
PATTERNS 2020

The Twelfth International Conferences on Pervasive Patterns and Applications

ISBN: 978-1-61208-783-2

October 25 - 29, 2020

PATTERNS 2020 Editors

Herwig Mannaert, University of Antwerp, Belgium

Ida Pu, Goldsmiths College, University of London, UK

Jacqueline Daykin, Aberystwyth University, UK

 1 / 77

PATTERNS 2020

Forward

The Twelfth International Conferences on Pervasive Patterns and Applications (PATTERNS 2020), held on
October 25 - 29, 2020, continued a series of events targeting the application of advanced patterns, at-
large. In addition to support for patterns and pattern processing, special categories of patterns covering
ubiquity, software, security, communications, discovery and decision were considered. It is believed that
patterns play an important role on cognition, automation, and service computation and orchestration
areas. Antipatterns come as a normal output as needed lessons learned.

The conference had the following tracks:

 Patterns basics

 Patterns at work

 Discovery and decision patterns

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the PATTERNS 2020 technical
program committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and effort to contribute to PATTERNS 2020. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the PATTERNS 2020 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope PATTERNS 2020 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the area of pervasive patterns and
applications.

PATTERNS 2020 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Wladyslaw Homenda, Warsaw University of Technology, Poland
Patrick Siarry, Université Paris-Est Créteil, France
Yuji Iwahori, Chubu University, Japan
Alexander Mirnig, University of Salzburg, Austria
Adel Al-Jumaily, University of Technology, Australia
George A. Papakostas, International Hellenic University – Kavala, Greece

 2 / 77

PATTERNS 2020 Publicity Chair

Javier Rocher, Universitat Politecnica de Valencia, Spain

PATTERNS 2020 Industry/Research Advisory Committee

Christian Kohls, TH Köln, Germany

 3 / 77

PATTERNS 2020

Committee

PATTERNS 2020 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Wladyslaw Homenda, Warsaw University of Technology, Poland
Patrick Siarry, Université Paris-Est Créteil, France
Yuji Iwahori, Chubu University, Japan
Alexander Mirnig, University of Salzburg, Austria
Adel Al-Jumaily, University of Technology, Australia
George A. Papakostas, International Hellenic University – Kavala, Greece

PATTERNS 2020 Publicity Chair

Javier Rocher, Universitat Politecnica de Valencia, Spain

PATTERNS 2020 Industry/Research Advisory Committee

Christian Kohls, TH Köln, Germany

PATTERNS 2020 Technical Program Committee

Andrea F. Abate, University of Salerno, Italy
Akshay Agarwal, IIIT Delhi, India
Adel Al-Jumaily, University of Technology, Australia
Ali Reza Alaei, School of Business and Tourism, Australia
Sidnei Alves De Araujo, Nove de Julho University (UNINOVE), Sao Paulo, Brazil
Danilo Avola, Sapienza University of Rome, Italy
Johanna Barzen, University of Stuttgart, Germany
Nadjia Benblidia, Saad Dahlab University - Blida1, Algeria
Anna Berlino, Consultant in Tourism Sciences and Valorization of Cultural and Tourism Systems, Italy
Uwe Breitenbücher, IAAS - University of Stuttgart, Germany
Jean-Christophe Burie, L3i laboratory | La Rochelle University, France
Simone Cammarasana, CNR - IMATI,Genova, Italy
David Cárdenas-Peña, Universidad Tecnológica de Pereira, Colombia
Bidyut B. Chaudhuri, Indian Statistical Institute, India
Sneha Chaudhari, AI Organization | LinkedIn, USA
Diego Collazos, Universidad Nacional de Colombia sede Manizales, Colombia
Sergio Cruces, University of Seville, Spain
Mohamed Daoudi, Institut Mines-Telecom / Telecom Lille, France
Jacqueline Daykin, King's College London, UK / Aberystwyth University, Wales & Mauritius
Moussa Diaf, Mouloud Mammeri University, Algeria

 4 / 77

Chawki Djeddi, Université de Tébessa, Algeria
Ole Kristian Ekseth, NTNU & Eltorque, Norway
Carlos Alexandre Ferreira, INESC TEC, Portugal
Markus Goldstein, Ulm University of Applied Sciences, Germany
Geert Haerens, Engie, Belgium
Jean Hennebert, University of Applied Sciences HES-SO, Fribourg, Switzerland
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Wei-Chiang Hong, School of Computer Science and Technology - Jiangsu Normal University, China
Yuji Iwahori, Chubu University, Japan
Agnieszka Jastrzebska, Warsaw University of Technology, Poland
Maria João Ferreira, Universidade Portucalense, Portugal
Hassan A. Karimi, University of Pittsburgh, USA
Christian Kohls, TH Köln, Germany
Vasileios Komianos, Ionian University, Corfu, Greece
Sylwia Kopczynska, Poznan University of Technology, Poland
Fritz Laux, Reutlingen University, Germany
Reynolds León Guerra, Advanced Technologies Application Center (CENATAV), Havana, Cuba
Frank Leymann, UniversityofStuttgart, Germany
Josep Lladós, Computer Vision Center - Universitat Autònoma de Barcelona, Spain
Himadri Majumder, G. H. Raisoni College of Engineering and Management, Pune, India
Herwig Mannaert, University of Antwerp, Belgium
Ana Maria Mendonça, University of Porto / INESC TEC - INESC Technology and Science, Portugal
Pierre-Francois Marteau, IRISA / Université Bretagne Sud, France
Abdelkrim Meziane, Research Center on Scientific and Technical Information - CERIST, Algeria
Alexander Mirnig, University of Salzburg, Austria
Fernando Moreira, Universidade Portucalense, Portugal
Gyu Myoung Lee, Liverpool John Moores University, UK
Dinh-Luan Nguyen, Michigan State University, USA
Krzysztof Okarma, West Pomeranian University of Technology, Szczecin, Poland
Reynier Ortega Bueno, Center for Pattern Recognition and Data Mining - Universidad de Oriente / Cuban
Association for Pattern Recognition, Cuba
Alessandro Ortis, University of Catania, Italy
George A. Papakostas, International Hellenic University - Kavala, Greece
Maria Antonietta Pascali, CNR - Institute of Clinical Physiology, Italy
Giuseppe Patane', CNR-IMATI, Italy
Dietrich Paulus, Universität Koblenz - Landau, Germany
Agostino Poggi, University of Parma, Italy
Vinay Pondenkandath, University of Fribourg, Switzerland
Claudia Raibulet, University of Milano-Bicocca, Italy
Giuliana Ramella, CNR - National Research Council, Italy
Aurora Ramirez, University of Córdoba, Spain
Theresa-Marie Rhyne, Independent Visualization Consultant, USA
Alessandro Rizzi, Università degli Studi di Milano, Italy
Gustavo Rossi, UNLP, Argentina
Sangita Roy, Thapar Institute of Engineering and Technology, India
María-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Muhammad Sarfraz, Kuwait University, Kuwait

 5 / 77

Friedhelm Schwenker, Ulm University, Germany
Giuseppe Serra, University of Udine, Italy
Isabel Seruca, Portucalense University, Porto, Portugal
Abhishek Sharma, Rush University Medical Center, USA
Kaushik Das Sharma, University of Calcutta, India
Diksha Shukla, University of Wyoming, USA
Patrick Siarry, Université Paris-Est Créteil, France
Shanyu Tang, University of West London, UK
J. A. Tenreiro Machado, Polytechnic of Porto, Portugal
Hiroyasu Usami, Chubu University, Japan
Stella Vetova, Technical University of Sofia, Bulgaria
Panagiotis Vlamos, Ionian University, Greece
Huiling Wang, Tampere University, Finland
Hazem Wannous, UniversityofLille | IMT Lille Douai, France
Ester Zumpano, University of Calabria, Italy

 6 / 77

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 77

Table of Contents

Diffusion Patterns of Social Network Posts
Alexander Gubanov, Yuliya Mundrievskaya, and Ida M. Pu

1

Concepts for Computing Patterns in 15th Century Korean Music
Sukhie Moon, Jacqueline W. Daykin, and Ida M. Pu

6

Spambots: Creative Deception
Hayam Alamro and Costas S. Iliopoulos

12

Evolvability Analysis of Multiple Inheritance and Method Resolution Order in Python
Marek Suchanek and Robert Pergl

19

On Evolvability Issues of Robotic Process Automation (RPA)
Geert Haerens and Her Mannaert

25

Exploring the Application of Ontologies in Organizations for Data Harmonization
Carlos Tubbax and Jan Verelst

33

Pattern-based Deployment Models Revisited: Automated Pattern-driven Deployment Configuration
Lukas Harzenetter, Uwe Breitenbucher, Michael Falkenthal, Jasmin Guth, and Frank Leymann

40

Efficiently Detecting Disguised Web Spambots (with Mismatches) in a Temporally Annotated Sequence
Hayam Alamro and Costas S. Iliopoulos

50

Analysis of Spatiotemporal Patterns of Changes in Brightness of Nighttime Lights (NTL) in the Former USSR
Territory
Michail Zhizhin, Alexey Poyda, Alexander Troussov, and Sergey Maruev

58

Reliability Displays in Building Information Modeling: A Pattern Approach
Alexander G. Mirnig, Peter Frohlich, Johann Schrammel, Damiano Falcioni, Michael Gafert, and Manfred
Tscheligi

63

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 77

Diffusion Patterns of Social Network Posts

Alexander Gubanov
Yuliya Mundrievskaya

Center of Applied Big Data Analysis
Tomsk State University

Email: derzhiarbuz@yandex.ru
muo@data.tsu.ru

Ida M. Pu

Department of Computing
Goldsmiths, University of London, UK

Email: idapuone@gmail.com

Abstract—Social network posts as an efficient means of com-
munication directly reflect users’ interests and engagements.
Despite challenges there are strong interests in understanding how
social network posts efficiently spread information. In this article
some diffusion patterns of social network posts are explored.
The information spreading via post chains based on partial
data of popular social network is studied to gain insights of
the problem of information diffusion. Mathematical models for
information cascades are proposed and future research directions
are discussed.

Keywords–information diffusion; posts; reposts; walls; social
networks; social media; probability; mathematical modelling

I. INTRODUCTION

Social networks are real world systems where people
(referred to as actors) interact with each other. Actors are
represented as nodes of the network, and their interactions are
represented as ties between them. Social networks appear in
forms of social networking websites (online platforms) main-
tained by serving institutions (services), such as Facebook,
Twitter, Telegram, etc. In this paper, we focus on diffusion
issues of posts of messages based on the data from the on-line
social network “Vkontakte”.

The “Vkontakte” [1] is one of the largest social networks
on the previous-soviet space with 80-100 millions visitors
daily. Nodes of the network represent users (individuals or
groups), and ties can be a mutual (undirected) link, such as
friendship or/and directed link, such as subscribing. Users
exchange information by means of private messages or/and
public posts. Posts are publications in texts or/and multimedia
(images, sound and videos) on webpages. Recurrent posts are
referred to as reposts of the original post, and the dedicated
display areas for posts are referred to as walls. Figure 1 shows
a screenshot as an example of the wall and users’ posts on the
Vkontakte site.

Posts on the wall are also queued in a newsfeed (poster)
and become visible on devices of subscribed users (users for
short hereafter). Any post can be reposted by other users,
and appears on their walls and in newsfeeds of subscribers
(as friends or/and followers). With such iterative processes,
multiple chains of posts are formed and information is spread
like epidemic.

As a social media website, users can also interact with
each other via the platform. They can, for example, leave
comments on posts, vote for the favourite, exchange dialogues,
etc. At the backend of the website, the notions of walls, posts
and newsfeeds are evolved as self-sufficient software agents

Figure 1. An example of the wall and posts (1:wall, 2:post, and 3:repost)

empowered by technologies allowing communications across
different platforms.

Posts, as an efficient means of communication, reflect
users’ interests and engagements directly. Few businesses do
not want to understand them. Despite challenges there are
strong interests in understanding how posts spread information.
In this article, we model the spread of the posts based on the
data of this social network in order to help eventually answer
interesting questions, such as the followings:

1) Why do people spread a piece of information? Is it
because they like a given piece of news or is it because
they just intend to be similar to their social surroundings?

2) How can we classify a piece of information by its spread-
ing behaviour? Can we decouple properties of information
from the properties of network?

3) How can we classify people by their contribution in
information spreading? For example, how can we find
someone whose role in information spreading is signif-
icantly different from the average (e.g., opinion leaders,
non-conformists, information brokers, etc.)?

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 9 / 77

To answer these questions, different approaches are con-
sidered. The use of network information can vary in existing
work. Some approaches discard information about network
structure ([2], [3]), some assume that links are unobserved or
irrelevant and should be reconstructed ([4], [5]), or is assumed
to be correct and fully observable ([6], [7]). Influence of
social conformism (or social pressure), is firstly covered by
threshold models [8] then accounted in several models [7].
The modelling techniques are also vary: there are machine
learning approaches, such as [3], statistical [9], probabilistic
([7], [4]), and game theoretic models [10], etc. Also the roles
of different nodes in information spreading (especially opinion
leaders) are often studied by analysis of network structure and
topic content analysis ([11]–[12]).

Despite efforts, we could not find an approach that can
be applied directly to solve our research problems which
tend to be more localised in nature, practical and richer in
social contexts. Most of the known approaches are useful to
predict wide information epidemics on explicit, simple and
large networks, such as Twitter, but not readily for Vkontakte.
In case of local information (for example, the significant events
in a city of average size) the social network can be small (about
a hundred of reposts for one post), the number of data can
be insufficient and the observed ties in the network can be
incomplete or not perfectly relevant.

Known statistical and mean-field approximation ap-
proaches, commonly used for prediction of epidemic out-
breaks, are not useful here, because the specific of local
information can be subjective and exclusive, e.g. interesting
only a certain group of people. The assumption that N (number
of nodes) is infinite is not applicable for a local cluster. The
common assumption of an average infection rate for everyone
in the network and the impact of the node depending only
on its network characteristics (degree, centrality, etc.) is also
wrong in practical settings.

Social contexts are over simplified in models. For example,
high degree nodes do not necessarily mean richer information
sources. Nodes (users) can be faked by bots and ties (friend-
ships) can be commercialised, biased, or true friendships can
be hidden from newsfeeds. Results handled well in some visual
approaches may not necessarily be easily obtained in other
probabilistic models.

Hence, it would be inappropriate to use a model assuming
that the network is known and relevant (IC, SIR and so on).
On the other hand, we cannot discard the network information
since the amount of data we possess is relatively small. For
small datasets, machine learning approaches are not very
useful.

Finally, the real local cascade usually has a group of
completely isolated nodes (i.e., that are disconnected from any
other nodes) in the cascade, and we should assume that they
got the information through unobservable ties. Of course, we
cannot discard them, neither. As we can see, after all, our small
objects are not necessarily simple.

Our goal is to develop a sensitive tool for working with
such type of information, that could give us insights to answer
the interesting questions above.

The rest of the paper is arranged as follows. Section II
briefly describes a model of information cascades. Section III

explores the patterns of information spreading using visualisa-
tion techniques. Section IV proposes a model of information
diffusion. Section V provides the summary and directions of
further development.

II. INFORMATION CASCADE

Information cascade is a phenomenon in which a number of
actors make same decisions in a sequential fashion. It is a two-
step process in which a Yes-No decision is required by each
actor whose decision can be influenced by others. Information
cascades occur when the external information from previous
participants overrides one’s own private judgement.

In our model we assume the followings:

1) Each actor decides what to repost and whether or not to
repost.

2) The limited action space is (repost, notrepost).
3) The actions of reposts are sequential in chronological

order.
4) Each actor observes the reposts so far.
5) An actor cannot directly observe what other actors are

in favour of but (s)he can infer that they like the posts
enough if they repost it.

Our modelling is based on two parts: the underlying
network of relations (the network) and information cascade
(cascade) on this network.

A. Network
The nodes in our network model are identifiers of users

and/or groups of users. The links/edges between nodes rep-
resent connections/relationships in social network, undirected
for “friendship” and directed for “subscribing”, corresponding
to the model of undirected graph and digraph respectively.

It is impossible to model the entire social network in the
real world because of its huge size and data availability. Hence,
for a specific post we restrict the network by nodes that have
made a repost or liked the post and their friends. Such a
network is referred to as the underlying network (network for
short) for specific information cascade.

To build the network we use the Vkontakte public Appli-
cation Program Interface (API). Due to the privacy policy of
Vkontakte that allows users to hide their information, about
30 percents of nodes are actually “hidden”. It means that we
do not know whether or not they have made a post. Also we
do not know all incident links of them (but some links can be
reconstructed from other nodes).

The network is modelled as a graph G = {U,E}, where
U is a set of user node identifications (ui) and E is a set of
links (ui, uj) between a pair of nodes, where i = 1, · · · , N and
j = 1, · · · , N , and N is the number of nodes in the network.
To distinguish a user and group, ui can be positive or negative.
The positive ui is used to represent an user, and the negative
ui represents a group of users.

B. Cascade
The information cascade is a sequence of moments when

post appeared on user’s walls. It is defined as a sequence of
the pairs {(ui, ti)}1≤i≤M , where ui denotes a node from the
network and ti is a timestamp of the moment when repost (or
original post) on the wall of this node is appeared. M is the

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 10 / 77

total number of nodes that are “infected” by the information,
i.e., that having the post on their wall. This data is also
collected using the public Vkontakte API.

It is Vkontakte’s policy, however, to forbid general public
viewers from accessing any repost chain. Hence, we have no
explicit information about information spreading path.

C. Spreading issues
Processes of information spreading are widely studied often

using a Twitter social network as the source of experimental
data. For every retweet (analog of repost in Vkontakte) it is
known exactly, who retweeted whose tweets, so it is possible to
build an explicit graph of information propagation. This graph
is always a tree. Analysis results of such graphs are used to
identify spreading parameters (for example, the intensity of
“infection”) and important nodes (opinion leaders). But this
“exactness” also conceals one significant trait of how people
spread the information. Sometimes people choose to manifest
something due to its respectable source. Their decision of a
repost (or retweet) may not necessarily be purely driven by
their inner motives, but also by the apparent positive responses,
such as the big number of surroundings who translate the
same piece of information. It is a common behaviour involving
opinions, social norms, and trusts, etc. [13].

We assume that the fact of repost (retweet) from some node
does not mean that it is a merit of only this node. It can be
the cumulative contribution of all nodes made the post which
was seen by the reposting user before. It can not be substituted
by defining individual infection rates or probabilities as ([14],
[4]). However, some models [7] takes it into account. We do
it also.

III. PATTERN OF SPREADING

The first step in analysing the spreading of posts is vi-
sualisation of the pattern of spreading. This visual technique
is useful for practice, also the patterns can be analysed using
structural network analysis (measuring centrality, modularity,
etc) which is widely covered by appropriate software (for
example Gephi). As long as the pattern of spreading is directed
aperiodic graph, some bibliometric techniques can also be
used, for example main path analysis [Batagelj2014].

The pattern is a way to display the combination of informa-
tion cascade and underlying network, so the researcher could
see key properties of both to be able to make conclusions. It
is acyclic oriented graph Gp = {Up, Ep, Dp} with weighted
nodes where Up ⊂ U is a set of infected nodes (i.e., having
a post or repost on their walls). There are M nodes in Up.
Ep = {(ui, uj) : (uj , ui) ∈ E : ui ∈ Up, uj ∈ Up, ti < tj} is
a set of ordered pairs of nodes from Up, representing directed
edges such that there is a link between uj and ui (in general
it means uj is a friend of or subscribed on ui) in underlying
network and ui made the repost earlier than uj . So the edge
represents a potential act of information propagation, because
uj is able to see ui’s post in the newsfeed before it decides
to make reposts. There is also Dp = {dui}1≤i≤M , a set of
weights for nodes, where dui is the degree of ui in underlying
network. The example can be seen in Figure 2 and Figure 3.

Figure 4 shows the pattern of spreading of real posts. The
size of the node is defined by its degree in underlying network
(i.e., the number of neighbours the node could influence). The

Figure 2. Underlying network

Figure 3. Green is a pattern of spreading

colour becomes darker as the number of outgoing edges on
patterns increases (the darker it is in red, the more neighbours
are actually influenced). Note that in this case we use only
mutual links for users (Vkontakte is more friendship-style
than subscriber-style network and the most of links between
users are mutual/undirected). Hence, there is no need to define
different in- and out- degrees in the underlying network.

In the figure, we can see the separate cluster of users (1),
the nodes that seems to be information brokers or influencer
in their cluster (like 2, which has not very high degree, but
probably affected a lot of neighbours), the nodes that have no
influence at all (3, it has high degree, but infects nobody). Also
there is a group of isolated nodes (4) that means that they got
the information through inobservable path (private messages
or hidden users).

Although the patterns of spreading help researchers make
hypotheses and explore intuitive solutions, mathematical mod-
els are necessary for rigorous analysis and prediction.

IV. MODELS OF THE INFORMATION DIFFUSION

On-line social networks are set up mainly for information
diffusion. A number of widely used dynamic models are
known as infection models (SI, SIR, SIS) [15] of social con-
tagion. They are considered as good for describing diffusion
of certain types of information, such as hot news, memos,
rumours and in other situations when people become infected
regardless his will.

Another type of information spreading model, known as
the threshold model, describing a situation when each node

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 11 / 77

Figure 4. Pattern of spreading

makes a decision to spread the information based on social
reinforcement (e.g. social norms or opinions) and susceptibility
to information strongly depends on how many neighbours are
infected. ([13], [8]).

We build our model as a development of probabilistic SI
model for networks. For each edge between an infected and
susceptible node, there is a probability of passing the infection
during each small time interval ∆t that is proportional to ∆t+
o(∆t). Our goal is to define this probability.

The SI model is continuous and the time delay in the edge
matters. It is interesting that there is a discussion about how
important it is to take this delay into account. Some authors
[3] insist that in real world social networks this delay is too
noisy and it is better to discard it, while other authors [16]
think that it is a very important measure and should be taken
into consideration.

In our model we took into account the minimum amount
of properties of the process that are crucial for its description.
On one hand, we consider every data available and try to use
the information about known connections between users also.
On the other, we respect the fact that the information is not
necessarily completely relevant. Some connections are hidden
or inobservable.

A. Model parameters

The model has four parameters: namely, observed infection
rate θ, conformism level (threshold) κ, decay (or obsolence, a
kind of recovery rate analogue) δ and unobserved infection
rate ρ.

The first is the infection rate θ. In classical network SI
model the probability of susceptible j′th node to be infected
during small time interval ∆t is equal to

nj(t)θ∆t+ o(∆t) (1)

where nj(t) is a number of infected neighbours at the
moment t.

The second is conformism κ defining a threshold: a fraction
of node’s neighbours that should be infected to significantly
increase the chance of infection of the node. It is a modifier for
infection rate depending on the number of neighbours infected
and a total number of neighbours. Thus, the probability of
infection during small time interval is

nj(t)τκ(j, t)θ∆t+ o(∆t) (2)

where τκ(j, t) is threshold function, for example

τκ(j, t) =

{
1,

nj(t)
Nj

> κ

ε,
nj(t)
Nj

< κ,
(3)

where Nj is total number of neighbours that node j has
and ε is small.

Note nj(t) and τκ(j, t) depend on t and will not write this
dependence below. Here can also be used different function
which ascends or descends being regulated by κ.

The third is a background parameter ρ, which defines
the intensity of contagion through unobservable channels.
To handle this infection process we take a classical non-
network ST/SIR model’s assumptions that each node connects
to all other nodes. The assumption is that the number of all
information sources (observed and unobserved) is proportional
to the number of observed sources. The probability of infection
should then be

(ρNI(t) + njτκ(j)θ) ∆t+ o(∆t), (4)

where NI ′(t) is an overall intensity of contagion (NI(t) is
a number of nodes infected at time t).

The last parameter is a decay δ. As the older posts have
less chance to be seen in one’s newsfeed, the infection rate for
each infected node should decrease over time. There can be
different types of decay, for the exponential one the probability
of contagion during ∆t is

 ∑
i∈A(t)

ρe−δ(t−ti) + τκ(j)
∑

i∈Aj(t)

θe−δ(t−ti)

∆t+ o(∆t),

(5)
where A(t) is a set of all infected nodes at time t, Aj(t)

is a set of infected neighbours of node j at time t and ti is
the moment at which node i was infected.

Note, that using step decay function (i.e., that equal to
1 until some moment, and 0 after) gives a classic SIR model
recover behaviour. In this case setting θ to 0 gives an infection
equation for non-network SIR model, and setting ρ and κ
to 0 gives an infection equation for network SIR model.
However, if step recover function is good for describing bi-
ological infections, it is unsuitable for information, so gradual
exponential decay is more preferable. Note that if theta, rho
and kappa characterise the post, delta is a property of the
social network. Thus, we can assume that it is the same for
every publication. This assumption is helpful when we start to

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 12 / 77

estimate parameters not just for one information cascade, but
for the set of cascades.

As long as our model is a kind of SI, not SIR (as there
is no recovery, the post stays on the wall forever, or if it was
removed, we have no information about it) the equation (5)
defines the model behaviour. The initial condition is a set A(0)
of nodes that was infected at the time t = 0.

B. Detecting significant nodes
In general every node has its own parameters θ (influence)

and κ (conformism). It would be very useful to estimate all of
them. Indeed, we cannot identify all individual θ’s and κ’s for
each node because of small amount of data.

The common practical question is “What the most influ-
ential node is?”. Or “What the less conform node is?”. Thus,
we should find one or several nodes whose parameters are
differ the most from the average. We propose to use greedy
algorithms. The algorithms search for the node for which
increased θ makes the model better (higher likelihood). Then
the second one, etc. The same is for decreased θ’s and κ’s.

Using such kind of approach should help us to find most
“distinctive” nodes without overestimating the model.

V. CONCLUSION

In this paper we defined an object of study, obtained the
data and formulated research questions. We considered several
existing approaches and found that they cannot be applied
directly to our cases. Patterns of spreading visualisation gave
us intuitions on what is the object of research looks like and al-
lows to make some decisions and hypothesis for practical use.
The four parameter model of information spreading provides
opportunities to answer several questions about an essence of
information. The different roles of the nodes, however, still
need to be considered. The next step of our studies is to
estimate model parameters and then to develop a procedure
to detect nodes whose behaviours significantly differs from
average.

ACKNOWLEDGMENT

We would like to thank Jacqueline W. Daykin for helpful
discussion, the anonymous reviewers for valuable comments,
and financial supports for the research, The first author would
also like to thank the overseas scholarship that allows his
research visit to Goldsmiths, University of London.

REFERENCES
[1] On-line social network “Vkontakte”. [Online]. Available: https://vk.com
[2] A. Najar, L. Denoyer, and P. Gallinari, “Predicting information

diffusion on social networks with partial knowledge,” in Proceedings
of the 21st International Conference on World Wide Web, ser.
WWW’12 Companion. New York, NY, USA: Association for
Computing Machinery, 2012, pp. 1197–1204. [Online]. Available:
https://doi.org/10.1145/2187980.2188261

[3] S. Bourigault, S. Lamprier, and P. Gallinari, “Representation learning
for information diffusion through social networks: An embedded
cascade model,” in Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, ser. WSDM’16. New
York, NY, USA: Association for Computing Machinery, 2016, pp.
573–582. [Online]. Available: https://doi.org/10.1145/2835776.2835817

[4] M. Gomez-Rodriguez, L. Song, H. Daneshmand, and B. Schölkopf,
“Estimating diffusion networks: Recovery conditions, sample complex-
ity & soft-thresholding algorithm,” The Journal of Machine Learning
Research, vol. 17, no. 90, 1 2016, pp. 1–29.

[5] M. Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering the tempo-
ral dynamics of diffusion networks,” vol. abs/1105.0697, 05 2011.

[6] M. Kimura and K. Saito, “Tractable models for information diffusion
in social networks,” in LNCS, 09 2006, pp. 259–271.

[7] C. Lagnier, L. Denoyer, E. Gaussier, and P. Gallinari, “Predicting infor-
mation diffusion in social networks using content and user’s profiles,”
in Advances in Information Retrieval, P. Serdyukov, P. Braslavski,
S. O. Kuznetsov, J. Kamps, S. Rüger, E. Agichtein, I. Segalovich, and
E. Yilmaz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 74–85.

[8] M. Keuschnigg, Granovetter (1978): Threshold Models of Collective
Behavior, 01 2019, pp. 239–242.

[9] V. Krishnamurthy, S. Bhatt, and T. Pedersen, “Tracking infection
diffusion in social networks: Filtering algorithms and threshold bounds,”
IEEE Transactions on Signal and Information Processing over Net-
works, vol. 3, no. 2, June 2017, pp. 298–315.

[10] C. Jiang, Y. Chen, and K. J. R. Liu, “Evolutionary dynamics of
information diffusion over social networks,” IEEE Transactions on
Signal Processing, vol. 62, no. 17, Sep. 2014, pp. 4573–4586.

[11] A. Farzindar and W. Khreich, “A survey of techniques for event
detection in twitter,” Computational Intelligence, vol. 31, 09 2013.

[12] Q. Li, A. Nourbakhsh, S. Shah, and X. Liu, “Real-time novel event
detection from social media,” 04 2017, pp. 1129–1139.

[13] C. Kadushin, Understanding social networks: Theories, concepts, and
findings. Oxford: Oxford University Press, 2012.

[14] K. Saito, M. Kimura, K. Ohara, and H. Motoda, “Learning continuous-
time information diffusion model for social behavioral data analysis,”
in Advances in Machine Learning, Z.-H. Zhou and T. Washio, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 322–337.

[15] M. E. J. Newman, Networks. Oxford: Oxford University Press, 2010.
[16] A. Guille and H. Hacid, “A predictive model for the temporal

dynamics of information diffusion in online social networks,” in
Proceedings of the 21st International Conference on World Wide
Web, ser. WWW’12 Companion. New York, NY, USA: Association
for Computing Machinery, 2012, pp. 1145–1152. [Online]. Available:
https://doi.org/10.1145/2187980.2188254

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 13 / 77

Concepts for Computing Patterns in 15th Century Korean Music

Sukhie Moon

Institute of Korean Literature and Arts
Soongsil University, Seoul, Korea
Email: sukhiem@hanmail.net

Jacqueline W. Daykin

Department of Computer Science
Aberystwyth University, UK

Department of Information Science
Stellenbosch University, South Africa

Email: jackie.daykin@gmail.com

Ida M. Pu

Department of Computing
Goldsmiths, University of London, UK

Email: idapuone@gmail.com

Abstract—Computational musicology denotes the use of comput-
ers for analyzing music. This paper proposes applying techniques
from stringology for analyzing classical Korean music. Histori-
cally, Sejong, the fourth king of the Joseon Dynasty in Korea,
intended to rule the country with courtesy and music following
the teaching of Neo-Confucianism. For this, he invented a music
score in which music could be written. He made the structure
of the music score based on the meaning of Neo-Confucianism,
and recorded contemporary music with two notation patterns.
In this paper, we first study the patterns in the structure of the
music score and then investigate the notation patterns by which
contemporary music was recorded in the music score. Finally,
we establish links between these musical patterns and computing
pattern inference for music via the field of stringology. Future
research directions are outlined.

Keywords–Korean music; Lyndon word; Musicology; Notation
pattern; Stringology; Structure of music score; V -word.

I. INTRODUCTION

Musicology is the study of music through scholarly anal-
ysis and research methodologies. Computational musicology
is the use of computers in order to study music and integrates
musicology, computer science and stringology (the study of
strings). This interdisciplinary research area includes music
information retrieval, pattern matching and music informatics.
This paper introduces the computational study of patterns
occurring in Korean music and proposes future research di-
rections for this endeavour. We first overview the background
for these musical patterns in the structure of the music score
and the notation patterns devised for recording Korean music
and then describe connections to the field of stringology.

King Sejong (reign 1418–1450) introduced ‘yeack’ ideol-
ogy with the goal of ideal Confucian politics. Yeack ideology
means ruling the subjects by courtesy and music rather than
by punishments. For this he invented a form of music score
that has been passed down to this day. This music score is a
full score that notates lyric and various musical instruments.
Moreover, it is a detailed music score that notates both one-
third and one-fourth beats. The music score was improved one
step further by his son, King Sejo, and then it has evolved with
gradual changes up until now.

King Sejong made the structure of the music score based
on the meaning of Neo-Confucianism, and recorded contem-
porary music with notation patterns fitting to each rhythm.
Without understanding the notation patterns, therefore, the
music recorded in the music score cannot be interpreted
properly. Hence, we first study the structure of the music score
and its meaning in Neo-Confucianism. Then, we investigate

the notation patterns recorded in the music score and the
corresponding rhythms of the 15th century Korean music.

The rest of the paper is arranged as follows. Section II
explores the meaningful structure of the music scores of the
Joseon Dynastry. Section III identifies the patterns of the music
scores. Section IV discusses computational Korean musicology
and applications of the stringology in musicology. Section V
provides the summary and future directions.

II. THE STRUCTURE OF THE MUSIC SCORE
AND ITS MEANING

A. Structure of the music score

The music score of the Joseon Dynasty (the version es-
tablished by King Sejo) has the structure shown in Figure 1.
Small squares form a vertical column, and vertical columns
proceed (are read) from right to left. A small square is called
a jeonggan and a vertical column is called a haeng. A vertical
column is divided into 6 daegangs by thick lines. A daegang
consists of either three squares or two squares.

Figure 1 shows a full score, and thus five columns make
one column set, in which the first column from right rep-
resents a string instrument (melody), the second column a
wind instrument, the third column percussion instrument 1,
the fourth column percussion instrument 2, and the leftmost
column the lyric. A note of melody is notated by a pitch name,
and percussion is notated by symbols of strokes. The black area
at the beginning of the score means that this piece of music has
an incomplete bar. This music score is called a jeongganbo.

Figure 1. Structure of the music score

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 14 / 77

If a vertical column in Figure 1 is drawn horizontally, it
looks like Figure 2, i.e., a haeng consists of six daegangs,
each of which consists of either 3 jeonggans or 2 jeonggans.
Therefore, the music score in Figure 1 has the pattern of
(3 3 2 3)5(3 2 3 3 2 3)5(3 2 3 3 2 3)5 · · · , where (3 3 2 3)
refers to the 3, 3, 2, and 3 squares in the rightmost column, and
(3 3 2 3)5 refers to the column set consisting of the rightmost
five columns (under the black box).

Figure 2 shows the names in the structure of the music
score.

Figure 2. The names in the structure of the music score

B. The meaning of the structure of the music score
The Neo-Confucian meaning of the music score is embed-

ded in the number of squares. This music score consists of
repetitions of 3+2+3=8 squares. In Figure 1, one haeng (i.e.,
column) consists of 16 squares, but in the original score made
by King Sejong one haeng consisted of 32 squares.

Figure 3 shows the meaning of the structure of the music
score.

Figure 3. The meaning of the structure of the music score

The Neo-Confucian meanings of the numbers in the music
score are shown in Figure 3. The numbers 3, 2, and 3 in a group
of 8 squares mean heaven, human, and earth, respectively,
and 8 means 8 diagrams from Neo-Confucianism, that is, one
season. The number 16 means music, which is a fundamental
doctrine of politics. One haeng (i.e., 32 squares) means one
year consisting of spring, summer, fall, and winter, and it is
repeated like a year [1], [2]. In this way, the structure of the
music score was designed based on the meanings of Neo-
Confucianism.

There has been research on the rhythm interpretation of
this music score since the late 1950s. At first, there was a
theory that interprets one square as the unit of beat [3], but
it could not be used to play the music because the rhythm of
music interpreted by the theory was strange. Later, this theory
was slightly generalised to the theory that each square has the
same length in rhythm [4], [5], but it had similar problems.
Condit [6] and Hong [7] also proposed theories to interpret
the rhythm of the music score, but these did not reflect the
characteristics of Korean music.

III. NOTATION PATTERNS

There were two types of music in the 15th century Joseon:
hyangak and dangak. Dangak is the music that came from

China, and its lyric was written in Chinese characters. Hyangak
is the indigenous music of Korea, and its lyric was written in
the Korean language. The music of the 15th century Joseon
was recorded in the music score with the following two
notation patterns [8], [9]. Dangak was recorded with notation
pattern 1, and hyangak was mostly recorded with notation
pattern 2.

• Notation pattern 1: Melody, percussion, and lyric are
notated in the unit of 8 squares.

• Notation pattern 2: Melody, percussion, and lyric are
notated in the unit of 5 squares and 3 squares.

We will investigate each notation pattern by examining a
representative music score of the notation pattern. The music
score is a full score that has the column set consisting of 4
columns representing melody, percussion 1, percussion 2, and
lyric.

A. Notation pattern 1: Rhythm with binary subdivision of a
beat

Notation pattern 1 has the unit of 8 squares, which makes
one beat, and one beat is subdivided into two half-beats (i.e.,
binary subdivision of one beat). But the binary subdivision
of the beat is not easy to record in the structure of 3+2+3=8
squares. In notation pattern 1, therefore, 3+2=5 squares repre-
sent a half-beat, and the following 3 squares represent the sec-
ond half-beat. In the first half-beat, the first 3 squares represent
a quarter-beat, and the following 2 squares another quarter-
beat. In the second half-beat, the first 2 squares represent a
quarter-beat, and the following 1 square another quarter-beat.
Hence, notation pattern 1 has the rhythm shown in Figure 4.
That is, the pattern (((32)(21))((32)(21)))n in the music score
is interpreted as the rhythm (((aa)(aa))((aa)(aa)))n, where
‘a’ denotes a quarter-beat.

Figure 4 shows Notation Pattern 1.

Figure 4. Notation Pattern 1

Gimyeong (基命), an ancient song, which is a representa-
tive music passage in notation pattern 1, and its translation into
Western stave notation are shown in Figure 5. In this music
score, melody, percussions, and lyric are notated in the unit of
8 squares with occasional half-beats in melody. Each Chinese
character in lyric lasts two beats. In dangak, each Chinese
character has the same length in rhythm in most cases because
Chinese characters have almost equal weights in meaning. All
pieces of music in dangak were recorded in notation pattern 1,
which fits well with Chinese traditional music that favours the
binary subdivision of the beat.

B. Notation pattern 2: Rhythm with ternary subdivision of a
beat

Notation pattern 2 has the unit of 5 squares and 3 squares,
which makes one beat, and one beat is subdivided into 3
one-third beats (i.e., ternary subdivision of one beat). The

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 15 / 77

Figure 5. Gimyeong

ternary subdivision of the beat is also not easy to record
in the structure of 3+2+3=8 squares. In notation pattern 2,
3+2=5 squares represent one beat, and the following 3 squares
represent another beat. In the first beat of 5 squares, each of the
first 2 squares, the following 1 square, and the last 2 squares
represent a one-third beat. In the second beat of 3 squares,
each square represents a one-third beat. Therefore, notation
pattern 2 has the rhythm shown in Figure 6, where one beat is
denoted by ‘♩.’ for notational convenience. That is, the pattern
((212)(111)(212)(111))n in the music score is interpreted as
the rhythm ((bbb)(bbb)(bbb)(bbb))n, where ‘b’ denotes a one-
third beat.

Figure 6 shows Notation Pattern 2.

Figure 6. Notation Pattern 2

Cheongsanbyeolgok (青山别曲), a song of the Goryeo
dynasty, which is a representative music passage in notation
pattern 2, and its translation into Western stave notation are
shown in Figure 7. In this music score, melody, percussions,
and lyric are notated in the unit of 5 squares and 3 squares. It
can be seen that Korean letters in lyric have different lengths
in rhythm. This piece of music is hyangak, descended from

the Goryeo dynasty, and was recorded in notation pattern 2,
which fits well with indigenous music ‘hyangak’ that favours
the ternary subdivision of the beat.

Figure 7. Cheongsanbyeolgok

Following this historical narrative on the creation, develop-
ment and interpretation of Korean music scores, we proceed to
establish a framework suitable for related computational music
analysis using techniques from stringology.

IV. OVERVIEW OF COMPUTATIONAL KOREAN
MUSICOLOGY

A. Stringology notation
Stringology is the mathematical study of strings of data,

that is sequences of symbols. Formally, given an integer n ≥ 1
and a nonempty set of symbols Σ (bounded or unbounded), a
string of length n, equivalently word, over Σ takes the form
x = x1...xn with each xi ∈ Σ. For brevity, we write x =
x[1..n] with x[i] = xi. We will assume that Σ is a totally
ordered alphabet. The length n of a string x is denoted by
|x|. The set Σ is called an alphabet whose members are letters
or characters, and Σ+ denotes the set of all nonempty finite
strings over Σ. The empty string of length zero is denoted ε;
we write Σ∗ = Σ+∪{ε} and let |Σ| = σ. We use exponents to
denote repetition, for instance if α ∈ Σ then α3 means ααα.
If x = uwv for strings u,w, v ∈ Σ∗, then u is a prefix, w is
a substring or factor, and v is a suffix of x; we say u 6= x is
a proper prefix and similarly for the other terms. If x = uv,
then vu is said to be a rotation (cyclic shift or conjugate) of
x. A string x is said to be a repetition if and only if it has
a factorization x = uk for some integer k > 1; otherwise, x
is said to be primitive. For a string x, the reversed string x is
defined as x = x[n]x[n−1] · · ·x[1]. A string x is a palindrome
if x = x. A string which is both a proper prefix and a proper
suffix of a string x 6= ε is called a border of x; a string is
border-free if the only border it has is the empty string ε.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 16 / 77

We first illustrate this stringology notation for the patterns
in music described in Section II. The pattern 3323 is a string
over Σ, where Σ is the naturally ordered non-negative integers,
and the string has the border 3 and proper prefixes 3, 33, and
332. The string 3323 is a proper suffix of the string 323323
and (3323)5 is a repetition. The string 1 is a factor of each of
the strings 111 and 212. The strings 111, 323323 and 212 are
all palindromes.

