to address vulnerabilities, and more major
version upgrades. While this kind of ’rejuvenation’ is also
available and even standard practice in traditional applications,
an NS approach aims at making this more straightforward
by embedding the code to interface with these frameworks
in the expanded skeletons. In this way, the expanded boiler
plate code should cope with changes in the interfaces of the
frameworks. Recently, solutions like OpenRewrite [19] have
become available to enable traditional applications to deal in
a more productive way with such interface changes.

Second, new versions of expanders and the corresponding
templates can be used in the expand phase. This includes
possible bug fixes, minor improvements in functionality or
coding style, and new features that may have become available.

TABLE I. DOMAIN, LIFESPAN, MODEL AND CUSTOM CODE SIZE
OF VARIOUS APPLICATIONS.

Application Domain Age Data Model Custom Code
(yrs) (Nr. elem.) (Size kBytes)

Energy Monitoring > 10 116 6,352
3− 5 38 1,010

Power Grid Management 1− 3 106 10,642

Human Resource Services 3− 5 940 12,103
3− 5 59 1,433

Real Estate Services > 10 491 70,449
1− 3 331 1,412

Unmanned Aviation 5− 10 30 4,230

Traffic Management 1− 3 134 2,896

Learning Management 1− 3 133 1,794

This kind of rejuvenation, enabling a structural regeneration
and modernization of application skeletons, is not available in
a traditional development approach.

Third, the support of new infrastructure settings with cor-
responding templates to interface with these technologies, can
conceptually enable the seamless migration of applications, or
even entire application landscapes, to new and/or alternative
frameworks. Indeed, as the code to interface with such new
technologies should in general be embedded in the generated
skeletons, both application skeletons and custom code should
almost automatically support existing functionality through the
new framework.

V. THE CASE OF AN NST REJUVENATION FACTORY

Since the publishing of NST, two development centers have
been building and rejuvenating NS applications, one at the
spin-off company to further develop NST, i.e., NSX bv, and
one at the Dutch Tax Office. In this section, we study the de-
velopments and rejuvenations at the NSX development center
after 12 years of existence. The development center operates
in a realistic business environment, producing and maintaining
operational applications for clients. During these years, the
number of staff members, working on code generation tools
and applications, increased almost linearly from 2 to 50.

Table I presents some overview data of some of the most
prominent NS software applications that have been developed,
and that are still being maintained and evolved at this point
in time. While the functional domain of the application is
identified in a first column, the second column lists the age
in years, i.e., the number of years since the development of
the software application started. To reflect the size of the
model, we present the current total number of data elements,
corresponding roughly to the number of database tables, in the
third column. The total size of the craftings or custom code
(in kBytes) is listed in the fourth column.

As stated in Section I, the main goal of the agile architecture
is to rejuvenate the core structures of the various software
applications, in a way that is independent and decoupled from

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 24 / 39

Figure 2. A traditional representation of a typical DevOps infrastructure.

the continuous evolution of the underlying model and custom
features. We now discuss this structural rejuvenation according
to the different modes that we have distinguished. Given the
overall size of the applications, both in model and custom code
size, we may consider this single observation to be significant.
The detailed development resources spent are considered to be
out of scope, as we want to observe the evolvability behavior
under normal market conditions.

A. Continuous Development

The various applications summarized in Table I are in
production, and either still in full development mode, or
at least subject to extended development and/or perfective
maintenance. The development teams, consisting of one to four
people depending on the application, deliver bug fixes, minor
improvements, and new features, that are implemented using
modifications and extensions of both the model and the custom
code. In several applications, this includes application-specific
expanders or code generator modules that are being used and
maintained. As part of the CI/CD infrastructure, applications
are built and deployed in test on a daily basis, and new versions
are typically deployed in production every two weeks.

B. Updating Dependencies

Updating frameworks to new versions is, similar to most
software development environments, an integrated part of
the CI/CD infrastructure. Besides urgent patches to address
vulnerabilities, they follow the same cadence as the continuous
development. When new versions are considered appropriate,
they are included in the daily builds and test deployments, and
the bi-weekly production deployments.

C. Rejuvenating Skeletons

The development of the NS expanders follow the same
release rhythm, i.e., daily builds and testing and bi-weekly
releases. As the pipelines of the expanders and the applica-
tions are part of the same integrated CI/CD infrastructure,
they become available immediately upon release. As potential

conflicts between the new skeletons and the existing custom
code may lead to additional efforts, the various applications
are only rejuvenated using a new version of the NS expanders
every one or two months. Upon acceptance, they will proceed
to the bi-weekly production deployments.

The systematic rejuvenation of the application skeletons,
the CI/CD/CR environment, has only been realized the last
4 to 5 years of the development center. Reasons for this
delay include learning effects and lack of critical mass in the
NSX development center during the early years. Currently, the
regular rejuvenation includes systematic improvements across
the entire application landscape. These landscape-wide im-
provements include the cleanup of outdated coding constructs,
performance enhancements in database queries, enhanced au-
thorization and access control, additional options and features
for generated screens, improved support for multitenancy and
workflows, and additional options for parallel processing.

D. Replacing Technologies

The NST-based evolvable architecture of the applications
also aims to facilitate the systematic replacement of external
technology frameworks that handle the cross-cutting concerns
of the multi-layer applications. Throughout the years, the NS
expanders have introduced support for additional databases
and persistency providers in the data layer. In the logic
layer, improved JEE implementations have been introduced
for transactions, timers and triggers. The entire application
landscape has migrated seamlessly to these new technologies.

In the control and view layer, systematic migrations have
been performed in the early days of the development center.
First, from the Cocoon Model-View-Controller framework to
Struts2, followed by migrating from Struts2 to Knockout in the
view layer, while Struts2 remained the default technology in
the control layer. More recently, new technologies were intro-
duced without completely phasing out previous technologies.
JAX-RS was introduced both in the control layer that supports
the view layer, and in a separate integration layer to offer REST
interfaces for third-party applications. Angular was introduced

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 25 / 39

in the view layer, integrating with both the legacy Struts2
control layer and the new JAX-RS implementation. The fact
that custom code has been developed on quite a large scale
over the last couple of years, often lacking discipline when
calling into other layers, makes it nowadays less obvious to
retire frameworks, stressing the need for coding discipline.

VI. CONCLUSION AND FUTURE WORK

Software evolution has been facing many deep-seated issues
for decades. While the current agile development paradigm
has numerous benefits, it does not really solve these issues,
and could potentially even worsen them. Normalized Systems
Theory has proposed a software architecture that could provide
software applications with higher levels of evolvability, while
preserving the benefits of the agile development process. In
this contribution, we have presented an observational case
study to evaluate to what extent the envisioned evolvability
characteristics have been realized in a state-of-the-art agile
software factory based on NST.

Studying the evolvability characteristics of an NST-based
agile software factory is believed to make some contributions.
First, we have described in some detail how NST can be ap-
plied at a substantial scale in a modern agile software factory.
Second, we have validated that some levels of evolvability
envisoned by NST can indeed be operationalized in such an
environment. Third, we have identified a concern that may
hamper these evolvability features in a realistic environment.

Next to these contributions, it is clear that this observational
case study is also subject to a number of limitations. First,
the software development factory of the case study was set
up in close collaboration with the authors of NST. It would
be interesting to study how easily this could be reproduced
in other development centers. Second, the software factory
has only been operating at scale for a couple of years.
Therefore, the number of significant evolutions across an entire
application landscape is quite limited.

To increase significantly the time period during which the
rejuvenation factory has been operating at scale, we plan to
continue this observational case study for at least the next
few years. We also intend to look into the added value of
frameworks such as Scaled Agile Framework (SAFe), that seek
to guide enterprises in scaling agile practices [20] [21]. For
instance, we could investigate the structured integration of
techniques such as canary releases and feature toggles that
are currently used on an ad hoc basis.

REFERENCES

[1] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, 2004, pp.
75–105.

[2] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Communications of the ACM,
vol. 26, no. 6, 1978, pp. 466—-471.

[3] T. M. Pigoski, Practical software maintenance: Best practices for man-
aging your software investment. Wiley Computer Pub, 1997.

[4] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus, “Does code
decay? assessing evidence from change management data,” IEEE Trans-
actions on Software Engineering, vol. 27, no. 1, 2001, pp. 1—-12.

[5] M. Lehman, “Program, life-cycles and the laws of software evolution,”
in Proceedings of the IEEE, vol. 68, 1980, pp. 1060–1076.

[6] R. Agarwal and A. Tiwana, “Editorial—evolvable systems: Through the
looking glass of IS,” Information Systems Research, vol. 26, no. 3, 2015,
pp. 473–479.

[7] J. Estdale, “Delaying maintenance can prove fatal,” in Proceedings of
Software Quality Management XXVII: International Experiences and
Initiatives in IT Quality Management, 2019, pp. 95—-106.

[8] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[9] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[10] H. Mannaert, K. De Cock, P. Uhnak, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International Journal on Advances in Software, no. 13, 2020,
pp. 149–159.

[11] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, 2012, pp. 89–116.

[12] P. De Bruyn, H. Mannaert, and P. Huysmans, “On the variability
dimensions of normalized systems applications: Experiences from an
educational case study,” in Proceedings of the Tenth International
Conference on Pervasive Patterns and Applications (PATTERNS), 2018,
pp. 45–50.

[13] ——, “On the variability dimensions of normalized systems applications
: experiences from four case studies,” International Journal on Advances
in Systems and Measurements, vol. 11, no. 3, 2018, pp. 306–314.

