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Forward

The Second International Conference on IoT-AI (IoTAI 2025), held on July 6th – 10th, 2025 focused on
blending AI and IoT (Applied intelligence) to various domains.

Joining Artificial Intelligence (AI) and Internet of Thinks (IoT) is a technical convenience of
complementary capabilities. IoT deals with devices interacting using the Internet, while AI makes the
devices learn from their data and experience. Almost all domains are greatly benefiting from the
marriage IoT-AI for processing high volumes of real-time data. The myriad of IoTs deserves a careful data
selection, data patterns identification, controlled frequency for data gathering, high data quality, and
appropriate filtering mechanisms.

In essence, by using AI principles and AI-based tools, IoT networks and devices can learn from past
decisions, predict future activity, and continuously improve performance and decision-making
capabilities. The successful combination of AI and IoT leverages the quality of real data to benefit system
customers.

We take here the opportunity to warmly thank all the members of the IoTAI 2025 technical program
committee, as well as all the reviewers. The creation of such a high quality conference program would
not have been possible without their involvement. We also kindly thank all the authors who dedicated
much of their time and effort to contribute to IoTAI 2025. We truly believe that, thanks to all these
efforts, the final conference program consisted of top quality contributions.

We also thank the members of the IoTAI 2025 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that IoTAI 2025 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the area of AI and IoT. We also hope
that Venice provided a pleasant environment during the conference and everyone saved some time to
enjoy the historic charm of the city.
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Enhancing Bike-sharing Demand Forecasting: Anomaly Detection and Feature
Selection in LSTM Networks

Pedro Nunes
School of Design, Management and Production Technologies Northern Aveiro

University of Aveiro Oliveira de Azeméis, Portugal
e-mail: pnunes@ua.pt
José Paulo Santos

Department of Mechanical Engineering,
University of Aveiro Aveiro, Portugal
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Abstract—Accurate forecasting of casual bike-sharing demand
is crucial for optimizing operations and resource allocation. This
study employs a Long Short-Term Memory (LSTM) network to
predict hourly bike rentals, incorporating temporal, meteorologi-
cal, and categorical features. To enhance the model, we integrate
an anomaly detection step using the Local Outlier Factor (LOF)
method, treating its output as an additional feature. The initial
LSTM model achieved a Root Mean Squared Error (RMSE)
of 34.26. Incorporating anomaly detection based on weather-
related data, such as temperature and humidity, and subsequently
removing those features, led to an improved RMSE of 30.86.
Feature permutation analysis was then used to assess variable im-
portance. The most critical predictors were whether the day was
a working day and which working day it was, highlighting clear
behavioral patterns in casual bike-sharing demand. By combining
anomaly detection with feature selection, we enhance the inter-
pretability of LSTM-based forecasting models, which are often
considered black boxes. Removing redundant features simplifies
the model while potentially improving accuracy, making it more
transparent and efficient. These findings provide valuable insights
for bike-sharing system operators, enabling data-driven decision-
making for demand management and operational planning.

Keywords-LSTM; Bike-Sharing; Feature permutation; Anomaly
detection; Interpretability.

I. INTRODUCTION

Accurate forecasting of the demand for bike sharing is es-
sential to optimize operations and improve urban mobility [1].
Various factors influence bike-sharing demand, including built
environment characteristics, weather conditions, and temporal
trends [2][3]. For example, the authors in [2] demonstrated the
impact of urban infrastructure and land use on ridership levels,
while [4] investigated the operational challenges associated
with bike redistribution to balance demand across stations.
Additionally, event detection techniques have been utilized to
identify anomalies in bike-sharing data, enhancing forecasting
accuracy by accounting for unexpected fluctuations in usage
[5].

Recent advancements in Machine Learning (ML) have en-
abled the development of sophisticated predictive models, such
as Deep Learning (DL) approaches, to capture the complex
temporal and spatial dependencies inherent in bike-sharing
usage patterns [3]. Among these, Long Short-Term Memory
(LSTM) networks have shown promise in time-series fore-
casting due to their ability to model long-term dependencies in

sequential data [1]. The authors in [6] conducted a comparative
study between multiple linear regression and LSTM models,
finding that LSTM significantly outperformed traditional re-
gression techniques in predicting bike-sharing demand when
considering time and weather factors.

Recent studies have demonstrated the effectiveness of ML
techniques in capturing the complex, non-linear relationships
inherent in bike-sharing data. For instance, [7] employed an
artificial immune system combined with an Artificial Neural
Network (ANN), to predict bike-sharing demand. Similarly,
[8] proposed a Spatial-Temporal Graph Attentional LSTM
approach that integrates multi-source data, including historical
trip records and weather information, to enhance short-term
demand predictions. On the other hand, [9] emphasized the
importance of analyzing and visualizing bike-sharing demand
with outliers, proposing methodologies to model baseline
temporal usage patterns and detect significant deviations.

In this study, we employ an LSTM-based approach to
predict hourly bike rentals, incorporating temporal, meteo-
rological, and categorical features. To enhance model per-
formance, we integrate an anomaly detection step using the
Local Outlier Factor (LOF) method, treating its output as an
additional feature. This approach aligns with previous research
that highlights the importance of addressing demand variability
through advanced modeling techniques [4]. Furthermore, we
implement a feature permutation analysis to assess the impor-
tance of variables in order to understand the most influential
parameters on bike-sharing demand.

One of the key features of the proposed solution is the im-
provement of the interpretability of LSTM-based forecasting
models, which are often seen as black boxes. In realistic con-
texts, it is of utmost importance to have transparent predictions
and to understand the main parameters under the predicted
values to optimize operations and decision-making.

The remainder of this document is organized as follows:
Section II presents the problem being addressed and describes
the dataset used. Section III outlines the proposed combination
of anomaly detection and an LSTM network for forecasting
bike-sharing demand. Section IV presents and discusses the
obtained results. Finally, section V concludes the work.
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II. DATASET AND PROBLEM DESCRIPTION

The dataset used in this study originates from the Capital
Bikeshare system in Washington, D.C., covering a two-year
period from 2011 to 2012. This dataset, originally compiled
by Fanaee-T and Gama [5], includes rental data aggregated
hourly, and integrates multiple sources of information, in-
cluding weather data and calendar-based attributes, to provide
a comprehensive view of bike rental patterns. The dataset
attributes include:

• Temporal attributes: Date (dteday), season (season), year
(yr), month (mnth), hour (hr for the hourly dataset),
weekday (weekday), and working day (workingday).

• Weather conditions: Weather situation (weathersit), tem-
perature (temp), apparent temperature (atemp), humidity
(hum), and wind speed (windspeed).

• Rental information: Count of casual users (casual), reg-
istered users (registered), and the total count of rented
bikes (cnt).

The primary objective of this study is to develop an accurate
model to forecast the hourly bike rental demand for casual
users, using an LSTM-based approach. Since this demand
is influenced by several factors, such as weather conditions,
holidays, and special events, it is intended to incorporate a
method for feature importance, in order to assess the factors
that most contribute to the model’s prediction, thus mitigating
the black box nature of most DL models.

III. METHODOLOGY

The proposed methodology, depicted in Figure 1, encom-
passes a preprocessing step that structures the raw data for
training the LSTM model. After training, a feature importance
analysis is conducted to identify the most relevant features.
This process yields a predictive model that forecasts hourly
bike-sharing demand while providing insights into the most
significant contributing factors.

A. Preprocessing

The preprocessing stage encompasses several steps, as de-
picted in Figure 2. The dataset includes both numerical and
categorical variables. To prepare the data for training the
LSTM model, one-hot encoding was applied to transform all
categorical variables into numerical representations. Note that
the numerical variables are already normalized, and for this
reason, there was no need to scale them.

Anomalies and event-driven variations, such as unusual
spikes or drops in bike rentals, may arise due to special
events or extreme weather conditions [1] [2]. Considering this,
the LOF algorithm [10] was employed to identify anomalies
in the weather-related data (temperature, humidity, perceived
temperature, and windspeed). LOF is an unsupervised anomaly
detection method that identifies outliers based on local density
variations relative to their neighbors. It quantifies how isolated
a data point is by comparing its density to that of surrounding
points. The variables used for anomaly detection included:

• temp: Normalized temperature;

Figure 1. Overview of the proposed methodology.

• atemp: Normalized apparent temperature;
• hum: Normalized humidity;
• windspeed: Normalized wind speed.

In this study, a neighborhood size of 24 points was selected,
corresponding to the time window used in the LSTM model,
as will be further discussed. The method was implemented
using the Scikit-learn library, with a contamination ratio of
0.05.

The LSTMs are a type of Recurrent Neural Networks
(RNNs) designed to capture long-range dependencies in se-
quential data, making it well-suited for time-series forecasting
tasks. Unlike traditional RNNs, which suffer from vanishing
gradient problems when learning long-term dependencies,
LSTMs incorporate specialized gating mechanisms to regulate
the flow of information [11].

In this study, the input to the model consists of time-ordered
sequences of features extracted from the dataset, including
weather conditions, temporal attributes. Each training instance
is structured as a rolling window of 24 consecutive hourly
observations, where the model uses data from the previous 24
hours to forecast the bike demand for the next hour.

After structured, the dataset was divided in training, valida-
tion, and testing instances, maintaining the temporal order, as
illustrated in Figure 3. The proportion used was 68-12-20 for
training, validation, and test, respectively. By maintaining the
temporal order we want to ensure that no data leakage occurs
during the training process.

2Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-286-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IoTAI 2025 : The Second International Conference on IoT-AI

                             9 / 41



Figure 2. Overview of the proposed methodology.

Figure 3. Overview of the data split, maintaining the temporal order. 68%
training data, 12% validation data, and 20% test data.

B. LSTM model training

The time-window size, NW , for the LSTM was set has 24,
since it is reasonable to assume time dependencies of the last
day, to forecast casual users of bike-sharing. Figure 4 depicts
the structure of the proposed LSTM model. It uses temporal
and weather features from the current hour and from the last
24 hours. The output of anomaly detection is also used as
feature, but in this scenario, the weather-related features used
to compute it, were removed. The LSTM network has one
layer with 25 cells, and it is followed by three dense layers
with 50,20, and 1 neurons, respectively. After the,e first LSTM,
and dense layers, a dropout of 0.1 was used. This model was
implemented using Keras and TensorFlow, Python libraries.

We use the Adam optimizer and mini-batch of 32 samples,
to optimize the weights and bias of the DL model. The adopted
learning rate was 0.001 if the number of epochs was lower than
10, and then decreased according to lr(i) = lr(i−1)∗ e−0.01,
where lr(i) is the learning rate of the current epoch. This
strategy was chosen to stabilize the training process, leading
to better fine-tuning of the model. The maximum number of
epochs was set to 100. Note that, to avoid overfitting, the
early stop is applied after 10 consecutive epochs with no
improvement in the validation score.

C. Feature importance analysis

The feature importance analysis quantifies the contribution
of each feature to the LSTM model’s predictive performance.
We employ the permutation importance technique, which
assesses feature relevance by randomly shuffling the values of
a given feature and measuring the resulting decline in model
performance. The greater the degradation, the more critical the
feature is to the model.

One advantage of this method is its model-agnostic nature,
meaning it can be applied to any trained estimator. Addi-
tionally, by performing multiple permutations, we obtain a
measure of variance in the importance scores, enhancing result
reliability.

Feature importance is computed by (1), where ij is the
importance of feature j, s is the reference score for the model
(e.g., F1-score for classification or RMSE for regression), and
K denotes the number of permutations. In this work, we set
K = 5.

ij =
1

K

K∑
k=1

sk,j − s. (1)

IV. RESULTS AND DISCUSSION

After obtaining the first LSTM model, by using all fea-
tures except the anomaly detection output, we evaluated its
performance on the test dataset using Root Mean Square
Error (RMSE) as the primary metric. Figure 5 displays the
predicted and actual values for the number of casual bike-
sharing users over the first 10 days of the test period. To
enhance visualization, only 240 hours of the test data are
shown. The RMSE for the full test set is 34.25, which is
reasonable given the range of values observed for casual user
counts.

To assess the impact of incorporating anomaly detection, we
removed the weather-related features originally used to train
the LOF model and instead included the anomaly detection
output as an input feature. The model was then retrained. As
shown in Figure 5, this revised approach improved the model’s
performance, reducing the RMSE to 30.86. Additionally, it
lowered computational complexity by using fewer input fea-
tures.

Accurately predicting bike-sharing demand is crucial for op-
timizing urban mobility decisions. However, beyond predictive
accuracy, understanding which factors most influence predic-
tions is essential for informed decision-making. To achieve
this, we applied the conditional feature permutation method
to evaluate the importance of each input variable. First the
correlation matrix was computed for the features, and then
features with a correlation higher than 0.75 were shuffled
conditionally, to assure that dependencies between features are
not broken during the process.

As depicted in Figure 6, the most influential features in
the trained model are workingday (indicating whether a
day is a weekday or weekend) and the features weekday_n,
which identify the day of the week. The seasons of the year

3Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-286-9
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Figure 4. Proposed LSTM architecture.

and general weather conditions weathersit appear to be less
significant.

It is interesting to note the features such as tempera-
ture (tem), perceived temperature (atemp), and wind speed
(windspeed) have very low importance, since anomaly detec-
tion also has low importance, however the anomalies detected
using these features as basis have a reduce the computational
complexity of the model, while improving its performance.
This suggests that instead of absolute weather values, what
matters most is whether the weather conditions at a given hour
deviate significantly from recent patterns.

Following the initial evaluation, we removed four fea-
tures (temperature, perceived temperature, humidity, and wind-
speed), and replaced them by the anomaly detection output.
The refined model achieved an improved performance, with
an RMSE of 30.86 (compared to 34.26), as depicted in Figure
IV. This indicates that combining DL with feature importance
analysis and anomaly detection allows us to:

• Identify the most influential features driving the predic-
tions.

• Reduce model complexity by eliminating less relevant
variables.

• Maintain comparable predictive performance while using
fewer features.

