
ICSEA 2025

The Twentieth International Conference on Software Engineering Advances

ISBN: 978-1-68558-296-8

September 28th - October 2nd, 2025

Lisbon, Portugal

ICSEA 2025 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

 1 / 88

ICSEA 2025

Forward

The Twentieth International Conference on Software Engineering Advances (ICSEA 2025), held
on September 28 – October 1, 2025 in Lisbon, Portugal, continued a series of events covering a broad
spectrum of software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Software engineering for service computing (SOA and Cloud)

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile and Lean approaches in software engineering

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving productivity in research on software engineering

 Trends and achievements

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2025 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2025. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

 2 / 88

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2025 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2025 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope that Lisbon provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful city

ICSEA 2025 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Radek Koci, Brno University of Technology, Czech Republic
Sébastien Salva, University of Clermont Auvergne | LIMOS Laboratory | CNRS, France
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Luigi Lavazza, Università dell'Insubria – Varese, Italy
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Roy Oberhauser, Aalen University, Germany
Simona Vasilache, University of Tsukuba, Japan

ICSEA 2025 Publicity Chair

Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain

 3 / 88

ICSEA 2025

Committee

ICSEA 2025 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Radek Koci, Brno University of Technology, Czech Republic
Sébastien Salva, University of Clermont Auvergne | LIMOS Laboratory | CNRS, France
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Luigi Lavazza, Università dell'Insubria – Varese, Italy
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Roy Oberhauser, Aalen University, Germany
Simona Vasilache, University of Tsukuba, Japan

ICSEA 2025 Publicity Chair

Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain

ICSEA 2025 Technical Program Committee

Tamer Abdou, Ryerson University, Canada
Morayo Adedjouma, CEA Saclay Nano-INNOV - Institut CARNOT CEA LIST, France
Abdullah Al-Alaj, Virginia Wesleyan University, USA
Ammar Kareem Obayes Alazzawi, Universiti Teknologi PETRONAS, Malaysia
Shabbab Algamdi, College of Computer Engineering and Sciences | Prince Sattam bin Abdulaziz
University, Riyadh, Saudi Arabia
Washington H. C. Almeida, CESAR School, Brazil
Eman Abdullah AlOmar, Rochester Institute of Technology, USA
Sousuke Amasaki, Okayama Prefectural University, Japan
Talat Ambreen, International Islamic University, Islamabad, Pakistan
Amal Ahmed Anda, University of Ottawa, Canada
Daniel Andresen, Kansas State University, USA
Giusy Annunziata, University of Salerno, Italy
Jean-Paul Arcangeli, UPS - IRIT, France
Francesca Arcelli Fontana, University of Milano Bicocca, Italy
Oluwaseun Bamgboye, Edinburgh Napier University, Scotland
Jorge Barreiros, ISEC - Polytechnic of Coimbra / NOVA LINCS, Portugal
Leila Ben Ayed, National School of Computer Science | Lab. Hana, Tunisia
Marciele Bergier, Universidade do Minho | Research Center of the Justice and Governance, Portugal
Silvia Bonfanti, University of Bergamo, Italy
Mina Boström Nakicenovic, Paradox Interactive, Sweden

 4 / 88

Khadija Bousselmi Arfaoui, University of Savoie Mont Blanc, France
José Carlos Bregieiro Ribeiro, Polytechnic Institute of Leiria, Portugal
Antonio Brogi, University of Pisa, Italy
Carlos Henrique Cabral Duarte, Brazilian Development Bank (BNDES), Brazil
Carlos A. Casanova Pietroboni, National Technological University - Concepción del Uruguay Regional
Faculty (UTN-FRCU), Argentina
Olena Chebanyuk, National Aviation University, Ukraine
Fuxiang Chen, University of Leicester, UK
Hongmei Chi, Florida A&M University, USA
Dickson Chiu, The University of Hong Kong, Hong Kong
Rebeca Cortazar, University of Deusto, Spain
André Magno Costa de Araújo, Federal University of Alagoas, Brazil
Mónica Costa, Polytechnic Institute of Castelo Branco, Portugal
Yania Crespo, University of Valladolid, Spain
Luís Cruz, Delft University of Technology, Netherlands
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Hepeng Dai, Chinese Aeronautical Establishment, China
Giovanni Daián Róttoli, Universidad Tecnológica Nacional (UTN-FRCU), Argentina
Darren Dalcher, Lancaster University, UK
Andrea D'Ambrogio, University of Rome Tor Vergata, Italy
Patrizio Dazzi, University of Pisa, Italy
Guglielmo De Angelis, CNR - IASI, Italy
Thiago C. de Sousa, State University of Piauí, Brazil
Maria del Carmen de Castro Cabrera, Universidad de Cádiz, Spain
Kevin Delcourt, UPS - IRIT, France
Lin Deng, Towson University, USA
Anmol Deshpande, University of California at Irvine, USA
Fatma Dhaou, University of Tunis el Manar, Tunisia
Dario Di Dario, University of Salerno, Italy
Jaime Díaz, Universidad de La Frontera, Chile
Hyunsook Do, University of North Texas, USA
Dragos Laurentiu Dobrean, Babes-Bolyai University, Cluj Napoca, Romania
Diogo Domingues Regateiro, Instituto de Telecomunicações | Universidade de Aveiro, Portugal
Dimitris Dranidis, CITY College, University of York Europe Campus, Greece
Imke Helene Drave, RWTH Aachen University, Germany
Arpita Dutta, National University of Singapore, Singapore
Holger Eichelberger, University of Hildesheim | Software Systems Engineering, Germany
Ridha Ejbali, National Engineering School of Gabes (ENIS) / University of Gabes, Tunisia
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Fernando Escobar, University of Brasilia (UNB), Brazil
Mahdi Fahmideh, University of Southern Queensland (UniSQ), Australia
Kleinner Farias, University of Vale do Rio dos Sinos, Brazil
Thomas Fehlmann, Euro Project Office AG, Zurich, Switzerland
Alba Fernandez Izquierdo, Universidad Politécnica de Madrid, Spain
David Fernandez-Amoros, Universidad Nacional de Educación a Distancia (UNED), Spain
Estrela Ferreira Cruz, Instituto Politécnico de Viana do Castelo | ALGORIMTI research centre -
Universidade do Minho, Portugal
Stefano Forti, University of Pisa, Italy

 5 / 88

Jonas Fritzsch, University of Stuttgart | Institute of Software Engineering, Germany
Jicheng Fu, University of Central Oklahoma, USA
Stoyan Garbatov, OutSystems SA, Portugal
Jose Garcia-Alonso, University of Extremadura, Spain
Wided Ghardallou, ENISO, Tunisia / Hail University, KSA
Gwihwan Go, Tsinghua University, China
Elena Gómez-Martínez, Universidad Complutense de Madrid, Spain
Gregor Grambow, Aalen University, Germany
Chunhui Guo, California State University, Los Angeles, USA
Huong Ha, University of Newcastle, Singapore
Shahliza Abd Halim, UniversityTeknologi Malaysia, Malaysia
Atsuo Hazeyama, Tokyo Gakugei University, Japan
Hussein Hazimeh, Lebanese University, Lebanon
Qiang He, Swinburne University of Technology, Australia
Yifeng He, University of California, Davis, USA
Jairo Hernán Aponte, Universidad Nacional de Colombia, Columbia
Bogumiła Hnatkowska, Wrocław University of Science and Technology, Poland
Syeda Sumbul Hossain, Samsung Electronics, Bangladesh
Shintaro Hosoai, Institute of Technologists, Japan
Jie Hu, Arizona State University, USA
Fuqun Huang, Western Washington University, USA
LiGuo Huang, Southern Methodist University, USA
Rui Humberto Pereira, ISCAP/IPP, Portugal
Waqar Hussain, CSIRO - Data61, Australia
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Irum Inayat, National University of Computer and Emerging Sciences, Islamabad, Pakistan
Florije Ismaili, South East European University, Republic of Macedonia
Angshuman Jana, IIIT Guwahati, India
Marko Jäntti, University of Eastern Finland, Finland
Judit Jász, University of Szeged, Hungary
Laid Kahloul, Biskra University, Algeria
Hermann Kaindl, Vienna University of Technology, Austria
Yasushi Kambayashi, Sanyo-Onoda City University, Japan
Ahmed Kamel, Concordia College, Moorhead, USA
Chia Hung Kao, National Taitung University, Taiwan
Dimitris Karagiannis, University of Vienna, Austria
Dimitra Karatza, iov42, UK
Vikrant Kaulgud, Accenture, India
Siffat Ullah Khan, University of Malakand, Pakistan
Radek Koci, Brno University of Technology, Czech Republic
Christian Kop, University of Klagenfurt, Austria
Blagovesta Kostova, EPFL, Switzerland
Akrivi Krouska, University of Piraeus, Greece
Bolatzhan Kumalakov, Al-Farabi Kazakh National University, Kazakhstan
Tsutomu Kumazawa, Software Research Associates Inc., Japan
Rob Kusters, Open University, The Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Stefano Lambiase, University of Salerno, Italy

 6 / 88

Jannik Laval, University Lumière Lyon 2 | DISP lab EA4570, Bron, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Maurizio Leotta, University of Genova, Italy
Abderrahmane Leshob, University of Quebec at Montreal (UQAM), Canada
Zheng Li, Queen's University Belfast, UK
Peng Liang, Wuhan University, China
Lan Lin, Ball State University, USA
Panos Linos, Butler University, USA
Alexandre Marcos Lins de Vasconcelos, Universidade Federal de Pernambuco, Recife, Brazil
Mingyi Liu, Harbin Institute of Technology, China
David H. Lorenz, Open University of Israel, Israel
Stephane Maag, Télécom SudParis, France
Silvana Togneri Mac Mahon, Dublin City University, Ireland
AKM Jahangir Majumder, University of South Carolina Upstate, USA
Frédéric Mallet, Université Cote d'Azur | Inria Sophia Antipolis Méditerranée, France
Herwig Mannaert, University of Antwerp, Belgium
Krikor Maroukian, Microsoft, Greece
Johnny Marques, Aeronautics Institute of Technology (ITA), Brazil
Célia Martinie, Université Paul Sabatier Toulouse III, France
Reshmi Maulik, Meghnad Saha Institute of Technology, India
Rohit Mehra, Accenture Labs, India
Kristof Meixner, Christian Doppler Lab CDL-SQI | Institute for Information Systems Engineering |
Technische Universität Wien, Vienna, Austria
Vojtech Merunka, Czech University of Life Sciences in Prague / Czech Technical University in Prague,
Czech Republic
José Carlos M. M. Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Sanjay Misra, Covenant University, Nigeria
Mohammadsadegh Mohagheghi, Vali-e-Asr University of Rafsanjan, Iran
Atef Mohamed (Shalan), Georgia Southern University, USA
Miguel P. Monteiro, Universidade NOVA de Lisboa, Portugal
Fernando Moreira, Universidade Portucalense, Portugal
Óscar Mortágua Pereira, University of Aveiro, Portugal
Ines Mouakher, University of Tunis El Manar, Tunisia
Kmimech Mourad, Higher Institute for Computer Science and Mathematics of Monastir, Tunisia
Lucilene F. Mouzinho da Silva, Federal Institute of Maranhão, Brazil
Sana Ben Hamida Mrabet, Paris Nanterre University / LAMSADE - Paris Dauphine University, France
Kazi Muheymin-Us-Sakib, Institute of Information Technology (IIT) | University of Dhaka, Bangladesh
Marcellin Nkenlifack, University of Dschang, Cameroon
Thomas Nolte, Mälardalen University, Sweden
Alex Norta, Tallinn University, Estonia / Dymaxion Oy, Finland / University of Pretoria, South Africa
Marc Novakouski, Carnegie Mellon Software Engineering Institute, USA
Roy Oberhauser, Aalen University, Germany
Shinpei Ogata, Shinshu University, Japan
Flavio Oquendo, IRISA (UMR CNRS) - University of South Brittany, France
Smruti Padhy, Texas Advanced Computing Center (TACC) | University of Texas at Austin, USA
Marcos Palacios, University of Oviedo, Spain
Beatriz Perez Valle, Universidad de La Rioja, Spain
Quentin Perez, IMT Mines Alès, France

 7 / 88

Michalis Pingos, Cyprus University of Technology, Cyprus
Monica Pinto, University of Málaga, Spain
Aneta Poniszewska-Maranda, Institute of Information Technology | Lodz University of Technology,
Poland
Pasqualina Potena, RISE Research Institutes of Sweden AB, Sweden
Evgeny Pyshkin, University of Aizu, Japan
Claudia Raibulet, University of Milano-Bicocca, Italy
Raman Ramsin, Sharif University of Technology, Iran
Gilberto Recupito, University of Salerno, Italy
Stephan Reiff-Marganiec, University of Derby, UK
Fernando Reinaldo Ribeiro, Polytechnic Institute of Castelo Branco, Portugal
Catarina I. Reis, ciTechCare - Center for Innovative Care and Health Technology | Polytechnic of Leiria,
Portugal
Wolfgang Reisig, Humboldt University, Berlin, Germany
Jose Ignacio Requeno Jarabo, Universidad Complutense de Madrid, Spain
Michele Risi, University of Salerno, Italy
Simona Mirela Riurean, University of Petrosani, Romania
Nelson Rocha, University of Aveiro, Portugal
José Raúl Romero, Universidad de Córdoba, Spain
António Miguel Rosado da Cruz, Polytechnic Institute of Viana do Castelo, Portugal
Adrian Rutle, Western Norway University of Applied Sciences, Norway
Ines Bayoudh Saadi, ENSIT - Tunis University, Tunisia
Gunter Saake, Otto von Guericke University of Magdeburg, Germany
Mohamed Aymen Saied, Laval University, Canada
Khayyam Salehi, Shahrekord University, Iran
Bilal Abu Salih, The University of Jordan, Jordan
Sébastien Salva, University of Clermont Auvergne | LIMOS Laboratory | CNRS, France
Hiroyuki Sato, University of Tokyo, Japan
Wieland Schwinger, Johannes Kepler University Linz (JKU) | Inst. f. Telekooperation (TK), Austria
Hans-Werner Sehring, Nordakademie, Germany
Vesna Šešum-Čavić, TU Wien, Austria
Mahaboob Subhani Shaik, Veristat, USA
Mohammad Shameem, IRCISS Research Center | King Fahad University of Petroleum and Minerals,
Saudi Arabia
István Siket, University of Szeged, Hungary
Karolj Skala, Hungarian Academy of Sciences, Hungary / Ruđer Bošković Institute Zagreb, Croatia
Juan Jesús Soria Quijaite, Universidad Peruana Unión, Lima, Peru
Nissrine Souissi, MINES-RABAT School (ENSMR), Morocco
Maria Spichkova, RMIT University, Australia
Alin Stefanescu, University of Bucharest, Romania
Sidra Sultana, National University of Sciences and Technology, Pakistan
Yingcheng Sun, Columbia University in New York City, USA
Mahan Tafreshipour, University of California, Irvine USA
Abhishek Tiwari, University of Southern Denmark, Odense, Denmark
Jose Manuel Torres, Universidade Fernando Pessoa, Porto, Portugal
Christos Troussas, University of West Attica, Greece
Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
Masateru Tsunoda, Kindai University, Japan

 8 / 88

Tugkan Tuglular, Izmir Institute of Technology, Turkey
Simona Vasilache, University of Tsukuba, Japan
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Rohith Yanambaka Venkata, Nokia Bell Labs, USA
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences / University of Szeged, Hungary
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Bingyang Wei, Texas Christian University, USA
Mohamed Wiem Mkaouer, Rochester Institute of Technology, USA
Dietmar Winkler, Institute for Information Systems Engineering | TU Wien, Austria
Krzysztof Wnuk, Blekinge Institute of Technology, Sweden
Shuohan Wu (Tom), Hong Kong Polytechnic University, Hong Kong
Heitor Augustus Xavier Costa, Federal University of Lavras, Brazil
Kunpeng Xu, Université de Sherbrooke, Canada
Simon Xu, Algoma University, Canada
Rihito Yaegashi, Kagawa University, Japan
Guowei Yang, The University of Queensland, Australia
Yilong Yang, Beihang University, China
Haibo Yu, Kyushu Sangyo University, Japan
Zifan Yu, Arizona State University, USA
Mário Zenha-Rela, University of Coimbra, Portugal
Yutong Zhao, University of Central Missouri, USA
Xin Zhou, Nanjing University, China
Qiang Zhu, University of Michigan - Dearborn, USA
Martin Zinner, Technische Universität Dresden, Germany
Kamil Żyła, Lublin University of Technology, Poland

 9 / 88

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 88

Table of Contents

How Digital Experiments Support Sustainability in a Forest Machine Operator Company: A Case Study
Marko Jantti, Jarmo Koponen, and Markus Aho

1

Data-Driven Insights for Software Development Process Improvement: A Defect Analysis
Melike Takil and Zeliha Dindas

7

Exploring the Use of Large Language Models for Data Extraction for Systematic Reviews in Software
Engineering
Muhammad Laiq

13

Testing Mobile vs Web App Performance Under Varying Network Conditions
Shiva Shankar Kusuma

17

Designing for Quality in IoT: A User-Inclusive Approach to Non-Functional Requirements
Lasse Harjumaa and Jukka Maattala

25

Performance Evaluation of Software Transactional Memory Implementations
Daniel Urban and Peter Fazekas

31

Protocol-aware Cloud Gateway with Adaptive Rate Control
Ivana Kovacevic, Vasilije Milic, Isidora Knezevic, Tamara Rankovic, and Milos Simic

39

Barriers and Enablers of AI Adoption in Software Testing: A Secondary Study
Katja Karhu and Jussi Kasurinen

46

Ethical Considerations of Using Generative AI in Software Development
Tiina Tuomisto and Lasse Harjumaa

53

Software Engineering for Educational AI Applications: Insights from Student Requirements for a VR Coaching
System
Yvonne Sedelmaier, Jens Grubert, and Dieter Landes

60

On the Keeping Models in the System Design and Implementation
Radek Koci

66

VR-DeltaDebugging: Visualization Support for Delta Debugging in Virtual Reality
Roy Oberhauser

72

Powered by TCPDF (www.tcpdf.org)

 1 / 1 11 / 88

How Digital Experiments Support Sustainability in a
Forest Machine Operator Company: A Case Study

Marko Jäntti, Jarmo Koponen
School of Computing

University of Eastern Finland
P.O.B. 1627, Kuopio, Finland

Email: {marko.jantti, jarmo.koponen}@uef.fi

Markus Aho
Funlus Oy

Sepontie 15, 73300 Nilsiä, Finland
Email: markus.aho@funlus.fi

Markus Aho
UEF Business School

University of Eastern Finland
Yliopistokatu 2, Joensuu, Finland

Email: markus.aho@uef.fi

Abstract—Increasing number of organizations are adopting
Green Information and Communication Technology (Green ICT)
practices for their service operations. There are two main types
of Green ICT in the organizational context. First, Green for ICT
where ICT aims at reducing its own footprint and second, Green
by ICT aiming at offering digital tools that reduce the envi-
ronmental footprint of all business activities in the organization.
In this paper, we present two digital experiments where green
by ICT solutions for a forest machine operator company were
engineered by software development practices. In this study, we
aim to answer the research problem: How digital experiments
support sustainability in a forest machine operator company?
This embedded case study is based on two consecutive digital ex-
periments conducted in Finland with a large scale forest machine
operator company. The first digital experiment focused on tank
level monitoring and the second experiment on mass monitoring.
Our results highlight the challenges in receiving sustainability
data from subcontractors and IT providers. Additionally, IoT-
enabled monitoring services can eliminate traveling to remote
storage areas and thus may reduce CO2 footprint remarkably.

Keywords—Green ICT; software system; Internet of Things;

I. INTRODUCTION

An increasing number of organizations are adopting green
computing practices to transition their operations toward
greater environmental sustainability. Green computing includes
actions such as decreasing energy consumption, recycling e-
waste and environmental friendly usage of devices [1]. A
recent study [2] conducted in Finland showed that compa-
nies’ awareness and understanding of green ICT varies a lot.
According to Raja, green computing refers to sustainable,
environment-friendly computing [3]. Chaudhari and Kothoke
[4] have identified challenges in green ICT including inad-
equate ICT-based informed decision-making, low ICT and
the least Green ICT awareness, lack of matured inter/multi-
disciplinary software tools and issues related to availability
and reliability of data. Cater-Steel and Tan [5] have established
green IT service management (ITSM) framework that contains
four pillars: Green procurement, consolidation of IT resources,
power management of IT equipment, decommissioning of
unused/obsolete equipment.

Widdicks et al. [6] report that ICT can enable reductions
in global emissions in other sectors but there are continuous
uncertainties regarding ICT’s carbon impacts. The study of
Dubey and Hefley [7] proposes green extensions to IT In-
frastructure Library (ITIL). In supplier management, service

vendors can be evaluated by using various green metrics. For
example, when an organization decides to purchase datacenter
services, one can use metrics, such as datacenter power usage
effectiveness (PUE) and data center infrastructure efficiency
(DCIE). Singh et al. [8] present a green and sustainable
software model that can be used in green ICT practices. Cloud
computing plays an important role in green computing by
enabling more efficient and sustainable use of computing re-
sources [9]. Cloud computing utilizes virtualization techniques
that allow cloud providers run multiple virtual machines on a
single physical server. Additionally, cloud computing enables
on-demand usage of computing resources where resources are
allocated only when needed. One of the key challenges in green
ICT from IT company’s perspective is that IT customers do not
want to pay extra for greener services. Often, companies have
to make trade-offs between costs and gains when they make
decisions on implementing green and sustainable information
systems [10]. If companies could assess and report their
positive environmental contributions, it would provide more
accurate knowledge and support for green initiatives [11]. The
Internet of Things (IoT) represents a rapidly evolving network
of interconnected devices that communicate and exchange
data, offering huge transformation potential across various
business domains. An IoT-based system consists of multiple
configuration items, such as sensors, IoT devices, applications,
cloud services, data networks and gateway devices. According
to the definition by Dorsemaine et al. [12], IoT is ”a group of
infrastructures interconnecting connected objects and allowing
their management, data mining and the access to the data they
generate”. Hatzivasilis et al. [13] discuss how IoT technology
can be used for circular econonomy purposes, such as to
administrate the lifecycle of the deployed electronic equipment
and manage related supply chains. IoT provides significant
improvement opportunities from green by ICT perspective.
Tran et al. [14] have used IoT to collect vibration signals
on engines of ships. Additionally, Gantert et al. [15] collect
and use sounds produced by machine components to improve
corrective maintenance of machinery.

Concerning the research gap, although IoT technologies
have been widely used in several domains, existing research
has not dealt with how forest machine operator companies are
using IoT to increase automation and productivity. The novelty
of our research lies in demonstrating how we applied IoT in
our digital transformation experiments within a new business
context—monitoring forestry assets as well as showing how
these experiments supported the sustainability goals of the case

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 12 / 88

organization.

The remainder of the paper is organized as follows: In
Section 2, research methodology of the study is presented. In
Section 3, case study results are provided. Section 4 is the
analysis and finally, the conclusions are given in Section 5.

II. RESEARCH PROBLEM & METHODOLOGY

This exploratory case study aimed at answering the fol-
lowing research problem: How digital experiments support
sustainability in a forest machine operator company? The case
study can be defined as ”an empirical inquiry that investi-
gates a contemporary phenomenon within its real-life context”
[16]. Our research problem was divided into following three
research questions:

• How sustainable and green practices are addressed
by the forest machine operator’s staff during digital
experiments?

• How are the sustainability concepts visible in the
service operation of the forest machine operator?

• What type of challenges are related to sustainability
& green ICT from the perspective of a forest machine
operator?

