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The International Conference on Pandemics Analytics (PANDEMICS ANALYTICS 2025) continues
a series of events targeting lessons learned from past and current pandemics and building a basis for
pandemic science analytics. The focus is on models for preparedness, awareness, use of medical
achievements (such as short-time vaccine development), promptly developed logistics (vaccine
production, supply coordination, vaccinations, quarantines), as well as on handling hospital capacity and
personnel. The conference was held on October 26-30, 2025 in Barcelona, Spain.

A pandemic is defined as a widespread occurrence of a disease, at a global level, and affecting a
large number of people. Pandemics are rare, but their effects are deeply damaging to society.
Continuous actions on prevention and control of infectious diseases exist, coordinated by national and
international bodies, such as the World Health Organization (WHO). In pre-pandemic times, citizen
preparedness has mainly focused on the early warning and early monitoring of infectious diseases.
Local/global health research uses data gathering and visualization, usually via dashboards. Research
cooperation between countries is generally on an 'as needed' basis.

Limiting the impact of pandemics on citizens' lives (including social, economic, and educational
aspects) requires the adoption of the best tools by all parties involved. These tools include Big Data for
real-time accurate reports, Al-based decisions for supplies delivery scheduling, high speed and secure
communications, as well as means for combating fake news on social networks and countering the
offenders.

We take this opportunity to thank all the members of the PANDEMICS ANALYTICS 2025
Technical Program Committee as well as the numerous reviewers. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to the PANDEMICS ANALYTICS 2025.

This event could also not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the PANDEMICS ANALYTICS 2025
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope the PANDEMICS ANALYTICS 2025 was a successful international forum for the
exchange of ideas and results between academia and industry and to promote further progress with
respect to pandemic science analytics. We also hope that Barcelona provided a pleasant environment
during the conference and everyone saved some time for exploring this beautiful city
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Socially Responsible Artificial Intelligence Empowered People Analytics: A Novel
Framework Towards Sustainability

Otabek Khamidov, Les Sztandera
Thomas Jefferson University, Jefferson School of Business
Philadelphia, Pennsylvania, United States of America
Emails: Otabek.Khamidov@students.jefferson.edu, Les.Sztandera@jefferson.edu

Abstract— This paper updates the Socially Responsible
Artificial Intelligence (SRAI) framework in response to the
COVID-19 pandemic. The original SRAI framework was
proposed to inform the ethical adoption of artificial intelligence
in People Analytics and Human Resource Development (HRD).
However, the pandemic created the necessity to extend the
principles to other high-risk fields like public health, crisis
management, and healthcare delivery. Based on a qualitative
synthesis of peer-reviewed articles between 2020 and 2025, this
research develops the SRAI framework by proposing a new
dimension known as Resilience Responsibility. The new
addition reflects the importance of designing Al systems to be
trustworthy, flexible, and capable of delivering even in high-
pressure situations. The research demonstrates how Al
contributed to business responses as well as public health
responses during the pandemic but also the research findings
highlighted concerns about data bias, privacy, and
accountability. The enhanced framework provides actionable
recommendations for HR practitioners, healthcare leaders, Al
engineers, and policymakers to ensure the adoption of Al is
ethical, lawful, sustainable, and resilient to disruptions.

Keywords- Artificial Intelligence; People Analytics; Pandemic
Analytics; COVID-19 data.

I. INTRODUCTION

Artificial intelligence has rapidly transformed human
resource development and organizational decision-making
[4]. This section provides an overview of the origins of
People Analytics, the foundation behind developing the
Socially Responsible Artificial Intelligence (SRAI)
framework as well as the ethical and sustainability challenges
that shaped its foundation.

A. Emergence of People Analytics in HRD

People Analytics (PA) is a developing field in Human
Resource Development (HRD), which stands out for
emphasizing data-driven “decision science” over intuition-
based decisions [1][2][3]. PA involves collecting and
analyzing workforce data to guide HR strategies and practices
moving HR away from a traditionally experience-based field
towards evidence-based decision making. PA is widely
applied in various HRD activities, including talent acquisition,
skills and competency analysis, employee sentiment analysis,
performance management, turnover prediction, and training
and development, to inform superior decisions regarding
people and talent management [4].

Although PA provides a more efficient, objective, and
strategic approach to personnel management, it also raises
ethical challenges and legal obligations. For instance,
Workday Inc. is accused of utilizing discriminatory Al
technology for the job candidate screening process based on
age, disability, and race in one recent active lawsuit [5].
Despite these obstacles, PA has grown to be a crucial
component of contemporary HRD and signals a move toward
more scientific and technology-driven approaches to
managing people.

B. Introduction to the SRAI Framework

Addressing the demand for responsible Al in HR in
response to the growing ethical and sustainability challenges,
a comprehensive Socially Responsible Artificial Intelligence
(SRAI) framework was introduced for people analytics [4].
This was one of the first efforts at systematically connecting
the concept of Corporate Social Responsibility (CSR) to
people analytics on Al-facilitated Human Resource
Development. In an extension of classic CSR pyramid and
corresponding sustainability paradigms [6], SRAI offers a
five-stage model for an organization’s economic, legal,
ethical, philanthropic, and environmental responsibilities for
Al usage with Al-driven HR practices to be followed.

The base layer is economic responsibility, which implies
people analytics Al tools being usable, dependable, and
delivering organizational performance directing that Al in HR
needs to add value, deliver return on investment while
minimizing risks. Next is legal responsibility, which requires
Al systems to follow legal mandates around data usage,
human rights, labor laws in employment-related decision-
making, and intellectual property. Ethical responsibility takes
a step beyond lawfulness, including standards of fairness,
transparency, and respect for privacy of design and
deployment of Al beyond what the law requires. Philanthropic
responsibility involves a voluntary commitment of Human-
Centered Al application for broader social good, for example,
application of people analytics for increasing employee and
community outcomes, which shows a vision of HRD having
beneficial impacts beyond organizational immediate interest.
Finally, the model places an environmental responsibility for
realizing that Al adoption needs to be ecologically durable.
Sustainable Al can help reduce energy consumption and
carbon footprint through application of Al for environmental
goals achievement.

SRAI framework is stakeholder-centered as it involves
recognizing key stakeholders ranging from employees and
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managers through job applicants to society at large impacted
by AL SRAI framework charts how each responsibility level
translates into goals and requirements for these stakeholders
[4]. The integrative literature review used in this study
spanning up to 2023 publication covered related concepts like
Environmental, Social, and Governance (ESG) criteria and
United Nations Sustainable Development Goals (SDGs) for a
comprehensive idea of sustainable Al-powered HR.

To guide the reader through the structure of this paper, the
remaining sections are organized as follows. Section II -
Research Gap identifies the limitations of the original SRAI
framework and explains the need for an update to address
high-risk, cross-sector applications such as Pandemic

Analytics. Section III - Methodology describes the qualitative
approach and data collection process used to refine the
framework. Section IV - Findings presents the main results,
highlighting how artificial intelligence was applied in both
organizational and public health contexts during the COVID-
19 pandemic. Section V - Practical Implications links theory
to practice through converting findings into actionable
recommendations for People Analytics and Pandemic
Analytics stakeholders. Finally, Section VI - Conclusion and
Future Work provides a summary of the study and outlines
future directions for research on socially responsible and
resilient Al systems.

Larger Scale of Stakeholders and Impacts
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Figure 1. The original SRAI framework.

II.  RESEARCH GAP

SRAI framework was originally designed for ethical
practice in People Analytics and Human Resource
Development with a focus on responsibilities for corporate
economic performance, legal compliance, and fair
organizational decision-making processes. While it is an
important milestone for measuring Al adoption within
corporate environment, it has not yet been adapted for high-
stakes, real-time, multi-industry applications like Pandemic
Analytics. The COVID-19 pandemic revealed the need for
socially responsible Al for public health, healthcare systems,
and disaster management encompassing broader stakeholder
groups, urgent decisions, and more ethical risks. The
application of SRAI framework to Pandemic Analytics
addresses the gaps and identifies opportunities for pandemic-
era data and governance requirements.

Moreover, developments in recent years have raised new
gaps calling for a revised viewpoint on SRAI. Firstly, Al
machine learning models and generative language tools are
creating ethical concerns, such as Al “hallucinations” [7] and
other new sources of bias which should be addressed by SRAI
frameworks. The study published on behalf of the United
States & Canadian Academy of Pathology, raises the concern

over potential Al bias due to three main factors, such as, data
bias, development bias, and interaction bias which can
inadvertently result in unfair and potentially detrimental
outcomes within pathology and medical domain [8].

Secondly, the legal and regulatory landscape around Al
has evolved rapidly presenting new challenges for public
regulators to implement effective administrative interferences
[9]. Since 2023, regulators both in the United States of
America and internationally, such as in the European Union
are trying to impose bias audit mandate for Al algorithms as
well as automated decisions affecting human resources. For
example, starting from February 1, 2026, the state of Colorado
will be the first U.S state to require organizations to identify
and mitigate algorithmic discrimination risks for high-risk Al
systems [10]. At the U.S federal level, Congress proposes the
Al Whistleblower Protection Act (H.R. 3460) which would
protect individuals who report unethical, biased, and illicit Al
practices in their workplaces, such as automated hiring and
surveillance methods [11].

