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Forward

The International Conference on Pandemics Analytics (PANDEMICS ANALYTICS 2025) continues
a series of events targeting lessons learned from past and current pandemics and building a basis for
pandemic science analytics. The focus is on models for preparedness, awareness, use of medical
achievements (such as short-time vaccine development), promptly developed logistics (vaccine
production, supply coordination, vaccinations, quarantines), as well as on handling hospital capacity and
personnel. The conference was held on October 26-30, 2025 in Barcelona, Spain.

A pandemic is defined as a widespread occurrence of a disease, at a global level, and affecting a
large number of people. Pandemics are rare, but their effects are deeply damaging to society.
Continuous actions on prevention and control of infectious diseases exist, coordinated by national and
international bodies, such as the World Health Organization (WHO). In pre-pandemic times, citizen
preparedness has mainly focused on the early warning and early monitoring of infectious diseases.
Local/global health research uses data gathering and visualization, usually via dashboards. Research
cooperation between countries is generally on an 'as needed' basis.

Limiting the impact of pandemics on citizens' lives (including social, economic, and educational
aspects) requires the adoption of the best tools by all parties involved. These tools include Big Data for
real-time accurate reports, AI-based decisions for supplies delivery scheduling, high speed and secure
communications, as well as means for combating fake news on social networks and countering the
offenders.

We take this opportunity to thank all the members of the PANDEMICS ANALYTICS 2025
Technical Program Committee as well as the numerous reviewers. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to the PANDEMICS ANALYTICS 2025.

This event could also not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the PANDEMICS ANALYTICS 2025
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope the PANDEMICS ANALYTICS 2025 was a successful international forum for the
exchange of ideas and results between academia and industry and to promote further progress with
respect to pandemic science analytics. We also hope that Barcelona provided a pleasant environment
during the conference and everyone saved some time for exploring this beautiful city
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Abstract— This paper updates the Socially Responsible 

Artificial Intelligence (SRAI) framework in response to the 

COVID-19 pandemic. The original SRAI framework was 

proposed to inform the ethical adoption of artificial intelligence 

in People Analytics and Human Resource Development (HRD). 

However, the pandemic created the necessity to extend the 

principles to other high-risk fields like public health, crisis 

management, and healthcare delivery. Based on a qualitative 

synthesis of peer-reviewed articles between 2020 and 2025, this 

research develops the SRAI framework by proposing a new 

dimension known as Resilience Responsibility. The new 

addition reflects the importance of designing AI systems to be 

trustworthy, flexible, and capable of delivering even in high-

pressure situations. The research demonstrates how AI 

contributed to business responses as well as public health 

responses during the pandemic but also the research findings 

highlighted concerns about data bias, privacy, and 

accountability. The enhanced framework provides actionable 

recommendations for HR practitioners, healthcare leaders, AI 

engineers, and policymakers to ensure the adoption of AI is 

ethical, lawful, sustainable, and resilient to disruptions. 

Keywords- Artificial Intelligence; People Analytics; Pandemic 

Analytics; COVID-19 data. 

I. INTRODUCTION 

Artificial intelligence has rapidly transformed human 

resource development and organizational decision-making 

[4]. This section provides an overview of the origins of 

People Analytics, the foundation behind developing the 

Socially Responsible Artificial Intelligence (SRAI) 

framework as well as the ethical and sustainability challenges 

that shaped its foundation. 

A. Emergence of People Analytics in HRD 

People Analytics (PA) is a developing field in Human 
Resource Development (HRD), which stands out for 
emphasizing data-driven “decision science” over intuition-
based decisions [1][2][3]. PA involves collecting and 
analyzing workforce data to guide HR strategies and practices 
moving HR away from a traditionally experience-based field 
towards evidence-based decision making. PA is widely 
applied in various HRD activities, including talent acquisition, 
skills and competency analysis, employee sentiment analysis, 
performance management, turnover prediction, and training 
and development, to inform superior decisions regarding 
people and talent management [4].  

Although PA provides a more efficient, objective, and 
strategic approach to personnel management, it also raises 
ethical challenges and legal obligations. For instance, 
Workday Inc. is accused of utilizing discriminatory AI 
technology for the job candidate screening process based on 
age, disability, and race in one recent active lawsuit [5]. 
Despite these obstacles, PA has grown to be a crucial 
component of contemporary HRD and signals a move toward 
more scientific and technology-driven approaches to 
managing people. 

B. Introduction to the SRAI Framework 

Addressing the demand for responsible AI in HR in 
response to the growing ethical and sustainability challenges, 
a comprehensive Socially Responsible Artificial Intelligence 
(SRAI) framework was introduced for people analytics [4]. 
This was one of the first efforts at systematically connecting 
the concept of Corporate Social Responsibility (CSR) to 
people analytics on AI-facilitated Human Resource 
Development. In an extension of classic CSR pyramid and 
corresponding sustainability paradigms [6], SRAI offers a 
five-stage model for an organization’s economic, legal, 
ethical, philanthropic, and environmental responsibilities for 
AI usage with AI-driven HR practices to be followed. 

The base layer is economic responsibility, which implies 
people analytics AI tools being usable, dependable, and 
delivering organizational performance directing that AI in HR 
needs to add value, deliver return on investment while 
minimizing risks. Next is legal responsibility, which requires 
AI systems to follow legal mandates around data usage, 
human rights, labor laws in employment-related decision-
making, and intellectual property. Ethical responsibility takes 
a step beyond lawfulness, including standards of fairness, 
transparency, and respect for privacy of design and 
deployment of AI beyond what the law requires. Philanthropic 
responsibility involves a voluntary commitment of Human-
Centered AI application for broader social good, for example, 
application of people analytics for increasing employee and 
community outcomes, which shows a vision of HRD having 
beneficial impacts beyond organizational immediate interest. 
Finally, the model places an environmental responsibility for 
realizing that AI adoption needs to be ecologically durable. 
Sustainable AI can help reduce energy consumption and 
carbon footprint through application of AI for environmental 
goals achievement. 

SRAI framework is stakeholder-centered as it involves 
recognizing key stakeholders ranging from employees and 
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managers through job applicants to society at large impacted 
by AI. SRAI framework charts how each responsibility level 
translates into goals and requirements for these stakeholders 
[4]. The integrative literature review used in this study 
spanning up to 2023 publication covered related concepts like 
Environmental, Social, and Governance (ESG) criteria and 
United Nations Sustainable Development Goals (SDGs) for a 
comprehensive idea of sustainable AI-powered HR.     

To guide the reader through the structure of this paper, the 
remaining sections are organized as follows. Section II - 
Research Gap identifies the limitations of the original SRAI 
framework and explains the need for an update to address 
high-risk, cross-sector applications such as Pandemic 

Analytics. Section III - Methodology describes the qualitative 
approach and data collection process used to refine the 
framework. Section IV - Findings presents the main results, 
highlighting how artificial intelligence was applied in both 
organizational and public health contexts during the COVID-
19 pandemic. Section V - Practical Implications links theory 
to practice through converting findings into actionable 
recommendations for People Analytics and Pandemic 
Analytics stakeholders. Finally, Section VI - Conclusion and 
Future Work provides a summary of the study and outlines 
future directions for research on socially responsible and 
resilient AI systems. 

 
Figure 1. The original SRAI framework. 

 

II. RESEARCH GAP 

SRAI framework was originally designed for ethical 
practice in People Analytics and Human Resource 
Development with a focus on responsibilities for corporate 
economic performance, legal compliance, and fair 
organizational decision-making processes. While it is an 
important milestone for measuring AI adoption within 
corporate environment, it has not yet been adapted for high-
stakes, real-time, multi-industry applications like Pandemic 
Analytics. The COVID-19 pandemic revealed the need for 
socially responsible AI for public health, healthcare systems, 
and disaster management encompassing broader stakeholder 
groups, urgent decisions, and more ethical risks. The 
application of SRAI framework to Pandemic Analytics 
addresses the gaps and identifies opportunities for pandemic-
era data and governance requirements. 

Moreover, developments in recent years have raised new 
gaps calling for a revised viewpoint on SRAI. Firstly, AI 
machine learning models and generative language tools are 
creating ethical concerns, such as AI “hallucinations” [7] and 
other new sources of bias which should be addressed by SRAI 
frameworks. The study published on behalf of the United 
States & Canadian Academy of Pathology, raises the concern 

over potential AI bias due to three main factors, such as, data 
bias, development bias, and interaction bias which can 
inadvertently result in unfair and potentially detrimental 
outcomes within pathology and medical domain [8]. 

Secondly, the legal and regulatory landscape around AI 
has evolved rapidly presenting new challenges for public 
regulators to implement effective administrative interferences 
[9]. Since 2023, regulators both in the United States of 
America and internationally, such as in the European Union 
are trying to impose bias audit mandate for AI algorithms as 
well as automated decisions affecting human resources. For 
example, starting from February 1, 2026, the state of Colorado 
will be the first U.S state to require organizations to identify 
and mitigate algorithmic discrimination risks for high-risk AI 
systems [10]. At the U.S federal level, Congress proposes the 
AI Whistleblower Protection Act (H.R. 3460) which would 
protect individuals who report unethical, biased, and illicit AI 
practices in their workplaces, such as automated hiring and 
surveillance methods [11]. 

Finally, there is an emerging emphasis on environmental 
sustainability in AI. The energy usage and carbon output of 
AI systems have raised alarm bells regarding the 
environmental impact of AI. Latest estimates indicate that 
training and running big AI models can release massive 
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amounts of CO₂ [12]. The study shows based on data from 275 
Chinese cities that the carbon footprint contribution of 
digitization and artificial intelligence is underestimated 
because the effects increase the carbon impact by 665% [13]. 

III. METHODOLOGY 

This study provides a qualitative review of existing 
literature to explore the impact of the COVID-19 pandemic on 
the use of AI in both Pandemic Analytics and People 
Analytics. The purpose of the paper is to update the original 
SRAI framework by analyzing recent research and emerging 
trends in People Analytics, and to apply the framework to 
Pandemic Analytics. We conducted research in academic 
databases, including Google Scholar, ScienceDirect, MDPI, 
Emerald Insight, and other reputable industry sources based 
on articles published between 2020 and 2025. Our search 
employed keywords like “AI,” “People Analytics,”, 
“Pandemic Analytics”, “COVID-19,” and “HR.” 

During this process, we explored a new layer called 
“Resilience Responsibility”. Pandemic-focused research 
articles, reports from Deloitte, and recent news concerning 
responsible AI also supported the establishment of this new 
category. This method ensures our framework incorporates 
both academic expertise and real-world practices. 