V. CONCLUSION AND FUTURE WORK

This study proposed an LSTM-based approach to forecast
hourly bike-sharing demand, incorporating anomaly detection
and feature importance analysis. Integrating the LOF method
allowed the model to account for unexpected variations in
demand, while the feature permutation analysis enabled the
identification of the most influential predictors. Results demon-
strated that the most critical features were related to the day of
the week and whether it was a working day, confirming clear
behavioral patterns in casual bike-sharing usage.

Furthermore, the feature selection step reduced model com-
plexity while improving predictive accuracy. This highlights
the potential of combining deep learning with explainability
techniques to enhance both performance and interpretability
in time-series forecasting tasks.

Future work could explore advanced interpretability meth-
ods for deep learning models, such as SHAP (Shapley Additive
Explanations) and Integrated Gradients, to provide deeper
insights into feature contributions. Additionally, investigating
attention mechanisms in LSTM or Transformer-based models
could improve both transparency and predictive accuracy.
Expanding the methodology to different bike-sharing systems
and urban contexts would also help validate its applicability
and robustness.

Another promising line of research involves the integration
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Figure 5. Comparison between prediction scenarios with anomaly detection, and with no anomaly detection for the first 10 days of test data (240 hours).

Figure 6. Feature importance obtained through conditional feature permuta-
tion.

of IoT modules directly into bike-sharing systems, enabling
the real-time collection of weather-related data, such as tem-
perature and humidity, as well as automated user counting,
as proposed by [12]. Combined with additional sensors like
accelerometers and GPS, this setup could offer valuable in-
sights into user preferences and mobility patterns. Such data
could support the development of real-time, context-aware
route recommendation systems for cyclists, as explored in [13].
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Abstract—This paper addresses the overarching research 

problem: How can an Artificial Intelligence(AI)-based water-

level monitoring service be implemented and deployed for 

effective flood prediction in an urban environment? To explore 

this, three research questions are posed: RQ1—What type of 

network architecture can be used in AI-based monitoring of 

water levels? RQ2—How can the AI-based water-level 

monitoring service be implemented regarding devices, 

components, and AI models? and RQ3—Which challenges are 

related to the implementation and deployment of the AI-based 

water-level monitoring service? A private LoRaWAN network 

was set up in Kuopio, Finland, integrating 16 Elsys ELT 

Ultrasonic sensors with Kerlink and RAK gateways to monitor 

stormwater wells despite structural obstacles. The study 

spanned from Fall 2023 to Spring 2025, employing iterative 

field tests, AI model comparisons (linear regression, decision 

trees, random forest), and Information Technology 

Infrastructure Library (ITIL)-based pattern matching. The 

findings demonstrate the feasibility and robustness of a 

tailored IoT network, highlighting best practices for sensor 

placement, gateway configuration, and predictive analytics. 

These insights provide a blueprint for other cities aiming to 

harness low-power technologies and AI for early flood 

warnings and data-driven urban water management. 

Keywords: LoRaWAN; IoT; Environmental Monitoring; 

Predictive Maintenance; Artificial Intelligence; Sensor 

Networks; Gateway Configuration; Field Testing; Kuopio; 

Random Forest; Implementation; ITIL 4; Pattern Matching 

I.  INTRODUCTION 

The rapid evolution of the Internet of Things (IoT) has 
led to the emergence of wireless communication 
technologies designed for low-power, long-range 
applications. Among these, LoRa (Long Range) and its 
associated LoRaWAN protocol have attracted significant 
attention due to their extended coverage, minimal energy 
requirements, and cost effectiveness [1][2]. In many regions, 
including Kuopio, commercial networks may be either 
expensive, unavailable, or unsuitable for specific monitoring 

needs. In response, deploying a dedicated private LoRaWAN 
network becomes a viable alternative. 

Climate change and urbanization are anticipated to cause 
more urban floods due to changing precipitation patterns. 
This necessitates a review of current design practices and the 
incorporation of climate change impacts into urban drainage 
systems [3]. In built-up areas where new design methods 
cannot be fully implemented, focus should shift to early 
warning and prediction systems based on IoT solutions. IoT 
refers to systems in which devices automatically transmit 
data used for monitoring or control over the internet. 
Wireless communication is typically essential, often relying 
on Low-Power Wide-Area Networks (LPWAN) [4]. Some of 
these networks utilize 3GPP-based 5G standards enabling 
massive Machine Type Communications (mMTC) [5]. 

Now in the era of Artificial Intelligence (AI), data serve 
as the foundation for warning and prediction models. In 
particular, data aggregation and appropriate latency 
considerations—edge or cloud processing—are crucial to 
achieving reliable and timely predictions [15]. This paper 
introduces an AI-assisted IoT system for urban flood 
prediction built on a private LoRaWAN network in Kuopio, 
Finland. The system employs three RAK7289 V2 WisGate 
Edge Pro Gateways with Elsys ELT Ultrasonic Industrial 
Distance Sensors installed in stormwater wells. Additionally, 
the Loriot platform was incorporated for network 
management, and the Tulvia.ai application was developed to 
provide real-time visualization and alerting services for 
water-level changes. The paper is organized as follows. 
Section II describes the theoretical framework. Section III 
explains the methodology. Section IV discusses the results 
and analysis, and Section V includes further discussion. 
Finally, Section VI presents conclusions.  

II. THEORETICAL FRAMEWORK 

LoRaWAN has gained prominence within the broader 
ecosystem of low-power wide-area networks (LPWAN) due 
to its capacity for energy-efficient, long-range data 
communications in Internet of Things (IoT) applications [1], 
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[2]. Competing LPWAN architectures (e.g., NB-IoT, Sigfox) 
also prioritize low power consumption and extended 
coverage, but LoRaWAN’s unique attributes—including 
license-free frequency operation, adaptable spreading 
factors, and a star-of-stars topology—make it a compelling 
choice in challenging urban environments. Finland, for 
instance, experiences frequent snowfall and sub-zero 
temperatures that accelerate battery depletion, so the network 
design must ensure both robust signal propagation and 
reliable sensor operation. LoRaWAN’s ability to support 
different Classes (A, B, and C) of end devices further 
enhances flexibility, enabling developers to balance factors, 
such as latency, power consumption, and communication 
patterns in varied use cases. 

In the context of water-level monitoring, LoRaWAN 
devices, often placed underground in stormwater wells or 
obstructed by metal covers, must maintain connectivity 
despite physical barriers. Chirp Spread Spectrum (CSS) 
modulation underpins LoRaWAN’s robustness, allowing 
signals to remain intelligible across relatively long distances 
and through moderate interference [7][16]. Moreover, 
Adaptive Data Rate (ADR) can automatically adjust a node’s 
spreading factor, power settings, and bandwidth to optimize 
transmission based on real-world conditions. This 
adaptability helps preserve device battery life, an essential 
concern when sensors cannot be easily retrieved for 
replacement or recharging. Alongside these connectivity 
advantages, LoRaWAN employs a network server for packet 
handling, encryption, and device authentication. When 
environmental monitoring expands to dozens or hundreds of 
sensors, centralized management enables administrators to 
handle large volumes of traffic with relative ease. 

Despite the importance of reliable data transmission, 
mere connectivity is not enough in applications where timely 
interventions, such as flood warnings are critical. Integrating 
Artificial Intelligence (AI) into environmental monitoring 
frameworks addresses this gap. Linear regression models, for 
example, are straightforward to implement but assume direct 
proportionality between input features (rainfall or 
temperature) and output (water levels). While suitable for 
quick or basic predictions, such models can be inadequate 
when water-level fluctuations exhibit non-linear patterns. 
Decision trees capture these complexities more effectively, 
yet they risk overfitting unless carefully tuned. Random 
forest ensembles, by contrast, aggregate multiple decision 
trees to produce more robust, accurate forecasts in noisy, 
real-world data settings [6]. Given the variability of 
precipitation, runoff, and well infrastructure across city 
districts, ensemble methods often offer superior performance 
for short-term water-level prediction. 

In line with recent urban flood management studies, such 
as Kostopoulos et al. [11] and Keung et al. [12], effective 
solutions often hinge on combining IoT-based sensing 
networks with sophisticated data analytics pipelines. Recent 
applications include AI-driven flood depth sensors and real-
time dashboards for urban drainage monitoring [12][13][14]. 
Moreover, Chang and Chang [15] underscore how advanced 
machine-learning methods and time-series modeling can 
further refine water-level forecasting, enabling targeted 

warnings that mitigate flood-related impacts. Together, these 
studies reinforce the importance of integrated approaches—
merging hardware resilience with algorithmic intelligence—
to address the multifaceted challenges of urban flooding. 

Effective AI-based water-level monitoring also hinges on 
an appropriate balance between edge and cloud analytics. In 
many LoRaWAN setups, gateways forward sensor data to 
network and application servers located in the cloud, 
leveraging extensive computing and storage capacities for 
model training and large-scale analytics [4][5]. This 
configuration is generally sufficient for daily or hourly 
forecasts, but certain mission-critical scenarios—such as 
sudden flood events—may demand edge analytics to 
mitigate latency or manage intermittent connectivity. 
Whether fully cloud-based or employing a hybrid approach, 
the final design must consider the computational cost of AI 
models, sensor data volume, and reliability of internet 
backhaul. 

An additional layer of complexity emerges from the 
human and organizational factors surrounding IoT 
deployments. Technical execution alone does not guarantee 
long-term success. The ITIL 4 framework emphasizes the 
interplay of multiple dimensions—Information and 
Technology, People and Processes, Value Streams and 
Processes, and Partners and Suppliers—to guide service 
management [8]. For water-level monitoring, “Information 
and Technology” challenges might include selecting 
gateways robust enough for harsh conditions. “People and 
Processes” could manifest in training requirements for field 
technicians who manage sensor installation and for data 
scientists who refine AI models. “Value Streams and 
Processes” directs focus to how data flows from sensor to 
predictive model, ensuring that insights are delivered to 
relevant stakeholders in time to prevent or mitigate flooding 
events. Finally, “Partners and Suppliers” become critical 
when firmware updates, hardware end-of-life, or differing 
service-level agreements can undermine a well-designed 
system. A practical strategy for coping with these variables is 
the pattern matching technique [9], where observed 
challenges such as a high sensor failure rate are 
systematically compared to theoretical predictions from 
existing literature or known constraints, confirming or 
refuting underlying assumptions. 

By synthesizing the technical benefits of LoRaWAN 
with AI-driven analytics and structured service management, 
water-level monitoring systems can transcend basic data 
collection to achieve near real-time environmental 
intelligence and situational awareness. LoRaWAN’s 
extended coverage, battery-friendly design, and flexible 
MAC-layer controls facilitate data acquisition in obstructed 
urban environments, while AI models transform these data 
into actionable alerts and forecasts. Simultaneously, 
frameworks like ITIL 4 ensure that human factors, partner 
dynamics, and operational workflows receive due attention, 
creating a holistic service that is both technologically sound 
and sustainably managed. This integrated view 
encompassing resilient low-power communication, adaptive 
AI analytics, and a multidimensional approach to service 
orchestration—underpins the feasibility of deploying robust, 
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AI-enhanced water-level monitoring solutions in Kuopio’s 
city area. 

III. METHODOLOGY 

The methodology of this study was structured around an 
explorative single case study approach [9] spanning from 
Fall 2023 to Spring 2025 in Kuopio’s city area. In alignment 
with Yin’s definition of a single-case design, the case can be 
framed as the deployment project of a LoRaWAN-based 
urban flood prediction system in Kuopio. This approach 
allowed for an in-depth, context-rich examination of how the 
network architecture, AI models, and stakeholder processes 
interact within a real-world setting. Within-case analysis, as 
described by Eisenhardt [10], was adopted to deepen the 
understanding of the dynamics at play in this specific 
municipal context. During the first phase in Fall 2023, 
sixteen ultrasonic sensors were acquired (Elsys ELT 
Ultrasonic) and placed in designated stormwater wells. 
Preliminary site surveys identified each well’s physical 
constraints, such as metal covers and limited space, guiding 
decisions on sensor mounting and gateway installation. A 
Kerlink Wirnet iFemtoCell LoRaWAN Gateway served as 
the core node. Trial runs were performed to verify sensor 
connectivity and data transmission intervals, after which 
battery drain studies commenced. Results indicated that 
sensors operating at high transmission frequency could 
deplete batteries in roughly 9 months under winter 
conditions, aligning with the local data logs. Figure 1 
illustrates the daily fluctuations in link-quality indicators 
(RSSI, SNR) and gateway reach, highlighting why adaptive 
data-rate and multi-gateway diversity are essential for a 
resilient smart-city LoRaWAN network. 

 

 

Figure 1.   Understanding signal variability helps in designing more 

resilient networks for smart cities. 

In Spring 2024, additional RAK7289 gateways were 
deployed in strategic locations across Kuopio, aiming to 
improve coverage in areas where high-rise buildings or 
underground infrastructure attenuated signals. Antenna 
orientations and power settings were systematically tested. 
Network management during this phase was facilitated by 
the Loriot platform, which provided real-time oversight of 
gateway status, packet routing, and sensor activations. The 
Tulvia.ai application was also conceptualized to eventually 
deliver front-end visualizations and alerts based on 
aggregated data. The Tulvia.ai application—conceptualised 
and developed within this project—offers an interactive 
dashboard for real-time situational awareness (see Figure 2) 
During these pilot tests, each sensor reported ultrasonic 
distance measurements at set intervals, enabling near real-
time monitoring of water levels alongside signal quality 
indices like RSSI and SNR.  
 