Finally, there is an emerging emphasis on environmental
sustainability in Al. The energy usage and carbon output of
Al systems have raised alarm bells regarding the
environmental impact of Al. Latest estimates indicate that
training and running big Al models can release massive
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amounts of CO:2[12]. The study shows based on data from 275
Chinese cities that the carbon footprint contribution of
digitization and artificial intelligence is underestimated
because the effects increase the carbon impact by 665% [13].

III. METHODOLOGY

This study provides a qualitative review of existing
literature to explore the impact of the COVID-19 pandemic on
the use of Al in both Pandemic Analytics and People
Analytics. The purpose of the paper is to update the original
SRAI framework by analyzing recent research and emerging
trends in People Analytics, and to apply the framework to
Pandemic Analytics. We conducted research in academic
databases, including Google Scholar, ScienceDirect, MDPI,
Emerald Insight, and other reputable industry sources based
on articles published between 2020 and 2025. Our search
employed keywords like “AL” “People Analytics,”,
“Pandemic Analytics”, “COVID-19,” and “HR.”

During this process, we explored a new layer called
“Resilience Responsibility”. Pandemic-focused research
articles, reports from Deloitte, and recent news concerning
responsible Al also supported the establishment of this new
category. This method ensures our framework incorporates
both academic expertise and real-world practices.

IV. FINDINGS

This section explores the updated SRAI framework into
actionable recommendations for practitioners across
industries. It provides clear guidance on how economic, legal,
ethical, philanthropic, environmental, and resilience
responsibilities can be implemented in both People Analytics
and Pandemic Analytics contexts.

A. Organizational Use of AI During the Pandemic: Lessons
from People Analytics

Although Pandemic Analytics is associated with
healthcare and public health, the COVID-19 crisis
transformed organizational behavior. Latest studies find that
the COVID-19 pandemic served as a “career shock” and it has
fundamentally changed the importance of People Analytics as
main factors of Human Resource Development. HRM
evolved from a merely administrative role to a strategic
leadership position by focusing on redesigning work culture
during the crisis. The use of Artificial Intelligence to enhance
People Analytics in HRD increasingly accelerated between
2020 and 2025. Findings show that Al is transforming HR by
ensuring employee safety and well-being [14], promoting
adaptable workforce practices [15], improving employee
performance [16], measuring employee engagement [14], and
employee resilience [17] during and after Covid-19 pandemic.
Increasing reliance on data-driven strategies highlights how
organizations can benefit from Al in facilitating flexible work
arrangements, workforce planning, upskilling, and fair
performance assessments.

With remote work, new generations, and greater fairness
expectations transforming company policies in the post-
COVID-19 workplace, leaders should be aware of the
increasing threat of hidden bias in Al and people analytics

[18]. Rapid post-pandemic implementation of Al can hide or
amplify bias if leaders fall into the false assumption that
algorithms are unbiased. As organizations become more
reliant on people analytics for hiring, career advancement, and
performance reviews, ethical blind spots must be addressed
proactively through bias awareness, such as leadership
training, frequent audits of bias in Al tools, and stronger
accountability procedures to detect, reveal, and reduce bias,
whether through human effort or through machine [19].

Research further showed that many studies explored the
ethical implications of People Analytics during its historic rise
following the COVID-19 pandemic [20][21][22]. Studies
expressed concern regarding the data-driven decision-making
process and the processing of sensitive information about
employee behaviors, well-being, and emotional state. For
example, organizations are using Al-powered tools like
Microsoft Viva to track work trends and identify risks of
employee burnout. While these tools aim to improve
productivity and engagement, critical ethical concerns are
raised regarding privacy, algorithmic bias, and workforce
autonomy [20]. In order to promote operational efficiency,
employee satisfaction, and organizational adaptability, the SP
model (Purpose, People, Process, Performance, and
Partnership) was proposed as a solution and a framework for
purposeful, ethical, and people-centered implementation of Al
in post-COVID organizational practices [23].

Collectively, these organizational experiences highlight
the urgent need for resilient, ethical, and transparent decision-
making systems. The lessons from People Analytics provide
important insights into the role of Al functioning under
systemic pressure and SRAI’s applicability for data
governance and pandemic preparation.

B. Artificial Intelligence Empowered Pandemic Analytics:
Innovations and Opportunities

The pandemic has highlighted the role of Al-driven data
analytics extending beyond HR and reshaping sectors like
healthcare, public health surveillance, and crisis management,
where the most sensitive and protected health data are
analyzed. Understanding the role of the pandemic in creating
opportunities and ethical risks in the healthcare industry,
especially regarding data privacy, bias, and oversight will be
valuable in formulating more human-centered and socially
responsible Al principles.

The COVID-19 pandemic accelerated the pace of Al-
driven analytics innovations across healthcare and public
health. In the early stages of the pandemic, researchers
highlighted AI’s important potential to help with prediction,
detection, control, and treatment. For instance, Al-based
epidemiological models were used to predict the spread of the
disease, and deep learning systems were applied to medical
images for the diagnosis of COVID-19 from chest scans [24].
Furthermore, platforms like BlueDot employed natural
language processing and machine learning for identifying
early COVID-19 symptoms based on social media reports as
well as health reports, and Metabiota employed predictive
modeling with traveler data and population density to forecast
outbreak dynamics. Al has also optimized telehealth service
delivery. For example, Ada Health supported public health
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responses via Al-based chatbots offering symptom check-ups
along with affordable telehealth services during periods of
restricted mobility [25].

The role of Al in healthcare goes beyond diagnostics. Al-
powered predictive analytics have been useful for clinical
decision support. A systematic review (2020-2022) found
numerous machine learning models that predicted intensive
care unit admission and mortality risk for COVID-19 patients
using combinations of clinical variables. These models
provided healthcare professionals with early warnings of
high-risk cases and enabled them to deliver proactive care
[26].

Beyond healthcare, COVID-19 has greatly advanced the
adoption of Al and “smart” technologies across eight major
industries, such as food services and manufacturing. Thirty-
nine distinct kinds of smart technologies powered around 40
types of pandemic wuse cases, including remote
communication, healthcare service delivery, data analytics,
and logistics. For example, online education platforms with
Al tutors replaced in-person classes during lockdowns and Al-
enabled robots assisted in hospitals to examine patients as well
as deliver medications while reducing infection risk [27].
Furthermore, Al mobile health apps like mHealth has the
potential to revolutionize post-pandemic public health
surveillance by automating illness forecasting, outbreak
detection, and resource management [28].

The recent developments in Al have also increased the
number of applications in predictive modeling of outbreaks,
healthcare delivery optimization, and public health
surveillance which can be used in future pandemics. For
example, tools like epitweetr and Open Source Intelligence
(OSINT) are used to analyze social media and environmental
data for threat detection with vast geographic scope. The
Machine Learning algorithms have the ability to forecast
outbreaks based on input data of population density, weather,
and vector movement. Not only do these algorithms
outperform traditional statistical methods, but also Al models
prevent supply and communication disruptions through
resource allocations like oxygen supply in hospitals, and
through developing public health warnings with the help of
Gen Al language models [29].

The swift implementation of Al to pandemic responses
also raised major concerns. Non-standardized datasets
complicate validation which results in inconsistent
performance and erosion of trust. Worldwide efforts by
organizations such as World Health Organization, Centers for
Disease Control and Prevention, and commercial software
companies have tried to establish and standardize large-scale
datasets, such as CORD-19 repository. Data security and
privacy are also long-standing issues because pandemic
surveillance is at odds with personal data protection [25].
Many of the reviewed studies involved sensitive personal
data, which should be handled carefully even during a
pandemic. Therefore, the pandemic emergency offered a
valuable opportunity for more ethical and responsible action
[26]. The studies raised concerns about ethical issues related
to privacy, fairness, and accountability. Transparency in data
sources and Al models is essential to building trust among the
public and healthcare providers. Regular testing for biases and

continuous monitoring is necessary to avoid unfair treatment
of marginalized groups. Overall, Al should not replace human
expertise and judgment but rather supplement them in
managing the pandemic [24].

There are also obstacles to large-scale Al implementation.
The reliability of Al models is of first concern, as many Al
models were deployed with little peer review during the
pandemic. The application of many sophisticated Al
technologies in low-resource and low-income countries is
limited because Al tools are created using data from high-
income countries which employ robust digital infrastructure.
International cooperation, the sharing of models and data, and
region-specific Al solutions are crucial for improving global
health disparities [30].