Regarding the case selection, the case organization was se-
lected from the pool of industry partners and the university
has collaborated several years with the case organization
in EU funded projects. Additionally, the case organization
participated in the green ICT research project carried out by the
university. Thus, the project enabled an easy access to the case
organization. While this case study was exploratory in nature
and our first attempt to study green ICT, we used high level
research questions focusing on green practices, visibility of
sustainability concepts and challenges to answer our research
problem.

A. Case Organization

Motoajo is one of the leading forest machine providers
in Finland. The company is as a family-owned business with
around 80 employees. The company operates almost 60 forest
machines in North Karelia. Motoajo has a long expertise in the
management and maintenance of forestry machinery, Motoajo
provides professional services that enhance the efficiency and
sustainability of forest operations. The services provided by
Motoajo include harvesting, wood transportation, heavy ma-
chinery maintenance and repair; and excavator services, such
as soil tilling. The company takes environmental responsibility
into account, supports the circular economy, and has an up-
to-date carbon footprint calculator. Motoajo is committed to
providing logging services sustainably and profitably while
respecting the environment and laws.

Motoajo was selected as a case organization because the
Digital Innovation Hub network DIH World had announced
the call for digital experiments and smart forestry was one the
topics of that call. Together with Motoajo, our DIH applied
funding for the tank level monitoring experiment The 2nd
experiment focused on monitoring the mass of forestry assets
(how many litres/kg of liquid remain in the container) by using
industrial scale and IoT technologies. .

B. Data Collection Methods

Data for this study were collected from multiple data
sources and multiple researchers between August 2021 - May
2025 by the university research team. Data was collected from
two digital experiments related to applying IoT technologies.
According to Eisenhardt [17] triangulation and usage of mul-
tiple data collection methods provides stronger substantiation
of constructs and hypotheses. The following data sources,
recommended by Yin [16] were used:

• Documentation: The sustainability report of the case
organization, Tekelek tank level sensor product sheet,
safety instruction documents, PCE RS 2000 specifica-
tions document

• Archival records: the public website of the case orga-
nization, a job onboarding questionnaire designed for
case organizations employees, DEFRA GHG conver-
sions factors spreadsheet used in calculating emissions
for traveling between remote storage areas, online
forms for truck drivers and forest machine operators

• Interviews/discussions: Green ICT group interview in
May 2025 with CEO, foreman and quality manager;
project discussions during work meetings with fore-
man of Motoajo, and interview with CEO related
to digital transformation, online meetings with AWS
consultants

• Participative observation: Digital experiment work
meetings in target organization’s facilities, multiple
visits to the case organization, participative observa-
tions during visits in the organization’s storage areas
in Nurmes and Riistavesi, system testing workshop
during the second experiment in the IT provider orga-
nization’s facilities in Mikkeli

• Physical artifacts: videos that showcased how forestry
liquids and forestry waste were stored and processed
in the storage area: videos were shot while implement-
ing a virtual job onboarding system; PCE RS 2000
industrial scale, various containers used for storing
forestry liquids, such as marking dyes and diesel
exhaust fluid; Tekelek tank level sensor

• Direct observations: Observations during physical vis-
its to the case organization’s main storage area and
remote storage areas. A visit at the forest logging site
during the winter.

III. RESULTS

The research team including the first and second author
and Motoajo received EU funding from DIH World project’s
Call for experiments. The funding enabled implementation of
a digital experiment where the goal was to build a prototype
for a solution that monitors and measures tank levels by using
Internet of Things technologies. The experiment highlighed the
following challenges in the forest service machine operator’s
operations. At that moment, Motoajo did not have accurate
view on inventories of forestry liquids that forest machines
consume. This resulted in situations that forest machine drivers
may not get mandatory liquids. Frequent trips to remote
storage areas were needed to check whether critical liquids

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 13 / 88

consumed by forest machines are available. Additionally, better
job introduction was needed for managing forestry liquids
safely and according to green practices.

A. Green and digital forest service management experiment
for tank level monitoring

Initial discussions on the experiment objectives addressed
the need to monitor fuel containers in forest logging sites. We
started studying external factors, such as legal, environmental
and technical issues that affect fuel operations: ”The process
of transporting fuel to logging sites is tricky and might not
be fully automated; typically a fuel truck driver needs to call
anyway the forest machine driver to give location informa-
tion.” We observed that forest certificates prevent storing fuel
containers in the forest in groundwater areas. Additionally,
case organization’s staff reported that forest machine settings
and driving patterns affect the fuel consumption (also CO2
footprint of harvesting).

Due to complexity of fuel operations, we decided to focus
on other business-critical liquids: Fungicide, marking colours
and diesel exhaust fluid ADBlue. The case organization’s
representative stated: ”We have many types of containers in
several locations and dropping points: metal containers, plastic
IBC containers”. We also observed that the company had
already invested in technology that helps collecting data on
vehicles and analyzing factors that affect fuel costs: ”Our vans
have automatic driving logs where we can see where vehicles
are and where they are moving. Additionally, we can observe
driving behaviour and patterns.”

Forest machine operations require various types of liquids
(fuel, marking dyes, diesel exhaust fluid) and availability
of those liquids is critical to Motoajo’s harvesting business.
Containers of liquids are stored in main storage area of
Nurmes, Finland and remote storage areas. We observed that
consumption of liquids is monitored manually and this activity
requires frequent travelling to remote storage areas: ”One
employee spends at least one working day per month due to
driving to remote storage areas and checking the availability
of liquids and items”.

In the specification phase, we asked user requirements for
the monitoring system. The case organization’s CEO addressed
especially the usability requirements ”The system should be
very easy to use; even in a situation when a truck driver
or a forest machine driver comes to the remote storage area
during the winter gloves in his hand and when there is no
daylight”. Additionally, the CEO commented that it should be
easy to interpret results provided by the monitoring solution
”The mobile app could show the level of liquids with traffic
light colour codes; additionally how much liquid a specific
driver took from the container”.

The research team made a visit to one of the remote storage
areas during the winter and played the role of a truck driver.
While the CEO had commented on data needs ”If possible, a
delivery truck driver should use the app to provide information
about the refilling”, we observed that there was a QR code
attached to a container and opening the QR c led to an online
form that was designed for both capturing data on refilling
events and retrieving events. We opened the form during our
field visit and observed that there was room for improvement

Fig. 1. TILHI application for tank level monitoring

in the usability of the form. We interpreted that in order to
increase usability, it might be better to separate these forms
from each other. This could be one root cause for missing
data on liquid refills and retrievals.

Technical specifications for the IoT system were outlined
based on the user stories. The key objectives of technical
specification stage was to define the hardware and software
requirements for the TILHI IoT system, including sensor cal-
ibration, dashboard interfaces, and data handling. The project
team consumed a lot of time for selecting a right sensor for
monitoring liquid levels. Meetings and discussions were orga-
nized with various sensor service providers and IoT platform
providers. The sensor that was finally selected was Tekelek
LoraWAN-enabled ultrasonic sensor. This sensor module had
been used in many sensor projects in Finland and it was also
available in the LoraWAN network provider’s (Digita) sensor
catalogue.

The core development of the IoT system took place over
several months, culminating in the review of the completed
development in February 2022. This phase covered both the
mobile application and the web interface. Figure 1 shows the
user interface of the tank level monitoring system TILHI that
was implemented in the experiment. The key objective of this
stage was to build the IoT system, including features such as
sensor calibration, container management, and liquid tracking.
We experienced minor challenges both in ordering the sensors
and installing the sensors to the container.

The deployment of the system was performed February-
April 2022. Deployment activities occurred after successful
testing of the system. The deployment phase aimed at ensuring
that the IoT system was integrated into the forestry opera-
tional processes, with all essential components functioning as
expected. Our key objective was to roll out the tank level mon-
itoring system to end users in forestry operations. In the end of
the experiment, we found out that data submission frequency of
sensor modules is every six hours, not hourly as we expected.
We asked the reason in a telephone discussion with the service
provider ”Frequency on sending IoT data affects the sensor
module battery duration.” We also delivered this information
to the case organization’s representative that considered the
data submission frequency adequate but not optimal. The IoT
experiment ended with a Continual Improvement meeting with

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 14 / 88

Fig. 2. The context of the weight monitoring system for forestry liquids

a discussion on what went well and what could have been
improved. The experiment was considered successful despite
the slow start and many changes in monitoring target.

B. Smart mass monitoring experiment

At the end of the first experiment, the case organization
provided idea for a new experiment. The main goal of the new
experiment was to place an industrial-level ’scale’ under a stan-
dardized IBC tank to allow for real-time mass measurement of
the liquid content of the tank (see Fig. 2). Another use case was
to measure the truck pallet containing hydraulic oil canisters.
Initially, we selected the public LoRaWAN network for data
transmission, however, this was changed later to the private
LoraWAN because we wanted to minimize the number of third
party services, such as public LoraWAN network provider.

The experiment started with studying which components
were needed for the system. The main hardware components
(industrial scale PCE RS 2000 [18] and Enless Wireless Signal
Transmitter) were identified and selected by measurement
technology unit located in Kajaani, Finland Hardware compo-
nents were purchased and calibrated. After this, the research
team initiated discussions with the cloud service provider.
The public sector Amazon Web Services representative and
cloud consultants helped the research team to identify which
cloud services were needed to implement the system. The
IoT reference architecture by AWS provided a good basis for
discussions.

The next step in the experiment was to find an ICT com-
pany that could implement the system in AWS cloud. The first
author of this paper participated in Solver X reverse pitching
event and from the event we received eight potential IoT
providers that were interested in implementing the system. We
performed a public bidding process and selected the provider
based on price and quality of implementation. The hardware
components were transported from one city to another to the
selected IT provider with a light commercial vehicle that could
accommodate the industrial scale (1200 x 1200 x 100 mm;

Fig. 3. A system testing workshop in IT provider’s facilities

85 kg). After few months, the research team had a small
system testing workshop in October 11, 2023 (see Fig. 4) with
the IT provider where the hardware (the scale and the signal
transmitter) and software components (AWS cloud services)
were tested together.

In May 14th 2025, the research team had a field visit to
the case organization including discussions on green ICT and
the monitoring target of the mass monitoring experiment. We
asked whether they pay attention to sustainable choices while
procuring IT equipment and they answered: “We purchase
equipment to our own needs, not based on green ICT. If the
system results in positive environmental impact, it is fine”.

The case organization reported that they measure carbon
footprint of their operations automatically from invoices by
using an add-on ICT module installed in accounting software.
The main challenges related to green approach seemed to be
related to changing requirements: “The requirements in forest
standards and legislation keep on changing. It will be increas-
ingly challenging to get employees or forest machine drivers.
Who has courage to start harvesting while there are so many
requirements that you have to know?”. The interviewees of the
case organization commented that large customers are already
asking information on sustainability and perhaps they should
also start requiring information from their sub-contractors: “If
our customers require sustainability information from us, we
should have similar rights to request this information from our
subcontractors.”

During the visit we had an opportunity to see the storage
facilities and observed that the mass monitoring target was
an IBC container with metal frames and wooden truck pallet
under the container (see Fig. 4). Discussion with the case
organization’s representatives showed that they would like
to receive an alert when there is approximately 20 percent
of liquid remaining in the container (200 litres). The case
organization’s representatives asked whether the system can
be used also for other types of containers.

Additionally, the CEO stated that transporting the water
causes CO2 emissions for them: “If we could transport only
the chemical instead of water, this would definitely decrease
CO2 emissions.” It is mandatory for forest machine operators
to take preventive actions for forest diseases, for example,

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 15 / 88

Fig. 4. Observing the monitoring target during the field visit to the case
organization’s facilities in Nurmes, Finland

chemical control is carried out with a strong urea solution
and biological control with a solution of gray mold fungus: “
Regarding monitoring operations, some customers have started
to request information such as what is our portion on using
gray mold fungus and urea solution.”

If the remote monitoring service would be used in all
remote storage areas of the case organization, carbon footprint
of traveling could be reduced approx. 192 kg (2,66155 x 72 l =
191,63 kg CO2) based on driven kilometres (692 km) between
several remote storage areas with a light commercial vehicle
MB Sprinter, traditional diesel as fuel, calculated according
to UK emission conversion factors [19]. This would be a
significant saving. Additionally, the remote monitoring could
save more than one working day per month .

IV. ANALYSIS

Next, analysis of case study results reflecting the four
research questions are presented. The source of evidence has
been marked by the following abbreviations: IN= Interviews,
AR= Archival Records, DI= Discussions, DO= Documen-
tation, PO= Partic. observation, DOB= Direct observation,
PA= Physical artefacts. Table 1 shows our findings from
two experiments related to the first research question: How
sustainable and green practices are addressed by the forest
machine operator’s staff? Our results showed that sustainability
talks were closely related to the forestry operations, such
as recycling, reusing the oil canisters and grease tubes. The
company addressed that decision making on ICT purchases
focuses on how well the system or the device supports their
business objectives rather than how environmental friendly the
system or the device is.

Table 2 shows our analysis on how sustainability concepts
are visible in the organization based on the data from two
experiments. Based on the interview with the CEO and fore-
man, we observed during the Experiment 2 that environmental
concerns of the case organizations customers and knowledge
requirements for forest machine drivers had increased since
the Experiment 1. Sustainability issues were evolved remark-
ably after the first experiment: The company had introduced

TABLE I. ANALYSIS RELATED TO RQ1: HOW SUSTAINABILITY
CONCEPTS ARE ADDRESSED?

Finding Source
Automatic driving diaries show the location driving behavior IN, DI
The entire staff and subcontractors have been trained in responsible
for sustainable operations and risk management. IN, DO
We are committed to providing timber harvesting services
sustainably and profitably, respecting the environment and adhering
to laws. IN, DO
We support the circular economy and recycle the most important
waste generated in our ops, such as oils, metals, batteries, and tires IN
When there is sufficient amount of liquids in containers, no extra
trips are needed due to empty containers. IN
Personnel is our most important resource, so employee well-being
and safety are of utmost importance to us. DO
We purchase equipment to our own needs, not based on green ICT.
It is fine if the system results in positive environmental impact IN
There are marked areas for forestry waste in the storage. PA, IN

carbon footprint calculation and published a company-wide
sustainability report. They had clear plans to start auditing
their subcontractors and providers to receive sustainability
data. They commented that some of their customers had also
started to request sustainability data from them. Environmental
issues were somehow visible in the company’s marketing and
communication during the first experiment but during the sec-
ond experiment we observed that company was spreading the
sustainability message more actively both inside the company
and externally covering all the stakeholders of the organization.

TABLE II. ANALYSIS RELATED TO RQ2: VISIBILITY OF
SUSTAINABILITY CONCEPTS IN THE ORGANIZATION

Finding Source
The company has a quality and environmental management handbook DOC, IN
Forest Act, the Nature Conservation Act, PEFC, and
ISO standards used in harvesting IN
The company invests in projects that optimize resource consumption PO, IN
The entire staff and subcontractors have been trained
in responsible operations and risk mgmt. IN, DO
Sustainability is very visible in the company’s values and
marketing, such as ‘Nature is our friend’ PO, AR
The company has a sustainability report on their website AR
The company calculates carbon footprint for operations IN
Sustainability and environmental friendly way of operating
is communicated to new employees starting from job
onboarding AR, IN

Table 3 shows the analysis regarding the third research
question: What type of challenges are related to sustainability
and green ICT? We identified both Green ICT challenges that
software or system engineers should pay attention to in the fu-
ture. First, receiving data from subcontractors and IT providers
is a precondition for succesful carbon footprint calculation.
The organization calculates at the moment carbon footprint
based on invoices from their financial management system.
However, in order to calculate the CO2 emissions of the whole
value chain or digital-enabled services where several forestry
actors, platform providers and system providers participate in,
reliable emission data is needed.

Second, more complicated the system structure, more dif-
ficult it will be to calculate the CO2 footprint. In the first
experiment, we would need to calculate energy consumption
of an AWS-backed mobile app, a third party IoT data ingestion
platform, IoT sensor modules and receive data on system usage
hours. Calculating the CO2 of the second experiment might be
simpler because it uses only AWS cloud, AWS hosted Grafana
and the industrial scale with a signal transmitter. Additionally,
interviewees reported challenges in managing the knowhow

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 16 / 88

TABLE III. ANALYSIS RELATED TO RQ3: CHALLENGES IN
SUSTAINABLE AND GREEN PRACTICES

Finding Source
IT providers are not able to provide data on their CO2 emissions PO
Cloud platforms provide CO2 reporting but allocating
emissions for a specific customer or a service may cause challenges PO
Frequent IoT data submission affects the battery of IoT sensor PO, DO
The requirements in forest standards and legislation keep on changing IN
It is difficult to recruit forest machine drivers because of ever
increasing knowledge requirements IN
Transporting the water causes unnecessary CO2 emissions IN

because forest machine drivers must know forest machine
settings, forest standards, requirements set by customers etc.

V. CONCLUSION

This study aimed at answering the research problem: How
digital experiments support sustainability in a forest machine
operator company? There were three research questions in the
study. Regarding the first research question, we observed that
sustainability &green practices were addressed by the forest
machine operator’s staff in terms of respecting the environ-
ment, promoting circular economy, such as recycling forestry
assets and emphasizing safety and wellbeing of employees.
While purchasing services, systems and devices, the company
values their suitability to business over green IT causes.

Concerning the second research question, we found various
ways how sustainability and green concepts were visible in the
case organization and its service operations, such as improve-
ment projects that advance digitalization and sustainability,
the sustainability report and the environmental handbook and
the carbon footprint calculator. The third research question
highlighted the challenges, such as lack of emission data
from IT providers, challenges in measuring carbon footprint of
xomplicated systems, and increasing knowledge requirements
for forest machine drivers.

There are certain limitations related to this case study. First,
the second experiment is still in the work-in-progress status
waiting for that software components, such as AWS cloud
resources and Grafana dashboard are configured properly.
Second, the results of the study might be difficult to generalize
to other forest machine operator companies because the size
of the company matters. Companies that operate only few
machines do not need expensive monitoring mechanisms and
they do not have so many remote storage areas. Third, data
was collected during only two digital experiments from one
organization. The results of this study may be used by software
& system engineers to identify how digital transformation
projects and experiments can contribute to sustainability think-
ing as well as how IoT-based systems can be designed,
deployed and introduced to cater corporate sustainability ob-
jectives. Further research on this topic could focus on studying
Green for ICT aspects of IoT-based monitoring services.

ACKNOWLEDGMENT

We would like to thank the case organization for valuable
collaboration during the study. This paper is part of the results
of the VICTIS - Green ICT from Eastern Finland UEF project
co-funded by European Union (A91631, ELY Centre).

REFERENCES

[1] V. Agarwal, K. Sharma, and A. K. Rajpoot, “A review: Evolution of
technology towards green IT,” in Proceedings of the 2021 International
Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), 2021, pp. 940–946.

[2] L. Abdullai, L. Partanen, A. Sipilä, S. Oyedeji, M. S. Haque, and
J. Porras, “Co-design framework for green ICT ecosystem: A tale from
the finnish green ICT ecosystem,” in 2023 International Conference on
ICT for Sustainability (ICT4S), 2023, pp. 207–215.

[3] S. P. Raja, “Green computing: A future perspective and the operational
analysis of a data center,” IEEE Transactions on Computational Social
Systems, vol. 9, no. 2, pp. 650–656, 2022.

[4] Y. Chaudhari and P. Kothoke, “Green ICT and sustainable manufactur-
ing: Economy of saving and saving of environment,,” in Strategic Tech-
nologies of Complex Environmental Issues -A Sustainable Approach.

[5] A. Cater-Steel and W.-G. Tan, “The role of IT service management
in green IT,” Australasian Journal of Information Systems, vol. 17, 01
2010.

[6] K. Widdicks, B. Knowles, A. Friday, and G. Blair, “ICT under con-
straint: Exposing tensions in collaboratively prioritising ICT innovation
for climate targets,” ACM J. Responsib. Comput., vol. 1, no. 2, Jun.
2024.

[7] S. Dubey and W. Hefley, “Greening ITIL: Expanding the itil lifecycle
for green IT,” in 2011 Proceedings of PICMET ’11: Technology
Management in the Energy Smart World (PICMET), 2011, pp. 1–8.

[8] S. Singh, A. Tiwari, S. Rastogi, and V. Sharma, “Green and sustain-
able software model for IT enterprises,” in 2021 5th International
Conference on Electronics, Communication and Aerospace Technology
(ICECA), 2021, pp. 1157–1161.

[9] C. Sailesh, V. S. Praneeth, S. S. Koushik, V. G. N. Sai, N. Vurukonda,
and V. K. Burugari, “A review on adoption of green cloud computing,”
in 2023 7th International Conference on Computing Methodologies and
Communication (ICCMC), 2023, pp. 1–6.

[10] K. S. Savita, P. D. D. Dominic, and T. Ramayah, “The adoption of
green information technologies and systems as a driver within green
scm,” in 2014 International Conference on Computer and Information
Sciences (ICCOINS), 2014, pp. 1–6.

[11] V. Coroamă, P. Bergmark, M. Höjer, and J. Malmodin, “A methodology
for assessing the environmental effects induced by ICT services: Part
i: Single services,” in Proceedings of the 7th International Conference
on ICT for Sustainability, ser. ICT4S2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 36–45.

[12] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien,
“Internet of things: A definition & taxonomy,” 09 2015.

[13] G. Hatzivasilis, N. Christodoulakis, C. Tzagkarakis, S. Ioannidis,
G. Demetriou, K. Fysarakis, and M. Panayiotou, “The CE-IoT frame-
work for green ICT organizations: The interplay of CE-IoT as an enabler
for green innovation and e-waste management in ICT,” in 2019 15th
International Conference on Distributed Computing in Sensor Systems
(DCOSS), 2019, pp. 436–442.

[14] H.-L. Tran, D. Nguyen, Q.-H. D. Ba, and V.-N. Pham, “An implemen-
tation of IoT system for collecting vibration signals of ships engines
to support engine failures detection,” in 2024 Tenth International
Conference on Communications and Electronics (ICCE), 2024, pp. 475–
480.

[15] L. Gantert, M. Sammarco, M. Detyniecki, and M. Campista, “A
supervised approach for corrective maintenance using spectral features
from industrial sounds,” in 2021 IEEE 7th World Forum on Internet of
Things (WF-IoT), 2021, pp. 723–728.

[16] R. Yin, Case Study Research: Design and Methods, Fourth edition.
Beverly Hills, CA: Sage Publishing, 2009.

[17] K. Eisenhardt, “Building theories from case study research,” Academy
of Management Review, vol. 14, pp. 532–550, 1989.

[18] PCE Instruments, “Platform scale pce-rs 2000,” Online specification:
https://www.pce-instruments.com/, 2025.

[19] Department for Energy Security and Net Zero, “UK government GHG
conversion factors for company reporting,” Conversion factors Excel
Sheet, 2024.

6Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 17 / 88

Data-Driven Insights for Software Development Process Improvement: A Defect

Analysis

Melike Takıl

The Scientific and Technological Research Council of

Türkiye (TÜBİTAK) Informatics and Information Security

Advanced Technologies Research Center (BİLGEM)

Ankara, Türkiye

email: melike.takil@tubitak.gov.tr

Zeliha Dindaş

The Scientific and Technological Research Council of

Türkiye (TÜBİTAK) Informatics and Information Security

Advanced Technologies Research Center (BİLGEM)

Ankara, Türkiye

email: zeliha.dindas@tubitak.gov.tr

Abstract— This paper presents an analysis of defects found in a

software project at a Capability Maturity Model Integration

(CMMI) Level 5 public institution, required to manage and

improve their processes using statistical and other quantitative

techniques, develops software for other public organizations. A

dataset of software defects collected via a task and issue

management platform was analyzed, focusing on defect

severity, defect type, detected activity and affected

components. Defects were classified and a root cause analysis

was conducted to identify defect-prone areas and underlying

causes. The motivation of this work is providing a practical

perspective on how public-sector software teams operating

under governmental regulatory constraints can use defect data

to fix defects and to support long-term process improvement

and quality assurance. The results of this research are intended

to contribute future projects of the organization and provide

referenceable value to other governmental software units

aiming to enhance their defect management capabilities.