 

Figure 2.  Screenshot of the Tulvia.ai web dashboard (site 295, Kuopio) 

From Fall 2024 to Spring 2025, the project shifted 
toward optimization and AI model integration. Different 
antenna types, including 5.8 dBi fiberglass antennas and 
smaller 2 dBi SubG versions, were tested to identify the most 
effective configuration under Kuopio’s urban conditions. 
Two AI models were then developed: an initial model 
trained on approximately 10,000 sensor readings, which 
compared linear regression, decision trees, and random 
forests for short-term water-level forecasting; and a 
subsequent model that integrated precipitation and 
temperature data. As illustrated in Figure 3, the random 
forest approach consistently demonstrated the highest 
predictive performance, particularly for the two-hour 
horizon. The internal structure of the Random-Forest 
ensemble is illustrated in Figure 4, where the Pythagorean-
forest view depicts key splits across the 1 000 constituent 
trees, revealing heterogeneous yet complementary decision 
patterns. Maintenance staff feedback led to refined 
procedures for sensor inspections, especially under winter 
conditions when snow accumulation, ice, or wind could 
disturb gateway enclosures. 
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Figure 3.  Comparative performance of the AI models 

 

Figure 4.  Pythagorean Forest Visualization of Random Forest Models in 

Orange Data Mining Software 

Throughout these phases, both quantitative and 
qualitative data were collected, reflecting Yin’s emphasis on 
multiple sources of evidence [9] to build a comprehensive 
case study database. Sensors continuously logged water-level 
readings, while gateway telemetry captured battery 
performance, signal strength, and firmware health. 
Supplementary stakeholder interviews with maintenance 
technicians, data scientists, and city officials offered 
perspectives on device calibration, mag-mount reliability, 
and the complexities of scheduling on-site inspections. 
Participant observation further enriched the dataset, as 
researchers took part in the physical tasks of installing 
gateways, opening wells, and retrieving sensors. Physical 
artifacts (e.g., sensor mounting hardware, gateway 
enclosures) also provided tangible evidence for 
understanding real-world constraints. 

The within-case analysis approach advocated by 
Eisenhardt [10] allowed researchers to delve deeply into the 
specific operational, technical, and organizational factors 
shaping the project’s outcomes. Data were triangulated 
across different sources—sensor logs, interviews, field notes, 
and artifacts—to identify emerging themes and refine 
implementation practices. A pattern matching analysis [9] 
systematically compared observed challenges—such as 
disruptions from metal well covers or sensor detachments—
to establish theoretical constraints, confirming the 
importance of organizational readiness and robust hardware 
selection for stable LoRaWAN-based monitoring. By 
incorporating iterative feedback loops, the methodology 
ensured that insights from each phase informed subsequent 
optimization, culminating in a data-driven framework for AI-
based flood prediction in Kuopio’s urban environment.  

IV. RESULTS AND ANALYSIS 

A. Research Question 1 (RQ1): Network Architecture 

RQ1 asks: What type of network architecture can be used 
in AI-based monitoring of water levels? In Kuopio’s city 
context, the LoRaWAN-based architecture proved effective 
due to its low power needs, modular design, and adaptability 
to various obstructions. Table I summarizes key findings 
regarding coverage improvement, antenna orientation, power 
optimization, and the importance of gateway placement near 
tall buildings. 

TABLE I.  FINDINGS RELATED TO NETWORK ARCHITECTURE 

Finding Data Source 

Multiple gateways improved coverage 

and reliability. 
Field tests, coverage logs 

Proper antenna orientation reduced 
signal degradation in urban areas. 

Pilot test measurements 

Adjusting transmit power optimized 

energy consumption 
Battery discharge records 

Gateway placement was critical for line-
of-sight near tall buildings. 

GPS-based signal mapping 

Well covers and sensor magnetic 

mounts can impede signal transmission, 
especially below ground. 

Field notes, pilot test 

results 

Strong above-ground signal coverage 

does not guarantee adequate 
underground coverage (LoRaWAN 

signals attenuate quickly); NB-IoT 

could be tested as an alternative. 

Winter field observations 

Routers (gateways) and their antennas 

should be placed as high as possible, 

ideally with clear line-of-sight, to 

maximize coverage. 

Implementation logs 

Changing sensor antenna orientation 

(vertical vs. horizontal) can modestly 

improve transmission quality. 

Pilot test measurements 

Different antenna types feature varying 

coverage patterns; certain models 

“hear” better from all directions but 
with a smaller range, which can be 

advantageous for underground 

reception. 

Lab and field testing 

Building a private LoRaWAN network 

can be an effective solution in areas 

with many sensors or lacking a 
commercial network. 

Stakeholder interviews 

 

Through iterative testing, positioning gateways at 
elevated points and experimenting with different antennas 
proved beneficial in mitigating coverage blind spots in 
Kuopio’s dense city environment.  

B. Research Question 2 (RQ2): Implementation of the AI-

based Service 

RQ2 asks: How can the AI-based water level monitoring 
service be implemented regarding devices, components, and 
AI models? A combination of hardware and software 
components was employed, including resilient LoRaWAN 
sensors, multiple gateways, the Loriot network server for 
device authentication and packet forwarding, and an 
application server that hosted AI-based analytics and the 
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Tulvia.ai interface. Table II highlights the main 
implementation aspects, findings, and data sources. 

TABLE II.  IMPLEMENTATION ASPECTS, FINDINGS, AND DATA 

SOURCES 

Implementation 

Aspect 
Finding Data Source 

Data Network 5.8 dBi antennas provided 

adequate coverage in open areas 

Interviews, 

physical artifacts 

Sensor 

Deployment 

Magnetic mounts interfered with 

signal in certain wells. 

Field notes, pilot 

test results 

AI Model Random forest outperformed 
linear regression & decision 

trees for short-term forecasting. 

Model training 
logs, local 

dataset 

Maintenance 
Scheduling 

Battery drain rate required 
adjustments in transmission 

intervals (~9 months when 

sending data every two minutes). 

Testing data, 

system logs 

Well Access Stormwater well covers may be 
buried and not opened for a long 

time; GPS data can be 

inaccurate, so extra tools (e.g., 
shovels, manual searches) are 

needed to locate and expose the 

well. 

Field notes, 

additional 
observations 

Mount 

Reliability 

Magnetic sensor mounts do not 

always hold under winter 

conditions; two sensors fell into 
the well, yet one continued to 

transmit despite immersion. 

Winter pilot test 

results 

Weather 
Conditions 

Strong winds, freezing 
temperatures, and snow 

accumulation can complicate 

outdoor gateway installation and 
affect sensor placement 

feasibility. 

Implementation 

logs 

Private 
Network 

Feasibility 

Setting up a self-managed 
LoRaWAN network can be 

advantageous if there is no 

commercial LoRaWAN or if a 
large number of sensors are 

concentrated in one location. 

Stakeholder 

interviews 

Network 
Management 

Platforms like Loriot, WisGate 
support remote gateway updates, 

device authentication, and 

encryption key management, but 
require technical expertise and 

adherence to frequency/duty 

cycle regulations. 

Network server 

logs, vendor docs 

AI Model 

Complexity 

If large volumes of sensor data 

are collected, training AI models 

(e.g., random forests) can 
become resource-intensive; 

cloud computing resources may 

be required. 

Model training 
logs, interviews 

Algorithm 

Comparison 

Lighter models (e.g., linear 

regression) may be faster to run, 

while more complex models 
(e.g., random forest) offer higher 

accuracy, so balancing speed vs. 

accuracy is crucial. 

Model 
evaluations 

 

By combining robust network hardware with advanced 
AI models, the solution ensures both continuous data capture 
and accurate water-level forecasting, enabling effective early 
urban flood warning mechanisms. The Tulvia.ai application 

leverages this data to display real-time water levels, issue 
alerts, and provide predictive insights to municipal 
authorities. 

C. Research Question 3 (RQ3): Challenges and Pattern 

Matching 

RQ3 asks: Which challenges are related to the 
implementation and deployment of the AI-based water level 
monitoring service? Numerous challenges arose, ranging 
from physical obstructions like metal well covers to 
organizational factors, such as firmware updates and staff 
training. These were categorized using a pattern matching 
technique [9] aligned with ITIL 4 service management 
dimensions [8]. Table III illustrates the primary findings. 

TABLE III.  CHALLENGES BY ITIL 4 SERVICE MANAGEMENT 

DIMENSIONS 

Dimension 
Finding 

Data 

Source 

Information 

and 
Technology 

Metal well covers and magnetic mounts 

disrupted signals; hardware selection 
proved critical. 

Interviews

, field 
notes 

People and 

Processes Technicians needed re-training on 
sensors and updated software tools. 

Interviews

, 
documenta

tion 

Value Streams 
and Processes 

Delays in data flow due to suboptimal 
network routes impacted real-time 

analytics. 

Network 

server logs 

Partners and 
Suppliers 

Third-party gateway firmware updates 
occasionally caused minor downtime 

for gateways. Also misscommunication 

caused minor delays for logistics 
(antennas delivery time).  

Vendor 

communic

ation 

Information 

and 
Technology 

Surface-level coverage does not 

guarantee underground connectivity; 
thorough on-site testing is required to 

mitigate well cover interference. 

Field 

notes, 

pilot tests 

People and 

Processes 

Multiple stakeholders in the installation 

process can delay schedules; staff must 
coordinate to handle well openings, 

seasonal conditions, and sensor 

calibrations. 

Maintenan
ce logs, 

interviews 

Value Streams 

and Processes 

Strict duty cycle and frequency 

regulations must be followed to avoid 

network congestion and data loss, 
requiring updated processes for device 

configuration. 

Vendor 
documenta

tion, local 

regs 

People and 
Processes 

Maintaining a private network demands 
specialized knowledge of gateway 

configuration, encryption key 

management, and sensor 

troubleshooting. 

Stakeholde

r 

interviews 

Information 

and 
Technology 

Winter weather can damage or dislodge 

gateways and sensors, necessitating 
adjustments to both hardware selection 

and maintenance schedules. 

Field 

notes, 
pilot test 

results 

 

By systematically aligning observed issues with 
theoretical patterns, the project team was able to implement 
targeted improvements. This approach confirmed that both 
technological and human factors must be addressed 
throughout the entire service lifecycle. 

11Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-286-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IoTAI 2025 : The Second International Conference on IoT-AI

                            18 / 41



V. DISCUSSION 

The findings validate the premise that integrating a 
private LoRaWAN network with AI-driven analytics can 
enhance water-level monitoring and urban flood prediction 
in Kuopio’s city area. Early in the research, theoretical 
arguments emphasized LoRaWAN’s adaptability and 
coverage potential, particularly if antennas and gateways 
were strategically positioned to overcome obstacles like 
metal stormwater covers and tall buildings. Empirical results 
backed these claims; field tests revealed that coverage 
reliability improved markedly when multiple gateways were 
installed at higher vantage points, and when antenna power 
settings were tuned based on real-world signal 
measurements. 

On the AI front, experimental comparisons confirmed 
that random forests excel in handling non-linear and rapidly 
changing hydrological data. These findings underscore the 
value of ensemble methods, particularly when aided by 
contextual information, such as precipitation and temperature 
logs. The two-hour forecast window aligns well with the 
need for timely interventions, granting local authorities 
enough lead time to respond to imminent surges in well 
levels or potential flood events. By incorporating these 
predictive tools into the Tulvia.ai application, city personnel 
receive actionable updates capable of prompting proactive 
drainage checks or other preventative measures. 

From an organizational standpoint, pattern matching 
revealed that sensor calibration, firmware updates, and staff 
training often dictated the project’s day-to-day success as 
much as the underlying technology. Metal well covers, for 
instance, necessitated repeated on-site adjustments to ensure 
signals could penetrate effectively. Firmware updates from 
hardware vendors occasionally introduced compatibility 
issues, demanding swift responses from the technical team to 
maintain continuity. Coupled with winter conditions that 
tested battery performance and sensor stability, these factors 
reaffirmed the importance of an integrated service 
management framework (ITIL 4). Ensuring that all 
stakeholders—maintenance crews, data analysts, municipal 
decision-makers—operated with a coherent workflow helped 
preserve the system’s overall reliability. 

Lastly, the study’s results hint at promising avenues for 
future exploration. Although LoRaWAN proved effective in 
Kuopio’s urban environment, alternative LPWAN 
technologies, such as NB-IoT, may offer better underground 
penetration under certain conditions. On the AI side, 
advanced ensemble or deep-learning models could prove 
even more accurate given larger datasets that incorporate 
seasonality and extended climate patterns. Enhanced security 
measures, including advanced encryption methods and 
anomaly detection, are also increasingly relevant as IoT data 
sensitivity grows. 

VI. CONCLUSIONS 

This study demonstrated the feasibility of deploying a 
private LoRaWAN network, augmented by AI-based 
prediction models, to monitor and forecast water levels in 
Kuopio’s city environment. Systematic refinement of 

network architecture—through gateway placement, antenna 
configuration, and iterative transmit power adjustments—
addressed key challenges linked to metal well covers, tall 
buildings, and subzero temperatures. The project’s phased 
approach, from sensor installation in Fall 2023 to 
comprehensive field tests and AI integration by Spring 2025, 
effectively resolved practical obstacles tied to hardware 
setup, coverage blind spots, and battery limitations. 

Empirical comparisons of AI models indicated that 
ensemble learning methods, especially random forests, 
delivered robust short-term forecasts when coupled with 
local sensor data and environmental metrics. These 
predictive enhancements can significantly improve 
municipal responses to sudden well-level changes or urban 
flooding. At the same time, incorporating an ITIL 4-inspired 
pattern matching technique confirmed that human factors—
ranging from technician retraining to vendor firmware 
compatibility—must be integrated into planning and 
operations for the system to remain durable. 

Overall, the alignment of low-power IoT infrastructure 
with AI-driven analytics shows strong potential for 
proactively managing stormwater wells in Kuopio. In 
addition to improving local flood preparedness, the results 
illuminate how future studies might delve deeper into 
alternative LPWAN technologies, develop advanced 
machine learning architectures, and strengthen IoT security 
protocols. By balancing innovative technical solutions with 
consistent service management practices, this project 
provides a replicable model for cities seeking to harness IoT 
data in mitigating flood risks.  
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Abstract—This study presents a deep learning-based approach 

to predict surface roughness in the Computer Numeric Control 

(CNC) milling of Ti-6Al-4V, integrating You Only Look Once 

(YOLO)v7 for tool wear detection with Long Short-Term 

Memory/Bidirectional Long Short-Term Memory 

(LSTM/BiLSTM) for time-series prediction. Images of tool 

wear are analyzed to extract wear features, which are 

combined with machining parameters to forecast surface 

roughness. Experiments were conducted on a vertical milling 

machine to confirm the effectiveness of the model. YOLOv7 

achieved a wear detection accuracy of 92.4%, while BiLSTM 

attained a prediction of 82.61%, outperforming traditional 

LSTM. The proposed system offers a reliable solution for 

intelligent tool condition monitoring and machining quality 

control.      