V.  PRACTICAL IMPLICATIONS FOR PEOPLE ANALYTICS
AND PANDEMIC ANALYTICS STAKEHOLDERS

The COVID-19 pandemic presented the possibility for Al
systems to contribute to organizational agility and pandemic
response but also it uncovered risks surrounding system
vulnerability, data misuse, and bias. Practical implications
offer actionable guidance for all types of stakeholders from
healthcare administrators to leadership policymakers, data
scientists, Al engineers, and to HR professionals to ensure
ethical, legal, sustainable, and resilient Al deployment for
both health emergency scenarios as well as work
environments.

A. Economic Responsibility: Be functional

The SRAI model's economic component highlights the use
of Al to improve productivity, resource allocation, and
efficiency. In HR, it involves Al-powered workforce
planning, monitoring of engagement, and hybrid work plan.
In healthcare, Al models help to forecast intensive care unit
admissions, automate personal protective equipment delivery,
and mitigate critical care delays. However, short-term
financial gains should be balanced with longer-term
investments in people and technology. During the COVID-19
pandemic, data-driven efficiency allowed many organizations
to pivot quickly, however, businesses also learned that over-
dependence on testing-phase algorithms and taking people
factors for granted can have negative long-term impacts.
Therefore, the updated framework encourages professionals
to pursue the economic benefits of People Analytics and
Pandemic Analytics as well as implementing internal
mechanisms to fulfill legal, ethical, and social obligations

B. Legal Responsibility: Be lawful

The Al systems are subject to applicable labor laws, health
privacy laws like HIPAA, data protection regulations, and
civil rights protections. The lesson from pandemic
management is that even during emergencies, personal data
must be handled carefully and in accordance with privacy
principles as ethical and legal standards will be vulnerable
during a crisis. Compliance with law guarantees data
openness, fair play, and stakeholder confidence. Practitioners
are advised to keep records on sensitive data processing,
monitor Al models for bias, and create systems where
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employee data as well as patient data are secured during
business-as-usual operations and emergencies.

C. Ethical Responsibility: Be ethical

Ethical considerations in Al-enabled PA require more than
just following laws, as they encompass fundamental values
such as dignity, fairness, explainability, and harm prevention.
Post-pandemic Al use showed the lack of human-centered
design in the applications of performance tracking and hiring
practices. Taking into account Al-related nuances and
anomalies, industry leaders should make the final decisions
and ensure that stakeholders are informed about data
collection, processing, and Al-driven decision-making
practices. The “A human-in-the-loop” strategy helps balance
algorithmic input with discretion and empathy.

D. Philanthropic Responsibility: Be a good Al citizen

An organization's voluntary attempts to employ Al for the
greater benefit are reflected in its philanthropic
responsibilities. This layer involves using Data Analytics to
promote community involvement, inclusion, and employee
well-being above and beyond simple compliance. People
Analytics could help community workforce programs through
HR departments, and public health agencies could share
aggregated models of Al for balanced disease surveillance.
These are all about taking a proactive approach for inclusion,
for public confidence, for health, and for supporting the
Sustainable Development Goals even when economic return
is not the mission.

E. Environmental Responsibility: Be sustainable

The SRAI pyramid's top level, environmental
consideration, encourages Al systems to support ecological
sustainability. With the additional benefit of reducing carbon
emissions due to less frequent travel and Telehealth, the
pandemic showed that widespread remote business and health

operations are feasible. Leaders can use Al-enabled analytics
to measure these effects and develop policies that support
climate goals and enhance work-life balance. In HR it enables
“Green HRM” programs; in healthcare and logistics, it could
assist in the creation of sustainable supply chains.

F. Resilience Responsibility: Be future-ready

The findings from research papers explored in the
industries from HR to healthcare to crisis management opened
a new perspective for socially responsible Al, which is
resilience responsibility. This specific responsibility emerged
due to volatility and systemic uncertainty marked by the
pandemic. Resilience responsibility can inform professionals
that not only should Al-enabled Data Analytical systems be
efficient, fair, and sustainable, but also organizations should
assume the responsibility to prepare for, respond to, and
recover from unexpected shocks while continuing
organizational functions and adaptability. Practical
implementation of resilience responsibility can include Al-
driven scenario planning, early warning models, simulation
tests for disasters or cyberattacks, and identifying system
vulnerabilities. Recent news concerning the Grok Al incident,
which shared antisemitic content on the X platform, or the
Open Al incident, which tried to copy itself to external servers
during shutdown, underscores the need for resilient Al
architectures [31][32]. If the Al-enabled automation is left
unsupervised, these advanced tools can replicate or magnify
societal harms. A recent report by Deloitte also projects that
natural disasters like the COVID-19 pandemic can cause
US$460 billion in average annual losses to infrastructure
globally. However, US$70 billion of the total loss amount can
be saved annually if infrastructure resilience is enhanced with
Al [33]. Overall, resilience responsibility is long-term
insurance that serves as a safety net to withstand disruptions,
to adapt to uncertainty, and to align with human values,
safeguarding both society and innovation.

Larger Scale of Stakeholders and Impacts
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Figure 2. The updated SRAI Framework linking responsibility dimensions with Resilient Al development.
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VI. CONCLUSION AND FUTURE WORK

This paper studied the development of the SRAI
framework extending it from originally developed for the
People Analytics in HRD field to the new domain of
Pandemic Analytics. With the help of qualitative analysis in
the most recent research papers, industry reports, and
pandemic-era innovations, the research presented how Al
adoption in the COVID-19 era brought about both
opportunities and challenges in high-risk environments such
as healthcare, public health surveillance, and crisis
preparedness.

The findings suggest that while Al-driven analytics can
enhance efficiency, responsiveness, and data-informed
decision-making across sectors, it also raises significant risks
around legal compliance, ethical use, data privacy, equity, and
environmental impact. Most importantly, the unpredictable
and disruptive nature of global health crises has introduced the
need for an additional dimension which is now introduced as
Resilience Responsibility within the SRAI model. This new
layer emphasizes the importance of developing Al systems
that are not only responsible and sustainable but also robust
enough to adapt under conditions of uncertainty and systemic
shock.

Through redefining the SRAI framework in pandemic-use
terms, our study facilitates a broader foundation for
responsibly using Al in organizational and wider public
service contexts. It encourages stakeholders including HR
professionals, public health officials, and Al architects to
implement a socially responsible, law-compliant, ethically
appropriate, environmentally sustainable, and resilience-
driven Al governance framework. We encourage future
research to refine SRAI’s layers of responsibilities in response
to ongoing technological, regulatory, and societal
developments.
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Abstract—We propose an epidemic compartment model, which
includes mortality caused by the disease, but excludes demographic
birth and death processes. Individuals are represented by random
walkers, which are in one of the following states (compartments)
S (susceptible to infection), E (exposed: infected but not infectious
corresponding to the latency period), I (infected and infectious),
R (recovered, immune), D (dead). The disease is transmitted
with a certain probability at contacts of I to S walkers. The
compartmental sojourn times are independent random variables
drawn from specific (here Gamma-) distributions. We implement
this model into random walk simulations. Each walker performs
an independent simple Markovian random walk on a graph, where
we consider a Watts-Strogatz (WS) network. In order to mimic
the effect of long-distance travelers, we subject the simple Markov
walks to stochastic resetting, which means that the walkers in each
time step are relocated to any node of the network with a certain
probability. Only I walkers may die. For zero mortality, we prove
the existence of an endemic equilibrium for basic reproduction
number R > 1 and for which the disease free (globally healthy)
state is unstable. We explore the effects of long-range-journeys
(stochastic resetting) and mortality. Our model allows for various
interpretations, such as certain chemical reactions, the propagation
of wildfires, and in population dynamics.

Keywords — Compartment model; mortality; random walks; complex
graphs; resetting; population dynamics.

I. INTRODUCTION

Sudden outbreaks of epidemics are recurrently threatening
humanity and represent major challenges for human societies
and public health services. Since the breakout of the COVID-
19 pandemic, epidemic models have attracted considerable
attention. More than ever, there is a need of basic understanding
of the underlying mechanisms of epidemic propagation. In
many cases persistent oscillatory and quasi-periodic behavior
or spontaneous outbursts, features, are observed. One of the
first works tackling the issue of oscillatory dynamics is the one
by Soper [1], which appeared a century ago in the literature.
So-called compartmental models, where the individuals of a
population are divided according to their states of health, have
become popular in the field of epidemic modeling. The first
model of this type was introduced a century ago in the seminal
work of Kermack and McKendrick [2], where individuals are
in one of the states (compartments) susceptible (to infection) -
S, infected and infectious - I, recovered (immune) - R. While
standard SIR models are able to capture essential features of
some common infectious diseases such as mumps, measles,
rubella and others, they have revealed to be unable to describe
above-mentioned oscillatory and quasi-periodic behaviors. The
classical SIR model has been generalized in many directions
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[3]-[6] and consult [7] for a model related to the context of
COVID-19 pandemic.