IV. FINDINGS 

This section explores the updated SRAI framework into 

actionable recommendations for practitioners across 

industries. It provides clear guidance on how economic, legal, 

ethical, philanthropic, environmental, and resilience 

responsibilities can be implemented in both People Analytics 

and Pandemic Analytics contexts. 

A. Organizational Use of AI During the Pandemic: Lessons 

from People Analytics 

Although Pandemic Analytics is associated with 
healthcare and public health, the COVID-19 crisis 
transformed organizational behavior. Latest studies find that 
the COVID-19 pandemic served as a “career shock” and it has 
fundamentally changed the importance of People Analytics as 
main factors of Human Resource Development. HRM 
evolved from a merely administrative role to a strategic 
leadership position by focusing on redesigning work culture 
during the crisis. The use of Artificial Intelligence to enhance 
People Analytics in HRD increasingly accelerated between 
2020 and 2025. Findings show that AI is transforming HR by 
ensuring employee safety and well-being [14], promoting 
adaptable workforce practices [15], improving employee 
performance [16], measuring employee engagement [14], and 
employee resilience [17] during and after Covid-19 pandemic. 
Increasing reliance on data-driven strategies highlights how 
organizations can benefit from AI in facilitating flexible work 
arrangements, workforce planning, upskilling, and fair 
performance assessments. 

With remote work, new generations, and greater fairness 
expectations transforming company policies in the post-
COVID-19 workplace, leaders should be aware of the 
increasing threat of hidden bias in AI and people analytics 

[18]. Rapid post-pandemic implementation of AI can hide or 
amplify bias if leaders fall into the false assumption that 
algorithms are unbiased. As organizations become more 
reliant on people analytics for hiring, career advancement, and 
performance reviews, ethical blind spots must be addressed 
proactively through bias awareness, such as leadership 
training, frequent audits of bias in AI tools, and stronger 
accountability procedures to detect, reveal, and reduce bias, 
whether through human effort or through machine [19]. 

Research further showed that many studies explored the 
ethical implications of People Analytics during its historic rise 
following the COVID-19 pandemic [20][21][22]. Studies 
expressed concern regarding the data-driven decision-making 
process and the processing of sensitive information about 
employee behaviors, well-being, and emotional state. For 
example, organizations are using AI-powered tools like 
Microsoft Viva to track work trends and identify risks of 
employee burnout. While these tools aim to improve 
productivity and engagement, critical ethical concerns are 
raised regarding privacy, algorithmic bias, and workforce 
autonomy [20]. In order to promote operational efficiency, 
employee satisfaction, and organizational adaptability, the 5P 
model (Purpose, People, Process, Performance, and 
Partnership) was proposed as a solution and a framework for 
purposeful, ethical, and people-centered implementation of AI 
in post-COVID organizational practices [23]. 

Collectively, these organizational experiences highlight 
the urgent need for resilient, ethical, and transparent decision-
making systems. The lessons from People Analytics provide 
important insights into the role of AI functioning under 
systemic pressure and SRAI’s applicability for data 
governance and pandemic preparation. 

B. Artificial Intelligence Empowered Pandemic Analytics: 

Innovations and Opportunities 

The pandemic has highlighted the role of AI-driven data 
analytics extending beyond HR and reshaping sectors like 
healthcare, public health surveillance, and crisis management, 
where the most sensitive and protected health data are 
analyzed. Understanding the role of the pandemic in creating 
opportunities and ethical risks in the healthcare industry, 
especially regarding data privacy, bias, and oversight will be 
valuable in formulating more human-centered and socially 
responsible AI principles. 

The COVID-19 pandemic accelerated the pace of AI-
driven analytics innovations across healthcare and public 
health. In the early stages of the pandemic, researchers 
highlighted AI’s important potential to help with prediction, 
detection, control, and treatment. For instance, AI-based 
epidemiological models were used to predict the spread of the 
disease, and deep learning systems were applied to medical 
images for the diagnosis of COVID-19 from chest scans [24]. 
Furthermore, platforms like BlueDot employed natural 
language processing and machine learning for identifying 
early COVID-19 symptoms based on social media reports as 
well as health reports, and Metabiota employed predictive 
modeling with traveler data and population density to forecast 
outbreak dynamics. AI has also optimized telehealth service 
delivery. For example, Ada Health supported public health 
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responses via AI-based chatbots offering symptom check-ups 
along with affordable telehealth services during periods of 
restricted mobility [25].  

The role of AI in healthcare goes beyond diagnostics. AI-
powered predictive analytics have been useful for clinical 
decision support. A systematic review (2020–2022) found 
numerous machine learning models that predicted intensive 
care unit admission and mortality risk for COVID-19 patients 
using combinations of clinical variables. These models 
provided healthcare professionals with early warnings of 
high-risk cases and enabled them to deliver proactive care 
[26].  

Beyond healthcare, COVID-19 has greatly advanced the 
adoption of AI and “smart” technologies across eight major 
industries, such as food services and manufacturing. Thirty-
nine distinct kinds of smart technologies powered around 40 
types of pandemic use cases, including remote 
communication, healthcare service delivery, data analytics, 
and logistics. For example, online education platforms with 
AI tutors replaced in-person classes during lockdowns and AI-
enabled robots assisted in hospitals to examine patients as well 
as deliver medications while reducing infection risk [27]. 
Furthermore, AI mobile health apps like mHealth has the 
potential to revolutionize post-pandemic public health 
surveillance by automating illness forecasting, outbreak 
detection, and resource management [28]. 

The recent developments in AI have also increased the 
number of applications in predictive modeling of outbreaks, 
healthcare delivery optimization, and public health 
surveillance which can be used in future pandemics. For 
example, tools like epitweetr and Open Source Intelligence 
(OSINT) are used to analyze social media and environmental 
data for threat detection with vast geographic scope. The 
Machine Learning algorithms have the ability to forecast 
outbreaks based on input data of population density, weather, 
and vector movement. Not only do these algorithms 
outperform traditional statistical methods, but also AI models 
prevent supply and communication disruptions through 
resource allocations like oxygen supply in hospitals, and 
through developing public health warnings with the help of 
Gen AI language models [29].  

The swift implementation of AI to pandemic responses 
also raised major concerns. Non-standardized datasets 
complicate validation which results in inconsistent 
performance and erosion of trust. Worldwide efforts by 
organizations such as World Health Organization, Centers for 
Disease Control and Prevention, and commercial software 
companies have tried to establish and standardize large-scale 
datasets, such as CORD-19 repository. Data security and 
privacy are also long-standing issues because pandemic 
surveillance is at odds with personal data protection [25]. 
Many of the reviewed studies involved sensitive personal 
data, which should be handled carefully even during a 
pandemic. Therefore, the pandemic emergency offered a 
valuable opportunity for more ethical and responsible action 
[26]. The studies raised concerns about ethical issues related 
to privacy, fairness, and accountability. Transparency in data 
sources and AI models is essential to building trust among the 
public and healthcare providers. Regular testing for biases and 

continuous monitoring is necessary to avoid unfair treatment 
of marginalized groups. Overall, AI should not replace human 
expertise and judgment but rather supplement them in 
managing the pandemic [24]. 

There are also obstacles to large-scale AI implementation. 
The reliability of AI models is of first concern, as many AI 
models were deployed with little peer review during the 
pandemic. The application of many sophisticated AI 
technologies in low-resource and low-income countries is 
limited because AI tools are created using data from high-
income countries which employ robust digital infrastructure. 
International cooperation, the sharing of models and data, and 
region-specific AI solutions are crucial for improving global 
health disparities [30].  

V. PRACTICAL IMPLICATIONS FOR PEOPLE ANALYTICS 

AND PANDEMIC ANALYTICS STAKEHOLDERS 

The COVID-19 pandemic presented the possibility for AI 
systems to contribute to organizational agility and pandemic 
response but also it uncovered risks surrounding system 
vulnerability, data misuse, and bias. Practical implications 
offer actionable guidance for all types of stakeholders from 
healthcare administrators to leadership policymakers, data 
scientists, AI engineers, and to HR professionals to ensure 
ethical, legal, sustainable, and resilient AI deployment for 
both health emergency scenarios as well as work 
environments. 

A. Economic Responsibility: Be functional 

The SRAI model's economic component highlights the use 
of AI to improve productivity, resource allocation, and 
efficiency. In HR, it involves AI-powered workforce 
planning, monitoring of engagement, and hybrid work plan. 
In healthcare, AI models help to forecast intensive care unit 
admissions, automate personal protective equipment delivery, 
and mitigate critical care delays. However, short-term 
financial gains should be balanced with longer-term 
investments in people and technology. During the COVID-19 
pandemic, data-driven efficiency allowed many organizations 
to pivot quickly, however, businesses also learned that over-
dependence on testing-phase algorithms and taking people 
factors for granted can have negative long-term impacts. 
Therefore, the updated framework encourages professionals 
to pursue the economic benefits of People Analytics and 
Pandemic Analytics as well as implementing internal 
mechanisms to fulfill legal, ethical, and social obligations 

B. Legal Responsibility: Be lawful 

The AI systems are subject to applicable labor laws, health 
privacy laws like HIPAA, data protection regulations, and 
civil rights protections. The lesson from pandemic 
management is that even during emergencies, personal data 
must be handled carefully and in accordance with privacy 
principles as ethical and legal standards will be vulnerable 
during a crisis.  Compliance with law guarantees data 
openness, fair play, and stakeholder confidence. Practitioners 
are advised to keep records on sensitive data processing, 
monitor AI models for bias, and create systems where 
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employee data as well as patient data are secured during 
business-as-usual operations and emergencies. 

C. Ethical Responsibility: Be ethical 

Ethical considerations in AI-enabled PA require more than 
just following laws, as they encompass fundamental values 
such as dignity, fairness, explainability, and harm prevention. 
Post-pandemic AI use showed the lack of human-centered 
design in the applications of performance tracking and hiring 
practices. Taking into account AI-related nuances and 
anomalies, industry leaders should make the final decisions 
and ensure that stakeholders are informed about data 
collection, processing, and AI-driven decision-making 
practices. The “A human-in-the-loop” strategy helps balance 
algorithmic input with discretion and empathy. 