Clearly a string, a sequence of symbols over an alphabet
Σ, is a very fundamental and versatile representation of data.
A collection of related or collated strings is often referred to as
text. A core stringology task is pattern matching, the compu-
tation of patterns in strings, and arises in diverse areas of sci-
entific information and text processing, for instance: retrieving
information from a database, bioinformatics software utilies for
molecular biology investigations, text editors for the Internet,
data compression for Big Data, speech recognition, computer
vision, computational geometry, and cryptography. Further-
more, the alphabet letters in Σ can be generalized to sets lead-
ing to indeterminate, or equivalently degenerate, strings which
consist of sequences of nonempty subsets of letters over Σ. For
example, x = 51877392921115 is a string of integers whereas
x = {5, 3}{1, 1, 1}{8, 4}{3, 9, 0, 9}{2, 6, 1, 6}{7}{1, 3, 5, 7}
is a degenerate string over the integers.

The application of stringology algorithms to measuring
musical similarity was considered in [10] where it is also
expressed that this similarity is a rather subjective measure.
For instance, two otherwise identical musical packages might
differ only by being played in a different key or some notes
in one might have been recorded incorrectly – different defi-
nitions of musical similarity could potentially require distinct
algorithmic solutions and both edit and hamming distances
have been proposed for these kinds of analyses. Approximate
matching methods were developed in [10] which measure the
distance between musical passages by looking at the distance
between the individual notes. String matching techniques such
as approximate matching with gaps (allowing skipping of
notes), polyphonic matching (searching for a pattern in a set
of sequences of notes), and approximate repetitions have also
been considered in computational musicology.

Ordering a set of strings is often used to enhance com-
putational efficiency such as with indexing techniques. If Σ
is a totally ordered alphabet then lexicographic ordering
(lexorder) u < v with u,v ∈ Σ+ means that either u is
a proper prefix of v, or u = ras, v = rbt for some a, b ∈ Σ
such that a < b and for some r, s, t ∈ Σ∗. We call the ordering
� based on lexorder of reversed strings co-lexicographic
ordering (co-lexorder). Using the ordered Roman alphabet:
compute < computer < music < musicology < score
while music � score � compute � computer �
musicology. Ordering techniques can also capture patterns in
strings.

B. Application of stringology in musicology
In combinatorics on words, Lyndon words are (generally)

finite words (strings) which are lexicographically least amongst
all their cyclic rotations.

Definition 1 (Lyndon word): A string x over an ordered
alphabet Σ is said to be a Lyndon word if it is the unique
minimum in lexorder < in the conjugacy class of x.

Lyndon words are primitive, have deep connections with
algebra, and moreover, any string can be factored or de-
composed efficiently into Lyndon words [11] including for
degenerate strings [12]. Introduced by Lyndon in 1954 as
standard lexicographic sequences, Lyndon words have been
studied extensively and are finding an increasing range of
applications: string combinatorics and algorithmics including
specialized matching scenarios, computing the lexorder of
substrings, digital geometry, and bioinformatics. Our interest
here is applications of Lyndon words to musicology.

Consider the string 3323, which is part of the pattern of
the Korean music score in Figure 1. We will show that 3323
is not a Lyndon word while the conjugate 2333 is a Lyndon
word.

TABLE I. CONJUGATES OF 3323

3 3 2 3
3 3 3 2
2 3 3 3
3 2 3 3

TABLE II. THE LEXORDER OF THE CONJUGATES OF 3323

2 3 3 3
3 2 3 3
3 3 2 3
3 3 3 2

Although the string 3323 is not a Lyndon word it can be
uniquely factored into Lyndon words as (3)(3)(23).

Interestingly, Lyndon words have been applied in the analy-
sis of music repetition, or looping, which is a fundamental fea-
ture of music. When enumerating periodic musical structures
(repetitions), the computation is done up to a cyclic shift. In
this context, two strings, which are cyclic shifts of one another
are considered the same, and primitive Lyndon words, provide
a means to capture distinct representatives of the structure. In
[13], two examples of traditional African repertoires have been
analysed using Lyndon words: harp melodic canons played
by Nzakara people from the Central African Republic and
also asymmetric rhythmic patterns common to many cultures
of Central Africa. This stimulates our interest in potential
applications of Lyndon words to analysing Korean music.

We now define a non-lexorder called V -order [14]. Let
x = x1x2 · · ·xn be a string over Σ. Define h ∈ {1, . . . , n}
by h = 1 if x1 ≤ x2 ≤ · · · ≤ xn; otherwise, by the unique
value such that xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤ xn.
Let x∗ = x1x2 · · ·xh−1xh+1 · · ·xn, where the star * indicates
deletion of xh. Write xs∗ = (...(x∗)∗...)∗ with s ≥ 0 stars.
Let g = max{x1, x2, . . . , xn}, and let k be the number of
occurrences of g in x. Then the sequence x,x∗,x2∗, ... ends
gk, ..., g1, g0 = ε. From all strings x over Σ we form the star
tree, where each string x labels a vertex and there is a directed
edge upward from x to x∗, with the empty string ε as the root.

Definition 2 (V -order): We define V -order ≺ between dis-
tinct strings x, y. First x ≺ y if in the star tree x is in the
path y,y∗,y2∗, . . . , ε. If x,y are not in a path, there exist

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 17 / 77

smallest s, t such that x(s+1)∗ = y(t+1)∗. Let s = xs∗ and
t = yt∗; then s 6= t but |s| = |t| = m say. Let j ∈ [1..m] be
the greatest integer such that s[j] 6= t[j]. If s[j] < t[j] in Σ
then x ≺ y; otherwise, y ≺ x. Clearly ≺ is a total order on
all strings in Σ∗.

To illustrate the star tree using ordered integers, if x =
53638, then x∗ = 5368, x2∗ = 568 and x3∗ = 68; then since
68 is in the tree path we have 68 ≺ 53638.

We now introduce the V -order equivalent of the lexorder
Lyndon word:

Definition 3 (V -Word): A string x over an ordered alpha-
bet Σ is said to be a V -word if it is the unique minimum in
V -order ≺ in the conjugacy class of x.

TABLE III. THE V -ORDER OF THE CONJUGATES OF 3323

3 3 3 2
3 3 2 3
3 2 3 3
2 3 3 3

Hence, we see that although 3323 is not a V -word, and
is in fact bordered, the conjugate 3332 of 3323 is a V -word.
However, note that each of the Korean music score patterns
32, 21 and 3221 are V -words.

Interestingly, the rhythmic pattern 3 2 2 2 2 3 2 2 2 2 2
occurs in Aka Pygmies music [15], and this pattern forms a
V -word.

V. FUTURE RESEARCH DIRECTIONS

This introductory paper has stimulated the flow of numer-
ous research questions and directions regarding the application
of stringology techniques to the analysis and processing of
Korean music:

• apply the analysis of the musical structure to auto-
mated Korean music classification

• design and implement pattern matching techniques
optimized for Korean music retrieval tasks

• apply indeterminate or degenerate strings to the pat-
tern matching task of finding chords that match with
single notes and analyzing chord progressions

• apply factoring techniques for indeterminate strings to
music scores for aiding the identification of meaning-
ful musical sequences

• investigate palindromes in the context of analyzing
Korean music

• enumerate periodic Korean musical structures using
Lyndon words

• apply V -words to music pattern inference and discov-
ery

VI. CONCLUSION: FROM IDEOLOGY TO PRACTICE

King Sejong invented a form of a music score based on
Neo-Confucian ideology. This music score has the structure,
which is a repetition of 3+2+3=8 squares, and this structure
embeds the meanings of heaven, human, earth, and four
seasons in a year. He recorded contemporary music of the

15th century into the music score using two notation patterns.
Notation pattern 1 records music with the binary subdivision
of one beat, and notation pattern 2 records music with the
ternary subdivision of one beat. In the late 16th century, these
music scores, which were originally used only in the palaces,
were handed down to aristocrats. From this time on the music
score gradually lost Neo-Confucian meanings and has been
transformed into notation patterns expressing the rhythm of
music more directly. In the 20th century the music score
‘jeongganbo’ finally abandoned Neo-Confucian meanings and
became a music score that reflected the rhythm of music
exactly.

This paper addresses computational musicology and has
initiated the application of stringology techniques for analysing
classical Korean musical patterns exhibited in both the struc-
ture and notation in the associated music scores. Lyndon words
and V -words are mathematical structures with interesting
combinatorial properties. By citing examples of patterns in
African music which form Lyndon words we raise the question
of using Lyndon words to analyse classical Korean music.
Further, examples have been given of V -words arising in the
structure of a Korean music score which indicate promising
directions for further study. The proposed line of research
impacts on the digital conservation of Korean culture and
heritage.

ACKNOWLEDGMENT

1) The images in this article predate copyright laws and prac-
tice. We thank the National Gugak Center (government
institute for Korean music) for use of the music score
images and the sources Figures 1 and 5 [16],
and Figure 7 [17].

2) The second author was part-funded by the European
Regional Development Fund through the Welsh Govern-
ment, Grant Number 80761-AU-137 (West):

REFERENCES
[1] H. John, An Attempt to Interpret Early Jeongganbo focused on Yixue,

1995, pp. 221–262.
[2] J. Lee, A Study on the Structure and Numerical System of ‘Siyong

Mubo 時用舞調’ focused on the numerical principle of I-Ching, 2002,
pp. 277–316.

[3] H. Lee, Jeonggan, Daegang and Jangdan of Jeongganbo. Segwangeu-
mak, 1987.

[4] J. Hwang, Diachronic Consideration on the time Value of Jeongganbo
of Joseon Dynasty. Research on Jeongganbo of Joseon Dynasty. Seoul
National University Press, 2009, pp. 1–42.

[5] J. Lee, Interpretation of the Time Value of Chongganbo Notation -
Focusing on Scores and Literature of the Early Choson Period -. Korean
Historico-Musicology 50. Society for Korean History Musicology,
2013, no. 50, pp. 251–294.

[6] J. Condit, A fifteenth-century Korean score in mensural notation.
Oxford University, 1979, pp. 2–22.

[7] J. Hong, An Interpretation of Deciphering. Society for Korean History
Musicology, 1993, ch. Korean Historico-Musicology 11, pp. 19–80.

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 18 / 77

[8] S. Moon, A Study on the Interpretation of the Rhythm of Jeongganbo
of Old Manuscripts. Society for Korean History Musicology, 2010,
ch. Korean Historico-Musicology 45, pp. 293–330.

[9] ——, The Original Form and Restoration of Jongmyo Jeryeak. Hak-
gobang, 2011.

[10] R. Clifford and C. Iliopoulos, “Approximate string matching for music
analysis,” Soft Computing 8 (2004) 597–603 Ó Springer-Verlag, no. 8,
2004, pp. 597–603.

[11] J. Duval, “Factorizing words over an ordered alphabet,” J. Algorithms,
vol. 4, no. 4, 1983, pp. 363–381. [Online]. Available: https:
//doi.org/10.1016/0196-6774(83)90017-2

[12] J. W. Daykin and B. W. Watson, “Indeterminate string factorizations
and degenerate text transformations,” Math. Comput. Sci., vol. 11,
no. 2, 2017, pp. 209–218. [Online]. Available: https://doi.org/10.1007/
s11786-016-0285-x

[13] M. Chemillier, “Periodic musical sequences and lyndon words,” Soft
Computing. Springer-Verlag, no. 8, 2004, pp. 1–6.

[14] D. E. Daykin, J. W. Daykin, and W. F. Smyth, “A linear
partitioning algorithm for hybrid lyndons using V-order,” Theor.
Comput. Sci., vol. 483, 2013, pp. 149–161. [Online]. Available:
https://doi.org/10.1016/j.tcs.2012.02.001

[15] M. Chemillier and C. Truchet, “Computation of words satisfying the
“rhythmic oddity property” (after simha arom’s works),” Information
Processing Letters, no. 86, 2003, pp. 255–261.

[16] The National Gugak Centre (government institute for Korean
music), https://www.gugak.go.kr/site/program/board/basicboard/view?
currentpage=5&menuid=001003002003&pagesize=10&boardtypeid=
18&boardid=1360.

[17] The National Gugak Centre (government institute for Korean
music), https://www.gugak.go.kr/site/program/board/basicboard/view?
currentpage=5&menuid=001003002003&pagesize=10&boardtypeid=
18&boardid=1362.

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 19 / 77

Spambots: Creative Deception

Hayam Alamro

Department of Informatics
King’s College London, UK

Department of Information Systems
Princess Nourah bint Abdulrahman University

Riyadh, KSA
email: hayam.alamro@kcl.ac.uk

Costas S. Iliopoulos

Department of Informatics
King’s College London, UK

email: costas.iliopoulos
@kcl.ac.uk

Abstract—In this paper, we present our spambot overview on the
creativity of the spammers, and the most important techniques
that the spammer might use to deceive current spambot detection
tools to bypass detection. These techniques include performing a
series of malicious actions with variable time delays, repeating the
same series of malicious actions multiple times, and interleaving
legitimate and malicious actions. In response, we define our
problems to detect the aforementioned techniques in addition
to disguised and "don’t cares" actions. Our proposed algorithms
to solve those problems are based on advanced data structures
that are able to detect malicious actions efficiently in linear time,
and in an innovative way.

Keywords–Spambot; Temporally annotated sequence; Creative;
Deception.

I. INTRODUCTION

A bot is a software application that is designed to do certain
tasks. Bots usually consume network resources by accom-
plishing tasks that are either beneficial or harmful. According
to Distil Networks’ published report ’2020 Bad Bot Report’,
prepared by data from Imperva’s Threat Research Lab, the bots
make up 40% of all online traffic, while the human driven
traffic makes up to 60%. The report shows that the bad bots
traffic has risen to 24.1% (A rise of 18.1% from 2019), while
good bots traffic decreased to 13.1% (A 25.1% decrease from
2018) [1]. The good bots, for example, are essential in indexing
the contents of search engines for users’ search, and recently
have been used by some companies and business owners to
improve customer services and communications in a faster way
by employing the use of Artificial Intelligence (AI). These
bots are useful in large businesses or businesses with limited
resources through the use of chatbots, which can benefit the
organization in automating customer services like replying to
questions and conducting short conversations just like a human.
However, bots can be harmful in what is known as a spambot.
A spambot is a computer program designed to do repetitive
actions on websites, servers, or social media communities.
These actions can be harmful by carrying out certain attacks
on websites/ servers or may be used to deceive users such
as involving irrelevant links to increase a website ranking
in the search engine results. Spambots can take different
forms which are designed according to a spammer’s desire.
They can take the form of web crawlers to plant unsolicited
material or to collect email addresses from different sources
like websites, discussion groups, or news groups with the

intent of building mailing lists to send unsolicited or phishing
emails. Furthermore, spammers can create fake accounts to
target specific websites or domain specific users and start send-
ing predefined designed actions which are known as scripts.
Moreover, spammers can work on spreading malwares to steal
other accounts or scan the web to obtain customers contact
information to carry out credential stuffing attacks, which is
mainly used to login to another unrelated service. In addition,
spambots can be designed to participate in deceiving users on
online social networks through the spread of fake news, for
example, to influence the poll results of a political candidate.
Therefore, websites administrators are looking for automated
tools to curtail the actions of web spambots. Although there
are attempts to prevent spamming using anti-spambots tools,
the spammers try to adopt new forms of creative spambots by
manipulating spambots actions’ behaviour to appear as it was
coming from a legitimate user to bypass the existing spam-
filter tools.

This work falls under the name of digital creativity where
the http requests at the user log can be represented as tempo-
rally annotated sequences of actions. This representation helps
explore repeated patterns of malicious actions with different
variations of interleaving legitimate actions and malicious
actions with variable time delays that the spammer might resort
to deceive and bypass the existing spam detection tools. Con-
sequently, our proposed algorithms for tackling the creative
deception techniques are based on advanced data structures and
methods to keep the performance and efficiency of detecting
creative deception sequences at first priority. Here, we are
going to provide a summary of the creativity of the spambot
programmers, and the most important creative techniques that
the spammer might use to deceive current spambot detection
tools. Then, we are going to present our proposed solutions
at this field to tackle those problems based on employing the
AI approach to monitor the behaviour of the stream of actions
using advanced data structures for pattern matching and to
uncover places of the spambot attacks.

In Section II, we detail the related works in the literature
review. In Section III, we introduce notations, background
concepts, and formally define the problems we address. In
Section IV, we present our solution for detecting deception
with errors. In Section V, we present our solution for detecting
deception with disguised actions and errors. In Section VI, we
present our solution for detecting deception with don’t cares

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 20 / 77

actions. In Section VII, we conclude.

II. LITERATURE REVIEW

Spamming is the use of automated scripts to send unso-
licited content to large members of recipients for commer-
cial advertising purposes or fraudulent purposes like phishing
emails. Webspam refers to a host of techniques to manipulate
the ranking of web search engines and cause them to rank
search results higher than the others [2]. Examples of such
techniques include content-based which is the most popular
type of web spam, where the spammer tries to increase term
frequencies on the target page to increase the score of the page.
Another popular technique is through using link-based, where
the spammer tries to add lots of links on the target page to
manipulate the search engine results [3] [4]. There are several
works for preventing the use of content-based or link-based
techniques by web spambots [5]–[10]. However, these works
focus on identifying the content or links added by spambots,
rather than detecting the spambot based on their actions. For
example, Ghiam et al. in [4] classified spamming techniques
to link-based, hiding, and content-based, and they discussed
the methods used for web spam detection for each classified
technique. Roul et al. in [3] proposed a method to detect
web spam by using either content-based, link-based techniques
or a combination of both. Gyongyi et al. in [11] proposed
techniques to semi-automatically differ the good from spam
page with the assistance of human expert, whose his role
is examining small seed set of pages, to tell the algorithm
which are ’good pages’ and ’bad pages’ roughly based on
their connectivity to the seed ones. Also, Gyongyi et al. in [12]
introduced the concept of spam mass and proposed a method
for identifying pages that benefit from link spamming. Egele et
al. [13] developed a classifier to distinguish spam sites from
legitimate ones by inferring the main web page features as
essential results, and based on those results, the classifier can
remove spam links from search engine results. Furthermore,
Ahmed et al. [14] presented a statistical approach to detect
spam profiles on Online Social Networks (OSNs). The work
in [14] presented a generic statistical approach to identify spam
profiles on OSNs. For that, they identified 14 generic statistical
features that are common to both Facebook and Twitter, then
they used three classification algorithms (naive Bayes, Jrip and
J48) to evaluate those features on both individual and com-
bined data sets crawled from Facebook and Twitter networks.
Prieto et al. [15] proposed a new spam detection system called
Spam Analyzer And Detector (SAAD) after analyzing a set of
existing web spam detection heuristics and limitations to come
up with new heuristics. They tested their techniques using
Webb Spam Corpus(2011) and WEBSPAM-UK2006/7, and
they claimed that the performance of their proposed techniques
is better than others system presented in their literature. There
are also techniques that analyze spambot behaviour [9] [16].
These techniques utilize Supervised Machine Learning (SML)
to identify the source of the spambot, rather than detecting the
spambot. In this regard, Dai et al. [17] used SML techniques
to combine historical features from archival copies of the web,
and use them to train classifiers with features extracted from
current page content to improve spam classification. Araujo
et al. [18] presented a classifier to detect web spam based on
qualified link (QL) analysis and language model (ML) features.
The classifier in [18] is evaluated using the public WEBSPAM-
UK 2006 and 2007 data sets. The baseline of their experiments

was using the precomputed content and link features in a
combined way to detect web spam pages, then they combined
the baseline with QL and ML-based features which contributed
to improving the detecting performance. Algur et al. [19]
proposed a system which gives spamicity score of a web page
based on mixed features of content and link-based. The pro-
posed system in [19] adopts an unsupervised approach, unlike
traditional supervised classifiers, and a threshold is determined
by empirical analysis to act as an indicator for a web page to
be spam or non-spam. Luckner et al. [20] created a web spam
detector using features based on lexical items. For that, they
created three web spam detectors and proposed new lexical-
based features that are trained and tested using WEBSPAM-
UK data sets of 2006 and 2007 separately, then they trained
the classifiers using WEBSPAM-UK 2006 data set but they
use WEBSPAM-UK 2007 for testing. Then, the authors based
on the results of the first and second detectors as a reference
for the third detector, where they showed that the data from
WEBSPAM-UK 2006 can be used to create classifiers that
work stably both on the WEBSPAM-UK 2006 and 2007 data
sets. Moreover, Goh et al. [21] exploited web weight properties
to enhance the web spam detection performance on a web
spam data set WEBSPAM-UK 2007. The overall performance
in [21] outperformed the benchmark algorithms up to 30.5%
improvement at the host level, and 6−11% improvement at the
page level. At the level of OSNs, the use of social media can
be exploited negatively as the impact of OSNs has increased
recently and has a major impact on public opinion. For
example, one of the common ways to achieve media blackout
is to employ large groups of automated accounts (bots) to
influence the results of the political elections campaigns or
spamming other users’ accounts. Cresci et al. [22] proposed
an online user behavior model which represents a sequence
of string characters corresponding to the user’s online actions
on Twitter. The authors in [22] adapt biological Deoxyri-
bonucleic Acid (DNA) techniques to online user behavioral
actions, which are represented using digital DNA to distinguish
between genuine and spambot accounts. They make use of
the assumption of the digital DNA fingerprinting techniques
to detect social spambots by mining similar sequences, and
for each account, they extract a DNA string that encodes its
behavioral information from created data set of spambots and
genuine accounts. Thereafter, Cresci et al. [23] investigate the
major characteristics among group of users in OSNs. The study
in [23] is an analysis of the results obtained in DNA-inspired
online behavioral modeling in [22] to measure the level of
similarities between the real behavioral sequences of Twitter
user accounts and synthetic accounts. The results in [23] show
that the heterogeneity among legitimate behaviors is high and
not random. Later, Cresci et al. in [24] envisage a change in the
spambot detection approach from reaction to proaction to grasp
the characteristics of the evolved spambots in OSNs using the
logical DNA behavioral modeling technique, and they make
use of digital DNA representation as a sequence of characters.
The proactive scheme begins with modeling known spambot
accounts with digital DNA, applying genetic algorithms to
extract new generation of synthetic accounts, comparing the
current state-of-art detection techniques to the new spambots,
then design novel detection techniques.

More relevant to our work are string pattern matching-
based techniques that detect spambots based on their actions

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 21 / 77

(i.e., based on how they interact with the website these
spambots attack) [25] [26]. These techniques model the user’s
log as a large string (sequence of elements corresponding
to actions of users or spambots) and common/previous web
spambot actions as a dictionary of strings. Then, they perform
pattern matching of the strings from the dictionary to the large
string. If a match is found, then they state that a web spambot
has been detected. For example, the work by Hayati et.al
[25] proposes a rule-based, on-the-fly web spambot classifier
technique, which identifies web spambots by performing exact
string pattern matching using tries. They introduce the idea
of web usage behavior to inspect spambots behavior on the
web. For that, they introduce an action string concept, which
is a representation of the series of web usage actions in
terms of index keys to model user behavior on the web. The
main assumptions of Hayati et.al proposed method are: web
sites spambots mainly to spread spam content rather than
consume the content, and the spambot sessions last for some
seconds unlike the human sessions that last normally for a
couple of minutes. The trie data structure is built based on
the action strings for both human and spambots where each
node contains the probability of a specific action being either
human or spambot. Each incoming string through the trie is
validated, and the result falls into two categories: match and
not match. Hayati et.al used Matthews Correlation Coefficient
(MCC) of binary classification to measure the performance
of their proposed framework. The work of [26] improves
upon [25] by considering spambots that utilize decoy actions
(i.e., injecting legitimate actions, typically performed by users,
within their spam actions, to make spam detection difficult),
and using approximate pattern matching based on the Fast
computation using Prefix Table FPT algorithm [27] under
Hamming distance model to identify spambot action strings
in the presence of decoy actions. However, both [25] and [26]
are limited in that they consider consecutive spambot actions.
This makes them inapplicable in real settings where a spambot
begins to take on sophisticated forms of creative deception
and needs to be detected from a log representing actions of
both users and spambots, as well as settings where a spambot
injects legitimate actions in some random fashion within a time
window to deceive detection techniques. Also, both [25] and
[26] do not address the issue of time (the spambot can pause
and speed up) or errors (deceptive or unimportant actions). The
algorithms presented here are not comparable to [25] and [26]
as they address different issues.

III. BACKGROUND AND PROBLEMS DEFINITIONS

In this section, we introduce the main concepts and defi-
nitions of the key terms used throughout this paper. Then, we
state the main problems that the paper will address.

A. Background
Let T = a0a2 . . . an−1 be a string of length |T | = n, over

an alphabet Σ, of size |Σ| = σ. The empty string ε is the string
of length 0. For 1 ≤ i ≤ j ≤ n, T [i] denotes the ith symbol
of T , and T [i, j] the contiguous sequence of symbols (called
factor or substring) T [i]T [i+ 1] . . . T [j]. A substring T [i, j] is
a suffix of T if j = n and it is a prefix of T if i = 1. A string
p is a repeat of T , iff p has at least two occurrences in T . In
addition p is said to be right-maximal in T , iff there exist two
positions i < j such that T [i, i+ |p|−1] = T [j, j+ |p|−1] = p

and either j + |p| = n+ 1 or T [i, i+ |p|] 6= T [j, j + |p|] [28],
[29]. For convenience, we will assume each T ends in a special
character $, where $ does not appear in other positions and it
is less than a for all a ∈ Σ.

A degenerate or indeterminate string , is defined as a
sequence X̃ = x̃0x̃1 . . . ˜xn−1, where x̃i ⊆ Σ for all 0 ≤ i ≤
n−1 and the alphabet Σ is a non-empty finite set of symbols of
size |Σ|. A degenerate symbol x̃ over an alphabet Σ is a non-
empty subset of Σ, i.e. x̃ ⊆ Σ and x̃ 6= ∅. |x̃| denotes the size
of x̃ and we have 1 ≤ x̃ ≤ |Σ|. A degenerate string is built over
the potential 2|Σ|−1 non-empty subsets of letters belonging to
Σ. If |x̃| = 1, that is |x̃| repeats a single symbol of Σ, we say
that x̃i is a solid symbol and i is a solid position. Otherwise,
x̃i and i are said to be a non-solid symbol and non-solid
position respectively. For example, X̃ = ab[ac]a[bcd]bac is a
degenerate string of length 8 over the alphabet Σ = {a, b, c, d}.
A string containing only solid symbols will be called a solid
string. A conservative degenerate string is a degenerate string
where its number of non-solid symbols is upper-bounded by a
fixed position constant c [30] [31]. The previous example is a
conservative degenerate string with c = 2.

A suffix array of T is the lexicographical sorted array
of the suffixes of the string T i.e., the suffix array of T is
an array SA[1 . . . n] in which SA[i] is the ith suffix of T
in ascending order [32]–[34]. The major advantage of suffix
arrays over suffix trees is space. The space needed using
suffix trees increases with alphabet size. Thus, suffix arrays
are more useful in computing the frequency and location of
a substring in a long sequence, when the alphabet is large
[33]. LCP (T1, T2) is the length of the longest common prefix
between strings T1 and T2 and it is usually used with SA such
that LCP [i] = lcp(TSA[i], TSA[i−1]) for all i ∈ [1..n] [29]
[32].

The suffix tree T for a string S of length n over the alphabet
Σ is a rooted directed compacted trie built on the set of suffixes
of S. The suffix tree has n leaves and its internal nodes have at
least two children, while its edges are labelled with substrings
of S. The labels of all outgoing edges from a given node
start with a different character. All leaves of the suffix tree
are labelled with an integer i, where i ∈ {1 . . . n} and the
concatenation of the labels on the edges from the root to the
leaf gives us the suffix of S which starts at position i. The nodes
of the (non-compacted) trie, which have branching nodes and
leaves of the tree are called explicit nodes, while the others
are called implicit nodes. The occurrence of a substring P in
S is represented on T by either an explicit node or implicit
node and called the locus of P . The suffix tree T can be
constructed in O(n) time and space. In order to have one-to-
one correspondence between the suffixes of S and the leaves
of T, a character $ /∈ Σ is added to the end of the label edge
for each suffix i to ensure that no suffix is a prefix of another
suffix. To each node α in T is also associated an interval of
leaves [i..j], where [i..j] is the set of labels of the leaves that
have α as an ancestor (or the interval [i..i] if α is a leaf labelled
by i). The intervals associated with the children of α (if α is
an internal node) form a partition of the interval associated
with α (the intervals are disjoints sub-intervals of [i..j] and
their union equals [i..j]). For any internal node α in the suffix
tree T, the concatenation of all edge labels in the path from
the root to the node α is denoted by ᾱ and the string depth of
a node α is denoted by |ᾱ| [28].

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 22 / 77

Definition 1. A TEMPORALLY ANNOTATED ACTION SE-
QUENCE is a sequence T = (a0, t0), (a1, t1)...(an, tn), where
ai ∈ A, with A set of actions, and ti represents the time that
action ai took place. Note that ti < ti+1 , ∀ i ∈ [0, n] see
(Figure 1).

a0

t 0

a1

t 1

a2

t 2

a3

t 3

an

t n

Figure 1. Temporally annotated action sequence T.

Definition 2. AN ACTION SEQUENCE is a sequence: s1...sm,
where si ∈ A, with A is the set of all possible actions.

Definition 3. A DICTIONARY Ŝ is a collection of tuples
〈Si,Wi〉, where Si is a temporally annotated sequence cor-
responding to a spambot and Wi is a time window (total
estimated time for all set of actions performed by the spambot).

Definition 4. The Enhanced Suffix Array (ESA) is a data
structure consisting of a suffix array and additional tables
which can be constructed in linear time and considered as
an alternative way to construct a suffix tree which can solve
pattern matching problems in optimal time and space [35] [36].

Definition 5. The Generalized Enhanced Suffix Array (GESA)
is simply an enhanced suffix array for a set of strings, each
one ending with a special character and usually is built to find
the Longest Common Sequence (LCS) of two strings or more.
GESA is indexed as a pair of identifiers (i1, i2), one identifying
the string number, and the other is the lexicographical order
of the string suffix in the original concatenation strings [37].

B. Problems definitions
Web spambots are becoming more advanced, utilizing

techniques that can defeat existing spam detection algorithms.
These techniques include performing a series of malicious
actions with variable time delays, repeating the same series of
malicious actions multiple times, and interleaving legitimate
actions with malicious and unnecessary actions. In response,
we define our problems in the following sections and give a
summary on our algorithms which we use to detect spambots
utilizing the aforementioned techniques. Our algorithms take
into account the temporal information, because it considers
time annotated sequences and requires a match to occur
within a time window.

Problem 1: DECEPTION WITH ERRORS: Given a tem-
porally annotated action sequence T (aj , tj), a dictionary Ŝ
containing sequences Si each associated with a time window
Wi, a minimum frequency threshold f , and a maximum
Hamming distance threshold k, find all occurrences of each
Si ∈ Ŝ in T , such that each Si occurs: (I) at least f times
within its associated time window Wi, and (II) with at most k
mismatches according to Hamming distance.

Problem 2: DECEPTION WITH DISGUISED ACTIONS AND
ERRORS: Given a temporally annotated action sequence T
(aj , tj), a dictionary S containing sequences Ŝi each has a
c non-solid symbol (represented by ’#’), associated with a
time window Wi, a minimum frequency threshold f , and a
maximum Hamming distance threshold k, find all occurrences
of each Ŝi ∈ S in T , such that each Ŝi occurs: (I) at least f

times within its associated time window Wi, and (II) with at
most k mismatches according to Hamming distance.

Problem 3: DECEPTION WITH DON’T CARES ACTIONS:
Given a temporally annotated action sequence T (aj , tj),
a dictionary Ŝ containing sequences Si over the alphabet
Σ∪{∗}, each associated with a time window Wi, a minimum
frequency threshold f , and a maximum Hamming distance
threshold k, find all occurrences of each Si ∈ Ŝ in T , such
that each Si occurs: (I) at least f times within its associated
time window Wi, and (II) with at most k mismatches
according to Hamming distance.

In the following sections, we present a summary on our al-
gorithms which we use to tackle the aforementioned problems.
It is worth noting that the algorithms require a preprocessing
stage before including the main algorithm. This includes
input sequences temporally annotated actions T where these
temporally annotated sequences are produced from the user’s
logs consisting of a collection of http requests. Specifically,
each request in a user log is mapped to a predefined index
key in the sequence and the date-time stamp for the request in
the user log is mapped to a time point in the sequence. Then,
the algorithm extracts the actions of the temporally annotated
action sequence T into a sequence Ta that contains only the
actions a0 . . . an from T .

IV. DECEPTION WITH ERRORS

Current spambot countermeasure tools are mainly based
on the analysis of the spambot content features which can
help in distinguishing the legitimate account from the fake
account. Furthermore, there are tools that work on the net-
work level by tracking the excessive number of different IP
addresses over a network path for a period of time that might
indicate the presence of a spambot network. However, these
techniques do not effectively identify the behavioural change
of the spambot where most of them did not come up with
satisfactory results. At this regard, the spammer is constantly
trying to change the spambot actions behaviour to make it
appear like human actions, either by replacing specific actions
by others or changing the order of actions which ultimately
leads to the primary goal of creating the spambot to evade the
detection. This type of manipulation falls under the umbrella
of creative deception which intentionally causes errors in order
to bypass the existing detection tools. For example, suppose
a spambot designed to promote the selling of products to
the largest number of websites as a sequence of actions:
{User Registration, View Home Page, Start New Topic, Post
a Comment on Products, View Topics, Reply to Posted Topic
"with Buy Link"} can be redesigned by replacing a few actions
with others such that it does not affect the goal of the spambot
as following: {User Registration, View Home Page, Update
a Topic, Post a Comment on Products, Preview Topic, Reply
to Posted Comment "with Buy Link"}. To solve this type of
problems, the solution should take into account the occurrence
of spambot actions with mismatches. For that, our contribution
to solve PROBLEM 1 supposes that the spambot performs the
same sequence of malicious actions multiple times. Thus, we
require a sequence to appear at least f times to attribute
it as a spambot. In addition, we take into account the fact
that spambots perform their actions within a time window.
We consider mismatches, and we assume that the spambots

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 23 / 77

dictionary and parameters are specified on domain knowledge
(e.g. from external sources or past experience).

Uncover Deception with errors
Our algorithm for solving (PROBLEM 1) needs to perform

pattern matching with k errors where each sequence Si in Ŝ
should occur in T at least f times within its associated time
window Wi. For that, we employ an advanced data structure
Generalized Enhanced Suffix Array (GESA) with the help of
Kangaroo method [38]. First, our algorithm constructs GESA
for a collection of texts to compute the Longest Common
Sequence LCS between the sequence of actions Ta and the
dictionary Ŝ in linear time and space. The algorithm concate-
nates sequences (Ta and spambots dictionary Ŝ) separated by
a special delimiter at the end of each sequence to build our
GESA, using almost pure Induced-Sorting suffix array [39] as
follows:

GESA(Ta, ŜSi
) = Ta$0S1$1S2$2 . . . Sr$r

such that, S1 . . . Sr are sets of spambot sequences that
belong to dictionary ŜSi , and $0, . . . , $r are special symbols
not in Σ and smaller than any letter in Ta with respect
to the alphabetical order. Then, the algorithm constructs
GESAR, a table which retains all the lexicographical ranks
of the suffixes of GESA. Our algorithm uses the collection
of tables (GESA, GESAR, LCS, T, Ŝ) to detect each
sequence Si = s1 . . . sm in T = (a0, t0), (a1, t1) . . . (an, tn)
that occurs with a maximum number of mismatches k
in the spambot time window Wi. To do that, for each
spambot sequence Si in the spambot dictionary Ŝ, the
algorithm calculates the longest common sequence LCS
between Si and Ta starting at position 0 in sequence Si

and position j in sequence Ta such that the common
substring starting at these positions is maximal as follows:

LCS(Si, Ta) = max(LCP (GESA(i1, i2), GESA(j1, j2)) = l0,

Where l0 is the maximum length of the longest common

prefix matching characters between GESA(i1, i2) and
GESA(j1, j2) until the first mismatch occurs (or
one of the sequences terminates). Next, we find the
length of the longest common subsequence starting
at the previous mismatch position l0 which can be
achieved using the Kangaroo method as follows:

max(LCP (GESA(i1, i2 + l0 + 1), GESA(j1, j2 + l0 + 1)) = l1

The algorithm will continue to use the Kangaroo method to

find the other number of mismatches, until the number of
errors is greater than k or one of the sequences terminates.
Finally, in each occurrence of Si in Ta, the algorithm will
check its time window Wi using the dictionary Ŝ and T such
that it sums up each time ti associated with its action ai in T
starting at the position j2 in GESA(j1, j2) until the length of
the spambot is |Si|, and compares it to its time window Wi.
If the resultant time is less than or equal to Wi, the algorithm
considers that the pattern sequence corresponds to a spambot.

V. DECEPTION WITH DISGUISED ACTIONS AND ERRORS

Spammers might attempt to deceive detection tools by cre-
ating more sophisticated sequences of actions in a creative way
as their attempt to disguise their actions is by varying certain

actions and making some errors. For example, a spambot takes
the actions AFCDBE, then AGCDBE, then AGDDBE
etc. This can be described as A[FG][CD]DBE. They try to
deceive by changing the second and third action. The action
[FG] and [CD] are variations of the same sequence. We will
call the symbols A,D,B,E solid, the symbols [FG] and [CD]
indeterminate or non-solid and the string A[FG][CD]DBE
degenerate string which is denoted by S̃ . At this case, we are
not concerned which actions will be disguised, but we assume
that the number of attempts to disguise is limited by a constant
c and the number of errors is bounded by k.

Uncover Deception with Disguised Actions and Errors

Our algorithm for solving (PROBLEM 2) uses the following
three steps which make the pattern matching with disguised
actions fast and efficient:

Step 1: For each non-solid sj occurring in a degenerate
pattern P̃ = s1 . . . sm, we substitute each sj with ’#’ symbol,
where ’#’ is not in Σ. Let P̂ be the resulting pattern from the
substitution process and will be considered as a solid pattern,
see (Table I).

TABLE I. CONVERTING P̃ TO P̂

P̃ A [FG] [CD] D B E

P̂ A #1 #2 D B E

Step 2: This step is similar to the algorithm being used
in PROBLEM 1, which constructs GESA to concatenate a
collection of texts (Ta and set of action sequences SŜi

)
separated by a special delimiter at the end of each sequence
as follows:

GESA(Ta, SŜi
) = Ta!0Ŝ1!1Ŝ2!2 . . . Ŝr!r

Such that, Ŝ1 . . . Ŝr are set of spambots sequences that belong
to dictionary SŜi

, and !0, . . . , !r are special symbols not in
Σ and smaller than any alphabetical letter in Ta and smaller
than ’#’ with respect to the alphabetical order. The algorithm
works similarly to the algorithm described in the previous
section with the help of the Kangaroo method in addition to
hashMatchTable (Table II) to do bit masking. At any time, the
algorithm encounters ’#’ at the matching pattern, it will get
into the Verification process.

Step 3 (Verification process): At this step, the algorithm
considers each ’#’ as an allowed mismatch and does bit
masking operation using hashMatchTable, to find whether the
current comparing action ai in Ta has a match with one of the
actions in ’#l’. The columns of hashMatchTable are indexed
by the (ascii code) of each alphabets in Σ by either using the
capital letters or small letters to make the pattern matching
testing fast and efficient.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 24 / 77

TABLE II. HASHMATCHTABLE OF THE PATTERN
P̃1 = A[FG][CD]DBE WHERE ITS CONVERSION IS

P̂1 = A#1#2DBE

asscii(ai) 65 66 67 68 69 70 71 . . . 88 89 90
ai A B C D E F G . . . X Y Z

P̂1#1 0 0 0 0 0 1 1 0 . . . 0 0

P̂1#2 0 0 1 1 0 0 0 0 . . . 0 0
. .

P̂r#l .

VI. DECEPTION WITH DON’T CARES ACTIONS

This type of creative deception can be used when we do
not care about the type of some actions, which appear between
important actions in a sequence of actions. This is important
when we want to examine a sequence of actions where some
of the actions should be included in the same order to be
carried out regardless of the type of other actions in between.
For example, travel booking websites which are specialized in
selling products and services such as booking flights, hotels,
and rental cars through the company itself or through an
online travel agency are the most vulnerable businesses to
spambots. More accurately, spambots are commonly used at
those traveling portals to transfer customers from a specific
traveling portal to a competitive one in seconds. This can be
done by using an automated script called price scraping, which
helps steal real-time pricing data automatically from a targeted
traveling website to the competitor one. This can help in the
decision making of the competitor’s products prices, which
will be adjusted to a lower price to attract more customers.
The competitors also can use web scrapping which helps steal
the content of the entire traveling website or some parts, with
the intent to have the same offers with some modifications that
will give them a competitive advantage. For that, we should
employ the AI approach using clever algorithms, to detect the
most threatened actions in a sequence of actions. For example,
suppose a bot script designed to steal some parts of the targeted
website (such as pages, posts, etc.), and make a click fraud
on selected advertisements as follows: (Login website:A, Web
admin section:B, Select pages:C, Export:D, Save to file:E, Get
element:F, Get "ad1":G, Click():H). Note that, we give an
index key for each action, for it to be easy to create a sequence
of actions, like that: ABCDEFGH . As we see, there are
some actions that can be replaced with others such as action
(Select pages:C) which can be any other select (posts, images,
etc.), and the same thing for the actions (EFG). Those type
of actions are the ones we "don’t care" about, and thus, we
can formulate the bot as follows: AB ∗D ∗ ∗ ∗H .