In the present paper, we explore the spreading of a disease
by combining a microscopic multiple random walkers approach
with a compartment model exhibiting random compartmental
sojourn times. In this work we close a gap in existing
models, and establish an exact stochastic system of evolution
equations describing the transitions among the compartments
(see (2) and (3)) from which explicit, in general non-Markovian
convolutional evolution equations can be obtained, by averaging
over the involved random variables. These equations are
general and beyond existing Markovian models when non-
exponentially distributed compartmental sojourn times are
assumed. Our formulation allows for arbitrary compartmental
sojourn time distributions including time-fractional ones, and
also incorporate a stochastic notion of mortality into the
dynamics. This novel stochastic approach opens a large field
to tackle the spreading dynamics of a wide range of real-
world diseases, with and without mortality. Moreover, our
model allows for further generalizations, such as inclusion of
demographic effects originating from natural birth and death
processes. Such generalizations may be of interest for classes of
diseases with a "slow" dynamics evolving on time-scales (such
as decades) where changes in the population number become
relevant. A prominent example is Hansen’s disease (leprosy),
which exhibits extremely long latency periods (around five
years).

By conducting a linear stability analysis, we prove for zero
mortality that the disease free state is stable for Ry < 1
and unstable for Ry > 1 (R denotes the basic reproduction
number), where a globally stable endemic state emerges
whenever the compartment sojourn times have finite means,
for which we obtain explicit formulas (see relations (6)).
These formulas generalize the well-known classical results
of Kermack and McKendrick [2] to arbitrary distributions of
compartmental sojourn times and multiple compartments.

Let us give a brief sketch of the state of the art and
some related works, where we confine the discussion to
recent developments with focus on epidemic spreading models
in various kinds of random networks. In order to relate
macroscopic compartment models to microscopic dynamics,
epidemic spreading has been studied in random graphs with
emphasis on the complex interplay of the network topology and
spreading features [8]-[11]. Further works consider stochastic
compartmental models combined with random walk approaches
[12]-[19] including non-exponentially distributed compartmen-
tal sojourn times leading to non-Markovian models [20]-[24].
An increasing number of works consider epidemic propagation
on networks. In reference [19], involving generalized Laplacian
operators, spreading features are thoroughly analyzed, where
an upper bound for the epidemic SIS threshold for any graph
topology is obtained. Related works to our model can be found
in references [17], [21]-[24] and [34].

The remainder of our paper is organized as follows. In
section II we introduce a mean field picture of our compartment
model with the transition pathways among the compartments,

where we establish novel stochastic compartment evolution
equations with mortality. Special attention is given to the
analysis of the case of zero mortality, for which we derive
explicit formulas of the endemic state as well as the condition
of its existence. Section III is devoted to the outline of the
multiple random walkers approach. Inclusion of stochastic
resetting into the random walks enables us to study the effect
of long-distance travelers. In Section IV we summarize the
main results of the present stage of this project as far presented
in this paper. Finally, we conclude our ongoing project in
section V and discuss future directions together with some
possible generalizations of our model.

II. MEAN FIELD COMPARTMENT MODEL

Here, we study the large class of infectious diseases with
direct transmission among individuals, which also exhibit
mortality. The large list of these diseases includes Influenza,
COVID-19, Chickenpox, Hepatitis A, Ebola, and many others.
We propose a compartment model, in which individuals ("ran-
dom walkers") are in one of the following states (compartments)
S (susceptible to infection), E (exposed: infected but not
infectious corresponding to the latency period), I (infected and
infectious), R (recovered, immune), and D (dead). We assume
random waiting times tg,t7,tr in compartments E, I, R. The
delay time tg is the latency period, i.e., the time between the
moment of infection (transition S to E) and outbreak of the
disease (transition E to I). ¢; is the duration of the disease
(infected and infectious state) during which the walker can
infect S walkers and die. We introduce a random survival time
tas measured from the moment of transition into compartment
I (outbreak of the disease). The walker survives if ty; > tr
and dies otherwise (when ¢, < t1). A surviving walker passes
through the SEIRS pathway

S—- —-1I—R—S.

A walker which dies from the disease (i.e., tpy < tj) runs
through the SEID pathway

S— —1—D.

For the infection rate, we assume a simple bilinear function
inspired from the mass-action law

A(t) = BS(t)J (1), (D

where > 0 is a constant, which contains the information on
the probability of infection in a contact of an S and I walker
and features of the random walks. The stochastic formulation
of the evolution equations of the compartmental population

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL



PANDEMICS ANALYTICS 2025 : International Conference on Pandemics Analytics - 2025

fractions reads

%Et) = —A(t)+ (At —tg —tr —tr)O(tr —tr1))
o (0(t —tr —tr)O(tar —tr))
+Ro(5(t —tr))

PO _ ay - (A~ 1))

%S:t) = (At —tp)) = (At —te — 11)B(tw — 1))
—Jo(0(t — t1)O(tar — t1)) — %ﬁt)

MO (At~ )0l — 1)

+Jo(8(t — t1)O(tar — tr))
—Jo(8(t —t; —tr)O(tar —tr))
—(A(t—te —tr = tr)O(ta — t1))

—Ro(8(t — tr)) o

and the mortality rate

dD(t)

——= = Jo(6(t—ta)O(tr—tar) ) +{A(t—tg—tar)O(tr—tar)).

dt 3)
S(t), E(t), J(t), R(t), D(t) denote, the fractions of the suscep-
tible, exposed, infected, recovered (immune), and dead walkers
populations, where S(¢) + E(t) + J(t) + R(t) + D(t) = 1.
We consider initial conditions S(0) = Sy, J(0) = Jo,
E(0) = 0, R(0) = Ry, D(0) = 0 and assume that the
disease occurs at ¢ = 0 for the first time with a few infected
walkers Jy, no exposed and dead walkers, and possibly some
immune (vaccinated) walkers Ry, allowing to explore effects
of vaccination. O(..) indicates the Heaviside unit step function,
§(..) the Dirac’s é-distribution, and (... ) stands for averaging
with respect to the contained (independent) random variables
tg,tr,tr,tar > 0 drawn from probability density functions
(PDFs)

PTOb(tE’[’R’M S [’T,’T + dT]) = KE,I,R,IM(T)dT
indicating the probabilities that tg 1 g € [7,7 + d7]. The
following averaging rule applies

<f(tE,I,R,M)> = /0DO F(MKg 1.rm(T)dT. 4)

For causal functions as in (2) this yields convolutions

(At = tm) = [ A =7)Ke (i

With these relations, the evolution equations (2) and (3) can
be averaged taking convolution forms (see [22, 23] for related
details).

a) Zero mortality — endemic equilibrium: The limit of
immortality of the walkers is retrieved from (2) for t); = co
thus ©(tyr — t7) = 1 and O(t; — tpr) = 0 and therefore
4 D(t) = 0. Then equations (2) read

%t) = A + (At~ tp — tr — tr))
+Jo(8(t —tr —tr)) + Ro(d(t — tr))
BO _ A~ A - 1)
%ﬁ” = (At —tr)) = (At —te —t1)) = Jo(d(t — t1))
dR(t)

— = (Alt—te =) + Jo(3(t = t1))
—Jo{0(t —t; —tr))
—Ro(d(t —tr)) — (At —tg —tr — tr))
&)

with S(t) + E(t) + J(t) + R(t) = 1. In order to derive the
endemic equilibrium, it is convenient to work with Laplace
transformed (5), where f(\) = Jo° f(t)e~dt is the LT of
f(t). We use the limit value theorem f(co) = limy_o Af(})
to obtain the constant asymptotic values of the endemic
equilibrium as [22]

Se :R707 R0:ﬂ<t1>7
Ro- 1)
Fe = Ro (T)
Ro — 1 (t1) ©
_Ro—1{tr)
Je = Ro (T)
_Ro—1(tr)
e = Ro (T)

The endemic equilibrium is independent of the initial conditions,
where (T') = (tg +t; +tgr) and A, = R;’a;l % (6) exists
for Ro = B(t;) > 1, which also is the spreading condition of
the disease when Sy = 1 is considered. R indeed is the basic
reproduction number. In (6) (tg1,r) = [, 7Kg, r(T)dT
stand for the mean compartmental sojourn times, assuming here
their finiteness. Relations (6) generalize the classical result [2]
to arbitrary waiting time distributions and multiple compartmen
Here we consider Gamma distributed waiting times due to the
high flexibility of Gamma distributions to adopt the behaviors
of a wide range of real world diseases (see e.g., [22], [23] for
details).