D. Philanthropic Responsibility: Be a good AI citizen 

An organization's voluntary attempts to employ AI for the 
greater benefit are reflected in its philanthropic 
responsibilities. This layer involves using Data Analytics to 
promote community involvement, inclusion, and employee 
well-being above and beyond simple compliance. People 
Analytics could help community workforce programs through 
HR departments, and public health agencies could share 
aggregated models of AI for balanced disease surveillance. 
These are all about taking a proactive approach for inclusion, 
for public confidence, for health, and for supporting the 
Sustainable Development Goals even when economic return 
is not the mission. 

E. Environmental Responsibility: Be sustainable 

The SRAI pyramid's top level, environmental 
consideration, encourages AI systems to support ecological 
sustainability. With the additional benefit of reducing carbon 
emissions due to less frequent travel and Telehealth, the 
pandemic showed that widespread remote business and health 

operations are feasible. Leaders can use AI-enabled analytics 
to measure these effects and develop policies that support 
climate goals and enhance work-life balance. In HR it enables 
“Green HRM” programs; in healthcare and logistics, it could 
assist in the creation of sustainable supply chains. 

F. Resilience Responsibility: Be future-ready 

The findings from research papers explored in the 
industries from HR to healthcare to crisis management opened 
a new perspective for socially responsible AI, which is 
resilience responsibility. This specific responsibility emerged 
due to volatility and systemic uncertainty marked by the 
pandemic. Resilience responsibility can inform professionals 
that not only should AI-enabled Data Analytical systems be 
efficient, fair, and sustainable, but also organizations should 
assume the responsibility to prepare for, respond to, and 
recover from unexpected shocks while continuing 
organizational functions and adaptability. Practical 
implementation of resilience responsibility can include AI-
driven scenario planning, early warning models, simulation 
tests for disasters or cyberattacks, and identifying system 
vulnerabilities. Recent news concerning the Grok AI incident, 
which shared antisemitic content on the X platform, or the 
Open AI incident, which tried to copy itself to external servers 
during shutdown, underscores the need for resilient AI 
architectures [31][32]. If the AI-enabled automation is left 
unsupervised, these advanced tools can replicate or magnify 
societal harms. A recent report by Deloitte also projects that 
natural disasters like the COVID-19 pandemic can cause 
US$460 billion in average annual losses to infrastructure 
globally. However, US$70 billion of the total loss amount can 
be saved annually if infrastructure resilience is enhanced with 
AI [33]. Overall, resilience responsibility is long-term 
insurance that serves as a safety net to withstand disruptions, 
to adapt to uncertainty, and to align with human values, 
safeguarding both society and innovation.

 

 
Figure 2. The updated SRAI Framework linking responsibility dimensions with Resilient AI development. 
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VI. CONCLUSION AND FUTURE WORK 

This paper studied the development of the SRAI 
framework extending it from originally developed for the 
People Analytics in HRD field to the new domain of 
Pandemic Analytics. With the help of qualitative analysis in 
the most recent research papers, industry reports, and 
pandemic-era innovations, the research presented how AI 
adoption in the COVID-19 era brought about both 
opportunities and challenges in high-risk environments such 
as healthcare, public health surveillance, and crisis 
preparedness. 

The findings suggest that while AI-driven analytics can 
enhance efficiency, responsiveness, and data-informed 
decision-making across sectors, it also raises significant risks 
around legal compliance, ethical use, data privacy, equity, and 
environmental impact. Most importantly, the unpredictable 
and disruptive nature of global health crises has introduced the 
need for an additional dimension which is now introduced as 
Resilience Responsibility within the SRAI model. This new 
layer emphasizes the importance of developing AI systems 
that are not only responsible and sustainable but also robust 
enough to adapt under conditions of uncertainty and systemic 
shock. 

Through redefining the SRAI framework in pandemic-use 
terms, our study facilitates a broader foundation for 
responsibly using AI in organizational and wider public 
service contexts. It encourages stakeholders including HR 
professionals, public health officials, and AI architects to 
implement a socially responsible, law-compliant, ethically 
appropriate, environmentally sustainable, and resilience-
driven AI governance framework. We encourage future 
research to refine SRAI’s layers of responsibilities in response  
to ongoing technological, regulatory, and societal 
developments. 

REFERENCES 

[1] R. Ghatak, People Analytics: Data to Decisions. in 

Management for Professionals. Singapore: Springer 

Nature, 2022. Accessed: Jul. 17, 2025. [Online]. doi: 

10.1007/978-981-19-3873-3. 

[2] S. W. Yoon, “Innovative data analytic methods in human 

resource development: Recommendations for research 

design”, Hum. Resour. Dev. Q., vol. 29, no. 4, pp. 299–

306, 2018. Accessed: Jul. 13, 2025. [Online]. doi: 

10.1002/hrdq.21331. 

[3] S. W. Yoon, “Explosion of people analytics, machine 

learning, and human resource technologies: Implications 

and applications for research”, Hum. Resour. Dev. Q., vol. 

32, no. 3, pp. 243–250, 2021. Accessed: Jul. 10, 2025. 

[Online]. doi: 10.1002/hrdq.21456. 

[4] Y.-L. Chang and J. Ke, “Socially Responsible Artificial 

Intelligence Empowered People Analytics: A Novel 

Framework Towards Sustainability”, Sage Journals. 

Accessed: Mar. 20, 2025. [Online]. 

https://journals.sagepub.com/doi/10.1177/153448432312

00930 

[5] C. Duffy, “Lawsuit claims discrimination by Workday’s 

hiring tech prevented people over 40 from getting hired | 

CNN Business”, CNN. Accessed: Jun. 18, 2025. [Online]. 

https://www.cnn.com/2025/05/22/tech/workday-ai-

hiring-discrimination-lawsuit 

[6] A. B. Carroll, “The pyramid of Corporate Social 

Responsibility: Toward the moral management of 

organizational stakeholders”, Bus. Horiz., vol. 34, no. 4, 

pp. 39–48, Jul. 1991. Accessed: Jun. 23, 2025. [Online]. 

doi: 10.1016/0007-6813(91)90005-G. 

[7] R. Azamfirei, S. R. Kudchadkar, and J. Fackler, “Large 

language models and the perils of their hallucinations”, 

Crit. Care, vol. 27, no. 1, p. 120, Mar. 2023. Accessed: 

Jun. 27, 2025. [Online]. doi: 10.1186/s13054-023-04393-

x. 

[8] M. G. Hanna et al., “Ethical and Bias Considerations in 

Artificial Intelligence/Machine Learning”, Mod. Pathol., 

vol. 38, no. 3, p. 100686, 2024. Accessed: Jun. 29, 2025. 

[Online]. doi: 10.1016/j.modpat.2024.100686. 

[9] A. Cordella and F. Gualdi, “Regulating generative AI: 

The limits of technology-neutral regulatory frameworks. 

Insights from Italy’s intervention on ChatGPT”, Gov. Inf. 

Q., vol. 41, no. 4, p. 101982, Dec. 2024. Accessed: Jul. 3, 

2025. [Online]. doi: 10.1016/j.giq.2024.101982. 

[10] M. Rutinel, B. Titone, and R. Rodriguez, Consumer 

Protections for Artificial Intelligence. 2024. Accessed: 

Jul. 3, 2025. [Online]. https://leg.colorado.gov/bills/sb24-

205 

[11] J. Obernolte, “H.R.3460 - 119th Congress (2025-2026): 

AI Whistleblower Protection Act”. Accessed: Jul. 03, 

2025. [Online]. https://www.congress.gov/bill/119th-

congress/house-bill/3460/text 

[12] A. Zewe, “Explained: Generative AI’s environmental 

impact”, MIT News | Massachusetts Institute of 

Technology. Accessed: Jul. 03, 2025. [Online]. 

https://news.mit.edu/2025/explained-generative-ai-

environmental-impact-0117 

[13] G. Zhang, S. Ma, M. Zheng, C. Li, F. Chang, and F. 

Zhang, “Impact of digitization and artificial intelligence 

on carbon emissions considering variable interaction and 

heterogeneity: An interpretable deep learning modeling 

framework”, Sustain. Cities Soc., vol. 125, p. 106333, 

May 2025, doi: 10.1016/j.scs.2025.106333. 

[14] A. Mer and A. Srivastava, “Employee Engagement in the 

New Normal: Artificial Intelligence as a Buzzword or a 

Game Changer?”, in The Adoption and Effect of Artificial 

Intelligence on Human Resources Management, Part A, 

P. Tyagi, N. Chilamkurti, S. Grima, K. Sood, and B. 

Balusamy, Eds., Emerald Publishing Limited, 2023, pp. 

15–46. doi: 10.1108/978-1-80382-027-920231002. 

[15] L. Manroop, H. Zheng, A. Malik, M. Milner, E. Schulz, 

and K. Banerji, “Human resource management in times of 

crisis: Strategies for a post COVID-19 workplace”, 

Organ. Dyn., vol. 54, no. 1, p. 101060, 2025, doi: 

10.1016/j.orgdyn.2024.101060. 

[16] A. Mer, “Artificial Intelligence in Human Resource 

Management: Recent Trends and Research Agenda”, in 

Digital Transformation, Strategic Resilience, Cyber 

Security and Risk Management, vol. 111B, Emerald 

Publishing Limited, 2023, pp. 31–56. doi: 

10.1108/S1569-37592023000111B003. 

[17] Q. Xiao, J. Yan, and G. J. Bamber, “How does AI-enabled 

HR analytics influence employee resilience: job crafting 

as a mediator and HRM system strength as a moderator”, 

6Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PANDEMICS ANALYTICS 2025 : International Conference on Pandemics Analytics - 2025

                            11 / 25



Pers. Rev., vol. 54, no. 3, pp. 824–843, Oct. 2023, doi: 

10.1108/PR-03-2023-0198. 

[18] A. Tursunbayeva, C. Pagliari, S. D. Lauro, and G. 

Antonelli, “The ethics of people analytics: risks, 

opportunities and recommendations”, Pers. Rev., vol. 51, 

no. 3, pp. 900–921, Mar. 2021, doi: 10.1108/PR-12-2019-

0680. 

[19] S. Bilderback, “Ethical blind spots in leadership: 

addressing unconscious bias in post-COVID workforce 

management”, J. Ethics Entrep. Technol., vol. 5, no. 1, pp. 

85–102, 2025, doi: 10.1108/JEET-01-2025-0002. 

[20] V. Bryce, N. K. McBride, and M. Cunden, “Post-COVID-

19 ethics of people analytics”, J. Inf. Commun. Ethics 

Soc., vol. 20, no. 4, pp. 480–494, 2022, doi: 

10.1108/JICES-09-2021-0096. 