Keywords-YOLOv7; BiLSTM; tool wear; surface roughness. 

I.  INTRODUCTION 

In modern manufacturing industries, titanium alloys are 
widely used in aerospace, biomedical, and marine 
engineering due to its strength and corrosion resistance [1]. 
Machining Titanium alloy (Ti-6Al-4V) poses significant 
challenges, including rapid tool wear because its high 
hardness, low thermal conductivity, and chemical reactivity. 
Tool wear significantly impacts surface roughness, 
influencing dimensional accuracy and production costs [2-4]. 
Traditional methods to monitor tool wear and surface 
roughness are offline, time-consuming, and lack predictive 
capabilities [5]. In recent years, incorporating Artificial 
Intelligence (AI) and Internet of Things (IoT) has further 
enhanced the intelligence system of CNC [6]  

To address these challenges, this study proposes a hybrid 
approach that combines vision-based tool wear detection 
using YOLOv7 with LSTM/BiLSTM based time-series 
prediction of surface roughness. By integrating machine 
vision and deep learning, the system aims to provide real-

time monitoring and prediction, ultimately supporting 
process optimization in smart manufacturing. 

The structure of this paper is as follows: In section 2, we 
describe the methodology used, including data collection, 
preprocessing, and model design. Section 3 presents the 
experiment design and results. Also, the discussion of the 
findings and comparative analysis with prior work. Finally, 
Section 4 concludes the paper and outlines future directions.  

II. METHODOLOGY 

The proposed framework consists of image acquisition, 
wear detection, data preprocessing, predictive modeling, and 
performance evaluation. (1) Tool wear detection. TiAlN-
coated tungsten carbide end mills are used for milling Ti-
6Al-4V under eight combinations of process parameters 
(defined via Taguchi L8 orthogonal array). After each trial, 
the tool wear is examined using a SUPEREYES B008 digital 
microscope. (2) YOLOv7 model [7]. Tool wear images are 
annotated into wear and tool regions. YOLOv7 is trained to 
detect and classify wear into five levels based on the wear 
area ratio. The tool wear score is calculated as the wear area 
percentage of the total tool face. (3) Surface roughness 
measurement. Surface roughness (Ra) is measured at five 
fixed points on each machined surface using a FBT-650 
surface roughness tester. The average Ra is used for model 
training. (4) Data integration and modeling. The wear scores, 
tool diameters, spindle speeds, feed rates, and cutting depths 
form the input features. LSTM and BiLSTM models are 
trained using 80% of the dataset, while the remaining 20% is 
used for testing. (5) Model evaluation. Performance is 
assessed using Mean Absolute Percentage Error (MAPE), 
accuracy rate, and model loss. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental framework of this study is illustrated in 
Figure 1. The experiment is structured using the Taguchi L8 
orthogonal array to test four factors at two levels: tool 
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diameter 3 and 4 mm; spindle speed 3000 and 5000 rpm; 
feed rate 247 and 300 mm/min; depth of cut 0.5 and 1 mm. 
Each condition is repeated three times, producing 24 samples. 
Tool wear image and surface roughness values are recorded 
for each trial. Figure 2 shows the bounding box and label of 
the tool and Not Good (NG) for wear characteristics. 

The trained YOLOv7 model successfully identifies tool 
and wear regions with an overall classification accuracy of 
92.4%. Five wear grades were established based on wear 
score distribution (2.1 to 4.9%). Figure 3 shows an example 
of tool wear level 5 (4.9%). The confusion matrix showed 
high performance with a precision of 95% and a recall of 
93%. 

The LSTM model achieved a peak test accuracy of 
77.12%, while BiLSTM outperformed it with an accuracy of 
82.61%. Figures 4 and 5 show the LSTM and BiLSTM 
prediction accuracy. The BiLSTM model also exhibited 
better convergence with a smoother loss curve and lower 

final error (MSE  0.005) as shown in Figure 6. The use of 
bidirectional processing helps capture temporal dependencies 
more effectively. Taguchi analysis of signal-to-noise (S/N) 
ratios revealed that feed rate and tool diameter have the 
greatest impact on Ra. Lower feed (247 mm/min) and 
smaller tool diameter (3 mm) result in lower surface 
roughness, as shown in Figure 7.  

The results affirm the efficacy of combining vision-based 
tool wear detection with time-series prediction. BiLSTM is 
notably superior due to its dual-directional processing, 
making it suitable for capturing complex temporal features in 
tool wear evolution. Lower feed rate and shallow depth of 
cut help maintain surface quality. The approach reduces 
reliance on offline inspection and enhances adaptive process 
control. 

IV. CONCLUSIONS 

This study presents a hybrid intelligent framework that 
integrates computer vision and deep learning for predictive 
surface roughness analysis in CNC milling of Ti-6Al-4V. 
The YOLOv7 model effectively detects and quantifies tool 
wear, while BiLSTM excels in forecasting surface quality 
using historical and real-time data. The results validate the 
models’ capability in capturing temporal dependencies and 
supporting data-driven decision-making in manufacturing. 
Future work may explore adaptive control and real-time 
integration with CNC systems. 
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Abstract—The digital transformation of civil aviation has
introduced significant cybersecurity risks across interconnected
systems such as avionics, air traffic control, and airport infras-
tructure. This paper examines the evolving threat landscape
by identifying key threat actors, attack vectors, and system
vulnerabilities. Using a qualitative approach based on expert
interviews, the study reveals critical weaknesses in satellite
communications, Automatic Dependent Surveillance–Broadcast
(ADS-B), and legacy ground infrastructure. Results indicate
high susceptibility to cyberattacks due to insufficient encryption,
system fragmentation, and outdated protocols. The findings
highlight the need for targeted risk assessments, standardized
cybersecurity frameworks, and international collaboration to
enhance aviation resilience.

Keywords-Civil Aviation; Cybersecurity; Threat Landscape; Vul-
nerability Assessment; Attack Vectors; Critical Infrastructure.

I. INTRODUCTION

Digital transformation in civil aviation broadens the cyber
threat landscape by exposing critical systems to significant
vulnerabilities. Ten studies document that key aviation com-
ponents—including communication, navigation, surveillance,
and IT networks—lack robust security measures. For example,
researchers report that wireless communication systems are
inherently insecure [1] and that aeronautical communication
standards rarely incorporate cybersecurity requirements [2].
Authors examining aircraft IT systems note substantial gaps
in secure software design and communication practices [3],
while studies targeting air traffic management (ATM) propose
extended threat models to capture interdependent risks [4]. An
analysis of ten identified attack vectors indicates that seven
bear high potential impact (e.g., Global Navigation Satellite
Systems (GNSS) spoofing, malware injection, ransomware,
and ADS-B exploitation) and that detection capabilities mostly
remain limited or moderate. Complementary approaches —
such as novel risk assessment frameworks [5] and threat
taxonomies [6] — illustrate efforts to systematically assess
evolving challenges, including those emerging with urban air
mobility and unmanned aerial systems [7].

This paper addresses three core research questions:

RQ1 “Who are the relevant threat actors targeting civil avia-
tion?”

RQ2 “What are the critical attack vectors exploited in this
domain?”

RQ3 “How vulnerable are current aviation systems to these
evolving threats?”

This systematic review examines cybersecurity challenges
across commercial aviation systems, encompassing both air-
borne and ground-based infrastructures [3], [8]. The anal-
ysis covers critical aviation components including Commu-
nication, Navigation, and Surveillance (CNS) systems, air-
ground communication, radio navigation aids, and aeronautical
surveillance systems [5]. The research methodology combines
systematic reviews with both theoretical and empirical ap-
proaches [1], incorporating qualitative analysis through expert
perspectives [9] and comprehensive threat assessments [4].
This multi-faceted approach enables a thorough examination
of cybersecurity vulnerabilities in modern aviation systems,
from aircraft information technology to ATM infrastructure
[3], [10].

The paper is structured as follows: Section I introduces
the cybersecurity challenges in civil aviation and formulates
the key research questions. Section II presents the qualitative
research methodology based on expert interviews. In Section
III, we analyze the threat landscape by identifying prominent
threat actors and their motivations. Section IV categorizes and
evaluates the most relevant attack vectors and system vulner-
abilities. Section V synthesizes expert insights and identifies
key technical and organizational security gaps. Finally, Section
VI concludes with the main findings, answers the research
questions, and offers recommendations and future research
directions.

II. METHODOLOGY

This research employs a qualitative methodology to inves-
tigate the cybersecurity threat landscape and vulnerabilities in
civil aviation systems. The approach was chosen due to the
complexity and sensitivity of the topic, which benefits from
expert-based insights rather than purely quantitative data.

A. Research Design

The study follows an exploratory and descriptive design.
The primary objective was to gather structured knowledge
about realistic cyber threats, system vulnerabilities, and the
expert perception of risk within the aviation domain. Given
the limited publicly available data and operational sensitivity
of aviation systems, expert interviews were deemed the most
suitable method for data collection.
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B. Expert Selection and Sampling

A purposive sampling strategy was employed to identify
individuals with relevant professional expertise. Selection cri-
teria included:

• Professional background in civil aviation, ATM, or air-
craft systems.

• Specific experience in cybersecurity, cyber risk assess-
ment, or information security.

• Academic or consulting roles with publications or
projects in the aviation cybersecurity field.

The experts represented organizations such as aviation author-
ities, cybersecurity consultancies, aviation software vendors,
and research institutions. All participants had more than five
years of relevant work experience.

C. Interview Design and Procedure

Semi-structured interviews were conducted to ensure com-
parability while allowing for flexible and in-depth discussion.
The interview guide included thematic blocks related to:

• Identification of relevant threat actors.
• Perception of technical vulnerabilities in airborne and

ground systems.
• Assessment of communication protocol security (e.g.,

ACARS, ADS-B).
• Evaluation of organizational cybersecurity challenges.

Interviews were conducted via video conferencing and lasted
between 30 and 60 minutes. With consent, all sessions were
recorded and transcribed.

The expert sample comprised five aviation professionals
serving as pilots/copilots on aircraft such as the Airbus A320,
A330/340, and the CRJ-900. These individuals possessed
an average flight experience ranging from 6,000 to 9,000
hours, indicating a high level of operational expertise. All
participants were employed by German commercial airlines,
providing a consistent organizational backdrop. The interviews
focused on critical aspects of aviation cybersecurity, specifi-
cally addressing airborne systems, ground infrastructure, and
communication links. GNSS, avionics systems, the Aircraft
Communications Addressing and Reporting System (ACARS),
and threats related to Instrument Landing System (ILS) spoof-
ing are examples.

D. Data Analysis

The transcribed material was analyzed using qualitative con-
tent analysis. An inductive coding scheme was developed to
identify recurring themes. The analysis focused on clustering
insights into threat types, attack feasibility, system weaknesses,
and organizational practices. These categories informed the
structure and content of the subsequent results and discussion
sections.

While this study is grounded in qualitative analysis due
to the domain’s sensitivity and expert-driven nature, future
extensions could explore quantitative methodologies such as
the Common Vulnerability Scoring System (CVSS), proba-
bilistic threat trees, or hybrid models in aviation. The assessed

risks in this paper are based on preliminary efforts in this
direction. The simplified versions (cf. Tables II, III, IV, and
V) are related to pilot-centered studies using ICAO Doc 9859-
compliant matrices [11], offering a valuable foundation for
quantitative risk propagation modeling in aviation cybersecu-
rity.

III. THREAT LANDSCAPE

Understanding the diverse threat landscape is critical for
developing effective cybersecurity strategies in civil aviation.
Cybersecurity threats in aviation are evolving with the in-
creasing digitization and integration of ICT tools [10], smart
technologies and IoT devices in airports [4]. The aviation
sector is confronted by a range of adversaries, each with dif-
ferent motives, capabilities, and targets. This section provides
an overview of the primary threat actors and analyzes their
motivations and technical capacities.

A. Overview of Threat Actors

Nation-state actors are considered among the most capable
and persistent adversaries, pose significant risks to aviation
systems, targeting communication networks and avionics for
political influence and intelligence gathering [8], [12], [13].
Their motivations typically include political influence, eco-
nomic disruption, and strategic intelligence gathering. These
actors, often operating as Advanced Persistent Threat (APT)
groups, have access to substantial resources and engage in
long-term operations [10]. The complexity and interconnected-
ness of Communication, Navigation, and Surveillance (CNS)
infrastructure amplify the potential scope of attacks [14].
This includes communication networks, air traffic control
infrastructure, or avionics systems [10], [15].

Cybercriminals and hacktivists often exploit known vul-
nerabilities for financial gain or ideological purposes [4], [16].
Airports and airlines face various cyber risks, including po-
tential loss of passenger information, disruption of operations,
and damage to aircraft [17]. Ransomware attacks on airport
IT systems and attempts to breach airline customer databases
are common examples. Hacktivists may seek to disrupt flight
operations or expose perceived injustices using defacement,
denial-of-service (DoS) attacks, or information leaks [10],
[18].

Insider threats pose a significant cybersecurity risk, of-
ten underestimated compared to external attacks [19]. These
threats come from individuals with legitimate access, such
as employees, contractors, or vendors, who may exploit their
knowledge of internal systems and bypass perimeter defenses.
The impact of insider attacks can be severe, as evidenced by
high-profile cases at companies like Tesla and government
agencies like the US Department of Defense [20]. Insiders
are particularly dangerous due to their operational knowledge
and ability to bypass conventional perimeter defenses [21].

B. Motivations and Capabilities

Threat actors targeting civil aviation operate with a broad
spectrum of motivations:
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• Political motivations: Aimed at destabilizing nations,
projecting power, or coercing policy changes (nation-
states) [22], [23].