III. RANDOM WALK SIMULATIONS WITH RESETTING

We assume that each walker navigates for discrete times
independently on an ergodic network [25], [26]. In order to
describe the random walk of each walker, we denote with ¢ =
1,... N the nodes of the network and introduce the symmetric
N x N adjacency matrix (A;;), where A;; = 1 if the pair of
nodes 1, j is connected by an edge, and A;; = 0 if the pair
is disconnected. Further, we assume A;; = 0 to avoid self-
connections of nodes. We restrict our analysis to undirected
networks, where edges have no predefined direction and the
adjacency matrix is symmetric. The degree k; of a node i
counts the number of its neighbor nodes (connected with ¢ by
edges). Each walker performs independent Markovian steps
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Figure 1. Effect of resetting on the spreading for zero mortality with emergence of endemic states in a large world Watts-Strogatz (WS) network (generated by

the PYTHON NetworkX library) of 1500 nodes with 200 walkers. Colors indicate the compartments of walkers. Compartmental sojourn times are Gamma

distributed with (t7) : (tg) : (tg) =4 :2: 1, which can be identified in the plots, corroborating (6) for all considered resetting rates p. The infection state of
the graph at runtime 1000 is exhibited by the inset. The basic reproduction number R is monotonously increasing with p.
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Figure 2. Spreading with high mortality and resetting in the WS graph of Figure 1 for resetting probability p = 0.6. The inset shows the infection state of the

graph at runtime ¢ = 250 (D walkers are invisible) with eventually only about 100 survived walkers out of 1500. We use the same color code as in Figure 1.
The right frame depicts the epidemic wave and left frame the evolution of the cases of death.
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between connected nodes. The steps from a node ¢ to one of
its k; = E;VZI A;; neighbor nodes are chosen with probability
1/k;, leading for all Z walkers to the same transition matrix,
namely [26]-[28]

Ay
Mi—j)=% 2=1...2 ij=1...N, ()

which is by construction row-normalized Z;\Ll (e — j)=1.

In addition, we relocate (‘reset’) the walkers at each time

instant to randomly chosen nodes with a certain probability p.

This modifies the transition matrix of the steps for each walker
to

Wi = qll(i — j) + pRj, ptrqg=1, ®)

where in our simulations we have uniform resetting probabilities
R; = % to each node of the network. (8) introduces long-range
journeys into the random walks, and the spreading behavior is
modified compared to local walks (7). Stochastic resetting (SR)
is a fundamental process in nature where dynamical systems are
reset to the initial or randomly chosen states. SR occurred only
a decade ago in the literature [29] and has meanwhile launched
a myriad of models and opened a wide interdisciplinary field,
e.g., [30]-[33] (and many others).

IV. RESULTS AND DISCUSSION

In Figure 1, we depict the simulated time evolution of
compartmental populations (absolute numbers of walkers)
under the influence of resetting for some values of relocation
probability p and zero mortality. The independent motion of
each walker is governed by (8). The parameters are such that
no spreading occurs without resetting with Ry = 1 where the
disease is eventually extinct (left upper frame). Increasing p
introduces more long-range displacements where the number of
contacts of S and I walkers and hence infection rates with basic
reproduction numbers R increase. The disease is spreading
from p = 0.2 with monotonously increasing endemic values
FE., J., R, and Rg with p. Our simulations corroborate (6), i.e.,
the ratios of the observed endemic values correspond to the
ratios of mean compartmental sojourn times. We determined
Ro in the simulations from the first equation of (6).

We assumed in our mean field model, a simple mass-action
law for the infection rates (1), leading with (5) to the endemic
states (6). These endemic values are in excellent agreement
with the large-time asymptotics obtained from the random walk
simulations (see Figure 1). This remains true when the random
walks of the individuals are subjected to resetting, which in
the large time limit affects only the macroscopic transmission
coefficient 5. These observations suggest that random walks
indeed offer suitable microscopic pictures of the corresponding
spreading dynamics.

Animated simulation-videos on Watts-Strogatz graphs can
be launched online by clicking on the slanted text for a case
without mortality and no resetting (see (5)). A further animation
video of the spreading under resetting (p = 0.6) on the graph
of Figure 1 and similar parameters includes mortality (see (2),
(3)). Simulation (Python) codes with parameters and further

details can be obtained upon request or consult our website
supplementary materials.

The present model can be generalized in several directions,
for instance, to vector-borne transmission pathways [23] or
assuming non-monotonous infection rates (different from
simple mass-action-laws) for which under certain conditions
the endemic equilibrium exhibits bifurcations, allowing for
emergence of chaotic attractors [34].

The present paper reflects a snapshot of our work in progress.
In the next steps, we analyze the evolution equations (2), (3)
with mortality in order to derive the effective reproduction
number Rj; with mortality. Performing a linear stability
analysis around the healthy initial state Sy, R, which consists
of a fraction of susceptible walkers S(0) = Sy =1 — Ry, and
some immune (vaccinated) walkers R(0) = Rq leads to the
spreading condition (instability of the initial state) for R > 1.
As a preliminary result of this follow-up analysis, we report
here that the ‘effective reproduction number’ of the disease
with mortality and presence of some immune walkers yields

Ru = B(1— Ro) /000 D ()P (t)de

= B(1 = Ro)(min(tar, t1))

< /3/ O (t)dt = B{t;) = Ro,
0

where R is the basic reproduction number without mortality
and no immune walkers at ¢ = 0. In the immortal limit
(tpr — o0, @pr(t) — 1) one has Ry — R (in absence of
immune walkers Ry = 0). This relation contains the mean
of the "true" sojourn time min(tpr,tr) in compartment I
and the persistent probabilities @y ;(t) = (O(tar,; — t)) =
1— fg K7 (7)d7. Moreover, it contains the probability that a
walker is in compartment I (infected and infectious and alive)
Dpr(t)®r(t) = (O(tar—1)O(tr —t)) = (O(min(tar, tr)—t)).
The next steps in this analysis will include the investigation
of the large time asymptotics of the spreading dynamics with
mortality, among other directions, which we will briefly outline
subsequently.

V. CONCLUSION AND FUTURE WORK

We proposed a multiple random walkers epidemic com-
partment model, which accounts for mortality: An infected
walker may die during the period of its infection. We excluded
demographic birth and death processes. The compartmental
sojourn times were considered to be independent random
variables drawn from specific (here Gamma-) distributions.
By including stochastic resetting into the random walks, in
which walkers are relocated to random positions, we are able
to mimic the effects of long-range voyages on the spread
of the disease. By considering zero mortality, we observed
that the macroscopic compartment model (endemic states (6))
remains true for any resetting rate p, where the macroscopic
transmission coefficient 5 is monotonously increasing with
the resetting rate. Increasing numbers of long-range journeys
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may drive the basic reproduction number to values above one,
which launches the spreading of the disease. It follows that
measures reducing long-range voyages can be an effective way
to block the propagation of an epidemic. The results of the
simulations suggest that in all cases, above equations (6) for
the endemic states remain valid and capture well the large time
asymptotics.

Finally, we conclude that our approach of multiple random
walkers navigating independently in a complex network is a
powerful tool to capture the microscopic dynamics of epidemic
spreading. We included stochastic resetting into the random
walks mimicking long-range voyages of the walkers and found
that the basic reproduction number increases monotonously
with the resetting rate p. The message of this result clearly
is that prohibiting to a certain extend traveling in epidemic
contexts can be effective to prevent spreading of the disease.

As mentioned, the next steps will include an asymptotic
analysis of the spreading dynamics with mortality. To that
end, we will investigate the evolution equations (2), (3) in the
Laplace space and use the limit value theorem to determine the
large time asymptotic state. This infinite time limit is supposed
to be a disease free state, containing only susceptible walkers
(walkers that survived the epidemic wave) and dead walkers.
Also, the effect of resetting on the mortality of walkers (infinite
time limit of the fraction of dead walkers) will be explored
analytically and numerically in details. For a related analysis
of a mortal vector borne disease, we refer to a recent model
[23].

A further promising direction is to account for infection
rates beyond the present mass-action law (1) by including
information of the network topology and the random walk.
Introduction of individual navigation rules for specific walkers
can be of interest as well.
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Abstract—Some corona virus disease 2019 (COVID-19) symp-
toms can persist for months after infection, leading to what is
termed Post COVID-19 condition. Factors such as vaccination
timing, patient characteristics, and pre-existing conditions may
contribute to the prolonged effects and intensity of Post COVID-
19 condition. Each patient, based on their unique combination
of factors, develops a specific risk or intensity of Post COVID-19
condition. In this work, we aim to achieve two objectives: (1) con-
duct a statistical analysis to identify relationships between various
factors and Post COVID-19 condition, and (2) perform predictive
analysis of Post COVID-19 condition intensity using these factors.
We benchmark and interpret various data-driven approaches
using data from the Lifelines COVID-19 cohort. Our results
show that Neural Networks (NN) achieve the best performance
in terms of Mean Absolute Percentage Error (MAPE), with
predictions averaging 19% error. Additionally, interpretability
analysis reveals key factors such as loss of smell, headache, muscle
pain, and vaccination timing as significant predictors, while
chronic disease and sex are critical risk factors. These insights
provide valuable guidance for understanding Post COVID-19
condition (PCC) and developing targeted interventions.

Keywords-Post COVID-19 syndrome; PCC; predictive analysis;
Machine learning; Explainability.