[21] L. M. Giermindl, F. Strich, O. Christ, U. Leicht-Deobald, 

and A. Redzepi, “The dark sides of people analytics: 

reviewing the perils for organisations and employees”, 

Eur. J. Inf. Syst., vol. 31, no. 3, pp. 410–435, 2021, doi: 

10.1080/0960085X.2021.1927213. 

[22] S. W. Yoon, S. Han, and C. Chae, “People Analytics and 

Human Resource Development – Research Landscape 

and Future Needs Based on Bibliometrics and Scoping 

Review”, Hum. Resour. Dev. Rev., vol. 23, no. 1, pp. 30–

57, 2024, doi: 10.1177/15344843231209362. 

[23] R. Robin, “Post-COVID HR Transformation: How AI is 

Reshaping Employee Performance and Development.”, 

2025, Social Science Research Network, Rochester, NY: 

5106031. doi: 10.2139/ssrn.5106031. 

[24] C. Lv et al., “Innovative applications of artificial 

intelligence during the COVID-19 pandemic”, Infect. 

Med., vol. 3, no. 1, p. 100095, 2024, doi: 

10.1016/j.imj.2024.100095. 

[25] M. S. Gawande, N. Zade, P. Kumar, S. Gundewar, I. N. 

Weerarathna, and P. Verma, “The role of artificial 

intelligence in pandemic responses: from epidemiological 

modeling to vaccine development”, Mol. Biomed., vol. 6, 

no. 1, p. 1, 2025, doi: 10.1186/s43556-024-00238-3. 

[26] G. Badiola-Zabala, J. M. Lopez-Guede, J. Estevez, and M. 

Graña, “Machine Learning First Response to COVID-19: 

A Systematic Literature Review of Clinical Decision 

Assistance Approaches during Pandemic Years from 

2020 to 2022”, Electronics, vol. 13, no. 6, Art. no. 6, 2024, 

doi: 10.3390/electronics13061005. 

[27] P. Agarwal, S. Swami, and S. K. Malhotra, “Artificial 

Intelligence Adoption in the Post COVID-19 New-

Normal and Role of Smart Technologies in Transforming 

Business: a Review”, J. Sci. Technol. Policy Manag., vol. 

15, no. 3, pp. 506–529, 2022, doi: 10.1108/JSTPM-08-

2021-0122. 

[28] M. Gheisari et al., “Mobile Apps for COVID-19 

Detection and Diagnosis for Future Pandemic Control: 

Multidimensional Systematic Review”, JMIR MHealth 

UHealth, vol. 12, no. 1, p. e44406, 2024, doi: 

10.2196/44406. 

[29] M. McKee, R. Rosenbacke, and D. Stuckler, “The power 

of artificial intelligence for managing pandemics: A 

primer for public health professionals”, Int. J. Health 

Plann. Manage., vol. 40, no. 1, pp. 257–270, 2025, doi: 

10.1002/hpm.3864. 

[30] S. K. Muhammad, T. A. Ansari, B. Shabbir, and T. A. A. 

B. S. W. Almagharbeh, “The role of artificial intelligence 

in public health surveillance: a post-pandemic 

perspective”, ResearchGate, 2025, doi: 

10.71000/pa7ab080. 

[31] The Express Tribune, “OpenAI’s o1 model tried to copy 

itself during shutdown tests”, The Express Tribune. 

Accessed: Jul. 16, 2025. [Online]. 

https://tribune.com.pk/story/2554708/openais-o1-model-

tried-to-copy-itself-during-shutdown-tests 

[32] M. Yang, “Elon Musk’s AI firm apologizes after chatbot 

Grok praises Hitler”, The Guardian, 2025. Accessed: Jul. 

16, 2025. [Online]. https://www.theguardian.com/us-

news/2025/jul/12/elon-musk-grok-antisemitic 

[33] Deloitte Global, “AI for infrastructure resilience”. 

Accessed: Jul. 16, 2025. [Online]. 

https://www.deloitte.com/global/en/issues/climate/ai-for-

infrastructure-resilience.html 

 

7Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PANDEMICS ANALYTICS 2025 : International Conference on Pandemics Analytics - 2025

                            12 / 25



Stochastic Compartment Model of Epidemic Spreading in Complex Networks with
Mortality and Resetting

Thomas M. Michelitsch and Bernard A. Collet
Sorbonne Université, CNRS

Institut Jean Le Rond d’Alembert
F-75005 Paris, France

e-mail: thomas.michelitsch@sorbonne-universite.fr
bernard.collet@sorbonne-universite.fr

Michael Bestehorn
Institut für Physik

Brandenburgische Technische Universität Cottbus-Senftenberg
Cottbus, Germany

e-mail: bestehorn@b-tu.de

Alejandro P. Riascos
Departamento de Física

Universidad Nacional de Colombia
Bogota, Colombia

e-mail: alperezri@unal.edu.co

Andrzej F. Nowakowski
School of Mechanical, Aerospace and Civil Engineering

University of Sheffield
Sheffield, United Kingdom

e-mail: a.f.nowakowski@sheffield.ac.uk

Abstract—We propose an epidemic compartment model, which
includes mortality caused by the disease, but excludes demographic
birth and death processes. Individuals are represented by random
walkers, which are in one of the following states (compartments)
S (susceptible to infection), E (exposed: infected but not infectious
corresponding to the latency period), I (infected and infectious),
R (recovered, immune), D (dead). The disease is transmitted
with a certain probability at contacts of I to S walkers. The
compartmental sojourn times are independent random variables
drawn from specific (here Gamma-) distributions. We implement
this model into random walk simulations. Each walker performs
an independent simple Markovian random walk on a graph, where
we consider a Watts-Strogatz (WS) network. In order to mimic
the effect of long-distance travelers, we subject the simple Markov
walks to stochastic resetting, which means that the walkers in each
time step are relocated to any node of the network with a certain
probability. Only I walkers may die. For zero mortality, we prove
the existence of an endemic equilibrium for basic reproduction
number R0 > 1 and for which the disease free (globally healthy)
state is unstable. We explore the effects of long-range-journeys
(stochastic resetting) and mortality. Our model allows for various
interpretations, such as certain chemical reactions, the propagation
of wildfires, and in population dynamics.
Keywords – Compartment model; mortality; random walks; complex
graphs; resetting; population dynamics.

I. INTRODUCTION

Sudden outbreaks of epidemics are recurrently threatening
humanity and represent major challenges for human societies
and public health services. Since the breakout of the COVID-
19 pandemic, epidemic models have attracted considerable
attention. More than ever, there is a need of basic understanding
of the underlying mechanisms of epidemic propagation. In
many cases persistent oscillatory and quasi-periodic behavior
or spontaneous outbursts, features, are observed. One of the
first works tackling the issue of oscillatory dynamics is the one
by Soper [1], which appeared a century ago in the literature.
So-called compartmental models, where the individuals of a
population are divided according to their states of health, have
become popular in the field of epidemic modeling. The first
model of this type was introduced a century ago in the seminal
work of Kermack and McKendrick [2], where individuals are
in one of the states (compartments) susceptible (to infection) -
S, infected and infectious - I, recovered (immune) - R. While
standard SIR models are able to capture essential features of
some common infectious diseases such as mumps, measles,
rubella and others, they have revealed to be unable to describe
above-mentioned oscillatory and quasi-periodic behaviors. The
classical SIR model has been generalized in many directions
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[3]-[6] and consult [7] for a model related to the context of
COVID-19 pandemic.

In the present paper, we explore the spreading of a disease
by combining a microscopic multiple random walkers approach
with a compartment model exhibiting random compartmental
sojourn times. In this work we close a gap in existing
models, and establish an exact stochastic system of evolution
equations describing the transitions among the compartments
(see (2) and (3)) from which explicit, in general non-Markovian
convolutional evolution equations can be obtained, by averaging
over the involved random variables. These equations are
general and beyond existing Markovian models when non-
exponentially distributed compartmental sojourn times are
assumed. Our formulation allows for arbitrary compartmental
sojourn time distributions including time-fractional ones, and
also incorporate a stochastic notion of mortality into the
dynamics. This novel stochastic approach opens a large field
to tackle the spreading dynamics of a wide range of real-
world diseases, with and without mortality. Moreover, our
model allows for further generalizations, such as inclusion of
demographic effects originating from natural birth and death
processes. Such generalizations may be of interest for classes of
diseases with a "slow" dynamics evolving on time-scales (such
as decades) where changes in the population number become
relevant. A prominent example is Hansen’s disease (leprosy),
which exhibits extremely long latency periods (around five
years).

By conducting a linear stability analysis, we prove for zero
mortality that the disease free state is stable for R0 < 1
and unstable for R0 > 1 (R0 denotes the basic reproduction
number), where a globally stable endemic state emerges
whenever the compartment sojourn times have finite means,
for which we obtain explicit formulas (see relations (6)).
These formulas generalize the well-known classical results
of Kermack and McKendrick [2] to arbitrary distributions of
compartmental sojourn times and multiple compartments.

Let us give a brief sketch of the state of the art and
some related works, where we confine the discussion to
recent developments with focus on epidemic spreading models
in various kinds of random networks. In order to relate
macroscopic compartment models to microscopic dynamics,
epidemic spreading has been studied in random graphs with
emphasis on the complex interplay of the network topology and
spreading features [8]-[11]. Further works consider stochastic
compartmental models combined with random walk approaches
[12]-[19] including non-exponentially distributed compartmen-
tal sojourn times leading to non-Markovian models [20]-[24].
An increasing number of works consider epidemic propagation
on networks. In reference [19], involving generalized Laplacian
operators, spreading features are thoroughly analyzed, where
an upper bound for the epidemic SIS threshold for any graph
topology is obtained. Related works to our model can be found
in references [17], [21]-[24] and [34].

The remainder of our paper is organized as follows. In
section II we introduce a mean field picture of our compartment
model with the transition pathways among the compartments,

where we establish novel stochastic compartment evolution
equations with mortality. Special attention is given to the
analysis of the case of zero mortality, for which we derive
explicit formulas of the endemic state as well as the condition
of its existence. Section III is devoted to the outline of the
multiple random walkers approach. Inclusion of stochastic
resetting into the random walks enables us to study the effect
of long-distance travelers. In Section IV we summarize the
main results of the present stage of this project as far presented
in this paper. Finally, we conclude our ongoing project in
section V and discuss future directions together with some
possible generalizations of our model.