[14] M. D. McIlroy, “Mass produced software components,” in Proceedings
of NATO Software Engineering Conference, Garmisch, Germany, Octo-
ber 1968, pp. 138–155.

[15] J. Greenfield, K. Short, and S. Cook, Steve; Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley, 2004.

[16] T. Saeed, “Current issues in software re-usability: A critical review of
the methodological & legal issues,” Journal of Software Engineering and
Applications, vol. 13, no. 9, 2020, pp. 206–217.

[17] R. T. Yarlagadda, “Devops and its practices,” International Journal of
Creative Research Thoughts (IJCRT), vol. 9, no. 3, 2021, pp. 111–119.

[18] H. Mannaert, K. De Cock, and J. Faes, “Exploring the creation and
added value of manufacturing control systems for software factories,”
in Proceedings of the Eighteenth International Conference on Software
Engineering Advances (ICSEA 2023), 2023, pp. 14—-19.

[19] Moderne, “Introduction to OpenRewrite,” URL:
https://docs.openrewrite.org/, 2023, [accessed: 2024-03-05].

[20] W. Hayes, M. A. Lapham, S. Miller, E. Wrubel, and P. Capell, “Scaling
agile methods for department of defense programs,” Software Engineer-
ing Institute, Tech. Rep. CMU/SEI-2016-TN-005, 12 2016.

[21] D. Athrow, “Why Continuous Delivery is key to speeding up software
development,” URL: https://www.techradar.com/news/software/why-
continuous-delivery-is-key-to-speeding-up-software-development-
1282498, 01 2015, [accessed: 2024-03-24].

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 26 / 39

Converging Clean Architecture with Normalized Systems

Gerco Koks
Antwerpen Management School, Alumini

Zundert, Netherlands
email:gerco.koks@outlook.com

Abstract—This paper explores the convergence between Clean
Architecture and Normalized Systems principles and design
elements, highlighting their synergistic potential to enhance
software design and evolvability. The paper draws upon the
research described in the thesis of “On the Convergence of
Clean Architecture with the Normalized Systems Theorems”
from G. Koks through a comparative analysis. It demonstrates
how each paradigm contributes to modular, maintainable, and
evolvable software design and how integrating both approaches
can lead to a more widely spread adoption and an improved
software design.

Keywords-Software; Architecture; Evolvability; Modularity; Sta-
bility.

I. INTRODUCTION

In the evolving landscape of software architecture, the
software development paradigms of Clean Architecture (CA)
and Normalized Systems (NS) have emerged as pivotal in
addressing the multifaceted challenges of software design,
particularly in managing stability, modularity, and evolvability
to achieve resiliency in software. This paper delves into
the synergy between these two paradigms, each contributing
significantly to the contemporary discourse on software archi-
tectural complexity.

Tracing the historical underpinnings of these concepts re-
veals the works of pioneers like D. McIlroy [2], who cham-
pioned modular programming, and Lehman [3], who under-
scored the importance of software evolution. Contributions
from Dijkstra [4] on structured programming and Parnas [5] on
software modularity further cemented the foundation for CA
and NS. These historical insights contextualize the evolution of
software engineering principles and underscore the relevance
of fostering maintainable and evolvable software systems.

The foundation of this paper is an exploration of findings
from extensive research on the convergence of CA and NS
[1]. This research provides a nuanced perspective on inte-
grating these distinct yet harmonious frameworks to enhance
software design. It meticulously examines the core principles
and elements of both CA and NS, presenting a scientifically
robust synthesis that addresses critical challenges in software
architecture.

This paper outlines the insights from G. Koks’ research,
exploring the significant benefits and practical implications of
integrating the strengths of CA and NS within the dynamic
field of software development.

The introduction is intended to set the stage and articulate
the goal of this paper. Section 2 lays out the theoretical back-
ground, zooming in on the specific principles and elements of
each Software Design Paradigm while also highlighting their

unified concepts. In Section 3, we analyze the similarities and
differences of their principles and elements and their effect on
the evolvability of software constructs. The paper summarizes
the conclusions in Section 4.

II. THEORETICAL BACKGROUND

This Section explores the theoretical background of both CA
and NS frameworks in software engineering. It focuses on the
synergetic concepts, underlying principles, and architectural
building blocks of both approaches and paradigms, providing
the foundation for the comparative analysis.

A. Unified concepts

In this Section, we will examine concepts related to both CA
and NS. Understanding these concepts is crucial for executing
the research and interpreting its results.

1) Modularity: The original material of Martin [6, p. 82]
describes a module as a piece of code encapsulated in a
source file with a cohesive set of functions and data structures.
According to Mannaert et al. [7, p. 22], modularity is a
hierarchical or recursive concept that should exhibit high cohe-
sion. While both design approaches agree on the cohesiveness
of a module’s internal parts, there is a slight difference in
granularity in their definitions.

2) Cohesion: Mannaert et al. [7, p. 22] consider cohesion
as modules that exist out of connected or interrelated parts of
a hierarchical structure. On the other hand, Martin [6, p. 118]
discusses cohesion in the context of components. He attributes
the three component cohesion principles as crucial to grouping
classes or functions into cohesive components. Cohesion is a
complex and dynamic process, as the level of cohesiveness
might evolve as requirements change over time.

3) Coupling: Coupling is an essential concept in software
engineering that is related to the degree of interdependence
among various software constructs. High coupling between
components indicates the strength of their relationship, creat-
ing an interdependent relationship between them. Conversely,
low coupling signifies a weaker relationship, where modifica-
tions in one part are less likely to impact others. Although
not always possible, the level of coupling between the various
modules of the system should be kept to a bare minimum.
Both Mannaert et al. [7, p. 23] and Martin [6, p. 130] agree
to achieve as much decoupling as possible.

B. Normalized Systems

NS in software engineering revolves around stable and
evolvable information systems, drawing from System Theory

19Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 27 / 39

and Statistical Entropy from Thermodynamics. NS is rooted
in software engineering but applies to other domains, such
as Enterprise Engineering [8], Hardware configurations like
TCP-IP firewalls [9], and Business Process Modeling [10].

The NS theory emphasizes stability as a crucial prop-
erty derived from the concept of Bounded Input leading
to Bounded Output (BIBO). Stability in NS means that a
bounded functional change must result in a bounded amount
of work, regardless of the system’s size. Instabilities, also
referred to as combinatorial effects, occur when the number
of changes depends on the system size, negatively impacting
its evolvability.
In the following list, we will describe the design Theorems of
NS, first presented by Mannaert and Verelst [11].

• Separation Of Concerns (SoC): A processing function
containing only a single task to achieve stability.

• Data Version Transparency (DvT): A data structure
passed through a processing function’s interface must
exhibit version transparency to achieve stability.

• Action Version Transparency (AvT): A processing func-
tion that is called by another processing function needs
to exhibit version transparency to achieve stability.

• Separation of State (SoS): Calling a processing function
within another processing function must exhibit state-
keeping to achieve stability.

NS aims to design evolvable software independent of the
underlying technology. Nevertheless, a particular technology
must be chosen when implementing the software and its com-
ponents. For object-oriented programming languages, the fol-
lowing normalized elements have been proposed [7, pp. 363–
398]. It is essential to recognize that different programming
languages may necessitate alternative constructs [7, p. 364].

The following list describes each element using the defini-
tion from Mannaert et al. [12, p. 102]

• Data Element: Based on DvT, data elements have “get”
and “set” methods for wide-sense data version trans-
parency or marshal -and parse- methods for strict-sense
DvT. Supporting tasks can be added in a way that is
consistent with the principles of SoC and DvT.

• Task Element: Based on SoC, the core action entity
can only contain a single functional task, not multiple
tasks. Based on AvT, arguments and parameters must be
encapsulated data entities. Based on SoC and SoS, work-
flows need to be separated from action entities and will
therefore be encapsulated in a workflow element. Based
on AvT, tasks need to be encapsulated so that a separate
action entity wraps the action entities representing task
versions. Supporting tasks can be added in a way that is
consistent with SoC and AvT.

• Workflow Element: Based on SoC, workflow elements
cannot contain other functional tasks, as they are gen-
erally considered a separate change driver, often im-
plemented in an external technology. Based on SoS,
workflow elements must be stateful. This state is required
for every instance of use of the action element and,

therefore, needs to be part of, or linked to, the instance
of the data element that serves as an argument.

• Connector Element: Based on Theorem SoS, connector
elements must ensure that external systems can interact
with data elements, but that they cannot call an action
element in a stateless way. Supporting tasks can be added
in a way that consistent with SoC and AvT.

• Trigger Element: Based on SoC, trigger elements need
to control the separated —both error and non-errorstates,
and check whether an action element has to be triggered.
Supporting tasks can be added in a way that is consistent
with SoC and AvT.

C. Clean Architecture

CA is a software design approach emphasizing code or-
ganization into independent, modular layers with distinct re-
sponsibilities. This approach aims to create a more flexible,
maintainable, and testable software system by enforcing the
separation of concerns and minimizing dependencies between
components. CA aims to provide a solid foundation for soft-
ware development, allowing developers to build applications
that can adapt to changing requirements, scale effectively, and
remain resilient against the introduction of bugs [6].

CA organizes its components into distinct layers. This archi-
tecture promotes the separation of concerns, maintainability,
testability, and adaptability. The following list briefly describes
each layer [6]. By organizing code into these layers and
adhering to the principles of CA, developers can create more
flexible, maintainable, and testable software with well-defined
boundaries and a separation of concerns.