I. INTRODUCTION

In May 2023, after 3 years of global pandemic, the WHO
declared the end of the global Public Health Emergency for
COVID-19. Although this indicates an improvement, espe-
cially with general access to vaccines, it does not mean the
end of the presence and effects of COVID-19 which can
now be considered endemic [1]. One lasting effects being
post-COVID-19 condition (PCC), which presents by the con-
tinuation of physical and cognitive symptoms after recovery
from acute COVID-19 [2][3]. PCC prevalence is not exactly
known with recent worlwide estimates varying from 6% to
10% lowered from initial WHO estimates of 10 to 20% [4][5].
Many countries are now developing dedicated health care paths
for PCC and as such means to identify at risk population would
be beneficial for improved early referrals.

Although the condition has been extensively studied, there
are still many uncertainties regarding the exact characterization
and risk factors associated. One major challenge in studying
this subject is the lack of comprehensive data. As an evolving
crisis, initial datasets had to be created and collected in real
time with limited understanding of the virus and lasting effect.
Thus, most data were collected retrospectively from incom-
plete patient medical files, clinical cohorts of hospitalized

patients or patients in dedicated PCC recovery care. However,
data suggest that most people affected by PCC were never
hospitalized and would not necessarily seek direct care for the
condition. Alternatively, there is often limited knowledge of
participants’ pre-existing conditions, making it hard to verify
that persistent symptoms are new and attributable to COVID-
19 [2][5].

This study uses a unique dataset collected and maintained
by Lifelines that addresses some of these concerns. Lifelines
is a multi-disciplinary, prospective cohort study examining
the health and health-related behaviors of 167,729 individuals
in Northern Netherlands over three generations. It assesses
biomedical, socio-demographic, behavioral, physical, and psy-
chological factors.

From April 2020 to November 2022, a COVID-19 specific
branch involving 31 questionnaires was sent to Lifelines adult
participants without inclusion criteria. Frequency varied from
weekly to bi-monthly. 76,503 participants answered at least
one questionnaire, with a mean of 13.5 questionnaires (stan-
dard deviation 10.5). The cohort’s duration and size provide
valuable data on pre-existing conditions, control groups, and
factors influencing PCC’s emergence, evolution, and severity.

A number of studies have explored the use of data-driven
approaches to predict and analyze the attributes developing
PCC [6][7]. The use of unsupervised clustering on time series
of early development of COVID-19 is investigated in [7] that
could be predictive of the need for high-level care in individu-
als more likely to seek medical help. A recent study employed
a gradient boosting classifier for diagnosis of PCC [6]. They
obtain similar results using a dataset retrieved from a panel of
primary care practices in Germany.

The aim of this study is to explore the following critical
research question: “Can specific pre-infection parameters be
identified to predict the severity of post-COVID-19 condi-
tion?”. To answer this question, an analysis was performed
using machine learning techniques. The ability to predict PCC
and identify relevant pre-infection symptoms and risk factors
holds significant societal implications, impacting physical and
mental health, daily functioning, and productivity. To facilitate
this, we introduced the concept of Post-COVID-19 Symptom
Intensity (PCSI) as a measure of the persistence and impact of
symptoms after COVID-19 infection. As such, a continuous
measure of PCC is proposed allowing for a more accurate
measure of the impact of the condition compared to the com-

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

14



PANDEMICS ANALYTICS 2025 : International Conference on Pandemics Analytics - 2025

monly used binary definition. Using various machine learning
models, we focused on predicting PCSI using demographic
and clinical characteristics. This study constitutes the first
predictive analysis conducted on Post-COVID-19 Lifeline data
through the application of machine learning algorithms. The
principal contributions of this work are as follows:

o Conducting a comprehensive statistical analysis to iden-
tify influential factors associated with the study of PCC;

o Performing predictive analysis of Post COVID-19 Symp-
tom Intensity using data-driven approaches;

« Interpreting and analyzing the impact of diverse variables
on Post COVID-19 Symptom Intensity, offering valuable
information for medical decision-making;

« Developing a Python package [8] for evaluating ML al-
gorithms on health-related (Lifelines) datasets, facilitating
reproducibility and further research in the domain.

The remainder of this article is structured as follows. Section
2 describes the data preprocessing steps and provides statistical
insights into the dataset. Section 3 presents the methodology
for predicting PCSI, along with results and an analysis of key
influential factors identified by each model. Finally, Section 4
provides a discussion and concludes the paper.

II. PREPROCESSING AND DATA ANALYSIS

This section presents the data used for the analysis and
describes pre-processing steps undertaken to format the data
suitably. Additionally, it includes a preliminary statistical
analysis to reveal global tendencies.

A. Data description

The dataset comprises two main types of variables:

o Static Variables: These denote fixed attributes of individ-
uals, recorded as single entries in the database. Examples
include age, sex, SARS-CoV-2 variant, income, smoking
status, overall health status, presence of chronic diseases,
vaccination status, and time between vaccination and
infection.

o Dynamic Variables: These variables capture the presence
and intensity of symptoms at different time intervals
(before, during, and after SARS-CoV-2 infection). Symp-
toms include headache, dizziness, heart or chest pain,
lower back pain, nausea, muscle pain, difficulty breathing,
feeling warm or cold, numbness or tingling, sore throat,
dry or wet cough, fever, diarrhea, loss of smell or taste,
and sneezing, among others.

Several challenges emerged while working with the data.
Similar to many questionnaire-based datasets, there were con-
siderable amounts of missing or aberrant data. Additionally,
since the data was collected during an active epidemic, the
scope and phrasing of the questionnaires evolved over time,
resulting in inconsistencies. Extensive preprocessing was un-
dertaken to address these issues, standardizing the dataset and
ensuring a uniform structure suitable for analysis.

B. Definition of Post COVID-19 symptoms intensity (PCSI)

Post COVID-19 condition is a systemic condition in
which individuals experience persistent symptoms following
a SARS-CoV-2 infection. While the WHO provides a general
definition, it does not specify which symptoms or measurement
methods to use [9][10], leading to inconsistencies across
studies in terms of time frames, symptom types, and severity
criteria. In this study, we adopted the WHO time frame
definition: symptoms that cannot be explained by an alternative
diagnosis, appearing three months after infection and lasting
for at least two months. Symptom selection was based on 10
core PCC symptoms identified in prior research using the same
dataset [2].

Symptom intensity was rated on a 5-point Likert scale (1 =
not at all, 5 = extremely) based on the participant’s experience
during the previous seven days (see Figure 1). Symptoms
were considered present if rated at least 3 (moderate). Each
participant’s baseline was defined as the mean intensity of
symptoms from all questionnaires completed at least seven
days before infection; individuals without such data were
excluded.

PCSI = mean(Symp.cyated)

_ o0 da¥? " doy®

SYyMPjseline = Symp  COVID-19

T

Figure 1. The overall process for defining Post COVID-19 symptom
intensity (PCSI) using symptoms (symp) scores. All analyses were centered
around the time of the first reported SARS-CoV-2 infection.

PCC was defined as the presence of at least one persistent
symptom (mean score > 3) between 90 and 150 days post-
infection, with an increase of at least one point from baseline.

We further defined a continuous measure, Post COVID-
19 Symptoms Intensity (PCSI), as he highest mean score
among symptoms meeting the PCC criteria defined above.
PCSI preserves symptom severity granularity, facilitating more
nuanced modeling and analysis. It supports both statistical and
machine learning approaches and can serve as a proxy for the
binary PCC definition when needed. For non PCC participant,
a proxy was used by taking the value of the symptom with
the highest mean score in the 90-150 days post-infection.

C. Data cleaning and preprocessing

The raw data from different questionnaires were organized
into multiple tables, each containing information collected
at the participant level for specific dates. After cleaning
and preprocessing, participants with a sufficient number of
shared variables were filtered. This filtering process resulted
in the creation of a merged database that consolidated all the
necessary information required for the study and analysis. For
the predictive analysis, we adopted the steady-state hypothesis,
utilizing only the pre-infection period for feature extraction.
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TABLE I. POPULATION CHARACTERISTICS. BLUE REPRESENT PROPORTION OVER KNOWN VALUES.