• Economic motivations: Including theft of personal data,
ransom payments, or illicit trade in sensitive information
(cybercriminals) [4], [10].

• Ideological motivations: Related to activist agendas or
grievances against the aviation industry (hacktivists) [15],
[16].

Their capabilities vary widely. Nation-states can ex-
ploit zero-day vulnerabilities and conduct coordinated cyber-
physical operations [24]. Cybercriminals often rely on off-
the-shelf malware and social engineering, whereas insiders
leverage their access privileges and domain familiarity to per-
form covert actions [21]. All actors are increasingly capable of
targeting key aviation subsystems, including avionics, ground
control centers, and satellite communication links [25].

Table I presents a summary of selected real-world aviation
cybersecurity incidents that illustrate the feasibility and impact
of documented vulnerabilities.

TABLE I
SELECTED CYBERSECURITY INCIDENTS IN CIVIL AVIATION

Year Incident Vector Impact
2018 Brit. Airways breach Customer DB Data theft (£20M)
2020 Ransomware on ST Eng. Airport MRO Operations halt
2023 GNSS spoofing Iraq/Iran GNSS Position deviat.
2024 Hamburg airport cam. hack IT system Public data leak

IV. ATTACK VECTORS AND VULNERABILITIES

This section synthesizes the findings from expert inter-
views with a literature-based analysis, providing a structured
overview of the main attack vectors in civil aviation. It fol-
lows the categories of airborne systems, ground infrastructure,
and communication links. The complex interplay between
airborne, ground, and communication subsystems is illustrated
in Figure 1, which highlights how interdependencies across
aviation infrastructure expand the cyber attack surface.

The tables (cf. Table II, III and IV) reflect the prioritization
of threats as described by expert interviewees and supported
by the literature review. In detail, the attack vectors dis-
cussed below are derived from a thematic synthesis of the
expert interviews and the structured literature review. Key
vulnerabilities were categorized where at least two intervie-
wees identified similar risks, which were then cross-validated
against peer-reviewed and industry literature. This integration
follows principles of inductive qualitative coding and thematic
saturation, ensuring methodological rigor in capturing domain
knowledge. The likelihood and impact ratings are derived
through a triangulated synthesis of literature and practitioner
input. Attack vector tables are annotated with expert-based (E),
literature-based (L), or combined evidence (E+L), to clarify
the provenance of each rating.

A. Airborne Systems
Airborne systems include all onboard digital subsystems,

such as avionics, navigation, and communication modules.

Figure 1. Interlinked Systems in Civil Aviation [26]

TABLE II
RISKS IN AIRBORNE SYSTEMS

Attack Vector Likelihood Impact Evidence
Legacy avionics exploitation Medium High E+L
SATCOM command injection Medium High E+L
ADS-B ghost aircraft injection High High E+L
GNSS spoofing/jamming High High E+L

Experts emphasized the high dependency of modern aircraft on
complex, interconnected technologies, many of which were not
originally designed with cybersecurity in mind. The summary
of the risks for airborne systems is shown in Table II.

1) Avionics and Flight Management Systems: Legacy
avionics platforms often operate on proprietary or outdated
software with limited patching capabilities due to certification
constraints [27]. These systems are vulnerable to local and
remote exploitation if attackers gain access to maintenance
ports or use wireless vectors during pre-flight servicing [28],
[29]. According to expert interviews and industry reports,
exploitation is considered moderately likely, but the impact
is high due to the proximity of these systems to flight-critical
functions.

2) SATCOM and Data Links: SATCOM-based communi-
cation plays a central role in long-haul aviation [30]. Experts
highlighted that many implementations lack strong encryption
or robust authentication, exposing them to spoofing or hijack-
ing attempts [31]. Attackers could theoretically disrupt the data
integrity between cockpit and ground services or inject false
control commands [30]–[32]. Although complex, such attacks
are technically feasible, making the likelihood medium and the
impact high due to the potential for operational disruption.

3) ADS-B and GNSS: The ADS-B protocol broadcasts
aircraft position data in plaintext, without encryption or au-
thentication [31], [32]. This allows attackers to eavesdrop or
inject ghost aircraft into air traffic visualizations [31], [33].
GNSS signals are also weak and susceptible to jamming or
spoofing, which can mislead navigation systems [34], [35].
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TABLE III
RISKS IN GROUND INFRASTRUCTURE

Attack Vector Likelihood Impact Evidence
Ransomware in airport IT High Medium E+L
ATM network compromise Medium High E+L
Third-party lateral movement High Medium E
Manipulated maintenance records Medium High E+L

Several real-world incidents (Middle East) validate feasibility
[15], [36], [37]. These attacks are well-documented in research
and red-teaming efforts, making the likelihood high and the
impact high.

B. Ground Infrastructure
Ground-based systems provide essential support for aircraft

operations, including logistics, passenger processing, and air
traffic control. The following subsystems were identified as
critical and the summary of the risks for ground infrastructure
is shown in Table III.

1) Airport IT Systems and Networks: Experts reported that
airport IT systems are often heterogeneous and difficult to
centrally manage [4]. Attack vectors include ransomware,
spear-phishing, and lateral movement via third-party contractor
access [15], [18]. Ransomware attacks have frequently oc-
curred globally (e.g., ransomware at airport check-in systems)
[38], [39], confirming the high likelihood also due to weak
endpoint protection, though the impact is considered medium
as the attacks typically affect business continuity rather than
flight safety.

2) ATM Systems: Air traffic control environments rely
on legacy architectures and software as well as centralized
infrastructures [40]. Experts warned that insufficient network
segmentation and outdated authentication mechanisms pose
severe risks, especially when connected to supervisory con-
trol and data acquisition systems [41]. Experts cite complex
vendor ecosystems [18]. Access is often poorly segmented,
and attackers can escalate privileges across IT networks [42].
The likelihood is medium due to controlled access, while the
impact is high because compromised ATM systems could
disrupt national airspace by impacting flight routing, a safety-
critical function. Operational disruption in ATM may lead to
cascading scheduling effects that indirectly compromise flight
safety and emergency response coordination.

3) Supply Chain and Maintenance Systems: Digital sys-
tems used for aircraft maintenance, such as electronic log-
books and maintenance management tools, were identified as
vulnerable due to limited access control and shared interfaces
[27], [42]. Digital systems are exposed via remote or wireless
interfaces [43]. If exploited, could lead to incorrect repairs or
overlooked issues that allow subtle manipulation of aircraft
safety-related data [44]. The likelihood is medium, and the
impact is high due to latent threats to airworthiness.

C. Communication Links
Cybersecurity vulnerabilities in communication links were

a key concern across all interviews and the summary of the
risks for communication links is shown in Table IV.

TABLE IV
RISKS IN COMMUNICATION LINKS

Attack Vector Likelihood Impact Evi.
ACARS interception High Medium E+L
ACARS message manipulat. Medium High E+L
SWIM data injection Medium Medium–High E+L
VHF/UHF spoofing or jam. Low–Medium Medium E+L

1) ACARS and Voice Communications: The ACARS trans-
mits sensitive data like flight plans, fuel status and weather
updates over plaintext VHF or SATCOM channels [45], [46].
Experts warned of the ease with which such messages can
be intercepted or crafted valid messages can be injected into
systems using low-cost software-defined radios [31], [33]. This
results in a high likelihood for data interception, and a medium
impact as the intercepted data could support more targeted or
disruptive attacks.

2) SWIM and IP-based Protocols: The increasing adoption
of System Wide Information Management (SWIM) introduces
standardized interfaces for data exchange between aviation
actors using standardized APIs over IP [40]. However, this
integration also extends the attack surface, especially when IP-
based protocols are used without end-to-end encryption [15],
[47]. Improper authentication may allow false data exchange
(e.g., flight status, weather) [31]. While no public exploitation
is known to date, expert opinion assessed the likelihood as
medium and the impact as medium to high, depending on the
data affected.

D. Summary of Findings

The aggregated results from expert interviews and support-
ing literature indicate that cyber risks in civil aviation vary
significantly across system categories in both likelihood and
potential impact, cf. Table V.

Airborne systems — particularly those relying on outdated
avionics or unauthenticated data broadcasts such as ADS-B
— were consistently rated as having the highest impact, given
their direct connection to flight safety and the limited ability to
implement rapid updates due to certification constraints. How-
ever, due to more restricted physical and logical access, the
likelihood of successful exploitation was generally considered
medium to high.

Ground infrastructure, encompassing airport IT, ATM net-
works, and maintenance systems, presented a higher likelihood
of exploitation. This was attributed to the widespread use of
commercial off-the-shelf (COTS) components, heterogeneous
networks, and extensive third-party integration. Although the
immediate safety impact of attacks on ground systems may
be lower, operational disruptions and indirect safety effects
— such as delayed maintenance updates — elevate the risk
severity.

Communication links were assessed to have a medium
likelihood of exploitation due to known vulnerabilities in
protocols like ACARS and the integration of IP-based systems
like SWIM. Experts emphasized that while direct safety effects
depend on the attack vector, compromised communication
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integrity could result in degraded situational awareness or
operational delays.

TABLE V
RISK OVERVIEW BY ATTACK VECTOR CATEGORY

Category Likelihood Impact Evi.
Airborne Systems Medium–High High E+L
Ground Infrastructure Medium–High Medium–High E+L
Communication Links Low–High Medium–High E+L

V. DISCUSSION

This study aimed to provide a comprehensive assessment
of cybersecurity threats in civil aviation by combining expert
insights with a structured vulnerability evaluation. Unlike prior
studies, this paper introduces a layered risk prioritization based
on operational pilots’ judgment integrated with literature-based
scoring. The findings confirm that the aviation sector is facing
a complex, multi-dimensional threat landscape characterized
by both well-understood and emerging attack vectors.

A. Expert Consensus and Divergences

Across the interviews, there was broad consensus regarding
the most critical vulnerabilities: unauthenticated communi-
cation protocols (especially ADS-B and ACARS), outdated
avionics platforms, and ransomware threats in ground infras-
tructure. Experts agreed that while the likelihood of attacking
airborne systems may be lower due to restricted access and
specialized knowledge requirements, the potential impact is
significantly higher due to safety-critical dependencies. Con-
versely, ground systems are more exposed due to extensive
third-party integration and reliance on legacy IT architectures.

A distinguishing contribution of this study lies in its trian-
gulated risk synthesis, which not only validates known attack
vectors such as ADS-B spoofing and ACARS plaintext but also
stratifies their risk severity based on direct expert evaluation.
Unlike prior literature reviews, this paper systematically ranks
vulnerabilities across airborne, ground, and communication
layers, reflecting real-world operator prioritization and threat
perception.

Notably, the perception of risk around communication sys-
tems varied more significantly among experts. Some empha-
sized the high exploitability of ACARS and voice channels
due to lack of encryption, while others viewed such channels
as low-priority targets, arguing that operational redundancy
limits their criticality. This divergence points to the need for
scenario-based risk modeling to clarify the consequences of
link-level compromises.

B. Identified Security Gaps

The results presented in Section IV highlight how cyber
threats manifest across system layers. Rather than restating
attack vectors, we group observed weaknesses into four over-
arching categories: (1) legacy systems lacking patchability, (2)
insecure-by-design communication protocols, (3) unsegmented
network architectures, and (4) limited visibility across opera-
tional technology (OT)/IT domains. These categories are not

isolated — their interdependencies intensify systemic risk. For
example, outdated avionics in airborne systems not only lack
encryption but also interact with unverified ground data over
ADS-B and SATCOM, compounding threat exposure.

• Legacy technology: Many components in avionics and
air traffic systems remain unpatched or unsupported, yet
are essential to certified aircraft and control operations.

• Protocol weaknesses: Unsecured communications (e.g.,
ADS-B, ACARS) are still in widespread use without
industry-wide mandates for cryptographic protection.

• Insufficient segmentation: Airport and ATM networks
often lack adequate isolation between OT and IT systems,
allowing lateral movement in case of breach.

• Limited situational awareness: There is a notable gap
in the deployment of real-time intrusion detection or
anomaly recognition systems tailored for aviation envi-
ronments.

Synthesizing the results reveals that many risks cannot be
addressed at the subsystem level alone. Vulnerabilities in
airborne platforms (e.g., legacy flight systems) are often mir-
rored by insecure communications (e.g., unencrypted ACARS)
and exacerbated by permissive ground networks (e.g., shared
maintenance IT). These layers form a tightly coupled threat
surface where mitigation strategies must be holistic rather than
component-specific.

C. Organizational and Regulatory Challenges

Beyond technical vulnerabilities, organizational barriers
emerged as a dominant theme. Experts noted that aviation
cybersecurity is hindered by inter-organizational complexity
and unclear accountability across airline operators, airport
authorities, OEMs, and regulators. This diffusion of responsi-
bility contributes to delayed patch cycles, inconsistent incident
reporting, and fragmented responses to shared threats.

From a regulatory perspective, initiatives such as the ICAO
Cybersecurity Strategy and EASA’s oversight programs have
made progress in establishing a governance framework. How-
ever, practical enforcement and harmonized adoption across
countries and actors remain lacking. Several interviewees
stressed the importance of moving from voluntary guidance
to enforceable minimum cybersecurity baselines, particularly
for data integrity and access control in ground-air-ground
communication.

D. Strategic Implications

Taken together, the results highlight the need for a layered
and aviation-specific cybersecurity approach. Mitigation strate-
gies must prioritize:

• Protection of safety-critical systems (e.g., navigation,
control) through isolation and redundancy.

• Gradual deprecation of insecure communication protocols
in favor of authenticated, encrypted alternatives.

• Continuous training and threat modeling across opera-
tional teams, IT personnel, and aircrew.