• Domain Layer: This layer contains the application’s
core business objects, rules, and domain logic. Entities
represent the fundamental concepts and relationships in
the problem domain and are independent of any specific
technology or framework. The domain layer focuses on
encapsulating the essential complexity of the system and
should be kept as pure as possible.

• Application Layer: This layer contains the use cases or
application-specific business rules orchestrating the inter-
action between entities and external systems. Use cases
define the application’s behavior regarding the actions
users can perform and the expected outcomes. This layer
coordinates the data flow between the domain layer and
the presentation or infrastructure layers while remaining
agnostic to the specifics of the user interface or external
dependencies.

• Presentation Layer: This layer translates data and in-
teractions between the use cases and external actors,
such as users or external systems. Interface adapters
include controllers, view models, presenters, and data
mappers, which handle user input, format data for display,
and convert data between internal and external repre-
sentations. The presentation layer should be as thin as
possible, focusing on the mechanics of user interaction
and deferring application logic to the use cases.

20Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 28 / 39

• Infrastructure Layer: This layer contains the technical
implementations of external systems and dependencies,
such as databases, web services, file systems, or third
party libraries. The infrastructure layer provides concrete
implementations of the interfaces and abstractions defined
in the other layers, allowing the core application to remain
decoupled from specific technologies or frameworks. This
layer is also responsible for configuration or initialization
code to set up the system’s runtime environment.

Domain

Infrastructure

Presentation

Application

Presentation

Figure 1. Flow of control

An essential aspect is described as the dependency rule.
The rule states that source code dependencies must point
only inward toward higher-level policies (Robert C. Martin,
2018, p. 206). This ’flow of control’ is designed following the
Dependency Inversion Principle (DIP) and can be represented
schematically as concentric circles containing all the described
components. The arrows in Figure 1 clearly show that the
dependencies flow from the outer layers to the inner layers.
Most outer layers are historically subjected to large-scale
refactorings due to technological changes and innovation.
Separating the layers and adhering to the dependency rule
ensures that the domain logic can evolve independently from
external dependencies or certain specific technologies.

Martin [6, p. 78] argues that software can quickly become
a well-intended mess of bricks and building blocks without
rigorous design principles. So, from the early 1980s, he began
to assemble a set of software design principles as guidelines
to create software structures that tolerate change and are easy
to understand. The principles are intended to promote modular
and component-level software structure [6, p. 79]. In 2004, the
principles were established to form the acronym SOLID.

The following list will provide an overview of each of the
SOLID principles.

• Single Responsibility Principle (SRP): This principle
has undergone several iterations of the formal definition.
The final definition of the Single Responsibility Principle
(SRP) is: “a module should be responsible to one, and
only one, actor” Martin [6, p. 82]. The word ‘actor’ in
this statement refers to all the users and stakeholders
represented by the (functional) requirements. The modu-

larity concept in this definition is described by Martin [6,
p. 82] as a cohesive set of functions and data structures.
In conclusion, this principle allows for modules with
multiple tasks as long as they cohesively belong together.
Martin [6, p. 81] acknowledges the slightly inappropriate
name of the principle, as many interpreted it, that a
module should do just one thing.

• Open/Closed Principle (OCP): Meyer [13] first men-
tioned the OCP and formulated the following defini-
tion: A module should be open for extension but closed
for modification. The software architecture should be
designed such that the behavior of a module can be
extended without modifying existing source code. The
OCP promotes the use of abstraction and polymorphism
to achieve this goal. The OCP is one of the driving forces
behind the software architecture of systems, making it
relatively easy to apply new requirements. [6, p. 94].

• Liskov Substitution Principle (LSP): The LSP is named
after Barbara Liskov, who first introduced the principle
in a paper she co-authored in 1987. Barbara Liskov
wrote the following statement to define subtypes (Robert
C. Martin, 2018, p. 95). If for each object o1 of type
S, there is an object o2 of type T such that for all
programs P defined in terms of T, the behavior of P
is unchanged when o1 is substituted for o2 then S is
a subtype of T.1. Or in simpler terms: To build software
from interchangeable parts, those parts must adhere to
a contract that allows those parts to be substituted for
another (Robert C. Martin, 2018, p. 80)

• Interface Segregation Principle (ISP): The ISP suggests
that software components should have narrow, specific
interfaces rather than broad, general-purpose ones. In
addition, the ISP states that consumer code should not
be allowed to depend on methods it does not use. In
other words, interfaces should be designed to be as small
and focused as possible, containing only the methods
relevant to the consumer code using them. This allows the
consumer code to use only the needed methods without
being forced to implement or depend on unnecessary
methods [6, p. 104].

• DIP: The DIP prescribes that high-level modules should
not depend on low-level modules, and both should depend
on abstractions. The principle emphasizes that the archi-
tecture should be designed so that the flow of control
between the different objects, layers, and components
is always from higher-level implementations to lower-
level details. In other words, high-level implementations,
like business rules, should not be concerned about low-
level implementations, such as how the data is stored
or presented to the end user. Additionally, high-level
and low-level implementations should only depend on
abstractions or interfaces defining a contract for how they
should interact [6, p. 91]. This approach allows for great
flexibility and a modular architecture. Modifications in
the low-level implementations will not affect the high-
level implementations as long as they still adhere to the

21Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 29 / 39

contract defined by the abstractions and interfaces. Simi-
larly, changes to the high-level modules will not affect the
low-level modules as long as they still fulfill the contract.
This reduces coupling and ensures the evolvability of the
system over time, as changes can be made to specific
modules without affecting the rest of the system.

Martin [6] proposes the following elements to achieve the
goal of “Clean Architecture.”

• Entities: Entities are the core business objects, represent-
ing the domain’s fundamental data.

• Interactor: Interactors encapsulate business logic and
represent specific actions that the system can perform.

• RequestModels: RequestModels represent the input data
required by a specific interactor.

• ResponseModel: ResponseModel represents the output
data required by a specific interactor.

• ViewModels: ViewModels are responsible for managing
the data and behavior of the user interface.

• Controllers: Controllers are responsible for handling re-
quests from the user interface and routing them to the
appropriate Interactor.

• Presenters: Presenters are responsible for formatting and
the data for the user interface.

• Gateways: A Gateway provides an abstraction layer be-
tween the application and its external dependencies, such
as databases, web services, or other external systems.

• Boundary: Boundaries are used to separate the different
layers of the component.

III. THE ANALYSIS

This Section delves into the convergence of CA and NS, ex-
ploring their convergence and application in software design.
The discussion is anchored in the results of the research “On
the Convergence of Clean Architecture with the Normalized
Systems Theorems” [1], which meticulously examines the
principles and design elements of both CA and NS mentioned
in previous chapters. By aligning the theoretical constructs of
both paradigms, the thesis provides a perspective on achieving
modular, evolvable, and stable software architectures. This
convergence reinforces the robustness of software systems and
enhances their evolvability and longevity in the face of future
requirements. The subsequent sections will summarize the key
components of their convergence by highlighting the practical
implications and the potential for evolvable software design.

A. The converging principles

The main goal of both the SRP and SoC is to promote
and encourage modularity, low coupling, and high cohesion.
While their definitions have minor nuances, the two principles
are practically interchangeable. Even though SRP does not
implicitly guarantee DvT or AvT, it supports those theorems
by directing design choices in a certain way. One example lies
in separating data models for requests, responses, and views
and respective versions of these models.

The OCP and its relation to NS theory emphasize the
importance of designing software entities that are open for

extension but closed for modification. This principle aligns
with the NS approach to evolvability, advocating for structures
that can adapt to new requirements without altering existing
code, thus minimizing the impact of changes. An example of
this synergy can be seen in the use of expanders within NS,
which allow for introducing new functionality or data elements
without disrupting the core architecture, cohesively supporting
the OCP principle goal of extendibility and maintainability.

The LSP emphasizes that objects of a superclass should
be replaceable with objects of a subclass without altering
the correctness of the program. This principle strongly aligns
with the emphasis on modular and replaceable components
in NS, advocating for flexibility and the seamless integration
of new functionalities. Applying this principle within NS is
evident in designing tailored interfaces specific to a particular
version. This ensures system evolution without compromising
existing functionality, thereby upholding the LSP directive for
substitutability and system integrity.

The ISP advocates for creating specific consumer interfaces
rather than one general-purpose interface, aligning with NS
principles to enhance system evolvability and maintainability.
This alignment is evident in the modular and decoupled design
strategies advocated by both NS and ISP, where the focus is
on minimizing unnecessary dependencies and promoting high
cohesion within systems. By applying ISP, developers can
ensure that system components only depend on the interfaces
they use, which mirrors the approach in NS to create evolvable
systems by reducing the impact of changes across modules.

The DIP and its alignment with NS are centered on inverting
the conventional dependency structure to reduce rigidity and
fragility in software systems. DIP promotes high-level module
independence from low-level modules by introducing abstrac-
tions that both can depend on, thereby facilitating a more mod-
ular and evolvable design. This principle mirrors the emphasis
on minimizing dependencies to enhance system evolvability
in the NS paradigm. Examples from the thesis demonstrate
how leveraging DIP in conjunction with NS principles leads
to systems that are more adaptable to change, showcasing
the practical application of these combined approaches in
achieving resilient software architectures. Designers should
also be aware of the potential pitfalls of using DIP as faulty
implementations can increase combinatorial effects.