Keywords— software defect analysis; software quality; root

cause analysis

I. INTRODUCTION

In software engineering, the identification, classification,
and analysis of defects play a key role in providing product
quality and maintaining process efficiency. Defects which
are broadly defined as flaws, errors, or bugs in software have
direct consequences on system reliability, maintainability
and user satisfaction. Their early detection and resolution are
crucial for reducing rework and cost while preserving the
credibility of organizations, particularly in high-stakes public
sectors. Defect analysis is an important component of
software improvement process. It enables organizations to
trace the origins of defects, understand the conditions under
which they arise, and implement preventive measures to
reduce their recurrence. Many studies have shown that
systematic defect tracking and root cause analysis contribute
significantly to achieving higher maturity in software
processes, as seen in models such as the CMMI.
Organizations at higher maturity levels (such as Level 5) are
expected to leverage quantitative defect data for continuous
process optimization and predictive quality management.

While defect analysis is a well-established practice in the
private sector, its application within public-sector software
development presents unique challenges and opportunities.

Public institutions are often subject to greater regulatory
oversight, extended stakeholder ecosystems, and longer
procurement cycles. These factors underscore the importance
of software quality and magnify the implications of defects.
Moreover, since public-sector software is frequently reused,
integrated, or interfaced with systems from other agencies,
the downstream effects of unresolved or recurring defects
can be profound.

The remainder of this paper is structured as follows. In
Section 2, a review of the relevant literature and related
works is presented in order to contextualize the study. In
Section 3, the methodology is described, including the
motivation for the study, its scope, the dataset and variables
used, and the expected outcomes. In Section 4, the data is
analyzed from multiple perspectives to uncover significant
patterns and insights. Finally, in Section 5, the main
conclusions are drawn and potential directions for future
work are outlined.

II. RELATED WORK

Defect tracking is a critical component to a successful
software quality effort. In fact, Robert Grady of Hewlett-
Packard stated in 1996 that “software defect data is the most
important available management information source for
software process improvement decisions,” and that “ignoring
defect data can lead to serious consequences for an
organization’s business” [1]. Defect and problem metrics are
among the few direct and quantifiable indicators of software
process and product quality. Although customer perceptions
of software quality may vary, the frequency of defects is
widely recognized as being inversely proportional to quality.
Such measurements provide objective insights into
reliability, correctness, efficiency, and usability of the
software system [2]. Preventing defects early in the software
development lifecycle is more effective and less costly than
detecting them later. Key defect prevention strategies—such
as formal methods, process improvements (e.g., CMMI),
training, and automation—play a crucial role in enhancing
software quality. This proactive approach complements the
focus on post-deployment defect analysis by underscoring
the importance of early quality assurance practices [3].
Defect Causal Analysis (DCA) is a structured approach used
to identify systematic errors that repeatedly cause software
defects and failures. This technique aims not only to prevent
similar defects in the future but also to enable their earlier

7Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 18 / 88

detection through root cause analysis [4]. A common method
within DCA is the use of defect classification data—such as
Pareto charts—to identify the most frequent defect types,
which often point to underlying process weaknesses [5].
Once these patterns are recognized, organizations can
implement targeted process improvements to reduce
recurrence of similar issues [6]. The present study follows a
similar rationale by examining defect distributions and
contributing factors to support software process
improvement.

The outputs produced by a process can be characterized
by some quality attributes, the values of which generally
show some variation. The causes of variation can be
classified as natural causes (also called common causes) or
assignable causes (also called special causes). Natural causes
are those that are inherent in the process and that are present
all the time. Assignable causes are those that occur
sometimes and that can be prevented. A process is said to be
under statistical control if all the variation in the attributes is
caused by natural causes [7][8]. Therefore, Statistical
Process Control (SPC) control limits were used to detect
defects throughout the software development process. Usage
of control charts can lead to reduction in the control limits
causing process improvements. It has been observed that
rigorous monitoring of control charts plotted for process
parameters like defect density and taking timely corrective
and preventive actions would lead to process improvements
[9].

III. METHODOLOGY

This section outlines the methodological approach
adopted to investigate defect trends and root causes within a
public sector software project. It describes the rationale
behind the study, the scope and structure of the dataset, the
selected variables, and the expected outcomes, all of which
contribute to a systematic and data-driven defect analysis
process.

A. Rationale and Scope

This study was carried out in response to a noticeable
increase in software defects detected in the production
environment of a public sector software project. Given the
potential impact of such defects in public services, it became
essential to investigate the nature, distribution, and timing of
these issues. The primary objective was to identify critical
defect patterns, root causes, and components most affected.

Software quality metrics are periodically monitored using
dashboards visualized through a Business Intelligence (BI)
tools. When defect counts began to increase, a more detailed
investigation was required to identify trends, seasonal
patterns, and component-level defect concentrations.
Moreover, since data interpretation and context play a crucial
role in defect analysis, the project's technical lead and project
manager were actively involved in scoping the dataset. Their
input ensured the inclusion of relevant variables and the
exclusion of irrelevant entries, thereby improving the
accuracy and relevance of the analysis. It is emphasized that
the reactive aspect of defect management by analyzing
already reported and resolved issues, aiming to support

transition toward proactive quality assurance in future
phases. It aligns with the principles of Total Quality
Management (TQM) and CMMI, focusing on continuous
improvement, data-driven decision-making, and stakeholder
engagement [10].

B. Dataset and Variables

The dataset used in this study was obtained from a task
and issue management platform employed by the institution
to coordinate and oversee software development activities.
This platform is deeply integrated into the organization’s
software lifecycle and serves as a central hub for managing
project workflows, including backlog planning, sprint
execution, issue tracking and quality assurance processes.

Acting as the authoritative repository for work-related
records, the platform enables the systematic logging,
categorization, assignment, and resolution of software issues.
It facilitates end-to-end traceability by capturing detailed
metadata for each issue, including attributes such as issue
type, impacted components, severity, detected activity, sprint
association, assignee and current status. Additionally, the
system records all updates, comments, workflow transitions,
and timestamps, allowing for detailed temporal analysis and
retrospective evaluations. The tool is actively used by cross-
functional teams comprising developers, testers, analysts,
project managers, and technical leads. It supports both agile
and hybrid project methodologies through features such as
sprint boards, user story hierarchies, version tagging, and
customizable workflows. This makes it possible to track the
lifecycle of a defect from discovery through resolution with a
high degree of transparency and consistency.

For the purposes of this analysis, the scope of the issues
was narrowed to defects. The selection criteria included:

 Only resolved and closed issues were considered, to
ensure that the analysis reflects confirmed defects
rather than pending or misclassified reports.

 Only defects reported in production environments
were included, as these are considered more critical
due to their direct impact on end users and
operational services. Issues identified in test
environments were excluded, since their occurrence
is expected and does not necessarily indicate
process deficiencies.

 The analysis covers the period from January 2024
to April 2025, selected in collaboration with
project’s technical lead to focus on periods when
defect trends increased.

A total of 147 defect issues met the inclusion criteria.
Rather than including the entire dataset, we present a
representative snapshot of the dataset and its fields in Table
1.

To ensure the relevance and reliability of the dataset, a
preliminary validation process was conducted with the
project’s technical lead and project manager. This included
reviewing ambiguous entries, verifying proper classification
of defect types and deciding on the most appropriate
variables. During pre-processing, a limited number of
missing values were addressed by directly consulting project

8Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 19 / 88

team, whose validated input was used to complete the
dataset.

TABLE 1 DATASET SNAPSHOT FOR FIELDS

Field Value

Issue Key 143

Issue Type Defect

Sprint Period 01.04.24

Severity Medium

Defect Type Coding

Component/s A

Detected

Activity

System

Monitoring

Resolution Done

Status Closed

The following key variables were extracted from the task

and issue management platform and used in the analysis:

 Severity: This attribute indicates the relative
criticality of the defect, typically ranked on a scale
(e.g., minor, medium, major). It reflects the
potential functional or user-facing impact of the
issue.

 Detected Activity: This captures the specific
development or operational phase in which the
defect was discovered (e.g., Development,
Integration Test, Code Review, System
Monitoring). This variable supports root cause
analysis by highlighting gaps in earlier detection
efforts.

 Component(s): This denotes the subsystem(s) or
modules affected by the defect. The platform allows
for multiple components to be tagged per issue,
enabling an analysis of module-level quality.

 Detected Sprint: This indicates the sprint during
which the issue was logged. This supports time-
based analysis, especially within agile projects
where delivery and quality metrics are tracked in
sprint cycles.

 Defect Type: This refers to the technical nature of
the defect (e.g., coding, architectural design, data,
integration, User Interface (UI), performance).
Accurate classification in this field is crucial for
identifying systemic weaknesses in development or
architectural design practices.

Each of these structured variables was used to segment
the dataset and support both descriptive and diagnostic
analysis. By leveraging standardized fields available within
the task and issue management platform, the study ensured
traceable, reproducible, and context-aware outcomes.
Nevertheless, several data quality considerations were taken
into account:

 Timeliness and accuracy of data entry: As the
platform relies on manual inputs from team

members, discrepancies in timing or completeness
of entries may affect the accuracy of the dataset.

 Subjectivity in classification: The interpretation of
what constitutes a "defect" versus another issue type
may vary across individuals or teams, potentially
introducing inconsistency.

 Dataset size: Although the 147 production defects

analyzed provide sufficient detail for meaningful

pattern recognition, the moderate size limits the

statistical generalizability of the results. Software

engineering experiments often have small sample

sizes [11]. One way to manage this challenge is

through improving the dataset itself, as it has been

noted that "the improvement of data sets through

enhanced data collection, pre-processing and

quality assessment should lead to more reliable

prediction models, thus improving the practice of

software engineering" [12].
Despite these limitations, the active use of a task and

issue management platform significantly enhances the
reliability and depth of the analysis. Its integration into daily
workflows ensures that the defect data reflects the
operational reality of software development in a complex
institutional environment.

C. Expexted Outcomes

Identifying the conditions under which defects most
frequently arise, determining whether specific modules or
time periods exhibit elevated defect counts, and tracing the
root causes behind these occurrences form the basis of this
study. By leveraging this knowledge, the institution can
reduce defect density—an outcome strongly correlated with
maintainability and user satisfaction [13]. Improvements in
defect management ultimately lead to shorter release cycles,
lower maintenance costs, and enhanced end-user trust.

IV. ANALYSIS

This section presents a structured analysis of production

defect data by leveraging variables extracted from the task

and issue management platform. The aim is to identify

defect trends, classify defect types, assess component-level

impact, and examine detection patterns to support actionable

quality improvement and data-driven decision-making.

A. Monthly Defect Counts

Several analyses were performed by using the available

fields within the task and issue management platform.

Monthly total defect counts and especially major defect

counts were visualized in Figures 1a and 1b to monitor

trends over time. It was observed that defect counts

increased notably in certain months, prompting further

statistical investigation.

To determine whether these increases were statistically

significant or merely due to natural variation, an Upper

Control Limit (UCL) was defined using the formula mean +

standard deviation (1σ).

9Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 20 / 88

Figure 1. Monthly defect counts

This method provides a practical upper limit to identify

months in which the defect count significantly exceeds the

expected range, assuming a roughly normal distribution of

the data. The rationale behind selecting the mean ± 1σ

approach lies in its sensitivity to moderate but potentially

meaningful anomalies. While traditional Shewhart control

charts commonly employ mean ± 3σ, which encompasses

99.7% of all observations, such a strict threshold is more

suitable for large datasets with high process stability, where

false alarms must be minimized. A mean ± 2σ limit,

capturing 95% of observations, offers a compromise but

may still exclude relevant fluctuations in smaller or less

stable datasets. In contrast, a mean ± 1σ threshold includes

approximately 68% of data points under the normality

assumption. This makes it particularly useful in exploratory

analyses or early warning systems, where the primary aim is

to flag unusual patterns for further review [14].

Using this method, the months of December 2024 and

January 2025 were identified as exceeding the control

limits, suggesting the presence of statistically unusual

behavior. As a result, the possibility of seasonal effects

influencing defect occurrences was explored. However,

feedback obtained from the project team lead indicated that

no seasonality was present. The variation was attributed to

potential data entry adjustments or changes in reporting

behavior. It was concluded that the increase in defects

during these months likely stemmed from reporting-related

factors rather than genuine increases in software issues.

Then, it was agreed that team members should be provided

with training or guidance on accurate and consistent data

entry practices. Alternatively, the implementation of a

control mechanism for validating input quality was

proposed, aiming to improve the reliability of defect-related

analytics in future reporting periods.

B. Defect Counts by Defect Type

Defects were categorized into standard types such as

coding, functionality, architectural design, data, UI,

performance, integration and system-related issues.

According to the Pareto analysis shown in Figure 2a

Coding defects dominated the dataset (77%), suggesting

significant opportunities for improvement in development

practices, code reviews and developer training. Functional,

architectural design and data-related defects followed,

indicating lesser but still notable concerns. Understanding

the origin of major defects is essential for effectively issue

prioritization, establishing risk management practices and

enabling teams to focus on areas with the greatest potential

impact on system reliability and user satisfaction. As shown

in Figure 2b, the majority of major defects are Coding

defects. This can be taken into account when planning

actions.

Figure 2. Pareto chart of defect counts by defect type

C. Defect Counts by Component

A defect issue can affect multiple components

simultaneously. As teams conduct a defect analysis to

understand root causes, it becomes increasingly important to

identify which specific components are associated with

higher defect frequencies. This level of granularity enables

teams to detect recurring patterns, assess component-level

stability and prioritize quality improvement efforts where

they are most needed.

Figure 3. Defect counts by components

As illustrated in Figure 3a, a bar chart visualization was

used to present the distribution of defects across different

software components. The chart shows that three

components exhibit a notably high concentration of defects

compared to the others. Defect counts by severity level for

each component displays in Figure 3b Identifying such

major defect-prone components is critical, as it allows

development teams to prioritize their efforts and conduct

focused root cause analyses in the most problematic areas of

the system. In the chart, although Component E exhibits a

lower total number of defects compared to the others, it has

a relatively high proportion of major defects. This aspect

should be considered during task prioritization. Conversely,

while Component C has a higher overall number of defects,

the vast majority are classified as minor. Therefore, targeted

interventions in this component may lead to a substantial

reduction in the total defect count.

D. Defect Counts by Detected Activity

The activity during which a defect is detected serves as a

critical indicator for understanding the effectiveness of

quality assurance practices throughout the software

10Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 21 / 88

development lifecycle. Conducting such analyses is

essential for identifying defect patterns at a technical level

and understanding in which activities defects are most

frequently identified enables the implementation of targeted

improvements and preventive measures.

Figure 4. Defect counts by detected activity and defect types

 To the Figure 4a, the analysis of defect detection activities

revealed that the majority of defects were found after

deployment, rather than during early development or testing

stages. Specifically, the “Customer Originated” category

accounted for the highest number of defects (70 cases),

indicating that many issues were discovered directly by end

users or stakeholders during actual system usage. The

second most frequent detected activity was ”System

Monitoring”(44 cases), reflecting the role of automated

monitoring tools in identifying runtime anomalies and

system-level issues. While this demonstrates that

monitoring mechanisms are effectively capturing failures in

the production environment, it also reinforces the need for

earlier detection to reduce operational risk and customer

impact.

 Figure 4b presents the distribution of major defects

categorized by detected activity and defect type. As

illustrated, Coding defects represent the predominant defect

type across all detected activities. This suggests that efforts

aimed at minimizing coding-related defects could lead to a

substantial reduction in the overall number of major defects.

It may also mean that fewer of them will leak to the

customer.

E. Analysis of Defect Issue Summarries

As illustrated in Figure 5, detailed analysis of the defect

issue summaries revealed that the most frequently reported

defect issues were related to NULL (NPE) handling (26

instances), followed by business rule violations (23), and

query-related defects (20). Additionally, a notable number

of issues stemmed from incorrect data insertion operations

(16), functional logic defects (13), and update operation

failures (11).

Figure 5. Defect issue summaries

This distribution indicates that a large proportion of the

defects originate from NPEs, which typically occur when

the code attempts to access or modify an object reference

that has not been initialized. Previously, Figure 2 also

highlighted that most defects were rooted in coding-related

activities. The findings in this figure further corroborate that

conclusion.

 As for the null-related problems, static code analysis can

detect some Null Pointer Exceptions (NPEs), particularly in

cases where a method might return a null value, and the

returned result is used directly—such as accessing a field or

invoking a method—without checking for null. However, it

cannot identify null values that originate from external

sources such as databases or API inputs. In practice, many

NPEs encountered during development tend to arise from

such dynamic sources, which static analysis tools are

generally unable to detect. Business rule violations rank as

the second most common defect type after NPEs.

Accordingly, allocating adequate resources and providing

targeted training to address NPEs could significantly

enhance code robustness. Furthermore, a detailed

investigation into the origin of business rule violations

specifically, whether they arise from customer

miscommunication or analyst defects, would provide

valuable insights to inform project decisions and process.

Ultimately, software defects are often the result of

multiple, interrelated factors. Limited or superficial test

coverage, insufficient domain knowledge, and time pressure

can all contribute to quality issues. Late requirement

changes and urgent requests disrupt planned workflows,

reducing the time available for proper analysis and testing.

Inadequate refactoring and poor adherence to clean code

practices further degrade maintainability. Since many

defects arise under complex conditions, identifying their

root causes often requires detailed investigation.

V. CONCLUSION AND FUTURE WORK

In this study, a comprehensive defect analysis was

conducted for a public institution engaged in software

development for public organizations. Given the critical

nature of software applications and their direct impact on

end users, identifying and understanding defects was of high

importance. Monthly analyses were performed both for total

defects and major defects, using ±1 sigma control limits to

identify significant increases. Defects were categorized by

defect type, component, detected activity. A Pareto analysis

revealed that the majority of issues stemmed from Coding

11Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 22 / 88

defects. Components A and B were identified as the most

defect-prone areas, both in terms of total and major defects.

When analyzed by detected activity, a significant portion

of the defects, including major ones, originated from

Customer Originated issues. The majority of these customer

originated major defects were also related to coding. A

deeper technical classification showed that most of the

defects were associated with null-related problems,

particularly Null Pointer Exceptions. Furthermore, a

considerable number of defects resulted from

misunderstandings of business rules, highlighting potential

gaps in requirement analysis.

These findings highlight specific areas that require

focused attention. The predominance of Customer

Originated defects may indicate the need to intensify testing

activities to identify issues prior to deployment. The high

frequency of Coding defects related to null value handling

suggests the necessity for targeted developer training and

the establishment of best practices in coding standards.

Additionally, relying solely on happy path testing is

insufficient; comprehensive test coverage should include

diverse input sets to ensure robustness against edge cases

such as null values. The prevalence of business rule

violations underscores the importance of conducting a

thorough investigation into their root causes particularly to

determine whether they stem from customer

miscommunication or analyst errors. Such insights are

expected to inform both project decisions and process

improvements. The analysis presented here may serve as a

foundation for future initiatives, such as increasing the

involvement of analysts during early project phases.

While this study provides a detailed retrospective

analysis of current defects, future efforts should shift

towards predictive and preventive measures. To this end, a

broader range of quality measures and metrics will be

incorporated into the future work to demonstrate

effectiveness and strengthen its scientific value. A potential

direction for future research is the development of a

predictive model capable of anticipating defect occurrences

prior to deployment. Such a model would enable proactive

mitigation strategies and contribute to enhanced overall

software quality.

ACKNOWLEDGMENT

The authors thank TUBITAK BILGEM for supporting
this work. Special thanks go to the project team for their
valuable contributions throughout the research.

REFERENCES

[1] R. B. Grady, "Software failure analysis for high-return
process improvement decisions," Hewlett-Packard Journal,
vol. 47, no. 4, Aug. 1996.

[2] IEEE Standard for a Software Quality Metrics Methodology,
IEEE Standard 1061-1990, Inst. Electr. Electron. Eng., New
York, NY, USA, 1990.

[3] L. M. Laird and M. C. Brennan, "Software defect prevention,"
Proc. 14th Int. Symp. Softw. Rel. Eng. (ISSRE), Denver, CO,
USA, 2003, pp. 2–13, doi: 10.1109/ISSRE.2003.1257423.

[4] F. Shull et al., "Investigating the role of defect causal analysis
for software process improvement," Empirical Software
Engineering, vol. 8, no. 4, pp. 357–382, Dec. 2003.

[5] G. D. Everett and R. McLeod, Software Testing: Testing
Across the Entire Software Development Life Cycle.
Hoboken, NJ, USA: Wiley-IEEE Computer Society Press,
2007.

[6] V. Basili and H. D. Rombach, "The TAME project: Towards
improvement-oriented software environments," IEEE Trans.
Softw. Eng., vol. 14, no. 6, pp. 758–773, Jun. 1988.

[7] D. C. Montgomery, Introduction to Statistical Quality
Control, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons,
1996.

[8] D. J. Wheeler and D. S. Chambers, Understanding Statistical
Process Control, 2nd ed. Knoxville, TN, USA: SPC Press,
1992.

[9] V. Vashisht, “Enhancing Software Process Management
through Control Charts,” Journal of Software Engineering and
Applications, vol. 7, no. 2, pp. 87–93, 2014.

[10] W. E. Deming, Out of the Crisis. Cambridge, MA, USA: MIT
Press, 1986.

[11] B. Kitchenham and L. Madeyski, "Recommendations for
analysing and meta analysing small sample size software
engineering experiments," Empirical Software Engineering,
vol. 29, no. 6, Article 137, 2024.

[12] Bosu, M.F., & MacDonell, S.G. (2013). Data quality in
empirical software engineering: a targeted review. In:
Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering (EASE
2013), pp. 171–176.

[13] R. S. Pressman and B. R. Maxim, Software Engineering: A
Practitioner's Approach, 8th ed. New York, NY, USA:
McGraw-Hill, 2014.

[14] D. C. Montgomery, Introduction to Statistical Quality
Control, 8th ed. New York, NY: Wiley, 2019, pp. 18–19.

12Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 23 / 88

Exploring the Use of Large Language Models for Data Extraction for Systematic
Reviews in Software Engineering

Muhammad Laiq
Department of Communication, Quality Management and Information Systems

Mid Sweden University
Campus Östersund, Sweden

e-mail: muhammad.laiq@miun.se

Abstract—To support evidence-based decision-making, software
engineering employs systematic reviews to collect and consoli-
date relevant literature on a specific research topic. However,
conducting systematic reviews is a labor-intensive and time-
consuming task. Recent advancements in Large Language Models
(LLMs), such as Generative Pre-trained Transformer (GPT)
models, offer opportunities to streamline and reduce the manual
effort required, particularly in data extraction for Systematic
Mapping Studies (SMS). This study evaluates the performance
of GPT-4o in extracting data from 46 primary studies of an
SMS by comparing the results of automated extraction with the
data extracted manually. Our evaluation revealed that GPT-4o
achieves an average accuracy of approximately 79%. Although
these results indicate that the entire process cannot be fully
automated, GPT-4o can be a supportive tool in a semi-automated
workflow. Therefore, we recommend using LLMs, such as GPT-4o,
for an initial phase of automated extraction, followed by human
validation and refinement.

Keywords-LLMs; Data extraction; Systematic mapping study;
literature review; Systematic reviews.