• Strengthening of information sharing platforms for threat
intelligence between stakeholders.
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The findings also support the adoption of advanced mon-
itoring tools (e.g., AI-based intrusion detection) to detect
anomalous patterns across OT and IT boundaries. While tech-
nical interventions are necessary, a cohesive security culture
supported by policy and cross-organizational cooperation is
essential to sustaining trust in civil aviation infrastructure.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This paper investigated the cybersecurity threat landscape in
civil aviation by answering three guiding research questions. In
addressing RQ1, the study identified nation-states, cybercrim-
inals, and insiders as the principal threat actors. Nation-state
adversaries were considered the most capable, often motivated
by political or strategic objectives, while cybercriminals tar-
geted economic assets through extortion or data theft. Insider
threats, although less visible, remain dangerous due to their
system knowledge and access privileges.

For RQ2, the study systematically categorized attack vec-
tors across three critical domains: airborne systems, ground
infrastructure, and communication links. Particular emphasis
was placed on unauthenticated data links such as ADS-B
and ACARS, insecure SATCOM implementations, and legacy
airport IT systems. These vectors were identified through both
expert elicitation and evidence from past incidents, supporting
their relevance and severity.

Addressing RQ3, the research showed that civil aviation
systems remain highly vulnerable to cyberattacks. Vulnera-
bilities were not limited to outdated technologies, but also to
organizational fragmentation and limited situational awareness
across stakeholders. While the impact of an attack on airborne
systems is typically higher due to safety implications, ground
and communication systems were found to be more accessible,
increasing the likelihood of compromise.

B. Recommendations

Based on these results, the following recommendations
are proposed. Each is explicitly linked to the corresponding
research question (RQ) to ensure coherence and traceability:

RQ1 (Threat Actors): Aviation regulators and industry actors
should establish mandatory information-sharing frameworks
and joint cyber exercises to enhance situational awareness and
resilience across organizational boundaries. These measures
address the complex threat actor landscape — ranging from
state-sponsored APTs to insider threats — by strengthening
collaborative defense mechanisms and reducing organizational
silos.

RQ2 (Attack Vectors): The adoption of secure communi-
cation protocols, such as encrypted ADS-B, IP-authenticated
SWIM, and secure ACARS variants, must become mandatory.
These steps directly mitigate attack vectors that exploit unau-
thenticated or plaintext messaging formats, which are prevalent
in both airborne and ground-air communication systems.

RQ3 (System Vulnerability): Addressing systemic vulner-
abilities requires both technical retrofitting and architectural
modernization. Legacy avionics and airport IT systems must

be upgraded using secure-by-design principles despite long
certification cycles. In parallel, strict network segmentation
and anomaly detection tailored to OT/IT hybrid environments
should be deployed to detect and contain threats across do-
main boundaries. These controls improve visibility into lateral
movements and cross-layer attacks, especially in supply chain
and maintenance subsystems.

Strategic Roadmap for Mitigation: To operationalize the
recommendations and support implementation across the avia-
tion sector, a phased roadmap is proposed. This roadmap spans
short-, mid-, and long-term actions, corresponding to technical,
infrastructural, and governance domains:

In the short term, priority should be given to securing
vulnerable communication protocols. This includes deploying
encryption and authentication mechanisms for ADS-B and
ACARS transmissions, as well as enforcing strict access
control policies for SWIM interfaces.

In the mid term, focus must shift to infrastructure hardening.
Key actions involve segmenting ATM and airport IT networks
to reduce lateral movement risk, and upgrading airport sys-
tems that currently rely on outdated or unsupported software
components.

In the long term, sustainable cybersecurity in civil aviation
requires robust governance mechanisms. These include manda-
tory coordinated vulnerability disclosure programs, harmo-
nized reporting obligations across national aviation authorities,
and alignment with international cybersecurity baselines as
advocated by ICAO and EASA.

C. Future Work
Quantitative modeling and simulation frameworks should be

developed to better understand risk propagation and system
dependencies across aviation domains. These models can
support scenario-based planning and incident response.

Advanced machine learning techniques offer potential for
anomaly detection in avionics and ATM environments. Re-
search should explore real-time inference models that account
for context, latency, and safety constraints.

Policy-oriented studies are needed to evaluate how regu-
latory mandates, certification policies, and governance frame-
works influence cybersecurity readiness across aviation actors.

Lastly, comparative analyses across critical infrastructure
sectors (e.g., rail, maritime, energy) can identify transferable
best practices and highlight aviation-specific requirements for
cybersecurity resilience.

In summary, this research confirms that civil aviation cy-
bersecurity is a multi-dimensional challenge requiring coor-
dinated technical, organizational, and regulatory responses.
Mitigating these threats demands not only improvements in
system design and risk detection, but also sustained gover-
nance, industry-wide collaboration, and a proactive security
culture embedded across all aviation stakeholders.
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Abstract—Traceability and digitalisation are important in the
industry because they affect the final quality of the products
produced. This article seeks to find solutions that enable record-
ing the operations carried out at each workstation during the
production of a product (traceability). Typically, 2D, 3D, Radio
Frequency IDentification (RFID) and vision industrial sensors are
connected to industrial Programmable Logic Controllers (PLCs).
These PLCs also require data communication boards to store this
data in databases. The question is: can traceability be achieved
using a low-cost solution for integrating industrial sensors into
corporate databases? Technologies based on concepts such as
the Industrial Internet of Things (IIoT) enable companies to
track components in their assembly lines and acquire crucial
production environment-related data. Combined with the devel-
opment of data analysis algorithms, these technologies enable
continuous process improvement and failure prediction. This
document presents a study of various traceability technologies,
data acquisition, and monitoring systems. Additionally, it details
the development and implementation of a traceability solution
applied to the production of gas boilers. The study incorporates
IIoT technologies to record production-related data. The system’s
objectives align with the company’s requirements, providing
improvements to its current traceability system. Furthermore,
it aims to establish a historical record for all produced gas
boilers, provide tools for real-time production tracking and
shop floor environment monitoring, and facilitate access to
all available information. The system has a flexible structure
that allows for adaptation to future improvements and future
integration with commercial Enterprise Resouce Planning (ERPs)
by bypassing expensive conventional automation sensors and
PLCs from Siemens, Rockwell Automation and others. To address
this problem this study proposes an “Iot Traceability Station”
(IoTTS), as a first step. Other question is: How fast can the
product be traced with the proposed IoTTS.

Keywords-Shop floor Data Acquisition; Industry 4.0; IoT; Trace-
ability; MQTT.

I. INTRODUCTION

Traceability is an area of high importance in the industrial
environment. As defined in Cambridge dictionary "the ability
to discover information about where and how a product was
made". Currently, traceability in a production line, data acqui-
sition directly from the factory floor, and component marking
are factors of significant impact on efficient resource manage-

ment for a company. Obtaining information about factory com-
ponents and processes is essential for creating a reliable and
comprehensive traceability system. To expand capabilities and
complexity, these types of systems use various technologies
that create a collection, processing, and storage of information
in a digital and as automated a manner as possible. Control of
environmental conditions in the factory environment is equally
important for ensuring the quality of both stored components
and those produced in the factory. Specifically, gathering
information related to these conditions, along with data col-
lected by traceability technologies, contributes to an overall
increase in product quality, optimization of factory processes,
and prevention of defects and/or failures. Consequently, the
use of manual traceability systems represents a higher risk of
failures, lower reliability, and a much slower data collection
and processing speed when compared to automated systems
that utilize marking/traceability technologies such as barcodes,
radio frequency identification (RFID), Indoor Global Position-
ing System (IGPS) of Gas Boiler. The control and traceability
of each of these stages and the components that pass through
them are essential for achieving results that meet customer
requirements. In this application area, there are various factors
to consider during production and manufacturing, and the
prevention of errors and the optimization of production quality
can lead to significant cost savings. In this case, traceability,
data processing, and control of environmental conditions are
factors to consider for improving the quality and reliability of
the final product.

A. Gas Boiler

This paper proposes the introduction of a new monitoring
system for a gas boiler manufacturing facility. To support this
initiative, it is essential to analyze the machines produced in
the factory, along with their individual components, in order
to gain a deeper understanding of the manufacturing processes
and identify the key stages that require monitoring.

A gas boiler is a stationary device designed to transfer
energy from gas to water [1]. As illustrated in Figure 1, a
gas boiler consists of numerous components, such as: the gas
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valve (which regulates or interrupts the flow of gas to the
burner); the burner (which mixes gas and air); the combustion
chamber (where heat is generated to warm the water); the heat
exchanger; the flame sensor (which shuts off the gas supply if
no flame is detected); the igniter (which provides the spark to
ignite the gas-air mixture); the control board; various safety
devices; and several other components [1].

Figure 1. Gas boiler main components.

To ensure proper assembly, the correct components must be
assembled in the correct sequence for each specific model.
This is accomplished through assembly lines composed of
multiple manual or automated stations, where each worksta-
tion is responsible for assembling a specific component or
performing a specific operation. This structured approach is
essential in the gas boiler assembly line to maintain efficiency,
consistency, and product quality.

B. Traceability Technologies

The gas boiler (product) and component code, can be
registered on a label with a 1D or 2D barcode [2][3] or on an
RFID tag [4][5].

The concept of traceability in the industrial context repre-
sents the ability to track the entire journey of a product or spe-
cific components. In other words, it is the capacity to obtain in-
formation about their production processes and create a history
of the product and its lifecycle. The need for traceability and
the application of information collection systems arises from
the producers’ and customers’ need to know the origin, the
process, and the destination of a product. To achieve this, and
organize all, the collected information about a particular com-
ponent, product, or industrial process, identification codes, are
created. This allows information to be associated with objects
or processes. Identifying each component or product enables
its traceability throughout the production process, making
it more efficient. In an industrial environment, traceability
requires auxiliary technologies to create identification codes
for components and products. Several types of marking, and

data collection technologies, are crucial at this stage, including
barcodes, RFID tags, and others, which make information
collection and processing more automated and efficient. There
are closed solutions from various automation companies, such
as Siemens, Rockwell Automation, and others, which, with
their programmable controllers and specific programs, are able
to collect data from sensors and store it in databases. The
problem is the cost and customer loyalty to these companies.
It is important to study low-cost solutions that make use of
the latest technologies to propose new solutions, in this case
for the collection of traceability data. Using the traceability
technologies (sensors) in conjunction with Internet of Things
(IoT) monitoring methods, it is possible to create intelligent
production processes, increase product quality, reduce costs,
improve information flow, and ensure better factory manage-
ment [6] [7] [8] [9]. Processing the data acquired, within IoT
devices, is not always easy, given their processing and memory
limitations. In [10], new algorithms are presented that can
be used in IoT devices for both training and using models.
Another example is presented in [11], where the quality of gas
boiler flames can be analyzed based on their color, using the
Backpropagation Algorithm (BPA) and Ant Colony Optimiza-
tion (ACO) to process the acquired data. IoT devices, together
with traceability technologies, communication technologies,
and data management algorithms, can be used in many fields.
In [12], an overview of these technologies applied to food
traceability is presented. In [13] is presented an overview
of Digital Twins and enabling technologies, associated with
IoT/Industrial IoT (IIoT) and machine learning, namely for
predictive maintenance and fault detection.

In section II is presented the proposed solution to integrate
shop floor industrial sensor to enterprise database, via Message
Queuing Telemetry Transport (MQTT) broker. In section III is
presented the proposed IoT traceability station, one for each
shopfloor production station. In section IV, conclusions are
presented.

II. PROPOSED SOLUTION ARCHITECTURE

In the development of a solution that considers the problems
addressed by the project and its objectives, there was a need to
reflect on the current methods of data collection and recording
in the Gas boiler factory. The completion of record sheets with
parameters that are important for production and essential for
the final quality of the transformer is done manually by oper-
ators on the production line, and these sheets are subsequently
physically stored in the factory. Following this, the sheets
are scanned and saved in the project folder available on the
company’s server. The proposed traceability and monitoring
system solution aims to enable data collection and facilitate
access to it by digitising the process and storing the data in
real time. The proposed traceability system involves installing
an IoT Traceability Station (IoTTS) at each workstation. This
station will be responsible for recognizing the implemented
marking system, receiving data from the operator, processing,
and transmitting the data recorded by the operator during pro-
duction. In addition to the traceability station, this allows for
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the almost automatic verification of the overall manufacturing
conditions for each component and the final product.

III. PROPOSED IOT TRACEABILITY STATION

The IoTTS is one of the system’s key components. As
shown in Figure 2, this block of the proposed solution will be
responsible for acquiring and transmitting data to subsequent
levels of the solution. The production stations: assembly and
transport, are represented at a low level. It is proposed that
a IoTTS is used for each station. The QRCode and RFID
presented in the figure collect data, these data are shown in a
local LCD interface (Nextion NX4827T043), and is also sent
to an MQTT broker.

Figure 2. Iot Traceability Station.

Figure 3. IoT Traceability Station – Implementation.

Figure 3 shows the practical implementation of the IoTTS.
Given that this project aims to implement traceability and
component marking technologies, such as 1D and 2D bar-
codes or RFID tags, the Traceability Station will need to be
equipped with hardware capable of reading these marking
technologies to enable the reading of references and data
association. To achieve this, the Iot Traceability Station has
a barcode scanner (type H1/1690S) or an RFID tag reader
(RFID RC522), allowing the operator to handle materials
easily without disrupting normal production processes. Finally,

this unit requires hardware capable of processing the received
data and transmitting it via Wi-Fi to the subsequent levels of
the system. This role will be fulfilled by an Iot microcontroller
(ESP32-WiFi), a low-cost and compact technology that will
make the Iot Traceability Station a small unit that can be
easily transported by the operator and ready for use in any
area of the factory floor. It is also proposed to use MQTT as
an intermediary between the different IoTS and the production
database (Figure 4).

Figure 4. Back-end schematic.

It is proposed that the Quality of Service (QoS) of the
MQTT be at least equal to 1. So, the exchange of messages
will be done in a confirmed manner. Although the exchange of
information takes time, for low rates, i.e. one part per second,
it is enough.