In the following table, we summarize the analysis in a
tabular overview using the following denotation:

• Strong convergence (++): This indicates that the prin-
ciples of CA and NS are highly converged. Both have a
similar impact on the design and implementation.

• Supports convergence (+): The CA principle supports
implementing the NS principle through specific design
choices. However, applying the CA principle does not
inherently ensure adherence to the corresponding NS
principle.

• Weak or no convergence (−): The principles have no
significant similarities in terms of their purpose, goals,
or architectural supports.

22Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 30 / 39

TABLE I
THE CONVERGENCE BETWEEN CA AND NS PRINCIPLES.

Clean Architecture N
or

m
al

iz
ed

Sy
st

em
s

Se
pa

ra
tio

n
O

f
C

on
ce

rn
s

D
at

a
V

er
si

on
Tr

an
sp

ar
en

cy

A
ct

io
n

V
er

si
on

Tr
an

sp
ar

en
cy

Se
pa

ra
tio

n
of

St
at

e

Single Responsibility Principle ++ + + −

Open/Closed Principle ++ − ++ −

Liskov Substitution Principle ++ − + −

Interface Segregation Principle ++ − + −

Dependency Inversion Principle ++ − + −

B. The converging elements

The Data Element from NS and the Entity Element from CA
represent data objects of the ontology or data schema, typically
including attributes and relationship information. While both
can contain a complete set of attributes and relationships, the
Data Element of NS may also be tailored to serve a specific
set of information required for a single task or use case. In
CA, these types of Data Elements are explicitly specified as
ViewModels, RequestModels, or Response Models.

The Interactor element of CA and the Task and WorkFlow
elements of NS are all responsible for encapsulating business
rules. NS has a more strict approach to encapsulating the exe-
cution of business rules in Task Elements, as it is only allowed
to have a single execution of a business rule. Additionally, the
WorkFlow element is responsible for executing multiple tasks
statefully and is highly convergable with the Interactor element
of CA.

The convergence of the Controller element from CA with
NS is highlighted by its partial interchangeability with the
Connector and Trigger elements in NS. The Controller Ele-
ment is primarily responsible for interaction using protocols
and technologies involving the user interface, while the Con-
nector and Trigger elements are also intended to interact with
other types of external systems.

The Gateway element of CA and the Connector element
of NS communicate between components by providing Data
Version Transparent interfaces to provide Action Version
Transparency between these components.

The Presenter is responsible for preparing the ViewModel
on the controller’s behalf and can be considered a Task or
Workflow Element in the theories of NS.

The Boundary element of CA strongly converges with the
Connector element of NS, as both are involved in communi-
cation between components and help ensure loose coupling
between these components. However, the Boundary element’s
scope seems more specific, as this element usually separates
architectural boundaries within the application or component.

In the following table, we summarize the analysis in a
tabular overview using the same denotation used in Section
III-A.

TABLE II
THE CONVERGENCE BETWEEN CA AND NS ELEMENTS.

Clean Architecture N
or

m
al

iz
ed

Sy
st

em
s

D
at

a
E

le
m

en
ts

Ta
sk

E
le

m
en

t

Fl
ow

E
le

m
en

t

C
on

ne
ct

or
E

le
m

en
t

Tr
ig

ge
r

E
le

m
en

t

Entity Element ++ − − − −

Interactor Element − ++ ++ − −

RequestModel Element ++ − − − −

ResponseModel Element ++ − − − −

ViewModel Element ++ − − − −

Controller Element − − − + +

Gateway Element − − − ++ −

Presenter Element − + + − −

Boundary Element − − − ++ −

IV. CONCLUSION

The primary objective of G. Koks was to study the conver-
gence between CA and NS by analyzing their principles and
design elements through theory and practice. This Section will
summarize the findings into a research conclusion.

Stability and evolvability are concepts not directly ref-
erenced in the literature on CA, but this design approach
aligns with the goal of NS. The attentive reader can observe
the shared emphasis on modularity and the separation of
concerns, as all SOLID principles strongly converge with SoC.
Both approaches attempt to achieve low coupling and high
cohesion. In addition, CA adds the dimensions of dependency
management as useful measures to improve maintainability by
rigorously managing dependencies in the Software Architec-
ture.

The DvT appears to be underrepresented in the SOLID prin-
ciples of CA. DvT is primarily supported by the SRP of CA, as
evidenced by ViewModels, RequestModels, ResponseModels,
and Entities as software elements. It is worth noting that this
application of Data Version Transparency is an integral part
of the design elements of CA. While CA does address DvT
through the SRP, a more comprehensive representation of the
underlying idea of DvT within the principles of CA will likely
improve the convergence of CA with NS.

CA Lacks a strong foundation for receiving external triggers
in its design philosophy. This is partially represented by the
Controller element. However, this element is described as
being used for web-enabled environments and might result in
a less comprehensive approach to receiving external triggers
across various technologies or systems.

23Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 31 / 39

The most notable difference between CA and NS is their
approach to handling state. CA does not explicitly address state
management in its principles or design elements. NS Provides
the principle of SoS, ensuring that state changes within a
software system are stable and evolvable. This principle can be
crucial in developing scalable and high-performance systems,
as it isolates state changes from the rest of the system, reducing
the impact of state-related dependencies and side effects.

The findings can only lead to the conclusion that the
convergence between CA and NS is incomplete. Consequently,
CA cannot fully ensure stable and evolvable software artifacts
as NS has defined them.

While it has been demonstrated that the convergence be-
tween these two approaches is incomplete, combining both
methodologies is highly beneficial for NS and CA for various
reasons. The primary advantage of synergizing them lies in
the complementary nature of both paradigms, where each
approach provides strengths that can be leveraged to address
a robust architectural design.

CA offers a well-defined, practical, and modular structure
for software development. Its principles, such as SOLID, guide
developers in creating maintainable, testable, and scalable
systems. This architectural design approach is highly suitable
for various applications and can be easily integrated with the
theoretical foundations provided by NS. Conversely, the NS
approach offers a more comprehensive theoretical understand-
ing of achieving stable and evolvable systems.

To conclude, the popularity and widespread adoption of CA
in the software development community can benefit NS. As
more developers adopt CA, they become more familiar with
NS and recognize their value to software design. Synergizing
both approaches will likely lead to increased adoption of NS.

BIBLIOGRAPHY

[1] G. Koks, “On the Convergence of Clean Architecture
with the Normalized Systems Theorems,” en, Ph.D. dis-
sertation, 2023-06. [Online]. Available: https://zenodo.
org/record/8029971 (visited on 2024-03-24).

[2] D. McIlroy, “NATO Software Engineering Conference,”
en, 1968.

[3] M. Lehman, “Programs, life cycles, and laws of soft-
ware evolution,” Proceedings of the IEEE, vol. 68, no. 9,
pp. 1060–1076, 1980, ISSN: 0018-9219. DOI: 10.1109/
PROC.1980.11805.

[4] E. Dijkstra, “Letters to the editor: Go to statement
considered harmful,” en, Communications of the ACM,
vol. 11, no. 3, pp. 147–148, 1968-03, ISSN: 0001-0782,
1557-7317. DOI: 10.1145/362929.362947.

[5] D. Parnas, “On the criteria to be used in decomposing
systems into modules,” en, Communications of the
ACM, vol. 15, no. 12, pp. 1053–1058, 1972-12, ISSN:
0001-0782, 1557-7317. DOI: 10.1145/361598.361623.
(visited on 2023-03-19).

[6] R. C. Martin, Clean architecture: a craftsman’s guide
to software structure and design (Robert C. Martin
series). London, England: Prentice Hall, 2018, OCLC:
on1004983973, ISBN: 978-0-13-449416-6.

[7] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized
systems theory: from foundations for evolvable software
toward a general theory for evolvable design, eng.
Kermt: nsi-Press powered bei Koppa, 2016, ISBN: 978-
90-77160-09-1.

[8] P. Huysmans and J. Verelst, “Towards an Engineering-
Based Research Approach for Enterprise Architecture:
Lessons Learned from Normalized Systems Theory,”
en, in Progress in Pattern Recognition, Image Anal-
ysis, Computer Vision, and Applications, vol. 8827,
Series Title: Lecture Notes in Computer Science, Cham:
Springer International Publishing, 2013, pp. 58–72,
ISBN: 978-3-319-12567-1 978-3-319-12568-8. DOI: 10.
1007/978-3-642-38490-5 5.

[9] G. Haerens, “On the evolvability of the TCP-IP based
network firewall rule base,” eng, PhD Thesis, Antwerp
University, 2021. [Online]. Available: https://hdl.handle.
net/10067/1834610151162165141 (visited on 2024-03-
24).

[10] D. van Nuffel, Towards designing modular and evolv-
able business processes. University of Antwerp, 2011,
ISBN: 90-8994-040-5.

[11] H. Mannaert and J. Verelst, Normalized systems re-
creating information technology based on laws for soft-
ware evolvability, English. Kermt: Koppa, 2009, OCLC:
1073467550, ISBN: 978-90-77160-00-8.

[12] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable
software architectures based on systems theoretic sta-
bility,” en, Software: Practice and Experience, vol. 42,
no. 1, pp. 89–116, 2012-01, ISSN: 00380644. DOI: 10.
1002/spe.1051.

[13] B. Meyer, Object-oriented software construction, 1st
ed. Upper Saddle River, N.J: Prentice Hall PTR, 1988,
ISBN: 978-0-13-629155-8.

24Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 32 / 39

Warm-Starting Patterns for Quantum Algorithms

Felix Truger, Johanna Barzen, Martin Beisel, Frank Leymann, and Vladimir Yussupov
Institute of Architecture of Application Systems, University of Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany
email: {firstname.lastname}@iaas.uni-stuttgart.de

Abstract—Quantum computing promises considerable advan-
tages in efficiency and accuracy over classical computing for cer-
tain problems. However, today’s Noisy Intermediate-Scale Quan-
tum (NISQ) computers are error-prone and limited in the number
of qubits, which complicates leveraging them in practice. To
mitigate these issues, multiple warm-starting techniques are being
introduced in the quantum computing domain to improve the ef-
ficiency and accuracy of quantum algorithms by utilizing known
or efficiently generated results as a starting point for the quantum
computation. However, heterogeneous warm-starting techniques
are often tailored for specific algorithms and require expertise
in multiple domains, such as quantum computing and ma-
chine learning, thus complicating the choice of technique. Well-
structured patterns that abstractly document proven solutions to
recurring problems can help quantum software engineers in this
decision-making process. In this work, we extend the existing
pattern language for quantum algorithms with four novel warm-
starting patterns that refine a more abstract pattern introduced
in previous work and document how recurring problems in the
design and execution of quantum algorithms can be solved with
warm-starts. Thereby, the underlying methods are made available
for interested parties in a concise and easily digestible manner.

Keywords—Quantum Computing; Hybrid Algorithms; Quantum
Software Engineering; Warm-Start; Patterns.

I. INTRODUCTION

On quantum computers, information is represented by the
states of quantum bits (qubits), which possess unique prop-
erties, such as superposition and entanglement. Due to these
properties, quantum computing promises advantages over
classical computing for certain problems [1]. For example, fac-
torization of composite numbers is theoretically feasible with
the help of quantum computers, but not known to be tractable
with classical computers [2]. Moreover, it has been shown that
a significant speed-up over classical machine learning is pos-
sible in certain cases when utilizing quantum computers [3].

In the current Noisy Intermediate-Scale Quantum (NISQ)
era, quantum computers offer a limited number of qubits that
are prone to errors [4][5]. Therefore, quantum algorithms are
limited to quantum circuits acting on few qubits and requiring
only few operations. Moreover, many algorithms are designed
as hybrid quantum-classical algorithms with the intention to
utilize both classical and quantum computation in a fruit-
ful combination that mitigates these current limitations. The
most prominent examples are Variational Quantum Algorithms
(VQAs) consisting of parameterized quantum circuits and a
classical optimizer employed to search for viable parameter
values for these circuits to solve a problem at hand [6]. Quan-
tum algorithms can be further improved using so-called warm-

starting techniques that utilize known or efficiently generated
results as a starting point instead of starting from scratch.

However, warm-starting is an umbrella term for a heteroge-
neous set of techniques that affect quantum algorithms in fun-
damentally different ways and exhibit a multitude of properties
and potential benefits [7]. For example, warm-starts can be
realized by encoding information into a quantum algorithm’s
initial quantum state or a sophisticated parameter initialization.
Techniques proposed in the literature are often specialized for
specific algorithms and problems, which complicates reusing
them or even deciding about their suitability for a certain
use case. Moreover, they often require expertise in different
domains, including quantum computing and machine learning.

Patterns document abstract solutions to recurring prob-
lems [8] and can help engineers understand and apply these so-
lutions for their specific use case. To support quantum software
engineers in better understanding the concepts, applicability,
and benefits of different warm-starting techniques, we present
four novel warm-starting patterns. With these patterns, we cap-
ture recurring solution strategies for warm-starting quantum
algorithms and refine the more abstract warm-starting pattern
that exists in the pattern language for quantum algorithms.

The remainder of the paper is structured as follows:
We discuss related work in Section II, before fundamentals
and the pattern format are introduced in Section III. Sec-
tion IV introduces the four new warm-starting patterns in
detail. In Section V, we discuss aspects of the application of
the patterns and the evaluation of the warm-starts. Finally,
Section VI concludes the paper with a summary and outlook.

II. RELATED WORK

Leymann [9] proposed and initiated a pattern language for
quantum algorithms. This pattern language has been continu-
ously extended, e.g., with refined patterns for state preparation,
hybrid quantum algorithms, error handling, and execution
semantics [10]–[16]. In this work, we further extend it by doc-
umenting four novel patterns capturing different solutions for
warm-starting quantum algorithms, which refine the existing,
abstract WARM-START pattern. These new patterns were iden-
tified through an analysis of quantum-related warm-starting
techniques encountered in the literature (cf. Section III).
To the best of our knowledge, there exist no other works
documenting patterns in the quantum computing domain and
conforming to Alexander et al.’s notion of patterns [8].

Pattern languages, originally known from architecture [8],
have been documented for various other domains, e.g., for soft-
ware engineering [17], enterprise integration [18], and cloud

25Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 33 / 39

computing [19]. Leymann and Barzen [20] propose Pattern
Atlas, a repository and tool to visualize and link patterns of
different pattern languages. Moreover, Falkenthal and Ley-
mann [21] propose the concept of solution languages that in-
terconnect concrete solutions for patterns, i.e., implementation
artifacts, to systematically collect implementation knowledge
and reduce the manual efforts of (re)implementing existing so-
lutions. Such solutions are linked to the corresponding patterns
and other solutions as per the relations in the pattern language.

Warm-starting techniques were proposed and examined in
various previous works. Mari et al. [22] discuss and evaluate
forms of quantum transfer learning, particularly different
directions in which quantum transfer learning can be utilized
in the context of Quantum Neural Networks (QNNs). Egger
et al. [23] and Tate et al. [24], respectively, describe and
evaluate how classical approximation algorithms can be
utilized in the Quantum Approximate Optimization Algorithm
(QAOA), while Galda et al. [25] and Shaydulin et al. [26] focus
on transferring parameters across problem instances. Truger
et al. [7] explore and analyze warm-starting techniques in
the quantum computing domain in a literature study, thereby
summarizing categories of such techniques. Beisel et al.
[27] propose a workflow modeling extension to facilitate the
integration and orchestrations of VQAs in workflows. This
includes modeling constructs for warm-starting VQAs with
initial parameter values and approximations incorporated
into a biased initial state. However, none of these works
formally document the warm-starting techniques as solutions
to recurring problems in the form of patterns.

III. FUNDAMENTALS AND PATTERN FORMAT

In this section, we discuss fundamentals of quantum al-
gorithms and VQAs in particular. Moreover, we present the
pattern format and authoring method used in this work.

A. Fundamentals of Quantum Algorithms

Quantum algorithms are implemented as quantum circuits
describing manipulations of qubits similar to classical logic
circuits. Quantum circuits consist of wires representing the un-
derlying qubits and gates representing operations on the qubits.
The number of wires is called the width of the circuit and the
number of gates acting on a qubit determines the circuit depth.
Gates can act on a single qubit or multiple qubits, e.g., the
Hadamard gate (H) creates a superposition on a single qubit
and the two-qubit controlled-not gate (CNOT) can be used to
entangle or disentangle qubits. Some gates, such as the rotation
gates RX, RY, and RZ, are parametrized, i.e., the intensity of
the manipulation depends on parameter values set at runtime.
Therefore, circuits can be parameterized as well and their
output upon measurement depends on the parameter values.
Such parameterized quantum circuits are the basis for VQAs,
such as the QAOA [28], Variational Quantum Eigensolvers
(VQEs) [29], and QNNs [30]. To determine viable values
for the circuit parameters of VQAs, classical optimizers are
employed. Quantum and classical execution are then executed
in a loop, in which the output of the circuit run on a quantum

device is evaluated for the optimizer to steer parameter values
in a favorable direction. Once a termination condition is met,
e.g., when the result has converged or a set time limit has
expired, the circuit can be executed with the final set of
optimized parameter values to retrieve the result of the overall
quantum-classical algorithm. This way, the aforementioned
QAOA can be used to approximate solutions to combinatorial
optimization problems or VQEs can be used to approximate
eigenvalues with the help of a quantum computer. More
generally, QNNs can be trained to compute arbitrary functions
for various purposes, e.g., classification or regression [30].

B. Pattern Format and Authoring Method

We follow the pattern format from previous work on
quantum computing patterns [9]–[16] and rely on best
practices for pattern writing [17]–[19]. Each pattern is
identified by its Name and an Icon that serves as a mnemonic.
The Problem targeted by the pattern is highlighted with a
brief question. Known alternative names are optionally listed
as Aliases. Afterward, the Context in which the pattern is
applicable, i.e., the situation in which the problem may arise,
is explained. Next, Forces that need to be considered when
solving the problem are described. Then, we elaborate on the
high-level Solution that is additionally illustrated by a Solution
Sketch. In the Results paragraph, we discuss the consequences
of the solution. Afterward, we draw connections between
the new pattern and Related Patterns, before we summarize
Known Uses by listing implementations of the pattern.

As patterns are abstractions of existing solutions, the pat-
terns in this work were identified by exploring warm-starting
techniques proposed and used in the literature. In previous
work, we conducted a systematic mapping study to survey sci-
entific literature on warm-starting techniques in the quantum
computing domain in general, thereby identifying different
warm-starting techniques [7]. Recurring approaches that are
regarded promising were further analyzed, and the underlying
solutions were abstracted and documented as patterns.

IV. WARM-STARTING PATTERNS FOR QUANTUM
ALGORITHMS

In this section, we first give an overview of the patterns
introduced in this work and align them w.r.t. the existing
patterns for quantum algorithms. Afterward, we document the
four novel warm-starting patterns for quantum algorithms.