Uncover Deception with Don’t Cares Actions
Our algorithm for solving (PROBLEM 3) uses a fast and

efficient algorithm which can locate all sequences of actions
P with "don’t cares" of length m in text of actions S of length
n in linear time, using suffix tree of S and Kangaroo method.
Suppose we have this sequence (P = AB ∗D ∗∗∗H), and we
want to locate all occurrences of pattern P in log of actions
S. Our algorithm will solve it using the following steps:

• Build the suffix tree of S
• Divide P into sub-patterns Pk:
P1P2P3 = (AB∗)(D ∗ ∗∗)(H)

• Using the suffix tree of S and the Kangaroo method which
can be applied to selected suffixes of the suffix tree of

S by the use of a predefined computational method to
answer subsequent queries in O(k) time. This will find
all occurrences of pattern P with "don’t cares" in text
S such that each query tests the explicit actions of each
sub-pattern without caring of "don’t cares" actions which
are represented by ’*’.

VII. CONCLUSION AND FUTURE WORK

We have presented our proposed algorithms that can detect
a series of malicious actions which occur with variable time
delays, repeated multiple times, and interleave legitimate and
malicious actions in a creative way. Our proposed solutions
tackled different types of creative deception that spammers
might use to defeat existing spam detection techniques such
as using errors, disguised, and "don’t cares" actions. Our
algorithms took into account the temporal information because
they considered time annotated sequences and required a match
to occur within a time window. The algorithms solved the
problems exactly in linear time and space, and they employed
advanced data structures to deal with problems efficiently. We
are planning to extend this work by designing new methods
for different variations of uncertain sequences, e.g., introduc-
ing probabilities (calculating whether it is false positive or
false negative), statistics (frequency of symbols), and weights
(penalty matrices for the errors).

REFERENCES
[1] E. Roberts, “Bad bot report 2020: Bad bots strike back,”

2020. [Online]. Available: https://www.imperva.com/blog/bad-bot-
report-2020-bad-bots-strike-back/

[2] M. Najork, “Web spam detection.” Encyclopedia of Database Systems,
vol. 1, 2009, pp. 3520–3523.

[3] R. K. Roul, S. R. Asthana, M. Shah, and D. Parikh, “Detecting spam
web pages using content and link-based techniques,” Sadhana, vol. 41,
no. 2, 2016, pp. 193–202.

[4] S. Ghiam and A. N. Pour, “A survey on web spam detection methods:
taxonomy,” arXiv preprint arXiv:1210.3131, 2012.

[5] J. Yan and A. S. El Ahmad, “A low-cost attack on a microsoft captcha,”
in CCS. ACM, 2008, pp. 543–554.

[6] A. Zinman and J. S. Donath, “Is britney spears spam?” in CEAS
2007 - The Fourth Conference on Email and Anti-Spam, 2-3 August
2007, Mountain View, California, USA, 2007. [Online]. Available:
http://www.ceas.cc/2007/accepted.html#Paper-82

[7] S. Webb, J. Caverlee, and C. Pu, “Social honeypots: Making friends
with a spammer near you.” in CEAS, 2008, pp. 1–10.

[8] P. Heymann, G. Koutrika, and H. Garcia-Molina, “Fighting spam on
social web sites: A survey of approaches and future challenges,” IEEE
Internet Computing, vol. 11, no. 6, 2007, pp. 36–45.

[9] P. Hayati, K. Chai, V. Potdar, and A. Talevski, “Behaviour-based web
spambot detection by utilising action time and action frequency,” in In-
ternational Conference on Computational Science and Its Applications,
2010, pp. 351–360.

[10] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, C. Zhang, and
K. Ross, “Identifying video spammers in online social networks,” in
International workshop on Adversarial information retrieval on the web.
ACM, 2008, pp. 45–52.

[11] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam
with trustrank,” in Proceedings of the 30th international conference on
very large data bases (VLDB), 2004.

[12] Z. Gyongyi, P. Berkhin, H. Garcia-Molina, and J. Pedersen, “Link
spam detection based on mass estimation,” in Proceedings of the 32nd
international conference on Very large data bases. VLDB Endowment,
2006, pp. 439–450.

[13] M. Egele, C. Kolbitsch, and C. Platzer, “Removing web spam links
from search engine results,” Journal in Computer Virology, vol. 7, no. 1,
2011, pp. 51–62.

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 25 / 77

[14] F. Ahmed and M. Abulaish, “A generic statistical approach for spam de-
tection in online social networks,” Computer Communications, vol. 36,
no. 10-11, 2013, pp. 1120–1129.

[15] V. M. Prieto, M. Álvarez, and F. Cacheda, “Saad, a content based web
spam analyzer and detector,” Journal of Systems and Software, vol. 86,
no. 11, 2013, pp. 2906–2918.

[16] A. H. Wang, “Detecting spam bots in online social networking sites: a
machine learning approach,” in CODASPY, 2010, pp. 335–342.

[17] N. Dai, B. D. Davison, and X. Qi, “Looking into the past to better
classify web spam,” in Proceedings of the 5th international workshop
on adversarial information retrieval on the web, 2009, pp. 1–8.

[18] L. Araujo and J. Martinez-Romo, “Web spam detection: new classifi-
cation features based on qualified link analysis and language models,”
IEEE Transactions on Information Forensics and Security, vol. 5, no. 3,
2010, pp. 581–590.

[19] S. P. Algur and N. T. Pendari, “Hybrid spamicity score approach to web
spam detection,” in International Conference on Pattern Recognition,
Informatics and Medical Engineering (PRIME-2012). IEEE, 2012,
pp. 36–40.

[20] M. Luckner, M. Gad, and P. Sobkowiak, “Stable web spam detection
using features based on lexical items,” Computers & Security, vol. 46,
2014, pp. 79–93.

[21] K. L. Goh, R. K. Patchmuthu, and A. K. Singh, “Link-based web spam
detection using weight properties,” Journal of Intelligent Information
Systems, vol. 43, no. 1, 2014, pp. 129–145.

[22] S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi,
“Dna-inspired online behavioral modeling and its application to spam-
bot detection,” IEEE Intelligent Systems, vol. 31, no. 5, 2016, pp. 58–
64.

[23] ——, “Exploiting digital dna for the analysis of similarities in twitter
behaviours,” in 2017 IEEE International Conference on Data Science
and Advanced Analytics (DSAA). IEEE, 2017, pp. 686–695.

[24] S. Cresci, M. Petrocchi, A. Spognardi, and S. Tognazzi, “From reaction
to proaction: Unexplored ways to the detection of evolving spambots,”
in Companion Proceedings of the The Web Conference 2018, 2018, pp.
1469–1470.

[25] P. Hayati, V. Potdar, A. Talevski, and W. Smyth, “Rule-based on-the-fly
web spambot detection using action strings,” in CEAS, 2010.

[26] V. Ghanaei, C. S. Iliopoulos, and S. P. Pissis, “Detection of web spambot
in the presence of decoy actions,” in IEEE International Conference on
Big Data and Cloud Computing, 2014, pp. 277–279.

[27] C. Barton, C. S. Iliopoulos, S. P. Pissis, and W. F. Smyth, “Fast
and simple computations using prefix tables under hamming and edit
distance,” in International Workshop on Combinatorial Algorithms.
Springer, 2014, pp. 49–61.

[28] H. Alamro, G. Badkobeh, D. Belazzougui, C. S. Iliopoulos, and S. J.
Puglisi, “Computing the Antiperiod(s) of a String,” in CPM, pp. 32:1–
32:11.

[29] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-time
longest-common-prefix computation in suffix arrays and its applica-
tions,” in CPM, 2001, pp. 181–192.

[30] C. Iliopoulos, R. Kundu, and S. Pissis, “Efficient pattern matching in
elastic-degenerate strings,” arXiv preprint arXiv:1610.08111, 2016.

[31] M. Crochemore, C. S. Iliopoulos, R. Kundu, M. Mohamed, and
F. Vayani, “Linear algorithm for conservative degenerate pattern match-
ing,” Engineering Applications of Artificial Intelligence, vol. 51, 2016,
pp. 109–114.

[32] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix
array construction algorithms,” ACM Comput. Surv., vol. 39, no. 2, Jul.
2007.

[33] M. Yamamoto and K. W. Church, “Using suffix arrays to compute
term frequency and document frequency for all substrings in a corpus,”
Comput. Linguist., vol. 27, no. 1, Mar. 2001, pp. 1–30.

[34] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix array
construction,” JACM, vol. 53, no. 6, 2006, pp. 918–936.

[35] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees
with enhanced suffix arrays,” J. Discrete Algorithms, vol. 2, 2004, pp.
53–86.

[36] M. Abouelhoda, S. Kurtz, and E. Ohlebusch, Enhanced Suffix Arrays
and Applications, 12 2005, pp. 7–1.

[37] F. A. Louza, G. P. Telles, S. Hoffmann, and C. D. Ciferri, “Generalized
enhanced suffix array construction in external memory,” AMB, vol. 12,
no. 1, 2017, p. 26.

[38] N. Ziviani and R. Baeza-Yates, String Processing and Information
Retrieval: 14th International Symposium, SPIRE 2007 Santiago, Chile,
October 29-31, 2007 Proceedings. Springer, 2007, vol. 4726.

[39] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array construction
by almost pure induced-sorting,” in DCC, 2009, pp. 193–202.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 26 / 77

Evolvability Analysis of Multiple Inheritance
and Method Resolution Order in Python

Marek Suchánek and Robert Pergl

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: marek.suchanek,robert.pergl@fit.cvut.cz

Abstract—Inheritance as a relation for expressing generalisations
and specialisations or taxonomies is natural for conceptual
modelling, but causes evolvability problems in software imple-
mentations. Each inheritance relation represents a tight coupling
between a superclass and a subclass. Coupling in this case leads
to a combinatorial effect or even combinatorial explosion in
case of complex hierarchies. This paper analyses how multiple
inheritance and method resolution order affect these problems in
the Python programming language. The analysis is based on the
design of inheritance implementation patterns from our previous
work. Thanks to the flexibility of Python, it shows that inheritance
can be implemented with minimisation of combinatorial effect
using the patterns. Nevertheless, it is crucial to generate helper
constructs related to the patterns from the model automatically
for the sake of evolvability, including potential future in the
patterns themselves.

Keywords–Multiple Inheritance; Python 3; Evolvability; Method
Resolution Order; Composition Over Inheritance.

I. INTRODUCTION
Inheritance in software engineering is a widely used term

and technique in both system analysis and software develop-
ment. During analysis, where we want to capture a specific
domain, inheritance serves for refining more generic entities
into more specific ones, e.g., an employee as a specialisation
of a person. It is natural to have multiple inheritance, e.g.,
a wooden chair is a seatable physical object and is also a
flammable object. On the other hand, in Object-Oriented Pro-
gramming (OOP), inheritance can be used or even misused for
various purposes, including re-use of methods and attributes.
In OOP, it causes so-called ripple effects violating evolvability
of software [1]–[3].

The Python programming language is (according to [4]) the
most popular multi-paradigm and general-purpose program-
ming language. It is dynamically typed, but allows multiple
inheritance and also type hints [5]. Sometimes, Python is
also referred as “executable pseudocode” thanks to its easy-
to-read syntax and versatility [6]. For the implementation of
conceptual-level inheritance in OOP, there are several patterns
suggested in [2]. Although the patterns are compared and
evaluated, implementation examples and empirical proofs are
missing.

In this paper, we want to design implementation of the
conceptual-level inheritance patterns in Python using its spe-
cific constructs to allow easy use of the patterns instead of
traditional OOP inheritance that causes ripple effects. The
prototype implementation is design to serve for comparison
and demonstration of complexity added in terms of additional

constructs versus complexity caused by combinatorial effects.
First, Section II acquaints the reader with terminology and
the overall context. Then in Section III, we analyse how
traditional inheritance work in Python and then describe the
design and implementation of each pattern. Finally, Section IV
evaluates the implementations, as well as the traditional Python
inheritance and suggests possible future research.

II. RELATED WORK AND TERMINOLOGY
In this section, we briefly introduce the related research

and terminology required for our approach. It refers to vital
sources related to software evolvability, both conceptual-level
and OOP inheritance, and Python programming languages.

A. Normalized Systems Theory
Normalized Systems Theory [1] (NST) explains how to de-

sign systems that are evolvable using the fine-grained modular
structure and elimination of combinatorial effects, i.e., size of
change impact is proportional to the size of the system. The
book [1] also describes how to build such software systems
based on four elementary principles: Separation of Concerns,
Data Version Transparency, Action Version Transparency, and
Separation of States. Violation of any of these principles
leads to combinatorial effects. A code generation techniques
producing skeletons from the NS model and custom code
fragments are applied to make the development of evolvable
information systems possible and efficient.

The theory [1] states that the traditional OOP inheri-
tance inherently causes combinatorial effects. Without mul-
tiple inheritance, it even leads to the so-called “combinatorial
explosion”, as you need a new class for each and every
combination of all related classes to make an instance that
inherits different things from multiple classes, e.g., a class
JuniorBelgianEmployeeInsuredPerson. But even
with multiple inheritance, the generalisation/specialisation re-
lation is special and carries potential obstacles to evolvability.
First, the coupling between subclasses and superclasses with
the propagation of non-private attributes and methods is ev-
ident. Also, persisting the objects in traditional databases is
challenging [1] [2] [7].

B. Conceptual-Level Inheritance
Inheritance in terms of generalisation and specialisation

relation is ontologically aligned with real-world modelling. It is
tightly related to ontological refinements, where some concept
is further specified in higher detail. It forms a taxonomy – a
classification of things or concepts. For example, an employee
is a special type of a person, or every bird is an animal. In

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 27 / 77

conceptual modelling, inheritance is widely used to capture
taxonomies and refine concepts under certain conditions. Al-
though it is named differently in various languages, e.g., is-
a hierarchy, generalisation, inheritance, all usually work with
the ontological refinements. As shown in [8] different views on
inheritance can be made with respect to implementation, where
it can be (mis)used for reuse of classes without a relevant
conceptual sense [2] [9].

C. Object-Oriented Programming and Inheritance
When talking about inheritance in OOP, it is crucial to

distinguish between class-based and prototype-based style. In
prototype-based languages, objects inherit directly from other
objects through a prototype property. Basically, it is based on
cloning and refining objects using specially prepared objects
called prototypes [10]. On the other hand, a more traditional
and widespread class-based programming creates a new object
through a class’s constructor function that reserves memory
for the object and eventually initialises its attributes. In both
cases, inheritance is used for polymorphism by substituting su-
perclass instance by subclass instance with eventually different
behaviour [8] [11].

Both single and multiple inheritance can be used for
reuse of source code. In [8], a clear explanation between
essential and accidental (i.e., purely for reuse) use of inheri-
tance is made. Moreover, [12] shows how multiple inheritance
leverages reuse of code in OOP, including its consequences.
According to [13], Python programs use widely (multiple)
inheritance and it is comparable to use of inheritance in Java
programs of the similar sample set.

D. The Python Programming Language
Python is a high-level and general-purpose programming

language that supports (among others) the object-oriented
paradigm with multiple inheritance. It allows redefinition of
almost all language constructs including operators, implicit
conversions, class declarations, or descriptors for accessing and
changing attributes of objects and classes. Both methods and
constants for such redefinitions start and end with a double
underscore and are commonly called “magic”, e.g., magic
method __add__ for addition operator. The syntax is clean
as it uses indentation for code blocks and limits the use of
brackets. Python can be used for all kinds of application from
simple utilities and microservices to complex web application
and data analysis [5] [13].

Often, Python is used for prototyping, and then the
production-ready system is built in different technologies such
as Java EE or .NET for enterprise applications and C/C++
or Rust for space/time optimisation. Another essential aspect
that makes Python a suitable language for prototyping is its
dynamic type system that allows duck typing [14], however
static typing is supported using annotations since version 3.5.
A Python application can be then checked using type checkers
or linters similarly to compilers, while preserving a flexibility
of dynamic typing [5] [15].

“The diamond problem” related to multiple inheritance is
solved using “Method Resolution Order” (MRO) that is based
on the C3 superclass linearisation algorithm. Normally, a class
in Python has method mro that lists the linearised superclasses.
It can also be redefined using metaclasses, i.e., classes that
have classes as its instances. By default, a class is a subclass
of class object and an instance of metaclass type. Class
object has no superclass and it is an instance of type. Class

type is a subclass of object and is an instance of itself [5]
[11].

III. PYTHON INHERITANCE ANALYSIS
In this section, we analyse how conceptual-level inheri-

tance implementation patterns proposed in [2] can be used in
Python. We discuss the implementation options with respect
to evolvability and ease of use, i.e., the impact of the pattern
on the potential code base.

For demonstration, we use a conceptual model depicted in
Figure 1 using OntoUML [9]. We use monospaced names of
class and object names in the following text, e.g., Person.
We strive to design the implementation of such a model where
object marek is an instance of multiple classes with minimal
development effort but also minimal combinatorial effects. Our
model also contains the potential diamond problem, i.e., class
AlivePerson inherits from Locatable via Insurable
but also via LivingBeing and Person. Overriding is also
included using derived attributes, as we avoid methods for the
sake of clarity; however, it would work equivalently.

«mixin»
Locatable

- location

{disjoint,
complete}

{disjoint,
complete}

«subkind»
Woman

- /greeting

«kind»
Man

- /greeting

marek: Person

«relator»
Employment

- position

«role»
Employee

«mixin»
Insurable

- condition

«phase»
DeceasedPerson

- deathdate
- /isAlive

«phase»
AlivePerson

- /isAlive

«kind»
Person

- name
- /isAlive
- /greeting

«category»
Living Being

- birthdate
- /age

employed in
1 1..*

Figure 1. Diagram of OntoUML example model with instance

A. Traditional OOP Inheritance
The first of the patterns uses a default implementation of

inheritance in the underlying programming language. In case
of Python, multiple inheritance with MRO allows creating sub-
classes for combinations given by the conceptual model. We
immediately run into the combinatorial effect. First, we need
to implement classes according to the model with inheritance
and call the initializer of superclass(es) in the initializer (i.e.
__init__ method). In case of single inheritance, it can be
easily resolved using the built-in super function, but in case
of multiple inheritance, all superclasses must be named again
as call of the function super returns only the first matching

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 28 / 77

according to MRO as shown in Section III-A. Also notice
that all arguments of the initializer must be propagated and
repeated. A possible optimization would be to use variadic
*args and **kwargs, but in exchange for readability and
checks with respect to number (and type) of arguments passed.
Another interesting fact in our example is that EmployeeMan
does not need to define the initializer, as it inherits the one from
Employee and Man inherits it from Person. If Man has its
own attributes, then EmployeeMan would have the initializer
similarly to AlivePerson.

class LivingBeing(Locatable):

def __init__(self, birthdate, location):
super().__init__(location)
self.birthdate = birthdate

@property
def age(self):

computation of age
return result

class Man(Person):

@property
def greeting(self):

return f'Mr. {self.name}'

class AlivePerson(Person, Insurable):

def __init__(self, name, birthdate, location,
condition):↪→

Person.__init__(self, name, birthdate,
location)↪→

Insurable.__init__(self, condition)

@property
def is_alive(self):

return True

class EmployeeMan(Employee, Man):
pass # Employee __init__ inherited

marek = EmployeeMan("Marek", ...)

Figure 2. Part of the traditional inheritance implementation

After having the model classes implemented, extra classes
must be generated as an object can be instance of only
one class. For example, marek is instance of such class
EmployeeMan. For our simple case, number of extra classes
is six – Man and Woman combined with AlivePerson,
DeceasedPerson, and Employee. Adding a single new
subclass of Person, e.g., DisabledPerson, would re-
sult in doubling the number and therefore a combinatorial
explosion. The second point where a combinatorial effect
resides is the order of superclasses (bases or base classes in
Python), which influences MRO. For instance, if Person and
Insurable define the same method – in our case the one
from Person – it would be resolved for execution according
to order in list EmployeeMan.mro(). On the attribute level,
each change propagates to all subclasses, i.e., it is again a
combinatorial effect. This can be avoided using the mentioned
**kwargs and their enforcing, as shown in Section III-A.
Knowledge of superclasses for initialization can be then used
to automatically call the initializer of all the superclasses.
We implement this in helper function init_bases, where
superclasses are iteratered a initialized in the reverse order to

follow the MRO, i.e., the initializer of first listed superclass is
used as the last one to eventually override effects of others.

With implementation shown in Section III-A, all classes
with initializers can be easily generated automatically from
the model with a single exception. The order of classes – i.e.,
if AlivePerson should be a subclass of Person and then
Insurable or vice versa – is not captured in the model,
but it is crucial for MRO. The order of superclasses has to be
encoded in the model, or alternatively all permutations must be
generated, which would result in a significantly higher number
of classes that are not necessarily needed. Navigation is done
naturally thanks to MRO and Python itself, for example,
marek.greeting or marek.location.

def init_bases(obj, cls, **kwargs):
for base in reversed(cls.__bases__):

if base is not object:
base.__init__(obj, **kwargs)

class Person(LivingBeing):

def __init__(self, *, name, **kwargs):
init_bases(self, Person, **kwargs)
self.name = name

class AlivePerson(Person, Insurable):

def __init__(self, **kwargs):
init_bases(self, AlivePerson, **kwargs)

...

class EmployeeMan(Employee, Man):

def __init__(self, **kwargs):
init_bases(self, EmployeeMan, **kwargs)

marek = EmployeeMan(name="Marek", ...)

Figure 3. Implementation of initializers and extra classes with use of
keyword arguments and helper function for model-driven development

B. The Union Pattern
The Union pattern basically merges an inheritance hier-

archy into a single class. In our case, the “core” class of
hierarchy can be naturally selected as Person. All subclasses
are uniquely merged into Person and Person merges also
all superclasses as shown in Section III-B. For example, if there
is another subclass of Insurable, it would not be merged
into Person. On the other hand, for example, a new subclass
of Man would be merged. This pattern is inspired closely by
the “single-table inheritance” used in relational databases, but
it immediately runs into problems once behaviour should be
implemented.

According to the pattern, each decision on generalisation
set of subclasses must be captured in the class that unions the
hierarchy. In our case, we need three discriminators – for Man
and Woman, for AlivePerson and DeceasedPerson,
and for Employee. Value of each discriminator described
what subclass(es) are “virtually” instantiated. All of these
generalisation sets are disjoint and complete with the exception
of the one with Employee that is not complete (i.e., not all
alive persons must be employees). If there is a non-disjoint
generalisation set, it would be solved using enumeration of all
possibilities for the discriminator. For example, if Man/Woman
is not disjoint nor complete, there would be four possible

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 29 / 77

options (no, just man, just woman, both) instead of current
two (just man or woman).

To allow polymorphism without branching and checking
the discriminator value and taking a decision on behaviour with
combinatorial effect, we use directly classes for delegation as
values for discriminators, similarly to the well-known “State
pattern”. With this implementation, it incorporates separation
of concerns and improves re-usability. It is crucial that all
attributes, i.e., data, are encapsulated in the single object that
is passed during the calls. Section III-B shows Delegation
descriptor for secure delegation of behaviour to separate
classes that even do not need to be instantiated; therefore,
static methods are used, and an instance of the union class
is passed.

class Man:

@staticmethod
def greeting(person):

return f'Mr. {person.name}'

class Delegation:

def __init__(self, discriminator, attr):
self.discriminator = discriminator
self.attr = attr

def __get__(self, instance, owner):
d = getattr(instance, self.discriminator)
a = getattr(d, self.attr) if d else None
return a(instance) if callable(a) else a

class Person:

greeting = Delegation('_d_man_woman',
'greeting')↪→

is_alive = Delegation('_d_alive_deceased',
'is_alive')↪→

age = Delegation('_x_living_being', 'age')

def __init__(self, name, birthdate, location,
condition):↪→

self.location = location
self.condition = condition
self.birthdate = birthdate
self.name = name
optional-subclass attributes
self.employment = None
self.deathdate = None
discriminators
self._d_man_woman = None
self._d_alive_deceased = None
self._d_employee = None
superclasses with behaviour
self._x_living_being = LivingBeing

def d_set_man(self):
self._d_man_woman = Man

def d_set_employee(self, employment):
self._d_employee = Employee
self.employment = employment

...

Figure 4. Part of union pattern implementation

It is essential to point out that this solution may reduce
the number of classes, but only of purely data classes without
behaviour. Union classes can be then easily generated from
a conceptual model. The detection of the “core” class is a
matter of the model – if OntoUML is used, naturally all

identity providers (e.g., with stereotype Kind) are suitable.
In modelling languages that have no such explicit indication,
a special flag has to be encoded in the model. Classes encapsu-
lating behaviour can also be easily generated from the model
and related to data class using the explained Delegation
descriptor. There is one problem with this pattern implemen-
tation – it does not support isinstance checks. When
avoiding inheritance, the only possible solution lies in special
metaclass that would override __instancecheck__. This
would also require to forbid instantiation of behaviour classes,
so it is unambiguous if the object is an instance of a data or
a behaviour class.

C. Composition Pattern
The composition pattern follows the well-known precept

from OOP – “composition over inheritance”. Similarly to
union pattern, a “core” class per hierarchy in the model must
be identified. Classes are then connected using association is-
a instead of inheritance. The Union pattern basically merges
an inheritance hierarchy into a single class. For the original
subclass, it is required to have a link to its superclass(es), but
the other direction is optional unless the generalization set is
complete or the superclass is abstract.

The final implementation of this pattern is based on the
improved traditional OOP inheritance. Instead of inheritance,
i.e., specification of superclasses, all superclasses from the
conceptual model are instantiated during the object initializa-
tion. During this step, a bidirectional link must be made to
allow navigation from both superclass and subclass instances.
The “core” class must be again chosen to allow creation of
composed object using multiple subclasses, e.g., an instance
of Person that is also an Employee and a Man.

class Delegation:

def __init__(self, p_name, a_name):
self.p_name = p_name
self.a_name = a_name

def __get__(self, instance, owner):
p = getattr(instance, f'{self.p_name}')
a = getattr(p, self.a_name) if p else None
return a(instance) if callable(a) else a

def __set__(self, instance, value):
p = getattr(instance, f'{self.p_name}')
setattr(p, self.a_name, value)

class LivingBeing:

location = Delegation('_p_locatable',
'location')↪→

def __init__(self, *, birthdate, _c_person=None,
_p_locatable=None, **kwargs):↪→

self._p_locatable = _p_locatable or
Locatable(_c_living_being=self,
**kwargs)

↪→

↪→

self._c_person = _c_person
self.birthdate = birthdate

...

Figure 5. Part of composition pattern implementation

The example in Section III-C shows that we also incorpo-
rated a Delegation descriptor. Although it results in repetition
when defining where to delegate, it clearly describes the origin

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 30 / 77

of a method or an attribute, and it can be generated easily.
With the fact that these parts can be generated, combinatorial
effects related to renaming or other changes of methods and
attributes used for delegation are mitigated. The diamond
problem is solved directly by passing child and parent class
objects as optional arguments during initialisations. It could
also be solved using metaclasses, but as this code can be
generated, it allows higher flexibility and eventual overriding.

As the built-in MRO is not used, the resolution must be
made manually on the model level similarly to the Union
pattern, i.e., to decide what overrides and what is overridden.
By replacing inheritance with bidirectional links, we managed
to significantly limit combinatorial effects, but in exchange
for the price in requiring additional logic and moving the
MRO into the model itself. Unfortunately, this implementation
needs also to incorporate model-consistency checks, as we do
not enforce multiplicity in child-parent links according to the
pattern design.

D. Generalisation Set Pattern
This pattern enhances the Composition pattern by adding

particular constructs that encapsulate logic regarding gener-
alisation sets. Inheritance relation is not transformed into is-a
association but into connection via a special entity that handles
related rules, such as complete or disjoint constraints and
cardinality. As we present in Section III-D this helps to remove
shortcomings of the Composition pattern and its difficult links
and composed-object instantiation. Instead of multiple child
links, there is just one per Generalisation Set (GS), and parent
links are changed accordingly. An object of GS class maintains
the inheritance and ensures the bi-directionality of links.

class Delegation:

...

def __get__(self, instance, owner):
gs = getattr(instance, f'{self.gs_name}')
p = getattr(gs, f'{self.p_name}')
a = getattr(p, self.a_name) if p else None
return a(instance) if callable(a) else a

...

class GS_ManWoman:

_gs_name = '_gs_man_woman'

disjoint = True
complete = True

def __init__(self, person, man=None,
woman=None):↪→

self.person = person
self.man = man
self.woman = woman
self.update_links()

def update_links(self):
setattr(self.person, self._gs_name, self)
if self.man is not None:

setattr(self.man, self._gs_name, self)
if self.woman is not None:

setattr(self.woman, self._gs_name, self)

...

Figure 6. Generalisation Set implementation example

Introduction of an intermediate object to encapsulate inher-
itance and related constraints adds complexity in two aspects.
First, the diamond problems must be still treated by sharing
superclass objects in the hierarchy for eventual reuse. Second,
the delegation must operate with the intermediary object when
accessing the target child (or parent) object. However, solutions
to these issues can be also generated directly from the model
and in principle – despite their complexity – they do not hinder
evolvability.

Finally, this solution (if entirely generated from a model)
is the most suitable, since it limits combinatorial effects and
allows to efficiently check consistency with the model in terms
of inheritance and generalisation set constraints. Although in
some cases, the GS object is not adding any value (e.g., a single
child and a single parent case), implementing a combination of
a generalisation set and composition patterns would make the
software code harder to understand. Unity in implementation
of conceptual-level inheritance is crucial here.

IV. IMPLEMENTATION SUMMARY AND FUTURE
RESEARCH

In this section, we summarize and evaluate achievements of
our research. Based on our observations and implementation of
inheritance using patterns, we evaluate inheritance in Python.
The patterns and its key aspects are compared in Table I. Then,
we also describe the future steps that we plan to do as follow-
up research and projects based on outputs described in this
paper.

A. Resulting Prototype Implementation
We demonstrated our implementation of all four previously

designed patterns. Mostly, results and related usability options
are consistent with the design. The more we minimize or
constrain combinatorial effect, the more complex and hard-to-
use (in terms of working with final objects) the implementation
gets. We were able to simplify use of objects for the price of
repetition and use of special constructs for delegation. Contrary
to the original patterns design, we were not able to efficiently
combine multiple patterns together based on various types of
inheritance used in the model. As a result, our implementation
of the most complex generalisation set pattern is suggested
as a prototype of how inheritance may be implemented if
one wants to avoid combinatorial effects while still needing
to capture inheritance in a generic way for models of any size
and complexity.

B. Evolvability of Python Inheritance
During the implementation of the patterns, it became

obvious that even high flexibility of programming language
and allowed multiple inheritance do not help in terms of
coupling and combinatorial effects caused by using class-based
inheritance. With a simple real-world conceptual model, we
were able to show how the combinatorial explosion endangers
the evolvability of software implementation. MRO algorithm
used in Python does not help with limiting combinatorial
effects. Rather it is the opposite since order in which super-
classes are enumerated significantly influences implementation
behaviour. Also, it makes harder to combine overriding from
two superclasses, for example, both class A and B implement
methods foo and bar but subclass C cannot inherit one from
A and other from B (solution is to override both and call it
from subclass manually).

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 31 / 77

TABLE I. COMPARISON OF THE INHERITANCE IMPLEMENTATION PROTOTYPES

Implementation Classes* Extra constructs CE-handling Issues

Traditional N + 2N 0 none initialization, order of superclasses, uncontrolled change propagation

Traditional + init_bases N + 2N init_bases function shared initialization shared attributes across hierarchy, order of superclasses, uncontrolled
change propagation

Union pattern 2 Delegation class shared class (merged) Separation of Concerns violated, maintainability, discriminators

Composition pattern N Delegation class shared initialization, delegation manual handling of GS constraints, added complexity (for humans)

GS pattern N + 1 Delegation class, GS helpers shared initialization, delegation added complexity (for humans)

(*) per single hierarchy of N classes, worst case (all combinations needed)

On the other hand, the flexibility of Python proved to
be useful while we were implementing the patterns. Thanks
to magic methods, descriptors, and metaclasses, the final
implementations allow creating easy-to-use and inheritance-
free objects even though underlying complex relations with
constraints are needed as shown in the examples. Notwith-
standing, such possibilities of Python are similar to constructs
and methods in other languages (e.g., reflection). While trying
to implement the patterns efficiently, we concluded that gener-
ating implementation from a model is crucial for evolvability
regardless of what technologies are used, as a lot of repetition
is needed.

C. Production-Ready Technology Stack
The goal of the paper was to use Python to show reference

patterns implementation prototypes. The next step may be to
leverage the lessons learned to formulate a single transfor-
mation description using production-ready technology stack,
e.g., Java EE. This final transformation of conceptual-level
inheritance should allow simple extensibility and customiza-
tions. Moreover, it should cover all possibilities with respect
to the underlying modelling language. This language does not
have to be OntoUML used in this paper; however, it must
be expressive enough to capture all the necessary details for a
correct implementation – for instance, hierarchy “core” classes.

D. Model-Driven Development
Having a final, production-ready, and well-described trans-

formation of conceptual-level inheritance into implementation,
it is not expected that it will be used to manually write source
code. An essential part would be generation of a source code
directly from the model capturing the inheritance together with
domain knowledge. Normalized Systems (NS) theory [1] and
related tooling can provide a way here using the so-called
expanders. The challenge here would be to encode inheritance
in the NS models directly or propose its extension, on the
other hand we can expect flexibility and guarantees in terms
of software evolvability.

V. CONCLUSIONS
In this paper, we analysed and demonstrated the evolvabil-

ity of inheritance in Python using already-designed implemen-
tation patterns. Although Python offers multiple inheritance
based on the method resolution order algorithm, software
written in Python that uses inheritance suffers from coupling
and related combinatorial effects similarly to software in other
languages. Nevertheless, thanks to the Python’s flexibility and
ability to redefine core constructs, we managed to implement
the conceptual-level inheritance implementation patterns easily
with minimisation of combinatorial effects, while maintaining
code readability. The suggestions for future development go
mostly in direction of generating a production-ready software

systems from conceptual models, where inheritance is used as
a natural construct used to reflect real-world domains.

ACKNOWLEDGEMENTS
This research was supported by the grant of Czech Tech-

nical University in Prague No. SGS20/209/OHK3/3T/18.

REFERENCES
[1] Herwig Mannaert, Jan Verelst, and Peter De Bruyn, Normalized Sys-

tems Theory: From Foundations for Evolvable Software Toward a
General Theory for Evolvable Design. Kermt (Belgium): Koppa, 2016.

[2] Marek Suchánek and Robert Pergl, “Evolvability Evaluation of
Conceptual-Level Inheritance Implementation Patterns,” in PATTERNS
2019, The Eleventh International Conference on Pervasive Patterns and
Applications, vol. 2019. Venice, Italy: IARIA, May 2019, pp. 1–6,
[retrieved: Aug, 2020]. [Online]. Available: https://www.thinkmind.org/
index.php?view=article&articleid=patterns_2019_1_10_78001

[3] Antero Taivalsaari, “On the Notion of Inheritance,” ACM Computing
Surveys, vol. 28, no. 3, September 1996, pp. 438–479.

[4] Pierre Carbonnelle, “PYPL: PopularitY of Programming Language,”
Feb 2020, [retrieved: Aug, 2020]. [Online]. Available: http://pypl.
github.io/PYPL.html

[5] Python Software Foundation, “Python 3.8.0 Documentation,” 2019,
[retrieved: Aug, 2020]. [Online]. Available: https://docs.python.org/3.
8/#

[6] David Hilley, “Python: Executable Pseudocode,” [retrieved: Aug, 2020].
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.211.7674&rep=rep1&type=pdf

[7] Andrei Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied, ser. C++ in-depth series. Addison-Wesley,
2001.

[8] Antero Taivalsaari, “On the Notion of Inheritance,” ACM Computing
Surveys, vol. 28, no. 3, September 1996, pp. 438–479.

[9] Giancarlo Guizzardi, Ontological Foundations for Structural Conceptual
Models. Centre for Telematics and Information Technology, 2005.

[10] Alan Borning, “Classes versus prototypes in object-oriented languages.”
in FJCC, 1986, pp. 36–40.

[11] John Hunt, “Class Inheritance,” in A Beginners Guide to Python 3
Programming. Springer, 2019, pp. 211–232.

[12] Fawzi Albalooshi and Amjad Mahmood, “A Comparative Study on the
Effect of Multiple Inheritance Mechanism in Java, C++, and Python
on Complexity and Reusability of Code,” International Joutnal of
Advanced Computer Science and Applications, vol. 8, no. 6, 2017, pp.
109–116.

[13] Matteo Orru et al., “How Do Python Programs Use Inheritance? A
Replication Study,” in 2015 Asia-Pacific Software Engineering Confer-
ence (APSEC). IEEE, 2015, pp. 309–315.

[14] Ravi Chugh, Patrick M Rondon, and Ranjit Jhala, “Nested refinements:
a logic for duck typing,” ACM SIGPLAN Notices, vol. 47, no. 1, 2012,
pp. 231–244.

[15] John Hunt, Advanced Guide to Python 3 Programming, ser. Undergrad-
uate Topics in Computer Science. Springer International Publishing,
2019.

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 32 / 77

On Evolvability Issues of Robotic Process Automation (RPA)

Geert Haerens

Department of Management Information Systems
Faculty of Business and Economics

University of Antwerp, Belgium
Engie IT — Digital & IT Consulting

Email: geert.haerens@engie.be

Herwig Mannaert

Department of Management Information Systems
Faculty of Business and Economics

University of Antwerp, Belgium
Email: herwig.mannaert@uantwerp.be

Abstract—Robotic Process Automation (RPA) receives a lot of
publication attention in business and academic publications.
RPA has also become big business, as it offers a cheap, fast
and non-intrusive solution for businesses who want to improve
their process performance while not having to re-engineer their
processes and/or overhaul their IT landscape. Current literature
points out some limitations for RPA but does not go much further
than some rules of thumb. Using the Normalized Systems (NS)
theory – a theory to study modular structures’ behavior under
change – we can surface that RPA has serious evolvability issues.
These evolvability issues have been observed as well by RPA
practitioners. This paper contributes to both the value of NS to
study evolvability and to point out the evolvability limitations of
RPA, which are currently underrepresented in related research.

Keywords–RPA; Normalized Systems; Evolvability

I. INTRODUCTION

RPA is popular in the landscape of business process
optimization methods. While executing a business process,
multiple applications may be used. In an ideal and fully digital
world, each process step can be handled by an IT system. The
IT systems can exchange information and trigger each other,
without the need for human intervention during to execution
of the business process. Most companies have not reached this
level of digitalization. They may lack applications to handle
a part of the process or have existing applications that are
not suited for application interaction and triggering. In those
cases, a human will bridge the gap between applications to
keep the process going. The idea behind RPA is to replace a
human, who is performing tedious and repetitive tasks within
or between applications, by a software robot - also known
as a bot. Like the human, the bot - a software program
operating on the user interface of a computer system [1]
- only acts via the user interface of the application(s) to
manipulate information stored in one or more applications.
Manipulations happen via mouse-clicks and keyboard-strokes,
just like humans would. RPA is a kind of outsourcing of
repetitive tasks to the computer. The bots are our new “Co-
workers” [2]. They are part of the future digital workforce [3].
A bot does not replace the human. A bot takes the “robot” out
of the human [4], meaning that repetitive/robotic tasks are no
longer done by the human, allowing human resources to focus
on more value-added activities.

RPA is realized by a client-based piece of software and
includes both a design- and a runtime aspect. The design-time
part of RPA is typically a low code environment that allows

Figure 1. RPA market predictions according to Forrester - from [5]

to define what the bot needs to do. The run bot is running on
a client-based machine, performing activities according to the
scenarios outlined during design time.

RPA works well on cases where structured data is available
as input and a clear, stable and standardized set of action
rules exist, such that the outcome of the performed actions
is unambiguous [4]. Typical targets for RPA are shared-
service-center activities, which are highly standardized, such
as financial, procurement, and HR Backoffice processes.

Process automation is widely accepted as a first step to
the digital transformation of a company. Techniques, such
as Business Process Management and Automation (BPM/A),
have been around for some time. While those focus on funda-
mentally changing and continuously improving the process,
RPA keeps the existing process and application landscape
intact. RPA takes the valuable human resources out of the
loop and replaces it by a bot. RPA promises faster, cheaper,
and better execution of specific processes in a non-intrusive
way. The RPA business is booming, both in terms of tooling
which allow the design and run of bots, as in the services
(consultancy) related to RPA, that include the selection of the
right process for RPA, creation of the business case, setup
of centers of excellence and operational maintenance of bots.

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 33 / 77

Figure 2. Combining AI (chatbots) and RPA for Customer Communications
- from [8]

Figure 1 shows the predictions Forrester [5] is making with
regards to the RPA market, both in tooling and services.

A great future is being projected for RPA, and that future
becomes even more ambitious if RPA would be combined
with Artificial Intelligence (AI) [6]. RPA can only work with
structured data. AI holds the promise to convert unstructured
data into structured data and continuously learn and improve in
this. By combining both AI and RPA, processes previously out
of reach for RPA become feasible candidates for automation.
Figure 2 outlines a process that includes both AI at the front
and RPA at the backend to interact with the customer [7].

Bright as this future may look, choosing the right process to
apply RPA to, is the critical success factor. Existing literature
limits itself to providing some rules of thumb. A critical aspect
of choosing the right process for RPA, is the stability of the
process. This aspect raises the question of how well RPA
performs under a set of anticipated changes. The Normal-
ized Systems theory [9]-[10] studies the effect of anticipated
changes on modular systems. The theory uses concepts of
classic engineering, such as system stability – Bounded Input =
Bounded Output - and statistical entropy - possible microstates
for a given macrostate - to determine the necessary conditions
a modular system must adhere to, in order for the system to
be stable under a set of anticipated changes. In this paper, NS
will be used to study the impact of change on RPA [11].

The remainder of this paper is structured as follows. In
Section II, RPA is being elaborated, including an overview of
existing and related work. The Section also includes a basic
introduction to NS. In Section III, the evolvability of RPA
will be investigated using a simple but realistic process related
to expense notes. In Section IV, two companies testify with
regards to their RPA initiative. In Section V, the theoretical
findings of Section III and the practical feedback from Sec-
tion IV will be discussed. Finally, Section VI concludes and
provides suggestions for further research.