IV. CONCLUSIONS

The developed system is structured into three distinct mod-
ules: the IoT traceability station, the server, and the user
interfaces. In conjunction with these modules, communication
protocols were established between all layers of the system
to ensure that it functions as intended. The association of
information from both stations is carried out at this point in
the system, making it possible to build information related to
each component for each product. In conclusion, the marking,
traceability, and data acquisition system from the Gas boiler
factory floor has been implemented and met the proposed ob-
jectives. The development of the system considered the budget
and tried to minimize the total solution cost, thus creating an
efficient, low-cost system that applies IoT technologies and
concepts to Gas boiler production. The implementation of the
developed system allows for storing the historical data related
to the product and production.

Future work: The proposed solution has the potential of
leveraging the historical traceability data collected through
predictive AI / ML models, which could significantly enhance
the value and impact of the proposed system.
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Abstract—Reliable and high-throughput communication be-
tween field robots and cloud services remain a key challenge
in precision agriculture, where remote rural areas often lack
consistent high-bandwidth connectivity. In this work, we intro-
duce a new dual-link edge-to-cloud data transfer framework
that combines long-range Low-Power Wide Area Networking
(LPWAN) for essential control and monitoring with IEEE 802.11
Wi-Fi that carries bulk data over a Zenoh protocol. In addition,
a data router dynamically switches the robot between ’Transfer
Mode’, in which sensor streams and imagery data are being
forwarded via Wi-Fi, and ’Storage Mode’, in which data are
locally recorded in Robotic Operating System (ROS) 2 bags to
prevent loss when connectivity degrades. To preemptively detect
Wi-Fi link failures and issue routing instructions to the data
router, an onboard anomaly detection node monitors heartbeat
timing using a machine learning-based algorithm, namely the
XGBoost model. Field trials demonstrate that (1) Wi-Fi transfers
maintain sub-100 ms latency within 240 m of the gateway, (2)
Long Rang (LoRa) communication persists reliably beyond 350
m with ≈0.1 s latency, (3) the router achieves an average of
0.8 s overlap when entering Storage Mode, and (4) the anomaly
detector successfully flags link degradation ahead of an outage.
Our framework scales to multi-robot deployments via ROS 2
namespaces and Zenoh multicast, laying the groundwork for
resilient swarm operations in rural environments.

Keywords-Autonomous Agricultural Robot; Anomaly Detection;
IoT-cloud continuum; LoRa; Zenoh.

I. INTRODUCTION

Precision farming and autonomous machinery are two con-
cepts that are becoming increasingly prevalent in modern
agriculture, to simplify key aspects of agricultural work by
transferring physically demanding tasks to machines and max-
imizing crop yields, therefore conserving resources [1]. Tasks
such as weed and pest control or precise plant fertilization
are among those performed by autonomous machines in
agriculture, such as unmanned autonomous robots. For the
detection of environmental and/or soil parameters, the robots
are equipped with Internet of Things (IoT) sensors that can
detect objects on site, generating a substantial amount of data.
The analysis, utilization and storage of this data requires the
availability of extensive computing resources, which can be
provided through cloud computing [2]. However, a challenge
arises in the transfer of data from the robot to the cloud,
as an internet connection in the fields is often unreliable or
unavailable [1]. Given the expansive and sparsely populated
areas typically utilized for agricultural purposes, there is

a clear necessity for a communication solution capable of
operating over considerable distances while simultaneously
transmitting substantial quantities of data. The sole use of
LPWAN technologies are not a viable option due to the high
data volumes involved. While LPWAN enables data to be send
over the necessary distances, their data rates and payload sizes
are inadequate for transmitting more than a few kilobytes per
day [3]. Even in the licensed domain of LPWAN solutions, the
throughput would be insufficient. Conversely, application layer
protocols operating over Wi-Fi do not achieve the required
distance, yet can accommodate the necessary data volume [4].
To deliver the necessary data while maintaining a constant
connection to the edge/cloud, we propose the integration of
both solutions in an agricultural use case that incorporates an
autonomous robot into the edge/cloud continuum.

In this paper, we propose a novel data transfer method that
employs unlicensed spectrum physical layer LoRa to transmit
control messages as well as minimal vital messages to an
agricultural robot, thereby providing information regarding the
robot status and its location at a self-provided gateway and
enabling an emergency shutdown of the system if necessary.
Additionally, the recently, from the eclipse foundation and
Zettascale developed Zenoh protocol is utilized for data ex-
change between the three participants of the data exchange,
namely the robot, the gateway and the cloud.

Zenoh is a publisher/subscriber/query protocol designed to
operate in the microcontroller to cloud continuum, supporting
peer-to-peer, routed and brokered communication via WiFi [5].

To detect packet loss during data transmission in an agri-
cultural setting, where the distance between the robot and the
gateway is rather high, to minimize the distance traveled by
the robot, we employ an anomaly detection mechanism in the
robot to assess whether data transmission works properly or
if it is better to start recording backup data. The performance
of the proposed system is evaluated through field experiments,
which demonstrates the efficacy of the data exchange between
the robot and the gateway.

The rest of the paper is organized as follows. Section II
presents the related work. Section ?? shows the system ar-
chitecture. Section VI describes the experiment methodology.
Section VII discusses the experiment results. Finally, Section
VIII concludes the paper.
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II. RELATED WORK

The authors of [6] used open-source software to build a
LoRa network connecting several sensor nodes to a gateway
node to be used in an agricultural scenario. Communication
from the gateway to the server is done using Message Queu-
ing Telemetry Transport (MQTT) over Long Term Evolution
(LTE). Our system differentiates from their work by utilising
Zenoh over Wi-Fi for communication between the sensor node,
gateway and server, while having the sensor node connected
to an autonomously moving robot. In [7], a salable hybrid net-
work for monitoring an agricultural environment is proposed.
This work relies on LoRa to transmit all the gathered sensor
data and aims to cover a size of land that makes it necessary
to include LoRa relay nodes to reach the gateway from where
it uploads the data to the cloud using Wi-Fi. In contrast
to this work, our proposed system relies on Wi-Fi for data
transmission, utilizing LoRa only for minimal communication
to the robot to detect its position and to send emergency
commands. Using LoRa as a control link has been done by
the authors of [8] as well. In their case, the control link is
established to an Unmanned Aerial Vehicle (UAV) to increase
its operational range. Experimental results were obtained from
simulations only. In comparison to this work, the use of LoRa
is limited to the transmission of minimal control messages,
rather than the encapsulation of other protocol messages within
the LoRa payload.

In their study, the authors of [9] examine the potential
of Zenoh in heterogeneous networks. They demonstrate that
Zenoh can act as a middleware for peers in different net-
works, enabling communication using a pub/sub approach in
real-time. We utilize Zenoh for intercommunication between
devices operating on disparate systems, including ROS and
Linux. Zenoh has been used as the backbone of a cloud-
to-edge communication Framework, introduced in [10]. The
proposed framework aims to create a domain for distributed
computing for IoT scenarios, leveraging decentralized pub/sub
communication using Zenoh, lightweight virtualization and
orchestration of the system and its components. It is our
objective to leverage the capabilities of Zenoh to extend to the
IoT nodes. Our intention is not to limit our scope to the com-
munication between the edge and cloud computing systems.
The authors in [11] compared the performance of three Wi-Fi
standards, IEEE 802.11ax, 802.11ac and 802.11, in outdoor
IoT scenarios. Transmission throughput was evaluated in the
range of 2 to 125 m. Our approach is similar, but we utilized
Zenoh over WiFi and analysed packet loss and delay while
increasing and decreasing transmission distances. In [12] the
authors have proposed an algorithm that predicts the quality
of WiFi and Bluetooth Low Energy (BLE) communication
with accuracies of 94 % and 92 %. They are using Received
Signal Strength (RSS) as the assessment metric for the quality
of the connection. The basis of their prediction is a support
vector regression model using a radical base function. Our
system differs from this by using a linear regression model in
order to find outlier transmission behaviour to find an ideal

spot for starting/stopping the transmission of packets. The
anomaly detection in WiFi signals is being done by [13] as
well. Their research focuses on the development of a Radio
Frequency (RF) fingerprinting system for devices used in a
WiFi dataset, in order not only to detect abnormal transmitter
but also to learn from their behaviour and reject them in the
future. Our approach utilizes the detection of anomalies in the
WiFi connection to identify any issues with the transmission
of WiFi signals to a gateway. This is necessary since WiFi can
be disturbed at any time before the robot crosses the distance
threshold. By detecting anomalies in data transfer we ensure
as little data is lost as possible.

III. AGRICULTURAL ROBOT

The agricultural robotic platform, AgroRob, is designed
to autonomously navigate fields for precision farming tasks
such as crop spraying and weeding. Equipped with advanced
sensors, communication modules, and a modular software
architecture, it ensures reliable localization, efficient operation,
and seamless data exchange with the cloud-based systems.
This section details the autonomous functionalities, hardware
setup, software architecture, and communication protocols
employed by the robot.

1) Robot Autonomous Functionality: The agricultural plat-
form (AgroRob) autonomously navigates fields for precise
crop spraying and weeding. It achieves accurate localization
by fusing data from dual Global Navigation Satellite Systems
(GNSS) modules, an Inertial Measurement Unit (IMU), and
wheel odometry. This enables it to follow crop lines and share
its position with a cloud-based system. A Deep Neural Net-
work (DNN) model processes camera images to detect crops
and weeds, for precise spraying. Computer vision minimizes
chemical use, reducing fertilizer and herbicide consumption
while improving efficiency and sustainability.

2) Robot Hardware: The robot features an onboard com-
puter managing control and communication. It includes lo-
calization sensors, cameras, a Wi-Fi router, and a LoRa
transmitter for cloud data transfer. Communication occurs via
a Controller Area Network (CAN) to USB adapter, handling
status updates and control commands. Figure 1 illustrates the
hardware setup.

3) Robot Software: The robot’s software is developed us-
ing ROS 2 [14], utilises peer-to-peer communication via the
Data Distribution Service (DDS). Modules, such as mission
handling, localization, and navigation, communicate via UDP
or TCP, based on Quality of Service (QoS) settings. Data is
transmitted through a publish-subscribe model for broadcast
communication or services for direct interactions. Certain
topics enable cloud communication for control and monitoring,
as shown in Figure 2.

4) Messages: LoRa communication involves sending string
data. Messages to the gateway contain three comma-separated
values, totalling up to 29bytes:

• ID: Unique packet identifier.
• Coordinates: Latitude and longitude.
• Time: UTC timestamp.
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Figure 1. Hardware configuration of the agricultural robotic platform.

The gateway sends two boolean control commands under
0.5Hz:

• Data Control Command: Chooses Wi-Fi transmission
or local logging.

• Emergency Stop Command: Immediately halts the
robot.

Wi-Fi communication transmits operational data, including
sensor readings, mission status, and field analysis, essential
for robot performance and agricultural insights.
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Figure 2. Data flow architecture of the AgroRob platform.

IV. DATA TRANSFER AND STORAGE

As shown in Figure 3, our proposed data transfer method
assumes that both the robot and the gateway can communicate
using LoRa and Wi-Fi, with both systems having independent
GNSS localization available via a u-blox ZED-F9P GNSS
module onboard. The robot is equipped with an industrial
Wi-Fi router, the NR600 from NavigateWorx, along with a
Heltec WiFi LoRa 32 V3 module, while the gateway features a
Nighthawk® AXE3000 Wi-Fi USB adapter and a Heltec WiFi
LoRa 32 V3 module. In addition, the gateway is also equipped
with internet connectivity through a 5G/LTE modem. Both
the robot and the gateway are performing localization using
GNSS. Robot geolocation is sent through LoRa to the gateway.
Based on this information and its own position, the gateway

WIFI access point

GPS antenna

LoRa transmitter

AgroRob Communication Hardware Gateway Communication hardware

GPS antenna

WIFI adaptor

5G/LTE

LoRa transmitter

Figure 3. The communication hardware configuration of the AgroRob LoRa-
based network.

calculates the distance to the robot. This data together with
heartbeat delay calculated based on UTM time is then used
by Data Router software to switch between two states:

• Transfer Mode: While the robot is in an efficient range
and strength of Wi-Fi connection with the gateway, it
operates in Transfer Mode. Selected data (represented by
ROS2 topics) is being sent over Wi-Fi to the gateway
using a Zenoh bridge.

• Storage Mode: Conversely, when there is a risk of losing
the Wi-Fi connection between the robot and the gateway,
the robot is switched to Storage Mode. In this mode,
the Zenoh bridge is turned off to minimise the risk of
data interception. The data that normally in Transfer
Mode would be sent to the gateway is instead being
recorded using ROS2 bags and stored locally for future
synchronization. The proposed communication flow is
presented in Figure 4.

Agricultural robot (far edge)

Data       
   router   

Gateway
Geolocation

Control commandRobot
Geolocation

  CloudComputing

Robot State

Robot minimal 
State and command

Robot State 
/command

Client Client

RouterLocal storage

Gateway

Figure 4. The communication architecture of the AgroRob system.

A. Data router

Every time the gateway receives a geolocation of the robot
(latitude ϕ and longitude λ) through LoRa, it calculates the
distance between itself and the robot using the following
equations:

c =
1√

cos2(ϕ) + (1− f)2 · sin2(ϕ)
(1)

s = (1− f)2 · c (2)
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x = (R · c+ h) · cos(ϕ) · cos(λ)
y = (R · c+ h) · cos(ϕ) · sin(λ)
z = (R · s+ h) · sin(ϕ)

Given two points: gateway = (xG, yG, zG) and robot =
(xR, yR, zR), the Euclidean distance dGR is:

dGR =
√
(xG − xR)2 + (yG − yR)2 + (zG − zR)2 (3)

Where:

R = 6356752.3142 (Earth radius)
f = 1/298.257223563 (Earth flattening factor)
ϕ is the latitude
λ is the longitude

The calculated distance, together with the value of delay
calculated based on the timestamp of messages received from
the gateway is continuously fed to the anomaly detection soft-
ware. The software analyzes this data in real-time to detect any
abnormalities in communication behaviour. Upon identifying
an anomaly, it issues commands to the data router on the
robot. The data router then switches between Storage Mode
and Transfer Mode as needed, ensuring an overlap between
data recording and transmission to prevent any potential data
loss.