I. INTRODUCTION

In Software Engineering (SE), systematic reviews, including
systematic literature reviews, systematic mapping studies [1],
and tertiary studies [2], are commonly used to aggregate
evidence on a particular topic. A number of systematic
reviews have been performed in almost all areas of SE,
e.g., [3]–[6]. Conducting these reviews requires significant
effort as they follow a rigorous process that includes several
steps, including identifying the need for a review, defining a
search strategy, defining selection criteria, selecting relevant
studies, and extracting required data. Among these steps, data
extraction is an important and effort-intensive step, and has
been done manually so far. In addition, this step has received
the least attention regarding automated support for conducting
systematic reviews [7][8].

Recent advances in Large Language Models (LLMs) have
led to increasing attention to automating the data extraction
process for systematic reviews [9]–[12]. However, there is still
a lack of such attempts in SE. In their recent work, Felizardo et
al. [7] were the first to evaluate an LLM for data extraction for a
systematic mapping study in the SE area. Their results indicate
that LLM-based tools could be a promising solution to assist
with data extraction in conducting systematic reviews. However,
they stressed the need for further research (evidence) in the
SE domain before this technology can be adopted. Building

on their work, we contribute in this direction by evaluating an
LLM for data extraction for a systematic mapping study [13].

In this study, we evaluate the performance of GPT-4o in
extracting data from 46 primary studies for a systematic
mapping study [13]. We compared the results of the data
extracted automatically using GPT-4o with those obtained
through manual extraction. Our evaluation shows that GPT-4o
achieves an average accuracy of approximately 79%.

Our overarching goal is to evaluate the ability of LLMs in
the data extraction step to conduct systematic reviews in SE.
This paper outlines the current status of our ongoing efforts to
achieve this goal. Future work will explore several other LLMs
(such as models from Gemini, Llama, and DeepSeek) and their
evaluation in other areas of SE, including effort estimation,
code quality, and defect prediction.

The remainder of the paper is organized as follows. Section
II provides background information about the task studied and
the replicated mapping study. Section III presents the research
method of our study. Section IV presents the results of our
study. Section V discusses the study findings, describes related
work on the topic, and discusses potential validity threats to
the study. Finally, Section VI concludes this study with future
work.

II. BACKGROUND: TASK AND REPLICATED SMS

In this section, we provide background information about the
task studied (that is, conducting a systematic mapping study
in software engineering) and the replicated mapping study.

A. Task: Conducting a systematic mapping study

Systematic Mapping Studies (SMS), also known as scoping
studies, aim to provide a comprehensive overview of a specific
research area by categorizing and quantifying existing literature
[14]. SMS focuses on structuring a field by identifying what
has been studied, the methodologies used, and where the results
have been published. These studies help identify research trends,
gaps, and opportunities for future research.

Conducting an SMS is a rigorous and resource-intensive
process that involves several essential steps. These steps
include identifying the need for the study, designing a search
strategy, defining inclusion and exclusion criteria, selecting
relevant primary studies, and extracting and analyzing data
from the chosen studies. Among these steps, data extraction
is particularly laborious and has traditionally been performed

13Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 24 / 88

manually. Despite its importance, it remains the least supported
step regarding automation tools. With the advent of LLMs,
there is a growing interest in leveraging these technologies to
assist with data extraction in SMSs. In particular, Felizardo et
al. [7] were the first to explore using an LLM for data extraction
in the SE context. Their findings indicated that LLMs show
promising results, but highlighted the need for further evidence
before adopting them in SE research workflows. This study
builds on their work by evaluating the use of GPT-4o for
automated data extraction for an SMS in SE.

B. Replicated SMS

To evaluate the effectiveness of GPT-4o for data extraction,
we replicate the data extraction step for a manually conducted
systematic mapping study on issue report classification [13]. In
SE, the goal of issue report classification is to support effective
defect management by categorizing reported issues early on
into [13][15][16]: (a) Bugs: Issues that require code changes or
fixes, and (b) Non-bugs: Including feature requests, questions,
and documentation issues. This classification helps practitioners
prioritize and assign resources more efficiently during software
maintenance and evolution. In this replication, we use GPT-4o
to extract data from 46 primary studies included in the original
SMS on issue report classification [13]. We aim to evaluate the
accuracy of GPT-4o in automating the data extraction process
for an SMS.

III. METHODOLOGY

As a first step towards achieving our overarching goal of
evaluating the ability of LLMs to extract data for systematic
reviews in SE, we conducted an initial proof-of-concept study.
For this assessment, we chose a systematic mapping study
focused on classifying software issue reports [13]. We extracted
data related to the five research questions listed in Table I for
the selected study.

In this proof-of-concept study, we selected GPT-4o as an
LLM to evaluate its data extraction performance for the
chosen systematic mapping study in SE. We will compare
the performance of GPT-4o with data manually extracted by
human researchers.

Table I shows the template with the instructions we used
to extract data using GPT-4o. At first, we provide GPT-4o
with the set of all the papers as PDFs. PDFs for 46 primary
studies were provided in batches. Then, GPT-4o was prompted
to extract the data from these PDFs using the template.

In Table II, we describe our assessment criteria for evaluating
the responses of GPT-4o. We evaluated the responses of GPT-
4o against the manually extracted data items as follows. The
responses of GPT-4o are compared with the ground truth by
the authors. A score of 1 (the maximum) is awarded if all
the items identified by GPT-4o are correct. We assign a score
of 0.75 if more than half of the correct items are identified,
0.5 if exactly half are identified, and 0.25 if less than half
are identified. If none of the identified items are correct, the
score will be 0. To calculate the final score for each research

question, we use the following formula: Sum of scores for all
studies / maximum score (46).

TABLE I. PROMPTS AND DATA EXTRACTION TEMPLATE

Question Prompt description: "You have been provided 46 papers
on issue report classification in software engineering. Your
task is to extract data from the provided papers using the
following data extraction template."
"Data extraction template"
"Item ID. Description"

RQ1 1. Proposed automatic techniques for classification, e.g.,
Logistic regression and RoBERTa.

RQ2 2. Used features, e.g., title, description, body, and priority
of an issue report.

RQ3 3. Used pre-processing techniques (or a tokenizer) for feature
extraction from textual features, e.g., Word2vec, TF-IDF,
and BERT-based tokenizer.

RQ4 4. Study context, i.e., data from Open-Source (OSS) or
Closed-Source (CSS) that was used in the study.

RQ5 5. Does the study involve practitioners for feedback? Yes or
No.

TABLE II. ASSESSMENT CRITERIA APPLIED TO EXTRACTED DATA
FOR EACH RQ USING GPT-4O

Score Assessment criteria

1 If all identified items by GPT are correct.

0.75 If more than half of the correct items have been identified.

0.5 If half of the correct items have been identified.

0.25 If less than half of the correct items have been identified.

0 If none of the identified items are correct.

Score for RQ = Sum of score for all studies / Maximum
score (46)

IV. RESULTS

In this section, we present the evaluation results, that is, the
performance of GPT-4o for the data extraction for the system-
atic mapping study on software issue report classification [13].
Table III presents the results of GPT-4o. The model achieved an
overall accuracy of 79% in extracting all data items (RQ). The
performance of GPT-4o varied across different questions, with
the highest accuracy, 98%, recorded for RQ4, indicating a near-
perfect extraction performance for that particular question. For
RQ5 and RQ2, GPT-4o also demonstrated promising results,
achieving scores of 84% and 77%, respectively. In contrast,
RQ1 received a score of 75%. The lowest performance was
observed for RQ3, which scored 64%, suggesting that this
question posed more challenges for GPT-4o. Overall, these
results indicate that GPT-4o can support data extraction for
most aspects of the mapping study, although there is some
variability between questions.

V. DISCUSSION AND VALIDITY THREATS

In this section, we discuss the findings of the study, describe
related work on the topic, and discuss potential validity threats
to the study.

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 25 / 88

TABLE III. GPT-4O PERFORMANCE FOR DATA EXTRACTION FOR
THE SYSTEMATIC MAPPING STUDY FOR EACH RQ

Question Score of GPT-4o

RQ1 75% (34.25/46)

RQ2 77% (35.5/46)

RQ3 64% (29.25/46)

RQ4 98% (45/46)

RQ5 84% (38/46)

Overall score = 79% ((34.25/46) + (35.5/46) +
(29.25/46) + (45/46) + (38/46)) / 5

A. Discussion

Recent advances in LLMs have led to increasing attention to
automating the data extraction process for systematic reviews
[9]–[12]. However, there is still a lack of such attempts in SE.
Felizardo et al. [7] reported that their work is the first attempt
in the context of SE. They reported that their results indicate
that LMM-based tools can be a promising solution to assist in
data extraction for systematic reviews in SE. However, they
emphasized that more research is needed in the context of
SE. Building on their work, we contribute in this direction by
evaluating GPT-4o for data extraction for a systematic mapping
study on software issue report classification [13].

Our findings indicate that GPT-4o can achieve an average
accuracy of 79%. This suggests that GPT-4o can assist in data
extraction for systematic mapping studies in SE. However,
with these results, researchers should consider using a hybrid
(semi-automated) approach that combines automated extraction
with manual verification to ensure the reliability of systematic
reviews. For example, a semi-automated workflow could begin
using an LLM, such as GPT-4, to extract data from a small
sample of primary studies. The initial outputs would then
be manually validated against the ground truth to assess the
model’s performance and identify common errors. Based on this
review, researchers can refine prompts and add more contextual
information to better align with the structure and semantics of
the target data. This iterative feedback loop will help tailor the
LLM’s behavior to the specific context of an SMS, ultimately
improving the extraction quality before scaling to the full
dataset.

B. Validity threats

Our results are based on a single systematic mapping study
that included only 46 primary studies. Furthermore, we have
evaluated only a single LLM, i.e., GPT-4o. These are the
limitations of our study. Additional studies evaluating more
models in various areas of SE are needed for more generalizable
findings.

In this study, we also relied on human-extracted data as a
benchmark for our analysis, which could introduce potential
human error and bias, which could affect the accuracy of our
findings. However, we consider this threat minimal since two
researchers were involved in the data extraction process for the
selected mapping study [13]. Additionally, we acknowledge

that the responses generated by GPT may vary due to its
stochastic nature, which may have influenced our results.

VI. CONCLUSION AND FUTURE WORK

In this study, we evaluated the performance of GPT-4o
in data extraction for a systematic mapping study in SE. We
compared its performance against data extracted manually from
46 primary studies. Our results indicate that GPT-4o can achieve
an average accuracy of approximately 79%, demonstrating its
potential as a valuable tool in the data extraction process.
Although it cannot completely replace the manual approach,
incorporating GPT-4o into a semi-automated workflow can
significantly improve efficiency. We recommend starting with
LLMs for automatic data extraction, followed by human review
and refinement of the results. This combination will likely
reduce effort while ensuring that the extracted data remains
accurate and reliable.

Our overarching goal is to evaluate the ability of LLMs
to assist in the data extraction step for conducting systematic
reviews in SE. This paper presents the current status of our
ongoing attempt towards achieving this goal. Future work will
focus on exploring several other LLMs (e.g., the models from
Gemini, Llama, and DeepSeek), including their evaluation in
other areas of SE, e.g., effort estimation, code quality, and
defect prediction.

In this work, we manually validated the responses generated
by the LLM against the ground truth data. Although this
approach provides a qualitative understanding of the model’s
performance, it is inherently subjective and labor-intensive.
As part of future work, we plan to adopt more automated
and objective evaluation methods. In particular, we aim to
incorporate automated metrics, such as n-gram or LLM itself as
a judge, to compare LLM-extracted data with manually curated
ground truth objectively. This will enable a more rigorous
and reproducible assessment of the LLM’s performance and
facilitate comparison across studies.

In addition, future work will also systematically explore
the impact of different prompt engineering techniques on
the accuracy and reliability of LLMs for data extraction for
systematic reviews.

REFERENCES

[1] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-based
software engineering and systematic reviews. CRC press, 2015.

[2] B. Kitchenham et al., “Systematic literature reviews in soft-
ware engineering–a tertiary study”, Information and software
technology, vol. 52, no. 8, pp. 792–805, 2010.

[3] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, “Systematic
literature reviews in agile software development: A tertiary
study”, Information and Software Technology, vol. 85, pp. 60–
70, 2017.

[4] S. Zein, N. Salleh, and J. Grundy, “Systematic reviews in
mobile app software engineering: A tertiary study”, Information
and Software Technology, vol. 164, p. 107 323, 2023.

[5] D. Budgen and P. Brereton, “Evolution of secondary studies in
software engineering”, Information and Software Technology,
vol. 145, p. 106 840, 2022.

15Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 26 / 88

[6] M. Laiq, N. b. Ali, J. Börstler, and E. Engström, “Software
analytics for software engineering: A tertiary review”, arXiv
preprint arXiv:2410.05796, 2024.

[7] K. R. Felizardo et al., “Data extraction for systematic mapping
study using a large language model-a proof-of-concept study in
software engineering”, in Proceedings of the 18th ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement, 2024, pp. 407–413.

[8] K. R. Felizardo and J. C. Carver, “Automating systematic
literature review”, Contemporary empirical methods in software
engineering, pp. 327–355, 2020.

[9] Z. Sun et al., “How good are large language models for
automated data extraction from randomized trials?”, medRxiv,
pp. 2024–02, 2024.

[10] G. Gartlehner et al., “Data extraction for evidence synthesis
using a large language model: A proof-of-concept study”,
Research synthesis methods, vol. 15, no. 4, pp. 576–589, 2024.

[11] M. P. Polak and D. Morgan, “Extracting accurate materials data
from research papers with conversational language models and
prompt engineering”, Nature Communications, vol. 15, no. 1,
p. 1569, 2024.

[12] S. A. Mahuli, A. Rai, A. V. Mahuli, and A. Kumar, “Application
chatgpt in conducting systematic reviews and meta-analyses”,
Br Dent J, vol. 235, no. 2, pp. 90–92, 2023.

[13] M. Laiq and F. Dobslaw, “Automatic techniques for issue report
classification: A systematic mapping study”, arXiv preprint
arXiv:2505.01469, 2025.

[14] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering”, in 12th international
conference on evaluation and assessment in software engineer-
ing (EASE), BCS Learning & Development, 2008.

[15] M. Laiq, N. bin Ali, J. Börstler, and E. Engström, “A compar-
ative analysis of ml techniques for bug report classification”,
Journal of Systems and Software, p. 112 457, 2025.

[16] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement? a text-based
approach to classify change requests”, in Conference of the
center for advanced studies on collaborative research: meeting
of minds, 2008, pp. 304–318.

16Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 27 / 88

Testing Mobile Vs Web App Performance Under Varying Network Conditions

Shiva Shankar Kusuma
Institution: Conglomerate IT

Boston, USA
e-mail: shivashanarkusuma@gmail.com

Abstract—The test involves testing mobile and web application
performance under varying network conditions (3G, 4G, Wi-
Fi) against the backdrop of Amazon as a test facility. Mobile
applications witnessed better performance with 74 % faster load
times on 3G networks and consistent responsiveness (63- 120ms).
They showed increased memory consumption (384-532MB) for
web applications and variants’ performance. The findings point
toward the need for mobile-first optimized design and network-
aware solutions concerning user experience consistency.

Keywords-mobile applications; web applications; network perfor-
mance; 3G/4G/Wi-Fi; load time; responsiveness.

I. INTRODUCTION

Modern digital landscapes demand applications to present
consistent performance in diverse network environments and
platform architectures. Customers are increasingly expecting
an uninterrupted experience while accessing services through
mobile applications or web browsers on a connection varying
between high-speed Wi-Fi and 3G. It becomes highly observed
as a performance issue because mobile internet continues to
inflate the global web traffic, with users constantly misrep-
resenting the conditions of the network in their day-to-day
engagements. This study analyzes the effect of network quality
variation on performance metrics on mobile applications and
platform performance measurement in an empirical manner,
with load time, responsiveness, and resource utilization pat-
terns in network simulation under controlled conditions.

A. Aim

The purpose is to compare how well mobile and web
applications perform using 3G, 4G, and Wi-Fi by measuring
load time, how quickly the app responds, and looking at the
data consumed.

B. Objectives

To simulate network conditions and compare responsive-
ness, load times, and data usage on mobile vs. web interfaces.

C. Research Question

How do varying network qualities (3G, 4G, and Wi-Fi)
affect performance metrics across platforms?

D. Structure of the paper

Section 1 of this report provides the context of this report,
while also discussing the aim and objectives. Section 2 pro-
vides a review of the literature relevant to studies addressing
mobile-web performance issues. Section 3 delves into the
experimental methodology and testing framework. Section 4
is an analysis of the performance results with respect to each

network condition; Section 5 presents a discussion of the
results and implications. Lastly, Section 6 gives the concluding
thoughts along with recommendations and future directions.

II. LITERATURE REVIEW

Evaluated the existing research work as follows and identi-
fied the novelty of my study.

A. Mobile vs. Web Application Architecture

Mobile and web applications are built differently, which has
a big influence on how their performance is affected. Mobile
apps are made as native apps and use language platforms, such
as Swift for iOS or Kotlin for Android [1]. Because they use
device hardware and improved rendering tools, they are much
faster and more pleasant to use.

Figure 1. Memory Consumption of the device

Meanwhile, web applications need to be accessed through
a browser and depend on how browsers, along with the
internet, render the content. Progressive Web Apps (PWAs)
help with performance since they can run offline and sync in
the background, but regular web apps are usually affected by
delays and internet speeds. Also, mobile apps benefit from
more efficient caching options and loading measures, so they
use less data and display content well even when there is a
weak or absent network connection [7].

B. Network Quality and Its Impact on App Performance

The performance of applications on mobile devices or the
web depends a lot on the network’s bandwidth, latency, and
packet loss. People can expect slow loading, delayed reactions,
and that some content will not display completely when using
3G or crowded Wi-Fi networks. Especially, any problems with
latency extend the time to complete client-server requests,
which can upset users due to the delays they experience [2].
Because of factors such as mobile device movement, high
usage, or people’s locations, mobile networks usually do not
maintain the same level of speed and signal strength. If an

17Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 28 / 88

application is not built for this, it can use more data than
expected or take time to load properly. Web apps often have
to deal with loading lots of code and media from third parties,
which can intensify poor performance on the web [4].

C. User Experience (UX) and Perceived Performance

User experience (UX) is crucial in designing apps and
is significantly influenced by factors such as responsiveness,
speed, and reliability. Apps and websites that are slow and use
excess data are likely to be abandoned, mainly when there is
not a strong internet connection. Actual performance may vary
from the subjective view the user has regarding how an app is
working [3]. Experience relies on TTFI, FCP, and LCP, which
are often checked to measure a website’s perception. Even a
short delay during important activities such as ordering online
or traveling can make things stressful. Since mobile apps are
optimized for the device, they provide better UX even with
limited internet speed and smoother animations. Web apps
sometimes run slowly and rely on remote resources, as their
actions are limited by web browser features [8].

D. Mobile Network Simulation and Performance Testing Tools

The results of an app’s performance should be evaluated us-
ing realistic network simulations. Developers can use Chrome
DevTools, Android Studio Emulator, Charles Proxy, and Net-
work Link Conditioner to affect internet speed, add delays,
and create an Internet environment similar to 3G and 4 G.
Such simulations help to discover the reasons for performance
issues that are not obvious in regular tests.

Figure 2. Cumulative frequency plots for delays in visual duration

Through integrated development environments, mobile app
designers can use native simulators to observe what their apps
do with only weak or poor connectivity. In the same way,
web developers will use browser tools to see how their pages
respond and load on different networks [10]. They are also
able to monitor vital measures such as Time to Interactive,
First Paint, and resource load order. This allows developers
to improve their apps’ appearance, minimize API usage, and
decrease the amount of data saved.

E. Cross-Platform Performance Optimization Strategies

Ensuring the same fast and smooth experience to users
from mobile to web platforms, regardless of how strong their
network is, is an important goal in cross-platform performance
optimization. Managers should focus on adaptive loading to
ensure that the main information is always loaded first and
on lazy loading for resources that do not matter as much.

Using compressed images and assets speeds up web pages
and uses less data [9]. Having the phone store important data
locally and limiting the background operations can boost its
performance and extend battery life [5]. Using service workers,
caching requests, and effective CDNs can help improve web
applications.

Figure 3. Key Features of Progressive Web Apps (PWAs)

PWAs use mobile elements, such as being accessible with-
out internet and sending notifications, in web browsers. Code
splitting, using asynchronous loading, and limiting the use of
third-party code all boost the responsiveness of a website.
Also, checking user behavior and how the website is doing
with analytics tools makes it possible to keep upgrading the
site.

III. RESEARCH METHODOLOGY

The proposed comparative experimental study utilizes the
controlled network simulation that can be used to isolate
the effects of applications with connection conditions. Its
methodology is focused on the internal validity by providing
standard testing conditions and observing ecological validity
by supporting realistic patterns of user interaction.

A. Research Design and Approach

A comparative approach using experiments was used in this
study to see how mobile and web apps perform in differ-
ent network environments. Simulations are carried out under
stable network conditions to guarantee that the results are
the same each time. Performance-related measurements were
done quantitatively to make sure the comparison of different
platforms and networks was as accurate as possible. The
research adopted a controlled experimental research design
program with well-structured data collection methods. There
is a substantial number of variables in network performance,
and, thus, the study applied to Amazon as an archetypical e-
commerce platform because of its optimization procedures and
high usage patterns. Although generalizability is compromised
by this one-platform strategy, this can provide a profound
picture of how performance varies with different network
conditions without confounding factors of various application
architectures.

B. Platform Selection and Justification

Amazon was tested in this research since it is widely
accepted, its services are similar to what common e-commerce

18Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 29 / 88

offers, and it can be accessed from either a phone or a com-
puter. Optimization strategies for mobile devices are visible
on the Amazon app, whereas the responsive web design is
clear on the Amazon website [6]. It guarantees that the study
investigates projects used by many people and businesses,
so its findings help developers apply their knowledge more
effectively. Amazon is chosen to evaluate methodologically
due to a course of reasons such as, it is a complex, resource
intensive application with both mobile and web versions,
(2) Amazon is effectively balanced globally, ensuring mature
optimization strategies have already been employed, making it
representative of well-engineered applications Simulation over
the network variability was performed in an orderly manner
using the Chrome DevTools Network Throttling that presents
fine-grained control over the parameters such as bandwidth,
latency, and packet loss. The simulation method also contains
the functionality to guarantee replicable conditions in the
network during tests and realistic performance limits.

C. Network Configuration and Simulation

Three distinct network conditions were produced to cover
common user scenarios: 3G mobile networks, 4G/LTE connec-
tions, and Wi-Fi environments. Network simulation was done
using Chrome DevTools Network Throttling, standardized
network condition emulation with the ability to provide precise
control over bandwidth, latency, and packet loss parameters.
The 3G profile simulated downloads with a rate of 1.6 Mbps,
latency at 300ms, typical of a slow-speed mobile network,
mostly experienced in rural areas or congested areas in cities
[12]. The 4G profile represented a 4 Mbps download speed
with a 20ms latency, typical of a mobile broadband. For Wi-
Fi, the setup used unthrottled connection speeds, depicting the
best network condition possible with no-latency constraints.

D. Testing Environment and Tools

Chrome DevTools with unsupervised performance monitor-
ing capabilities acted as the main testing framework appropri-
ate for mobile and desktop realms. Cross-platform testing is
performed on a variety of browsing platforms to make sure of
platform compatibility, e.g., Chrome, Safari, and Firefox. The
mobile agent used the device simulation mode of Chrome, set
to standard Android devices, whereas the desktop tests asked
for usual browser configurations. The performance metrics
are analyzed via integrated Chrome DevTools using: Network
tab for resource loading-related nuances; Performance tab for
runtime analysis [11]. Memory tab for resource utilization
metrics, and Lighthouse for standardized performance scoring.