II. LITERATURE STUDY AND RELATED WORK

This paper focusses on the ability of RPA to cope with
change and uses NS [11] theory as an analysis instrument.
The next paragraphs will provide an overview of known RPA
issues and a short introduction to NS.

A. Literature on RPA issues
In [12] it is stated that multiple publication can be found

about the various benefits of RPA, based on real-life implemen-
tations - 68% of publications - but less on academic research

Figure 3. RPA processe candidates by process frequency and complexity -
from [4]

on the topic -15% of publications). The remaining 18% are
literature studies. The literature study [12] focused on pub-
lications that could provide insight to the following research
questions: “RQ1: What is the current state and progress of
RPA?”, “RQ2: How is RPA defined and how does it relate to
BPMS”, and “RQ3: How is RPA used in practice according
to the scientific literature”.

RPA is taking up a good part of the current process
management industry and is frequently a subject of analysis
reports by Forrester and Gartner. Forrester analyst Craig Le
Clain has made multiple reports on RPA, including observed
limitations. The “Rule of five” [8] is an RPA design criteria
that comes back a few times in his reports. The rule states
that an RPA solution should limit itself of max five decisions,
access to 5 applications, and should not contain more than 500
clicks. The main motivation for this rule of thumb, the limited
rule capabilities, the static nature of the code, and vulnerability
to application changes are given. According to Le Clain[6]
[7][8], AI can help to overcome some of those issues. AI will
reduce robot maintenance (auto-adjust to application changes),
externalize decisions from the bot scripts, use unstructured
data as input, and team-up with chatbots for data input. Some
scenario’s for auto-correction include AI as well. Changes
to the application images/screens are to be detected by AI,
and will adjust the bot script automatically. AI can be fed
with information from outside of the RPA digital world, to
understand and interpret the context of changes and sending
alerts to bot control for issue that cannot be corrected with a
high degree of certainty.

In [4], Jovanović et all point out the benefit of the non-
intrusive nature of RPA. Business Process Management and
Automation can only work if the applications used in a process
have some integration points, like APIs, which allows the
manipulation of data elements and execution of tasks. Those
kind of integrations are more complicated and require higher
programming skills compared to the low-code environment
RPA often provides. With RPA, no adjustments of the existing
applications are required, which is a compelling fact for
businesses to choose RPA over BPM/A. Jovanovic et all [4]
sum up properties of processes suitable for RPA:

• Low cognitive requirements

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 34 / 77

Figure 4. RPA processe candidates by value of work and duration of work -
from [4]

• Access to multiple systems not required
• High Volume
• High probability of human error
• Limited exception handling

One may notice those are stricter compared to the “Rule
of 5” of Forrester. Previous studies [2] show that supporting
processing, such as those handled in shared service centers,
are better candidates for RPA than the core (key) business
processes. Supporting processes are more standardized and
fall into the RPA candidates regions outlined in Figure 3
and 4. The paper of Jovanovic et all [4] concludes with a
quote from Bill Gates [13]: ‘The first rule of any technology
used in a business is that automation applied to an efficient
operation will magnify the efficiency. The second is that
automation applied to an inefficient operation will magnify
the Inefficiency’.

In [2], Osmundsen et all refers to work of Bygstad [14],
which discusses the position of RPA in the IT organization.
RPA can be seen as a personal productivity tool for business
people, allowing them to automate parts of a process without
having to go via the IT department. Such an approach is
related to the setup of lightweight IT or Bimodal IT, as Gartner
calls it. Business is able to self automate without having
to startup big, lengthy, expensive, and sometimes frustrating
IT projects. Classic IT departments (heavyweight IT) are of
course, not happy with lightweight IT and often have a deep
aversion against bots. They see bots as a poor man’s integration
tool, not even worthy of the name IT solution. Bygstad [14]
argues RPA should be part of lightweight IT. The business
knows best its processes and will thus be more successful in
configuring the bot. Lightweight IT should be loosely coupled
to heavyweight IT. This does introduce additional challenges,
such as the lack of control mechanisms around RPA, leading to
spaghetti-solutions and automating the wrong processes. The
lack of end-to-end process views leading to local optimization,
not necessarily global optimization, is listed as a second
challenge. To overcome those challenges, one can see RPA
in lightweight IT as a way to foster innovation and build
enthusiasm for digitalization, while tightening the relationship
with heavyweight IT at a later point in time.

Figure 5. Method followed to deduce rule base, based on learing from
human application interaction - from [15]

Goa et all [15] focus on the configuration of the bot. Instead
of consciously creating the rule base the bot must use, they
propose to learn the rule base from a human. An artifact is
being proposed (see Figure 5) , which will deduce the rule base
based on the interaction the human has with the application.
After a while, the artifact will have sufficiently learned about
the usage of the system to take over from the human. In their
current approach, nothing is mentioned about re-training the
bot in case of application changes and thus the impact of
change on the bot.

In [16] the risks associated with RPA are divided into three
categories: governance risks, technical risks, and process risks.
The governance risks are related to the operating model asso-
ciated with RPA: centralized, federated, or decentralized. Each
operating model has different characteristics, which influence
RPA maturity. The technical risks are about the impact of
IT availability on RPA. If the technical side is not working,
the process is directly impacted. The process risks are about
the selection of the correct process to apply RPA to and
the development steps to come to a working solution. RPA
can execute repetitive work faster and with higher quality.
However, if the process is not properly reflected or if it gets
erroneous data as input, it will make mistakes more swiftly and
with certainty [1]. Hence the need to select only processes that
are well known and have stable and reliable input data.

To best of the authors efforts, no papers were been found
that explicitly address the evolvability issues of RPA (main
contribution of this paper). The literature that discusses the
technical risks are the closets match. They describe the effects
of change, not the root cause of these effects.

B. Introduction to NS
NS originates from the field of software development [9]

[17] [10] . There is a widespread belief in the software
engineering community that using software modules decrease
complexity and increases evolvability. It is also well known
that one should strive towards “low coupling and high co-
hesion”. The problem is that the community does not seem
to agree on how exactly “low coupling and high cohesion”
needs to be achieved and what the size of a module should
be, to achieve low complexity and high evolvability. NS takes
the concept of system theoretic stability from the domain of
classic engineering to determine the necessary conditions a
modular structure of a system must adhere to in order for the

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 35 / 77

system to exhibit stability under change. Stability is defined as
Bounded Input equals Bounded Output (BIBO). Transferring
this concept to software design, one can consider bounded
input as a certain amount of functional changes to the software
and the bounded output as the number of effective software
changes. If the amount of effective software changes is not
only proportional to the amount of functional changes but also
the size of the existing software system, then NS states that the
system exhibits a Combinatorial Effect (CE) and is considered
unstable under change. NS proves that, in order to eliminate
CE, the software system must have a certain modular structure,
where each module respects four design theorems. Those rules
are:

• Separation of Concern (SoC): A module should only
address one concern or change driver

• Separation of State (SoS): A module should have a
state which is observable by other modules.

• Action Version Transparency (AVT): A module, per-
forming an action should be changeable without im-
pacting modules calling this action.

• Data Version Transparency (DVT): A module per-
forming a certain action on a data structure, should
be able to continue doing this action, even is the
data structures has undergone change (add/remove
attributes)

Only by respecting those rules, the system can infinitly
grow and still be able to incorporate new requirements. While
the four theorems mentioned above are used during design
time, NS has additional theorems usable for run time as well.
Making use of the concept of statistical entropy, NS derives the
necessary condition for a system to be diagnosable, being the
ability to determine the actual microstate of a system, given
a certain macrostate. Formulated differently, the software is
not working (macrostate) because module x is not working (a
microstate). The necessary condition for this is summarized in
the following theorem:

• Instance Traceability: The ability to know the state of
an instance of a module at run time.

Although NS originates in software design, the appli-
cability of the NS principles in other disciplines, such as
process design, organizational design, accounting, document
management, and physical artifacts. The theory can be used
to study evolvability in any system, which can be seen as a
modular system and drive design criteria for the evolvability
of the system.

The environment in which RPA is applied can be split
into three layers: process, application, and infrastructure. Each
of those layers can incure change. Making use of the NS
theorems, it can be determined whether those changes will
have an effect on RPA proportional to the change, or to the
change AND the system itself (a combination of process,
application, application, and RPA). In the former case, the
introduction of RPA should be declared stable under change; in
the latter case, RPA should be declared unstable under change.

III. INVESTIGATING EVOLVABILITY OF RPA
In the next paragraph, a simple process step in an expense

note process will be presented, followed by the introduction of
RPA to automate this process step. This section is continued

Figure 6. Refund process without RPA

with a paragraph on the general impact of change in the process
environment and concludes with the specific impact of those
changes to RPA, to evaluate the degree of stability of RPA
with respect to anticipated changes.

A. Description of the process

Consider an expense note process. The process consists of
an employee declaring his expenses, approval by the manager,
and finally, reimbursement of the expense. Assume that a
company has no IT system available, that has the possibility
to detect the approval of an expense note by the manager,
and a system that automatically performs the refund (money
transfer). The company has an “Expense Validation” applica-
tion and a “Payment” Application. A human (business actor)
will connect to the “Expense Validation” application to see
which expenses are currently flagged as “validated” and then
use the “Payment” application to perform the actual money
transfer to the expense claimer. The “Expense Validation”
application is realized by a web application installed on a
Linux host. The “Payment” application consists of a fat client
application realized by a software package running on a
Windows workstation. The UIs (Web and fat client) of both
applications are used by the human business actor to perform
the “Pay Expense” process step. A visual representation of the
layered architecture, using ArchiMate [18], can be found in
Figure 6.

B. Introducing RPA

The described process step would be a good candidate
for RPA as the process step is simple, and all information
required for deciding and launching the “Pay Expense” process
step, is available in the “Expense Validation” and “Payment”
application. The human Business Actor is being replaced by
a bot, which will use the UI of both applications to perform
the process step. The bot itself is a “bot Player” application,
which is realized by RPA system software, which is being
installed on a Windows workstation. A visual representation

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 36 / 77

Figure 7. Refund process with RPA

of the layered architecture, including the bot, can be found in
Figure 7.

C. Changes in the process environment
A lot of businesses struggle with change in general. Putting

cultural change aside, making changes to a company often has
unforeseen side effects, coined as ripple effects in NS, due
to hidden couplings in the organization. Those couplings can
be found in and between the organizational structure of the
business, the processes inside the organization, the applications
supporting the processes and the infrastructure supporting the
applications. NS has studied the effects of change at the
business process layer [19], the application layer [9] [17] [10],
and the infrastructure layer [20]. In each of those layers, CE
are present. They can be eliminated or mitigated by applying
the NS principles by careful and conscious design of processes,
applications, and infrastructure.

RPA is part of the process environment. It is part of an
environment in which changes can ripple in all directions and
with varying intensity. It should come as no surprise that a
system as RPA, which works at the edge of the environment via
the UI, will be impacted by changes to the process, application,
and infrastructure layer.

D. Changes in the RPA environment
The environment in which the bot is working can be subject

to the following changes:

• At the Business Process Layer, changes to the process
can happen, such as the addition of an extra process
step and the introduction of a new business actor. In
the example process, an extra validation step could be
added for expenses higher than a certain amount.

• At the Application Layer, changes to the application
can happen due to changes in the process or changes
to the software (the addition/removal of data objects,
data object attributes, new process steps, new UI
components). In the example process, expense claims

higher than a certain amount needs to be explicitly
selected and a particular transaction with this selection
needs to be launched

• At the Infrastructure Layer, changes to hosts and
system software can happen due to the scaling of the
application, new system software releases, the usage of
different compute resources. In the example process,
changes to the OS version may lead to a higher screen
resolution, resulting in a repositioning of UI elements
on the screen.

The above changes can be anticipated over the life cycle
of the Business Process. The changes will ultimately become
visible to the Business Actor via the UI:

• New clicks and stokes to be performed in the UI of
the application due to changes in the process.

• New clicks and stokes to be performed in the UI of
the application due to addition, removal or relocation
of information and action items in the UI.

• New location and/or size of action and information
items due to new UI elements, UI look and feel and
UI behavior.

The UI of the application is literally the only window on the
process in the digital world. Human actors can act according
to information available in the real world and the digital world.
For instance, a change in the process could be explained via
a communication letter, and the human actor would be able to
understand and act on the corresponding application changes
due to information provided outside of the digital world. A bot
cannot do this and will require reprogramming to cope with
the changing scenario. As the UI is the only window on the
process in the digital world, the UI will reflect the aggregation
of all change drivers possible in the environment. This is a
clear violation of the Separation of Concerns principle of NS.
Behind one UI element, multiple concerns may be hidden.
Changes to the UI element can be due to several reasons.
Without additional information outside of the digital world,
the reason for the change and the appropriate action to take,
cannot be determined. The fact that the UI is the aggregation
of all change drivers also makes the diagnosability of RPA an
issue. A change visible in the UI cannot be traced back to
its origin (process, application, infrastructure) by only looking
at the UI. The full-stack needs to be investigated. This is a
violation of the Instance Traceability principle, leading to a
CE.

From the above, the conclusion can be drawn that the
environment in which RPA operates, being an environment
in which the only interaction point with the process is through
application UI’s, is inherently unstable under change, as it vio-
lates both the Separation of Concerns and Instance Traceability
design principles of NS. Although the impact of change to
the RPA solution itself has not been studied, one can expect
evolvability issues there as well. A new version of the bot
software, run time, or design time could affect the previous
behavior of the bot. The design of the bot behavior could also
include CE, as a change to the behavior of the bot (adding an
additional click in the workflow) could be proportional to the
size of the program/configuration expressing that behavior.

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 37 / 77

Figure 8. RPA path @ Chevron - from [21]

IV. RPA CASES

In this section, 2 international companies in the energy
sector, Chevron and Engie, testify about thier experience with
RPA.

A. Chevron

During Oracle Open World 2019 [21] , Carolina Barcos
and Enrique Barrantes of Chevron shared their experience with
RPA during the session “Robotic Process Automation: Lessons
Learned”. Chevron (a worldwide utilities company) has defined
an RPA path (see Figure 8), which consists of six steps.
During the “Process intake” step, the candidate process is
being investigated for suitability for RPA. During the “Assess
and move forward” step, the business case for applying RPA
on the process is being presented to get governance approval.
During the “Infrastructure and access setup” step, application
accounts, application access, the compute resources, and ser-
vice accounts are being collected. In the “Development” step,
the bot rule base is developed, and the necessary internal
controls are put in place to feed internal risk management.
During the “Testing” step, the bot undergoes user acceptance
tests. In the final “Production” step, the Business Continuity
plan is set up (what if the bot fails?), and the support agreement
with the business is drawn.

Chevron quickly learned that there is no such thing as
a “simple process”. Business typically oversimplifies their
process description, and at the beginning of the RPA initiative,
only a part of the actual process is known. Because of the
popularity of RPA, the business is sometimes too eager to use
RPA, while there may be other quick wins and low hanging
fruit available to optimize the process. An essential enabler
of the RPA setup process is to get risk management, internal
control, and business continuity on board asap and to get their
approval before go-live. In terms of development approach,
Chevron goes for agile: fail fast – improve – do it again.
Chevron identifies the collection of all accesses to all required
systems and applications, as an attention point.

At Chevron, RPA is not seen as a local and personal
productivity tool. A lot of effort goes into setting up the right

RPA environment, running on virtual machines, having devel-
opment, acceptance, and production bot and using scheduling
and orchestration between bots. The impact of infrastructure
changes, such as Windows patching, is recognized. The last
but not least lessons learned is the need to be in the loop
of “unexpected changes in systems,” . . . which seems like
a contradiction. The experience certainly comes from often
encountered bot failure or incorrect behavior due to change
the RPA team was not aware of.

B. Engie IT

Engie IT is part of Global Business Services at Engie
(Utilities and Energy Services company). Within Engie IT, a
particular group has been set up which helps the business with
the setup of RPA solution and the operational maintenance
of the RPA solutions. During a meeting, both the results and
reflection of Section III and the Chevron case where presented.
The team wholeheartedly agreed with the conclusions from
Section III and has similar experiences as Chevron. Engie
IT has the advantage of being part of a lot of IT initiatives
within the group. When they receive a request to use RPA,
the process and applications are also checked against known
ongoing efforts, like consolidation or improvements at group
level. This can help in the decision to go for RPA (process
suited or new initiatives related to process optimization are too
far away), or not (process not suited or process/application will
undergo major change soon). The RPA team admits that it’s
sometimes hard to properly evaluate a process/application for
RPA suitability. The team was seeking additional guidance.
It was those remarks which triggered the creation of this
paper. They mentioned one compelling use case, which was
not mentioned in the studied literature. Within Engie here as
some strategic initiatives regarding consolidations and moves
towards SAP4HANA. They found RPA to be an excellent
solution to migrate data from the current systems to the new
ones. The creation and testing of special application used for
the transfer of data from the current application to the new
application, can be more cumbersome and expensive compared
to a simple re-keying all information from the as-is application
into the to-be application, by a short-lived, straight forward,
never tiering bot.

V. DISCUSSION

Not every process is suitable for RPA, but still, a lot
of processes, especially supporting processes, are a good
candidate for RPA. Sufficient cases exist where RPA turns out
to be quite profitable (just Google “RPA success stories” and/or
see [22] [23] [24] for some examples). Based on the analysis
done in Section III, the conclusion can be drawn that RPA is
inherently unstable under change. By only looking at the UI,
the origin of change and reason for change cannot be deducted.
Both Chevron and Engie IT confirm that protection against
unplanned change is not possible. The only kind of reasonable
protection is proper logging of the bot steps and detection of
which action caused failure. As shown in Section III, that may
tell when a crash occurred but not to why it occurred.

The “Rule of 5” of Forrester [8] is a mechanism to
make sure that the complete system does not become too
big. Although not presented or described this way, the rule
recognizes the CE in the system. If the system is not too big,

30Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 38 / 77

you can still handle the CE. But as the system grows, the effect
becomes larger up to the point where it no longer manageable.

RPA tool vendors already mention today the usage AI in
bots, allowing them to autocorrect and thus compensate for
the inherent instabilities of RPA due to change. One must
be skeptical about those kind statements for multiple reasons.
First, if a bot would make use of programming techniques
where all screen elements are represented by concepts that are
independent of the actual screen layout or usage of relevant po-
sitions, a bot could indeed be protected from cosmetic changes
on the screen. Although a smart move, it has nothing to do
with AI. Second, as the UI is the aggregation of all concerns, in
the UI there is no data available on which a Machine Learning
Algorithm could perform any kind of learning. The “cause”
data is not available; only the “effect” data (not working) is.
Third, even if data about the origin of the change is available,
where would the training data for the AI come from? For a
Machine Learning Algorithm, large quantities of data on all
kinds of changes at the process, application, and infrastructure
layer, plus their effect and remediation, need to be available to
have a decent set of training data. Where would this data come
from? For a Deep Learning Algorithm, the same restriction
holds.

AI could work if it is fed by data external to the RPA
digital world. But if that is the case, then it must mean that
AI is able to use data from within an application and thus
have access to internal data and function of the application. In
those cases, one can ask the question of what would be the
point of still using RPA, as all elements could be on the table
to have a real application integrate with existing applications
and thus perform automation via programming, even via low
code programming, without having to change the existing IT
landscape as well. This paper does not have the ambition to
prove the statements around AI formally. What it does want to
do is to provide a critical note using a reductio ad absurdum
approach. The subject should be further investigated.

One of the Engie IT RPA support engineers is seeing RPA
tool vendors moving toward API based interaction between
applications instead of UI based interaction. This means that
those vendors are moving more into the realm of BPM/A.

Besides the potential stability issues of RPA, some other
perverse side effects may arise. An Enterprise Architect of a
Belgium Banking and Assurance company, sees RPA becom-
ing a blocking factor for system evolution and innovation. As
the business has invested a lot of money in RPA, changes to
their existing landscape directly impact their RPA investments.
The business becomes reluctant to improve and innovate on
their current landscape and chooses a status quo to protect
their RPA investments.

VI. CONCLUSION

RPA is popular, certainly within the business, as it offers
a fast, cheap, and non-intrusive way to boost the performance
of business processes. Although some rules of thumb exist
regarding which processes to choose, current studies go past
the inherently unstable nature of RPA. The impact of change
is reported, not the root cause. Using NS, the reasons for the
impact become clear: violation of the minimum requirements
for evolvability.

AI is often mentioned as a mechanism to compensate for
the instabilities of RPA due to change, but additional research

on this topic is required. The stability of the RPA configuring
and programming methods with regards to change – add new
clicks, strokes – has been left out of scope but merits additional
research as well.

ACKNOWLEDGMENT

The authors wishe to express their gratitude to Engie IT
and Chevron for sharing their experiences, and to Frederik
Leemans, Bertrand Perardelle and Stefan Thys for reviewing
and commenting on the paper.

REFERENCES

[1] M. Kirchmer, “Robotic process automation - prag-
matic solution or dangerous illusion?” 2017, URL:
https://www.researchgate.net/publication/317730848 Robotic¡
Process Automation - Pragmatic Solution or Dangerous Illusion,

[accessed: 2020-08-01].
[2] K. Osmundsen, J. Iden, and B. Bygstad, “Organizing Robotic Process

Automation: Balancing Loose and Tight Coupling,” in Proceedings of
the 52nd Hawaii International Conference on System Science, Jan 8-11,
2019,Grand Wailea, Maui, Hawaii, Januari 2019, pp. 6918–6926, URL:
https://scholarspace.manoa.hawaii.edu/handle/10125/60128?mode=full,
ISBN: 978-0-9981331-2-6, [accessed: 2020-08-01].

[3] S. Madakam, R. M. Holmukhe, and D. K. Jaiswal, “The future digital
work force: Robotic process automation (rpa),” JISTEM-Journal of
Information Systems and Technology Management, vol. 16, 2019,
URL: https://www.scielo.br/scielo.php?script=sci arttext&pid= S1807-
17752019000100300, [accessed: 2020-08-01].

[4] S. Jovanović, J. Durić, and T. Šibalija, “Robotic process au-
tomation: overview and opportunities,” International Journal ”Ad-
vanced Quality”, vol. 46, no. 3-4, 2018, pp. 34–39, URL:
http://journal.jusk.rs/index.php/ijaq/issue/view/12, [accessed: 2020-08-
01].

[5] C. LeClain, “Use The Rule Of Five To Find The Right RPA Process,”
Forrester, September 2018.

[6] B. Evelson and C. LeClain, “Look To Four Use Case Categories To
Push RPA And AI Convergence,” Forrester, August 2018.

[7] C. Craig, “RPA, DPA, BPM, And DCM Platforms: The Differences
You Need To Know,” Forrester, March 2019.

[8] C. LeClain, “Attended-Mode RPA: The Differences You Need To
Know,” Forrester, August 2019.

[9] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. 76, no. 12, 2011, pp. 1210–1222,
URL:https://www.sciencedirect.com/journal/science-of-computer-
programming/vol/76/issue/12, [accessed: 2020-08-01].

[10] ——, “Towards evolvable software architectures based
on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, 2012, pp. 89–116,
URL:https://onlinelibrary.wiley.com/toc/1097024x/2012/42/1,[accessed:
2020-08-01].

[11] P. Huysmans, G. Oorts, D. Bruyn, H. P., Mannaert, and J. Verelst,
“Positioning the normalized systems theory in a design theory
framework,” in Second International Symposium, BMSD 2012,
July 4-6, 2012,Geneva, Switzerland. Springer, 2012, pp.
43–63, URLhttps://link.springer.com/book/10.1007/978-3-642-37478-4,
[accessed: 2020-08-01].

[12] L. Ivančić, D. S. Vugec, and V. B. Vukšić, “Robotic process au-
tomation: Systematic literature review,” in Proceedings of Business
Process Management: Blockchain and Central and Eastern Europe
Forum, Sept 1-6, 2019, Vienna. Springer, 2019, pp. 280–295,
URL: https://link.springer.com/book/10.1007/978-3-030-30429-4, [ac-
cessed: 2020-08-01.

[13] “Quote Bill Gates on automation,” 2015, URL:
https://www.capgemini.com/2015/01/tempted-to-rewrite-bill-gates-
rules-on-automation/, [accessed: 2020-08-01].

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 39 / 77

[14] B. Bygstad, “Generative innovation: a comparison of lightweight and
heavyweight it,” Journal of Information Technology, vol. 32, no. 2,
2017, pp. 180–193, URL: https://link.springer.com/journal/41265/32/2,
ISSN: 0268-3962 (Print) 1466-4437 (Online), [accessed: 2020-08-01].

[15] J. Gao, S. J. van Zelst, X. Lu, and W. M. van der Aalst, “Au-
tomated robotic process automation: A self-learning approach,” in
Proceedings of “OTM Confederated International Conferences” On
the Move to Meaningful Internet Systems, Confederated International
Conferences: CoopIS, ODBASE, C&TC 2019, October 21–25, 2019,
Rhodes, Greece, ”. Springer, October 2019, pp. 95–112, URL:
https://link.springer.com/book/10.1007/978-3-030-33246-4), [accessed:
2020-08-01].

[16] M. Lacity and L. P. Willcocks, Robotic process automation and risk
mitigation: The definitive guide. SB Publishing, 2017, ISBN:978-09-
95-68-20-30.

[17] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized systems theory:
from foundations for evolvable software toward a general theory for
evolvable design. Koppa, 2016, ISBN: 978-90-77160-09-1.

[18] “ArchiMate 3.1 Specifications,” 2019, An Open Group Standard URL:
https://pubs.opengroup.org/architecture/archimate3-doc/, [accessed:
2020-08-01].

[19] D. Van Nuffel, H. Mannaert, C. De Backer, and J. Verelst,
“Towards a deterministic business process modelling
method based on normalized systems theory,” International
Journal on Advances in Software, vol. 3, no. 1-2, 2010,
URL:http://www.iariajournals.org/software/tocv3n12.html, [accessed:
2020-08-01].

[20] G. Haerens, “Investigating the applicability of the normalized sys-
tems theory on it infrastructure systemst,” in Workshop on Enter-
prise and Organizational Modeling and Simulation (EOMAS), 2018,
Jun 11-12, Talinn, Estonia. Springer, June 2018, pp. 123–137,
URL: https://link.springer.com/book/10.1007/978-3-030-00787-4, [ac-
cessed: 2020-08-01].

[21] “Robotic Process Automation: Lessons Learned,”
2014, Presentation Oracle Open World 2019, URL:
https://events.rainfocus.com/widget/oracle/oow19/catalogow19?search=Chevron,
[accessed: 2020-08-01].

[22] A. Asatiani and E. Penttinen, “Turning robotic process automation
into commercial success–case opuscapita,” Journal of Information
Technology Teaching Cases, vol. 6, no. 2, 2016, pp. 67–74, URL:
https://link.springer.com/journal/41266/6/2, ISSN: 2043-8869 (Online),
[accessed: 2020-08-01].

[23] S. Balasundaram, , and S. Venkatagiri, “A structured approach to
implementing robotic process automation in hr,” in Proceedings of
the Third National Conference on Computational Intelligence NCCI
2019, 2019 Dec 6-7, Bangalore, India, vol. 1427, no. 1. IOP Pub-
lishing, 2019, p. 012006, URL: https://iopscience.iop.org/issue/1742-
6596/1427/1, [accessed: 2020-08-01.

[24] W. A. Ansari, P. Diya, S. Patil, and S. Patil, “A review on robotic
process automation-the future of business organizations,” 2019,
URL: https://papers.ssrn.com/sol3/papers.cfm?abstract id=3370211,
[accessed: 2020-08-01].

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 40 / 77

Exploring the Application of Ontologies in Organizations for Data Harmonization

Carlos Tubbax

Faculty of Business and Economics
University of Antwerp

Antwerp, Belgium
Email: carlos.tubbax@uantwerpen.be

Jan Verelst

Faculty of Business and Economics
University of Antwerp

Antwerp, Belgium
Email: jan.verelst@uantwerpen.be

Abstract—In this contribution, it is explained how ontologies
could be used by business organizations to integrate data
from heterogenous sources in a systematic process called data
harmonization. In order to add academic rigor, Normalized
Systems Theory (NST) has been used as a rationale to study the
modularity concerns of this data harmonization project. Data
harmonization consists in this contribution of three steps and
offers certain advantages compared to other data integration
approaches such as data-warehousing. The first are its simplicity
and flexibility. The second is that the mapping costs of such an
approach will just increase linearly and no longer exponentially.
Additionally, the author illustrates how data harmonization can
be conducted through a use case in which several datasets on US
stock exchanges are mapped to the Financial Industry Business
Ontology (FIBO) before being integrated for information retrieval
through predefined SPARQL queries. The main contribution of
this work is that it shows step-by-step how data harmonization
can be conducted with costs that no longer increase exponentially
but linearly as the number of data sources and destinations
increases by means of a numeraire topology.

Keywords–Ontology; Data Harmonization; Financial Industry
Business Ontology; Numeraire Typology; Graph

I. INTRODUCTION

Data management issues might have significantly con-
tributed to the unfolding of the 2008-2009 financial crisis [1].
As a response to this, several news regulatory efforts have
appeared to tackle this issues, such as BCBS239 [2]. However,
financial institutions and banks still have problems when
integrating data from different sources due to several causes.
The first set of causes consists namely of the heterogeneity of
data sources in terms of granularity, formats, technologies and
schemas [3]. Another cause is the large amounts of data that
emerge every day (i.e., Big Data) that are still troublesome
for most financial organizations. The last cause is the rigidity
of traditional relational and data-warehousing systems making
them not scalable and flexible enough to cope with Big Data.
That being said, all these problems combined hamper financial
organizations to comply with new regulatory efforts, to act
upon new challenges and to reap new business models [4] [5].

This work aims at illustrating how that can be done in a
rather systematic and simple way in the context of business
organizations. In section 2, a literature review will cover the
different theories and technologies used in this work. Section 3
dives deeper into the data harmonization methodology used in
this work. In section 4, a use case has been chosen to illustrate
the implementation of this data harmonization methodology.
Finally, section 5 describes the execution of such a use case
and its results.

II. LITERATURE REVIEW

This section will give an introduction of the different
technologies and theories used in this work.

A. The Semantic Web
The current World Wide Web lacks the ability to represent

meaning in a way that not only humans can understand but
also computers. As means to tackle this problem, the Semantic
Web is equipped with languages that express inference rules
that allow computers to do reasoning on data [6]. Additionally,
the Semantic Web is aimed at enabling smart behavior across
the web consisting of different applications where data in each
application are kept up-to-date, synchronized and connected
to changes in other applications. This is done by assigning a
Unique Resource Identifier (URI) to each individual piece of
data about a resource, such as a person, an object or a date
in order to refer to them at the level of data rather than at the
level of representation in the form of excel-sheets or websites
as in the case of the current World Wide Web. That being said,
the Semantic Web might be a web of data instead of a web of
only applications [7].

B. Data storage paradigms
Relational databases may neglect the semantic of the rela-

tionships. Additionally, as the number of rows within a table
increases, the number of joins and query time may increase,
such as in the case of transitive queries (e.g., ‘Who-are-
the-friends-of-all-my-friends?’). Another problem is the lack
of rigidity of relational databases making them particularly
difficult to adapt to new business requirements or to scale
them up. They may not be fit to integrate data from different
sources due to their rigid nature either. Finally, changes in
their schemas (i.e., deleting a foreign key) may have pervasive
ripple effects across the entire database [5] [8] [9].

Concerning the second paradigm, the construction of a
data-warehouse is a rather complex and arduous process in
which several trade-offs and decisions have to be made in
advance. Some of them are the up-front selection of a certain
architecture, defining the right level of data granularity, the
design of Extract-Transform-Load (ETL) capabilities and the
design of an access layer with OLAP capabilities. Additionally,
data-warehouses do not update data to changes in sources
or other systems. Therefore, they are not suited as data
repositories in the context of the smart web [7].

The last main paradigm is graph databases. Graph
databases have a number of advantages compared to the
previous paradigms. The first is stable performance by just

33Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 41 / 77

performing queries over a portion of the total graph. The
second is that no formal model is needed upfront making
it more flexible to changes in business requirements, etc.
The third is no longer having the need of a schema before
ingesting data, such as in the case of ETL in traditional data-
warehousing. The last advantage is the ability to increase the
database’s capacity by adding new servers (i.e., scale out)
whereas relational databases scale up by adding more memory
to a monolithic server. That means that the database is divided
in several servers and only the servers containing the data
needed to answer a certain query are accessed rather than
the whole monolithic server. There are two types of graph
databases, namely Property Graphs and RDF stores [5] [9].
This work only studies the latter.

C. Semantic Modelling
As previously mentioned, the Semantic Web is equipped

with languages that allow users to define models of the domain
of discourse in terms of taxonomies and inference rules. These
models are called ontologies [6]. The more detailed a model
is, the more expressive it is considered to be. The Semantic
Web offers different modeling languages that offer different
expressivity levels and are listed below [7].

• The Resource Description Framework (RDF)
• The RDF Schema Languages (RDFS)
• RDFS-plus
• The Ontology Web Language (OWL)

D. SPARQL
The ‘S’ Protocol and RDF query language or SPARQL

is the query language of the Semantic Web. Every SPARQL
query follows the pattern of the graph that is being queried.
Although sharing many characteristics with SQL, such as the
SELECT and WHERE commands, it has the unique feature of
retrieving a graph as query output by using the CONSTRUCT
command [10].

E. Financial Industry Business Ontology
The Financial Industry Business Ontology (FIBO) is a

modular ontology aimed at representing the business logical
of financial organizations in a standardized and unambiguous
way that is readable by computers and humans. FIBO is jointly
developed by the Enterprise Data Management (EDM) council
and the Object Management Group (OMG) [11].

F. Normalized Systems theory
NST offers a set principles to build modular structures

in software, organizations, etc. Such principles are based
on systems stability and thermodynamics theory to reduce
the number of ripple effects and increase the traceability of
problems within a system. Although following such principles
does not imply that all ripple effects will be eliminated, not
following them will certainly lead to more ripple effects than
otherwise. NST also depart from the notion of Bounded Input
Bounded Output which implies that a bounded number of
changes in a systems should always lead to a bounded number
of impacts (i.e., ripple effects). In order to achieve this, NST
offers four principles which are listed as follows [12].

• Separation of Concerns

• Data version transparency
• Action version transparency
• Separation of states

G. Data Harmonization
In spite of the abundance of data harmonization works, no

formal definition is provided. Therefore, a definition for data
harmonization will be provided. Since semantic harmonization
should be separated from technical harmonization, both will
be considered as separate dimensions [13]. In top of that, data
quality harmonization will be considered the third dimension
as follows:

• Technical harmonization: it entails converting data
contained in heterogenous datasets and databases to be
merged into a singular format that can be stored and
queried by the same technical implementation (e.g.,
transforming data contained as XML-files, .csv-files
and in other formats into triples that can be stored in
the same RDF store and queried by the same SPARQL
engine). These are rather cross-cutting concerns that
should be separated from other aspects of the data
harmonization process as suggested by NST [13].

• Semantic Harmonization: this entails mapping the
different concepts and data fields in the heterogeneous
sources to a representation of the domain of discourse
needed and agreed on by domain experts and business
users [13].

• Data quality harmonization: heterogeneity of data
sources and datasets also brings heterogeneity in terms
of data quality which needs to be handled properly
to create a singular view in the form of a federated
database consisting of high quality data. Therefore,
data quality must be brought to a level that complies
with business requirements [13].

In addition to these dimensions of data harmonization, a
data harmonization architecture will be needed to integrate
different systems [14]. Two possible architectures are described
in further detail below (see Figure 1).

Figure 1. Stovepipe topology

The first architecture is the stovepipe topology as illustrated
in Figure 1. Costs are considered to consists of specification

34Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 42 / 77

costs (kspec) and mapping costs (kmap). Specification costs
are related to the specification of the schema of each system
and, in this case, they are assumed to be constant for all
systems. Mapping costs (kmap) are the costs related to the
mapping of each different source system to all the different
target systems and, in this case, they are also assumed to be
constant for each pair of systems. Assuming there are m source
systems and n target systems. Given that the total mapping
cost (mn)kmap is proportional to the size of the graph, the
total implementation cost of such a topology would increase
exponentially as depicted by the equation at the bottom of
Figure 1 [14]. This also implies that a bounded input (e.g.,
adding a new source system) may lead to an unbounded output
which is highly discouraged by NST [12].

Figure 2. Numeraire topology

The second architecture is the numeraire topology as
illustrated in Figure 2. Costs are also considered to consist of
specification costs (kspec) and mapping costs (kmap). However,
by introducing an intermediate metadata layer that decouples
the target systems from the source systems, the resulting
total mapping cost is no longer dependent on the size of the
overall graph and only on the total number of source and
target systems which might be equal to (m+n). Additionally,
the cost of specifying such an intermediate metadata layer is
(kN). Moreover, such an architecture uses a ‘pull’ strategy
that departs from the inputs needed for analyses in the target
systems to define the outputs that the different source systems
must deliver. The total implementation cost of such a topology
would increase just linearly over time as depicted by the
equation at the bottom of Figure 2 [14]. Another advantage
is that this architecture will remain more stable over time as
a bounded input will lead to a bounded output as suggested
by NST. This could only be achieved if the interfaces of the
different systems in such an architecture are well insulated to
comply with the data version transparency and action version
transparency principles of NST. In other words, interfaces
should encapsulate changes in the data and program structures
within each system to avoid pervasive ripple effects on other
systems [12]. Therefore, this architecture will be used to this
data harmonization project [14].

III. DATA HARMONIZATION METHODOLOGY

In order to conduct any data harmonization endeavor,
a sound methodology is needed to guide users. Therefore,
a data harmonization methodology has been developed for
this project consisting of three steps as follows. Step 1 will

comprise the definition of high-level requirements in terms of
business questions that need to be (graphically) answered for
business users and decision makers. Finally, in Step 3, more
detailed requirements will be specified for each of the three
dimensions of data harmonization.

A. Defining high-level requirements (step 1)

Step 1 will comprise the definition of high-level require-
ments in terms of business questions that need to be (graphi-
cally) answered for business users and decision makers

B. Defining a data harmonization architecture (step 2)

Departing from the outputs of Step 1, a data harmonization
architecture and its components will be designed in Step
2 following the numeraire topology in a ‘pull fashion’. In
alignment to NST, the interfaces of the different systems
within such a topology must be data version transparent and
action version transparent to isolate changes in each system
from other components within the overall data harmonization
architecture [12].

C. Defining a low-level requirements (step 3)

Finally, in Step 3, more detailed requirements will be spec-
ified for each of the three dimensions of data harmonization
as follows.

The technical harmonization requirements will cover the
technical concerns of converting the data from the source
systems to a format that can be stored and queried in the
same storage implementation. Some of these requirements will
be what serialization format will be used or what type of
inferencing will be performed (cached or just-in-time). The
semantic harmonization requirements will be needed to map
the data fields in the different source system to their respective
representations of the domain of discourse in the form of
an ontology. As a matter of academic rigor and to make
this methodology more generalizable, semantic harmonization
principles found in the academic literature have been aligned
to Normalized Systems Theory (NST) [12] [14].

Data quality harmonization is the last dimension whose
requirements will be needed to bring the quality of the data
in all the different source systems to a level suited to for
answering the predefined business questions from Step 1. This
will be done by using certain data quality metrics.

After the definition of these requirements, the data in each
source will be harmonized independently from the other ones
to isolate the concerns inherent to each systems and delivering
loosely coupled outputs as suggested by the Separation of
Concerns and Separation of States theorems from NST [12].
Accordingly, the data in each source will be converted into
a RDF graph by using the CONSTRUCT command from
SPARQL [10]. However, the identification and specification of
dependencies between such RDF graphs are crucial since they
represent the connection points between them. Therefore, an
iterative approach will be followed to identify these connection
points and to specify them in a way that facilitates the
integration of such individual graphs into federated ones.

35Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 43 / 77

IV. DATA HARMONIZATION PLANNING

A business case, provided by D. Allemang, and A. Keen,
will be used to illustrate the data harmonization methodology
mentioned above. It is fictitious and has been formulated to
show a realistic business scenario. Such a business scenario
in this consists of unraveling the rather complex and nested
ownership and control relationships between companies listed
in different US stock markets and other companies. A listed
company is defined as: ‘a company whose shares can be traded
on a country’s main stock market’ [15]. AMEX, NASDAQ and
NYSE are the three main stock markets in the United States
that list the stocks of different companies, such as Facebook,
Amazon and Apple. That being said, it would be of great value
for brokers, banks, hedge funds and investors in general to have
a sight of the companies that either own any, or are owned
by any of these listed companies. Therefore, the planning of
this data harmonization project will follow the methodology
described above as follows.

A. Defining high-level requirements (step 1)
Based on the description above, the following high-level

business questions have been formulated:

• What companies are listed by AMEX, NASDAQ and
NYSE?

• What are the parent companies and subsidiaries of
these listed companies?

• Where are all these companies located?

Additionally, the results obtained from the data harmoniza-
tion process meant to answer these questions will be used
to generate user-friendly visualizations for business people by
means of Business Intelligence tools.

B. Defining a data harmonization architecture (step 2)
The source systems containing the data needed to answer

these questions are listed as follows:

• Datasets that contain data about the companies listed
on AMEX, NASDAQ and NYSE have been retrieved
from NASDAQ’s website [16].

• The Global Legal Entity Foundation (GLEIF) is an
organization aimed at providing unique identifiers to
legal entities. Additionally, they provide datasets about
ownership and control relationships between these
legal entities. Therefore, the dataset containing data on
ownership relationships between listed companies and
other companies have been imported from GLEIF’s
website [17].

• Additionally, a dataset containing further information
(e.g., postal codes and names) of the legal entities
registered by GLEIF has been imported as well [18].

• The last source system consists of datasets on postal
codes and their coordinates retrieved from the GeoN-
ames organizations [19].