II. MEAN FIELD COMPARTMENT MODEL

Here, we study the large class of infectious diseases with
direct transmission among individuals, which also exhibit
mortality. The large list of these diseases includes Influenza,
COVID-19, Chickenpox, Hepatitis A, Ebola, and many others.
We propose a compartment model, in which individuals ("ran-
dom walkers") are in one of the following states (compartments)
S (susceptible to infection), E (exposed: infected but not
infectious corresponding to the latency period), I (infected and
infectious), R (recovered, immune), and D (dead). We assume
random waiting times tE , tI , tR in compartments E, I, R. The
delay time tE is the latency period, i.e., the time between the
moment of infection (transition S to E) and outbreak of the
disease (transition E to I). tI is the duration of the disease
(infected and infectious state) during which the walker can
infect S walkers and die. We introduce a random survival time
tM measured from the moment of transition into compartment
I (outbreak of the disease). The walker survives if tM > tI
and dies otherwise (when tM < tI ). A surviving walker passes
through the SEIRS pathway

S → E → I → R → S.

A walker which dies from the disease (i.e., tM < tI ) runs
through the SEID pathway

S → E → I → D.

For the infection rate, we assume a simple bilinear function
inspired from the mass-action law

A(t) = βS(t)J(t), (1)

where β > 0 is a constant, which contains the information on
the probability of infection in a contact of an S and I walker
and features of the random walks. The stochastic formulation
of the evolution equations of the compartmental population
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fractions reads

dS(t)

dt
= −A(t) +

〈
A(t− tE − tI − tR)Θ(tM − tI)

〉
+J0

〈
δ(t− tI − tR)Θ(tM − tI)

〉
+R0

〈
δ(t− tR)

〉
dE(t)

dt
= A(t)−

〈
A(t− tE)

〉
dJ(t)

dt
=

〈
A(t− tE)

〉
−
〈
A(t− tE − tI)Θ(tM − tI)

〉
−J0

〈
δ(t− tI)Θ(tM − tI)

〉
− dD(t)

dt
dR(t)

dt
=

〈
A(t− tE − tI)Θ(tM − tI)

〉
+J0

〈
δ(t− tI)Θ(tM − tI)

〉
−J0

〈
δ(t− tI − tR)Θ(tM − tI)

〉
−
〈
A(t− tE − tI − tR)Θ(tM − tI)

〉
−R0

〈
δ(t− tR)

〉
(2)

and the mortality rate

dD(t)

dt
= J0

〈
δ(t−tM )Θ(tI−tM )

〉
+
〈
A(t−tE−tM )Θ(tI−tM )

〉
.

(3)
S(t), E(t), J(t), R(t), D(t) denote, the fractions of the suscep-
tible, exposed, infected, recovered (immune), and dead walkers
populations, where S(t) + E(t) + J(t) + R(t) + D(t) = 1.
We consider initial conditions S(0) = S0, J(0) = J0,
E(0) = 0, R(0) = R0, D(0) = 0 and assume that the
disease occurs at t = 0 for the first time with a few infected
walkers J0, no exposed and dead walkers, and possibly some
immune (vaccinated) walkers R0, allowing to explore effects
of vaccination. Θ(..) indicates the Heaviside unit step function,
δ(..) the Dirac’s δ-distribution, and

〈
. . .

〉
stands for averaging

with respect to the contained (independent) random variables
tE , tI , tR, tM > 0 drawn from probability density functions
(PDFs)

Prob(tE,I,R,M ∈ [τ, τ + dτ ]) = KE,I,R,M (τ)dτ

indicating the probabilities that tE,I,R,M ∈ [τ, τ + dτ ]. The
following averaging rule applies〈

f(tE,I,R,M )
〉
=

∫ ∞

0

f(τ)KE,I,R,M (τ)dτ. (4)

For causal functions as in (2) this yields convolutions

〈
A(t− tE,I,R,M )

〉
=

∫ t

0

A(t− τ)KE,I,R,M (τ)dτ.

With these relations, the evolution equations (2) and (3) can
be averaged taking convolution forms (see [22, 23] for related
details).

a) Zero mortality – endemic equilibrium: The limit of
immortality of the walkers is retrieved from (2) for tM = ∞
thus Θ(tM − tI) = 1 and Θ(tI − tM ) = 0 and therefore
d
dtD(t) = 0. Then equations (2) read

dS(t)

dt
= −A(t) +

〈
A(t− tE − tI − tR)

〉
+J0

〈
δ(t− tI − tR)

〉
+R0

〈
δ(t− tR)

〉
dE(t)

dt
= A(t)−

〈
A(t− tE)

〉
dJ(t)

dt
=

〈
A(t− tE)

〉
−
〈
A(t− tE − tI)

〉
− J0

〈
δ(t− tI)

〉
dR(t)

dt
=

〈
A(t− tE − tI)

〉
+ J0

〈
δ(t− tI)

〉
−J0

〈
δ(t− tI − tR)

〉
−R0

〈
δ(t− tR)

〉
−
〈
A(t− tE − tI − tR)

〉
(5)

with S(t) + E(t) + J(t) + R(t) = 1. In order to derive the
endemic equilibrium, it is convenient to work with Laplace
transformed (5), where f̂(λ) =

∫∞
0

f(t)e−λtdt is the LT of
f(t). We use the limit value theorem f(∞) = limλ→0 λf̂(λ)
to obtain the constant asymptotic values of the endemic
equilibrium as [22]

Se =
1

R0
, R0 = β⟨tI⟩,

Ee =
R0 − 1

R0

⟨tE⟩
⟨T ⟩

Je =
R0 − 1

R0

⟨tI⟩
⟨T ⟩

Re =
R0 − 1

R0

⟨tR⟩
⟨T ⟩

.

(6)

The endemic equilibrium is independent of the initial conditions,
where ⟨T ⟩ = ⟨tE + tI + tR⟩ and Ae = R0−1

R0

1
⟨T ⟩ . (6) exists

for R0 = β⟨tI⟩ > 1, which also is the spreading condition of
the disease when S0 = 1 is considered. R0 indeed is the basic
reproduction number. In (6)

〈
tE,I,R

〉
=

∫∞
0

τKE,I,R(τ)dτ
stand for the mean compartmental sojourn times, assuming here
their finiteness. Relations (6) generalize the classical result [2]
to arbitrary waiting time distributions and multiple compartmen
Here we consider Gamma distributed waiting times due to the
high flexibility of Gamma distributions to adopt the behaviors
of a wide range of real world diseases (see e.g., [22], [23] for
details).

III. RANDOM WALK SIMULATIONS WITH RESETTING

We assume that each walker navigates for discrete times
independently on an ergodic network [25], [26]. In order to
describe the random walk of each walker, we denote with i =
1, . . . N the nodes of the network and introduce the symmetric
N ×N adjacency matrix (Aij), where Aij = 1 if the pair of
nodes i, j is connected by an edge, and Aij = 0 if the pair
is disconnected. Further, we assume Aii = 0 to avoid self-
connections of nodes. We restrict our analysis to undirected
networks, where edges have no predefined direction and the
adjacency matrix is symmetric. The degree ki of a node i
counts the number of its neighbor nodes (connected with i by
edges). Each walker performs independent Markovian steps
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Figure 1. Effect of resetting on the spreading for zero mortality with emergence of endemic states in a large world Watts-Strogatz (WS) network (generated by
the PYTHON NetworkX library) of 1500 nodes with 200 walkers. Colors indicate the compartments of walkers. Compartmental sojourn times are Gamma
distributed with ⟨tI⟩ : ⟨tR⟩ : ⟨tE⟩ = 4 : 2 : 1, which can be identified in the plots, corroborating (6) for all considered resetting rates p. The infection state of

the graph at runtime 1000 is exhibited by the inset. The basic reproduction number R0 is monotonously increasing with p.

Figure 2. Spreading with high mortality and resetting in the WS graph of Figure 1 for resetting probability p = 0.6. The inset shows the infection state of the
graph at runtime t = 250 (D walkers are invisible) with eventually only about 100 survived walkers out of 1500. We use the same color code as in Figure 1.

The right frame depicts the epidemic wave and left frame the evolution of the cases of death.
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between connected nodes. The steps from a node i to one of
its ki =

∑N
j=1 Aij neighbor nodes are chosen with probability

1/ki, leading for all Z walkers to the same transition matrix,
namely [26]-[28]

Π(i → j) =
Aij

ki
, z = 1, . . . , Z, i, j = 1, . . . , N, (7)

which is by construction row-normalized
∑N

j=1 Π(i → j) = 1.
In addition, we relocate (‘reset’) the walkers at each time
instant to randomly chosen nodes with a certain probability p.
This modifies the transition matrix of the steps for each walker
to

Wi→j = qΠ(i → j) + pRj , p+ q = 1, (8)

where in our simulations we have uniform resetting probabilities
Rj =

1
N to each node of the network. (8) introduces long-range

journeys into the random walks, and the spreading behavior is
modified compared to local walks (7). Stochastic resetting (SR)
is a fundamental process in nature where dynamical systems are
reset to the initial or randomly chosen states. SR occurred only
a decade ago in the literature [29] and has meanwhile launched
a myriad of models and opened a wide interdisciplinary field,
e.g., [30]-[33] (and many others).

IV. RESULTS AND DISCUSSION

In Figure 1, we depict the simulated time evolution of
compartmental populations (absolute numbers of walkers)
under the influence of resetting for some values of relocation
probability p and zero mortality. The independent motion of
each walker is governed by (8). The parameters are such that
no spreading occurs without resetting with R0 = 1 where the
disease is eventually extinct (left upper frame). Increasing p
introduces more long-range displacements where the number of
contacts of S and I walkers and hence infection rates with basic
reproduction numbers R0 increase. The disease is spreading
from p = 0.2 with monotonously increasing endemic values
Ee, Je, Re and R0 with p. Our simulations corroborate (6), i.e.,
the ratios of the observed endemic values correspond to the
ratios of mean compartmental sojourn times. We determined
R0 in the simulations from the first equation of (6).

We assumed in our mean field model, a simple mass-action
law for the infection rates (1), leading with (5) to the endemic
states (6). These endemic values are in excellent agreement
with the large-time asymptotics obtained from the random walk
simulations (see Figure 1). This remains true when the random
walks of the individuals are subjected to resetting, which in
the large time limit affects only the macroscopic transmission
coefficient β. These observations suggest that random walks
indeed offer suitable microscopic pictures of the corresponding
spreading dynamics.

Animated simulation-videos on Watts-Strogatz graphs can
be launched online by clicking on the slanted text for a case
without mortality and no resetting (see (5)). A further animation
video of the spreading under resetting (p = 0.6) on the graph
of Figure 1 and similar parameters includes mortality (see (2),
(3)). Simulation (Python) codes with parameters and further

details can be obtained upon request or consult our website
supplementary materials.