E. Performance Metrics and Data Collection

Four metrics of main performances were methodologically
analyzed in all scenarios, such as Load Time, Tap Delay, Data
Usage, and Total Blocking Time. Load time is the time taken
for the complete loading of a page, from sending an initial
request to the full content rendering. The Tap Delay measured
the time of responsiveness of the user interaction with the UI,
which meant that the delay is the time in milliseconds between

the input of the user and the time at which the application
responds to the input. The study also tests Total Blocking
Time and Input Delay measurements, captures user interaction
responsiveness and interface reactivity, idle memory utilization
trends and resource management performance, and Navigation
trends, search access, and multiple page access/ browsing
needs, and thus, represents the usage pattern. Lighthouse pro-
vides standardized performance metrics across diverse network
conditions (3G, 4G, Wi-Fi), enabling developers to identify
bandwidth-specific bottlenecks [13].

F. Data Collection Protocol

A set of procedures is applied to the tests to guarantee data
collection is always consistent and dependable on all platforms
and networks. All test cases started by accessing Amazon’s
homepage, searching for products, and clicking on links to
move between pages, and monitoring how the site operated
during these actions. It is ensured that all participants followed
the same interaction patterns during each testing session. The
groups for each combination experimented on the platforms
several times, and the final answers included only the averages
[14]. Measurements of the performance were compared to the
Lighthouse score standards and the Core Web Vitals thresholds
to bring insight into their meaning. Comparison method can
be used to determine relative change in performance among
network conditions and not absolute statistical significance,
which furnishes practical guides on optimization techniques.

G. Hardware and Software Specifications

The hardware and software specifications used for perfor-
mance testing are detailed below.

TABLE I. SPECIFICATIONS OF THE HARDWARE AND SOFTWARE

Component Specification
Processor Intel i7-10700K
Memory 32GB DDR4 RAM
Storage NVMe SSD
Network Dedicated 1Gbps connection
Browser Windows 11 Build 22621

Testing Tools Chrome DevTools, Lighthouse 9.6.8
Configuration Default settings, cache cleared per session

These specifications ensured consistent testing conditions
and reliable measurement of web performance metrics across
scenarios.

19Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 30 / 88

IV. RESULTS

The results of this study are highlighted below.

A. Amazon Mobile App Performance Analysis

Figure 4. Setting network configuration to 4G

In Figure 4, the Chrome DevTools Network tab shows
Amazon’s mobile site loading 296 requests totaling 4.2 MB
transferred and 6.5 MB resources. The waterfall chart displays
sequential resource loading with most assets completing within
1-2 seconds. Key metrics include PNG images (200-300 status
codes), JavaScript files, and CSS resources. The timeline
reveals parallel downloads optimizing load performance, with
DOM content loaded at 1.54s and full load at 1.84s.

Figure 5. Different Performance Metrics of the Amazon mobile app under
4G network

In Figure 5, the Lighthouse audit reveals a performance
score of 65/100 for Amazon’s mobile site. Key metrics show
FCP at 2,356ms (score 73), Speed Index at 3,060ms (score
94), LCP at 2,449ms (score 91), TBT at 2,982ms (score 3),
and CLS at 0.05 (score 99).

Figure 6. Total Memory usage under 4G network

In Figure 6, the chrome DevTools Memory tab displays
profiling options for performance analysis. Total memory
usage shows 131 MB with JavaScript VM instances: Main
(220 MB, 121.8 kB/s), images-eu-ssl-images-amazon.com (5.5
MB, 16.6 kB/s), and ssrv-eu-amazon-adsystem.com (2.5 MB)
[15]. Total JS heap size reaches 30.0 MB with 115.2 kB/s
allocation rate, enabling detailed memory leak detection.

Figure 7. Total Tap delay under 4G

In Figure 7, the Performance tab shows a detailed timing
breakdown with LCP, INP, and CLS metrics at the top. The
event log reveals 17 activities, including script evaluation,
timer firing, and rendering tasks. Timeline spans show start
times from 2.9ms to 1,067.4ms with self-times mostly under
0.1ms and total times ranging from 0.1 to 47.2ms.

Figure 8. Setting up a 3G network

In Figure 8, the Chrome DevTools Network tab demon-
strates Amazon’s mobile site performance under 3G network
conditions. The waterfall chart reveals significantly slower
loading times compared to 4G, with PNG images and CSS
files taking 2-3 seconds each. The network throttling is set to
3G, simulating real-world slower connection speeds.

Figure 9. Total memory usage under 3G network

In Figure 9, the Network tab displays multiple
‘com.amazon.com.csa.prod’ requests, each 0.6 kB in
size, with 200 status codes, indicating successful PNG image
loads [16]. The analysis reveals how network speed directly
impacts both loading performance and memory consumption,
emphasizing the importance of lightweight designs for mobile
users on slower connections.

Figure 10. Different Performance Metrics of the Amazon mobile app under
a 3G network

20Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 31 / 88

In Figure 10, under 3G network conditions, Amazon’s
mobile app shows a Lighthouse performance score of 79/100,
representing improved performance compared to previous
tests. Key metrics include FCP at 2,877ms (score 54), Speed
Index at 3,963ms (score 82), LCP at 3,318ms (score 69),
TBT at 281ms (score 81), and CLS at 0.07 (score 96).
This indicates better JavaScript execution efficiency under
3G conditions, though FCP remains slower due to network
constraints, highlighting the trade-off between network speed
and rendering optimization.

Figure 11. Total Tap delay under 3G

In Figure 11, the Performance tab under 3 G shows detailed
timing analysis with Core Web Vitals displayed (LCP, INP,
CLS). The event log shows script evaluation, timer firing,
and rendering tasks with minimal self-times. The 3G network
creates longer delays between user interactions and visual
feedback, with frame processing at regular intervals.

Figure 12. Setting up Wi-Fi network

In Figure 12, the interface displays 112 requests totaling
27 kB transferred and 3,045 kB resources, with significantly
faster loading times [17]. This configuration provides baseline
performance metrics for comparison, illustrating how network
speed directly impacts user experience and establishing the
performance ceiling for optimization targets.

Figure 13. Total memory usage under WIFI

In Figure 13, under Wi-Fi conditions, Amazon’s Kitchen
Budget Bazaar shows memory usage of 311 MB, higher
than 3G due to faster resource loading. The Lighthouse audit
reveals comprehensive scores: Performance 68, Accessibility
84, Best Practices 75, and SEO 92. This demonstrates that

optimal performance requires balancing network speed with
processing capacity and resource management strategies.

Figure 14. Different Performance Metrics of the Amazon mobile app under
WIFI

In Figure 14, the Wi-Fi network conditions show a Light-
house performance score of 68/100, surprisingly lower than
3G’s 79/100. Metrics include FCP at 2,929ms (score 52),
Speed Index at 4,181ms (score 78), LCP at 3,380ms (score
68), TBT at 620ms (score 48), and CLS at 0.08 (score 94). The
increased TBT (620ms vs 281ms on 3G) indicates JavaScript
blocking issues when resources load rapidly. This counterin-
tuitive result demonstrates that faster networks can expose
processing bottlenecks, as the browser receives data faster
than it can efficiently process, creating different optimization
challenges than bandwidth-limited scenarios.

Figure 15. Total Tap delay under WIFI

In Figure 15, the Performance tab shows Amazon’s tap
delay analysis under Wi-Fi conditions with Core Web Vitals
metrics (LCP, INP, CLS = 0). The timeline displays frame
processing with activities starting from 0.5ms to 310.5ms,
showing consistent execution patterns. Event log reveals script
evaluation taking 63.0ms total time with 0.7ms self-time, fol-
lowed by timer-fired events ranging 0.1- 1.2ms. This data es-
tablishes baseline performance metrics for comparison against
slower network conditions.

B. Amazon Web App Performance Analysis

Figure 16. Running the Amazon web app under a 4G network

In Figure 16, the Chrome DevTools Network tab displays
Amazon’s web application performance under 4G network

21Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 32 / 88

conditions using desktop dimensions (1920x1080). The anal-
ysis shows 345 requests totaling 3.9 kB transferred and
9,710 kB resources, with DOM content loaded at 2.00s and
full load at 20.5s. The comprehensive resource breakdown
includes favicon.ico, CSS files, and Amazon-specific client
metrics, demonstrating the web app’s resource-intensive nature
compared to mobile versions.

Figure 17. Total memory usage of the web app under a 4G network

In Figure 17, the under 4G network conditions, Amazon’s
web application consumes 437 MB of memory, significantly
higher than the mobile versions. The Network tab shows
numerous PNG requests (0.6 kB each) with 200 status codes,
indicating successful image loading. Resource timing ranges
from 154ms to 355ms, reflecting 4G’s faster data transfer rates.
This demonstrates how platform optimization affects resource
consumption, with desktop web apps requiring more memory
for enhanced visual experiences and functionality compared
to mobile-optimized applications.

Figure 18. Performance metrics of the web app under 4G

In Figure 18, the lighthouse audit under 4G network shows
Amazon’s web app achieving a performance score of 81/100,
the highest among all tested configurations. Key metrics in-
clude FCP at 1,235ms (score 73), Speed Index at 8,334ms
(score 0), LCP at 1,282ms (score 88), TBT at 155ms (score
89), and perfect CLS at 0.00 (score 100). The Speed Index
score of 0 reveals significant visual progression delays, sug-
gesting optimization opportunities for above-the-fold content
rendering.

Figure 19. Tap delay time of web app under 4G

In Figure 19, the Performance timeline under 4G shows de-
tailed tap delay analysis with Core Web Vitals tracking (LCP,

INP, CLS = 0). The event processing demonstrates consistent
timing from 0.4ms to 161.0ms, with script evaluation taking
160.3ms total time and 0.7ms self-time.

Figure 20. Running the Amazon web app under a 3G network

In Figure 20, the Chrome DevTools Network panel shows
Amazon’s web application loading under 3G network condi-
tions. The waterfall chart displays 44 total requests transferring
18.5 kB of data across 621 kB of resources, completing in 2.1
minutes.

Figure 21. Total memory usage under a 3G network for the web app

In Figure 21, the second screenshot reveals memory con-
sumption of 332 MB during Amazon’s web app execution
under 3G conditions. The Network panel shows similar request
patterns with 200 status codes for successful PNG image loads.

Figure 22. Different Performance Metrics of the Amazon web app under a
3G network

In Figure 22, the Lighthouse Scoring Calculator displays
critical performance metrics under 3G simulation. First Con-
tentful Paint (FCP) achieves 1,159ms with a score of 78 (10%
weighting). Speed Index records 8,770ms, scoring 0 points.

Figure 23. Total Tap delay under 3G for web app

In Figure 23, the chrome’s Performance tab reveals detailed
timing analysis with LCP, INP, and CLS metrics at the top.

22Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 33 / 88

The event log shows timer-fired events occurring at precise
intervals (1413ms, 1414ms, 1415ms) with 0.0ms self-times,
indicating efficient JavaScript execution. Total event times
average 135.5ms for evaluating script operations.

Figure 24. Setting up a Wi-Fi network for a web app

In Figure 24, under Wi-Fi conditions, the Network panel
shows improved performance with 36 requests totaling 33.2 kB
transferred from 101 kB resources, finishing in 19.93 seconds.
Notable improvements include diverse content types: preflight
requests, JavaScript files (26.7 kB), and text/plain resources
(0.1 kB).

Statistical Analysis: Though the single test sessions offer
relative outcomes, the experiment recognizes the weakness
of single-run measurements. Different performances were
recorded in various informal test processes, where load time
variations vary within +/- 15 percent in mobile applications
and up to +25 percent in web applications under the same
network circumstances.

V. DISCUSSION AND ANALYSIS

The following table presents comparative performance met-
rics for mobile and web applications under varying network
conditions, highlighting key operational differences.

TABLE II. NETWORK IMPACT ON APPLICATION PERFORMANCE METRICS

Platform Network Load
Time
(ms)

Delay
Time
(ms)

Data
Used
(MB)

Blocking
Time
(ms)

Mobile
App

3G 3291 64.2 263 281

Web
App

3G 1825 138.8 532 231

Mobile
App

4G 1840 120 131 2982

Web
App

4G 2050 160.3 437 155

Mobile
App

Wi-Fi 1690 63 311 620

Web
App

Wi-Fi 2880 163.2 384 130

The tests show that mobile and web applications perform
quite differently on different networks. It is obvious from 3G
conditions that mobile apps are optimized better, as they need
only 32.91 seconds to load instead of the 2.1 minutes that web
apps take, a clear difference of 74

A. Network Impact Analysis

Total Blocking Time for mobile apps is very low at 155
milliseconds when connected to 4G, in contrast to 2,982

milliseconds on slower networks. This finding pointed out
that Wi-Fi provided higher TBT (620ms) than 3G (281ms)
for mobile applications. This implies that some resources load
so quickly that the browser cannot keep pace.

B. Platform Comparison

Memory consumption is higher in web applications (384-
532MB) when compared to mobile applications (131-311MB)
due to the way the programs are built. Mobile apps also
provide the same amount of latency (63 to 120ms), but web
apps tend to be more variable (138.8 to 163.2ms).

C. 3G Network Analysis

Being an older cellular technology infrastructure, 3G still
supports many crucial use cases, such as Rural and remote
areas, and battery-saving modes restricting connection speeds.
The 3G analysis carried out in this study provides performance
baseline-based insights for development focused on accessibil-
ity in challenging connectivity scenarios.

D. Key Insights

Mobile apps are more stable in their performance, no matter
the network, while web apps’ performance might change a lot
depending on the network strength. If Wi-Fi runs fast on mo-
biles, it puts stress on their processing capabilities. Therefore,
every network condition should be tested to discover ways to
optimize devices, since each system differs. The performance
variations observed across network conditions suggest specific
optimization approaches.

• Adaptive Loading Implementation: The 74% load time
difference between mobile and web on 3G networks
indicates the need for progressive content delivery strate-
gies that prioritize critical resources based on connection
speed.

• Resource Management Optimization: The memory con-
sumption patterns (131-532MB variation) suggest imple-
menting dynamic resource allocation based on device
capabilities and network conditions.

• Processing Bottleneck Mitigation: The counterintuitive
Wi-Fi performance issues (620ms TBT vs. 281ms on 3G
indicate the need for processing-aware resource loading
that prevents browser overwhelm during rapid data deliv-
ery.

E. Real User Experience Connection

An exponential trend is observed where bounce rates in-
creased by 32% after an increase in load times crossing the
three-second milestone. Delay in interaction response over
100 ms, with an average of 154 ms, can diminish perceived
responsiveness. Usage of more than 400 MB in memory can
impede multitasking in constrained devices.

F. PWA Discussion Enhancement

Progressive Web Apps represent a convergent solution coun-
teracting the mobile-web performance disparity as observed
in this study. PWAs use service-worker caching (repeat load

23Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 34 / 88

times come down), app shell architecture (perceived perfor-
mance is uplifted), and offline abilities (network dependency
is mitigated). Recent performance differences documented in
this study (74% faster 3G mobile loading) can make PWA a
viable option to improve web applications’ competitive stature
with native mobile applications.

VI. CONCLUSION AND FUTURE WORK

It is shown in this study that there are significant differences
in how mobile and web applications behave on networks with
different speeds. Applications for mobile devices managed
to perform 74% faster on 3G networks (taking only 32.91
seconds instead of 2.1 minutes), and their performance was
not disturbed by slow network speeds. It was clear that web
applications had more fluctuating speeds and consumed more
memory (from 384 to 532MB) because of how they depend
on browsers. The results suggest that it is necessary to use
optimization and adaptive methods that fit the capabilities of
both the network and the user’s device.

A. Recommendations

Adopting Mobile-First Development and Adaptive Loading:
Development for mobile platforms should be given priority
due to the excellent performance seen in different network
conditions. Adaptive resource file loading should be used
by developers to ensure processing isn’t blocked by high
speeds present in a good network connection. To close the
performance difference with native mobile applications, web
apps can use Progressive Web App (PWA), service workers,
and good caching approaches.

B. Integrating Network-Aware Optimization

Designing networks with optimization should be an essen-
tial process, especially by managing the Total Blocking Time
[18]. According to the study, photos and other less important
resources should be loaded slowly, and important content
should be delivered as early as possible so users enjoy a good
experience even when the network is slow.

C. Implementing Platform-Specific Resource Management

Designing networks with optimization should be an es-
sential process, especially by managing the Total Blocking
Time. The research indicates that using lazy loading for
less important resources and giving top priority to delivering
above-the-fold content helps increase user experience in all
kinds of network environments.

D. Future Works

Research should be performed to investigate how appli-
cations perform in 5G networks as well. Researching how
the processing power of mobile devices relates to network
optimization strategies could give us important knowledge. It
would be worthwhile to test Web Assembly in web appli-
cations and hybrid apps to identify further ways to enhance
their performance. Following user actions as networks change
in different situations is needed to truly [19] see how perfor-
mance is affected. Studying machine learning techniques that

can predict and react to instant network changes in real-life
conditions is an encouraging approach to improving dynamic
performance everywhere.

REFERENCE
[1] O. Poku-Marboah, “Mobile application development methods: Compar-

ing native and non-native applications,” Proc. Int. Conf. Mobile Computing
and Networking, 2021.

[2] M. Hort, M. Kechagia, F. Sarro, and M. Harman, “A survey of
performance optimization for mobile applications,” IEEE Trans. Softw. Eng.,
vol. 48, no. 8, pp. 2879–2904, 2021.

[3] D. Al Kez, A. M. Foley, D. Laverty, D. F. Del Rio, and B. Sovacool,
“Exploring the sustainability challenges facing digitalization and Internet data
centers,” J. Clean. Prod., vol. 371, p. 133633, 2022.

[4] A. Anwyl-Irvine, E. S. Dalmaijer, N. Hodges, and J. K. Evershed, “Re-
alistic precision and accuracy of online experiment platforms, web browsers,
and devices,” Behav. Res. Methods, vol. 53, no. 4, pp. 1407–1425, 2021.

[5] B. R. Cherukuri, “Progressive web apps (PWAs): Enhancing user expe-
rience through modern web development,” Proc. Int. Conf. Web Engineering,
2021.

[6] A. Viriya and Y. Muliono, “Peeking and testing broken object level
authorization vulnerability onto e-commerce and e-banking mobile applica-
tions,” Procedia Comput. Sci., vol. 179, pp. 962–965, 2021.

[7] Y. Lai, N. Saab, and W. Admiraal, “University students’ use of mobile
technology in self-directed language learning: Using the integrative model of
behavior prediction,” Comput. Educ., vol. 179, p. 104413, 2022.

[8] R. Dangi, P. Lalwani, G. Choudhary, I. You, and G. Pau, “Study and
investigation on 5G technology: A systematic review,” Sensors, vol. 22, no.
1, p. 26, 2021.

[9] C. Yan, A. B. Siddik, L. Yong, Q. Dong, G. W. Zheng, and M. N.
Rahman, “A two-staged SEM-artificial neural network approach to analyze
the impact of FinTech adoption on the sustainability performance of banking
firms,” Systems, vol. 10, no. 5, p. 148, 2022.

[10] C. Magazzino, D. Porrini, G. Fusco, and N. Schneider, “Investigating
the link among ICT, electricity consumption, air pollution, and economic
growth in EU countries,” Energy Sources B, vol. 16, no. 11–12, pp. 976–998,
2021.

[11] J. Vepsäläinen, M. Hevery, and P. Vuorimaa, “Resumability—A
new primitive for developing web applications,” IEEE Access, vol. 12, pp.
9038–9046, 2024.

[12] D. Jhala, “A study on progressive web apps as a unifier for native
apps and the web,” Int. J. Eng. Res. Technol., vol. 10, no. 5, pp. 2278–0181,
2021.

[13] S. Weerasinghe, A. Zaslavsky, S. W. Loke, A. Hassani, A. Medvedev,
and A. Abken, “Adaptive context caching for IoT-based applications: A
reinforcement learning approach,” Sensors, vol. 23, no. 10, p. 4767, 2023.

[14] Y. Ma, T. Li, Y. Zhou, L. Yu, and D. Jin, “Mitigating energy
consumption in heterogeneous mobile networks through data-driven optimiza-
tion,” IEEE Trans. Netw. Serv. Manag., 2024.

[15] J. Silva, E. R. Marques, L. M. Lopes, and F. Silva, “Energy-aware
adaptive offloading of soft real-time jobs in mobile edge clouds,” J. Cloud
Comput., vol. 10, no. 1, p. 38, 2021.

[16] A. Li, “Progressive web apps: Factors for consideration in develop-
ment,” Proc. Int. Conf. Software Engineering and Applications, 2021.

[17] V. B. Ramu, “Performance testing and optimization strategies for
mobile applications,” Int. J. Perform. Test. Optim., vol. 13, no. 2, pp. 1–6,
2023.

[18] C. Petalotis, L. Krumpak, M. S. Floroiu, L. F. Ahmad, S. Athreya,
and I. Malavolta, “An empirical study on the performance and energy costs
of ads and analytics in mobile web apps,” Inf. Softw. Technol., vol. 166, p.
107370, 2024.

[19] A. S. Shethiya, “Scalability and performance optimization in web
application development,” Integr. J. Sci. Technol., vol. 2, no. 1, 2025.

24Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 35 / 88

Designing for Quality in IoT: A User-Inclusive Approach to Non-Functional
Requirements

Lasse Harjumaa
Jukka Määttälä

Kokkola University Consortium Chydenius
University of Jyväskylä

Kokkola, Finland
e-mail: {lasse.m.harjumaa|jukka.t.a.maattala}@jyu.fi

Abstract—The complexity of Internet of Things (IoT) sys-
tems highlights the critical need to address Non-Functional
Requirements (NFRs) early in the development lifecycle. NFRs
are essential to ensuring quality, yet they are often overlooked
in favor of achieving core functionality. This paper presents
an approach to elicit NFRs in an IoT context, using a pilot
implementation in a vocational education setting focused on
the food industry. The pilot of our approach demonstrated the
importance of addressing the NFRs separately from functional
requirements, raising new insights among participants. Role
identification of stakeholders, interview structure and preciseness
of documentation needed clarification after the pilot. Feedback
from participants showed that the process not only captured key
quality attributes but also fostered deeper understanding among
stakeholders.

Keywords-requirements engineering; Internet of Things; IoT
systems; quality.

I. INTRODUCTION

The rapid expansion of Internet of Things (IoT) technolo-
gies has underscored the critical importance of non-functional
requirements (NFRs) in system design and implementation.
Unlike functional requirements, which describe what a system
should do, NFRs – such as scalability, reliability, security,
interoperability, and maintainability – define how a system
performs under various conditions. They determine the crucial
quality characteristic of an IoT system. In the IoT contexts,
where heterogeneous devices, real-time data, and resource
constraints are prevalent, the identification and specification
of NFRs are particularly complex and could be insufficiently
addressed during early development phases, because most
attention is often focused on getting the system operational
in the first place. This oversight can lead to costly redesigns
or system failures.

The IoT context introduces challenges associated with elic-
iting and specifying non-functional requirements. It examines
the specific nature of such systems, and involvement of
diverse stakeholders in the requirements gathering process.
Understanding these challenges is essential for improving
engineering practices and ensuring that IoT systems meet not
only their intended functionalities but also quality expectations
in real-world environments.

This paper reports our experiences in IoT Learning Environ-
ment project, which aims at increasing students’ knowledge of
IoT technologies and their application in different domains.

We conducted our experiment in the vocational education
department specializing in the food industry.

The food industry exemplifies an environment where mon-
itoring dynamic conditions – such as temperature, air quality,
hygiene, and equipment status – is critical. Many of these
conditions are also subject to strict regulations, such as man-
dated temperature ranges for food preservation or time limits
for cooling prepared food. IoT technologies enable continuous
monitoring and visualization of operational conditions. By
embedding sensors and connected devices within the learning
environment, IoT systems can collect and transmit data that
reflect real-time conditions, providing more immersive and
data-driven educational experiences for students of the food
industry, thus enhancing learners’ understanding of quality and
safety parameters related to their work.