As metadata layer of such an architecture, data.world is
an open data platform and has been selected because of its
user-friendly interface and API capabilities. More specifically,
data.world will be the platform in which the different source
systems will be integrated and from which outputs for the
target systems will be exported through its APIs. Finally,

Tableau is a Business Intelligence interface that allows users
to import data and visualize them in a wide variety of forms
for further analysis. Therefore, this is the target system chosen
for this project.

C. Defining a low-level requirements (step 3)

The source systems containing the data needed to answer
these questions are listed as follows:

• Technical harmonization. Because of the limited
scope of this work, the technical harmonization re-
quirements to each source will be considered to be
rather simple. All datasets used in this project will
be exported as .csv-files to data.world’s platform in
a straightforward way. However, this would not be
the case if the data would need to be retrieved
from a relational database through SQL queries or
an API. Therefore, no requirements will be defined
regarding such concerns. Moreover, the way triples
will be inferred must be determined. Inferred triples
can either be saved (i.e., cached) or inferred at the
spot (i.e., just-in-time). However, this choice entails
important change management implications because
cached triples will need to be deleted if their source
changes or no longer exists whereas that would not
be necessary for just-in-time triples. Given that this
project will have a static nature instead of a dynamic
one in which sources constantly change, the data in
each source system will be converted to and saved
as cached triples by using CONSTRUCT queries in
SPARQL and saving them in graphs. Additionally,
these triples will be saved in an RDF serialization
file format known as turtle. Such a turtle file can
be stored and queried by any RDF store. Since URIs
represent the dependencies and intersections between
graphs, URIs should be standardized and properly
managed across graphs. Otherwise, this would result
in lots fragmented triples that are not integrable one
to another.

• Semantic harmonization. The data fields from each
data source will be mapped to their respective mean-
ings according to FIBO. As a matter of academic
rigor, semantic harmonization principles were aligned
to NST and will serve as a foundation to formulate
the requirements for this part of the project as fol-
lows. As first semantic harmonization requirement,
technical and semantic harmonization should be done
separately. Secondly, classes should be separated from
inference rules. Thirdly, standardized vocabularies,
such as the ones provided by FIBO should be reused.
Finally, the different concepts in the datasets should
be mapped to their respective meanings in FIBO via
declarative CONSTRUCT queries in SPARQL [12]
[14].

• Data quality harmonization. In order to define
the requirements for data quality harmonization, data
quality will be measured through different metrics
provided for this work. Based on the needs of business
users and by using these metrics, data will be adjusted
if necessary. This will be done separately for each
dataset.

36Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 44 / 77

V. DATA HARMONIZATION EXECUTION

The planning formulated above has been executed as
follows. Firstly, data harmonization has been performed on the
individual datasets which, in turn, were converted to individual
named graphs. Secondly, the goal of defining them as named
graphs is to have the ability to import them for federated
queries in which several graphs are integrated and retrieved
at the same time as also done in the next execution step of
this work [10]. Finally, the query results were exported to
Tableau for further graphical analysis. Each of these steps are
described in more detail below. The entire project can be found
on https://data.world/carlostubbax1/masters-thesis.

A. Data harmonization step
The four datasets mentioned above were harmonized and

converted to four different graphs. For example, the dataset
about ownership and control relationships has been mapped
to FIBO and converted to a graph (see Figure 3). It can
be noticed that the subject of the property fibo-fnd-oac-
oac:ownsAndControl is the URI of the LEI of the parent
company while the object is the one of the subsidiary. Addi-
tionally, this property could be considered as transitive given
that, if A owns B and B owns C, A owns C. Therefore,
owl:TransitiveProperty has been used to represent that as
an inference rule. For example, given that General Motors
Company owns Opel Bank GmbH and Opel Bank GmbH owns
Opel Bank GmbH (Niederlassung Griecheland), the query
engine will infer that General Motors Company also owns Opel
Bank GmbH (Niederlassung Griecheland).

Figure 3. The fibo-fnd-oac-oac:ownsAndControl relationship

The namespace https://lei.info/ has been used to generate
standardized URIs of the LEIs of the companies in the datasets.
Using that namespace allowed me to generate a URI for each
legal entity identifier that can be recycled across several graphs
or even across the semantic web. Additionally, this allows users
to merge this graph to more graphs enabling its reusability.

For the purpose of data quality harmonization, the time-
liness of the ownership relationships is considered to be
important since relationships can change due to mergers, ac-
quisitions, registrations problems, etc. Therefore, a timeliness
metric was used to clean out ownership relationships that are
not considered to be up-to-date. Such a metric is given by the
equation below [20].

QTime(w,A) := exp(−decline(A) ∗ age(w,A)

QTime(w,A) denotes the probability that an data field may
still be valid. decline(A) depicts the marginal probability that
a certain attribute value may become invalid within one period
of time. age(w,A) represents the duration between the last
update of the data field and the current date which can be
represented by variable t. In this case, the decline ratio was
obtained by calculating the average percentage of ownership
relationships registered by GLEIF that become inactive within
just on month. The resulting ratio was 0.0193 or 1.93 percent.

The value of t for each ownership relationship was determined
by calculating the difference between the time each ownership
relationship was updated and the current date. In turn, this
was used to calculate the timeliness ratio of each consolidation
relationships in the equation below [20].

QTime(t) := e−0.0193∗t,∀t > 0

However, since SPARQL does not support this function, the
Padé approximant was used to estimate such ratios as shown
by the equation below [21].

e−0.0193∗t ≈ (−0.0193 ∗ t+ 3)2 + 3

(−0.0193 ∗ t− 3)2 + 3
,∀t > 0

Variable t represents the time period (measured in months)
between the last update of each ownership relationship and
10th July 2019 which is the day the ratios were calculated.
Based on this, only ratios above 0.7165 were considered to
be up-to-date at a significance level of 5 percent. This means
that only relationships with ratios above that threshold would
be converted and saved as triples in the graph on ownership
relationships. In other words, only ownership relationships
with a probability higher than 71.65 percent of being up-
to-date are considered for further analysis while the rest is
excluded.

During the technical harmonization part, the work per-
formed during the semantic and data quality harmonization
parts has been saved in the form of triples in a turtle file called
GLEIF-Who-owns-Whom2.ttl.

B. Data federation step
The four individual graphs made in the data harmonization

step have been merged in multiple ways to build different
larger graphs through federated queries. Using standardized
URIs as explained earlier was crucial for this since URIs
represent the intersections and dependencies between triples
and graphs.

C. Results visualization step
The results of such federated queries have been ex-

ported to Tableau through data.world’s APIs to answer
the business questions formulated during the planning
of this data harmonization project. Some of the results
will be shown below. All queries can be found on
https://data.world/carlostubbax1/masters-thesis.

1) How many companies are listed by AMEX, NASDAQ and
NYSE?: After filtering out repeated values, 5,818 companies
listed by any of these three exchanges were found.

TABLE I. BELGIAN SUBSIDIARIES OF JOHNSON & JOHNSON AND THEIR
ADDRESSES.

Name Location
AMO Belgium BVBA 1831 Machelen
GMED Healthcare BVBA 1831 Machelen
J.C. General Services CVBA/SCRL 2340 Beerse
Janssen Infectious Diseases-Diagnostics BVBA 2340 Beerse
Janssen Pharmaceutica NV 2340 Beerse
Janssen-Cilag NV 2340 Beerse
Johnson & Johnson Belgium Finance Company CVBA 2340 Beerse
Johnson & Johnson Medical NV 1831 Machelen
Omrix Biopharmaceuticals NV 1831 Machelen

2) What Belgian companies are owned by Johnson & John-
son and were are their headquarters?: The graph pattern in

37Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 45 / 77

the federated query necessary to answer this question has been
constrained to only generate matches of companies owned by
Johnson & Johnson and located in Belgium. The results of such
a query are listed in Table I. There are 9 Belgian subsidiaries
of Johnson & Johson and all of them are located in Machelen
or Beerse.

Figure 4. 5 largest companies by number of subsidiaries.

3) What are the five listed companies with the largest
number of subsidiaries?: The results of a SPARQL-query
meant to answer this question have been sent to Tableau to
generate Figure 4. As graphically illustrated, Goldman Sachs
is the company with the largest number of subsidaries followed
by Citigroup and Prudentia on the second and third places
respectively. It can also be seen that all companies in this top
5 come from the financial sector and 4 of them are listed on
the New York Stock Exchange (NYSE).

VI. CONCLUSION

A. Discussion
The execution and results of this data harmonization work

illustrate how data from heterogenous sources can be inte-
grated through the use of ontologies and other Semantic Web
technologies that allow computers to assign richer context to

data by exploiting the power of computer inferencing. This has
been shown by first converting several datasets into individual
graphs before merging them into different federated graphs that
served to answer various business questions about ownerships
relations of companies listed in the main stock exchanges in
the United States. Furthermore, these answers were exported
to Tableau to generate visualizations that are more visually
appealing to business users and decision makers.

The main contribution of this work is that it systematically
illustrates how data harmonization can be conducted with
ontologies and Semantic Web technologies by business users to
integrate heterogenous datasets. Additionally, it also introduced
Normalized Systems Theory to the body of knowledge on the
Semantic Web and data harmonization. The main advantage of
this approach is that data integration costs just grow linearly
as the number of data sources and data destinations increase.

B. Recommendations
Since URIs represent the dependencies and intersections

between graphs and triples, their proper design and man-
agement are crucial to ensure that graphs are integrable one
to another. Therefore, standardization of URIs across graphs
should be encouraged. Additionally, this may increase the
reusability of graphs.

During the literature review of this work, little to none
specification were found to operationalize the data quality
requirements formulated in BCBS239 [2]. One of these re-
quirements is the timeliness principle for effective risk data
aggregation and risk reporting. However, BCBS239 provides
no means nor specifications to measure the timeliness of data.
Therefore, the timeliness metric used in this contribution could
be used to solve that problem.

Since Semantic Web technologies are considered to be
backed by a well-rooted theorical foundation provided by
the World Wide Web Consortium (W3C) that may allow
organizations to solve many of the interoperability problems
they experience on a daily basis. Therefore, organizations
should pay closer attention to these technologies.

C. Limitations
The first limitation of this work is that all datasets harmo-

nized and integrated are .csv-files retrieved from the internet.
In other words, this work is not representative of the hetero-
geneity in terms of data formats, sources and types that may
normally found in most organizations. Therefore, this work
does not capture the level of data source heterogeneity that
most business and organizations deal with on a daily basis.

The second limitation of this work stems from the static na-
ture of this data harmonization project that does not represent
a more realistic dynamic business environment in which data
may need to harmonized on a real-time basis. Therefore, this
work does not offer an accurate representation of a dynamic
data harmonization environment.

D. Further research
As a result of this research work, some hints for further

research were identified. First, it would be interesting to
use Normalized Systems Theory to study the modularity of
ontologies. Second, it would be of value to study how the
modelling languages of the Semantic Web could be used to

38Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 46 / 77

model business processes as means to exploit the capabilities
provided by machine inferencing to understand data flows
within them.

REFERENCES
[1] V. R. Prevosto and L. Francis, “Data and Disaster:

The Role of Data in the Financial Crisis,” 2010, URL:
https://www.casact.org/pubs/forum/10spforum/ [accessed: 2020-04-25].

[2] B. C. on Banking Supervision, “Principles for effective
risk data aggregation and risk reporting,” 2013, URL:
https://www.bis.org/publ/bcbs239.pdf [accessed: 2020-04-25].

[3] W. H. Inmon, Building the Data Warehouse. John Wiley Sons, USA,
2005, ISBN: 978-0-471-56960-2.

[4] V. Chaudhary and T. Seth, “Big Data in Finance,” 2015, URL:
https://www.semanticscholar.org/paper/Big-Data-in-Finance-Seth-
Chaudhary/75229e144e857f15c506e87898f8aa35ac1b9852 [accessed:
2020-04-05].

[5] P. Aven and D. Burley, Eds., Building on multi-model databases: How
to manage multiple schemas using a single platform. O’Reilly, USA,
May 2017, ISBN: 978-1-491-97788-0.

[6] T. Berners-Lee and J. Hendler, “The Semantic Web,” 2001,
URL: https://www.scientificamerican.com/article/the-semantic-web/
[accessed: 2020-04-25].

[7] D. Allemang and J. Hendler, Semantic Web for the Working Ontologist.
Morgan Kaufmann, USA, 2011, ISBN: 978-0-12-385965-5.

[8] J. R. Burd, S. and J. Satzinger, Systems Analysis Design in a Changing
World. Cengage Learning, USA, 2009, ISBN: 978-0-12-385965-5.

[9] R. I. Eifrem, E. and J. Webber, Graph Databases. OReilly, USA,
2015, ISBN: 978-1-491-93089-2.

[10] B. DuCharme, Learning SPARQL. OReilly, USA, 2013, ISBN: 978-
1-449-37143-2.

[11] E. D. M. council, “FIBO OWL,” 2010, URL:
https://spec.edmcouncil.org/fibo/doc/ [accessed: 2020-04-05].

[12] M. H. De Bruyn, P. and J. Verelst, Normalized Systems Theory. From
Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. NSI, Belgium, 2016, ISBN: 978-9-07716-0 09-1.

[13] K. D. V. S. M. Cunningham, J. A. and R. Verbeeck, “Nine Principles
of Semantic Harmonization,” in Proceedings of the9th AMIA Annual
Symposium, 2017, Somecity, USA. AMMIA, 2017, pp. 451–459.

[14] M. Flood, “Embracing change:
nancial informatics and risk analytics In: Quantitative Finance,” 2009,
URL: https://doi.org/10.1080/14697680802366037 [accessed: 2020-04-
25].

[15] C. Dictionary, “listed company,” 2020, URL:
https://dictionary.cambridge.org/fr/dictionnaire/anglais/listed-company
[accessed: 2020-04-25].

[16] NASDAQ, “Listed companies dataset,” 2020, URL:
https://www.nasdaq.com/screening/company-list.aspx [accessed:
2020-07-02].

[17] GLEIF, “level 2 who owns whom,” 2020, URL:
https://www.gleif.org/en/lei-data/access-and-use-lei-data/level-2-data-
who-owns-whom [accessed: 2020-07-02].

[18] ——, “level 1 data who is who,” 2020, URL:
https://www.gleif.org/en/lei-data/access-and-use-lei-data/level-2-data-
who-owns-whom [accessed: 2020-04-25].

[19] GeoNames, “Postal Codes,” 2020, URL:
ttp://download.geonames.org/export/zip/ [accessed: 2020-07-02].

[20] K. M. M. Heinrich, Bernd and M. Klier, “How to measure data quality?
- A metric based approach.” in Proceedings of the 28th International
Conference on Information Systems, 2007. ICIS, 2007.

[21] Stackoverflow, “Approximation of e-x,” 2011, URL:
https://math.stackexchange.com/questions/71357/approximation-of-
e-x [accessed: 2020-07-02].

39Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 47 / 77

Pattern-based Deployment Models Revisited:
Automated Pattern-driven Deployment Configuration

Lukas Harzenetter, Uwe Breitenbücher, Michael Falkenthal, Jasmin Guth, and Frank Leymann

Institute of Architecture of Application Systems (IAAS), University of Stuttgart
Universitätsstrasse 38, 70569 Stuttgart, Germany

Email: {harzenetter, breitenbuecher, falkenthal, guth, leymann}@iaas.uni-stuttgart.de

Abstract—The manual deployment of cloud applications is
error-prone and requires significant expertise. Therefore, many
deployment automation technologies have been developed that
enable deploying applications fully automatically by processing
deployment models. However, while these technologies substan-
tially simplify deployment, the manual creation of deployment
models ironically poses similar challenges to manually deploying
applications as technical expertise about the components to be
deployed and their dependencies is required. Therefore, we intro-
duced Pattern-based Deployment Models (PbDMs) in a previous
work that allow using design patterns to model components in
an abstract manner, which are then automatically replaced by
concrete technologies. However, in many scenarios, the resulting
deployment models still have to be subsequently adapted with
regard to the configuration of the selected technologies, e. g.,
to configure a selected Platform as a Service (PaaS) offering,
such as Amazon Beanstalk, for optimal scaling. Therefore, while
our previous work only enables using design patterns to model
components, in this paper we extend the proposed meta-model
and algorithms by the possibility to specify behavioral aspects of
components and relations also in the form of patterns. Moreover,
we show how these annotated patterns can be automatically
transformed into concrete configurations that reflect their se-
mantics. We present a prototype and a case study to validate
the extension’s practical feasibility.

Keywords-Deployment Automation; Deployment Modeling; Pat-
terns; Model-driven Architecture; TOSCA.

I. INTRODUCTION

Automating the deployment of applications is of vital impor-
tance as manual deployment is error-prone, time-consuming,
and requires a significant amount of technical expertise [1].
Therefore, several deployment automation technologies, such
as Chef, Terraform, or Kubernetes, have been developed to
automate the deployment of applications. The majority of these
technologies use declarative deployment models to describe the
structure of an application to be deployed [2]. These models
specify all components of the application to be deployed,
their configurations, as well as their dependencies among
each other [3]. For example, to describe the deployment of
a Java 8 based application, a declarative deployment model
may specify its components as follows: The application itself
may be described as an instance of a Java 8 Web App that is
hosted on an Amazon Elastic Beanstalk Environment to enable
its automatic scaling. Additionally, it may be connected to
a MySQL 5.7 database that is installed on an Ubuntu 18.04
Virtual Machine (VM) running on an Amazon EC2 instance.

However, while deployment technologies are an established
means, the manual creation of deployment models ironically
poses similar challenges to manually deploying applications:
First, (i) modelers are required to have significant technical
expertise in selecting appropriate components, such as web
servers or operating systems. For example, considering the
example, a modeler has to know which web servers supported
by Beanstalk are able to run Java 8 Web Apps. This often results
in (ii) error-prone modeling that requires testing the created
models multiple times, which quickly becomes a (iii) time-
consuming task. To tackle these issues, we introduced Pattern-
based Deployment Models (PbDM) in a previous work [4],
whereby we used patterns as first-class citizens in a declarative
deployment model to describe components in an abstract
manner. For example, instead of specifying a concrete web
server for Beanstalk to run the Java 8 Web App, in a PbDM
only the Platform as a Service (PaaS) pattern [5] needs to
be modeled. Moreover, since PbDM cannot be executed as
they only specify abstract semantics instead of executable
technologies, we also presented algorithms to automatically
refine all patterns in a PbDM to concrete technologies [4].
However, in many scenarios, the resulting deployment models
have to be adapted with regard to the configuration of the
refined components, e. g., to configure the scaling behavior of
Beanstalk. Unfortunately, this again requires technical expertise
and is error-prone. The reason for these problems is that only
components are abstracted by patterns, not their configuration.

Therefore, we extend our proposed meta-model for PbDMs
in this paper by the possibility to specify also behavioral
requirements for components and relations in the form of
abstract patterns. For example, instead of providing a con-
crete configuration of Beanstalk’s scaling behavior, our new
approach enables the annotation of the Unpredictable Workload
Pattern [5] to the Java Web App, which implies that the
underlying infrastructure needs to be elastic, but without the
need to specify any technical configuration. Moreover, we also
extend the refinement algorithms to support refining patterns
annotated at components and relations. We validate the practical
feasibility of the approach by a case study and a prototype.

Hereafter, Section II describes fundamentals, Sections III
and IV introduce the new concepts while Sections V and VI
explain our case study and prototype. Finally, Section VII
describes related work and Section VIII concludes the paper.

40Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 48 / 77

Order App
(Java 8 Web App)

Order Processor
(Java 8 App)

AutoScaling: true
ScalingMetric: NetOut
TimeSpan: 5min
[…]

Order PaaS
(AWS Webserver Env)

Account: ust-iaas
[…]

PaaS Provider
(Elastic Beanstalk)

AutoScaling: true
ScalingMetric: NetOut
TimeSpan: 5min
[…]

Processor PaaS
(AWS Worker Env)

= hostedOn

= Secure-JMS-2.0-Queue-
Connection

Account: ust-iaas
[…]

PaaS Provider
(Elastic Beanstalk)

Type: FIFO
Server-Side
Encryption: Yes
Master-Key: Default

Queue
(SQS Queue)

Account: ust-iaas
[…]

MoM Provider
(Simple Queue Service)

Figure 1. A declarative deployment model.

II. FUNDAMENTALS AND MOTIVATION

In this section, we introduce deployment automation concepts
and technologies, as well as our motivating scenario.

A. Deployment Models and Automation

To automate the deployment of applications, many deploy-
ment automation technologies have been developed. Most of
these technologies use Deployment Models to describe the
desired application [3]. Deployment models can be categorized
into two types: (i) declarative deployment models and (ii) imper-
ative deployment models [3]. An imperative deployment model
describes how a deployment is performed as an executable
process including all technical activities and their execution
order [3]. In contrast, a declarative deployment model describes
what has to be achieved but provides no executable process.
Thus, a deployment technology must interpret declarative
models and derive the necessary steps [3]. In this paper, we
focus on declarative models as they are (i) supported by various
deployment technologies [2] and (ii) can be automatically
transformed to imperative deployment models [1].

Declarative models state the desired outcome of a deploy-
ment in the form of the application’s structure encompassing
the components of the application, their configurations, and
the dependencies between them [3]. An example consisting
of components, relations, and their properties is depicted in
Figure 1. It illustrates a frontend component called Order App
and a backend component called Order Processor, both hosted
on Elastic Beanstalk Environments. The Elastic Beanstalk
Environments are configured to scale automatically, which
is indicated by their “AutoScaling” properties. To communicate
to another, the applications use a Queue that is hosted on the
Simple Queue Service (SQS), whereas the Order App expects
that each order is delivered and processed exactly once, which is
hereby ensured by a queue of type “FIFO”. Finally, the types of
the components and relations are shown. The component types
are depicted in braces, while the relation types are encoded by
their stroke type and color. Thus, the Order App, e. g., is an
instance of the Java 8 Web App while its relation to the Queue
is of type Secure-JMS-2.0-Queue-Connection.

Order App
(Java 8 Web App)

Order Processor
(Java 8 App)

Point-to-Point

Channel Message-

oriented

Middleware

Platform as a

Service

Public

Cloud
= hostedOn

= JMS-2.0-Queue-Connection

Figure 2. A Pattern-based Deployment Model (PbDM).

B. Pattern-based Deployment Models

However, even the creation of such simple models poses
several challenges as it requires technical expertise in different
technologies. For instance, it must be known whether Beanstalk
supports Java 8 and which environment is appropriate, or
whether an SQS Queue can be used at all since the apps require
JMS connections. Thus, to reduce the modeling complexity,
we previously introduced Pattern-based Deployment Models
(PbDM) [4], which use Design Patterns [6] as first class model
elements. Figure 2 shows an example PbDM representing the
abstract semantics of the deployment shown in Figure 1. Herein,
the Cloud Computing Patterns [5] and Enterprise Integration
Patterns [7] are used to represent components in an abstract,
technology-agnostic way: Instead of specifying concrete ser-
vices, such as Beanstalk and SQS, the applications are hosted on
Platform as a Service (PaaS) patterns [5] while a Point-to-Point
Channel pattern [7] is used for communication that is hosted on
a Message-oriented Middleware (MoM) pattern [5]. Thus, this
model contains no details about technologies but only specifies
the abstract semantics of the required components in the form
of patterns, which is less error-prone and requires less technical
expertise. We refer to patterns that represent the semantics
of components as Component Patterns. Moreover, we also
presented refinement algorithms [4] that replace Component
Patterns with concrete technologies and providers.

However, in many cases, the refined deployment model
requires additional manual configuration: For example, as
the Order App’s workload is unpredictable, the Beanstalk
environment must be configured for automated scaling by
specifying the “ScalingMetric” and the “TimeSpan” to define
when scaling will be triggered. Additionally, the Order App
requires the orders to be processed exactly once by the Order
Processor. Thus, the modeler has to select the correct queue
type, i. e., in the context of SQS “FIFO” instead of “Standard”.
Another difficulty often results from compliance requirements:
If the orders issued by the Order App contain sensitive data, the
communication between the applications must be secured using
“Server-Side Encryption” and a “Master-Key”. However, to
configure all components and relations correctly via properties,
immense technical expertise is required on each employed
technology and again results in an error-prone and time-
consuming model configuration step.

41Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 49 / 77

Order App
(Java 8 Web App)

Order Processor
(Java 8 App)

Point-to-Point
Channel

Message-
oriented

Middleware

Platform as
a Service

Public
Cloud

Relational
Database

Private
Cloud

= hostedOn= JMS-2.0-Queue-Connection = SQL -Connection

Secure
Channel

Unpredictable
Workload

Static
Workload

Management UI
(Java 8 Web App)

Stateless
Component

Execution
Environment

=1

Exactly-once
Delivery

Information
Obscurity

User Interface
Component

Processing
Component

Figure 3. A Pattern-based Deployment and Configuration Model (PbDCM) following the metamodel defined in Figure 4.

III. PATTERN-BASED DEPLOYMENT AND
CONFIGURATION MODELS

To tackle the issue of subsequent manual model configura-
tion, our first contribution is an extension of PbDMs to Pattern-
based Deployment and Configuration Models (PbDCMs), which
support annotating Behavior Patterns [8] to components and
relations to describe their desired behavior in an abstract way.

To provide the basis for demonstrating our new approach
in a more complex case study, we first enlarge our motivating
scenario as shown in Figure 3: We add the Relational Database
Component Pattern [5] to store the results from the Processor
as well as a management component called Management
UI to maintain the database, which is hosted on Execution
Environment [5] and Private Cloud [5] Component Patterns.

A. Overview of the Modeling Extension

To compensate the shortcomings, we extend PbDMs to
Pattern-based Deployment and Configuration Models: Instead
of using patterns only to abstract components by Component
Patterns, we extend the metamodel to also allow annotating
Behavior Patterns to components and relations: A Behavior
Pattern abstractly describes behavioral requirements that must
be respected by the deployment, e.g., that a component has to
handle unpredictable workload. Figure 3 shows a PbDCM in
which both apps have been annotated with Behavior Patterns,
e.g., the Unpredictable Workload which implies the need for
automatic scaling. To secure communication and to encrypt the
storage, the relations between the applications are annotated
with the Secure Channel pattern [9], while the Relational
Database and the Point-to-Point Channel are annotated with the
Information Obscurity pattern [9]. To ensure that the orders are
processed only once, the Point-to-Point Channel is annotated
with the Exactly-once Delivery pattern [5]. Moreover, patterns
may specify additional semantics, e.g., the Stateless Component,
the User Interface Component and the Processing Component
patterns [5]. Thus, instead of specifying all technical config-
urations that realize these behaviors manually, our extension
only requires to annotate desired behavior of components and
relations in the form of Behavior Patterns.

B. Metamodel Extensions for PbDCMs

In this section, we describe the formal metamodel for
PbDCMs, which is graphically illustrated in Figure 4. Hereby,
the original PbDM metamodel [4] is extended by the grey
elements, which provide the capabilities to define Behavior
Pattern types and to annotate them to components and relations.

The new PbDCM metamodel and the original metamodel are
based on the Essential Deployment Metamodel (EDMM) [2],
which is a normalized metamodel that has been extracted
from the 13 most used deployment technologies including,
e. g., Terraform and the Topology Orchestration Specification
for Cloud Applications (TOSCA) [10]. We use EDMM as
basis metamodel to describe our approach in a technology-
agnostic way instead of extending only one certain deployment
technology. Since Section IV describes how PbDCMs can
be automatically transformed into EDMM-compliant models
containing only standard EDMM modeling constructs, the
extension of EDMM only affects the design time while the
refined models can be directly translated into any of the 13
supported deployment technologies that can be mapped to
EDMM. To demonstrate the approach’s practical feasibility,
we show how the PbDCM metamodel can be realized using
the TOSCA standard and how the models refined by our
algorithms presented in Section IV can be consumed by a
standard-compliant TOSCA runtime. Let 𝒯 be the set of all
PbDCMs, then 𝑡 ∈ 𝒯 is defined as a fifteen-tuple as follows:

𝑡 = (Ct ,Rt ,CPt ,CBPt ,RBPt ,CTt ,RTt ,CPTt ,CBPTt ,

RBPTt ,PROPt , typet , supertypet , propertiest , annotationst)

1) Basis of the Metamodel: Following EDMM, a deployment
model is a directed, weighted graph, in which nodes represent
components, edges their relations. Components and relations
are typed and specify properties to configure the deployment.
EDMM defines more elements, such as Operations, which are,
however, not affected by our approach. Thus, we omit them for
the sake of simplicity. Our previous work of PbDMs extends
this metamodel by Component Patterns that can be used as
nodes [4]. Thus, the following elements of 𝑡 are already defined
by EDMM [2] and the metamodel of PbDMs [4]:

42Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 50 / 77

Relation
Type

Component
Type

Model
Element

Model Element
Type

Pattern Type
Behavior
Pattern

Property

Component
Pattern Type

Relation
Behavior

Pattern Type

Component
Behavior

Pattern Type

Relation Behavior
Pattern

Component

has

is of type is source of

is target of

an
n

o
ta

te
d

b
y

is of type

is of type

is of type

is of type

annotated by

Component
Pattern

has

Model Node

Component
Behavior Pattern

Relation

Structure
Element

Figure 4. Metamodel of Pattern-based Deployment and Configuration Models (extensions to PbDMs are highlighted in grey).

∙ 𝐶𝑡 is the set of Components in 𝑡. A Component 𝑐𝑖 ∈ 𝐶𝑡

is a physical, functional, or logical unit of an application.
∙ CPt is the set of Component Patterns in 𝑡. A cpi ∈ CPt

describes a Component Pattern that must be refined to a
concrete Component before the application’s deployment.

∙ The union of Components 𝐶𝑡 and Component Patterns
CPt form the set of Model Nodes in 𝑡: MNt := 𝐶𝑡∪CPt .

∙ 𝑅𝑡 ⊆ MNt × MNt represents the set of Relations in 𝑡.
A Relation 𝑟𝑖 = (mnsource ,mntarget) ∈ 𝑅𝑡 is a directed
physical, functional, or logical dependency between ex-
actly two Model Nodes mnsource ,mntarget ∈ MNt , where
mnsource is the source and mntarget the target Model Node
of the Relation.

∙ CTt is the set of Component Types in 𝑡. A Component
Type cti ∈ CTt specifies the semantics of a Component
𝑐𝑗 ∈ 𝐶𝑡 that has this type assigned.

∙ CPTt is the set of Component Pattern Types in 𝑡. A
Component Pattern Type cpti ∈ CPTt specifies the
semantics of a Component Pattern cpj ∈ CPt that has
this type assigned.

∙ 𝑅𝑇𝑡 is the set of Relation Types in 𝑡. A Relation Type
𝑟𝑡𝑖 ∈ 𝑅𝑇𝑡 specifies the semantics of a Relation 𝑟𝑗 ∈ 𝑅𝑡

that has this type assigned.
∙ PROPt ⊆ 𝛴+ × 𝛴+ is the set of Properties in 𝑡. A

Property 𝑝𝑟𝑖 = (Key ,Value) ∈ PROPt describes the
configuration of a Component, Relation, Pattern, or their
types. Its initial value is defined to be the Empty Word 𝜀.

2) Extension for Behavior Patterns:

∙ CBPt is the set of Component Behavior Patterns in 𝑡. A
𝑐𝑏𝑝𝑖 ∈ CBPt represents a pattern annotated to a Model
Node describing its desired behavior in an abstract way.

∙ RBPt is the set of Relation Behavior Patterns in 𝑡. A
𝑟𝑏𝑝𝑖 ∈ RBPt represents a pattern that is annotated to a
Relation describing its behavior in an abstract way.

∙ CBPTt is the set of Component Behavior Pattern Types
in 𝑡. A cbpti ∈ CBPTt specifies the semantics of a
Component Behavior Pattern cbpj ∈ CBPt that has this
type assigend.

∙ RBPTt is the set of Relation Behavior Pattern Types in 𝑡.
A 𝑟𝑏𝑝𝑡𝑖 ∈ RBPTt specifies the semantics of a Relation
Behavior Pattern rbpj ∈ RBPt that has this type assigned.

∙ The union set SEt := 𝑅𝑡 ∪MNt contains all Structure
Elements in 𝑡, while the union set BPt := CBPt ∪RBPt

contains all Behavior Patterns in 𝑡.
∙ The union of all Structure Elements 𝑆𝐸𝑡 and Behavior

Patterns BPt form the set of Model Elements MEt in 𝑡:
MEt := SEt ∪ BPt .

∙ The union set METt := CTt ∪RTt ∪CPTt ∪CBPTt ∪
RBPTt contains all Model Element Types in 𝑡.

∙ 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑡 is the map that assigns a Structure Element
sei ∈ SEt to its set of annotated Behavior Patterns.

𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑡 : SEt → ℘(BPt) (1)

The following maps are already defined by EDMM [2]
and PbDMs [4]. Since we extended MEt and METt , their
mapping now include also Behavior Patterns and Behavior
Pattern Types:

∙ 𝑡𝑦𝑝𝑒𝑡 is a map that assigns all Model Elements 𝑚𝑒𝑖 ∈
MEt to their respective Model Element Type 𝑚𝑒𝑡𝑗 ∈
METt providing the semantics for the Model Element:

𝑡𝑦𝑝𝑒𝑡 : MEt → METt (2)

∙ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 is the map that assigns each Model Element
Type to its respective supertype. It associates a 𝑚𝑒𝑡𝑖 ∈
METt with a 𝑚𝑒𝑡𝑗 ∈ METt where 𝑖 ̸= 𝑗, i. e., that 𝑚𝑒𝑡𝑗
is the supertype of 𝑚𝑒𝑡𝑖.

𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 : METt → METt (3)

∙ Additionally, 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 assigns a Model Element Type
𝑚𝑒𝑡𝑖 ∈ METt to all of its supertypes that can be
transitively resolved. Thus, 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 is defined as:

𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 : METt → ℘(METt) (4)

∙ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠𝑡 is the map that assigns each 𝑚𝑒𝑡𝑖 ∈ METt

and 𝑚𝑒𝑗 ∈ MEt its corresponding set of Properties.

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠𝑡 : METt ∪MEt → ℘(PROPt) (5)

43Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 51 / 77

Pattern-based
Deployment

Model

1

Executable
Deployment

Model

PRMs
Repository

2

Figure 5. Refinement of PbDMs to executable models [4].

IV. AUTOMATIC REFINEMENT TO EXECUTABLE
DEPLOYMENT MODELS

PbDCMs are not executable as the contained patterns
only specify abstract semantics. Thus, to get an Executable
Deployment Model, all Component Patterns need to be replaced
by concrete Components and the additional semantics specified
by the annotated Behavior Patterns must be considered by
configuring the affected Components and Relations correctly.
In our previous work [4], we presented Pattern Refinement
Models (PRMs) and corresponding refinement algorithms to
replace Component Patterns by concrete Components.

A. Pattern Refinement Models (PRMs)

To deploy a PbDM, we introduced algorithms to automati-
cally replace Component Patterns by concrete technologies [4].
Hereby, Pattern Refinement Models (PRMs) define how Com-
ponent Patterns can be refined to concrete components [4]. As
illustrated in Figure 5, the refinement is an semi-automated,
iterative process: All PRMs contained in a repository are
analyzed whether they can refine certain Component Patterns
contained in the PbDM to concrete Components. Appropriate
PRMs are selected manually and automatically applied until
the PbDM contains no more patterns resulting in an Executable
Deployment Model, which requires only small manual additions.

A PRM consists of (i) a Detector, (ii) a Refinement Structure,
and (iii) a set of Relation Mappings. The Detector is a PbDM
fragment that specifies the structure of Component Patterns and
their Relations the PRM can refine to concrete Components.
Thus, if a fragment of a Detector matches a fragment in a
PbDM, this PRM can refine exactly the matching subgraph.
The Refinement Structure specifies how the Detector fragment
can be refined to concrete Components and Relations. Hence, if
a fragment in a PbDM matches a Detector fragment of a PRM,
the PbDM fragment can be refined to the fragment specified in
the PRM’s Refinement Structure. For example, Figure 6 shows
a PRM that refines the PaaS and the Public Cloud patterns to
a concrete Webserver Environment hosted on AWS Beanstalk.

Moreover, to handle external relations of the mapped
Detector fragment, we introduced Relation Mappings [4]
defining which type of relations can be redirected from which
Model Node in the Detector to which Model Node in the
Refinement Structure. For example, the Relation Mapping in
Figure 6 redirects all incoming Relations of type hostedOn
that target the Public Cloud Component Pattern and that are
not contained in the Detector to the Public Cloud Component.

CBPRM Extensions
(Java 8 Web App)

[…]

PaaS Provider
(Elastic Beanstalk)

[…]

Pulblic Cloud
(AWS)

(Java 8 Web App)

RelationType : hostedOn
Direction: ingoing
SourceType : *

RelationMapping

Stay

Mappings
Refinement

Structure

AutoScaling: true
ScalingMetric: NetOut
TimeSpan: 5min
[…]

PaaS
(AWS Webserver Env)

Detector

Figure 6. Exemplary CBPRM respecting Behavior Patterns.

B. Component and Behavior Pattern Refinement Models
(CBPRMs)

In the original approach [4], PRMs were only used to
refine Component Patterns by concrete Components. Therefore,
Detector fragments of PRMs contained only Component
Patterns and their Relations, but no business components as
they were not affected by the refinement. Thus, only Component
Patterns are considered if a PRM is applicable or not. However,
our extended approach must consider Behavior Patterns that
are attached to business Components or Relations, such as
the Java 8 Web App shown in Figure 6. Hence, we extend
PRMs to Component and Behavior Pattern Refinement Models
(CBPRMs) to also support the refinement of Behavior Patterns.

The extension requires two changes: First, PRMs must be
extended to use PbDCM fragments as Detector and Refinement
Structure instead of PbDM fragments. Second, to consider
Behavior Patterns during the refinement, also the affected
business components must be modeled in the Detector to
define which Behavior Patterns a CBPRM considers. This
is, for example, shown in Figure 6: Herein, also the business
Component Java 8 Web App is modeled in the CBPRM Detector
including the two Component Behavior Patterns Unpredictable
Workload and Stateless Component. This business Component
is hosted on Platform as a Service and Public Cloud Component
Patterns. Thus, this Detector specifies that the PaaS and Public
Cloud Component Patterns can be refined by this CBPRM in a
way that it respects the Behavior Patterns annotated at the Java
8 Web App, i.e. that its Refinement Structure is able to handle
unpredictable workloads of stateless Java 8 Web Apps. Hence,
this Detector is refined to an elastic PaaS-based solution on
AWS including all required configuration properties, e. g., it
specifies the “AutoScaling”, “ScalingMetric”, and “TimeSpan”
Properties of Beanstalk to dynamically scale the application.
Thus, when applying such a CBPRM, all annotated Behavior
Patterns in the Detector must be considered by the Refinement
Structure. Thereby, the Refinement Structure must not contain
any of the Detector’s or new patterns. Thus, each CBPRM
removes the patterns it refines from the PbDCM model.

44Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 52 / 77

Detector Refinement Structure

(Applica�on)

Stay

(Database)

Stay

= Secure-SQL-Connec�on
= SQL-Connec�on

(Applica�on) (Database)

Figure 7. Exemplary CBPRM that refines Relations.

However, while business Components and their configuration
Properties must not be changed during the refinement of
Component Patterns, their annotated Behavior Patterns must
be considered. Therefore, we introduce Stay Mappings as a
second extension to PRMs, which state that a Model Node in a
PbDCM mapping to a “staying” Model Node in the CBPRM’s
Detector must not be changed. For example, Figure 6 specifies
that if the Detector can be mapped to a subgraph in the PbDCM,
the Model Node of the PbDCM mapping to the Java 8 Web
App of the Detector must stay as is, i.e., neither its type nor
its configuration must change. Thus, business Components
are essential to specify the pattern-component constellations
a CBPRM can refine. For example, the CBPRM shown in
Figure 6 states that it is able to refine Java 8 Web Apps
hosted on PaaS and Public Cloud Component Patterns while
considering the annotated Unpredictable Workload and Stateless
Component Component Behavior Patterns. To specify where
business Components will be located in the PbDCM after
their annotated Component Behavior Patterns are refined, Stay
Mappings are defined in CBPRMs. Hence, Stay Mappings are
only required if Behavior Patterns are refined by a CBPRM.

Moreover, Stay Mappings enable the definition of CBPRMs
that only refine a Relation between two Model Nodes that is
annotated with a Relation Behavior Pattern. For example, as
illustrated in Figure 7, it is possible to refine a SQL-Connection
annotated with the Secure Channel pattern [9] between an
application and a database to a Secure-SQL-Connection without
changing neither the application nor the database. Thus, the
application and the database stay in the given PbDCM while
their Relation gets refined to a more concrete Relation Type.

C. Metamodel for CBPRMs
In the following, the metamodel for Component and Behavior

Pattern Refinement Models is defined based on PRMs [4]. Let
CBPRM be the set of all Component and Behavior Pattern
Refinement Models, then a cbprm ∈ CBPRM is a four-tuple:

𝑐𝑏𝑝𝑟𝑚 = (𝑑cbprm , 𝑟𝑠cbprm , 𝑅𝑀cbprm , 𝑆cbprm) (6)

The original metamodel of PRMs [4] is adopted for CBPRMs
by exchanging PbDMs by PbDCMs as follows:

∙ 𝑑cbprm ∈ 𝒯 is a PbDCM fragment describing the Detector
which can be refined by this CBPRM.

∙ 𝑟𝑠cbprm ∈ 𝒯 is a PbDCM fragment that describes the
Refinement Structure that refines the Detector fragment.