A. Pattern Language for Quantum Algorithms

Figure 1 provides an overview of the pattern language for
quantum algorithms proposed and initialized by Leymann
[9] with its essential patterns for quantum states, unitary
transformations, and the program flow of quantum algorithms.
It aims to support scientists and software developers in
building quantum algorithms. Weigold et al. [10] [11]
extended the pattern language with state preparation patterns
for quantum algorithms focusing on how data can be encoded
in quantum algorithms. Also, additional patterns for the
program flow of hybrid algorithms were documented [12].

26Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 34 / 39

... Circuit
Cutting

Cutting

...

...

Program Flow

Quantum-
Classic SplitCC

QAOA

VQA

Orchestrated
Execution

Prioritized
Execution

Basis
Encoding

Measurement

Post-selective
Measurement

Amplitude
Amplification

Phase
Shift

...

Unitary Transformations

Error Handling

Uniform
Super-
position

Creating
Entangle-
ment

Quantum States

Gate Error
Mitigation

Error
Correction

...

Angle
Encoding

Execution

State Preparation

...

R
ef

in
em

en
ts

Warm-Start

Warm-Starts
Biased
Initial
State

Pre-Trained
Feature
Extractor

Variational
Parameter
Transfer

Chained
Optimization

Figure 1. Overview of the pattern language for quantum algorithms, including the newly documented warm-starting patterns highlighted in bold.

Particularly, Weigold et al. [12] identified warm-starting as
a general pattern applicable to quantum algorithms, which
we aim to refine in this work with more concrete recurring
solutions in that sense. Beisel et al. [13] describe patterns
for quantum error handling and Georg et al. [14] document
patterns for the execution of quantum applications. Moreover,
patterns for the partitioning of quantum circuits, i.e., circuit
cutting, have been introduced by Bechtold et al. [15].

B. Warm-Starting Techniques for Quantum Algorithms

The WARM-START pattern identified by Weigold et al.
refines the more general QUANTUM-CLASSIC SPLIT pattern,
which summarizes splitting of computational workload be-
tween quantum and classical computers [9][12]. In this sense,
it suggests to use classical methods to approximate a solution
to the problem at hand and utilize the approximation as
a starting point. As shown in Figure 1, the new patterns
presented in this work further refine the WARM-START pattern.

In our previous work [7], we identified different properties
of warm-starting techniques, e.g., warm-starts can be
applied in different directions, i.e., classical-to-quantum
(C2Q), quantum-to-quantum (Q2Q), and quantum-to-classical
(Q2C) [22]. Since this work focuses on warm-starting patterns
for quantum algorithms in line with the pattern language,
only C2Q and Q2Q cases are considered in the following.

C. Biased Initial State
Biased Initial State

ȁ ۧ0

ȁ ۧ0
ȁ ۧ0

…

Problem: How to utilize efficient approxima-
tions in quantum algorithms to improve the
solution quality or speed up the computation?

Context: For many computationally hard problems, efficient
approximation algorithms exist. However, typical quantum
algorithms neglect these approximations and valuable
information remains unused as the quantum algorithm starts
from a neutral position. As a result, deep quantum circuits
may be required, which increases accumulative error rates, and
more quantum resources may be required to solve a problem.
Forces: Moreover, current quantum devices are error-prone,
thus, the depth of executable quantum circuits is limited. How-
ever, including approximations requires special care, as it can
limit the quantum algorithm in an unintended way [31][32].
Also, changing the initial state may require additional adapta-
tions of corresponding parts of the quantum circuit [23][33].
Solution: Encode approximations into the initial state of quan-
tum circuits, thereby biasing the initial quantum state towards
viable solutions. Hence, a chain of algorithm executions as de-
picted in Figure 2 is beneficial: First, an efficient algorithm is
utilized to approximate a solution of a given problem instance.
This can often be achieved at low cost on classical hardware.
Then, the initial state |ψ〉 of the subsequent quantum algorithm
is biased toward the approximation and the algorithm is ȁ ۧ

ȁ ۧ

Pre-Process Problem to
Obtain Approximation

Prepare & Execute Circuit with
Biased Initial State

Obtain Improved
Solution

Approx.
Solution

≈

Approximation
Algorithm

Improved
Solution

ȁ ۧ𝜓
ȁ ۧ0
ȁ ۧ0
ȁ ۧ0

𝒰

Circuit with Biased
Initialization

≈

Problem
Instance(s)

Figure 2. Solution sketch for the BIASED INITIAL STATE pattern

27Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 35 / 39

executed on a quantum device to obtain an improved solution.
Result: The quantum algorithm employed in the second step
utilizes the approximation as a starting point to improve
upon. Due to the biased initial state, optimal solutions can
be explored quicker and the solution quality achievable in a
set amount of time may therefore increase. Moreover, this way
the workload of the overall computation can be distributed to
multiple devices, e.g., classical and quantum devices.
Related Patterns: This pattern is a refinement of the WARM-
START pattern and related to the state preparation patterns,
e.g., ANGLE ENCODING, since different encodings may be
applied to prepare and bias the initial state of a quantum
algorithm [11][12]. Moreover, it can be applied with the VQA
pattern and its refinements, such as the QAOA [12].
Known Uses: Egger et al. [23] introduce a biased initial
state for QAOA and the Maximum Cut problem (MaxCut)
utilizing the classical Goemans-Williamson approximation
algorithm. Similarly, Tate et al. [24] adapt QAOA for MaxCut
with a Burer-Monteiro relaxation of the problem. QAOA was
also adapted for a biased initial state for the Knapsack prob-
lem [34]. Wang [35] proposes a “classically-boosted” quantum
algorithm for the Maximum 3-Satisfiability and Maximum
Bisection problems based on biased initial states. Beisel et al.
[27] propose a workflow modeling construct facilitating the
integration of warm-starts via biased initial states in VQAs.

D. Pre-Trained Feature ExtractorPre-Trained Feature Extractor

Problem: How to process large data items
through QNNs when the number of available
qubits is lower than the size of a data item?

Aliases: QUANTUM TRANSFER LEARNING [22]
Context: A QNN shall be trained for a specific task, that
requires the processing of large data items, e.g., images
or multi-dimensional data. However, the number of qubits
required to load such data items into the QNN is larger than
the number of qubits of the available quantum devices.
Forces: The width of circuits implementing QNNs is limited
by the number of available qubits. In addition, quantum
devices are scarce resources that should be utilized as
efficiently as possible. However, naively reducing the original
data items may result in the loss of information relevant
for the computation. Large pre-trained classical models for
various general tasks, such as object recognition for images,
are widely available or can be created at low cost.

Solution: Use a pre-trained classical model to reduce the di-
mensions of the data items and train the QNN based on the re-
duced data. As shown in Figure 3, a pre-trained classical model
for a wide range purpose, such as a neural network trained for
object recognition, can be utilized for a hybrid QNN to be
trained for a related special purpose task. Intermediate values
of inputs processed through such models, e.g., those present at
a condensed next-to-last neural network layer, can be seen as
a compressed representation of the original data exhibiting its
most significant features. Thus, the pre-trained model serves
as a feature extractor. These features can be encoded into a
quantum state to train the QNN for the target task.
Result: Due to the compressed representation obtained from
the pre-trained feature extractor, fewer qubits are required to
process data in the QNN. Furthermore, the compressed nature
of the data may reduce the QNN’s training time, as irrelevant
information has already been omitted from the training data.
Related Patterns: This pattern refines the WARM-START
pattern and is related to the state preparation patterns, e.g., AN-
GLE ENCODING, [11][12]. Different encodings may be applied
to encode the extracted features into a quantum state. It is typ-
ically applied in conjunction with QNNs, a form of VQA [6].
Furthermore, the CIRCUIT CUTTING pattern solves a similar
problem by partitioning the computation of a large quantum
circuit into computations of multiple smaller circuits [15].
Known Uses: PRE-TRAINED FEATURE EXTRACTOR is
frequently used when image processing, particularly image
classification, shall be enhanced with QNNs [22] [36]–[41].
It was also applied for text classification [42]. Moreover,
autoencoders [43] can be considered a special case of
PRE-TRAINED FEATURE EXTRACTOR, that are designed and
trained specifically for the purpose of data compression.

E. Variational Parameter Transfer
Parameter Transfer

βγ
Problem: How to obtain a problem-aware pa-
rameter initialization for VQAs that reduces the
optimization runtime?

Context: A VQA needs to be executed on a quantum de-
vice, which encompasses the optimization of its variational
parameters. Parameter optimization requires repeated access
to the quantum device, typically starting with random initial
parameter values [44], to sample solutions and determine a
direction for their optimization, e.g., through gradient descent.

Training
Data

Classical
Model

Target
Training Data

Hybrid Model

ȁ ۧ0
ȁ ۧ0

ȁ ۧ0 En
co

d
in

g

Q
N

N

Utilize Pre-Trained Model
as Feature Extractor

Pre-Trained
Model

Pre-Train General

Pre-Train Classical Model for
Wide Range Purpose

Fe
at

u
re

s

CC

Train Hybrid Model for
Special Purpose Task

Figure 3. Solution sketch for the PRE-TRAINED FEATURE EXTRACTOR pattern

28Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 36 / 39

a) Solution Sketch

Find Viable Variational
Parameter Values for VQA

(Optional) Store Optimized
Parameter Values

Use Parameter Values
for Initialization

CC

Problem
Instance(s)

Optimized
Param. Values

βγ βγ

New Problem Instance(s)
& Prior Param. Values

CC
βγ

Figure 4. Solution sketch for the VARIATIONAL PARAMETER TRANSFER pattern

Forces: Obtaining viable parameter initializations for VQA
is challenging due to large parameter spaces and effects,
such as barren plateaus [45] and non-convex optimization
landscapes [46]. Barren plateaus are areas with vanishing
gradients in a cost function’s parameter space that must be
avoided, whereas local minima in non-convex optimization
landscapes pose an additional challenge to efficient parameter
initialization as they disturb the search for a global optimum.