We first created an approach to gather non-functional re-
quirements through stakeholder interviews, based on experi-
ences reported in literature. Once the process was defined, we
conducted a pilot run in a real-world setting to evaluate its
practicality and to obtain feedback for improving the process.
Following the pilot, we organized a postmortem analysis
involving key participants to reflect on outcomes, and to
identify challenges and deviations from the intended process.

The remainder of this paper is organized as follows. Section
2 briefly summarizes research carried out in the area. Section
3 summarizes special characteristics of IoT systems that need
to be addressed when gathering NFRs. Section 4 depicts our
approach for gathering the NFRs in the IoT context. Section 5
summarizes the observations from a pilot run of the process.
Section 6 concludes the paper.

II. RELATED WORK

The elicitation of non-functional requirements in the IoT
context has not received much attention in research. Most of
the studies concentrate on understanding functional require-
ments, and a typical method for gathering those is through
user scenarios use cases. For functional requirements engi-
neering, formal approaches have been introduced, such as the
four-phased model-driven development methodology for IoT
applications introduced by Sosa-Reyna et al. [1] and UML-
based requirements and specification method called IotReq [2],
but methods, tools and techniques for eliciting non-functional
requirements for IoT systems are limited.

25Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 36 / 88

According to Gupta [3], non-functional requirements, such
as performance, reliability, availability, scalability, maintain-
ability, security and privacy, may have crucial impact on
success of adopting the edge computing paradigm within the
IoT systems. Paiva et al. [4] have recognized the lack of
methods for evaluating NFRs in IoT context and the need
for developing systematic approaches to target NFRs for IoT
applications.

Mahalank et al. [5] propose a checklist and a template
for documenting non-functional requirements for smart traffic
management system. Brito et al. [6] describe a procedure
for eliciting NFRs in the context of a smart city project
providing electric bicycles to the academic community. Tabas-
sum [7] suggests an approach extending use case models,
soft goal models and behavioural models for addressing
non-functional requirements, especially interoperability and
context-awareness for IoT systems, in order to increase the
adaptability.

IoT systems are often under pressure to achieve rapid
time-to-market. Furthermore, they are commonly developed
with agile methods, which utilize user stories for gathering
requirements. User stories emphasize functionality, and quality
attributes (NFRs) may be even ignored. Sachdeva and Chung
[8] state that NFRs should be introduced early in the software
lifecycle, including in projects involving cloud and IoT. They
also emphasize the importance of quantifying the requirements
and setting clear acceptance criteria for them.

Tools to automate requirements elicitation have also been
presented. For example, Khurshid et al. [9] introduce a ma-
chine learning algorithm to extract the non-functional require-
ments from documentation, in order to reduce the possibility
of missing NFRs during the requirements engineering phase,
and to promote security and performance of healthcare systems
utilizing IoT.

Security is the most frequently addressed quality character-
istic of IoT applications. Alhirabi et al. [10] surveyed the em-
pirical research on security and privacy requirements for IoT,
and concluded that using human-centred design might help in
integrating these capabilities into systems. They also identify
several challenges related to privacy in IoT systems, including
the lack of tools, methods and notations for modeling these
quality attributes.

III. NON-FUNCTIONAL REQUIREMENTS IN IOT CONTEXT

Non-Functional requirements are the quality attributes that
the system must conform to, often referred to as -ilities. They
describe how the system should work and consist of qualities
that can be observed at run time, such as usability or security,
and qualities that are embodied in the system structure, such as
testability, scalability or extensibility. Defining non-functional
requirements in a measurable way is necessary to determine
whether the development work has achieved its goals. [11]

IoT systems tend to be more complex than traditional
software or embedded systems, since they consist of a variety
of hardware and software components, services and communi-
cation solutions. There may be a vast number of combinations

involving wireless and wired sensors, actuators, networks,
and smart objects – each with varying levels of computing
capability. Stakeholders from different groups may access the
system in completely different ways, using varying devices and
services, which can potentially cause conflicts in requirements
specification [12].

IoT systems typically evolve or change during their life
cycle, as more advanced technology becomes available and
new features are requested by the users. Finally, certain
constraints and external factors must be addressed—such as
ensuring the privacy of users’ personal data, dependencies
on specific service providers, and the limitations of existing
infrastructure. Figure 1 summarizes the special characteristics
of IoT systems. In the figure, the main issues – change,
complexity and constraints – are exemplified with a few
characteristics that distinguish the development of IoT systems
from that of traditional systems.

Figure 2 summarizes the quality attributes that address
the challenges set by change, complexity and constraints. Of
course, all aspects of quality need consideration, but attributes
listed here can be straightforwardly derived from the character-
istics of IoT systems. Evolving user needs require flexibility
in interaction, and technology upgrades emphasize the need
for scalability and maintainability. To improve system under-
standability, analyzability should be addressed. Integrations
to external services require interoperability, and modularity
makes the system architecture extendable and manageable.
Performance efficiency, security and reliability help in dealing
with technological and regulatory constraints.

IV. THE NFR GATHERING PROCESS FOR IOT

Figure 3 depicts the process that we have used in our project
to gather non-functional requirements. The first phase involves
inviting stakeholders from different groups to an interview.
The participants should be able to represent views of future
users, maintainers and business owners. After the interview,
the results are analysed and summarized by the development
team. Interpretations and the summary report are validated
in a workshop. If all stakeholders have common view of the
requirements, they are documented and signed off.

A. The Interview

We created a set of interview questions to elicit non-
functional requirements related to the quality attributes identi-
fied earlier: interaction capability, maintainability, scalability,
analyzability, interoperability, modularity, performance effi-
ciency, security and reliability. Since discussions with stake-
holders in IoT projects often focus on the measurements
and data, these NFRs often remain implicit unless explicitly
addressed during requirements elicitation. We decided to use
open-ended questions to encourage detailed responses. Ques-
tions were be designed to uncover constraints, expectations,
and existing practices, enabling the development team to
translate qualitative insights into measurable system attributes.
We derived the questions from experiences and documentation

26Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 37 / 88

Figure 1. Characteristics of IoT Systems.

Figure 2. Quality attributes to address in IoT system design.

27Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 38 / 88

Figure 3. Process of Gathering Non-Functional Requirements.

from dozens of sensor network projects previously imple-
mented in collaboration with the local industrial and educa-
tional partner organizations. We focused on operational goals,
environmental constraints and stakeholder needs to ensure
alignment with technical feasibility and real-world deployment
challenges.

To assess interaction capability, questions focus on user
interface expectations, system responsiveness, exceptional sit-
uations, and means to interact with the system. For maintain-
ability, questions explore how frequently the system is updated
and what documentation practices have to be followed. Inter-
operability questions focus on data exchange standards, third-
party system integration, and API usage. Security is addressed
by inquiring about necessary authentication mechanisms, data
access, and compliance with regulatory standards. For an-
alyzability, questions concern logging practices, monitoring
tools, and diagnostic capabilities. Questions about modularity
explore how the system is divided into components, the inde-
pendence of modules, and the ease of updating subcomponents
without breaking the whole. Performance efficiency ques-
tions address acceptable response times, resource usage under
varying loads, and performance thresholds during operational
peaks. Finally, reliability questions investigate error recovery
mechanisms and system behavior under failure conditions.

A total of 58 questions were introduced in the first version
of interview. Table 1 shows examples of the questions. Each
question addresses certain aspects of IoT-specific challenges
– Change, Complexity and Constraints – and related quality
attributes: Maintainability (M), Scalability (S), Analyzability
(A), Interoperability (I), Modularity (Mo), Performance Effi-
ciency (PE), Security (Se), Reliability (R), Interaction Capabil-
ity (IC). The questions were designed so that persons without
deep knowledge on technical details of the system would be
able to provide their insights. In addition to answering the
questions, we wanted to encourage storytelling by the intervie-
wees. Real-life examples, experiences and preferences provide
important information about the concerns and expectations that
different stakeholders have.

B. Analysis

Analyzing interview responses is a critical step in iden-
tifying themes and eliciting the most important qualities to
guide the development of the system. Qualitative data gath-
ered through interview often contains implicit insights into
stakeholder expectations, concerns and priorities. To extract
meaningful information, responses must be evaluated system-
atically. Answers given by interviewees should be coded and
categorized according to the related quality attributes. This

TABLE I. EXAMPLE QUESTIONS TARGETING SPECIFIC ASPECTS OF
QUALITY.

Question Change Compl. Constr.
Can you describe any
challenges or frustrations you
have previously experienced
with IoT systems?

IC, M A PE, R

How many devices do you
currently use, and how do you
expect this number to grow?

S I PE

Should different user groups
have access to different system
modules?

S Mo Se

What existing systems should
the IoT system integrate with?

S I -

process can involve open coding, where recurring ideas are
highlighted. The experience and technical expertise of the
participants, together with contextual factors must be taken
into account when making interpretations of the answers.

The mapping of interview questions to specific quality
targets helps distinguishing functional and non-functional re-
quirements, as the users of the system tend to concentrate on
system features in their storytelling. Performing analysis on
the stakeholder needs and expectations early on the project
helps to plan the development more effectively and reduces
the risk of overlooked constraints and misunderstandings.

C. Validation

The purpose of the validation phase is to ensure that all
stakeholders have common understanding of the needed qual-
ities of the system, and that developers have correct interpreta-
tion of the users’ expectations. In this phase, the development
team presents a summary of interview findings, categorized
by themes found in the answers. They can also bring out pain
points, conflicting goals or insights and experiences they have
from previous implementations.

The summary report should be concise and organized
into clear thematic sections. Even though the focus is on
NFRs, organizing the summary report around the system’s
operational features may improve stakeholder understanding.
For instance, requirements related to latency or performance
are closely tied to the user experience and interface, and
could be grouped under headings that reflect those aspects.
This thematic structuring can make technical content more
accessible and relatable to non-technical stakeholders, while
still preserving the integrity of the NFRs.

Stakeholders or participants confirm the accuracy of inter-
pretations and if there are misunderstandings or misrepresen-
tations, they are corrected. If project scope or resources are

28Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 39 / 88

limited, prioritization may be necessary. Shared understanding
ensures the next steps are grounded in actual user needs.

D. Documentation

The documentation and sign-off phase serves as the for-
mal agreement between stakeholders and the development
team. This phase ensures that all identified requirements
are approved before design and implementation begin. By
systematically documenting and approving non-functional re-
quirements alongside functional ones, development team can
better manage risks and ensure that the final system meets
both operational goals and user expectations. However, ex-
plicit documentation of non-functional requirements may be
difficult, as the user needs are often imprecise.

We used a simple template for documenting the NFRs,
including the following items: Requirement ID, Requirement
Type, Description, Priority, Acceptance Criteria, Dependen-
cies, Assumptions, and Verification Method.

The sign-off process acts as a formal validation checkpoint,
ensuring all stakeholders agree on the documented require-
ments. This alignment not only helps guide the development
effort but also supports accountability and traceability through-
out the project lifecycle.

V. OBSERVATIONS FROM THE PILOT RUN OF THE PROCESS

The project in which the research is being carried out, aims
at developing teaching and learning materials for vocational
secondary education. As digitalization affects more and more
people’s daily lives, their working lives will also change.
Various IoT solutions are already in use in many sectors
and this development is expected to accelerate dramatically
in the future. Understanding the potential of IoT is essential
to remain competitive in the future labor market. Today,
most students do not have sufficient experience in applying
IoT solutions, and at the same time these technologies are
increasingly taken advantage of in workplaces.

The project explores how IoT-enabled systems can support
learning and visualization in food industry training environ-
ments. It focuses on the design and implementation of inter-
active tools that translate complex sensor data into intuitive
visual formats. During the project, we will also examine how
such systems can improve situational awareness, decision-
making, and compliance with industry standards, ultimately
contributing to a more skilled future workforce.

Learning environments in the food industry school par-
ticipating in our project consist of two distinct areas: food
production and bakery (confectionery) training environments.
In food production, meat and other food products are prepared
in various processing facilities where temperature fluctuations
play a critical role during both the production and storage
phases. In the bakery environment, temperature and other
conditions are essential not only for successful baking, but
also for ensuring that ingredients are stored under appropriate
conditions.

In both learning environments, materials and ingredients
are stored in freezers and cold storage units, with their

temperatures monitored in real time using sensors. Real-
time temperature monitoring of the production facilities is
also essential. Threshold values have been defined for each
environment, and alerts are triggered if these limits are ex-
ceeded, notifying the staff. Additionally, for legally mandated
self-monitoring (HACCP), daily temperature values – most
commonly the daily average – are recorded for reporting
purposes. In the bakery room, flour dust is monitored, while
in the food production area, spice dust is tracked using fine
particle sensors to assess air quality.

Currently, the temperatures of various rooms and cooling
units are monitored, as the cooling of finished products must
be completed within four hours. In future, the goal is to enable
real-time monitoring of the entire production process from the
initial preparation phase through to the end of the cooling
phase. This could even be extended to include tracking up to
the end user.

During this project, we carried out a pilot round of our
NFR gathering process. The participants’ roles in the inter-
view phase included a domain expert (teacher) and a project
coordinator. The interviewer and interviewees were physically
present in the same location, while the note-taker participated
remotely. This setup allowed for direct interaction between
the main participants while ensuring accurate documentation
of the session. Participants’ knowledge of IoT systems and
general information technology was significantly higher than
that of the system’s future "basic users." Consequently, this
interview alone does not allow for substantial conclusions
regarding the influence of different roles on the formulation
of questions. The expertise of the interviewees may have
introduced a bias in responses, highlighting the need for
further interviews with users possessing varying levels of
technical proficiency. A more comprehensive analysis requires
diverse perspectives to ensure balanced insights into desired
system characteristics.

We found that having two interviewers made the process
seamless, and will continue this practice, especially if some
participants join remotely. At least one of the interviewers
should be familiar with the subject or people in order to
enhance engagement, while allowing the other interviewer to
concentrate on documentation allows for a more structured and
inclusive discussion.

It is advisable to allocate more than an hour for the interview
to ensure all perspectives are covered. Beginning with informal
conversation helps set the stage for discussion. Afterward,
comments are transcribed. A summary report must be provided
to the interviewees to ensure clarity and transparency in the
process.

A postmortem held after an interview session serves as a
structured review to assess the execution of the interview,
identify strengths and weaknesses, and enhance future prac-
tices. This reflective discussion focused on clarifying how the
interview was conducted and evaluating the quality of the
questions. During the postmortem analysis, we refined the
interview process to improve clarity and consistency.

If an individual can analyze an issue from multiple role

29Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 40 / 88

perspectives, it is essential to specify the perspective alongside
their response. Clearly identifying the viewpoint prevents
ambiguity and enhances the reliability of the findings. This
practice alwo significantly eases the analysis phase of the
process.

The interview questions were perceived by the partici-
pants as providing comprehensive coverage of the system.
According to the interviewees, the structure and content of the
interview allowed for a thorough exploration of key aspects,
and relevant areas were adequately addressed. Moreover, the
interview questions encouraged participants to consider new
perspectives on issues that had not previously been examined.
This reflective aspect of the interview highlighted its value
not only as a data collection method but also as a tool for
enhancing understanding and fostering critical insight among
participants.

Before the interview, concerns arose regarding the large
number of questions. However, all questions were addressed,
albeit some more superficially than others. Based on feedback,
the order of questions should be improved and grouped
according to the respondents’ roles and topics. Grouping the
questions according to thematic areas will make the question-
naire more coherent and encourage more accurate responses
from the interviewees.

During the documentation phase, we identified the need
to more precisely define threshold values for alerts, normal
operating ranges for various measurements, and constraints
imposed by organizational policies or legislation. To address
this, the documentation template was revised to explicitly
incorporate these elements.

As a summary, after the first interview:
• Six questions were removed, as they were deemed to add

little value compared to others.
• Another six questions specifically related to interfaces

and maintenance were merged into two clearer ones.
• The wording of several questions was refined for clarity.
• Each question was reviewed to determine which respon-

dent role would provide the most insightful answers.
• NFR template was refined to target aspects of threshold

values and legislation issues more specifically.

VI. CONCLUSION AND FUTURE WORK

IoT applications consist of different types of hardware
and software components that are required to work together
under varying and often demanding conditions. Future users
of the system, or other stakeholders, on the other hand, may
have very little knowledge on the implementation of the
system. This complexity may lead to putting more emphasis on
achieving the functionality at the expense of quality aspects.

Clearly, the process of eliciting NFRs in the IoT con-
text requires greater focus. In our ongoing project, we have
developed and experimented with a four-phase process to
systematically gather NFRs, aiming to create more robust and
adaptable IoT architectures. Our work extends prior research
on NFRs by offering guidelines that address quality aspects

particularly relevant in the IoT context, while also enhancing
the involvement of future users in the requirements engineer-
ing phase of IoT systems.

Based on our initial experiences, we believe that IoT
projects significantly benefit from a well-defined NFR gath-
ering process, which acts as a vital bridge between stake-
holder expectations and technical implementation – ensuring
that essential non-functional aspects are thoroughly addressed
throughout system design and development.

ACKNOWLEDGEMENT

This work was supported by the Economic and Social Re-
search Council through the Centre for Economic Development,
Transport and the Environment of Central Finland [project
number S30655] and the City of Kokkola.

REFERENCES

[1] C. M. Sosa-Reyna, E. Tello-Leal, and D. Lara-Alabazares,
“Methodology for the model-driven development of service
oriented iot applications,” Journal of Systems Architecture,
vol. 90, pp. 15–22, 2018.

[2] G. Reggio, “A uml-based proposal for iot system requirements
specification,” in Proceedings of the 10th International Work-
shop on Modelling in Software Engineering, ser. MiSE ’18,
Gothenburg, Sweden: Association for Computing Machinery,
2018, pp. 9–16.

[3] S. Gupta, “Non-functional requirements elicitation for edge
computing,” Internet of Things, vol. 18, p. 100 503, 2022.

[4] J. Paiva, R. Andrade, and R. M. Carvalho, “Evaluation of non-
functional requirements for iot applications,” in Proceedings of
the 23rd International Conference on Enterprise Information
Systems., 2021, pp. 111–119.

[5] S. N. Mahalank, K. B. Malagund, and R. M. Banakar, “Non
functional requirement analysis in iot based smart traffic man-
agement system,” in 2016 International Conference on Com-
puting Communication Control and automation (ICCUBEA),
2016, pp. 1–6.

[6] I. S. Brito, A. Moreira, and J. Araújo, “Handling nonfunctional
requirements for smart cities.,” in CIbSE, 2020, pp. 334–341.

[7] M. R. Tabassum, “Addressing non-functional requirements of
adaptive iot systems: A model-driven approach,” in Proceed-
ings of the 25th International Conference on Model Driven En-
gineering Languages and Systems: Companion Proceedings,
ser. MODELS ’22, Montreal, Quebec, Canada: Association
for Computing Machinery, 2022, pp. 195–200.

[8] V. Sachdeva and L. Chung, “Handling non-functional require-
ments for big data and iot projects in scrum,” in 2017 7th
International Conference on Cloud Computing, Data Science
Engineering - Confluence, 2017, pp. 216–221.

[9] I. Khurshid et al., “Classification of non-functional require-
ments from iot oriented healthcare requirement document,”
Frontiers in Public Health, vol. Volume 10 - 2022, 2022.

[10] N. Alhirabi, O. Rana, and C. Perera, “Security and privacy
requirements for the internet of things: A survey,” ACM Trans.
Internet Things, vol. 2, no. 1, pp. 1–37, Feb. 2021.

[11] K. Wiegers and J. Beatty, Software Requirements, 3rd. Red-
mond, WA: Microsoft Press, 2013.

[12] B. Costa, P. F. Pires, and F. C. Delicato, “Specifying functional
requirements and qos parameters for iot systems,” in 2017
IEEE 15th Intl Conf on Dependable, Autonomic and Secure
Computing, 15th Intl Conf on Pervasive Intelligence and Com-
puting, 3rd Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress, IEEE, 2017,
pp. 407–414.

30Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 41 / 88

Performance Evaluation of Software Transactional Memory Implementations

Dániel Urbán
Bell Labs, Nokia, Network Systems and Security Research

Budapest, Hungary
email: daniel.urban@nokia-bell-labs.com

Péter Fazekas
Bell Labs, Nokia, Network Systems and Security Research

Budapest, Hungary
email: peter.fazekas@nokia-bell-labs.com

Abstract—Software Transactional Memory (STM) was
introduced as a promising technology to handle memory
conflicts in parallel computing. In this paper, a performance
comparison of various STM engine implementations is
presented. The well-known Lee’s algorithm was used for
benchmarking ten different Scala based STM API variants, and
one written in Kotlin. Results compare how these
implementations scale in terms of the number of processor cores
available and how they perform in terms of running time,
compared to each other and a single threaded baseline
implementation.

Keywords – Software Transactional Memory; parallel
computing; concurrent programming; functional APIs;
performance measurement.

I. INTRODUCTION

Parallel computing has a decades long history from
emerging concepts to practical applications already in early
mainframe systems. Nowadays, concurrent programming is
applied in almost all domains from end user applications,
enterprise software to exascale computing workloads.

Concurrent threads using shared resources (such as
memory) have been identified early as a critical aspect.
Straightforward solution is to prevent threads using the
resource at the same time, therefore plethora of solutions and
approaches have been designed and implemented in various
architectures, such as using critical sections in the code,
atomic operations, locks, semaphores, mutexes, etc.

Most aforementioned approaches are using some form of
locking based solution (preventing threads to execute while
some conditions apply), which brings well known
shortcomings such as potential deadlocks, livelocks,
convoying, priority inversion, starvation, etc.

To overcome these issues, several solutions were proposed
and implemented, which are basically building on special
representation of data or programming phenomena to avoid
reading/writing shared information at the same time. The main
directions are using lock-free or wait-free data structures, such
as queues, ring buffers or stacks among others; or to basically
prevent using shared context data and apply messaging among
threads instead, such as actor model, or message passing
channels. Furthermore, several approaches are targeting the
complete avoidance of using shared mutable data, hence
eliminating the root of the problem, such as data partitioning,
thread-local storage or immutability in functional
programming.

Transactional memory was introduced in the early 90’s [1]
to overcome shared memory challenges in concurrent
programming. This approach is motivated by how

transactions work in database systems. Basically, transactions
are defined as serializable atomic instructions, that read and
ultimately tentatively write shared memory spaces. Then, a
validate operation is needed to ensure that there are no
conflicts, that is, the memory content read for the
computations and to be written as result is consistent. If
validation is successful, the thread tries committing the
changes. If the validation fails, the transaction aborts and
retries. Commit is successful if no other transactions have
modified the process’s read set and no other transaction has
read the write set, i.e., contention has not occurred since the
last validation. When the commit is successful, the changes
are made visible to other processes, otherwise the transaction
aborts and tentative changes are reverted. This transactional
model for memory operations was introduced as a low-level
Application Programming Interface (API) in [2], so that the
transactional memory is implemented in software (Software
Transactional Memory, STM). Since then, numerous
implementations have appeared, which provide these
transactional functionalities over their APIs. These differ in
various basic algorithms, data structures and optimizations
provided; in Sections III and IV, we detail the ones relevant
for our work.

The rest of this paper is organized as follows. Section II
introduces the basic algorithm used for evaluating various
STM implementations’ performance and some related work.
Section III summarizes various implementations evaluated
with this work. Section IV addresses some important details
of the implementations behind our analysis and the hardware
and software environment used. Section V shows and analyses
numerical results.

II. STM PERFORMANCE RELATED WORK

The main contribution of this paper is to provide a
comparison on the performance of various STM
implementations, focusing on the execution time of certain
multi-threaded computation tasks.