∙ 𝑅𝑀cbprm is the set of Relation Mappings describing
the rules how external relations of Model Nodes in
the Detector must be redirected to Model Nodes in the
Refinement Structure. A 𝑟𝑚𝑖 ∈ 𝑅𝑀cbprm is defined as:

𝑟𝑚𝑖 = (𝑚𝑛1,𝑚𝑛2, 𝑟𝑡, directionrt , 𝑣𝑡) (7)

Herein, 𝑚𝑛1 ∈ MN 𝑑cbprm
and mn2 ∈ MN rscbprm are

Model Nodes of the Detector 𝑑cbprm and the Refinement
Structure 𝑟𝑠cbprm . 𝑟𝑡 ∈ 𝑅𝑇 is the Relation Type of an
external Relation that targets or sources the Model Node
matching 𝑚𝑛1, while the Relation’s direction is defined as
directionrt ∈ {ingoing , outgoing}. 𝑣𝑡 ∈ 𝐶𝑇 ∪𝐶𝑃𝑇 specifies
the valid type of the Relation’s source Model Node, if it
is ingoing, or target Model Node otherwise. To also refine
Behavior Patterns, we introduce Stay Mappings in CBPRMs:

∙ 𝑆cbprm is the set of Stay Mappings. A Stay Mapping
𝑠𝑖 = (mn1 ,mn2) ∈ 𝑆cbprm is a pair of Model Modes,
whereby mn1 ∈ MNdcbprm

is matching a Model Node in a
PbDCM that must stay as is at the place of the Refinement
Structure’s Model Node mn2 ∈ MNrscbprm .

D. Refinement Step 1: CBPRM Selection
Following our original approach [4], to refine Component

Patterns in a PbDM, first all applicable PRMs are determined.
A PRM is applicable iff (i) its Detector fragment can be found
as a subgraph of compatible Structure Elements in the PbDM
and (ii) all external Relations of all mapped Model Nodes
in the PbDM can be redirected by the CBPRM’s Relation
Mappings [4]. To find two compatible Structure Elements their
types and annotated Behavior Patterns must be considered.
Thus, a Structure Element in a CBPRM’s Detector is only
compatible to a Structure Element in a PbDCM iff (i) their
types are compatible and (ii) all Behavior Patterns the CBPRM
defines in its Detector are also annotated at a matching Structure
Element in the PbDCM. To determine the compatibility of two
Structure Elements in our algorithms, we introduce a formal
Compatibility Rule similarly to Breitenbücher [11]: A Structure
Element se1 ∈ 𝑆𝐸𝑑cbprm

of a Detector 𝑑cbprm is matching a
Structure Element se2 ∈ 𝑆𝐸𝑡 in a PbDCM 𝑡 iff (i) the type
of se2 or one of its supertypes is equal to the type of se1,
(ii) all annotations defined at 𝑠𝑒1 are also annotated at se2,
(iii) all Properties that are set in se1 are equally set in se2
or se1 specifies wildcard values “*”, which means that any
non-empty value is allowed for a Property. Based on this, we
define the Compatibility Operator “

→
≈” as follows:

se1
→
≈ se2 :⇔

(︁
𝑡𝑦𝑝𝑒dcbprm

(𝑠𝑒1) ∈ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠t(𝑠𝑒2)

∧
(︀
∀𝑏𝑥 ∈ annotationsdcbprm

(𝑠𝑒1)∃𝑏𝑦 ∈ annotationst(se2)(︀
type𝑑cbprm

(𝑏𝑥) = type𝑡(𝑏𝑦)
)︀)︀

∧
(︀
∀𝑝𝑖 ∈ propertiesdcbprm

(se1)

∃𝑝𝑗 ∈ propertiest(se2)
(︀
𝜋1(𝑝𝑖) = 𝜋1(𝑝𝑗)∧(︀

𝜋2(𝑝𝑖) = 𝜋2(𝑝𝑗) ∨ (𝜋2(𝑝𝑖) = “*” ∧ 𝜋2(𝑝𝑗) ̸= 𝜀)
)︀)︀)︀)︁

The set of SubgraphMappings𝑑cbprm ,𝑡 contains all possible
subgraph mappings that exist between a CBPRM’s Detector
𝑑cbprm and a PbDCM 𝑡. A Subgraph Mapping 𝑠𝑚𝑖 ∈
SubgraphMappings𝑑𝑐𝑏𝑝𝑟𝑚,𝑡 is defined as the set of Element
Mappings between Structure Elements: An Element Mapping
𝑒𝑚𝑗 = (se1, se2) ∈ 𝑠𝑚𝑖 is defined as a tuple of Structure
Elements, where the Structure Elements 𝑠𝑒1 ∈ 𝑆𝐸𝑑cbprm

and
𝑠𝑒2 ∈ 𝑆𝐸𝑡 are compatible, i. e., 𝑠𝑒1

→
≈ 𝑠𝑒2 holds.

45Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 53 / 77

E. Refinement Step 2: CBPRM Application

The refinement of an applicable CBPRM cbprm that has
been selected to refine a matching subgraph in a PbDCM 𝑡 is
described in Figure 8. Thus, to apply the 𝑐𝑏𝑝𝑟𝑚 to 𝑡, they are
both passed alongside the Subgraph Mapping 𝑠𝑚 containing
the Element Mappings between the cbprm’s Detector and 𝑡.
Hereby, Lines 1, 2, 11–20, and 23 are used from the original
algorithm [4] and are adapted to support Behavior Patterns
and Stay Mappings: First, all Structure Elements defined in the
Refinement Structure are added to 𝑡 (Line 1), then all affected
Relations must be redirected to their new source or target (Lines
3–20). Therefore, all Relations that are in- or outgoing of a
Model Node in 𝑡 that is part of the subgraph 𝑠𝑚 (Line 2) must
be investigated to redirect (i) Relations between added and
staying MNs (Lines 4–10), and (ii) external Relations according
to the Relation Mappings defined in the cbprm (Lines 12–19).

To redirect the Relations that are in- or outgoing of staying
Model Nodes, the Relations added by the 𝑐𝑏𝑝𝑟𝑚’s Refinement
Structure must be considered as the type of the Relation can
change. Therefore, all Relations that are in- or outgoing of a
Model Node that has been added from the Refinement Structure
and that is part of a Stay Mapping (Line 4) must be redirected
to the existing Model Node in 𝑡. For example, by adding the
Refinement Structure defined in the CBPRM illustrated in
Figure 6 to the PbDCM shown in Figure 3, the Java 8 Web
App, the PaaS environment, the PaaS Provider, and the Public
Cloud Components, as well as all three Relations are added.
However, as there is a Component in the PbDCM that maps
to the Java 8 Web App, the added application only serves as
a placeholder, where the actual application must be located.
Hence, the Relation between the placeholder and the PaaS
environment must be redirected to the actual Java 8 Web App
Component in the PbDCM. Thus, all Relations in 𝑡 that have
been added from 𝑐𝑏𝑝𝑟𝑚’s Refinement Structure and are either
the source or the target of a Model Node that is part of a
Stay Mapping must be redirected to the corresponding staying
Model Node that already exists in 𝑡. Hence, if the staying
Model Node was the source, the Relation’s source must be
changed, or its target otherwise (Lines 5 to 9).

Similarly, external Relations that are in- and outgoing from
the mapped subgraph in 𝑡 must be redirected to the new Model
Nodes that have been added from the 𝑐𝑏𝑝𝑟𝑚. For example,
based on the Relation Mapping defined for ingoing Relations
of type hostedOn at the Public Cloud in Figure 6, all of
these Relations must be redirected to the new Public Cloud
Component of type AWS. Therefore, all Relations in 𝑡 that
are the source or the target of the currently processed Model
Node, and that are not part of the subgraph (Line 12) must
be redirected to the added Model Node as dictated by the
𝑐𝑏𝑝𝑟𝑚’s Relation Mappings. Thus, for each Relation 𝑟𝑗 that
is in- or outgoing of the current Model Node mn2 in 𝑡 the
following conditions must hold: (i) the Relation Type defined
in the Relation Mapping must be in the supertypes of 𝑟𝑗 , (ii)
the direction defined in the Relation Mapping must be equal
to the direction of 𝑟𝑗 , and (iii) the corresponding source or

1: SEt := SEt ∪ SErscbprm

2: for all
(︀
(mn1,mn2) ∈ 𝑠𝑚 : mn2 ∈ 𝑀𝑁𝑡

)︀
do

3: // Redirect added Relations of the RS to staying MNs
4: for all

(︀
𝑟𝑦 ∈ 𝑅𝑡 : 𝑟𝑦 ∈ 𝑅rscbprm ∧ ∃mn𝑖 ∈ MNrscbprm(︀
(mn1,mn𝑖) ∈ 𝑆cbprm ∧ (mn𝑖 = 𝜋1(𝑟𝑦)
∨mn𝑖 = 𝜋2(𝑟𝑦))

)︀)︀
do

5: if
(︀
mn𝑖 = 𝜋1(𝑟𝑦)

)︀
then

6: 𝜋1(𝑟𝑦) := mn2 // update the source of 𝑟𝑦
7: else
8: 𝜋2(𝑟𝑦) := mn2 // update the target of 𝑟𝑦
9: end if

10: end for
11: // Apply Relation Mappings: redirect external Relations
12: for all

(︀
𝑟𝑗 ∈ 𝑅𝑡 : (mn2 = 𝜋1(𝑟𝑗) ∨mn2 = 𝜋2(𝑟𝑗))
∧ @r𝑧(r𝑧, r𝑗) ∈ 𝑠𝑚

)︀
do

13: relationMapping := 𝑟𝑚𝑥 ∈ RMcbprm :(︀
𝜋1(rm𝑥) = mn1 ∧ 𝜋3(rm𝑥) ∈ supertypes𝑡(𝑟𝑗)
∧ 𝜋4(rm𝑥) = DIRECTION(𝑟𝑗) ∧ 𝜋5(rm𝑥) ∈
supertypes𝑡(sourceTarget(𝑟𝑗 ,mn2)))

)︀
14: if

(︀
DIRECTION(𝑟𝑗) = outgoing

)︀
then

15: 𝜋1(𝑟𝑗) := 𝜋2(relationMapping) // update the source
16: else if

(︀
DIRECTION(𝑟𝑗) = ingoing

)︀
then

17: 𝜋2(𝑟𝑗) := 𝜋2(relationMapping) // update the target
18: end if
19: end for
20: end for
21: // Collect all Model Elements to remove from 𝑡
22: MEdel := {se𝑖 ∈ SEt : ∃se1 ∈ SEdcbprm

(︀
(se1, se𝑖) ∈ 𝑠𝑚(︀

@mn3 ∈ MNrscbprm (se1,mn3) ∈ Scbprm
)︀)︀
} ∪ {bpj ∈

BP 𝑡 :
(︀
∃(se1 , se2) ∈ sm

(︀
∃bpx ∈ annotationsdcbprm

(se1)(︀
typet(bpj) = typedcbprm

(bpx)
)︀)︀)︀

} ∪ {mnk ∈ MNrscbprm :
∃mn1 ∈ MNdcbprm

((mn1 ,mnk) ∈ Scbprm)}
23: MEt := MEt ∖MEdel

Figure 8. The extended apply refinement algorithm. It gets the following
inputs: (cbprm ∈ CBPRM , 𝑡 ∈ 𝑇, 𝑠𝑚 ∈ SubgraphMappings𝑑cbrm ,𝑡).

target Model Node, depending on the direction, must be of the
same type as defined in the Relation Mapping (Line 13). Then,
the Relation 𝑟𝑗 is redirected to its new source or target Model
Node which has been added from the 𝑐𝑏𝑝𝑟𝑚 (Lines 14 to 19).
For example, if the CBPRM shown in Figure 6 is applied to
the Order App in Figure 3, all Relations of type hostedOn
that are ingoing at the Public Cloud Component Pattern are
redirected to the Public Cloud Component of type AWS. Hence,
the Message-oriented Middleware, the Platform as a Service
the Order Processor is hosted on, and the Relational Database
are hosted on AWS after the CBPRM has been applied.

Finally, all Model Elements that are part of the subgraph must
be deleted as they have been refined to concrete technologies
(Lines 22 to 23). This also includes all Behavior Patterns
annotated at any mapped Structure Elements. However, all
staying Model Nodes mapped by the 𝑐𝑏𝑝𝑟𝑚’s Detector must
not be deleted, while all placeholder Model Nodes added from
𝑐𝑏𝑝𝑟𝑚’s Refinement Structure must be removed from 𝑡.

46Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 54 / 77

Port: 80
[…]

Order App
(Java 8 Web App)

DB-Name: webshop
[…]

Database
(MySQL Database 5.7)

MaxHeap: 6GB
[…]

Order Processor
(Java 8 App)

Type: FIFO
Server-Side
Encryption: Yes
Master-Key: Default

Queue
(SQS Queue)

API: https://stack.iaas.de
[…]

Private Cloud
(OpenStack)

RAM: 16GB
[…]

Management VM
(Ubuntu 18.04)

= hostedOn

= Secure-JMS-Queue-Connection

= Secure-SQL-Connection
Region: EU
[…]

Pulblic Cloud
(AWS)

Port: 8080
[…]

Management UI
(Java 8 Web App)

Server-Side
Encryption: Yes
Master-Key: Default
[…]

DBMS
(MySQL DBMS 5.7)

JmxPort: 9090
[…]

Webserver
(Tomcat 9.0)

AutoScaling: true
ScalingMetric: NetOut
TimeSpan: 5min
[…]

Order PaaS
(AWS Webserver Env)

AutoScaling: true
ScalingMetric: NetOut
TimeSpan: 5min
[…]

Processor PaaS
(AWS Worker Env)

Account: ust-iaas
[…]

PaaS Provider
(Elastic Beanstalk)

Account: ust-iaas
[…]

PaaS Provider
(Elastic Beanstalk)

Account: ust-iaas
[…]

DBMS Provider
(Relational Database Service)

Account: ust-iaas
[…]

MoM Provider
(Simple Queue Serivce)

Figure 9. Executable EDMM deployment model, which results from refining the PbDCM shown in Figure 3.

V. CASE STUDY

In the following, we describe a possible refinement of the
PbDCM introduced in Figure 3 to an executable deployment
model which is shown in Figure 9: All Component Patterns
hosted on the Public Cloud pattern have been refined to concrete
services offered by Amazon (AWS). Thus, the PaaS patterns
hosting the Order App and the Order Processor have been
refined to Elastic Beanstalk Environments that are preconfigured
for automatic scaling to realize the Unpredictable Workload
and Stateless Component patterns. Moreover, the types of the
Order App and the Order Processor ensured that appropriate
CBPRMs were chosen to refine the PaaS pattern to appropriate
Beanstalk environments, i. e., to an AWS Webserver Env and
to an AWS Worker Env respectively.

To realize the Exactly-Once Delivery pattern, the Point-to-
Point Channel has been refined to a pre-configured “FIFO”
SQS Queue, which is hosted on the Simple Queue Service
offered by AWS. Further, the Relational Database pattern was
refined to (i) a MySQL Database 5.7, (ii) a MySQL Database
Management System (DBMS) 5.7, and (iii) the Relational
Database Service offered by AWS. This is required, since
a DBMS is obligatory to run a database, while the Relational
Database Service provides and maintains the DBMS. To
compensate the annotated Information Obscurity pattern, the
SQS Queue and the DBMS are configured to use “Server-Side
Encryption”. Similarly to the Relational Database pattern, the
Execution Environment pattern hosting the Management UI
has been refined to multiple Components: An Ubuntu 18.04
and a Tomcat webserver are needed since the Management UI
is a Java 8 Web App and requires an underlying webserver.

Moreover, we created a video [12][13] showing the described
case study in detail, i. e., how the PbDCM shown in Figure 3
can be refined to the executable deployment model illustrated
in Figure 9 in an automated manner using our prototype.

VI. PROTOTYPICAL VALIDATION

To prove the practical feasibility of the extended modeling
concept, we implemented a prototype based on the Topology Or-
chestration Specification for Cloud Applications (TOSCA) [10]
and the open-source ecosystem OpenTOSCA [14][15] TOSCA
is a standardized modeling language for automating the
deployment and management of cloud applications in a portable
way. We chose TOSCA as our basis as it is ontologically
extensible [16] and can be mapped to EDMM as follows:

In TOSCA, a declarative deployment model can be expressed
by a so-called Topology Template. Thereby, Components and
Relations in a PbDCM are represented in TOSCA as Node
Templates and Relationship Templates, which are instances
of Node Types and Relationship Types, respectively. Thus,
similar to our extended metamodel where, e. g., Component
Types define the semantics for Components, Node Types and
Relationship Types are defining the semantics for the Node and
Relationship Templates. We realize Component Patterns and
Component Pattern Types also as Node Templates and Node
Types. To differentiate “Pattern Node Types” from “normal”
Node Types in TOSCA, a Tag in the Node Type is used. Thus,
all instances of Node Types having this pattern-tag identifies
the corresponding Node Templates as Component Patterns.

To annotate Node Templates in a Topology Template by
Behavior Patterns, Policies can be used in TOSCA. The
semantics of a Policy is hereby defined by a Policy Type. Hence,
Relation Behavior Patterns and Component Behavior Patterns
can be mapped to Policies, while Relation Behavior Pattern
Types and Component Behavior Pattern Types are represented
by Policy Types in TOSCA. However, according to the TOSCA
Specification [10], Relationship Templates cannot be annotated
using Policies. Thus, we extended the TOSCA metamodel to
support annotating Policies at Relationship Templates during
modeling time. This, however, does not influence the standard

47Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 55 / 77

compatibility of our implementation since Topology Templates
that contain patterns are abstract PbDCMs, and, hence, cannot
be deployed directly. By refining a PbDCM in TOSCA, a
standard compliant model is generated as the refined Topology
Template does not contain any more patterns, i. e., all Policies
attached to Node and Relationship Templates have been re-
moved. Thus, a refined Topology Template is standard conform
and can be automatically deployed. Moreover, since we only
use elements of a Topology Template that can be mapped to an
EDMM-based deployment model, a refined Topology Template
conforms to EDMM as no policies are contained.

Our prototype is part of the OpenTOSCA ecosystem [15].
OpenTOSCA is an implementation of the TOSCA standard and
consists of three components: (i) Winery [17], which provides
modeling capabilities, (ii) the OpenTOSCA Container [18],
which enables automated orchestration and provisioning, and
(iii) the OpenTOSCA UI, offering management functionality to
the user. Since our concept focuses on modeling, we extended
Winery to support the modeling of Behavior Patterns, and the
creation and refinement of PbDCMs and CBPRMs.

VII. RELATED WORK

Diverse approaches in the context of MDA and deployment
models mention patterns, nevertheless we present selected
related work sharing the definition of patterns by Alexan-
der et al. [6] as proven solutions solving recurring problems.

PbDCMs and their refinement is based on the concept of
Model-driven Architecture (MDA) [19]: A PbDCM represents
a Platform Independent Model (PIM), which is, in the context
of MDA, transformed into a Platform Specific Model (PSM),
represented by the refinement to an executable deployment
model. There are diverse approaches to transform a PIM into a
PSM present. For instance, the approach of Mellor et al. [20]
requires a definition and implementation of a mapping between
the abstract metamodel and the metamodel of the target plat-
form. Within our approach, the CBPRMs can be automatically
applied, and, thus, combine the mapping and implementation.

Multiple approaches address the transformation of deploy-
ment models. The approach of Breitenbücher [11] enables the
management of composite cloud applications by an automated
relization of management patterns in topologies. Furthermore,
Saatkamp et al. [21][22] use logic programming to formalize
the problem and context domain of patterns enabling an auto-
mated detection and resolving of problems within deployment
models. Moreover, the approaches of Eilam et al. [23][24] and
Arnold et al. [25][26] focus on an automated transformation
of deployment models using predefined transformation steps.
Nevertheless, within all of the mentioned approaches patterns
are not used to model and define the deployment model.

Hallstrom and Soundarajan [27] refine patterns into sub-
patterns representing realization variants of abstract patterns
which leads to a hierarchy of patterns. Falkenthal et al. [28] in-
troduce a similar approach, which refines patterns into concrete
technologies. They further present concrete solutions of patterns
capturing reusable implementation realizations, such as code
snippets [29][30], as well as aggregation operators which allow

the combination of multiple concrete solutions into an overall
solution [31]. The introduced CBPRMs can be considered as
concrete solutions, a combination through aggregation operators
will be part of future work. Eden et al. [32] present an approach
for an automated application of patterns to add source code
to a given program. Within this work, patterns are specified
on an abstract level and realized in a specific program in
advance. Even though, those works do not focus on modeling
and defining deployment models by a pattern application, a
combination of our approach with the presented ones will be
considered in future work.

Schürr [33] presents Triple Graph Grammars (TGGs) to
define graph transformations in a general manner. Therefore,
correspondence graphs in TGGs specify correspondences
between nodes. In contrast, the presented Relation Mappings
in CBPRMs focus on redirecting external relations to the
exchanged graph fragment. Bolusset and Oquendo [34] in-
troduce a software architecture refinement approach using
transformation patterns based on rewriting logic. Similarly,
Lehrig [35] introduces the Architectural Template (AT) method
to apply patterns in terms of reusable modeling templates to
software architectures. In contrast, transformation patterns and
ATs define rewriting rules of architectures and do not use
patterns as components to be refined to concrete technologies.

Di Martino et al. [36] describe the composition of cloud
services to cloud applications using patterns. Further, they
introduce a semantic model of patterns describing business
processes, cloud applications, and mappings to required cloud
resources for their implementation [37]. Contrary, those map-
pings cannot be used to describe or refine deployment models.

VIII. CONCLUSION & FUTURE WORK

Using the Pattern-based Deployment and Configuration
Model (PbDCM) approach, the deployment becomes more
variable as Component Patterns can be automatically refined
to different technologies and vendors for each deployment.
For example, while one modeler chooses AWS as a pub-
lic cloud provider, a second one may choose the Google
Cloud. Moreover, PbDCMs reduce the required knowledge
how technologies must be configured to meet non-functional
requirements as Behavior Patterns can be annotated at Structure
Elements to abstractly specify their requirements. Thus, if an
application experiences Unpredictable Workload [5], the pattern
can be annotated to the corresponding Components, which are
then automatically refined to an appropriate configuration. For
example, configurations required by the General Data Protection
Regulation (GDPR) can be realized by an appropriate selection
of behavioral patterns, such as the Secure Channel pattern [9].

However, to detect applicable CBPRMs that are able to refine
patterns in a PbDCM, our approach builds upon isomorphic
subgraph matching. Thus, if any Structure Element in a PbDCM
is changed by applying a CBPRM, another CBPRM, which
may have been applicable before, may not be applicable
anymore as the detector subgraph cannot be found. Hence,
the order in which CBPRMs are applied is important and may
result in different solutions. We plan to tackle this issue in

48Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 56 / 77

future work by generating possible permutations of CBPRMs.
Moreover, to close the gap between abstract architectures
and deployment models we plan to combine the approach of
Guth and Leymann [38] with the presented one. Thereby, first
architectures are described using abstract patterns [38] which
are then refined to more concrete patterns [28], and replaced
by concrete technologies using the presented approach. Finally,
we plan to use the Cloud Data Patterns for Confidentiality [39]
to enhance the security of data stored in cloud environments.

ACKNOWLEDGMENT

This work was partially funded by the German Research
Foundation (DFG) project SustainLife (379522012).

REFERENCES

[1] U. Breitenbücher et al., “Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA,” in International Conference
on Cloud Engineering (IC2E 2014). IEEE, Mar. 2014, pp. 87–96.

[2] M. Wurster et al., “The Essential Deployment Metamodel: A Systematic
Review of Deployment Automation Technologies,” Software-Intensive
Cyber-Physical Systems (SICS), Aug. 2019.

[3] C. Endres et al., “Declarative vs. Imperative: Two Modeling Patterns
for the Automated Deployment of Applications,” in Proceedings of the
9th International Conference on Pervasive Patterns and Applications
(PATTERNS). Xpert Publishing Services, Feb. 2017, pp. 22–27.

[4] L. Harzenetter et al., “Pattern-based Deployment Models and Their
Automatic Execution,” in 11th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2018). IEEE Computer Society,
Dec. 2018.

[5] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, Jan. 2014.

[6] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, Aug. 1977.

[7] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley, 1994.

[9] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns: Integrating Security and Systems
Engineering. John Wiley & Sons, Inc., Jan. 2006.

[10] OASIS, TOSCA Simple Profile in YAML Version 1.3, Organization for
the Advancement of Structured Information Standards (OASIS), 2019.

[11] U. Breitenbücher, “Eine musterbasierte Methode zur Automatisierung
des Anwendungsmanagements,” Dissertation, University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Information
Technology, 2016.

[12] L. Harzenetter, “Demonstration Video,” 2019, URL: https://youtu.be/
zmU35Detr60 [accessed: 2020-02-18].

[13] ——, “Demonstration TOSCA Repository,” 2019, URL: https://github.
com/lharzenetter/tosca-definitions [accessed: 2020-02-18].

[14] University of Stuttgart, “OpenTOSCA,” 2019, URL: https://github.com/
OpenTOSCA [accessed: 2020-02-18].

[15] U. Breitenbücher et al., “The OpenTOSCA Ecosystem - Concepts &
Tools,” in European Space project on Smart Systems, Big Data, Future
Internet - Towards Serving the Grand Societal Challenges - Volume 1:
EPS Rome 2016,. SciTePress, 2016, pp. 112–130.

[16] A. Bergmayr et al., “A Systematic Review of Cloud Modeling Languages,”
ACM Computing Surveys (CSUR), vol. 51, no. 1, Feb. 2018.

[17] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700–704.

[18] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, Dec. 2013, pp.
692–695.

[19] R. Soley et al., “Model driven architecture,” OMG white paper, vol. 308,
no. 308, p. 5, 2000.

[20] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-driven architecture,”
in Advances in Object-Oriented Information Systems. Springer, 2002,
pp. 290–297.

[21] K. Saatkamp, U. Breitenbücher, O. Kopp, and F. Leymann, “Application
Scenarios for Automated problem Detection in TOSCA Topologies by
Formalized Patterns,” in Papers From the 12th Advanced Summer School
on Service Oriented Computing. IBM Research Division, Oct. 2018,
pp. 43–53.

[22] ——, “An Approach to Automatically Detect Problems in Restructured
Deployment Models based on Formalizing Architecture and Design
Patterns,” SICS Software-Intensive Cyber-Physical Systems, pp. 1–13,
2019.

[23] T. Eilam et al., “Managing the configuration complexity of distributed
applications in Internet data centers,” Communications Magazine, vol. 44,
no. 3, pp. 166–177, Mar. 2006.

[24] T. Eilam, M. Elder, A. V. Konstantinou, and E. Snible, “Pattern-
based Composite Application Deployment,” in Proceedings of the 12th

IFIP/IEEE International Symposium on Integrated Network Management
(IM 2011). IEEE, May 2011, pp. 217–224.

[25] W. Arnold, T. Eilam, M. Kalantar, A. Konstantinou, and A. Totok, “Pattern
Based SOA Deployment,” in Proceedings of the Fifth International
Conference on Service-Oriented Computing (ICSOC 2007). Springer,
Sep. 2007, pp. 1–12.

[26] ——, “Automatic Realization of SOA Deployment Patterns in Distributed
Environments,” in Proceedings of the 6th International Conference on
Service-Oriented Computing (ICSOC 2008). Springer, Dec. 2008, pp.
162–179.

[27] J. O. Hallstrom and N. Soundarajan, “Reusing Patterns through Design
Refinement,” in Formal Foundations of Reuse and Domain Engineering.
Springer, 2009, pp. 225–235.

[28] M. Falkenthal et al., “Leveraging Pattern Application via Pattern
Refinement,” in Proceedings of the International Conference on Pursuit
of Pattern Languages for Societal Change (PURPLSOC 2015). epubli,
Jun. 2015, pp. 38–61.

[29] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann,
“From Pattern Languages to Solution Implementations,” in Proceedings
of the Sixth International Conferences on Pervasive Patterns and
Applications (PATTERNS 2014). Xpert Publishing Services, May 2014,
pp. 12–21.

[30] M. Falkenthal and F. Leymann, “Easing pattern application by means of
solution languages,” in Proceedings of the 9th International Conferences
on Pervasive Patterns and Applications (PATTERNS). Xpert Publishing
Services (XPS), 2017, pp. 58–64.

[31] M. Falkenthal, J. Barzen, U. Breitenbücher, and F. Leymann, “On the
Algebraic Properties of Concrete Solution Aggregation,” SICS Software-
Intensive Cyber-Physical Systems, Aug. 2019.

[32] A. Eden, A. Yehudai, and J. Gil, “Precise Specification and Automatic
Application of Design Patterns,” in Proceedings of the 12th IEEE
International Conference Automated Software Engineering (ASE 1997).
IEEE, Nov. 1997, pp. 143–152.

[33] A. Schürr, “Specification of graph translators with triple graph grammars,”
in Graph-Theoretic Concepts in Computer Science. Springer Berlin
Heidelberg, 1995, pp. 151–163.

[34] T. Bolusset and F. Oquendo, “Formal Refinement of Software Architec-
tures Based on Rewriting Logic,” in Proceedings of the International
Workshop on Refinement of Critical Systems, 2002, pp. 200–202.

[35] S. M. Lehrig, “Efficiently Conducting Quality-of-Service Analyses
by Templating Architectural Knowledge,” Dissertation, University of
Stuttgart, Faculty of Computer Science, Electrical Engineering, and
Information Technology, 2018.

[36] B. Di Martino, G. Cretella, and A. Esposito, “Cloud services compo-
sition through cloud patterns,” in Adaptive Resource Management and
Scheduling for Cloud Computing. Springer, 2015, pp. 128–140.

[37] B. Di Martino, A. Esposito, S. Nacchia, and S. A. Maisto, “A semantic
model for business process patterns to support cloud deployment,”
Computer Science - Research and Development, vol. 32, no. 3, pp.
257–267, 2017.

[38] J. Guth and F. Leymann, “Pattern-based rewrite and refinement of
architectures using graph theory,” Software-Intensive Cyber-Physical
Systems (SICS), pp. 1–12, Aug. 2019.

[39] S. Strauch, U. Breitenbücher, O. Kopp, F. Leymann, and T. Unger, “Cloud
Data Patterns for Confidentiality,” in Proceedings of the 2nd International
Conference on Cloud Computing and Services Science (CLOSER 2012).
SciTePress, Apr. 2012, pp. 387–394.

49Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 57 / 77

Efficiently Detecting Disguised Web Spambots (with Mismatches) in a Temporally
Annotated Sequence

Hayam Alamro

Department of Informatics
King’s College London, UK

Department of Information Systems
Princess Nourah bint Abdulrahman University

Riyadh, KSA
email: hayam.alamro@kcl.ac.uk

Costas S. Iliopoulos

Department of Informatics
King’s College London, UK

email: costas.iliopoulos
@kcl.ac.uk

Abstract—Web spambots are becoming more advanced, utilizing
techniques that can defeat existing spam detection algorithms.
These techniques include performing a series of malicious actions
with variable time delays, repeating the same series of malicious
actions multiple times, and interleaving legitimate (decoy) and
malicious actions. Existing methods that are based on string
pattern matching are not able to detect spambots that use these
techniques. In response, we define a new problem to detect
spambots utilizing the aforementioned techniques and propose an
efficient algorithm to solve it. Given a dictionary of temporally
annotated sequences S modeling spambot actions, each associated
with a time window, a long, temporally annotated sequence T
modeling a user action log, and parameters f and k, our problem
seeks to detect each degenerate sequence S̃ with c indeterminate
action(s) in S that occurs in T at least f times within its associated
time window, and with at most k mismatches. Our algorithm
solves the problem exactly, it requires linear time and space,
and it employs advanced data structures, bit masking and the
Kangaroo method, to deal with the problem efficiently.

Keywords–Web spambot; Indeterminate ; Disguised; Actions log.

I. INTRODUCTION

A spambot is a computer program designed to do repetitive
actions on websites, servers or social media communities.
These actions might be harmful, such as carrying out certain
attacks on websites/ servers or may be used to deceive users
such as involving irrelevant links to increase a website ranking
in search engine results. Spambots can take different forms that
are designed according to a spammer desire such as using web
crawlers for planting unsolicited material or to collect email
addresses from different sources like websites, discussion
groups or newsgroups with the intent of building mailing lists
for sending unsolicited or phishing emails. Usually, Spammers
create fake accounts to target specific websites or domain
specific users and start sending predefined designed actions
which are known as predefined scripts. Therefore, websites
administrators are looking for automated tools to curtail the
actions of web spambots. Although there are attempts to
prevent spamming using anti-spambots tools, the spammers try
to adopt new forms of spambots by manipulating spambots’
actions behaviour to appear as it were coming from a legitimate
user to bypass the existing spam-filter tools. One of the main
popular techniques used in web spambots is content-based
which inject repetitive keywords in meta tags to promote a

website in search engines, as well as link-based techniques
that add links to a web page to increase its ranking score in
search engines. There are several works for preventing the use
of content-based or link-based techniques by web spambots
[1]–[6]. However, they focus on identifying the content or links
added by spambots, rather than detecting the spambot based on
their actions. There are also techniques that analyze spambot
behavior [5] [7]. These techniques utilize supervised machine
learning to identify the source of spambot, rather than detecting
the spambot. More relevant to our work are string pattern
matching-based techniques that detect spambots based on their
actions (i.e., based on how they interact with the website
these spambots attack) [8] [9]. These techniques model the
user log as a large string (sequence of elements corresponding
to actions of users or spambots) and common/previous web
spambot actions as a dictionary of strings. Then, they perform
pattern matching of the strings from the dictionary to the large
string. If a match is found, then they state that a web spambot
has been detected. For example, the work by Hayati et.al
[8] proposes a rule-based, on-the-fly web spambot detection
technique, which identifies web spambots by performing string
matching efficiently using tries. The work of [9] improves
upon [8] by considering spambots that utilize decoy actions
(i.e., injecting legitimate actions, typically performed by users,
within their spam actions, to make spam detection difficult)
and using approximate pattern matching based on the FPT
algorithm to detect such spambots. However, both [8] and [9]
are limited in that they consider consecutive spambot actions.
This makes them inapplicable in real settings where a spambot
needs to be detected from a log representing actions of both
users and spambots, as well as settings where a spambot
injects legitimate actions in some random fashion within a
time window. The reason that the works of [8] and [9] are
inapplicable in these settings is that they do not take into
account temporal information of neither the sequence (i.e., the
user log) nor the pattern (i.e., the spambot actions). Recently,
Artificial Intelligence (AI) has been employed in security
purposes to recognize cyber crimes and to reduce the time
and money needed for manual tasks and threats monitoring at
businesses. In our paper, we use one of the main approaches
for AI-based threats detection which is based on monitoring
behavior of a stream of data in a log file and try to detect
the places of spambots. To the best of our knowledge, our

50Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 58 / 77

contribution is novel as no other work takes into account the
temporal information of a sequence of actions in a user log,
nor the estimated time window of a pattern of actions in a
dictionary. These challenges made finding an effective solution
to our problem a new challenge as there is no other work
addressing the issue of time (the spambot can pause and speed
up) or errors (deceptive or unimportant actions). It is worth
mentioning that our methods are not comparable to others
as they address different issues. The other challenge that we
faced was when conducting our laboratory experiments for our
algorithm as there was no publicly available data set modeling
the real temporal annotated sequence of a user log. The only
available is the public data sets (WEBSPAM-UK2006/7) which
are a collection of assessments and set of host names and based
on the spamicity measure to decide whether a web page is a
spam, non-spam or undecided.

In this work, we focus on time annotated sequences, where
each action is associated with a time stamp. Our goal is to
detect one or more spambots, by finding frequent occurrences
of indeterminate spambot actions within a time window that
can also occur with mismatches. Our work makes the following
specific contributions:
1. We introduce an efficient algorithm that can detect one or
more sequences of indeterminate (non solid) actions in text T
in linear time. We ignore the temporal factor in describing this
algorithm to facilitate the process of clarification and focus
on detecting disguised web spambots efficiently. It is worth
mentioning that our algorithm can compute all occurrences of
a sequence S̃ in text T in O(m+ logn+ occ), where m is the
length of the degenerate sequence S̃, n is the length of the text
T and occ is the number of the occurrences of the sequence
S̃ in text T .
2. We propose an efficient algorithm for solving (f, c, k,W)-
Disguised Spambots Detection with indeterminate actions and
mismatches. Our algorithm takes into account temporal in-
formation, because it considers time-annotated sequences and
because it requires a match to occur within a time window.
The latter requirement models the fact that spambots generally
perform a series of disguised actions in a relatively short period
of time. Our algorithm is a generalization of the previous
problem and based on constructing a generalized enhanced
suffix array, bit masking with help of Kangaroo method which
help in locating indeterminate spambots with mismatches
fast. Our proposed algorithm (f, c, k,W)-Disguised Spambots
Detection with indeterminate actions can find all occurrences
of each S̃i in S, such that S̃i occurs in T at least f times
within the window Wi of S̃i and with at most k mismatches
according to Hamming distance.

The rest of the paper as follows. In Section II, detailed
literature review, In section III we introduce notations and
background concepts. In Section IV, we formally define the
problems we address. In Section V, we formally detail our
solutions and present our algorithms. In Section VI, we present
experimental results. In Section VII, we conclude.

II. LITERATURE REVIEW

Web spam usually refers to the techniques that the spam-
mers used to manipulate search engine ranking results to
promote their sites either for advertising purposes, financial
benefits or for misleading the user to a malicious content trap

or to install malware on victim’s machine. For these purposes,
spammers can use different techniques such as content-based
which is the most popular type of web spam, where the
spammer tries to increase term frequencies on the target page
to increase the score of the page. Another popular technique is
through using link-based, where the spammer tries to add lots
of links on the target page to manipulate the search engine
results [10] [11]. Ghiam et al. in [11] classified spamming
techniques to link-based, hiding, and content-based, and they
discussed the methods used for web spam detection for each
classified technique. Roul et al. in [10] proposed a method
to detect web spam by using either content-based, link-based
techniques or a combination of both. Gyongyi et al. in [12]
proposed techniques to semi-automatically differ the good
from spam page with the assistance of human expert whose his
role is examining small seed set of pages to tell the algorithm
which are ’good pages’ and ’bad pages’ roughly based on their
connectivity to the seed ones. Also, Gyongyi et al. in [13]
introduced the concept of spam mass and proposed a method
for identifying pages that benefit from link spamming. Egele et
al. [14] developed a classifier to distinguish spam sites from
legitimate ones by inferring the main web page features as
essential results, and based on those results, the classifier can
remove spam links from search engine results. Furthermore,
Ahmed et al. [15] presented a statistical approach to detect
spam profiles on online social networks (OSNs). The work in
[15] presented a generic statistical approach to identify spam
profiles on online social networks. For that, they identified 14
generic statistical features that are common to both Facebook
and Twitter and used three classification algorithms (naive
Bayes, Jrip and J48) to evaluate features on both individual and
combined data sets crawled from Facebook and Twitter net-
works. Prieto et al. [16] proposed a new spam detection system
called Spam Analyzer And Detector (SAAD) after analyzing a
set of existing web spam detection heuristics and limitations to
come up with new heuristics. Prieto et al. in [16] tested their
techniques using Webb Spam Corpus(2011) and WEBSPAM-
UK2006/7, and they claimed that the performance of their
proposed techniques is better than others system presented in
their literature. On the other side, other contributions try to
detect web spambot using supervised machining learning. In
this regard, Dai et al. [17] used supervised learning techniques
to combine historical features from archival copies of the web
and use them to train classifiers with features extracted from
current page content to improve spam classification. Araujo
et al. [18] presented a classifier to detect web spam based on
qualified link (QL) analysis and language model (ML) features.
The classifier in [18] is evaluated using the public WEBSPAM-
UK 2006 and 2007 data sets. The baseline of their experiments
was using the precomputed content and link features in a
combined way to detect web spam pages, then they combined
the baseline with QL and ML based features which contributed
to improving the detecting performance. Algur et al. [19]
proposed a system which gives spamicity score of a web page
based on mixed features of content and link-based. The pro-
posed system in [19] adopts an unsupervised approach, unlike
traditional supervised classifiers, and a threshold is determined
by empirical analysis to act as an indicator for a web page to
be spam or non-spam. Luckner et al. [20] created a web spam
detector using features based on lexical items. For that, they
created three web spam detectors and proposed new lexical-
based features that are trained and tested using WEBSPAM-

51Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 59 / 77

UK data sets of 2006 and 2007 separately, then they trained
the classifiers using WEBSPAM-UK 2006 data set but they
use WEBSPAM-UK 2007 for testing. In the end, the authors
based on the results of the first and second detectors as a
reference for the third detector where they showed that the data
from WEBSPAM-UK 2006 can be used to create classifiers
that work stably both on the WEBSPAM-UK 2006 and 2007
data sets. Moreover, Goh et al. [21] exploited web weight
properties to enhance the web spam detection performance
on a web spam data set WEBSPAM-UK 2007. The overall
performance in [21] outperformed the benchmark algorithms
up to 30.5% improvement at the host level and 6 − 11%
improvement at the page level. At the level of online social
networks (OSNs), the use of social media can be exploited
negatively as the impact of OSNs has increased recently and
has a major impact on public opinion. For example, one of the
common ways to achieve media blackout is to employ large
groups of automated accounts (bots) to influence the results
of the political elections campaigns or spamming other users’
accounts. Cresci et al. [22] proposed an online user behavior
model represents a sequence of string characters corresponding
to the user’s online actions on Twitter. The authors in [22]
adapt biological DNA techniques to online user behavioral
actions which are represented using digital DNA to distinguish
between genuine and spambot accounts. They make use of
the assumption of the digital DNA fingerprinting techniques
to detect social spambots by mining similar sequences, and
for each account, they extract a DNA string that encodes its
behavioral information from created data set of spambots and
genuine accounts. After that, Cresci et al. [23] investigate the
major characteristics among group of users in OSNs. The study
in [23] is an analysis of the results obtained in DNA-inspired
online behavioral modeling in [22] to measure the level of
similarities between the real behavioral sequences of Twitter
user accounts and synthetic accounts. The results in [23] show
that the heterogeneity among legitimate behaviors is high and
not random. Later, Cresci et al. in [24] envisage a change in the
spambot detection approach from reaction to proaction to grasp
the characteristics of the evolved spambots in OSNs using the
logical DNA behavioral modeling technique, and they make
use of digital DNA representation as a sequence of characters.
The proactive scheme begins with modeling known spambot
accounts with digital DNA, applying genetic algorithms to
extract new generation of synthetic accounts, comparing the
current state-of-art detection techniques to the new spambots,
then design novel detection techniques.