The present model can be generalized in several directions,
for instance, to vector-borne transmission pathways [23] or
assuming non-monotonous infection rates (different from
simple mass-action-laws) for which under certain conditions
the endemic equilibrium exhibits bifurcations, allowing for
emergence of chaotic attractors [34].

The present paper reflects a snapshot of our work in progress.
In the next steps, we analyze the evolution equations (2), (3)
with mortality in order to derive the effective reproduction
number RM with mortality. Performing a linear stability
analysis around the healthy initial state S0, R0, which consists
of a fraction of susceptible walkers S(0) = S0 = 1−R0, and
some immune (vaccinated) walkers R(0) = R0 leads to the
spreading condition (instability of the initial state) for RM > 1.
As a preliminary result of this follow-up analysis, we report
here that the ‘effective reproduction number’ of the disease
with mortality and presence of some immune walkers yields

RM = β(1−R0)

∫ ∞

0

ΦM (t)ΦI(t)dt

= β(1−R0)
〈
min(tM , tI)

〉
< β

∫ ∞

0

ΦI(t)dt = β
〈
tI
〉
= R0,

where R0 is the basic reproduction number without mortality
and no immune walkers at t = 0. In the immortal limit
(tM → ∞, ΦM (t) → 1) one has RM → R0 (in absence of
immune walkers R0 = 0). This relation contains the mean
of the "true" sojourn time min(tM , tI) in compartment I
and the persistent probabilities ΦM,I(t) =

〈
Θ(tM,I − t)

〉
=

1−
∫ t

0
KM,I(τ)dτ . Moreover, it contains the probability that a

walker is in compartment I (infected and infectious and alive)
ΦM (t)ΦI(t) =

〈
Θ(tM−t)Θ(tI−t)

〉
=

〈
Θ(min(tM , tI)−t)

〉
.

The next steps in this analysis will include the investigation
of the large time asymptotics of the spreading dynamics with
mortality, among other directions, which we will briefly outline
subsequently.

V. CONCLUSION AND FUTURE WORK

We proposed a multiple random walkers epidemic com-
partment model, which accounts for mortality: An infected
walker may die during the period of its infection. We excluded
demographic birth and death processes. The compartmental
sojourn times were considered to be independent random
variables drawn from specific (here Gamma-) distributions.
By including stochastic resetting into the random walks, in
which walkers are relocated to random positions, we are able
to mimic the effects of long-range voyages on the spread
of the disease. By considering zero mortality, we observed
that the macroscopic compartment model (endemic states (6))
remains true for any resetting rate p, where the macroscopic
transmission coefficient β is monotonously increasing with
the resetting rate. Increasing numbers of long-range journeys

12Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PANDEMICS ANALYTICS 2025 : International Conference on Pandemics Analytics - 2025

                            17 / 25



may drive the basic reproduction number to values above one,
which launches the spreading of the disease. It follows that
measures reducing long-range voyages can be an effective way
to block the propagation of an epidemic. The results of the
simulations suggest that in all cases, above equations (6) for
the endemic states remain valid and capture well the large time
asymptotics.

Finally, we conclude that our approach of multiple random
walkers navigating independently in a complex network is a
powerful tool to capture the microscopic dynamics of epidemic
spreading. We included stochastic resetting into the random
walks mimicking long-range voyages of the walkers and found
that the basic reproduction number increases monotonously
with the resetting rate p. The message of this result clearly
is that prohibiting to a certain extend traveling in epidemic
contexts can be effective to prevent spreading of the disease.

As mentioned, the next steps will include an asymptotic
analysis of the spreading dynamics with mortality. To that
end, we will investigate the evolution equations (2), (3) in the
Laplace space and use the limit value theorem to determine the
large time asymptotic state. This infinite time limit is supposed
to be a disease free state, containing only susceptible walkers
(walkers that survived the epidemic wave) and dead walkers.
Also, the effect of resetting on the mortality of walkers (infinite
time limit of the fraction of dead walkers) will be explored
analytically and numerically in details. For a related analysis
of a mortal vector borne disease, we refer to a recent model
[23].

A further promising direction is to account for infection
rates beyond the present mass-action law (1) by including
information of the network topology and the random walk.
Introduction of individual navigation rules for specific walkers
can be of interest as well.
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Abstract—Some corona virus disease 2019 (COVID-19) symp-
toms can persist for months after infection, leading to what is
termed Post COVID-19 condition. Factors such as vaccination
timing, patient characteristics, and pre-existing conditions may
contribute to the prolonged effects and intensity of Post COVID-
19 condition. Each patient, based on their unique combination
of factors, develops a specific risk or intensity of Post COVID-19
condition. In this work, we aim to achieve two objectives: (1) con-
duct a statistical analysis to identify relationships between various
factors and Post COVID-19 condition, and (2) perform predictive
analysis of Post COVID-19 condition intensity using these factors.
We benchmark and interpret various data-driven approaches
using data from the Lifelines COVID-19 cohort. Our results
show that Neural Networks (NN) achieve the best performance
in terms of Mean Absolute Percentage Error (MAPE), with
predictions averaging 19% error. Additionally, interpretability
analysis reveals key factors such as loss of smell, headache, muscle
pain, and vaccination timing as significant predictors, while
chronic disease and sex are critical risk factors. These insights
provide valuable guidance for understanding Post COVID-19
condition (PCC) and developing targeted interventions.

Keywords-Post COVID-19 syndrome; PCC; predictive analysis;
Machine learning; Explainability.

I. INTRODUCTION

In May 2023, after 3 years of global pandemic, the WHO
declared the end of the global Public Health Emergency for
COVID-19. Although this indicates an improvement, espe-
cially with general access to vaccines, it does not mean the
end of the presence and effects of COVID-19 which can
now be considered endemic [1]. One lasting effects being
post-COVID-19 condition (PCC), which presents by the con-
tinuation of physical and cognitive symptoms after recovery
from acute COVID-19 [2][3]. PCC prevalence is not exactly
known with recent worlwide estimates varying from 6% to
10% lowered from initial WHO estimates of 10 to 20% [4][5].
Many countries are now developing dedicated health care paths
for PCC and as such means to identify at risk population would
be beneficial for improved early referrals.

Although the condition has been extensively studied, there
are still many uncertainties regarding the exact characterization
and risk factors associated. One major challenge in studying
this subject is the lack of comprehensive data. As an evolving
crisis, initial datasets had to be created and collected in real
time with limited understanding of the virus and lasting effect.
Thus, most data were collected retrospectively from incom-
plete patient medical files, clinical cohorts of hospitalized

patients or patients in dedicated PCC recovery care. However,
data suggest that most people affected by PCC were never
hospitalized and would not necessarily seek direct care for the
condition. Alternatively, there is often limited knowledge of
participants’ pre-existing conditions, making it hard to verify
that persistent symptoms are new and attributable to COVID-
19 [2][5].

This study uses a unique dataset collected and maintained
by Lifelines that addresses some of these concerns. Lifelines
is a multi-disciplinary, prospective cohort study examining
the health and health-related behaviors of 167,729 individuals
in Northern Netherlands over three generations. It assesses
biomedical, socio-demographic, behavioral, physical, and psy-
chological factors.

From April 2020 to November 2022, a COVID-19 specific
branch involving 31 questionnaires was sent to Lifelines adult
participants without inclusion criteria. Frequency varied from
weekly to bi-monthly. 76,503 participants answered at least
one questionnaire, with a mean of 13.5 questionnaires (stan-
dard deviation 10.5). The cohort’s duration and size provide
valuable data on pre-existing conditions, control groups, and
factors influencing PCC’s emergence, evolution, and severity.

A number of studies have explored the use of data-driven
approaches to predict and analyze the attributes developing
PCC [6][7]. The use of unsupervised clustering on time series
of early development of COVID-19 is investigated in [7] that
could be predictive of the need for high-level care in individu-
als more likely to seek medical help. A recent study employed
a gradient boosting classifier for diagnosis of PCC [6]. They
obtain similar results using a dataset retrieved from a panel of
primary care practices in Germany.

The aim of this study is to explore the following critical
research question: “Can specific pre-infection parameters be
identified to predict the severity of post-COVID-19 condi-
tion?”. To answer this question, an analysis was performed
using machine learning techniques. The ability to predict PCC
and identify relevant pre-infection symptoms and risk factors
holds significant societal implications, impacting physical and
mental health, daily functioning, and productivity. To facilitate
this, we introduced the concept of Post-COVID-19 Symptom
Intensity (PCSI) as a measure of the persistence and impact of
symptoms after COVID-19 infection. As such, a continuous
measure of PCC is proposed allowing for a more accurate
measure of the impact of the condition compared to the com-
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monly used binary definition. Using various machine learning
models, we focused on predicting PCSI using demographic
and clinical characteristics. This study constitutes the first
predictive analysis conducted on Post-COVID-19 Lifeline data
through the application of machine learning algorithms. The
principal contributions of this work are as follows:

• Conducting a comprehensive statistical analysis to iden-
tify influential factors associated with the study of PCC;

• Performing predictive analysis of Post COVID-19 Symp-
tom Intensity using data-driven approaches;

• Interpreting and analyzing the impact of diverse variables
on Post COVID-19 Symptom Intensity, offering valuable
information for medical decision-making;

• Developing a Python package [8] for evaluating ML al-
gorithms on health-related (Lifelines) datasets, facilitating
reproducibility and further research in the domain.

The remainder of this article is structured as follows. Section
2 describes the data preprocessing steps and provides statistical
insights into the dataset. Section 3 presents the methodology
for predicting PCSI, along with results and an analysis of key
influential factors identified by each model. Finally, Section 4
provides a discussion and concludes the paper.

II. PREPROCESSING AND DATA ANALYSIS

This section presents the data used for the analysis and
describes pre-processing steps undertaken to format the data
suitably. Additionally, it includes a preliminary statistical
analysis to reveal global tendencies.

A. Data description

The dataset comprises two main types of variables:

• Static Variables: These denote fixed attributes of individ-
uals, recorded as single entries in the database. Examples
include age, sex, SARS-CoV-2 variant, income, smoking
status, overall health status, presence of chronic diseases,
vaccination status, and time between vaccination and
infection.