Solution: Transfer viable variational parameter values from
related problem instances. As shown in Figure 4, optimized
parameter values may be stored or directly reused for new
problem instances. In many cases, it can be expected that
optimized parameter values for a solved problem instance are
in proximity of viable parameter values for a related or similar
new problem instance. Therefore, optimized parameter values
from earlier executions may be utilized for a problem-aware
parameter initializationinstead of a random initialization. Ap-
propriate databases, toolkits, and provenance systems for quan-
tum computing [47][48] facilitate the optional storage of opti-
mized parameter values for their utilization in later executions.

Result: Parameter transfers can reduce the number of itera-
tions of the optimization loop. A favorable parameter initial-
ization can also increase the likelihood of finding globally op-
timal parameter values and thus increase the solution quality.

Related Patterns: This pattern is a refinement of the WARM-
START pattern and can be applied in conjunction with VQA,
including its refinements like QAOA, [12].

Known Uses: VARIATIONAL PARAMETER TRANSFER has
been frequently proposed and applied for QAOA and Max-
Cut [25][26][49][50]. Moreover, Shaydulin et al.’s repository of
preoptimized parameters implements the storage option [47].
Beisel et al. [27] propose a modeling construct for workflows
to integrate warm-starts via parameter initialization in VQAs.

F. Chained Optimization

Problem: How to avoid local optima and im-
prove convergence when optimizing variational
parameter values for VQAs?

Context: Optimal variational parameter values for a VQA
need to be determined. The performance of the algorithm
depends heavily on these values and a global optimum in the
parameter space is needed to obtain optimal solutions.
Forces: Local minima in non-convex optimization landscapes
and barren plateaus hinder the optimization, as the optimizer
may be unable to reach a global optimum. Moreover, evalu-
ating all possible parameter values is infeasibly expensive.
Solution: Chain different optimizers with different scopes
or strengths together. As indicated in Figure 5, a global
optimization strategy can be combined with a subsequent local
optimizer. The former would determine a general area of inter-
est in the overall optimization landscape. Afterward, the local
optimizer is started from a point in this area of interest and
searches on a smaller scale, aiming to find the global optimum.
Result: By chaining optimizers, the subsequent optimizers
utilize previously obtained results as starting points to improve
upon. Thereby, optimizers are combined to benefit from their
respective strengths and achieve cost-efficient optimization.
Related Patterns: This pattern refines the WARM-START
pattern and can be applied in conjunction with VQA,
including QAOA, [12]. It is similar to the VARIATIONAL
PARAMETER TRANSFER pattern documented above, with
an unaltered problem instance, while the algorithm in use,
specifically the optimization algorithm, is exchanged instead.
Known Uses: Rad et al. [51] use this method to avoid
barren plateaus in VQAs. Tao et al. [52] apply it in a QNN
optimization. Wauters et al. [53] supplement their Reinforce-
ment Learning-based optimization approach for QAOA with
subsequent gradient-based local optimization.

a) Solution Sketch

CC

VQA with
Global Optimizer

CC

Use Global Optimizer to Identify
General Area of Interest

Continue with Local
Optimizer to Improve Solution

VQA with
Local OptimizerProblem

Instance(s)

Problem Instance(s)
& Prior Param. Values

βγ

Figure 5. Solution sketch for the CHAINED OPTIMIZATION pattern

29Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 37 / 39

V. DISCUSSION

We discuss known and potential challenges and limitations,
and evaluation criteria for the application of the patterns above.

The dependency of concrete warm-starting solutions on dif-
ferent problem-specific factors, such as the nature of the quan-
tum algorithm and problem at hand, available approximation
algorithms, and feasible quantum state preparation procedures,
can complicate the pattern application. In particular, the BI-
ASED INITIAL STATE and PRE-TRAINED FEATURE EXTRAC-
TOR patterns require the determination of suitable techniques
for obtaining and incorporating starting points on a case-by-
case basis. Moreover, it was shown that the success of warm-
starts through a biased initial state can depend on the careful
selection of approach-specific hyperparameters [23][54]. In
addition, such warm-starts can unintentionally prevent im-
provements as was shown, for example, for a warm-started
variant of the QAOA where replacing the initial uniform
superposition with the encoding of a good solution fails with
little to no improvements [31]. Furthermore, applying biased
initial states can impose restrictions on the parameterized
quantum circuit in VQAs and some state preparations are not
feasible on current NISQ hardware [32]. More specifically,
some circuit designs complicate or prevent retaining the so-
lution quality associated with the encoded biased initial state.
These challenges and limitations likely also apply to the PRE-
TRAINED FEATURE EXTRACTOR pattern, which likewise re-
quires encoding information in the initial state. However, it
was shown for the BIASED INITIAL STATE that both problems
can be avoided in some cases by transforming the initial state
into a parameter transfer in VQAs [32]. Incorporating starting
points for the parameter-focused VARIATIONAL PARAMETER
TRANSFER and CHAINED OPTIMIZATION patterns is trivial
since it reduces to a parameter initialization. Nonetheless,
these warm-starts via parameter initializations could also po-
tentially restrict the subsequent optimization in an undesired
way when applied improperly, especially by limiting the
optimization to an unfavourable area of the parameter space.

Also the evaluation of warm-starting techniques is chal-
lenging, as it is problem-specific and likewise dependent on
different factors, such as available approximations and state
preparation procedures. As different warm-starting methods
aim to improve upon different behaviours, e.g., a reduced need
for quantum computational resources, reduced runtime, or
increased accuracy (cf. [7]), different approaches and metrics
are required for analyzing and comparing them. Moreover, in
the case of hybrid warm-starts, the trade-off between classical
and quantum computational efforts may be ambiguous and
dependent on the use case and concrete resources at hand.

The broad spectrum of potential applications of the warm-
starting patterns introduced in this work may become even
more extensive when considering warm-starts in other contexts
outside of the quantum computing domain. It is conceivable
that some techniques are analogously applicable in similar
contexts of classical computing and, particularly, the classical
domains of machine learning and optimization (cf. [7]).

VI. CONCLUSION

In this work, we elaborated on warm-starting techniques for
quantum algorithms. We documented four novel patterns, BI-
ASED INITIAL STATE, PRE-TRAINED FEATURE EXTRACTOR,
VARIATIONAL PARAMETER TRANSFER, and CHAINED OPTI-
MIZATION, thereby expanding the existing pattern language for
quantum algorithms and refining the WARM-START pattern.
By documenting and making the knowledge on these solutions
to recurring problems easily accessible for interested parties,
we hope to assist quantum software engineers in utilizing
warm-starting techniques in their applications.

In future work, we aim to analyze additional warm-starting
techniques and their implementations to evaluate their com-
patibility with each other. Moreover, we will incorporate the
warm-starting patterns presented in this work into the publicly
available Pattern Atlas on the PlanQK platform [55], where
also the other patterns of the pattern language for quantum al-
gorithms have been incorporated. The accessibility for a broad
audience enables refinement of the patterns based on commu-
nity feedback. Moreover, the platform facilitates linking re-
lated patters together, even across different pattern languages.

ACKNOWLEDGEMENT
This work was partially funded by the BMWK projects

EniQmA (01MQ22007B) and SeQuenC (01MQ22009B).

REFERENCES

[1] J. Preskill, “Quantum computing and the entanglement frontier,”
arXiv:1203.5813, 2012.

[2] P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science, 1994, pp. 124–134.

[3] Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust quantum
speed-up in supervised machine learning,” Nature Physics, vol. 17, no. 9,
pp. 1013–1017, 2021.

[4] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, 2018.

[5] F. Leymann and J. Barzen, “The bitter truth about gate-based quantum
algorithms in the NISQ era,” Quantum Science and Technology, vol. 5,
no. 4, p. 044007, 2020.

[6] M. Cerezo et al., “Variational quantum algorithms,” Nature Reviews
Physics, vol. 3, no. 9, pp. 625–644, 2021.

[7] F. Truger et al., “Warm-Starting and Quantum Computing: A Systematic
Mapping Study,” arXiv:2303.06133, 2023.

[8] C. Alexander et al., A Pattern Language: Towns, Buildings, Construc-
tion. Oxford University Press, 1977.

[9] F. Leymann, “Towards a Pattern Language for Quantum Algorithms,”
in First International Workshop, QTOP 2019, Munich, Germany, March
18, 2019, Proceedings. Springer, 2019, pp. 95–101.

[10] M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Data Encoding Pat-
terns For Quantum Algorithms,” in Proceedings of the 27th Conference
on Pattern Languages of Programs (PLoP). HILLSIDE, 2020, pp.
1–11.

[11] ——, “Expanding Data Encoding Patterns For Quantum Algorithms,”
in 2021 IEEE 18th International Conference on Software Architecture
Companion (ICSA-C), 2021, pp. 95–101.