III. BACKGROUND AND MAIN TERMINOLOGIES

Let T = a0a2 . . . an−1 be a string of length |T | = n over
an alphabet Σ of size |Σ| = σ. The empty string ε is the string
of length 0. For 1 ≤ i ≤ j ≤ n, T [i] denotes the ith symbol
of T , and T [i, j] the contiguous sequence of symbols (called
factor or substring) T [i]T [i+1] . . . T [j]. A substring T [i, j] is
a suffix of T if j = n and it is a prefix of T if i = 1. A string
p is a repeat of T iff p has at least two occurrences in T . In
addition p is said to be right-maximal in T iff there exist two
positions i < j such that T [i, i+ |p|−1] = T [j, j+ |p|−1] = p
and either j + |p| = n + 1 or T [i, i + |p|] 6= T [j, j + |p|]. A
degenerate or indeterminate string , is defined as a sequence
X̃ = x̃0x̃1 . . . ˜xn−1, where x̃i ⊆ Σ for all 0 ≤ i ≤ n− 1 and
the alphabet Σ is a non-empty finite set of symbols of size
|Σ|. A degenerate symbol x̃ over an alphabet Σ is a non-empty

subset of Σ, i.e. x̃ ⊆ Σ and x̃ 6= ∅. |x̃| denotes the size of x̃
and we have 1 ≤ x̃ ≤ |Σ|. A degenerate string is built over
the potential 2|Σ|−1 non-empty subsets of letters belonging to
Σ. If |x̃| = 1, that is |x̃| repeats a single symbol of Σ, we say
that x̃i is a solid symbol and i is a solid position. Otherwise,
x̃i and i are said to be a non-solid symbol and non-solid
position respectively. For example, X̃ = ab[ac]a[bcd]bac is a
degenerate string of length 8 over the alphabet Σ = {a, b, c, d}.
A string containing only solid symbols will be called a solid
string. A conservative degenerate string is a degenerate string
where its number of non-solid symbols is upper-bounded by a
fixed position constant c [25], [26]. The previous example is
a conservative degenerate string with c = 2.

A suffix array of T is the lexicographical sorted array
of the suffixes of a string T i.e., the suffix array of T is
an array SA[1 . . . n] in which SA[i] is the ith suffix of T
in ascending order [27]–[29]. The major advantages of suffix
arrays over suffix trees is the space as the space needed
using suffix trees becomes larger with larger alphabets such as
Japanese characters, and it is useful in computing the frequency
and location of a substring in a long sequence (corpus) [28].
LCP (T1, T2) is the length of the longest common prefix
between strings T1 and T2 and it is usually used with SA
such that LCP [i] = lcp(TSA[i], TSA[i−1]) For all i ∈ [1..n]
[27] [30].

IV. PROBLEMS DEFINITIONS

The two main problems that the paper will address can be
defined as follows.

Problem A: Disguised (Indeterminate) Actions
Some spambots might attempt to disguise their actions

by varying certain actions. For example, a spambot takes
the actions ABCDEF , then ACCDEF , then ABDDEF
etc. This can be described as A[BC][CD]DEF . They try to
deceive by changing the second and third action. The action
[BC] and [CD] are variations of the same sequence. We will
call the symbols A,C,D,E, F solid, the symbols [BC] [CD]
indeterminate or non-solid and the string A[BC][CD]DEF
degenerate string which is denoted by S̃. In fact, they can
disguise any of the actions. In this case, we are not concern
which actions will be disguised but we assume that the
numbers of attempts to disguise is limited. Let us assume that
the number of disguised actions is bounded by a constant c.
For the moment, we will ignore the temporal factor of the
disguises at this problem to facilitate the clarification of the
discovery of the spambot actions, and we will consider the
temporal factor in describing problem B as it is a generalization
of problem A. Actually, we combine both temporal and fake
actions discovery by apply both algorithms simultaneously. For
now, let us consider the series of actions taking place on the
server.

Definition IV.1. Given a sequence T = a1 . . . an, find all
occurrences of S̃ = s1s2 . . . sm in T , where si might be solid
or indeterminate.

Problem B: Disguised Actions (with k Mismatches)
It is a generalization of Problem A with k errors such that

the sequence of spambot actions S̃ is degenerate actions with
errors, and the number of errors is bounded by a constant
k. Our aim is to detect new suspicious spambots which are

52Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 60 / 77

resulting from changing other disguised actions by spammers
such that using few mismatches in its spambot actions S̃ to
appear like actions issued by a genuine user.

Definition IV.2. Given a sequence T = a1 . . . an and an
action sequence S̃ = s1s2 . . . sm, find all occurrences of S̃
in T where si might be solid or indeterminate with hamming
distance between S̃ and T is no more than k mismatches.

V. ALGORITHMS

In the following, we discuss our algorithms for the two
aforementioned problems which they include (preprocessing)
as preliminary stage.

A. Preprocessing

Our algorithms require as input sequences temporally an-
notated actions. These temporally annotated sequences are
produced from user logs consisting of a collection of http
requests. Specifically, each request in a user log is mapped
to a predefined index key in the sequence and the date-time
stamp for the request in the user log is mapped to a time point
in the sequence.

B. Problem A: Disguised (indeterminate) actions

In order to design an efficient algorithm for this problem,
we need to use the following steps that will make the algorithm
fast.

Step 1: For each non-solid sj occurring in degenerate
pattern P̃ = s1 . . . sm, we substitute each sj with ’#’ symbol,
where ’#’ is not in Σ. Let P̂ be the resulting pattern from
substitution process and will be considered as a solid pattern,
see (Figure 1 Step1) and (Table I).

TABLE I. CONVERTING P̃ TO P̂

P̃ A B [GX] C [AD] F

P̂ A B #1 C #2 F

Step 2: Compute the suffix array for the sequence of
actions T . Since the suffix array is sorted array of all suffixes
of a given string, we can apply binary search algorithm with
the suffix array to find a pattern of spambot actions in a text
of actions in O(mlogn) time complexity, where m is the
the length of the pattern P and n is the length of the text
T . Our algorithm uses Manber and Myers algorithm which
is described in [31], which uses a suffix array for on-line
string searches and can answer a query of type "Is P a
substring in T ?" in time O(m+ logn). The algorithm in [31],
uses a sorted suffix array, binary search against the suffix
array of T and auxiliary data structures Llcp, Rlcp which
they are precomputed arrays and hold information about the
longest common prefixes (lcps) for two subranges (L . . .M)
and (M . . .R) of binary search. Subsequently, the algorithm
speeds up the comparison and permits no more than one
comparison for each character in P to be compared with the
text T . The method is generalised to O(m+logn+occ) to find
all occurrences of P by continuing on the adjacent suffixes to
the first occurrence of P in suffix array, see (Figure 1 Step2).

Step 3: At this stage, we consider each non-solid position
sj in P̂ which is represented by ’#’ as an allowed mismatch
with the corresponding action ai in T as ’#’ is not in Σ. To
query whether that ai belongs to the set of actions in ’#’, the
algorithm uses a bit masking operation. For example, suppose
we want to see whether the action ’X’ in text T belongs to
one of the set actions [GX] in P̂ which is represented by
’#1’, see Table I, we assume that each action in degenerate
symbol represents bit ’1’ among other possible actions, and ’0’
otherwise. Furthermore, The current compared action ai in T
is always represented by bit ’1’. Thereafter, the algorithm uses
And bit wise operation between the two sets [GX] and [X]
such that [11]

∧
[01] = [01] which means that [X] ∈ [GX]. To

do that, the algorithm uses the suffix array and binary search
to find the pattern match, and for each ’#’ in the sequence is
encountered, the algorithm consider it as an allowed mismatch
and get into the verification process to check whether the action
ai in T is one of the actions in ’#’. However, each non-solid
position sj in P̂ is numbered sequentially starting from 1 up
to the number of indeterminate symbols c. Consequently, we
refer to that position for each pattern of spambots actions with
the number of the pattern P̂r and the number of #l, where
1 ≤ r ≤ ΣP̂ and 1 ≤ l ≤ Σ# ∈ P̂r, see (Figure 1 Step3).

Input: Action sequence T , spambots dictionary S where each spambot P̃ ∈ S
Output: all matching P̃ found in T

1: procedure LOCATE ALL LOCATIONS OF P̃ WITH INDETERMINATE ACTIONS IN T
2: . Step1: (Substitution)
3: for each P̃r ∈ S do
4: P̂r ← P̃r

5: m← |P̂r|
6: l← 1
7: for (j = 0 to m− 1) do
8: if (ˆPr[j] is non solid) then
9: ˆPr[j]← #l

10: l← l + 1
11: end if
12: end for
13: end for
14: . Step2: (actions matching)
15: Build the suffix array SA for the text of actions T
16: for each P̂r ∈ S do
17: Apply the binary search with LCPs arrays of Manber and Myer in [31]
18: For each current action ai in SA compared to non solid symbol represented

by ’#l’ in P̂r . go to: step 3
19: end for
20: . Step3: (verification process)
21: mask = 1

∧
hashMatchTable[P̂r#l][ascii[ai]]

22: if mask = 1 then
23: continue
24: else . not match
25: exit matching
26: end if
27: end procedure

Figure 1: Problem A: Locate spambots with indeterminate
actions

Verification process: At this stage, the algorithm does a
bit level masking operation using the logical operator ’And’
between the current compared action ai in T and the cor-
responding non-solid position in P̂ which is represented by
’#l’. As we mentioned before, the algorithm assumes each
current compared action ai in T is represented by a bit ’1’, and
each ’#l’ of each pattern reveals its original set of actions by
setting bit ’1’ at each action belongs to its set and ’0’ otherwise
using a match table called hashMatchTable, see Table II. To
access the corresponding column in hashMatchTable directly,
the columns are indexed by the (ascii code) of each character

53Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 61 / 77

belongs to the actions alphabets in Σ and ordered from 65
to 90 which are the ascii code of capital letters (or 97 to
122 for small letters). Thus, the algorithm can apply the
following formula (1

∧
hashMatchTable[P̂r#l][ascii[ai]]) to

find whether that current comparing action ai in T has a match
with one of the actions in ’#l’ where ’1’ is the corresponding
bit of ai, see (Figure 1 Step3) and (Table II).

TABLE II. HASHMATCHTABLE OF THE PATTERN
P̃1 = AB[GX]C[AD]F WHERE ITS COVERSION IS

P̂1 = AB#1C#2F

asscii(ai) 65 66 67 68 .. 71 . . . 88 89 90
ai A B C D .. G . . . X Y Z

P̂1#1 0 0 0 0 1 . . . 1 0 0

P̂1#2 1 0 0 1 0 . . . 0 0 0
. .

P̂r#l .

Theorem 1. Algorithm (Figure 1) computes the occurrence of
the pattern P̂ in text T in O(mlogn) time using suffix array
with binary search.

Theorem 2. Algorithm (Figure 1) can compute all occurrences
of the pattern P̂ in text T in O(m + logn + occ) time using
an enhanced suffix array with auxiliary data structure LCP,
binary search and bit masking.

C. Problem B: Disguised Actions (with k Mismatches)
The problem we solve is referred to as (f, c, k,W)-

Disguised Spambots Detection which is a generalization of
problem A and defined as follows:

Problem. (f, c, k,W)-Disguised Spambots Detection with in-
determinate actions. Given a temporally annotated action se-
quence T (aj , tj), a dictionary S containing sequences Ŝi each
has a c non-solid symbol (represented by #), associated with
a time window Wi, a minimum frequency threshold f , and a
maximum Hamming distance threshold k, find all occurrences
of each Ŝi ∈ S in T , such that each Ŝi occurs: (I) at least f
times within its associated time window Wi, and (II) with at
most k mismatches according to Hamming distance.

The problem we introduce in our work considers spam-
bots that perform indeterminate sequence of malicious actions
multiple times. Thus, we require an indeterminate sequence
which has c non-solid symbol(s) to appear at least f times
and within a time window Wi, to attribute it to a spambot.
In addition, we consider spambots that perform decoy actions,
typically performed by real users. To take this into account,
we consider mismatches. We assume that the dictionary and
parameters are specified based on domain knowledge (e.g.,
from external sources or past experience).

1) Our algorithm for solving (f, c, k,W)-Disguised Spam-
bots Detection: The algorithm is based on constructing a
generalized enhanced suffix array data structure, bit masking
with help of Kangaroo method [32], to find the longest
common subsequence LCS between a sequence of actions in
T and an action sequence Ŝi with at most k mismatches in
linear time.

Definition V.1. The Enhanced suffix array (ESA) is a data
structure consisting of a suffix array and additional tables

which can be constructed in linear time and considered as
an alternative way to construct a suffix tree which can solve
pattern matching problems in optimal time and space [33],
[34].

Definition V.2. The Generalized enhanced suffix array (GESA)
is simply an enhanced suffix array for a set of strings, each one
ending with a special character and usually is built to find the
longest common sequence LCS of two strings or more. GESA
is indexed as a pair of identifiers (i1, i2), one identifying the
string number, and the other is the lexicographical order of the
string suffix in the original concatenation strings [35].

To do so, we start with algorithm (Figure 2). First, our
algorithm extracts the actions of the temporally annotated
action sequence T into a sequence Ta such that it contains
only the actions a0 . . . an from T (step 2). Then, we gen-

Input: Temporally annotated action sequence T , spambot dictionary S, k, f
Output: All occurrences for each spambot Ŝi in dictionary S

1: procedure DISGUISED SPAMBOTS DETECTION WITH K MISMATCHES
2: Ta ← all extracted action sequences with same their order from T
3: n← |Ta|
4: // Create GESA, where each index consists of a pair (i1, i2)
5: GESA(Ta, SŜi

)← Ta!0Ŝ1!1Ŝ2!2 . . . Ŝr!r

6: Create GESAR from GESA
7: Initialize hashMatchTable[no.of#][26]
8: for each spambot sequence Ŝi ∈ S do . Start matching
9: occ← 0, occur[]← empty, sus_spam← empty

10: // Calculate LCS between Ŝi and Ta

11: m← GESAR[i], (m1,m2)← GESA[m].(i1, i2)
12: // Find the closest Ta sequence suffix j which is identified by i1 = 0 and

closest to m either before or after m
13: j ← m− 1 . (j ← m + 1) in case closest j is after m
14: Find_Occ:
15: while j ≥ 0 and i1 6= 0 do . (j < n) & (i1 6= 0) in case closest j is

after m
16: j ← j − 1 . j ← j + 1 in case closest j is after m
17: end while
18: if j ≥ 0 and i1 = 0 then . ((j < n) & (i1 = 0)) in case closest j is

after m
19: (j1, j2)← GESA[j].(i1, i2)
20: Find_LCS(Ta, Ŝi, j2, m2, n, k, occ, occur[], S,

sus_spam, hashMatchTable)
21: j ← j − 1 . j ← j + 1 in case closest j is after m
22: if j ≥ 0 then . j < n in case closest j is after m
23: // Find other occurrences of suspicious spambot from Ŝi

24: go to Find_Occ
25: else
26: Output sus_spam,occur[]
27: end if
28: end if
29: end for
30: end procedure

Figure 2: Problem B: Disguised spambots detection with k
mismatches

eralize the enhanced suffix array to a collection of texts
Ta and set of action sequences SŜi

separated by a special
delimiter at the end of each sequence (step 5) as follows:

GESA(Ta, SŜi
) = Ta!0Ŝ1!1Ŝ2!2 . . . Ŝr!r

Such that, Ŝ1 . . . Ŝr are set of spambots sequences that be-

long to dictionary SŜi
, and !0, . . . , !r are special symbols

not in Σ and smaller than any alphabetical letter in Ta and
smaller than ’#’ with respect to an alphabetical order. We
will refer to a collection of tables (GESA, GESAR, LCS,
T, SŜi

) to find disguised spambots within a time window t
such that given a temporally annotated action sequence T =
(a0, t0), (a1, t1) . . . (an, tn), an action sequence Ŝ = s1 . . . sm

54Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 62 / 77

and an integer t, we will compute j1, j2, . . . , jm such that
aji = si, 1 ≤ i ≤ m and

∑m
i=1 tji < t or tjm − tj1 < t

with Hamming distance between Ta and Ŝ no more than
k mismatches. For example, suppose we have the following
sequence actions:
Ta = ABBABGCDFCBACAFAABGDFF and an in-
determinate spambot sequence: Ŝ = B#1C#2F , where
#1 = [GX] and #2 = [AD] in the original sequence S̃.
Hence, the GESA(Ta, Ŝ) = Ta!0Ŝ!1, where all sequences are
concatenated in one string separated with a unique delimiter
! and the reference indexing of the GESA will consist of 29
index as shown in Figure 3. Our algorithm includes initializa-

A B B A B G C D F C B A C A F A A B G D F F !0 B #1 C #2 F !1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1

Figure 3: Concatenation strings of Ta!0Ŝ!1

tion for hashMatchTable to do bit masking (see Figure 2, step
7). For each spambot sequence Ŝi in the spambots dictionary
SŜi

, the algorithm calculates the longest common sequence
LCS between Ŝi and Ta starting at position 0 in sequence
Ŝi and position j in sequence Ta such that the common
substring starting at these positions is maximal (see Figure
2, steps 8-24). Since the suffixes of these two sequences are
represented in the lexicographical order at GESA(Ta, SŜi

),
we need to look up the closest suffix j (which belongs
to the other sequence in Ta) to the sequence Ŝi. This can
be achieved by using GESAR table which retains all the
lexicographical ranks of the suffixes of the GESA (see Figure
2, step 6). After locating the suffix index of the pattern Ŝi,
(see Figure 5, rank 10 in GESAR(i) column as an example),
then, the closest suffix j will be the closest neighbour to that
suffix and belongs to the sequence Ta (which is identified
by an integer number i1 and equal to 0). More precisely, the
length of the longest common sequence at position GESA(i)
and matching substring of GESA(j) is given as follows:

LCS(Ŝi, Ta) = max(LCP (GESA(i1, i2), GESA(j1, j2)) = l0

Where l0 is the maximum length of the longest com-
mon prefix matching characters between GESA(i1, i2) and
GESA(j1, j2) until the first mismatch occur (or one of the
sequences terminates). Next, the second step in our algorithm
involves finding the length of the longest common subsequence
starting at the previous mismatch position l0 which can be
achieved using Kangaroo method (see Figure 4) as follows:

max(LCP (GESA(i1, i2 + l0 + 1), GESA(j1, j2 + l0 + 1)) = l1

Where l1 is the maximum length of the longest common
prefix matching characters between GESA(i1, i2 + l0 +1) and
GESA(j1, j2+l0+1) until the second mismatch occur (or one
of the sequences terminates). Once our algorithm encounters
’#’ at the pattern, it will get into the verification process (see
Figure 4, steps 27-32) that we described in problem A (using
bit masking and hashMatchTable). Our algorithm will continue
in using Kangaroo method to find other k mismatches until
the number of mismatches is greater than k or one of the
sequences terminates. Subsequently, to find other occurrences
of the spambot Ŝi in Ta, Figure 2 continues finding the second
closest suffix j that belongs to the sequence Ta simply from
GESA, see Figure 5.

1: function FIND_LCS(Ta, Ŝi, j2, m2, n,k, occ, ref : occur[], S, ref :
sus_spam, hashMatchTable[][26]) . ref: to return parameter’s value to
algorithm Figure 3

2: l← 0; k_mis← 0
3: while k_mis < k and l < n and l < |Ŝi| do
4: while Ta[j2 + l] = Ŝi[0 + l] do
5: sus_spam← sus_spam + Ta[j2 + l]
6: l← l + 1
7: end while
8: if Ŝi[0 + l] =′ #′ then
9: go to Verification process

10: if match then
11: sus_spam← sus_spam + Ta[j2 + l]
12: l← l + 1
13: else
14: k_mis← k_mis + 1
15: end if
16: end if
17: end while
18: if |sus_spam| = |Ŝi| then
19: a_time← 0
20: for pos = j2 to |Ŝi| do
21: a_time← a_time + T [tpos]
22: end for
23: if a_time ≤ Wi then
24: occ← occ + 1; occur[occ]← j2
25: end if
26: end if
27: . Verification process:
28: if hashMatchTable[Ŝi[0 + l]][ascii[Ta[j2 + l]]] = 1 then
29: match← true
30: else
31: match← false
32: end if
33: end function

Figure 4: Problem B: LCS with Kangaroo method

i GESA[i] Suffix GESAR[i]
0 (1,28) !1 5
1 (0,22) !0b#1c#2f !0 13
2 (1,24) #1c#2f !1 11
3 (1,26) #2f !1 6
4 (0,15) aabgdff !0b#1c#2f !1 14
5 (0,0) abbabgcdfcbacafaabgdff !0b#1c#2f !1 27
6 (0,3) abgcdfcbacafaabgdff !0b#1c#2f !1 19
7 (0,16) abgdff !0b#1c#2f !1 20
8 (0,11) acafaabgdff !0b#1c#2f !1 25
9 (0,13) afaabgdff !0b#1c#2f !1 18

10 (1,23) b#1c#2f !1 12
11 (0,2) babgcdfcbacafaabgdff !0b#1c#2f !1 8
12 (0,10) bacafaabgdff !0b#1c#2f !1 17
13 (0,1) bbabgcdfcbacafaabgdff !0b#1c#2f !1 9
14 (0,4) bgcdfcbacafaabgdff !0b#1c#2f !1 24
15 (0,17) bgdff !0b#1c#2f !1 4
16 (1,25) c#2f !1 7
17 (0,12) caf aabgdff !0b#1c#2f !1 15
18 (0,9) cbacafaabgdff !0b#1c#2f !1 28
19 (0,6) cdfcbacafaabgdff !0b#1c#2f !1 21
20 (0,7) dfcbacafaabgdff !0b#1c#2f !1 26
21 (0,19) dff !0b#1c#2f !1 23
22 (1,27) f !1 1
23 (0,21) f !0b#1c#2f !1 10
24 (0,14) faabgdff !0b#1c#2f !1 2
25 (0,8) fcbacafaabgdff !0b#1c#2f !1 16
26 (0,20) f f !0b#1c#2f !1 3
27 (0,5) gcdfcbacafaabgdff !0b#1c#2f !1 22
28 (0,18) gdff !0b#1c#2f !1 0

Figure 5: GESA for the sequences Ta,Ŝ and illustration of
occurrences of Ŝ in Ta at i = 12, 14 and 15 and k = 2, where
#1 = [GX] and #2 = [AD]

As we can see from Figure 5, there are three occurrences
for spambot Ŝ in Ta with up to k = 2 mismatches. The first
occurrence is illustrated using blue color at i = 12 with one
mismatch (k = 1). The second occurrence is illustrated using
violet color at i = 14 with zero mismatch (k = 0) and the last

55Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 63 / 77

occurrence is illustrated using green color at i = 15 with two
mismatches (k = 2). All curved arrows represent the Kangaroo
jumps, and the underlines represent mismatches places. Finally,
at each occurrence of Ŝi in the sequence Ta, algorithm (Figure
4) checks its time window using the dictionary S and T such
that it sums up each time ti associated with its action ai in T
starting at the position j2 in GESA(j1, j2) until the length of
the spambot |Ŝi| and compares it to its time window Wi. If the
resultant time is less than or equal to Wi, algorithm (Figure 4)
considers that the pattern sequence corresponds to a spambot
and terminates (see Figure 4, steps 18-26), so that the control
returns to algorithm (Figure 2). Once the frequency number
hits a predefined threshold f , the sequence and its occurrences
will be output by algorithm Figure 2.

VI. EXPERIMENTAL EVALUATION

We implemented our algorithm in C++ and ran it on an
Intel i7 at 3.6 GHz. Our algorithm uses linear time and space.
It constructs the suffix array by almost pure Induced-Sorting
[36], to build our GESA for the concatenated sequences (Ta
and data dictionary S), and then it applies the bit masking
and Kangaroo method to detect all uncertain actions. We use
synthetic data to test our method, because we are not aware
of publicly available datasets of real spambot behavior and
modeling the real temporal annotated sequence of a user log.

TABLE III. RESULTS FOR THE NUMBER OF DETECTED
DESGUISED SPAMBOTS AND RUNTIME. DICTIONARY SIZE
|S| = 100, 200 AND 500 (INCLUDE 20, 50 AND 100

DISGUISED SEQUENCES RESPECTIVELY) WITH f = 2, AND
HAMMING DISTANCE THRESHOLD k = 0, 1 AND 2.

|S| : |#| |T | |Tinj | Disguised actions Time (min)
k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

100 : 20

10,000 13,004 85 142 376 0.036 0.038 0.043
25,000 28,100 97 152 302 0.223 0.225 0.237
50,000 52,924 93 154 542 0.890 0.894 0.974
100,000 103,028 90 161 758 3.705 3.751 3.795

200 : 50

10,000 16,060 206 313 976 0.137 0.148 0.160
25,000 30,876 306 422 1726 0.555 0.582 0.586
50,000 55,856 202 258 946 1.976 1.957 2.094
100,000 105,878 203 337 1512 7.422 7.781 7.966

500 : 100

10,000 25,088 630 856 2141 2.294 2.255 2.367
25,000 39,736 602 811 2488 2.440 2.575 2.582
50,000 64,666 582 791 2854 6.621 6.779 6.929
100,000 114,812 640 902 4110 21.515 21.744 22.207

However, the use of synthetic data does not affect our
findings, because our method is guaranteed to detect all
specified patterns in any temporally annotated sequence. Also
note that we do not compare with existing works because
no existing method can solve this problem. We used a
random string generator to generate: (I) temporally anno-
tated sequences with 26 distinct characters and sizes in
{10000, 25000, 50000, 100000}, and (II) dictionaries with size
in {100, 200, 500}. In every generated temporally annotated
sequence T , we injected each sequence in S to random
locations f ∈ {2, 5, 10} times, to obtain the web-spambots user
log Tinj . We also changed some sequences in S, to simulate
disguised and mismatch actions. Specifically, we replaced 20%
of actions of selected sequences in S by ’#’ symbol which
represents an indeterminate symbol that corresponds to one or
more action in Tinj , to simulate disguised actions. Also, we
changed one random element in 25% of randomly selected
sequences, to simulate a mismatch, and two random elements

in another 25% of randomly selected sequences, to simulate
two mismatches. The window length (Wi) for each sequence
in S was selected randomly in [5, 125]. Table III shows the
impact of the dictionary size |S| on the disguised spambot
actions (with mismatches) and runtime. From this table we
observe the following:
• For the same (|S| : |#|) and |T | and varying k, the

number of detected actions increases, as our algorithm
by construction detects all actions with at most k mis-
matches (so the actions for a larger k include those for
all smaller k’s). Interestingly, the sequences which have
disguised actions (represented by ’#’ symbol) are detected
as the normal sequences due to the use of bit masking
operation and hashMatchTable. Also, it is noticeable that
the runtime is hardly affected by k, due to the use of the
Kangaroo method, which effectively speeds up the finding
of occurrences of spambots. For example, the time for
the disguised spambots detection at k = 1 and k = 2,
when (|S| : |#| = 500 : 100) and (|T | = 25, 000)
is relatively the same, despite the big difference in the
number detected spambots.

• For the same (|S| : |#|) and k and varying |T |, the
number of detected actions does not directly depend on
|T |; it depends on the size of the injected actions to T ,
which generally increases with (|S| : |#|). The runtime
increases with |T |, since our algorithm always detects all
actions in T .

• For the same |T | and k and varying (|S| : |#|), the
number of detected actions increase with (|S| : |#|) as
our algorithm always detects all actions in the dictionary,
and the runtime also increases with the dictionary size.

Table IV shows the impact of the frequency f on the disguised
spambot actions and runtime. For this table, we observe the
following:

TABLE IV. RESULTS FOR THE NUMBER OF DETECTED
DISGUISED SPAMBOTS AND RUNTIME. DICTIONARY SIZE

(|S| : |#| = 100 : 20) WITH f = 2, 5 AND 10, AND
HAMMING DISTANCE THRESHOLD k = 0, 1 AND 2.

f |T | |Tinj | Disguised actions Time (min)
k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

2

10,000 13,004 85 142 376 0.036 0.038 0.043
25,000 28,100 97 152 302 0.223 0.225 0.237
50,000 52,924 93 154 542 0.890 0.894 0.974
100,000 103,028 90 161 758 3.705 3.751 3.795

5

10,000 17,510 209 345 715 0.085 0.088 0.092
25,000 32,750 243 376 497 0.345 0.353 0.357
50,000 57,310 234 379 894 1.073 1.091 1.144
100,000 107,570 224 382 1075 4.184 4.147 4.247

10

10,000 25,020 417 681 1264 0.179 0.191 0.203
25,000 40,500 488 751 1149 0.514 0.532 0.539
50,000 64,620 466 751 1475 0.528 1.494 1.456
100,000 115,140 451 755 1609 4.713 4.948 5.045

• For the same f and |T | and varying k, the detected actions
for any k include all actions with at most k mismatches.
Also, the runtime is hardly affected by k and disguised
actions, due to the use of the Kangaroo method and bit
masking operation.

• For the same f and k and varying |T |, the number of
detected actions does not increase with |T |, as it depends
on the size of injected actions which generally depends
on (|S| : |#|), as explained above. The runtime increases
because our algorithm always detects all actions in T .

56Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 64 / 77

• For the same |T | and k and varying f , the number of
detected actions increases as our algorithm always detects
all injected actions. Interestingly though the algorithm
scales well with f , especially when |T | is large. This
is due to the use of the Generalized enhanced suffix
array (GESA) which finds all subsequent occurrences of
a detected action occurrence directly from the adjacent
suffixes to the first occurrence suffix.

VII. CONCLUSION

We have introduced two efficient algorithms that can detect
spambots of malicious actions with variable time delays. One
can detect one or more indeterminate sequences in a web user
log using Manber and Myers algorithm and bit masking oper-
ation. The second proposed a generalized solution for solving
(f, c, k,W)-Disguised Spambots Detection with indeterminate
actions and mismatches. Our algorithm takes into account
temporal information, because it considers time-annotated se-
quences and because it requires a match to occur within a time
window. The problem seeks to find all occurrences of each
conservative degenerate sequence corresponding to a spambot
that occurs at least f times within a time window and with
up to k mismatches. For this problem, we designed a linear
time and space inexact matching algorithm, which employs the
generalized enhanced suffix array data structure, bit masking
and Kangaroo method to solve the problem efficiently.

REFERENCES

[1] J. Yan and A. S. El Ahmad, “A low-cost attack on a microsoft captcha,”
in CCS. ACM, 2008, pp. 543–554.

[2] A. Zinman and J. S. Donath, “Is britney spears spam?” in CEAS, 2007.
[3] S. Webb, J. Caverlee, and C. Pu, “Social honeypots: Making friends

with a spammer near you.” in CEAS, 2008, pp. 1–10.
[4] P. Heymann, G. Koutrika, and H. Garcia-Molina, “Fighting spam on

social web sites: A survey of approaches and future challenges,” IEEE
Internet Computing, vol. 11, no. 6, 2007, pp. 36–45.

[5] P. Hayati, K. Chai, V. Potdar, and A. Talevski, “Behaviour-based web
spambot detection by utilising action time and action frequency,” in In-
ternational Conference on Computational Science and Its Applications,
2010, pp. 351–360.

[6] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, C. Zhang, and
K. Ross, “Identifying video spammers in online social networks,” in
International workshop on Adversarial information retrieval on the web.
ACM, 2008, pp. 45–52.

[7] A. H. Wang, “Detecting spam bots in online social networking sites: a
machine learning approach,” in CODASPY, 2010, pp. 335–342.

[8] P. Hayati, V. Potdar, A. Talevski, and W. Smyth, “Rule-based on-the-fly
web spambot detection using action strings,” in CEAS, 2010.

[9] V. Ghanaei, C. S. Iliopoulos, and S. P. Pissis, “Detection of web spambot
in the presence of decoy actions,” in IEEE International Conference on
Big Data and Cloud Computing, 2014, pp. 277–279.

[10] R. K. Roul, S. R. Asthana, M. Shah, and D. Parikh, “Detecting spam
web pages using content and link-based techniques,” Sadhana, vol. 41,
no. 2, 2016, pp. 193–202.

[11] S. Ghiam and A. N. Pour, “A survey on web spam detection methods:
taxonomy,” arXiv preprint arXiv:1210.3131, 2012.

[12] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam
with trustrank,” in Proceedings of the 30th international conference on
very large data bases (VLDB), 2004.

[13] Z. Gyongyi, P. Berkhin, H. Garcia-Molina, and J. Pedersen, “Link
spam detection based on mass estimation,” in Proceedings of the 32nd
international conference on Very large data bases. VLDB Endowment,
2006, pp. 439–450.

[14] M. Egele, C. Kolbitsch, and C. Platzer, “Removing web spam links
from search engine results,” Journal in Computer Virology, vol. 7, no. 1,
2011, pp. 51–62.

[15] F. Ahmed and M. Abulaish, “A generic statistical approach for spam de-
tection in online social networks,” Computer Communications, vol. 36,
no. 10-11, 2013, pp. 1120–1129.

[16] V. M. Prieto, M. Álvarez, and F. Cacheda, “Saad, a content based web
spam analyzer and detector,” Journal of Systems and Software, vol. 86,
no. 11, 2013, pp. 2906–2918.

[17] N. Dai, B. D. Davison, and X. Qi, “Looking into the past to better
classify web spam,” in Proceedings of the 5th international workshop
on adversarial information retrieval on the web, 2009, pp. 1–8.

[18] L. Araujo and J. Martinez-Romo, “Web spam detection: new classifi-
cation features based on qualified link analysis and language models,”
IEEE Transactions on Information Forensics and Security, vol. 5, no. 3,
2010, pp. 581–590.

[19] S. P. Algur and N. T. Pendari, “Hybrid spamicity score approach to web
spam detection,” in International Conference on Pattern Recognition,
Informatics and Medical Engineering (PRIME-2012). IEEE, 2012,
pp. 36–40.

[20] M. Luckner, M. Gad, and P. Sobkowiak, “Stable web spam detection
using features based on lexical items,” Computers & Security, vol. 46,
2014, pp. 79–93.

[21] K. L. Goh, R. K. Patchmuthu, and A. K. Singh, “Link-based web spam
detection using weight properties,” Journal of Intelligent Information
Systems, vol. 43, no. 1, 2014, pp. 129–145.

[22] S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi,
“Dna-inspired online behavioral modeling and its application to spam-
bot detection,” IEEE Intelligent Systems, vol. 31, no. 5, 2016, pp. 58–
64.

[23] ——, “Exploiting digital dna for the analysis of similarities in twitter
behaviours,” in 2017 IEEE International Conference on Data Science
and Advanced Analytics (DSAA). IEEE, 2017, pp. 686–695.

[24] S. Cresci, M. Petrocchi, A. Spognardi, and S. Tognazzi, “From reaction
to proaction: Unexplored ways to the detection of evolving spambots,”
in Companion Proceedings of the The Web Conference 2018, 2018, pp.
1469–1470.

[25] C. Iliopoulos, R. Kundu, and S. Pissis, “Efficient pattern matching in
elastic-degenerate strings,” arXiv preprint arXiv:1610.08111, 2016.

[26] M. Crochemore, C. S. Iliopoulos, R. Kundu, M. Mohamed, and
F. Vayani, “Linear algorithm for conservative degenerate pattern match-
ing,” Engineering Applications of Artificial Intelligence, vol. 51, 2016,
pp. 109–114.

[27] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix array
construction algorithms,” acm Computing Surveys (CSUR), vol. 39,
no. 2, 2007, pp. 4–es.

[28] M. Yamamoto and K. W. Church, “Using suffix arrays to compute
term frequency and document frequency for all substrings in a corpus,”
Comput. Linguist., vol. 27, no. 1, Mar. 2001, pp. 1–30.

[29] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix array
construction,” JACM, vol. 53, no. 6, 2006, pp. 918–936.

[30] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-
time longest-common-prefix computation in suffix arrays and its ap-
plications,” in Annual Symposium on Combinatorial Pattern Matching.
Springer, 2001, pp. 181–192.

[31] U. Manber and G. Myers, “Suffix arrays: a new method for on-line
string searches,” siam Journal on Computing, vol. 22, no. 5, 1993, pp.
935–948.

[32] M. Nicolae and S. Rajasekaran, “On pattern matching with k mis-
matches and few don’t cares,” IPL, vol. 118, 2017, pp. 78–82.

[33] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees
with enhanced suffix arrays,” J. Discrete Algorithms, vol. 2, 2004, pp.
53–86.

[34] M. Abouelhoda, S. Kurtz, and E. Ohlebusch, Enhanced Suffix Arrays
and Applications, 12 2005, pp. 7–1.

[35] F. A. Louza, G. P. Telles, S. Hoffmann, and C. D. Ciferri, “Generalized
enhanced suffix array construction in external memory,” AMB, vol. 12,
no. 1, 2017, p. 26.

[36] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array construction
by almost pure induced-sorting,” in DCC, 2009, pp. 193–202.

57Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 65 / 77

Analysis of Spatiotemporal Patterns of Changes in Brightness of Nighttime Lights

(NTL) in the Former USSR Territory

Michail Zhizhin

Earth Observation Groupe, Payne Institute

Colorado School of Mines

Golden CO, USA

e-mail: mzhizhin@mines.edu

Alexander Troussov

Institute of Applied Economic Research,

RANEPA

Moscow, Russia

e-mail: Troussov-av@rane.ru

Alexey Poyda

Kurchatov Complex of NBICS Nature-like Technologies

NRC “Kurchatov Institute”

Moscow, Russia

e-mail: Poyda_AA@nrcki.ru

Sergey Maruev
Institute Of Economics, Mathematics and IT

RANEPA

Moscow, Russia

e-mail: Maruev@ranepa.ru

Abstract—The distribution of brightness of nighttime lights

(NTL) at the Earth’s surface in the visible band of the

electromagnetic spectrum is a new forward-looking data source

for socio-economic studies. Visual and statistical analysis of this

distribution in time and space requires new mathematical and

geo-informational methods of cooperative processing of many

raster images and vector data (geographical maps) together

with socio-economic analytics. The current research develops

new means of the spatiotemporal analysis, reveals basic

problems of applied monitoring, and outlines forward-looking

approaches to their solution.

Keywords - remote sensing, nighttime lights, data mining, big

data, spatio-temporal analysis, socio-economic applications.

I. SPATIOTEMPORAL PATTERNS OF NTL DYNAMICS

Basic data for the applied analysis of changes in Nighttime
Lights (NTL) in the visible spectrum are received in the form
of a continuous sequence of images from two constellations
of American low-Earth-orbit heliosynchronous
meteorological satellites DMSP and JPSS with a 1 km spatial
resolution ([1], [2]). Monthly maps of the mean brightness of
cloudless and moonless NTL created on the basis of
VIIRS/DNB data were used for the analysis of statistics of
changes in urban NTL.

Figure 1 demonstrates an example of a monthly brightness
distribution map of Moscow in the DNB channel. Yellow
color corresponds to pixels with higher brightness, blue – to
pixels with lower brightness.

In order to create the map, the data range was compressed
with the use of a logarithmic function. The obtained image
was laid over a map in the Google Earth application. The map
contains several distinct large objects: the Kremlin and city
center are much brighter even after a logarithmic
compression; blue color corresponds to large forest parks;
major highways are clearly visible. Nevertheless, it is clearly
seen that the borders of districts with high and low brightness
are blurred. It is associated with the spatial resolution of
images and the fact that detection coordinates (the center of a

pixel in which the light source is reflected) differ from the
coordinates of the source itself, so in the course of several
flyovers one and the same light source corresponds to a
“cloud” of detections with different coordinates.

Figure 1. Brightness distribution maps of Moscow in the VIIRS / DNB

spectrum channel.

Figure 2 demonstrates an example of a time sequence of

the mean brightness value of pixels obtained in Moscow, that
was formed starting from January 2017 till July 2019. The
graph is characterized by the absence of indications in several
summer months because of sunlight contamination in the
satellite images and an abnormal increase in brightness during
winter months because of snow [3]. Manual exclusion of
abnormal indications can ensure more precise results but has
two significant drawbacks:

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2 58

 66 / 77

1) Subjectivity of the analysis. Different specialists can

keep different months and consequently obtain different

trends. It is hard to answer which trend is the right one and

which is not;

2) Labor intensity. If it is necessary to analyze several

hundreds of cities, manual exclusion of indications will

require large labor inputs.

Figure 2. Time sequence with monthly intervals formed by averaging

brightness indications of all pixels in the DNB channel that correspond to

Moscow.

II. OUTLIER REMOVAL IN NTL DYNAMICS

We have automated the outlier removal with the help of
the RANSAC algorithm [4]. The algorithm includes two basic
steps: generation of a hypothesis and its testing. In the
generation step, a random subset is chosen from the whole
sample of data. It is supposed that the chosen subset does not
contain any abnormalities. Optimal model parameters are
selected for the chosen subset. The class of the model is
defined beforehand. For example, if it is a linear model of the
form ax + by + с = 0, it is necessary to evaluate the
coefficients a, b and c.

In the testing step, all points of the input sample are tested
for abnormality. The process of testing depends on the
examiner. For example, in the case of a linear model, it can be
fulfilled on the basis of the distance between the point and the
line of the examined model: if it is larger than a given
parameter, then the point is considered abnormal.

Once all points are tested for belonging to the model, the
overall number of abnormal points is estimated. If at this
iteration the number of abnormalities is the smallest one
among all previous iterations, the result is saved as an
intermediate one. If the number of iterations has not reached
the limit (indicated by the examiner), a new iteration begins;
otherwise, the intermediate result returns.