• Dynamic Variables: These variables capture the presence
and intensity of symptoms at different time intervals
(before, during, and after SARS-CoV-2 infection). Symp-
toms include headache, dizziness, heart or chest pain,
lower back pain, nausea, muscle pain, difficulty breathing,
feeling warm or cold, numbness or tingling, sore throat,
dry or wet cough, fever, diarrhea, loss of smell or taste,
and sneezing, among others.

Several challenges emerged while working with the data.
Similar to many questionnaire-based datasets, there were con-
siderable amounts of missing or aberrant data. Additionally,
since the data was collected during an active epidemic, the
scope and phrasing of the questionnaires evolved over time,
resulting in inconsistencies. Extensive preprocessing was un-
dertaken to address these issues, standardizing the dataset and
ensuring a uniform structure suitable for analysis.

B. Definition of Post COVID-19 symptoms intensity (PCSI)

Post COVID-19 condition is a systemic condition in
which individuals experience persistent symptoms following
a SARS-CoV-2 infection. While the WHO provides a general
definition, it does not specify which symptoms or measurement
methods to use [9][10], leading to inconsistencies across
studies in terms of time frames, symptom types, and severity
criteria. In this study, we adopted the WHO time frame
definition: symptoms that cannot be explained by an alternative
diagnosis, appearing three months after infection and lasting
for at least two months. Symptom selection was based on 10
core PCC symptoms identified in prior research using the same
dataset [2].

Symptom intensity was rated on a 5-point Likert scale (1 =
not at all, 5 = extremely) based on the participant’s experience
during the previous seven days (see Figure 1). Symptoms
were considered present if rated at least 3 (moderate). Each
participant’s baseline was defined as the mean intensity of
symptoms from all questionnaires completed at least seven
days before infection; individuals without such data were
excluded.

Figure 1. The overall process for defining Post COVID-19 symptom
intensity (PCSI) using symptoms (symp) scores. All analyses were centered

around the time of the first reported SARS-CoV-2 infection.

PCC was defined as the presence of at least one persistent
symptom (mean score ≥ 3) between 90 and 150 days post-
infection, with an increase of at least one point from baseline.

We further defined a continuous measure, Post COVID-
19 Symptoms Intensity (PCSI), as he highest mean score
among symptoms meeting the PCC criteria defined above.
PCSI preserves symptom severity granularity, facilitating more
nuanced modeling and analysis. It supports both statistical and
machine learning approaches and can serve as a proxy for the
binary PCC definition when needed. For non PCC participant,
a proxy was used by taking the value of the symptom with
the highest mean score in the 90-150 days post-infection.

C. Data cleaning and preprocessing

The raw data from different questionnaires were organized
into multiple tables, each containing information collected
at the participant level for specific dates. After cleaning
and preprocessing, participants with a sufficient number of
shared variables were filtered. This filtering process resulted
in the creation of a merged database that consolidated all the
necessary information required for the study and analysis. For
the predictive analysis, we adopted the steady-state hypothesis,
utilizing only the pre-infection period for feature extraction.
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TABLE I. POPULATION CHARACTERISTICS. BLUE REPRESENT PROPORTION OVER KNOWN VALUES.

SARS-CoV-2 positive Included Excluded PCC Positive PCC Negative
n=13191 n=4657 n=8534 n=715 | 15.4% n=3942 | 84.6%

Characteristics Modalities n % n % n % n % n %

Age
18–39 1520 12 411 9 1109 13 61 9 350 9
40–59 7006 53 2315 50 4691 55 426 60 1889 48
≥60 4665 35 1931 41 2734 32 228 32 1703 43

Gender Male 4631 35 1679 36 2952 35 190 27 1489 38
Female 8560 65 2978 64 5582 65 525 73 2453 62

BMI
<25 5830 44 2111 45 3719 44 276 39 1835 47
25≤ BMI <30 5173 39 1827 39 3346 39 297 42 1530 39
≥30 2188 17 719 15 1469 17 142 20 577 15

Chronic disease

None 7948 67 3118 67 4830 68 381 53 2737 69
One 2212 19 914 20 1298 18 178 25 736 19
Multiple 1643 14 625 13 1018 14 156 22 469 12
Unknown 1388 11 1388 30

Smoking
Yes 1292 10 438 9 854 10 79 11 359 9
No 11783 90 4219 91 7564 90 636 89 3583 91
Unknown 116 1 116 1
Excellent 1189 11 492 11 697 10 41 6 451 11

Self-assessed Very good 3886 34 1631 35 2255 34 185 26 1446 37
health prior to Good 5645 50 2302 49 3343 50 406 57 1896 48
infection Mediocre/poor 580 5 232 5 348 5 83 12 149 4

Unknown 1891 14 1891 22

Educational level

High 4907 38 1035 22 3181 38 272 38 895 23
Medium 5054 39 1751 38 3303 39 297 42 1454 37
Low 2777 21 1726 37 1742 21 140 20 1454 37
Other 305 2 112 2 193 2 12 2 100 3
Unknown 148 1 33 1 115 1 6 1 27 1

Vaccination Full 6701 57 3149 68 3552 50 417 58 2732 69
prior to Partial 562 5 0 0 562 8
infection No 4492 38 1508 32 2984 42 298 42 1210 31

Unknown 1436 10 1436 17

Variant

Original 2747 21 987 21 1760 21 193 27 794 20
Alpha 1417 11 190 4 1227 15 40 5 150 4
Delta 1096 8 444 6 652 8 80 11 364 9
Omicron 7931 60 3066 66 4865 57 402 57 2662 68

Hospitalization
Yes 190 1 44 1 146 2 15 2 29 1
No 12663 99 4512 99 8151 98 683 98 3829 99
Unknown 338 3 101 2 237 3 17 2 84 2

As the result of preprocessing, a total of 4,657 partic-
ipants were included in this study. Table I illustrates the
characteristics of the total population observed (subset of the
cohort with a covid-19 diagnosis), included and excluded
group (based on missingness of information) and finally the
subgroups with positive or negative post-covid assessment.
Base characteristics of the included and excluded population
are similar. It is to be noted that women account for 73%
of the cases while representing 64% of the base dataset.
This indicates that women are more likely to be at risk for
Post COVID-19 condition than men. Conversely, for low PCC
symptom intensities, the proportion of women is smaller.

D. Preliminary statistics
To assess the impact of input variables and investigate

potential dependencies between the input variables and the

outcome (presence of PCC), we applied two statistical tests.
These tests are outlined below:

• Chi-square test: This test assesses whether two categori-
cal variables are independent [11] and used to study the
relation between two categorical variables, i.e., vaccina-
tion and PCSI. By evaluating the p-value obtained from
the test statistic at the chosen confidence level, we deter-
mine whether to reject the null hypothesis (indepedence)
in favor of the alternative hypothesis (dependence). A
confidence level of 95% is typically used and the null
hypothesis is rejected if p− value < 0.05.

• Cramer’s V test: This test quantifies the strength of
association between two categorical variables [12]. A
value close to zero indicates a weak dependency, while a
value approaching 1 suggests a strong dependency.
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Using these tests, we analyzed the influence of vaccination
on PC symptom intensity, with the results depicted in Figure 2.
This analysis was also conducted for other variables; however,
we present only the results for vaccination, as it serves as a
crucial preventive measure against COVID-19. To simplify the
interpretation, we rounded the PCSI score. From the figure, it
is evident that most participants who are fully vaccinated are
less likely to experience high levels of PCSI (2,790 out of
3,149 or 88% vaccinated participants report intensity levels 1
or 2). However, due to a lack of representative observations
for higher intensity levels, we cannot confidently establish a
relationship between vaccination and PCSI for these cases. The
Chi-square test statistic (p < 0.05) confirms the significance
of this relationship, even though the strength of the association
is weak (Cramer’s V = 0.072).

Figure 2. Chi-square test between vaccination and PCSI scores. The test
results indicate a significant relationship (p < 0.05) between vaccination

and PCSI scores.

To further examine the relationships between multiple vari-
ables simultaneously, the Multiple Correspondence Analysis
(MCA) [13] is used. It allows identification and visualization
of underlying structures in a set of nominal categorical data
as is the case in this study. It can be seen as the categorical
equivalent of principal component analysis (PCA), projecting
data points into a low-dimensional Euclidean space where each
axis represents a component, with the corresponding variance
explained in percentage. Figure 3 depicts the obtained results.

The MCA plot reveals that high PCSI (5) is linked to
the presence of chronic diseases and poorer overall health.
Additionally, it appears that women are more likely to ex-
perience higher PCSI compared to men. The original SARS-
CoV-2 variant does not show a strong correlation with PCC,
suggesting a lower risk. Lastly, individuals in better general
health seem to have a reduced risk of developing PCC.

III. METHODOLOGY AND RESULTS

In this section, we outline an evaluation pipeline designed
to select and benchmark various predictive models using the
data obtained from the pre-processing stage. The goal of this
study is to predict the target variable, y, which represents
the intensity of Post COVID-19 condition. The intensity is
modeled as a continuous variable ranging between 1 (low
intensity) and 5 (high intensity). Given its continuous nature,
the problem is formulated as a regression task, where the

Figure 3. Multiple Correspondence Analysis considering static and
vaccination variables. The PCSI variable is discretized (1-5 in clear blue).

models aim to approximate the mapping f : X → y, with
X ∈ Rp being the set of p explanatory variables (features).
The overall structure of the proposed pipeline is illustrated in
Figure 4.

Figure 4. Benchmark and evaluation pipeline

In the context of statistical learning, the data are partitioned
into three subsets:

• Training set (Dtrain): It involves 60% of all the partici-
pants (4657) and is used to estimate the parameters θ of
the predictive model fθ;

• Validation set (Dval): It involves 10% of the participants
and is used to estimate the hyperparameters θhyp of the
predictive model fθ;

• Test set (Dtest): It involves 30% of all the participants,
and it is used to evaluate the performance of the trained
model on unseen data and assess the generalization ability
of the model.

After selecting the models, their hyperparameters (θhyp) are
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fine-tuned to optimize performance. This crucial step enhances
the model’s predictive capabilities and is elaborated on in Sec-
tion III-C. The optimization process may involve techniques
such as grid search or gradient-free optimization methods (e.g.,
Nevergrad), depending on the model’s complexity.

Subsequently, each model’s performance is evaluated based
on a set of criteria measuring accuracy and reliability. The
results are presented using both tabular and graphical tools
to facilitate comparison and interpretation. These results offer
insights into the models’ predictive capabilities and help
identify the most suitable approach for modeling PCSI.