SARS-CoV-2 positive | Included | Excluded | PCC Positive | PCC Negative
n=13191 n=4657 n=8534 n=715115.4% | n=3942 | 84.6%
Characteristics Modalities n % n % n % n % n %
18-39 1520 12 411 9 | 1109 13 | 61 9 350 9
Age 40-59 7006 53 2315 50 | 4691 55 | 426 60 1889 48
>60 4665 35 1931 41 | 2734 32 | 228 32 1703 43
Gender Male 4631 35 1679 36 | 2952 35 | 190 27 1489 38
Female 8560 65 2978 64 | 5582 65 | 525 73 2453 62
<25 5830 44 2111 45 | 3719 44 | 276 39 1835 47
BMI 25< BMI <30 | 5173 39 1827 39 | 3346 39 | 297 42 1530 39
>30 2188 17 719 15 | 1469 17 | 142 20 577 15
None 7948 67 3118 67 | 4830 68 | 381 53 2737 69
Chronic disease One‘ 2212 19 914 20| 1298 | 18 | 178 25 736 19
Multiple 1643 14 625 13| 1018 | 14 | 156 22 469 12
Unknown 1388 11 1388 30
Yes 1292 10 438 9 | 84 10 | 79 11 359 9
Smoking No 11783 90 4219 91 | 7564 | 90 | 636 89 3583 91
Unknown 116 1 116 1
Excellent 1189 11 492 11 | 697 10 | 41 6 451 11
Self-assessed Very good 3886 34 1631 35| 2255 34 | 185 26 1446 37
health prior to Good 5645 50 2302 49 | 3343 = 50 | 406 57 1896 48
infection Mediocre/poor | 580 5 232 5 | 348 5 &3 12 149 4
Unknown 1891 14 1891 22
High 4907 38 1035 22 | 3181 | 38 | 272 38 895 23
Medium 5054 39 1751 | 38 | 3303 = 39 | 297 42 1454 37
Educational level | Low 2777 21 1726 37 | 1742 | 21 | 140 20 1454 37
Other 305 2 112~ 2 193 2 12 2 100 3
Unknown 148 1 33 1 115 1 6 1 27 1
Vaccination Full 6701 57 3149 68 | 3552 50 | 417 58 2732 69
prior to Partial 562 5 0 0 562 8
infection No 4492 38 1508 32 | 2984 42 | 298 42 1210 31
Unknown 1436 10 1436 17
Original 2747 21 987 21| 1760 21 | 193 27 794 20
Variant Alpha 1417 11 190 4 | 1227 15 | 40 5 150 4
Delta 1096 8 444 6 | 652 8 80 11 364 9
Omicron 7931 60 3066 66 | 4865 57 | 402 57 2662 68
Yes 190 1 44 1 146 2 15 2 29 1
Hospitalization No 12663 99 4512 99 | 8151 = 98 | 683 98 3829 99
Unknown 338 3 101 2 | 237 3 17 2 84 2

As the result of preprocessing, a total of 4,657 partic-
ipants were included in this study. Table I illustrates the
characteristics of the total population observed (subset of the
cohort with a covid-19 diagnosis), included and excluded
group (based on missingness of information) and finally the
subgroups with positive or negative post-covid assessment.
Base characteristics of the included and excluded population
are similar. It is to be noted that women account for 73%
of the cases while representing 64% of the base dataset.
This indicates that women are more likely to be at risk for
Post COVID-19 condition than men. Conversely, for low PCC
symptom intensities, the proportion of women is smaller.

D. Preliminary statistics

To assess the impact of input variables and investigate
potential dependencies between the input variables and the

outcome (presence of PCC), we applied two statistical tests.
These tests are outlined below:

o Chi-square test: This test assesses whether two categori-
cal variables are independent [11] and used to study the
relation between two categorical variables, i.e., vaccina-
tion and PCSI. By evaluating the p-value obtained from
the test statistic at the chosen confidence level, we deter-
mine whether to reject the null hypothesis (indepedence)
in favor of the alternative hypothesis (dependence). A
confidence level of 95% is typically used and the null
hypothesis is rejected if p — value < 0.05.

e Cramer’s V test: This test quantifies the strength of
association between two categorical variables [12]. A
value close to zero indicates a weak dependency, while a
value approaching 1 suggests a strong dependency.
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Using these tests, we analyzed the influence of vaccination
on PC symptom intensity, with the results depicted in Figure 2.
This analysis was also conducted for other variables; however,
we present only the results for vaccination, as it serves as a
crucial preventive measure against COVID-19. To simplify the
interpretation, we rounded the PCSI score. From the figure, it
is evident that most participants who are fully vaccinated are
less likely to experience high levels of PCSI (2,790 out of
3,149 or 88% vaccinated participants report intensity levels 1
or 2). However, due to a lack of representative observations
for higher intensity levels, we cannot confidently establish a
relationship between vaccination and PCSI for these cases. The
Chi-square test statistic (p < 0.05) confirms the significance
of this relationship, even though the strength of the association
is weak (Cramer’s V' = 0.072).

PC_INTENSITY

VACCINE 1 ) 3 4 5 Total
2514 276 225 108 26 3149

complete vaccin 79.8% 88% 7.1% 34% 08% 100%
71% 549% 59.7% 545% 703% 67.6%

1028 227 152 a0 11 1508

no 68.2% 151% 101% 6% 0.7% 100 %
29% 451% 403% 455% 29.7% 324 %

3542 503 377 198 37 4657

Total 76.1% 10.8% 81% 43% 08% 100%
100% 100% 100% 100% 100% 100%

¥2=81.995 - df=4 - Cramer's V=0.133 - p=0.000

Figure 2. Chi-square test between vaccination and PCSI scores. The test
results indicate a significant relationship (p < 0.05) between vaccination
and PCSI scores.

To further examine the relationships between multiple vari-
ables simultaneously, the Multiple Correspondence Analysis
(MCA) [13] is used. It allows identification and visualization
of underlying structures in a set of nominal categorical data
as is the case in this study. It can be seen as the categorical
equivalent of principal component analysis (PCA), projecting
data points into a low-dimensional Euclidean space where each
axis represents a component, with the corresponding variance
explained in percentage. Figure 3 depicts the obtained results.

The MCA plot reveals that high PCSI (5) is linked to
the presence of chronic diseases and poorer overall health.
Additionally, it appears that women are more likely to ex-
perience higher PCSI compared to men. The original SARS-
CoV-2 variant does not show a strong correlation with PCC,
suggesting a lower risk. Lastly, individuals in better general
health seem to have a reduced risk of developing PCC.

III. METHODOLOGY AND RESULTS

In this section, we outline an evaluation pipeline designed
to select and benchmark various predictive models using the
data obtained from the pre-processing stage. The goal of this
study is to predict the target variable, y, which represents
the intensity of Post COVID-19 condition. The intensity is
modeled as a continuous variable ranging between 1 (low
intensity) and 5 (high intensity). Given its continuous nature,
the problem is formulated as a regression task, where the

Dimension 2: 7.91%
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Figure 3. Multiple Correspondence Analysis considering static and
vaccination variables. The PCSI variable is discretized (1-5 in clear blue).

models aim to approximate the mapping f : X — y, with
X € RP being the set of p explanatory variables (features).
The overall structure of the proposed pipeline is illustrated in
Figure 4.

Training data

EEE :
Y4

Fine tune
Merged data&

Evaluate the
performance

— ﬁ(z ﬁ»]}a

Reporting
)

Select a model

Test data

Figure 4. Benchmark and evaluation pipeline

In the context of statistical learning, the data are partitioned
into three subsets:

o Training set (Dypain): It involves 60% of all the partici-
pants (4657) and is used to estimate the parameters 6 of
the predictive model fy;

« Validation set (Dy,): It involves 10% of the participants
and is used to estimate the hyperparameters 6, of the
predictive model fy;

o Test set (Dyest): It involves 30% of all the participants,
and it is used to evaluate the performance of the trained
model on unseen data and assess the generalization ability
of the model.

After selecting the models, their hyperparameters (6hy,) are
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fine-tuned to optimize performance. This crucial step enhances
the model’s predictive capabilities and is elaborated on in Sec-
tion III-C. The optimization process may involve techniques
such as grid search or gradient-free optimization methods (e.g.,
Nevergrad), depending on the model’s complexity.

Subsequently, each model’s performance is evaluated based
on a set of criteria measuring accuracy and reliability. The
results are presented using both tabular and graphical tools
to facilitate comparison and interpretation. These results offer
insights into the models’ predictive capabilities and help
identify the most suitable approach for modeling PCSIL.

Lastly, to identify patient profiles and implement preventive
measures against Post COVID-19 condition, it is crucial to
assess the significance of the explanatory variables used for
model training and parameter adjustment. Depending on the
model utilized, we employ explanation and interpretation
tools to extract meaningful insights. These insights can offer
valuable guidance for the medical field.

A. Evaluated Methods

To tackle the regression problem, we evaluated and com-
pared several data-driven models, including Linear Ridge
Regression (LR), Random Forest (RF), Gradient Boosting
(GB), and Multi-Layer Perceptron (MLP). LR is a linear model
enhanced with regularization to address multicollinearity and
reduce overfitting. RF is an ensemble technique that builds
multiple decision trees and aggregates their predictions for ro-
bust regression. GB sequentially combines weak learners, typi-
cally decision trees, to minimize errors and improve predictive
accuracy. MLP is a feed-forward neural network excelling at
modeling non-linear relationships with fully connected layers
of neurons and non-linear activation functions.

B. Evaluation criteria

Considering that PCSI is a continuous target variable, we
have selected four evaluation criteria to assess the model’s
performance, which are: MAPE (Mean Absolute Percentage
Error), MAE (Mean Absolute Error), MSE (Mean Squared
Error) and Pearson correlation between predicted and actual
values.