Thus, while using RANSAC, it is necessary to define a set
of parameters including:

 Model on the basis of which the data will be
evaluated;

 Metric for the separation of points in the
corresponding models and abnormalities;

 Number of iterations sufficient for the construction of
a consistent model.

In this case, we selected a linear model and used the
distance between the point and the line as an abnormality
filtration metric defined by the following formula:

9 ,

_

STD
TH

STD M

where TH stands for the admission threshold, STD defines
the root mean square deviation of the time sequence of the
mean brightness indications of the examined city, and STD_M
is the root mean square deviation of the time sequence of the
mean brightness indications of Moscow.

The result of the RANSAC algorithm application for
Moscow are demonstrated in figure 3. Indications belonging
to the model are marked by green points and the red line shows
the linear trend.

Figure 3. Results of the RANSAC algorithm application for Moscow

(excluding Novomoskovsky Administrative Okrug, Troitsky

Administrative Okrug, and Zelenogradsky Administrative Okrug).

Figure 3 demonstrates that the algorithm excluded those
points that corresponded to the increase in urban brightness in
winter. However, apart from brightness increase, the
observations from November 2017 were also excluded due to
a downturn in the signal level, possibly due to the low cloud
free coverage. The reason for such a significant downfall
requires further examination but whatever it is, the question
arises as to whether such months should be excluded from the
calculations.

In this case, a long time period is examined and the linear
trend is consequently defined, so it is implied that the analysis
is long-term and the changes are gradual. In this regard, it

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2 59

 67 / 77

seems logical to exclude both upward and downward
abnormalities in the signal level.

III. STATISTICAL ANALYSIS OF NTL DYNAMICS

A detailed analysis of changes in NTL over time can be
carried out with the help of time sequences that are obtained
by summing up and averaging the light sources’ brightness in
a limited region over a short period of time.

Mean brightness of the Nighttime Lights (MNL) indicates
the mean level of artificial lighting in the examined area. For
integral quantization values of the brightness of the DMSP /
OLS sensor it is defined by the formula:

where DNi is the i-th level of brightness (i = 0–26) in a
DMSP/OLS image, Ci stands for the number of pixels that
correspond to the given brightness color within the examined
region.

Figure 4 demonstrates a time sequence of indexes of the
annual mean radiance MNLOLS in the vicinity of the city of
Grozny for the period from 1992 to 2013. DNi images from
different satellites F10 — F18 were compared with the use of
cross-calibration according to the method [5]. The graph
demonstrates downfalls in the brightness of the nighttime
radiance during the First and the Second Chechen Wars and a
stable positive trend in the postwar reconstruction period.

Figure 4. Time sequence of indexes of annual mean radiance MNLOLS in

the vicinity of the city of Grozny, the Chechen Republic for the entire

period of digital registration of nighttime images from the DMSP satellites

from 1992 to 2013.

To compare the time series of the NTL brightness in
different regions, we use an index calculated on the map of
NTL in an equal area projection (Area Corrected Total
Nighttime Lights, ACTNL). ACTNL is used to compare the
total brightness of night lights in regions located at different
latitudes.

We need to adjust the pixel area because the NTL are
mapped on the grid with a regular 15 arcsec step in latitude
and longitude. The choice of step is determined by the spatial
resolution of the DNB channel of the VIIRS sensor, equal to
750 × 750 m, which is about 20 arcsec at the equator [1]. A

grid cell area of a fixed angular step will change with latitude
when moving from angular to metric coordinates according to
the law of cosine (decrease from the equator to the poles).
Therefore, to correctly compare the total brightness of regions
with equal area, but located at different latitudes, you have to
introduce the trigonometric correction::

where i defines the latitude at which the pixel with the
index i is located within the region R on the map that is
constructed in the latitude-longitude projection.

We illustrate the potential of using the ACTNLDNB index
for the analysis of regional socio-economic dynamics with
changes in the total brightness of night lights from 2012 to
2018 in three cities of Ukraine: Kiev, Donetsk and Lugansk.
Due to the possible straylight in the DNB sensor at these
latitudes in summer, the analysis was carried out only for the
mean brightness of lights calculated for the months when no-
straylight, cloud free, and low moon satellite images were
available for each city.

The vector boundaries of cities within which the monthly
ACTNLDNB index was calculated are shown in Figure 5. It also
shows the time series of indices and their mean values for the
period before and after the outbreak of armed conflict in
eastern Ukraine in May 2014, in the zone of which Donetsk
and Lugansk did fall, but Kiev did not. The results of the
analysis are summarized in table 1.

We use Student’s t-test to estimate the significance of
changes in the mean values of the ACTNLDNB index before and
after the outbreak of armed conflict in the Donbass. The null
hypothesis assumes that the mean values for the monthly
ACTNLDNB indices in the periods of time before and after the
start of the conflict are equal. In other words, that the total
brightness of the city lights has not changed. As follows from
table 1, the null hypothesis is confirmed only for Kiev: despite
a small negative trend, the average brightness before and after
May 2014 can be considered unchanged. We get a different
result for the total brightness of the lights in Donetsk and
Lugansk. Here, with a confidence of 99.999%, a stepwise
decrease in brightness is observed right after the outbreak of
the military conflict in proportions of 0.6 and 0.47,
respectively, to the pre-war level.

TABLE I. MEAN VALUES OF THE ACTNLDNB INDEX AND LEAPS IN THE

MEAN VALUES BEFORE/AFTER MAY 2014

City Mean
ACTNLDNB
before

May

2014,

nW

Mean
ACTNLDNB
after

May

2014,

nW

Ratio

of
ACTNLDNB
before

and

after

Significant

difference

Level of

statistical

significance,

%

Kiev 10442 9432 0,90 No 29

Donetsk 4629 2779 0,60 Yes 99,9999

Luhansk 959 448 0,47 Yes 99,9999

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2 60

 68 / 77

Figure 5. Study of the monthly ACTNLDNB indices for Kiev (top), Donetsk

(middle) and Lugansk (bottom) from 2012 to 2018. Summer months with

interference from straylight in the VIIRS sensor are excluded.

Changes in the total brightness of nighttime lights are

consistent with regional macroeconomic changes due to
conflict. Macroeconomic estimates were obtained by German
scientists Julia Bluszcz and Marica Valente in their work “The
War in Europe: Economic Costs of the Ukrainian Conflict”
[6], which used the “potential opportunities” approach to
assess the impact of armed conflict in Ukraine on the GDP.

The proposed approach is based on their Synthetic Control
Method (SCM) developed in 2003 and refined in 2010. The
authors assess the impact of armed conflict on GDP by
determining the difference in the values of GDP before and
after the war, extrapolated to years after the war. For this, a
control group of countries not involved in the armed conflict
is taken, and all parameters of the country under study (in this
case, Ukraine) before the conflict are expressed through the
parameters of these countries. It is further assumed that this
ratio of parameters between Ukraine and the control group
would have to be maintained in subsequent years if it were not
for the armed conflict, and all changes in the found ratio were
caused solely by military operations.

Results from the counterfactual estimation by the synthetic
control method indicate that the Donbass war led to a
considerable decline of Ukraine’s economy. Namely, authors
estimate that, due to this war, the country’s per capita GDP
decreased by 15.1% (1438.90$) on average over the period
2013-2017. Statistical significance of the causal estimates was
estimated by multiple placebo tests, and robustness was
checked by leave-one-out estimations, and confoundedness
analyses. In particular, the 2009 gas disputes with Russia and
the financial crisis in the same year may lead to overestimated
causal effects. As a consequence, the estimated lower-bound
of Ukraine’s per capita GDP foregone due to the war amounts
to 12.7%. Additionally, authors show that the conflict affected
the Donbass more severely than the other Ukrainian regions.
Over the period 2013-2016, the per capita GRP of the Donbass
provinces of Donetsk and Luhansk is found to be, on average,
43% (4630$) lower compared to its synthetic counterpart not
affected by the military conflict.

CONCLUSION

The current research presents new methods of
visualization of changes in NTL brightness at the Earth’s
surface underpinned by economic, sociologic, and political
factors. A quantitative analysis of time sequences of the
integral NTL brightness over a limited area in Russia is
aggravated by interseasonal changes in albedo because of
snow (see [3]). The current research provides a new method
of distinguishing interseasonal abnormalities on the basis of
the RANSAC algorithm. After the separation of abnormalities
in NTL brightness associated with the regional climate, it is
possible to apply pattern recognition for time sequences in the
form of stepwise changes and trends associated with different
socio-economic and political phenomena. This research
presents the results of such analysis for Eastern Ukrainian
cities affected by the military conflict since spring 2014.

REFERENCES

[1] C.D. Elvidge, K.E. Baugh, M. Zhizhin, F.C. Hsu, and

T. Ghosh, “VIIRS night-time lights,” International Journal of
Remote Sensing, vol. 38, No. 21, pp. 5860-5879, 2017,
DOI: 10.1080/01431161.2017.1342050.

[2] C.D. Elvidge, K.E. Baugh, M. Zhizhin, and F.C. Hsu, “Why
VIIRS data are superior to DMSP for mapping nighttime
lights,” Proceedings of the Asia-Pacific Advanced Network,
Vol. 35, No. 62, 2013.

2012 2013 2014 2015 2016 2017 2018 2019

Date

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
A

C
T

N
L

,
K

ie
v

2012 2013 2014 2015 2016 2017 2018 2019

Date

0

2000

4000

6000

8000

10000

12000

A
C

T
N

L
,

D
o
n

e
ts

k

2012 2013 2014 2015 2016 2017 2018 2019

Date

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
C

T
N

L
,
L

u
g

a
n
s
k

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2 61

 69 / 77

[3] N. Levin, “The impact of seasonal changes on observed
nighttime brightness from 2014 to 2015 monthly VIIRS DNB
composites,” Remote Sensing of Environment, vol. 193,
pp. 150-164, 2017.

[4] S. Choi, T. Kim, and W. Yu, “Performance Evaluation of
RANSAC Family,” Proceedings of the British Machine Vision
Conference (BMVC), London, UK. September 7–10, 2009.

[5] F.C. Hsu, K.E. Baugh, T. Ghosh, M. Zhizhin, and
C.D. Elvidge, “DMSP-OLS radiance calibrated nighttime
lights time series with intercalibration,” Remote Sensing of
Environment, vol. 7, No. 2, pp. 1855-1876, 2015.

[6] Julia Bluszcz, Marica Valente. The War in Europe: Economic
Costs of the Ukrainian Conflict. URL:
https://ideas.repec.org/p/diw/diwwpp/dp1804.html.

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2 62

 70 / 77

Reliability Displays in Building Information Modeling
A Pattern Approach

Alexander G. Mirnig
and Manfred Tscheligi

Center for Human-Computer Interaction
University of Salzburg

Salzburg, Austria
firstname.lastname@sbg.ac.at

Peter Fröhlich, Johann Schrammel
and Michael Gafert

Center for Technology Experience
AIT Austrian Institute of Technology GmbH

Vienna, Austria
firstname.lastname@ait.ac.at

Damiano Falcioni

BOC Asset Management GmbH
Vienna, Austria

damiano.falcioni@boc-eu.com

Abstract—Process management systems allow the user to, among
other things, predict possible outcomes of larger processes and
make decisions based on a pool of data available to the system.
What can greatly influence the success of such processes is
the reliability of the data that feeds the system’s output. This,
however, is usually not part of such systems and is left to the
experience and expertise of the individual user. Design patterns
are a method that can capture and communicate such implicit
expert knowledge. In this paper, we present initial solutions for
integrating reliability indicators in process management. Based
on expert stakeholder requirements from the use case Building
Information Modeling (BIM), we created three initial solutions
for the realization of reliability displays in this context, which
we abstracted into three draft patterns. These solutions pertain
to expertise-based rights management, visualisation of entry
timeliness, and communicating reliability via penalty indicators.

Keywords–Patterns; reliability displays; process management,
building information modeling.

I. INTRODUCTION

When working with large quantities of data, then any
decision that is made based on that data must operate under the
basic assumption that the data is accurate to a sufficient degree.
In practice, this reliability of data is subject to fluctuation,
depending on the type of data, where it came from or by
whom it was fed into the system, and a number of similar
factors. It would be very helpful, then, to have an indicator
for the reliability of the data the system bases its output on
in addition to whichever output the system generates via its
primary functionality (sum calculations, predictions, a.s.o.).
Such values, that could allow to determine the reliability of
any individual piece of data, are usually not integrated and it
is left to the user, to determine how reliably the data he/she is
working with is in the end.

Reliability displays are displays or User Interface (UI) ele-
ments intended to address this gap and introduce indicators to
convey reliability information. Such displays add an additional
dimension to data displays: in addition to showing the data
itself to the user, they also convey how reliable the output
can or should be expected to be by the user. This information
can be very valuable for predictions (e.g., weather forecasts)
or contexts with high degrees of variability (e.g., automated
driving [1]), although such displays or indicators are not yet
widely integrated or researched and, as a result, not yet used
within process management or BIM.

In this paper, we present an attempt to design reliability
indicators for process management in the BIM context. Fol-
lowing a pattern approach [2], we decided to generate intitial
design patterns based on stakeholder requirements. From initial
expert interviews, we extracted reliability requirements for the
BIM context. For three of these, we then generated high- to
mid-level solutions, which we present as pattern drafts. These
are intended to serve as the basis for continued efforts to design
UI reliability indicators.

II. RELATED WORK

In the following, we provide an overview of relevant lit-
erature and state-of-the art for BIM and process management,
reliability displays, and design patterns.

A. Process Management and BIM
There is a growing belief that digital transformation in

the architecture and construction industry can only happen
if four key parameters are properly addressed: digital data,
digital access, automation and connectivity [3]. The common
denominator of all these factors is the utilization of BIM as
both the backbone for the launch of new processes and new ser-
vice features to the architecture, engineering and construction
industry, as well as the link between the various stakeholders
involved in the renovation and construction value chain [4].

Using BIM methodologies and tools has been proposed to
yield large benefits for the construction/renovation sector, most
importantly by: (i) reducing critical mistakes and omissions
and (ii) improving collaboration between stakeholders, sub-
sequently enabling lower costs through less rework, greater
speed by removal of additional documentation efforts, and
higher quality due to closer control. Other direct benefits of
BIM for renovation projects, include reduction of uncertainties
regarding the post-renovation performance, early visualization
of renovation impact to get consensus from building owners,
improved collaboration between stakeholders leading to fewer
conflicts, mistakes and re-works on site.

As for building owners and financiers, BIM are conceived
as a way to make the estimation process more accurate
and facilitate more visibility and interaction in the overall
design/build process for the owners of a building, enabling
them to take a more active role in determining the final
outcome of capital-intensive projects. This appears even more

63Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 71 / 77

relevant in building renovation processes, an area with the
largest untapped potential for energy saving and reduction in
greenhouse gas emissions [5], where BIM tools can help in
the identification of the renovation options that can deliver
the best value for money. This requires the availability of
specific BIMR (BIM-based renovation) tools that can accu-
rately estimate the impact of renovation options and lead
the involved stakeholders through an efficient implementation
path (see [6] for a detailed description of state-of-the-art
renovation workflow models for BIM-based renovation process
management).

Despite its clear benefits for all stakeholders involved,
BIM is still facing reluctance to uptake in the mainstream
market [7], mainly due to a number of key factors such as
the requirement for the entire construction value chain to use
consistent BIM tools in order for any party to reap benefits,
the investment in time required as a learning curve on behalf
of architecture and construction professionals, the size and the
processing load induced by BIM models.

B. Trust Calibration and Reliability Displays
Trust can be understood as a relation between at least

two agents, in which one or more agents (trustors) depend
on the achievement of another agent’s (trustee) goals in a
situation that is characterized by uncertainty and vulnerability
(compare Ekman et al. [8], Mirnig et al. [9], and de Visser
et al. [10]. Undertrust in a system occurs when the perceived
capabilities are lower than the actual capabilities, and inversely,
overtrust implies that the perceived capability is higher than the
actual capability. Users can underestimate the consequences if
a system fails, and/or users can underestimate the likelihood
that a system will make serious mistakes at all. The trust in a
system is calibrated when neither over- nor undertrust occur.

Trust calibration can play an important role in intelligent
and predictive systems, to establish and guarantee their long-
term acceptance. Schrammel et al. [11] have shown that in
different fields of research and practice different techniques
for trust calibration have been proposed, most importantly
reliability displays, uncertainty indicators, awareness and in-
tent displays and the communication of available alternatives.
Reliability displays, which are the focus of our paper, directly
communicate the reliability as estimated by the system to the
user [12]. This normally includes only one value, which is
frequently expressed as a percentage, i.e.: “I am 60% sure that
the data is correct”. The display of this information needs to
be adapted to the application domain, and different interface
elements are used depending on the domain.

C. Patterns
Design patterns are structured solution documentations to

reoccurring problems [13]. Design patterns were originally
conceptualised by Christopher Alexander [14][15] to capture
individual solutions to reoccurring problems in the architecture
domain. His idea later influenced other domains as well, most
prominently software engineering [16], where patterns are
still widely used to document solutions to both common and
obscure problems encountered by software engineers.

Patterns feature a number of characteristics that separate
them from “classical” means of documentation, such as guide-
lines: Since they are problem-based, they can cover both high-
and low-level solutions, depending on how the individual

problem is framed [17]. A side effect of this is that pattern
collections are never complete in a standard sense – whenever
a new problem within a specific context occurs, so does the
need for an appropriate pattern. Since patterns also focus
on providing ready-to-use along with a description of the
problem context, they can be useful to make expert knowledge
accessible to novices [18] and serve as a powerful knowledge
transfer tool in this regard.

These features render patterns particularly suitable for
capturing and communicating solution knowledge in new or
rapidly evolving domains [2]. BIM is one such domain, which
is currently evolving based on advances in digitalisation,
data management, and measurement technologies. Isikdag and
Underwood presented two design patterns for synchronous
collaboration in BIM [19], showing that the pattern approach
can be successfully used in this domain.

Since both BIM and reliability displays are relatively novel
without the solid literature basis that other more tradition-
ally rooted fields have, patterns seem particularly suitable to
capture solution knowledge in these domains. In this paper,
we therefore apply a pattern approach to create initial draft
patterns for conveying reliability information in BIM appli-
cations, based on expert stakeholder requirements. After an
overview of the related work in Section 2, we present the
requirements gathering approach in Section 3, the resulting
patterns in Section 4, and conclude in Section 5.

III. GATHERING REQUIREMENTS FOR TRUSTWORTHY
PROCESS MANAGEMENT

Following an iterative pattern approach [2], we first gath-
ered expert stakeholder requirements, which we then priori-
tized and used as a basis for the design solutions and resulting
patterns. To this end, we formulated the following two guiding
research questions:

RQ1 Which factors are most indicative of the data reliability
in BIM process management?

RQ2 How can these factors be integrated into UI designs to
communicate data reliability to the user?

We address RQ1 in Sections III-B and III-C, RQ2 in
Section IV.

A. Method
The method consisted of a stepwise process from the state

of the art analysis and interviews to requirement derivation and
pattern writing.

State of the art analysis: Based on analysis of previous
work on trust calibration, we came up with common design
approaches for the communication of reliability, uncertainty,
awareness and intent, as well as of choice alternatives [11].
Examples from research and practice were collected, whereby
the most detailed guidance was available in the area of
automated driving, as here reliability displays have already
been investigated in experimental research.

Interviews: In order to capture the requirements for BIMR
and related trust calibration aspects in depth, we conducted
semi-structured individual interviews, which followed a con-
sistent agenda but could then expand on specific further topics
brought up by the respondents. After filling in a consent
form and providing background information about their job
profile and specific expertise, participants were asked some

64Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 72 / 77

introductory questions on BIMR, its relevant processes, in-
volved software environments and major issues in the field.
Then, participants were briefly introduced into the above
described investigation topics of trust calibration and process
management in BIMR, through showing and commenting a
few illustrative slides on the concepts and related example
applications and use cases.

Respondents were then asked to comment on the use case
as to whether or not it corresponded to their own work situation
and to which extent they saw differences. They were then
also asked about the types of data they use in their BIMR
projects and to draw the timeline of a typical renovation
process. The participants were then debriefed and asked about
their preparedness to provide feedback to the next stages of
pattern generation. Three experts were asked to participate in
the interviews: an architect proficient in BIMR for building
(I1), a project manager for highway construction projects (I2),
and an IT solution provider specialized in BIMR (I3).

Derivation of requirements: The responses were analysed
as to their potential for the derivation of requirements for
pattern writing. The gathered requirements were then consol-
idated across the three different interviews and allocated to 9
requirements (or requirement groups).

B. Interview Results
In general, the BIMR use case itself was seen by all

three participants as a promising alternative to currently pre-
vailing, less data-intensive renovation approaches. All three
respondents confirmed that the integration of BIM is not yet
common in standard construction industry processes, as data
for most actors in the construction industry appears to be
restricted to PDFs with 2D or 2.5D plans (I2). However, in
the participants’ view the number of customers demanding
for more informed modeling, documentation and monitoring
is growing. Based on the respondents’ experience with BIM
renovation so far, a number of benefits were identified, such as
the improved communication opportunities between different
involved stakeholders through the joint exploration of the same
model from different viewpoints (I1-3), the interconnection
between the construction and the accounting data with different
preferences for their level of integration, (I1-3), clear guidance
in construction processes, due to high-precision data (I2), long-
term reliable data availability for asset management purposes
(I2), and a better overview and verifiability in complex build-
ings (I2).

While each of the respondents described a ’typical BIMR
process’ with a different focus, several commonalities could be
identified. The first BIMR process step consists in the detailed
creation of a model of the initial conditions of the site. This is
then used for the planning, cost estimation and offer creation
for the different renovation phases of the renovation project.
During each actual renovation phase, BIMs are then used to
track the process on site, and often the data on used materials
is also used for billing. In some cases (I2), the BIM is then
provided also for the further asset management.

C. List of requirements
R1: The presentation of reliability displays should follow

the degree of abstraction. Therefore, it is necessary to highlight
upfront the level of detail of the model.

R2: The system should always highlight the properties and
restrictions of the underlying model. To this end, potential
uncertainties of the model in representing the reality should
be highlighted. Furthermore, the nature of the analysed object
with regard to the related expected uncertainty/accuracy should
be shown. For instance, a more geometrically complex object
could provide more precise insights than a simpler object, in
comparison with standard planning tools.

R3: It should be possible to filter system output (both with
regard to data protection and to usability).

R4: It should be possible to define who provided an input
and the related chosen approach.

R5: There should be a clear indication on who provided an
input, estimation or prognosis. In addition, the system should
show how this input was provided, with regard to the applied
method, the used system, the user role and expertise. For
example, for an infrastructure construction manager, providing
information on whether data has been collected by a drone
each week, as opposed to less systematic data capture by
ground personnel. Also, for architects or project managers it
is worthwhile to check on whether the person entering the
data comes from the same company, or from a company with
processes that they are familiar with.

R6: The system should provide cues and detailed informa-
tion on whether the considered building model or respective
estimations have undergone previous reliability checks. For
example, if the system shows whether or not certain specific
software-based tests (e.g., with Solibri [20]) have been applied
on some or all of the available aspects of the model (e.g., joint-
ings of different building parts) and if it is clarified whether
manual corrections have been applied to further plausibilize
them, this will help the user get an initial understanding
which parts of the model can be trusted to what degree. To
make this indicator meaningful, it is necessary to also show
whether the software output has been surveyed by an expert
to disambiguate them and to filter for relevancy in the given
context.

R7: In the case that Artificial Intelligence (AI) is involved
in the processing of the data, it would be necessary to provide
an indication on which underlying data and models a respective
estimation or prognosis has been made. In this respect, best
practice from the currently evolving field ’Explainable AI’
should be considered [21].

R8: The time period of data input as well as its relation
to the respective billing period should be displayed. This
should encompass ranges of default threshold values beyond
which the provided data is deemed unreliable. The underlying
assumption is that a closer match of data input with the actual
billing period indicates its level of detail and correctness,
as with longer delays of data input human error is more
likely. Naturally, data to be considered in the context of this
requirement is attached to a concrete time specification, such
as the date of the made payment and the timestamp of the
corresponding project deliverable.

R9: The system should provide cues on which of the
renovation project deliverables is subject to a contractual
penalty related to quality or time delays. In case of existence
of such a penalty, a higher reliability is ascribed to it by project
managers.

65Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 73 / 77

IV. FROM REQUIREMENTS TO UI SOLUTIONS

All requirements were discussed in an internal workshop
with three UI experts. In the workshop, the requirements were
prioritized regarding estimated effectiveness and feasibility of
integrating with existing UIs. For the three highest priority
requirements (R5, R8, and R9), solutions were then generated
and brought into a minimal pattern draft format, including
name, short description, problem, solution, and examples.
These patterns are described in the following:

A. Draft Pattern 1: Expertise-Based User Roles
This pattern describes a solution to assign levels of exper-

tise to user roles and communicate reliability of input data
based on the combination of role and expertise level that
entered it.

1) Problem: In the building construction context, there is
often a large number of stakeholders who all contribute to one
single project. This means that the data that feeds the process
management system comes from a variety of sources and not
all of them can be assumed to be equally reliable. In particular,
the reliability of the data will depend on whether

1) the individual who entered or supplied the data held
the appropriate role to do so, and

2) their level of expertise was sufficient to reduce the
possibility of oversights/errors to a standard mini-
mum.

In addition, the reliability is also influenced by whether the
data was imported directly from another system or whether it
was entered by a human individual. All of this information
is typically not provided by the system when working with
or viewing individual data or data sets. Thus, the judgement
regarding data reliability depends entirely on the user’s own
experience and familiarity with the context, including any
individuals that might have provided data with in the system.
This is suboptimal in general and becomes more severe the
larger the project in question is.

2) Solution: The rights management needs to provide an
account system that allows to assign different user roles
and levels of expertise within each role. The accounts are
then coded (e.g., via colors and/or acronyms) to allow quick
information regarding:

1) Type (human or other system)
2) Role
3) Level of expertise

Item 1 can be handled indirectly by assigning no user
account, role, or expertise information to anything that was
automatically generated or imported from a different system.
This means that in the eventual output, the user can quickly
see where the data came from via the presence or absence of
any user account indicators.

Item 2 is addressed by simply defining the appropriate
number of roles within the context. These need to be set
specific to the individual context and type of the project.
Examples for such roles within the construction context are
project manager, site manager, foreman, (shift) supervisor, etc.

Item 3 is addressed by further defining levels of expertise
for each role. This pattern proposes a simple 3-level-system
based on two metrics. This allows a comparably easy definition
of levels by defining one threshold for each metric, then

Figure 1. Example for seller reputation information from Amazon.

assigning the level of expertise based on whether both, one,
or none of the thresholds are exceeded.

For example, within a project, there can and probably will
be a role “project manager”. For this role, the metrics could be
defined as years of experience in the field (M1) and average
size of previously managed projects ((M2). For both metrics,
an expertise threshold is defined (e.g., 6 years for M1, EUR
300.000 for M2. If the threshold is exceeded, high expertise
is assumed. Assuming a three-level-system with L1 being the
lowest and L3 being the highest level of expertise, the user will
be assigned L1 if no threshold is exceeded, L2 if the threshold
in M1 or M2 is exceeded (but not the other, and L3 if both
thresholds are exceeded

Figure 3 provides an illustrative overview of such an
account hierarchy and a suggestion for highlighting roles and
levels via color coding in the eventual output. Note that Roles
can also be entirely denoted via acronyms (e.g., ‘PM’ for
‘project manager’, ‘SV’ for ‘supervisor’, etc.) with one single
color in different levels of brightness/saturation to donate the
levels. This can be used to avoid color overload when working
with a large volume of users and user roles.

3) Examples: This solution is strongly related to the fol-
lowing UI solutions, which address a similar problem space:

Seller-trustworthiness indicators on e-commerce sites. E-
commerce sites that support re-selling on their platform (e.g.,
Amazon, cf. Figure 1) have the need to show indicators for
the level of trustworthiness of the different individual sellers.
Typical solutions here are to provide ratings by past customers,
rank the sellers based on these ratings, and to provide historic
and meta information (sales history, number of complaints,
etc.)

Reputation indicators on expert-forums. In a similar man-
ner, expert help forums, such as e.g., on stack overflow (cf.
Figure 2) have the need to indicate the level of expertise of an
individual user in order to provide context for the interpretation
of the answer to a question. Stack overflow for example uses an
elaborated reputation system based on scores, tags, and badges.

Skill endorsements on business networks (e.g., LinkedIn) or
knowledge management systems. Also related is the possibility
to endorse other users in a network for a specific skill, thereby
providing valuable background information and social proof.

B. Draft Pattern 2: Reliability through Recency

This pattern describes a solution to communicate reliability
through highlighting the temporal discrepancy between when
data was first collected versus when it was entered into the
system.

66Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 74 / 77

Figure 2. Example for expert reputation information from stack overflow.

Figure 3. Overview of account hierarchy. User roles are further divided into
three levels of expertise. Color coding allows distinction at a glance.

1) Problem: The more distant events are, the more difficult
they are to retrace for any individual who was involved with
them. As a result, written accounts, receipts, etc. become
more important information carriers the more time has passed.
Conversely, if the information available via documentation is
incomplete, inaccurate, or otherwise insufficient, it becomes
more difficult to correct such deficiencies, as additional docu-
mentation – if it had been available in the first place – might
have been lost, archived, or otherwise hard to access. In addi-
tion, individuals who were involved in whichever activity that
supplied the relevant data might no longer remember specifics
that could have helped to detect or correct inaccuracies or
supply missing information. Thus, it becomes necessary to
distinguish data that was entered in time from data that was
entered delayed, which is usually not supported by default.

2) Solution: The solution consists capturing and visualiz-
ing the temporal distance between data collection/availability
and entry into the System. Upon entry, each data item is
flagged with the date on which it was entered. In addition,
each item requires an additional field in which the date of
initial data collection or availability is entered. What is to be
entered here depends on the documentation and data item but
examples here are: billing date for invoices, market date for
price estimates (e.g., price per barrel of raw oil at [day]), or
the signature date for protocols.

Based on the hypothesis, that the closer these dates match,

Figure 4. Google Docs’s version history. Each user has a unique color and
changes are categorised by timestamps.

the more reliable the data is, reliability thresholds can be
defined. This solution proposes a simple three-level system,
which then corresponds to standard color coding via the traffic
light metaphor (red-yellow-green). Level red denotes data that
was entered late, level green denotes data that was entered in
time. Level yellow can be used to flag entries that were not
entered immediately but also without significant delay – e.g,
everything that is entered within one week is flagged green,
within two weeks yellow, and everything beyond two weeks
in red.

This way, delayed entries can be spotted at a glance and the
reliability (or lack thereof) of individual items can be spotted at
a glance. The delay-level of each entry can be easily visualized
by simply showing the date fields and highlighting them in the
appropriate color. In order to avoid visual overload, green level
entries can be left unhighlighted with only level yellow and red
ones being highlighted, as these are the more critical ones. In
addition to the color coding, a numerical indicator of elapsed
time (e.g., “xx days past”) can be added.

As a direct consequence of requiring two dates for each
item, this solution is only applicable to data items that can be
associated with documented dates that are not identical with
the entry dates by default.

3) Examples: Many text editing tools offer some kind of
version history or version control to provide a sense of recency.
Google Docs, for example, offers a simple version control
depicted in Figure 4. Each continuously written text is tagged
with a timestamp and the user who edited it.

A more advanced version control is offered by GIT [22].
Only specific users can change files and each change must be
described in form of a commit message. Once a change is
committed it will be added to the history. GitHub, a website
implementing GIT, offers the ability to view these commits and
their corresponding changes. Each change is marked (addition:
green, deletion: red) in the corresponding file (see Figure 5).

WebStorm, an IDE (Integrated Development Environment)
for developing JavaScript applications [23], also has the ability
to display GIT commit messages. Instead of focusing on
commits and their changes, it focuses on the files itself. Figure
6 shows that each line of code has an annotation with linked
name and date. These values are extracted from the history and
displayed alongside the file. Each user and timestamp have a
different associated color and can therefor be differentiated.

C. Pattern Draft 3: Reliability through Penalties
This pattern describes a solution to convey reliability by

associating data entries with information regarding whether
the entry is tied to a monetary penalty or not.

1) Problem: Especially in larger projects, the level of care
taken when reporting and resulting level of detail in reported

67Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 75 / 77

Figure 5. GitHub’s commit overview with one addition marked green and a
corresponding commit message. Excerpt from the Linux Kernel GitHub

Page.

Figure 6. WebStorm’s annotations display which user changed what line of
code and marks it with a timestamp.

data can vary greatly between different stakeholder organiza-
tions as well as individuals within these organizations. This
can be a result of different levels of interest and involvement
between stakeholders in the project but also different degrees
of repercussions in case results are not delivered at all or not in
a timely (or otherwise satisfactory) manner. Depending on the
level of interest/involvement and how close an individual’s or
organization’s goal match the goals of the overall project, the
more reliable can their input assumed to be. Such information,
however, usually relies on personal knowledge and experience
and is usually not captured within process or other manage-
ment systems.

2) Solution: Contractually stipulated monetary penalties
can be clearly traced and captured within a system. Whenever a
data item or data set is associated with such a penalty, a visual
indicator is added to show this (e.g., fulfilment of delivery is
associated with a penalty in case of delays; data item date
of delivery then shows a penalty indicator). Such an indicator
can be a simple icon or text-based indicator and can operate in
a binary fashion: if the indicator is present, then a penalty is
attached to the data; otherwise, there is not. Since the presence
of penalties can be a reliability indicator not only for individual
data items or sets but also indicative of reliability within the
entire project, including such indicators in hierarchical tree
views is recommended. A top-level indicator shows whether
there are any penalties in the project at all. Clicking on the
top-level indicator expands all trees to the elements that are
associated with penalties and highlights them. This provides
both a high-level and lower-level reliability indicators as well
as quick and efficient access to the latter.

3) Examples: Such hierarchical tree views are common in
applications which have some kind of folder management. The
text editor Atom [24] can forward tagged files in sub-directories
up to the root node of the folder structure. The top-level in
Figure 7 shows a root node called “top”. It is marked orange
because of a tag in a sub-directory. In this example the file is

Figure 7. Screenshot of the Atom text editor with GIT integration. The top
item of the tree view (left) is colored orange as items inside the tree have
uncommitted changes. All changed items are also visible as a list on the

right.

Figure 8. Atom text editor with open tree view. The orange marked items
can be followed along to the changed item.

tagged because it was changed. The root cause of the tag can
however be different as a later example will show. The tagged
object can also be viewed as a list (see right side of Figure 7).
If the top node is opened the full tree view is shown, which is
depicted in Figure 8. The tag of one file is passed along each
directory until it reaches the root node which in turn can then
be used as a top-level indicator of all objects below.

V. DISCUSSION, CONCLUSION, AND FUTURE WORK

We were able to address RQ1 with the requirements
identified in Section III-C, and begin to address RQ2 with
the draft patterns in Section IV. We found reliability-relevant
information in the BIM context to encompass a wide range
of aspects, of which we could highlight three with varying
degrees of context-specificity. While hierarchical rights man-
agement with different user roles has a wide application, the
same cannot be said about penalty indicators. While the former
can be re-applied in any context, where expertise levels can be
defined (and are assumed to be reliability-relevant), the latter
can only be used when penalties are part of the project and are
captured in the system. Recency indicators can be expected to
be used in a larger number of contexts, as timely fulfillment
is usually a factor in most projects or undertakings. However,
that factor can only be applied to data items to which dates
can be assigned (invoices, protocols, etc.), which might cover
only a fraction of the data a user is interacting with through a
management system.

One additional question that is relevant for how to design
reliability indicators, is how or if reliability-relevant data
should be highlighted or hidden. It would seem obvious that
relevant information should be highlighted, this might not
necessarily be the default for reliability indicators. Taking
the penalty-indicators as an example, these indicators would

68Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

 76 / 77

highlight any item that has a penalty attached to it. However,
as we learned from the experts, the presence of a penalty
reduces the likelihood of that data being incorrect and increases
reliability as a result. If the user is looking for potential errors,
then he/she would need to look at the exact opposite, viz. data
without attached penalties. Depending on how many penalties
are present, switching the behaviour to highlighting all data
without penalties by default, might not be a good solution
either. If most data items are without penalty, then such a
solution would quickly cause visual overload and be ineffective
as a result. In the end, it will be difficult to impossible do
define a default that works for all contexts and the behaviour
will need to be toggleable on the user’s end.

In general, a higher level of detail and more solutions are
required to solidify the basis for reliability displays in process
management and for the BIM context. In future work, we
intend to generate full patterns from the drafts laid out in this
paper and extend the quantity of patterns to cover additional
expert requirements. In particular, the expertise-influencing
factors for defining the user roles need to be identified more
clearly, data types and how recency can be established needs
to be clarified, and we want to further look into penalties and
whether a more precise metric (one that includes the penalty
amount) is required.

In this paper, we presented an approach towards designing
reliability indicators for process management in the BIM con-
text. We generated three draft design patterns, which serve as
a basis for continued efforts to introduce reliability indicators
into interfaces, where information reliability is paramount. By
using a pattern approach, the pool of available knowledge
can be continually extended as new working solutions are
developed and discovered. Thus, we also want to encourage
the community to contribute to the growing field of reliability
displays not just within BIM but across application areas and
contexts as well.

ACKNOWLEDGMENT

The financial support by the Austrian Research Promo-
tion Agency (FFG) under grant number 878796 (Project:
CALIBRaiTE) is gratefully acknowledged. The authors thank
Christian Bechinie for his support in preparing this publication.

REFERENCES

[1] B. E. Holthausen and B. N. Walker, “Trust calibration through
reliability displays in automated vehicles,” in Proceedings of the
Companion of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, ser. HRI ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 361–362. [Online].
Available: https://doi.org/10.1145/3029798.3034802

[2] A. Mirnig et al., “Automotive user experience design patterns: An
approach and pattern examples,” International Journal On Advances in
Intelligent Systems, vol. 9, 2016, pp. 275–286.

[3] “EU BIM Task Group,” 2020, URL: http://www.eubim.eu/ [retrieved:
July 2020].

[4] R. Berger, “Digitization in the construction industry,” Roland Berger
GmbH, Competence Center Civil Economics, 2016.

[5] B. B. P. I. Europe, “Renovation in practice: Best practice examples of
voluntary and mandatory initiatives across europe,” Tech. Rep., 2015.

[6] R. Woitsch et al., “Adaptive renovation process and workflow models
1. deliverable d6.2 of the eu h2020 project bimerr,” Tech. Rep., 2020.

[7] A. Ghaffarianhoseini et al., “Building information modelling (bim)
uptake: Clear benefits, understanding its implementation, risks
and challenges,” Renewable and Sustainable Energy Reviews,
vol. 75, 2017, pp. 1046 – 1053. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1364032116308413

[8] F. Ekman, M. Johansson, and J. Sochor, “Creating appropriate trust for
autonomous vehicle systems: A framework for hmi design,” Tech. Rep.,
2016.

[9] A. G. Mirnig, P. Wintersberger, C. Sutter, and J. Ziegler, “A framework
for analyzing and calibrating trust in automated vehicles,” 2016, p.
33–38.

[10] E. J. de Visser, M. Cohen, A. Freedy, and R. Parasuraman, “A design
methodology for trust cue calibration in cognitive agents,” in Interna-
tional conference on virtual, augmented and mixed reality. Springer,
2014, pp. 251–262.

[11] J. Schrammel et al., “ Investigating Communication Techniques
to Support Trust Calibration for Automated Systems ,” in
Proceedings of the 4th Workshop proceedings Automation Experience
across Domains In conjunction with CHI’20, Honolulu, HI, USA.
Website: http://everyday-automation.tech-experience.at, 2020. [Online].
Available: http://everyday-automation.tech-experience.at

[12] B. E. Holthausen, T. M. Gable, S.-Y. Chen, S. Singh, and B. N.
Walker, “Development and preliminary evaluation of reliability displays
for automated lane keeping,” in Proceedings of the 9th International
Conference on Automotive User Interfaces and Interactive Vehicular
Applications, 2017, pp. 202–208.

[13] A. G. Mirnig et al., “User experience patterns from scientific and
industry knowledge: An inclusive pattern approach,” International
Journal On Advances in Life Sciences, vol. 7, no. 3 and 4, 2015, pp.
200–215. [Online]. Available: https://www.thinkmind.org/index.php?
view=article&articleid=patterns 2015 2 30 70011

[14] C. Alexander, The Timeless Way of Building. New York, USA: Oxford
University Press, 1979.

[15] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. New York, USA: Oxford University
Press, 1997.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson, 1994.

[17] J. O. Borchers, “A pattern approach to interaction design,” AI &
SOCIETY, vol. 15, no. 4, 2001, pp. 359–376.

[18] J. Vlissides, Pattern Hatching: Design Patterns Applied. Addison-
Wesley, 1998.

[19] U. Isikdag and J. Underwood, “Two design patterns
for facilitating building information model-based synchronous
collaboration,” Automation in Construction, vol. 19, no. 5,
2010, pp. 544 – 553, building Information Modeling
and Collaborative Working Environments. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0926580509001769

[20] “SOLIBRI,” 2020, URL: https://www.solibri.com/de/ [retrieved: July
2020].

[21] Q. Wang, Y. Ming, Z. Jin, Q. Shen, D. Liu, M. Smith, K. Veeramacha-
neni, and H. Qu, “Atmseer: Increasing transparency and controllability
in automated machine learning,” 02 2019.

[22] “GIT,” 2020, URL: https://git-scm.com/ [retrieved: July 2020].
[23] “WebStorm,” 2020, URL: https://www.jetbrains.com/webstorm/ [re-

trieved: July 2020].
[24] “Atom,” 2020, URL: https://atom.io/ [retrieved: July 2020].

69Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

Powered by TCPDF (www.tcpdf.org)

 77 / 77

http://www.tcpdf.org