To assess STM performance, one may select proper multi-
threaded applications, for example, the authors of [3] list an
excessive number of those. Their focus is on evaluating how
the applications themselves behave with STM, in terms of size
of read/write sets, transaction lengths statistics and depth of
nested transactions, but the emphasis is not on comparing
different STM engine implementations. Another suggestion is
described in [4] as STMbench7, which is a synthetic
benchmark defining a multitude of operations on a shared data
structure.

However, we wanted to use a computing problem that has
practical significance and enables a comparable

31Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 42 / 88

benchmarking between various STM engine
implementations; thus, the problem should be well
parallelizable, the effect of concurrency should be significant,
and the level of concurrency should be controllable via setting
the inputs to the problem.

Therefore, as in [5]-[7], we selected the well-known
circuit-board routing problem and used Lee’s algorithm [8] to
solve it. Circuit routing has practical significance when
designing connections among electronic components on a
surface, where crossing of connections (routes) is forbidden
or has significant extra cost. In its simplest form, the surface
is represented as a two-dimensional grid of square cells,
representing potential insertion points of components and
potential placeholders for connections.

Lee’s algorithm has a number of source-destination pair
cells (endpoints needing connections) as input. For a given
source-destination pair, the algorithm starts with an expansion
phase. This basically starts a “wave” from the source,
searching all neighboring (along the edges of the square) cells
and enumerating them with their distance from the source.
This breadth-search continues from every neighboring cell to
the neighbors of those (which are second neighbors to the
source), until the search reaches the destination or the edge of
the surface. In general, any cell might be occupied by an
already existing route; these cells are not enumerated and not
taken into account in the next phase of the algorithm.

The second phase is the backtracking, when from the
destination to the source a list of cells is found, their
enumeration should be in decreasing order. As there are
multiple such routes, the particular implementation should
rank those and select the optimal one. Typically, the shortest
route, or the route with the least turns, or routes that are closer
to blocked cells, etc. could be selected. This final phase of the
algorithm is referred to as laying the route. As mentioned
above, if a cell is already occupied by a route, it is not
considered in the expansion phase, hence the backtracking
will efficiently find routes avoiding occupied cells. Naturally,
a laid route will occupy its cells for any later runs of the
algorithm. Figure 1 shows a basic example of Lee’s algorithm
without occupied cell, the left Figure shows the expansion
phase, while on the right the backtracking is represented with
a laid route between source (S) and destination (D). Figure 2
visualizes the algorithm in the case where there are already
occupied cells on the board (denoted by black).

As for parallel computing, it is apparent that this algorithm can
be implemented in a way that multiple source-destination
pairs are being calculated in parallel, using a shared data
representing the grid of cells. It is easy to see how contention
is occurring if a thread reserves a route in backtracking, while
the other counts it in expansion. It is also evident that a grid
with large number of cells but short routes (source-destination
are close to each other) is well parallelizable with lower
chance of contention, while in smaller grids with relatively
long routes, contention will occur with higher probability.

As mentioned, [5] proposed Lee’s algorithm as a
benchmark for STM. The authors implemented the algorithm
using Java and evaluated various optimizations in handling
the transactions, assessing the number of routes the algorithms
found. That work was expanded in [6], and evaluated STM
performance in terms of abort ratio, wasted work and number
of transactions in realistic large circuits. In [7], a Ruby based
STM implementation was evaluated, in terms of finding the
routes on modest difficulty grids.

III. IMPLEMENTATIONS

Due to the practical significance of STM, naturally there
is rich support in various programming languages, in the
forms of various libraries, or being implemented in the
standard library. Without the need to be exhaustive, some
examples are as follows. Haskell, as a purely functional
language suitable for parallel programming, has native STM
support through its standard library. Similarly, Clojure has this
kind of built-in STM support. In C/C++, STM is not natively
supported, but throughout the years several libraries were
built, such as stmmap, or cpp_stm_free, etc., but none of the
implementations were standardized yet. Similarly, Java offers
several STM implementation libraries, examples are JVSTM,
Deuce or DSTM2. Naturally, these extensions exist in all the
other popular languages as well, such as in Ruby, Rust or
Golang.

During our evaluations we focused on STM
implementations in Scala and one written in Kotlin; in the
following we briefly recap these. We selected Scala as our
main focus, because of its popularity as a functional
programming language supporting concurrent and parallel
programming on the Java Virtual Machine (JVM). Scala
offers a variety of STM APIs to test. We also looked at Kotlin,
as a similar, but less functional programming language. Our
goal was to compare both purely functional and imperative
STM APIs.

Figure 1. Lee’s algorithm

Figure 2. Lee’s algorithm with occupied cells

32Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 43 / 88

Cats STM [10] is a Scala library enabling composable in-

memory transactions. It implements fine grained optimistic
concurrency handling with no global locks; automatic retries
and composing complex transactions out of elementary ones
with its purely functional API. Cats STM supports using
multiple runtimes. Also, Cats STM does not have a built-in
transactional array, or similar type, so in the implementation
we store grid matrices in array of transactional variables.

CHOAM’s Rxn [11] is our own Scala based
implementation. It does not use locks, instead it uses a lock-
free multi-word compare-and-swap algorithm [17] to commit
transactions. It has both a purely functional, and an imperative
API; these use the same underlying engine, so we were able
to compare their performance. Rxn is technically not a full-
featured STM, but it is close enough: it does not have Haskell-
style modular blocking (i.e., the orElse combinator), but that
is not necessary for parallelizing Lee’s algorithm. It has a
built-in Ref.Array type (transactional array), which we use for
the board matrices.

The next implementation we tested is based on Kyo [12],
a library for algebraic effects in Scala. One of its built-in
effects is STM. This STM implementation uses fine-grained
locking and has a purely functional API. We run the
transactions on Kyo’s own runtime with its default
configuration. For the board matrices we use an array of
transactional variables (Array[TRef[A]]), because Kyo does
not have a built-in transactional array type.

ScalaSTM is a lightweight STM implementation [13][14]
inspired by the STM API in the Haskell standard library. It has
a mostly imperative API and uses fine-grained locking. It also
has a sophisticated contention manager for retrying
conflicting transactions. We use ScalaSTM’s built-in TArray
(transactional array) for the board matrices.

ZSTM is an implementation in the ZIO concurrency
framework [15]. It has a purely functional API, similar to the
one in the Haskell standard library. We run the ZSTM
transactions on their own zio.Runtime and we use ZSTM’s
TArray for the board matrices.

The Kotlin implementation we tested is within the Arrow
concurrency framework [16]. The algorithm is written in
Kotlin, with a thin Scala wrapper. The API of arrow-fx-stm is
inspired by Haskell’s STM package, but it is nevertheless
mostly imperative. We run the STM transactions on the
default coroutine dispatcher of Kotlin. We use TArray for the
grid matrices.

During the evaluation of results in Section 0, we refer to
two possible basic solutions for STM with regards to the
implementations listed above, that is opacity and early

release. Opacity [19] is a consistency property specifically for
STM systems. The consistency of committed transactions is
usually guaranteed by all STM systems (e.g., by performing a
validation step during commit). However, an opaque STM
also guarantees the consistency of all running transactions.
That is, a transaction in an opaque STM is never able to
observe an inconsistent view of memory. Conversely, a
transaction in a non-opaque (i.e., transparent) STM might
observe such an inconsistent view, and then later (e.g., when
trying to commit) detect the inconsistency, roll back, and
retry. Depending on the specific logic of a transaction, the lack
of opacity could lead to observing violation of invariants,
which in turn could lead to, e.g., out-of-bounds reads or
infinite loops. On the other hand, if an STM guarantees
opacity, it will typically need to roll back and retry
transactions more often, which could lead to performance
degradation.

The authors of [18] proposed early release as an
optimization for STM transactions. This is a mechanism to
remove items from the read set of a transaction, in effect
releasing those memory locations earlier than the commit of
the transaction (because the transaction does not need them
anymore). On one hand, this has the potential to reduce the
number of conflicts the transaction encounters, thus
potentially increasing performance. On the other hand, the
released memory locations will not be part of any later
automatic validation (e.g., during commit), so early release
must be used with care, to preserve the correctness of the
transaction.

IV. IMPLEMENTATION ARCHITECTURE AND TEST

ENVIRONMENT

To enable better understanding of the results, main design
and implementation considerations are introduced in the
following subsections.

A. Design and implementation

The bases of main building blocks of the software
implemented to test performance of various STM
implementations is shown in Figure 3. The first block is
responsible for parsing the input file given to the algorithm;
that contains the description of the board (grid) and the source-
destination (S-D) pairs between which the routes are to be
laid. Then there is an initial optimization, as for all the source-
destination pairs a simple grid-distance is calculated, and S-D
pairs are sorted in increasing order. For those pairs that have
the same grid-distance, a pseudorandom shuffling is applied,
to reduce the number of trivial conflicts (because S-D pairs
with coordinates close to each other are often also specified
close to each other in the input files). Lee’s algorithm will be
then executed on the S-D pairs in this order.

In this implementation, a small generalization of Lee’s
algorithm is introduced, compared to the basics shown in
Section II. Namely, in this version, we still allow routes to
cross in the grid. In terms of route laying on a circuit board,
this mimics the case when there can be multiple layers.
However, in this version of the algorithm we assign a cost to
the routes. That is, we assign a unit cost to each cell allocated
for a route and if another route crosses an already existing one,

Figure 3. Functional blocks of the implementation

Input file
parsing

Input routes
S-D pairs

preprocessing

Lee’s
algorithm STM API

API
wrapper

33Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 44 / 88

there is a double cost associated to that cell within this next
route. Similarly, if a third route is to be laid using this same
cell, that would again double this cell’s cost (hence it would
cost four units) and so on, each layer doubles the cost
(exponentially rising cost). Finally, the algorithm selects the
route with the lowest cost. Note that the original version of the
algorithm that does not allow route crossing is a subset of this
approach with allocating infinite cost to route crossing.

The parallelization is handled in the following manner: the
S-D pairs are evaluated in parallel batches that have the size
equivalent to available CPU threads. Whenever a thread
finishes (a route for an S-D pair is laid), the next one from the
ordered list starts. Note that the algorithm finishes when an S-
D route is found; when the transaction should abort and restart
for example due to validation error or commit error, that is
handled by the STM engine itself.

In Figure 3 the functional blocks of the algorithm, the
tested STM API (listed in Section II) and a block labelled as
”API wrapper” are interwoven. This is because we have
implemented the algorithm for each STM API in a way that
the implementation natively uses the API and its data
structures, therefore, the very implementation code is specific
to the given API. For example, for a functional API a function
itself can be passed, hence the STM engine itself can call
”back” to the algorithm.

The API wrapper part in the Figure is specific to testing
the ScalaSTM API. Namely, ScalaSTM was tested in an
idiomatic way, using its default imperative API. However, as
in general we would like to harness the strengths of functional
programming, we have also implemented and tested a thin
layer, that wraps the ScalaSTM API in a monadic (purely
functional) API similar to that of Cats STM. This way we can
also get some ideas about the overhead of a monadic
(“programs as values”) API in Scala. (We have considered
creating a unified API for all the STM libraries, and
implementing Lee’s algorithm only once, using this API.
However, as measurements on the wrapped ScalaSTM API
showed significant performance degradation due to the
wrapping, we have not done this.) We summarize all the
variants we implemented, and the STM libraries we used in
Table I.

CHOAM has both a purely functional and an imperative
API; it also has various optimization options. To compare the
performance effect of these variations, we have implemented
four versions of Lee’s algorithm with CHOAM:

 One using the default (purely functional and safe)
API (RxnSolver).

 An optimized one, which uses “early release” [18]
to make the transaction log smaller
(ErtRxnSolver). This optimization would not be
safe in arbitrary transactions, but as discussed in
[5], it is safe for Lee’s algorithm. This version also
uses non-opaque (i.e., “transparent”) reads [19], to
further decrease the probability of conflicts.

 Another optimized version, which uses “tentative
reads”, as an alternative implementation of early
release (ErRxnSolver).

 A version which (unlike the other three) uses the
imperative API of CHOAM (ImpRxnSolver). It
has no early release, or other extra optimization
(thus, it can be seen as the direct imperative
equivalent of RxnSolver).

We run the various implementations on asynchronous
runtimes they are designed for. When they are not designed
for a specific runtime, we run them on the thread-pool of Cats
Effect. We configure these runtimes by turning off features
which could have a negative performance impact.

The transactions in these implementations of Lee’s routing
algorithm are read heavy, but at the end they always write to
some locations (to lay a route). This means that read-only
transactions, and transactions which only access a very small
number of memory locations are not measured.

We also have implemented a sequential (non-parallelized)
version of the same algorithm, which serves as the baseline
for comparison to the parallel ones. This sequential
implementation is intentionally not very well optimized,
because we wanted to compare it to similarly high-level and
easy-to-use STMs.

All the implementations used for this benchmarking are
available as open source [20].

Figure 4. Completion time for simple input

Figure 5. Completion time for simple input, zoomed

34Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 45 / 88

B. Experimental setup

We run the benchmarking software described above on the
Java Virtual Machine (JVM). This is packaged into a Docker
container, because we wanted the measurement software to be
portable and easily automatable, and the measurement easily
reproducible.

The server used has two Intel Xeon E5-2680 v3 processors
running at 2.5 GHz, with 12 physical cores, that is 24 cores in
total. During the measurements hyperthreading was disabled,
therefore each thread is running on a physical core. Turbo
boost was also disabled. During the measurements, one
control parameter is the number of cores allocated to the JVM,
and the software itself implements parallelization in a way that
the number of available cores is queried from the JVM.

The server is equipped with 256 Gbytes of physical
memory, but the JVM heap size was configured to be 16
Gbytes. All the implementation is based on Scala 3.7.0 and
OpenJDK 21.0.7 (Corretto).

We used three inputs (circuit boards for laying routes) with
different sizes in terms of the number of cells in the grid and
number and length of routes to be laid, as will be discussed in
the next section: a well parallelizable simple synthetic input,
a modest one, and a complex one coming from real circuitry.

The algorithm for laying routes in the simple and moderate
complexity boards was continuously run for 300 seconds for
each input, and for each implementation, for a given number
of available CPUs. Based on the completion times needed for
solving an input (see next section), this results in several
hundreds to several thousands of runs for each data point. For
the complex input, due to its excessive complexity, 20 runs
were performed for each data point.

We used the Java Microbenchmark Harness (JMH) [21] to
perform the measurements, in its default time-based “average
time” benchmark mode. In this mode JMH repeatedly calls a
benchmark method until a timeout of 10 seconds is reached
(JMH calls this 1 iteration). JMH performs the measurements
in a forked JVM (i.e., it launches a separate process just for
the measurement); we configured it to repeat this forking 6
times. We performed 5 warmup iterations and 5 measurement
iterations (that is, 50+50 seconds total per fork); the
measurement results of the warmup iterations are ignored, and
the execution times of the benchmark method during the

measurement iterations are averaged. (An exception to this is
the last complex input, where we used the “single-shot” mode
of JMH, resulting in the average of 20 benchmark method
executions, as mentioned above.) The purpose of the warmup
iterations is to avoid measuring in a “cold” JVM, i.e., in which
the just-in-time compiler (JIT) did not yet optimize the
running methods.

V. RESULTS AND EVALUATION

The charts in this Section show the results of our
measurements. On the vertical axis, we show the completion
time, i.e., the time required (in seconds) to solve one particular
input board. The curves show the average time required to run
on the input; the shaded area shows a 99.9% confidence
interval (it is not visible on some of the curves). The horizontal
axis shows the number of CPU cores available to the solvers.
This way we can analyze the scalability of the various STM
engines when used for parallelization.

Figures 4 and 5 show measurement results for a 200×200
circuit board with 90 routes (i.e., source-destination pairs),
which is the simple input. The routes are all very short (10),
the solutions are trivial (each is a straight line), and they never
cross each other. (This board is a smaller version of the board
called “simple” in [6].) Thus, solving this synthetic input is, in
theory, perfectly parallelizable. While this is not a realistic
circuit board, we use it to measure the ability of the various
STM engines to exploit the potential parallelism (which is
very high here). Figure 4 shows results for all the STM
engines and variants we measured. The smaller results (i.e.,
results for the faster implementations) are not visible on that
chart, so they are shown in Figure 5 (which is essentially the
zoomed in version of the bottom of Figure 4).

In Figure 4, we can see that the slowest STM
implementation on this particular input is Cats STM (labeled
CatsStm). As we increase the number of cores, at first it scales
well until around 4 cores; then performance starts to degrade.
We suspect the reason for this is the behavior of the locks used
under higher contention (Cats STM uses the built-in locks of
Cats Effect, which use a single atomic reference). Even at the
best point in the chart (at 4 cores), this engine is slower than
the non-parallelized baseline implementation (Baseline in the
chart). The reason for this is probably (at least in part) the high

Figure 7. Moderate complexity input, zoomed

Figure 6. Moderate complexity input

35Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 46 / 88

overhead of the immutable and purely functional data
structures used by Cats STM.

In the same chart, we can see that the STM engine of Kyo
(labeled KyoStm) seems to scale well with the number of
processors, although there is less and less improvement the
more cores are used (this is expected of any parallelization
scheme that requires some coordination between cores). On
the other hand, ZSTM seems unable to scale beyond 2 cores;
we suspect the reason is that the locks it uses are blocking
physical threads, and its runtime does not seem to start other
threads, or compensate somehow for these threads that are not
doing useful work.

On Figure 5 we can see the implementations which are
able to solve this input much faster. All of them show a scaling
curve similar to KyoStm (i.e., they scale well, but the
improvements are smaller and smaller). If we compare the
default ScalaSTM implementation (ScalaStm), and its variant
wrapped in a purely functional API (WrStm), we can see that
the purely functional API has a very significant overhead
(around 2-3 times slower). We see similar, but smaller
differences between the solvers using the functional and
imperative APIs of CHOAM (RxnSolver and ImpRxnSolver
respectively). The variants using the various forms of early
release (ErRxnSolver and ErtRxnSolver) show little or no
performance advantage over RxnSolver; this is expected, as
early release is used to decrease the number of conflicting
transactions, and due to the nature of the input, there are no
(or very few) conflicting transactions here. (ErtRxnSolver is
even slower here, due to the overhead associated with that
particular implementation of early release.)

Figures 6 and 7 show results for another input with
moderate complexity, a “small but realistic board”
(testBoard.txt from [7]). This board is 75×75, and has 203
routes to solve, both short and long. This input has lots of
potential conflicts, so we expect solving it to scale worse with
the number of cores. (As before, some implementations are
significantly faster than others, so Figure 7 shows the zoomed-
in lower part of Figure 6.)

As expected, we see the implementations becoming only
modestly faster as the number of cores increases, or not at all.
An interesting exception to this is ErtRxnSolver, which seems
to scale very well from 1 to 5 cores (and it is mostly flat after
that). We suspect this is due to the relatively high overhead of

implementing early release this way, which is then able to be
overcome by more parallelism (allowed by using early release
and non-opaque reads to decrease transaction conflicts).

As Figure 6 shows, the slowest implementation is Cats
STM as previously. The fact that it is the slowest on both
inputs suggests that it has very high single-threaded overhead
(probably due to the immutable data structures used and the
purely functional API).

The STM engine of Kyo shows some limited ability to
scale, but despite this, it is slower than ZSTM, which (as
before) does not scale well. This contrasts with the previously
discussed results, where Kyo’s superior scalability was able to
overtake ZSTM at 4 cores.

Interestingly, none of these three implementations
(CatsStm, KyoStm, ZSTM) is faster than the baseline non-
parallelized implementation (on this input).

In Figure 7 we see the results of the faster implementations
on the same input. All of them are faster than the Baseline
(non-parallelized) version. The fact that they are faster even
on a single core (i.e., no parallelism) is because we did not
bother optimizing the baseline (we wanted to compare
“conveniently coded”, high level implementations). As
mentioned before, all of them show no or limited scaling.
Interestingly, ScalaStm (and its purely functional variant,
WrStm) show only performance degradation with more cores
(i.e., they are fastest with 1 core). This suggests that they are
unable to exploit the very limited potential parallelism of this
input.

RxnSolver and ErRxnSolver show modest scaling, (but
still, they are slower than ScalaSTM). Of the two,
ErRxnSolver is the faster: as expected, using early release
helps to reduce transaction conflicts.

The fastest implementation (on this input) is ArrowStm,
which scales reasonably well, and overtakes ScalaSTM at 3
cores.

Figure 8 shows our measurement results on a complex real
circuit board of a memory module (board “mem” in [6]). This
is a 600×600 board, with 3101 routes to solve. As this board
is much bigger and more complicated than the previous two,
solving it requires orders of magnitude more time (minutes

Figure 8. Completion time of complex realistic board

TABLE I. SUMMARY OF THE IMPLEMENTED VARIANTS
Name STM library API style

CatsStm Cats STM functional

RxnSolver

CHOAM

functional

ErRxnSolver functional

ErtRxnSolver functional

ImpRxnSolver imperative

KyoStm Kyo functional

ScalaStm
ScalaSTM

imperative

WrStm functional

ZSTM ZIO functional

ArrowStm Arrow imperative

36Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 47 / 88

instead of fractions of seconds as before). For this input, we
do not show results for Cats STM, ZSTM or Kyo as they
showed limited performance even for the moderately complex
board.

As for the previous input, we see all the (faster)
implementations improving on the Baseline (even at 1 core).
ScalaSTM is the fastest here, showing an interesting curve:
when running on multiple cores, it is first slower than on 1
core, but slowly getting faster, and overtaking its single-core
performance at 6 cores. We suspect ScalaSTM has some
optimizations specifically for single-threaded execution. (Its
purely functional version, WrStm shows the same scaling
behavior, but with a significant overhead due to the API
wrapping). As before, ArrowStm performs well, and scales
well, but in this case, cannot overtake ScalaSTM.

Comparing the various versions implemented with
CHOAM, we see the unoptimized, purely functional variant
(RxnSolver) being generally the slowest (and much slower
than Scala STM). The variant ErRxnSolver (using early
release) shows a significant improvement, which grows as the
number of cores increases (this is expected, as the potential
for conflicts is bigger with more cores, and early release
reduces these conflicts). ErtRxnSolver (which uses both early
release and non-opaque reads) starts slower (as before, due to
the bookkeeping overhead of this particular implementation),
but scales much better, overtaking all the other CHOAM
variants, but it is still unable to overtake ArrowStm. Again,
this scaling behavior is expected, like for testBoard.txt.

VI. CONCLUSIONS AND FUTURE WORK

Considering all the measurement results detailed in the
previous section, we make the following observations.

Comparing purely functional APIs with their imperative
counterparts (i.e., WrStm with ScalaStm, and RxnSolver with
ImpRxnSolver), we see overheads from around 30% to around
300% for the purely functional APIs. This is probably due to
the purely functional APIs allocating an enormous amount of
very small objects, which stresses the garbage collector of the
JVM.

If we compare all the functional APIs with all the
imperative ones, we see a similar trend: imperative ones tend
to be faster (as expected). However, there is a significant
difference in performance between the functional ones
themselves, so there is clearly a way to decrease their
overhead.

The Kotlin implementation (ArrowStm) performs
consistently well and scales well. This is probably in part due
to its imperative nature, but we suspect it might also have
something to do with it being executed on the Kotlin co-
routine scheduler. All the other implementations run on
runtimes of Scala effect systems, which tend to schedule tasks
differently from the coroutine scheduler. We leave examining
the precise effect of the scheduler behavior on STM
performance for future work.

On inputs where we expect transaction conflicts, using
early release (and non-opaque reads) shows a clear
performance advantage. This is expected, as these
optimizations aim to decrease the number of conflicts, and
they succeed at that goal.

Preliminary profiling shows that both Cats STM and
ZSTM spend a considerable portion of their execution time
maintaining the transaction log. This is not surprising, as the
transactions we measured here are relatively big (i.e., their
logs contain a lot of entries), especially for the last input (the
memory module). Thus, optimizing their log data structures is
a potential future performance improvement for these STM
engines.