[12] M. Weigold, J. Barzen, F. Leymann, and D. Vietz, “Patterns for Hybrid
Quantum Algorithms,” in Proceedings of the 15th Symposium and Sum-
mer School on Service-Oriented Computing (SummerSOC). Springer
International Publishing, 2021, pp. 34–51.

[13] M. Beisel et al., “Patterns for Quantum Error Handling,” in Proceedings
of the 14th International Conference on Pervasive Patterns and Applica-
tions (PATTERNS). Xpert Publishing Services (XPS), 2022, pp. 22–30.

[14] D. Georg et al., “Execution Patterns for Quantum Applications,” in Pro-
ceedings of the 18th International Conference on Software Technologies
(ICSOFT). SciTePress, 2023, pp. 258–268.

30Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

 38 / 39

[15] M. Bechtold, J. Barzen, M. Beisel, F. Leymann, and B. Weder, “Patterns
for Quantum Circuit Cutting,” in Proceedings of the 30th Conference on
Pattern Languages of Programs (PLoP). HILLSIDE, 2023, [in press].

[16] F. Bühler et al., “Patterns for Quantum Software Development,” in
Proceedings of the 15th International Conference on Pervasive Patterns
and Applications (PATTERNS). Xpert Publishing Services (XPS), 2023,
pp. 30–39.

[17] J. O. Coplien, Software Patterns, ser. SIGS management briefings. SIGS
Books & Multimedia, 1996.

[18] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Pro-
fessional, 2004.

[19] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, 2014.

[20] F. Leymann and J. Barzen, “Pattern Atlas,” in Next-Gen Digital Services.
A Retrospective and Roadmap for Service Computing of the Future:
Essays Dedicated to Michael Papazoglou on the Occasion of His 65th
Birthday and His Retirement. Cham: Springer International Publishing,
2021, pp. 67–76.

[21] M. Falkenthal and F. Leymann, “Easing Pattern Application by Means
of Solution Languages,” in Proceedings of the 9th International Con-
ference on Pervasive Patterns and Applications (PATTERNS), 2017, pp.
58–64.

[22] A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran, “Transfer
learning in hybrid classical-quantum neural networks,” Quantum, vol. 4,
p. 340, 2020.

[23] D. J. Egger, J. Mareček, and S. Woerner, “Warm-starting quantum
optimization,” Quantum, vol. 5, p. 479, 2021.

[24] R. Tate, M. Farhadi, C. Herold, G. Mohler, and S. Gupta, “Bridging
classical and quantum with SDP initialized warm-starts for QAOA,”
ACM Transactions on Quantum Computing, vol. 4, no. 2, pp. 1–39,
2023.

[25] A. Galda, X. Liu, D. Lykov, Y. Alexeev, and I. Safro, “Transferability
of optimal QAOA parameters between random graphs,” in IEEE Inter-
national Conference on Quantum Computing and Engineering (QCE).
IEEE, 2021, pp. 171–180.

[26] R. Shaydulin, P. C. Lotshaw, J. Larson, J. Ostrowski, and T. S. Hum-
ble, “Parameter Transfer for Quantum Approximate Optimization of
Weighted MaxCut,” ACM Transactions on Quantum Computing, vol. 4,
no. 3, pp. 1–15, 2023.

[27] M. Beisel et al., “QuantME4VQA: Modeling and Executing Variational
Quantum Algorithms Using Workflows,” in Proceedings of the 13th
International Conference on Cloud Computing and Services Science
(CLOSER). SciTePress, 2023, pp. 306–315.

[28] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate
Optimization Algorithm,” arXiv:1411.4028, 2014.

[29] A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum
processor,” Nature communications, vol. 5, no. 1, 2014.

[30] E. Farhi and H. Neven, “Classification with Quantum Neural Networks
on Near Term Processors,” arXiv:1802.06002, 2018.

[31] M. Cain, E. Farhi, S. Gutmann, D. Ranard, and E. Tang, “The QAOA
gets stuck starting from a good classical string,” arXiv:2207.05089,
2022.

[32] F. Truger, J. Barzen, F. Leymann, and J. Obst, “Warm-Starting the VQE
with Approximate Complex Amplitude Encoding,” arXiv:2402.17378,
2024.

[33] R. Tate, J. Moondra, B. Gard, G. Mohler, and S. Gupta, “Warm-Started
QAOA with Custom Mixers Provably Converges and Computationally
Beats Goemans-Williamson’s Max-Cut at Low Circuit Depths,” Quan-
tum, vol. 7, p. 1121, 2023.

[34] W. van Dam, K. Eldefrawy, N. Genise, and N. Parham, “Quantum
Optimization Heuristics with an Application to Knapsack Problems,”
in IEEE International Conference on Quantum Computing and Engi-
neering (QCE). IEEE, 2021, pp. 160–170.

[35] G. Wang, “Classically-Boosted Quantum Optimization Algorithm,”
arXiv:2203.13936, 2022.

[36] S. Mittal and S. K. Dana, “Gender Recognition from Facial Images
using Hybrid Classical-Quantum Neural Network,” in IEEE Students
Conference on Engineering & Systems (SCES). IEEE, 2020, pp. 1–6.

[37] A. Gokhale, M. B. Pande, and D. Pramod, “Implementation of a quantum
transfer learning approach to image splicing detection,” International
Journal of Quantum Information, vol. 18, no. 05, p. 2050024, 2020.

[38] V. Azevedo, C. Silva, and I. Dutra, “Quantum transfer learning for breast

cancer detection,” Quantum Machine Intelligence, vol. 4, no. 1, p. 5,
2022.

[39] M. J. Umer et al., “An integrated framework for COVID-19 classifi-
cation based on classical and quantum transfer learning from a chest
radiograph,” Concurrency and Computation: Practice and Experience,
vol. 34, no. 20, p. e6434, 2022.

[40] T. Kanimozhi, S. Sridevi, T. S. Manikumar, T. Dheeraj, and A. Sumanth,
“Brain Tumor Recognition based on Classical to Quantum Transfer
Learning,” in International Conference on Innovative Trends in Infor-
mation Technology (ICITIIT). IEEE, 2022, pp. 1–5.

[41] A. Furutanpey et al., “Architectural Vision for Quantum Computing
in the Edge-Cloud Continuum,” in IEEE International Conference on
Quantum Software (QSW). IEEE, 2023, pp. 88–103.

[42] C.-H. H. Yang, J. Qi, S. Y.-C. Chen, Y. Tsao, and P.-Y. Chen, “When
BERT Meets Quantum Temporal Convolution Learning for Text Classifi-
cation in Heterogeneous Computing,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022,
pp. 8602–8606.

[43] M. A. Kramer, “Nonlinear principal component analysis using autoas-
sociative neural networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243,
1991.

[44] A. Kulshrestha and I. Safro, “BEINIT: Avoiding Barren Plateaus in
Variational Quantum Algorithms,” in IEEE International Conference on
Quantum Computing and Engineering (QCE). IEEE, 2022, pp. 197–
203.

[45] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function
dependent barren plateaus in shallow parametrized quantum circuits,”
Nature communications, vol. 12, no. 1, p. 1791, 2021.

[46] P. Huembeli and A. Dauphin, “Characterizing the loss landscape of
variational quantum circuits,” Quantum Science and Technology, vol. 6,
no. 2, p. 025011, 2021.

[47] R. Shaydulin, K. Marwaha, J. Wurtz, and P. C. Lotshaw, “QAOAKit:
A Toolkit for Reproducible Study, Application, and Verification of
the QAOA,” in IEEE/ACM 2nd International Workshop on Quantum
Computing Software (QCS). IEEE, 2021, pp. 64–71.

[48] B. Weder, J. Barzen, F. Leymann, M. Salm, and K. Wild, “QProv: A
provenance system for quantum computing,” IET Quantum Communi-
cation, vol. 2, no. 4, pp. 171–181, 2021.

[49] F. G. Brandao, M. Broughton, E. Farhi, S. Gutmann, and H. Neven, “For
Fixed Control Parameters the Quantum Approximate Optimization Al-
gorithm’s Objective Function Value Concentrates for Typical Instances,”
arXiv:1812.04170, 2018.

[50] J. Wurtz and D. Lykov, “Fixed-angle conjectures for the quantum
approximate optimization algorithm on regular MaxCut graphs,” Phys.
Rev. A, vol. 104, p. 052419, 2021.

[51] A. Rad, A. Seif, and N. M. Linke, “Surviving The Barren Plateau in
Variational Quantum Circuits with Bayesian Learning Initialization,”
arXiv:2203.02464, 2022.

[52] Z. Tao, J. Wu, Q. Xia, and Q. Li, “LAWS: Look Around and Warm-
Start Natural Gradient Descent for Quantum Neural Networks,” in IEEE
International Conference on Quantum Software (QSW). IEEE, 2023,
pp. 76–82.

[53] M. M. Wauters, E. Panizon, G. B. Mbeng, and G. E. Santoro,
“Reinforcement-learning-assisted quantum optimization,” Physical Re-
view Research, vol. 2, no. 3, p. 033446, 2020.

[54] F. Truger, M. Beisel, J. Barzen, F. Leymann, and V. Yussupov, “Selection
and Optimization of Hyperparameters in Warm-Started Quantum Opti-
mization for the MaxCut Problem,” Electronics, vol. 11, no. 7, 2022.

[55] PlanQK, “PlanQK - Pattern Atlas,” https://patterns.platform.planqk.de,
2023, [accessed: 2024.02.28].

31Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

Powered by TCPDF (www.tcpdf.org)

 39 / 39

http://www.tcpdf.org