C. Experimental setup

We fine-tuned all the presented models to determine the
optimal set of hyperparameters. For hyperparameter opti-
mization, we employed the Nevergrad library [14]. The best
hyperparameters for MLP were: 3 hidden layers with 126
neurons each, ReLL.U activation function, Adam optimizer with
a learning rate of 9 x 10~%, and 200 training epochs. For
RF, the optimal settings included 500 estimators, a maximum
depth of 12, a maximum sample fraction of 0.4, and 25
maximum features. Similar hyperparameters were achieved for
GB. Lastly, for LR, the L2 regularization strength multiplier
was set to 1.0. To ensure the stability and robustness of the
results, we conducted K-fold (K = 5 cross-validation and the
results are reported using mean and standard deviation across
the five folds.

D. Results

This section presents and discusses the results obtained by
the methods introduced and summarizes their performance in
Table II. Using each method, different combinations of fea-
tures are compared through the introduced evaluation criteria.
The “All" feature combination represents the integration of
all characteristics, including static variables, symptoms, and
vaccination data. For clarity, the best results for each method
are marked in bold, while the best performance for each
evaluation criterion is highlighted in green. Additionally, all
performance metrics are averaged across K = b5-fold cross-
validation and results are reported as MEAN + STD (refer to
Section III-C for details on the experimental setups). Pearson’s
correlation is reported using the pair (test statistic, p-value).

TABLE II. COMPARISON BETWEEN VARIOUS INTRODUCED MODELS AND
FEATURES COMBINATION FOR PREDICTION OF PCSI.

Evaluation criteria
Methods | Features MAE MSE MAPE Pearson
All 61 + .01 | .68 + .02 | .29 £+ .01 | (.56, 6e-70)
LR Static J1+£.02 | 91 £.05 35 4+ .01 | (.28, 2e-16)
Symptoms 62 +.02 | .70 £ .04 | .30 +£ .01 | (.57, 2e-69)
Vaccination | .81 +£.02 | .99 £ .05 | .41 £+ .01 NaN
All 60 +£ .01 | .67 £ .02 | .28 + .01 | (.58, 7e-73)
RE Static 72 4+.02 ] 93+.05 | .35+ .01 | (.26, le-15)
Symptoms | .60 £ .01 | .66 £ .03 | .28 + .01 | (.57, 5e-72)
Vaccination | .79 & .02 | .99 £ .06 | .39 4+ .01 | (.04, le-1))
All 61 +.01 | .66 £ .01 .28 + .01 | (.57, 4e-74)
GB Static 72 +.02 1 90 +.05 | .35+ .01 | (.29, Te-17)
Symptoms | .61 £ .01 | .68 £+ .02 | 28 + .01 | (.55, 8e-82)
Vaccination | .81 & .02 | .99 £ .06 | .41 + .01 | (.05, 6e-1)
All 45 + .05 | 90 + .12 | .19 £ .03 | (.25, 3e-18)
MLP Static 87 £ .18 | 1.4+ .78 | 43 £ .07 | (21, 4e-9)
Symptoms 776 £ .11 | 98 + .38 | .34 + .05 | (43, 5¢-33)
Vaccination | .80 & .03 | 1.03 + .05 | .41 £+ .03 | (.04, 2¢-1)

As shown in Table II, the best performance for each method
is achieved when all features are combined. However, with the
exception of MLP, the performance remains comparable even
when only symptom-based features are used. It is worth noting
that neural network-based methods, such as MLP, have the
capability for automatic feature extraction, whereas traditional
statistical approaches like LR, RF, and GB require a dedicated
feature engineering step.

We observe that the performance, in terms of the MAE
metric, remains very similar across the four approaches when
all features are combined. An MAE value of 0.60 indicates
that, on average, the predicted values deviate by 0.60 points
from the actual observations. Given that the PCSI ranges
from 1 to 5, a deviation of 0.60 in intensity is unlikely to
significantly affect the overall conclusions.

Finally, we note that the best result in terms of MAPE is
achieved using MLP, with a value of 0.19. This indicates that,
on average, the predictions deviate by 19% from the actual
intensity values. Interestingly, the highest Pearson correlations
between predictions and actual values are obtained with RF
and GB, rather than MLP. This discrepancy can be attributed
to the differences in how these models capture relationships
within the data. RF and GB are ensemble-based methods
that excel in capturing complex interactions between features,
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which may result in higher linear correlations (as measured
by Pearson correlation) between predicted and actual values.
On the other hand, MLP, being a neural network, is better
suited for non-linear patterns and optimization for specific
loss functions, which may explain its superior performance
in minimizing relative errors (as captured by MAPE).

E. Interpretation

Using explainability tools, this section allows to better
understand the models’ decision through some statistics such
as estimated feature coefficients and feature importance.

The top 9 most influential features, along with their corre-
sponding Linear Ridge Regression (LR) coefficients, averaged
over 5-fold cross-validation are presented in Table III. These
coefficients indicate the direction and magnitude of each fea-
ture’s contribution to the prediction of PCSI. Many common
acute symptoms, such as loss of sense of smell, headache, and
muscle pain, exhibit strong positive contributions, suggesting
they are associated with a higher risk of Post COVID-19
condition. Conversely, certain acute symptoms like fever or
pain when breathing show significant negative contributions,
indicating that their presence is less likely to increase the
risk of Post COVID-19 condition. This distinction highlights
the nuanced relationship between acute and long-term COVID
symptoms.

TABLE III. ESTIMATED COEFFICIENTS OF LINEAR REGRESSION FOR
PREDICTION OF POST COVID-19 CONDITION

Variable Coef | Variable Coef

Loss of sense of smell/taste  0.32 Pain when breathing ~ -0.58
Headache 0.28 | Fever (38° or higher) -0.27

Muscle pain/aches 0.27 Omicron variant -0.26
Lower back pain 0.23 | Heaviness in arms/legs -0.08
Original variant 0.17 Very good health -0.07
Feeling warm & cold 0.16 No chronic disease -0.07
Red, painful eyes 0.16 Age group -0.06
Sneezing 0.16 Smoker -0.05
Difficulty breathing 0.14 Male -0.03

The importance of features obtained by the Random Forest
(RF) model is illustrated in Figure 5 using a bar plot. For
clarity and brevity, only the top 10 most important features
were extracted from the full set. The identified features show
some overlap with those presented in Table III, although
their relative importance differs. Notably, muscle pain emerges
as the most important predictor of PCSI. Additionally, the
feature representing the time interval between vaccination and
infection (VACCIN_TTTI in the bar plot) is highlighted as a
significant contributor. This finding supports the hypothesis
that vaccination timing influences the risk and severity of
Post COVID-19 condition, emphasizing its potential impact
on disease outcomes.

Based on the SHAP explanation tool, the most influential
features for the MLP model predicting PCSI are identified in
Figure 6. Key symptoms such as difficulty breathing, diarrhea,
fluctuating body temperature, muscle pain, and sneezing had
high positive SHAP values, indicating strong contributions to
increased symptom intensity.
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Figure 5. Feature importances resulted using Random Forest model for
prediction of PCSI

Smoking was associated with higher PCSI, likely due to
its impact on respiratory health. In contrast, the absence of
chronic diseases and prior vaccination were linked to reduced
intensity, emphasizing the protective role of good baseline
health and immunization. Additionally, female sex was as-
sociated with higher PCSI, in line with existing research on
sex-based vulnerability to post-viral syndromes [15]. These
findings highlight the complex interplay of symptoms and
individual factors in shaping Post COVID-19 outcomes.

Smoking yes High
Gender female
Chronic disease
Delta variant
Feeling warm & cold
Sneezing
Muscle pain
No vaccine
Diarrhea

Difficulty breathing

-0.1 0.0 0.1
SHAP value

0.2 Low

Figure 6. Interpreting MLP influential factors using SHAP

IV. CONCLUSION AND PERSPECTIVES

This study aimed to identify patient profiles at higher risk
of developing PCC and predict its intensity using machine
learning approaches. We utilized features that were grouped
into static, vaccination, and symptom-related variables. Statis-
tical analyses revealed that women and patients with chronic
diseases are more susceptible to PCC. Predictive analysis using
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four different models demonstrated strong performance across
all methods when combining all features, with MLP showing
slightly better results in terms of MAPE. The interpretability
analyses identified key predictors, including loss of smell,
headache, muscle pain, and vaccination timing, as well as
protective factors like the absence of chronic diseases. These
insights provide valuable information for tailoring interven-
tions and understanding the underlying risk factors of PCC.

Limitations and future works. The steady-state assumption
in our analysis limits the ability to capture temporal relation-
ships between symptoms or events. Model performance is also
constrained by the quality and completeness of the dataset,
highlighting the need for validation on independent datasets to
ensure robustness in real-world scenarios. Additionally, while
the models offer predictive value, they are intended as tools
to complement clinical judgment rather than replace it. These
gaps will be addressed in future studies.

Societal Impact. Post COVID-19 condition has profound so-
cietal implications, affecting physical and mental health, daily
functioning, and productivity [16][17]. It disrupts educational
and professional activities, with children and adults experi-
encing isolation, stress, and cognitive impairments. Predicting
PCC symptoms intensity can inform early interventions, al-
leviate healthcare burdens, and improve patients’ quality of
life.
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