In cases of Storage Mode data loss is mitigated through local
storage on the edge device. However, since the operational
data of the agricultural robot primarily consists of numerical
values and image data that are processed locally, the volume
of stored information remains relatively low and does not
necessitate large-scale storage solutions. It should be noted,
however, that the local storage of data is inherently constrained
by the physical storage capacity of the edge device. Despite
this limitation, retaining operational data is essential for the
robot’s continued functionality—for example, to maintain a
record of the location and status of individual crop instances,
which is critical for planning and executing future operations
on the same field plots.

V. ANOMALY DETECTION

Our anomaly detection system employs a machine learn-
ing approach to identify abnormal behaviour in Wi-Fi data
transmission. The system monitors robot’s heartbeat timing
data and the distance between the robot and the gateway, to
detect potential failures or malfunctions. It implements a two-
stage process: first, a model training phase using XGBModel
with KMeansScorer to learn normal operational patterns from
historical data; second, a detection phase, where the Anoma-
lyDetectionNode continuously analyzes incoming data against
these learned patterns in real time.

The detection mechanism combines IQRDetector and
ThresholdDetector methodologies to identify statistical out-
liers, publishing alerts when anomalies exceed a configurable

percentage threshold. Operating independently on ROS2, the
system samples data at regular intervals (configurable, set to 2
seconds in the current implementation) and maintains a sliding
window of observations to balance detection sensitivity with
computational efficiency.

For reproducibility, the XGBModel was trained on 3285
heartbeat intervals. The model uses lags=64. Anomaly scores
are produced by a KMeansScorer with k = 20 clusters and
a 32-sample window (component_wise=False).

By continuously analyzing heartbeat timing and flagging
outliers in real-time, the anomaly detector enables the robot
to switch preemptively between Transfer and Storage modes,
beginning local data logging before Wi-Fi breaks down and
reenabling Zenoh the instant link quality recovers, thus elim-
inating data gaps and negative overlaps. Moreover, when
sustained anomalies indicate worsening channel conditions,
the system can dynamically throttle non-critical streams (e.g.,
reduce image resolution) to preserve essential telemetry, while
simultaneously relaying “link degrading” alerts back to the
operator over LoRa. If anomaly rates cross a critical threshold,
the detector can even trigger an immediate emergency-stop
command, ensuring both data integrity and operational safety
without human intervention.

Our implementation incorporates adaptive sensitivity ad-
justments based on environmental conditions and operational
context. During periods of known network congestion or when
the robot traverses areas with documented Wi-Fi interference,
the system automatically adjusts detection thresholds to re-
duce false positives while maintaining vigilance for genuine
anomalies.

This approach allows for early warning of developing issues
before they cause critical failures, making it possible to act
accordingly to prevent data loss as much as possible. The
modular design of the system also enables easy integration
of additional detection algorithms as they become available,
ensuring future extensibility.

VI. EXPERIMENTS METHODOLOGY

This section describes the methodology used to evaluate our
approach’s performance and accuracy. The experiments test
the hypothesis under various conditions to ensure comprehen-
sive and real-world-representative results.

A. Experiment Setup

In our experiments, we mimic real-world applications. The
gateway is stationary while the robot moves toward and away
from it as shown in Figure 5.

To ensure accurate time synchronization for one-way com-
munication measurements, messages are timestamped using
GNSS-based UTC time [15], as both the robot and the gateway
are equipped with GNSS receivers. The gateway also functions
as an Real-Time Kinematic (RTK) base station, providing
localization corrections to the robot for improved accuracy.
GPS signals serve as a common time reference, enabling
timestamp comparisons to calculate one-way communication
delays, especially when switching between LoRa and Wi-Fi.
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Figure 5. A satellite view map illustrating the robot’s path during the test
experiment. The gateway computer was positioned at a fixed location, while
the robot began its movement near the gateway, traveled away, and eventually
returned to its initial position. The red line on the map represents the path
followed by the robot.

This method avoids complexities in round-trip measurements,
which can obscure path delays in asymmetric networks.

Two series of connectivity and data transfer experiments
were conducted:

1. The robot moves away from the gateway while transmit-
ting data via both LoRa and Wi-Fi (using the Zenoh bridge).
As the distance increases, Wi-Fi eventually goes out of range.
During this process, data is logged, including timestamps of
messages generated by the robot and received at the gateway.
This information is used to analyze transfer characteristics and
to generate training data for the anomaly detection model.

2. The same procedure is repeated with the anomaly detec-
tion and data routing system enabled; the result is illustrated
in Figure 8.

B. Experiment Metrics

Key performance metrics include:
• Communication Latency:

Wi-Fi: The time taken for data transfer over Wi-Fi within
range. It is computed as:

∆t = tcurr − tstamp (4)
τ = tUTCG

− tUTCR
+∆t (5)

Where:

tcurr is the current ROS2 time,
tstamp is the UTC message timestamp,
tUTCG

is UTC time on the gateway,
tUTCR

is UTC time on the robot,
τ is the delay.

LoRa: Measured similarly, with UTC time added to LoRa
messages.

• Packet Loss:

LoRa: Reliability of position data sent from the robot.
Packet loss is calculated by tracking message ID gaps.

• Network Coverage:
Wi-Fi: Maximum reliable connection distance.
LoRa: Maximum distance for reliable command recep-
tion.
Range-based Switching: Effectiveness of transitioning
between Wi-Fi and LoRa.

• Data Overlap:
As described in Section IV-A, switching between Transfer
Mode and Storage Mode must ensure data overlap. The
target overlap is 1s, though factors like Zenoh bridge
stand-up time may influence it.
Zenoh to Bag: Time between the first message stored in
rosbag2 on the robot and the last received at the gateway.
A positive value indicates overlap, while a negative value
means data loss.
Bag to Zenoh: Time between the first message received
at the gateway and the first stored in rosbag2. A positive
value means overlap; a negative value indicates loss.

These evaluation metrics ensure a balanced assessment of
the method’s performance. Each configuration underwent mul-
tiple runs to ensure consistency and account for variance. The
final results are reported as averages with standard deviations,
where applicable.

VII. EXPERIMENTS RESULTS

A series of field test experiments have taken place involving
the robot moving away from the gateway while measuring the
defined metrics of Wi-Fi and LoRa at the gateway.

A. WiFi and LoRa delay

Figure 6 illustrates the delay experienced by both Zenoh
and LoRa communication over time and distance from the
gateway. In this experiment, the distance between the robot and
the gateway is gradually increased. As the distance between
the two devices increases, the average delay of the Zenoh
messages also increases until approximately 240 meters, at
which point connectivity to the gateway is lost. The distance
is then extended to 350 meters, which has no impact on the
delay of the LoRa messages.

In order to regulate the transfer of data via Wi-Fi and
to facilitate local logging, a threshold of 50 meters was
implemented for Wi-Fi transmissions in the course of the
following experiments. The results of this can be observed
in Figure 7a. In this experiment, the distance between the
robot and the gateway initially increases and subsequently
decreases. Upon reaching the threshold of 50 meters, the Wi-Fi
transmissions are terminated, while the LoRa control messages
continue to be exchanged. Figure 7b illustrates the number of
Wi-Fi packets received and LoRa packets lost. The impact of
the threshold can be observed here, as Wi-Fi packets are only
transmitted when the distance is less than 50 m and the delay
therefore remains below 0.1s. However, at a distance of 60 m,
loss of LoRa packets occurs. The packet loss has no influence
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Figure 6. WiFi and LoRa packet delays as the robot moves away from the
gateway. As the robot recedes from the gateway, packet transmission delays
increase; the Wi-Fi link fails beyond approximately 300 m, whereas the LoRa
channel continues to deliver low-bandwidth data with an almost constant
latency.

on the delay of the subsequent LoRa packets as this value
fluctuates around 0.1 s for LoRa packets.

In order to regulate the transfer of data via Wi-Fi and
to facilitate local logging, a threshold of 50 meters was
implemented for Wi-Fi transmissions in the course of the
following experiments. The results of this can be observed
in Figure 7a. In this experiment, the distance between the
robot and the gateway initially increases and subsequently
decreases. Upon reaching the threshold of 50 meters, the Wi-Fi
transmissions are terminated, while the LoRa control messages
continue to be exchanged. Figure 7b illustrates the number of
Wi-Fi packets received and LoRa packets lost. The impact of
the threshold can be observed here, as Wi-Fi packets are only
transmitted when the distance is less than 50 m and the delay
therefore remains below 0.1s. However, at a distance of 60 m,
loss of LoRa packets occurs. The packet loss has no influence
on the delay of the subsequent LoRa packets as this value
fluctuates around 0.1 s for LoRa packets.

Time overlap between data sent over Wi-Fi and stored in
rosbag2 was measured in multiple experiments. The results
are presented in Table I. The data shows that the average time
of data overlap for switching from Transfer Mode to Storage
Mode is 0.8 seconds. This means that for an average of 0.8
seconds data is stored both locally at the robot and sent over
Wi-Fi (using Zenoh) to the gateway. Therefore, the process of
starting bag recording takes an average of 0.2 seconds (as the
desired overlap was set to 1 second).

In the second case, where the system switches from Storage
Mode to Transfer Mode, the average overlap is −1.0667
seconds. The negative value indicates that there was a gap
between the data stored locally on the robot and the data sent
using the Zenoh bridge. The result is illustrated in Figure 8.

Such a result indicates that a much higher overlap is needed
when switching from Storage Mode to Transfer Mode. The
most probable cause of this behaviour is the stand-up time
of the Zenoh bridge, as the process is stopped each time the
system switches to Storage Mode.

(a) WiFi and LoRa packet delays

(b) WiFi Received packets and LoRa packet lost

Figure 7. (a) WiFi and LoRa packet delays, and (b) WiFi received packets
and LoRa packet loss as the robot moves away from and gets close to
the gateway, switching between Transfer and Storage Modes at a 50-meter
distance threshold.
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Figure 8. Anomaly detection system recognizes issues with Wi-Fi data
transfer, particularly as the distance between the robot and the gateway
increases and signal quality begins to degrade.

TABLE I. AVERAGE DATA OVERLAP TIME (IN SECONDS) FOR TRANSFER
TO STORAGE AND STORAGE TO TRANSFER MODE SWITCHES, WITH
STANDARD DEVIATION AND DIFFERENCE FROM DESIRED 1 SECOND.

Transfer→Storage [s] Storage→Transfer [s]
Avg. 0.8000 -1.0667
Std. 5.19×10−9 1.0263
Diff. 0.2000 2.0667

B. Anomaly detection model performance

The performance of the anomaly detection model was eval-
uated using standard classification metrics: precision, recall,
and F1-score. These metrics were calculated by comparing

32Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-286-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IoTAI 2025 : The Second International Conference on IoT-AI

                            39 / 41



the predicted labels (pred_labels) against the ground truth
labels (gt_labels). The calculations were performed using
the precision_score, recall_score, and f1_score
functions, with the zero_division parameter set to 0
to handle any potential division by zero issues gracefully.
The results of these evaluations are summarized in Table II,
providing a view of the model’s ability to correctly identify
anomalies in Wi-Fi communication while minimizing false
positives and false negatives.

TABLE II. PERFORMANCE METRICS OF THE ANOMALY DETECTION
MODEL: PRECISION, RECALL, AND F1-SCORE.

Precision Recall F1-score
Score 0.951 0.966 0.958

VIII. CONCLUSION AND FUTURE WORK

This study presents a novel data transfer method that
integrates LoRa communication with Wi-Fi to enhance the
operational capabilities of autonomous agricultural robots.
Utilizing LoRa for essential control messages and minimal
status updates facilitates reliable communication in rural areas,
where connectivity is frequently limited. The results indicate
that employing LoRa to support Wi-Fi communication can
significantly improve the functionality of robots operating in
remote regions.

In this work, we demonstrated the viability of our frame-
work using a single robotic platform while inherently retain-
ing the capability to support multiple robots and instances.
Our architecture leverages the Robot Operating System’s
namespace and topic remapping features, allowing each robot
to publish and subscribe to uniquely prefixed topics (e.g.,
/robot_<ID>/cmd_vel), thereby isolating and managing
concurrent Wi-Fi message streams. A single instance of the
Zenoh bridge at the gateway is sufficient to ingest and process
these parallel communications. Once received, messages are
archived in the cloud along with their originating edge-device
identifiers. Conversely, command messages can be targeted to
individual robots by publishing to the appropriate namespaced
topic.

Moreover, our framework accommodates LoRa communi-
cations: multicast downlink enables the simultaneous delivery
of identical packets to a group of robots via a single gateway
module. In principle, one gateway can orchestrate the bidirec-
tional data flow for an entire robotic swarm, seamlessly linking
edge devices with the cloud.

While the framework already supports multi-robot and
multi-communication mechanisms, empirical validation within
a true swarm setting remains to be conducted. Future work
will focus on: (1) deploying and stress-testing the system
with a heterogeneous fleet of robots; (2) evaluating network
performance and latency in high-density LoRa multicast sce-
narios; (3) extending the cloud-storage schema to incorporate
advanced metadata and secure access controls; and (4) opti-
mizing the system’s behaviour during communication mode
switching, specifically addressing the stand-up time of the

Zenoh bridge. In the current implementation, the Zenoh bridge
process is terminated when switching from Transfer Mode
to Storage Mode and restarted when switching back. This
reinitialization introduces additional latency due to the Zenoh
bridge’s stand-up time, affecting the continuity of data transfer.
To mitigate this, we propose developing an improved switch-
ing mechanism that avoids re-executing the Zenoh process.

This work contributes to the development of use-case sce-
narios for the validation of the IoT Cloud Operating System
(ICOS), a meta operating system under development within
the European Union’s Horizon program. A notable limitation
of the proposed framework is that, when data is stored locally
in the absence of Wi-Fi, the logged data must be transferred to
the cloud manually. It is anticipated that ICOS will ultimately
manage the data transmission functionalities associated with
this use case, encompassing data transfer and storage between
edge devices and the cloud.
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