Lastly, to identify patient profiles and implement preventive
measures against Post COVID-19 condition, it is crucial to
assess the significance of the explanatory variables used for
model training and parameter adjustment. Depending on the
model utilized, we employ explanation and interpretation
tools to extract meaningful insights. These insights can offer
valuable guidance for the medical field.

A. Evaluated Methods

To tackle the regression problem, we evaluated and com-
pared several data-driven models, including Linear Ridge
Regression (LR), Random Forest (RF), Gradient Boosting
(GB), and Multi-Layer Perceptron (MLP). LR is a linear model
enhanced with regularization to address multicollinearity and
reduce overfitting. RF is an ensemble technique that builds
multiple decision trees and aggregates their predictions for ro-
bust regression. GB sequentially combines weak learners, typi-
cally decision trees, to minimize errors and improve predictive
accuracy. MLP is a feed-forward neural network excelling at
modeling non-linear relationships with fully connected layers
of neurons and non-linear activation functions.

B. Evaluation criteria

Considering that PCSI is a continuous target variable, we
have selected four evaluation criteria to assess the model’s
performance, which are: MAPE (Mean Absolute Percentage
Error), MAE (Mean Absolute Error), MSE (Mean Squared
Error) and Pearson correlation between predicted and actual
values.

C. Experimental setup

We fine-tuned all the presented models to determine the
optimal set of hyperparameters. For hyperparameter opti-
mization, we employed the Nevergrad library [14]. The best
hyperparameters for MLP were: 3 hidden layers with 126
neurons each, ReLU activation function, Adam optimizer with
a learning rate of 9 × 10−4, and 200 training epochs. For
RF, the optimal settings included 500 estimators, a maximum
depth of 12, a maximum sample fraction of 0.4, and 25
maximum features. Similar hyperparameters were achieved for
GB. Lastly, for LR, the L2 regularization strength multiplier
was set to 1.0. To ensure the stability and robustness of the
results, we conducted K-fold (K = 5 cross-validation and the
results are reported using mean and standard deviation across
the five folds.

D. Results

This section presents and discusses the results obtained by
the methods introduced and summarizes their performance in
Table II. Using each method, different combinations of fea-
tures are compared through the introduced evaluation criteria.
The “All" feature combination represents the integration of
all characteristics, including static variables, symptoms, and
vaccination data. For clarity, the best results for each method
are marked in bold, while the best performance for each
evaluation criterion is highlighted in green. Additionally, all
performance metrics are averaged across K = 5-fold cross-
validation and results are reported as MEAN ± STD (refer to
Section III-C for details on the experimental setups). Pearson’s
correlation is reported using the pair (test statistic, p-value).

TABLE II. COMPARISON BETWEEN VARIOUS INTRODUCED MODELS AND
FEATURES COMBINATION FOR PREDICTION OF PCSI.

Evaluation criteria
Methods Features MAE MSE MAPE Pearson

All .61 ± .01 .68 ± .02 .29 ± .01 (.56, 6e-70)
Static .71 ± .02 .91 ±.05 .35 ± .01 (.28, 2e-16)
Symptoms .62 ± .02 .70 ± .04 .30 ± .01 (.57, 2e-69)LR

Vaccination .81 ± .02 .99 ± .05 .41 ± .01 NaN
All .60 ± .01 .67 ± .02 .28 ± .01 (.58, 7e-73)
Static .72 ± .02 .93 ± .05 .35 ± .01 (.26, 1e-15)
Symptoms .60 ± .01 .66 ± .03 .28 ± .01 (.57, 5e-72)RF

Vaccination .79 ± .02 .99 ± .06 .39 ± .01 (.04, 1e-1))
All .61 ± .01 .66 ± .01 .28 ± .01 (.57, 4e-74)
Static .72 ± .02 .90 ± .05 .35 ± .01 (.29, 7e-17)
Symptoms .61 ± .01 .68 ± .02 .28 ± .01 (.55, 8e-82)GB

Vaccination .81 ± .02 .99 ± .06 .41 ± .01 (.05, 6e-1)
All .45 ± .05 .90 ± .12 .19 ± .03 (.25, 3e-18)
Static .87 ± .18 1.4 ± .78 .43 ± .07 (.21, 4e-9)
Symptoms .76 ± .11 .98 ± .38 .34 ± .05 (.43, 5e-33)MLP

Vaccination .80 ± .03 1.03 ± .05 .41 ± .03 (.04, 2e-1)

As shown in Table II, the best performance for each method
is achieved when all features are combined. However, with the
exception of MLP, the performance remains comparable even
when only symptom-based features are used. It is worth noting
that neural network-based methods, such as MLP, have the
capability for automatic feature extraction, whereas traditional
statistical approaches like LR, RF, and GB require a dedicated
feature engineering step.

We observe that the performance, in terms of the MAE
metric, remains very similar across the four approaches when
all features are combined. An MAE value of 0.60 indicates
that, on average, the predicted values deviate by 0.60 points
from the actual observations. Given that the PCSI ranges
from 1 to 5, a deviation of 0.60 in intensity is unlikely to
significantly affect the overall conclusions.

Finally, we note that the best result in terms of MAPE is
achieved using MLP, with a value of 0.19. This indicates that,
on average, the predictions deviate by 19% from the actual
intensity values. Interestingly, the highest Pearson correlations
between predictions and actual values are obtained with RF
and GB, rather than MLP. This discrepancy can be attributed
to the differences in how these models capture relationships
within the data. RF and GB are ensemble-based methods
that excel in capturing complex interactions between features,
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which may result in higher linear correlations (as measured
by Pearson correlation) between predicted and actual values.
On the other hand, MLP, being a neural network, is better
suited for non-linear patterns and optimization for specific
loss functions, which may explain its superior performance
in minimizing relative errors (as captured by MAPE).

E. Interpretation
Using explainability tools, this section allows to better

understand the models’ decision through some statistics such
as estimated feature coefficients and feature importance.

The top 9 most influential features, along with their corre-
sponding Linear Ridge Regression (LR) coefficients, averaged
over 5-fold cross-validation are presented in Table III. These
coefficients indicate the direction and magnitude of each fea-
ture’s contribution to the prediction of PCSI. Many common
acute symptoms, such as loss of sense of smell, headache, and
muscle pain, exhibit strong positive contributions, suggesting
they are associated with a higher risk of Post COVID-19
condition. Conversely, certain acute symptoms like fever or
pain when breathing show significant negative contributions,
indicating that their presence is less likely to increase the
risk of Post COVID-19 condition. This distinction highlights
the nuanced relationship between acute and long-term COVID
symptoms.

TABLE III. ESTIMATED COEFFICIENTS OF LINEAR REGRESSION FOR
PREDICTION OF POST COVID-19 CONDITION

Variable Coef Variable Coef
Loss of sense of smell/taste 0.32 Pain when breathing -0.58

Headache 0.28 Fever (38◦ or higher) -0.27
Muscle pain/aches 0.27 Omicron variant -0.26
Lower back pain 0.23 Heaviness in arms/legs -0.08
Original variant 0.17 Very good health -0.07

Feeling warm & cold 0.16 No chronic disease -0.07
Red, painful eyes 0.16 Age group -0.06

Sneezing 0.16 Smoker -0.05
Difficulty breathing 0.14 Male -0.03

The importance of features obtained by the Random Forest
(RF) model is illustrated in Figure 5 using a bar plot. For
clarity and brevity, only the top 10 most important features
were extracted from the full set. The identified features show
some overlap with those presented in Table III, although
their relative importance differs. Notably, muscle pain emerges
as the most important predictor of PCSI. Additionally, the
feature representing the time interval between vaccination and
infection (VACCIN_TTI in the bar plot) is highlighted as a
significant contributor. This finding supports the hypothesis
that vaccination timing influences the risk and severity of
Post COVID-19 condition, emphasizing its potential impact
on disease outcomes.

Based on the SHAP explanation tool, the most influential
features for the MLP model predicting PCSI are identified in
Figure 6. Key symptoms such as difficulty breathing, diarrhea,
fluctuating body temperature, muscle pain, and sneezing had
high positive SHAP values, indicating strong contributions to
increased symptom intensity.

Variables

Muscle pain

Im
po

rta
nc

e

0.02

0.04

0.06

0.08

0.10

0.12

Feeling lim
p

Headache

Lower back pain
sneezing

Runny nose

Red painful eyes
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Nausea

Figure 5. Feature importances resulted using Random Forest model for
prediction of PCSI

Smoking was associated with higher PCSI, likely due to
its impact on respiratory health. In contrast, the absence of
chronic diseases and prior vaccination were linked to reduced
intensity, emphasizing the protective role of good baseline
health and immunization. Additionally, female sex was as-
sociated with higher PCSI, in line with existing research on
sex-based vulnerability to post-viral syndromes [15]. These
findings highlight the complex interplay of symptoms and
individual factors in shaping Post COVID-19 outcomes.

0.0-0.1 0.1 Low

High

SHAP value

Difficulty breathing

Diarrhea

Muscle pain

Sneezing

Feeling warm & cold

No vaccine

Gender female

Smoking yes

Chronic disease

0.2

Delta variant

Figure 6. Interpreting MLP influential factors using SHAP

IV. CONCLUSION AND PERSPECTIVES

This study aimed to identify patient profiles at higher risk
of developing PCC and predict its intensity using machine
learning approaches. We utilized features that were grouped
into static, vaccination, and symptom-related variables. Statis-
tical analyses revealed that women and patients with chronic
diseases are more susceptible to PCC. Predictive analysis using
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four different models demonstrated strong performance across
all methods when combining all features, with MLP showing
slightly better results in terms of MAPE. The interpretability
analyses identified key predictors, including loss of smell,
headache, muscle pain, and vaccination timing, as well as
protective factors like the absence of chronic diseases. These
insights provide valuable information for tailoring interven-
tions and understanding the underlying risk factors of PCC.

Limitations and future works. The steady-state assumption
in our analysis limits the ability to capture temporal relation-
ships between symptoms or events. Model performance is also
constrained by the quality and completeness of the dataset,
highlighting the need for validation on independent datasets to
ensure robustness in real-world scenarios. Additionally, while
the models offer predictive value, they are intended as tools
to complement clinical judgment rather than replace it. These
gaps will be addressed in future studies.

Societal Impact. Post COVID-19 condition has profound so-
cietal implications, affecting physical and mental health, daily
functioning, and productivity [16][17]. It disrupts educational
and professional activities, with children and adults experi-
encing isolation, stress, and cognitive impairments. Predicting
PCC symptoms intensity can inform early interventions, al-
leviate healthcare burdens, and improve patients’ quality of
life.
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