REFERENCES
[1] M. Herlihy, J. E. B. Moss, “Transactional Memory:

Architectural Support for Lock-Free Data Structures” ACM
SIGARCH Computer Architecture News, Volume 21, Issue 2,
1993, pp. 289 - 300.

[2] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
“Software transactional memory for dynamic-sized data
structures”, PODC '03: Proceedings of the twenty-second
annual symposium on Principles of distributed computing,
2003, pp. 92 – 101

[3] J. Chung et al., “The common case transactional behavior of
multithreaded programs”, Proceedings of the Twelfth
International Symposium on High-Performance Computer
Architecture, 2006, pp. 266–277

[4] R. Guerraoui, M. Kapalka, and J. Vitek, “STMBench7: a
benchmark for software transactional memory”, ACM
SIGOPS Operating Systems Review, Volume 41, Issue 3, pp.
315 - 324

[5] I. Watson, C. Kirkham, and M. Lujan, “A Study of a
Transactional Parallel Routing Algorithm,” 16th International
Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), Brasov, Romania, 2007, pp. 388-
400

[6] M. Ansari et al., “Lee-TM: A Non-trivial Benchmark Suite for
Transactional Memory”. In: Bourgeois, A.G., Zheng, S.Q.
(eds) Algorithms and Architectures for Parallel Processing.
ICA3PP 2008. Lecture Notes in Computer Science, vol 5022.

[7] C. Seaton, “Context on STM in Ruby”, online
https://chrisseaton.com/truffleruby/ruby-stm/ accessed:
17/6/2025

[8] C. Y. Lee, “An Algorithm for Path Connections and Its
Applications,” in IRE Transactions on Electronic Computers,
vol. EC-10, no. 3, pp. 346-365, Sept. 1961, doi:
10.1109/TEC.1961.5219222

[9] R. Guerraoui, M. Kapalka, and J. Vitek, “STMBench7: A
benchmark for software transactional memory”. EuroSys ’07:
Proceedings of the 2nd European Systems Conference, pp.
315–324. ACM Press, March 2007.

[10] T. W. Spence, Cats STM, online
https://github.com/TimWSpence/cats-stm/, accessed:
18/6/2025

[11] D. Urban, CHOAM, online: https://github.com/durban/choam
, accessed: 18/6/2025.

[12] Online: https://getkyo.io/ , accessed: 18/6/2025
[13] N. Bronson, Scala-STM, online: https://github.com/nbronson/

accessed: 18/6/2025.
[14] N. Bronson, H. Chafi, and K. Olukotun, “CCSTM: A Library-

Based STM for Scala”. Proceedings of the First Annual Scala
Workshop. Lausanne, 2010

[15] Online:
https://github.com/zio/zio/tree/series/2.x/core/shared/src/main
/scala/zio/stm , accessed: 18/6/2025

[16] Online: https://arrow-kt.io/learn/coroutines/stm/ , accessed:
18/6/2025

[17] R. Guerraoui, A. Kogan, V. Marathe, and I. Zablotchi,
“Efficient Multi-word Compare and Swap,” in Proceedings of

37Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 48 / 88

the 34th International Symposium on Distributed Computing,
Virtual Event, Oct. 2020.

[18] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer,
“Software transactional memory for dynamic-sized data
structures”. In Proceedings of the twenty-second annual
Symposium on Principles of Distributed Computing, pages 92–
101, 2003.

[19] R. Guerraoui, M. Kapalka, “On the Correctness of
Transactional Memory”. In PPoPP ‘08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 175–184, New York, NY, USA,
2008. ACM.

[20] D. Urban, stm-benchmark, online:
https://github.com/nokia/stm-benchmark, accessed: 19/6/2025
Online: https://openjdk.org/projects/code-tools/jmh/ accessed:
19/6/2025

[21] Online: https://openjdk.org/projects/code-tools/jmh/ ,
accessed: 19/6/2025

38Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 49 / 88

Protocol-aware Cloud Gateway with Adaptive Rate Control

Ivana Kovacevic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: kovacevic.ivana@uns.ac.rs

Tamara Rankovic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: tamara.rankovic@uns.ac.rs

Vasilije Milic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: milic.ra208.2019@uns.ac.rs

Milos Simic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: milos.simic@uns.ac.rs

Isidora Knezevic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: knezevic.ra47.2019@uns.ac.rs

Abstract— As cloud computing has emerged as the next-

generation architecture for IT enterprises, it is challenging

to envision a well-configured cloud environment that

delivers services without adequate mechanisms for

maintaining high availability, minimizing latency, and

ensuring robustness. A notable feature of distributed cloud

systems is their need to support a wide range of data formats

and communication protocols. The pivotal role of

communication protocols in facilitating seamless interactions

among distributed components depends on their capability

to perform real-time data and protocol conversion, ensuring

interoperability without data loss while considering latency

and reliability constraints. This paper proposes a prototype

of open-source components designed to enhance distributed

cloud infrastructure, including a protocol-aware gateway

that performs configurable protocol transcoding.

Additionally, the gateway component is connected to a rate-

limiting service that ensures high availability and mitigates

network congestion. These components are seamlessly

integrable, preserving protocol features without

performance trade-offs. Their effectiveness is demonstrated

through integration into the open-source Constellations

(C12S) platform, validating their flexibility and practical

value in real-world cloud environments.

Keywords-Gateway; Service discovery; Rate-limiting;

Protocol transcoding; Distributed cloud.

I. INTRODUCTION

In the present era, cloud computing offers extensive

computational capabilities and facilitates on-demand

access to a shared pool of both hardware and software

resources. It has been introduced as the next-generation

architecture of IT enterprises and gives great capabilities

that ensure improved productivity with minimal costs

while offering a better level of scalability and flexibility in

comparison to traditional IT systems [1]. High

performance, high availability, and scalability present

promising features guaranteed by the migration to cloud

computing. To minimize complexity and ensure a stable

environment conducive to future adaptations, both

business and regular users choose to leverage the hardware

or software resources offered by cloud providers, aiming to

enhance cost-effectiveness and simplify maintenance.

It is not easy to envision a well-configured cloud

environment delivering services without incorporating

mechanisms for maintaining high availability, minimizing

latency, and ensuring robustness. Moreover, addressing

resource exhaustion and network congestion introduces a

new set of rules that require careful consideration to ensure

the overall health of cloud services and protect them from

common misuse. To mitigate such risks, implementing a

rate-limiting service serves as a viable solution, as a rate-

limiting mechanism helps prevent resource exhaustion by

temporarily blocking requests or placing them in sleep

mode once a maximum limit has been reached. On the

other hand, a distributed cloud aims to accommodate a

wide range of data formats and protocols, facilitating

seamless integration among applications. While existing

cloud solutions are typically optimized for inter-service

communication through RPC in a binary format, the same

approach is not always suitable for external web clients.

The Constellations platform is no exception. It follows the

pattern of loosely coupled Dockerized micro-services, but

it does not support out-of-the-box request handling beyond

RPC, limiting straightforward interaction with external

clients. For such scenarios, an integration of the

component responsible for data and protocol conversion

becomes crucial. Such a component ensures proper routing

to the destination service without data loss, considering the

overall network response time.

This paper centers on the design, implementation, and

evaluation of two integrated, open-source, platform-

independent components to maintain performance features

crucial for a distributed cloud environment. Specifically,

the goal is to ensure high availability and elasticity of

communication between users and services, while

protecting the system from excessive misuse. We propose

a prototype gateway as the primary entry point to the

system, which exposes Remote Procedure Calls (gRPC) as

Hypertext Transfer Protocol (HTTP) endpoints by

transcoding one protocol to another in a configurable

manner. This service demonstrates that protocol awareness

can be centralized at the entry point of a distributed cloud

environment. It features dynamic client discovery and

utilizes flexible configuration files for managing

Application Programming Interfaces (APIs), eliminating

the need to modify source code when a new service is

discovered. Furthermore, the gateway is connected to a

rate-limiting service to ensure availability and mitigate

potential attacks. This service enforces limitations based

on both system and user levels, leveraging priority queues

and algorithms, such as token bucket, leaky bucket, and

sliding window, to enforce fair rate control. To assess the

proposed solution, both components are integrated with an

open-source Constellations platform [2], which operates as

a module within the distributed cloud infrastructure.

The paper is organized as follows: Section 2 presents

the related work for this research on performance in

39Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 50 / 88

distributed cloud, with a particular focus on gateways that

ensure low latency and high availability. Section 3

provides an overview of rate-limiting algorithms, their

advantages, and applications. In Section 4, the gateway is

described. Section 5 explains the implementation of a

protocol conversion service, a rate-limiting service, and

their integration with the open-source platform for

configuration dissemination in a distributed cloud. The

usability, interoperability, and limitations of the proposed

solution are discussed in Section 6. Finally, Section 7

presents the conclusion and future directions of the

conducted research.

II. RELATED WORK

In their study, El Kafhali et al. [1] presented a

thorough overview of cloud computing mechanisms,

offering a systematic literature review specifically focused

on cloud computing security issues and frameworks

through a comprehensive survey. Their paper provided an

overview of the fundamentals of cloud infrastructure,

reflecting on the mechanisms to achieve scalability and

availability, while considering proper defense against

attacks. Latha et al. [3] conducted research that addresses

challenges in distributed applications, focusing on client

satisfaction, confidence, and preventing revenue losses by

ensuring service availability. Their study developed an

overload protection technique that relies on a URI

configuration file, in conjunction with the Zuul gateway,

which can filter requests before obtaining tokens. The

token bucket rate-limiting algorithm is implemented to

ensure traffic limitation while improving the reliability

and availability of the cloud platform service. Despite

integrating the gateway with rate-limiting to enhance

availability, this research remains protocol-dependent and

lacks protocol transcoding, which would enable flexibility

and broaden its usage. Distributed cloud control

approaches are also demonstrated in papers by Raghavan

et al. [15] and in “Load balancing vs. distributed rate

limiting: a unifying framework for cloud control” written

by Stanojevic Rade et al. [16]. However, they do not

describe a holistic approach with an integrated API

gateway for monitoring and filtering requests that could

also be protocol-agnostic.

Ranawaka et al. [14] emphasized the need to provide a

scalable microservice architecture that offers highly

available and fault-tolerant operations. They implemented

Custos, which exposes services through a language-

independent Application Programming Interface that

encapsulates science gateway usage scenarios. This work

primarily focuses on science-specific gateways in a

research domain, tailored for computational experiments

while hiding the complexities of accessing and using

cyberinfrastructure. Although the necessity for such a

solution is evident, the paper lacks an explanation on how

to ensure scalability as the number of requests increases

while protecting the platform from malicious Denial-of-

Service (DoS) attacks.

III. RATE-LIMITING IN THE CLOUD ENVIRONMENT

To ensure service availability and achieve high

scalability, cloud services must protect themselves against

excessive usage, whether it is expected or not. Cloud

services should be developed with rate limitations in mind

to ensure the system operates properly and avoids

cascading failure. For increasing throughput and

decreasing end-to-end delay over large distribution

systems, rate limiting on either the client or server side is

critical [3]. Our approach in this research is to implement a

prototype rate limiting at the OSI layer 7, to prevent

resource exhaustion and maintain system resilience. We

propose rate control at the entry point level, paired with the

gateway. By integrating rate limiting within gateways, API

usage can be centrally controlled across all deployed

nodes, ensuring uniform policy enforcement and

simplifying management.

Rate limiting helps prevent resource exhaustion by

temporarily blocking requests or placing them in sleep

mode once a maximum limit has been reached. After the

sleep time, the request can be forwarded from the rate

limiter to the handling server [4]. Rate limiting has found

use in various cases, including improving overall system

performance, protecting against brute force or Distributed

Denial-of-Service (DDoS) attacks, preventing web

scraping, and preventing resource starvation. Scalable rate

limiting is achieved using various algorithmic approaches,

including the leaky bucket algorithm, the token bucket

algorithm, the fixed window, the sliding log, and the

sliding window [3]. This paper focuses on the leaky bucket

algorithm, the token bucket algorithm, and the sliding

window, all of which are implemented within our rate-

limiting service. The token bucket algorithm provides

solutions for traffic shaping in packet-switched networks

[5]. In this algorithm, when a new request arrives, the

bucket grants one token to the requester, based on the

availability [6]. If there are available tokens, the service

accepts the request and removes one token from the

bucket. If no tokens are available, the system rejects the

request. This algorithm also requires a parameter for the

refill rate, as it adds tokens to the bucket at a fixed rate

defined by this parameter. It is a common choice in

distributed systems, primarily due to its memory efficiency

and ease of implementation.

The sliding window algorithm imposes limits within

fixed time intervals, allowing for precise control over

requests in smaller time windows. It admits a specified

number of requests in a given timeframe L. As each

request arrives, a request counter is incremented by one.

This process continues as long as the request counter is

less than a specified fixed number. At the end of a window

interval, the request counter resets. Intervals are half open,

i.e., [t, t+L) [7]. The leaky bucket is a counter that

increases by one up to a maximum capacity C for each

arrival and decreases continuously at a given drain rate D

to as low as zero; an arrival is admitted if the counter is

less than or equal to C- 1 (so that after the arrival it will be

less than or equal to C) [7]. The leaky bucket algorithm is

designed to provide clients with smooth and steady

40Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 51 / 88

throughput by delaying requests rather than rejecting them

outright. While this approach may increase latency due to

its lack of drop behavior, it remains well-suited for use

cases like background processing or metrics collection.

That said, we also support two additional rate-limiting

algorithms, giving clients the flexibility to choose the

strategy that best fits their specific needs.

The proposed solution emphasizes implementing API

rate-limiting as a centralized, independent component,

which differs from traditional methods that integrate rate-

limiting algorithms directly into individual services. By

applying rate limiting on a system-wide basis, we gain

finer control, allowing for multiple configurations for each

request or service. Additionally, this approach can be

developed and deployed separately, offering greater

flexibility and ease of management. Having a single,

global limit also avoids common problems related to

communication and synchronization among multiple,

distributed rate-limiting services [7].

IV. TRANSCODING HTTP TO GRPC

While HTTP is a very popular choice due to its

simplicity and stateless nature, some studies have shown

that RPC outperforms HTTP in terms of response time

and data volume [8], [9]. Moreover, 80% of the public

APIs available follow most Representational State

Transfer (REST) conventions, and developers are

accustomed to that pattern, implying the need for gRPC

APIs also to follow REST convention [10]. Additionally,

having multiple cloud providers joined in a distributed

cloud, cross-platform compatibility issues, and

inconsistent call standards arise. Placing separate

components as an API gateway alleviates these problems

to some extent. To enhance user experience and minimize

development costs, we propose a configurable rate-

limiting gateway that is designed to fully comply with the

REST while retaining the advantages of remote procedure

calls. With this, existing REST endpoints can be

efficiently transcoded to use the RPC protocol,

guaranteeing no data loss. Remote procedure calls heavily

rely on Protobuf, an open-source technique for serializing

structured data [10]. Unlike JavaScript Object Notation

(JSON), Protobuf is optimized and runs in binary format,

which is why it is often the preferred choice. Additionally,

Protobuf offers a mechanism to segregate context and

data, allowing data to be transmitted repeatedly without

duplicating context, such as field or property names, as

often occurs in JSON or eXtensible Markup Language

(XML). In practice, both gRPC APIs and HTTP/JSON

APIs serve distinct purposes, and an ideal API platform

should offer robust support for both types.

For protocol transcoding, the proposed gateway

component leverages gRPC client reflection to

dynamically discover methods, ensuring interoperability

across services and reducing the need for manual

adjustments. Given a hostname and port provided in the

configuration scheme, the gateway attempts to establish a

connection to the specific gRPC server and dynamically

discover available services and methods without prior

knowledge. Discovered services are later used in the

process of protocol transcoding in order to forward data

from the original HTTP request to the corresponding RPC

service method. Moreover, by providing a transcoding

feature, it is possible not only to determine what formats

(i.e., which Protobuf messages) a server’s method uses but

also how to convert messages between a human-readable

format, which is dominant in HTTP, and the binary wire

format.

V. IMPLEMENTATION AND THE USE CASE

Configurable, highly available cloud services, namely a

gateway and rate-limiting service, are integrated within the

configuration dissemination tool in the distributed cloud.

This tool is part of the Constellations, an open-source,

distributed cloud platform [2]. The main objective of the

tool is to enable cloud-like services for users who would

benefit from highly elastic deployments, while also taking

latency and privacy requirements into account. To achieve

so, the tool offers streamlined processes for infrastructure

provisioning, application life cycle, and behavior

management [10]. As the platform has multiple services

distributed across the cloud that communicate using gRPC

protocol, adding a rate-limiting gateway only increased its

heterogenity and improved the response rate.

A. Gateway

The gateway solution offers a flexible approach for

exposing gRPC calls as REST endpoints. Instead of

burdening each service with boilerplate code to enable

transcoding, this approach delegates the protocol

conversion logic to a dedicated service acting as a proxy

between the platform's end clients and the internal

services. It uses the flexibility of the configuration file to

avoid source code alterations that would otherwise be

mandatory and are common in other prominent gateway

implementations [12].

Within the configuration file, the highest level of API

description is an API group, which encompasses versioned

descriptions for the gRPC methods intended for exposure.

These methods are grouped based on their purpose,

allowing for the inclusion of gRPC methods from various

services and applications. Bundling the APIs into API

groups simplifies access to the methods needed for specific

purposes, eliminating the need to search through an

extensive list of APIs from each service to locate a

particular method. A description of each gRPC method

includes the REST route, HTTP method type (e.g., GET,

POST), and the gRPC service that hosts it. The method's

name serves as a key in a map during the dynamic

generation of routes, and it must match the name in the

source service. The configuration also includes the port of

the gateway and the addresses of the gRPC services used.

These addresses are kept internal to the gateway and are

inaccessible from outside sources, meaning they cannot be

directly reached via either gRPC or HTTP requests. The

example of the configuration file is shown in Figure 1. The

service registry, as a separate component within the

gateway, allows services to register their endpoints, which

are then stored in a configuration file. In the event of a

failure, the gateway utilizes this configuration file to route

41Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 52 / 88

requests, eliminating the need to ping each service

individually to collect routes.

Upon initializing the gateway, the configuration file is

loaded, and for each gRPC service listed, a corresponding

Client object is instantiated. Each client object includes an

attribute called DescriptorSource, which is derived from

the gRPC reflection mechanism and participates in

obtaining a list of exposed gRPC methods from each

client. However, this solution relies on gRPC services

having reflection enabled, which allows clients to access

detailed information about the Protobuf APIs they expose,

including the specifications of each request and response,

as well as their attributes. To invoke gRPC calls, this

service depended on the Go library grpcurl [13]. This

decision was beneficial because grpcurl efficiently

converts HTTP data to gRPC data, simplifying the

procedure. Moreover, grpcurl supports request headers

during invocation, which was crucial for later

authorization between services.

The process of HTTP route generation consists of

several parts:

1. Generation of sub-routers for every group,

2. Sub-routing groups based on the version,

3. Assigning a path to each route based on the

method name from the configuration file,

4. Creating a middleware that integrates a handler

function and HTTP method type for each route.

The second step provides fine-grained configuration of

routes, combining group and version, resulting in each

method being mapped with its version and group, allowing

for easier maintenance of clients in the future, based on the

current API version. All of these parameters are required

to create a complete path for each method. The full path is

created in the third step, using the exact method name

previously read from the configuration file. The final step

is to prepare the router for gRPC method invocation. To

achieve this, HTTP endpoints are wrapped into the

middleware, which performs preprocessing and validation

before the actual gRPC call. The transcoding process is

validated against GET, POST, PUT and DELETE HTTP

methods, with and without custom HTTP headers. To

extract parameters from routes, the gateway uses regular

expressions and then performs implicit type conversion.

To prevent unauthorized access, the middleware includes a

check for authorization tokens, verifying each request

before directing it to the destination service. This process

helps eliminate redundant calls to services with restricted

access, enhancing security and improving response time.

Once the gRPC method is invoked and completed

successfully, the response is returned as a byte buffer.

Additionally, the gRPC status codes are mapped to their

corresponding HTTP response codes. This mapping is

particularly helpful in case of errors, as it enables the

provision of informative messages that explain why the

error occurred.

B. Rate limiter

The rate-limiting service provides customizable rate-

limiting mechanisms per request at both the application

and system layers. Limitations are designed per client. In

our scenario, clients refer to end users of the constellation

platform. However, distinct rate limiters can be created

based on the requirements of cloud services, irrespective

of client types. Full support for managing rate limiters is

also provided, enabling rate or type updates, safe deletion,

and optional parameters. To support flexible request

control, the prototype offers multiple rate-limiting

algorithms that clients can choose from based on their

specific needs. To apply safety measures against API

overuse, we first define a rate-limiting strategy. Every rate

limiter is assigned a unique ID in the format of user_id-

method_id. For seamless integration, method_id

corresponds to a method name retrieved from gRPC

clients in the gateway. As this data is already extracted

and prepared for routing to the desired service, no further

querying or communication with other services is

necessary. Given that this ID is treated as a regular

expression, any notation is allowed, making it usable not

only for gRPC methods but also for users or organizations

that require limited access to resources. For instance, it is

possible to configure access limitations for authenticated

users and request origins, forbidding usage from multiple

devices simultaneously. Apart from ID, the rate limiter is

also described with TYPE, REQ_LIMIT, PRIORITY,

PERIOD, and BURST. Attribute TYPE is directly related

to supported rate-limiting algorithms, currently limited to

gateway:

 route: /apis

 port: 5555

services:

 Kuiper: kuiper:5000

 ExampleService: example:9001

 RateLimitService: rate_limiter_service:8080

groups:

 core:

 v1:

 CreateExample:

 method_route: /example-route

 type: POST

 service: ExampleService

 PutStandaloneConfig:

 method_route: /configs/standalone

 type: PUT

 service: Kuiper

Figure 1. Example of a YAML gateway configuration.

&pb.RateLimiter {

 id: "user1-PutStandaloneConfig",

 Name: "PutStandaloneConfig",

 UserName: "user1",

 Type: "tokenBucket",

 Priority: 1,

 ReqLimit: 1,

 Period: 60,

 Burst: 1,

 Idle: 2

 }

Figure 2. Code snippet demonstrating a rate limiter object

42Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 53 / 88

token bucket, leaky bucket, and sliding window. The total

number of allowed requests within a specified period is

determined by the combination of the attributes

REQ_LIMIT and PERIOD. A period of time can be

expressed in seconds. This additional parameter enables

services to create rate limiters tailored to internal service

metrics. These metrics might incorporate temporal factors,

such as the number of served requests during specific

periods of the day. Parameter BURST stands for the

maximum number of concurrent requests that the API can

handle, and it is used to regulate throttling in the token

bucket algorithm. With larger bursts, the network may

need to allocate more resources per connection [7].

The rate limiter also supports a priority queueing

mechanism that can be utilized to favor users who are

most frequently rejected due to system limitations.

Priority can be handled at either the method or user level,

where critical, time-sensitive methods have higher

priority, while tracking or monitoring methods can be

accessed with a delay. A lower PRIORITY value means a

higher priority in the queue; thus, a value of 1 indicates

the highest priority. If the userName is not provided,

PRIORITY refers to the method. It is also possible to

define an IDLE parameter for slow connections. This

parameter and priority queueing are optional and can be

deactivated based on system needs. The example of a rate

limiter is shown in Figure 2. This rate limiter is set to

allow only one request per minute, using the token bucket

algorithm. It is defined for the user with the highest

priority. Only one rate limiter can be active per client–

request combination. This aligns with the notion of a fixed

number of requests per user, as offered by cloud provider

subscription plans. Any changes made to the rate limiter

will override previous settings and reset the number of

available tokens.

To minimize response time, a caching mechanism is

implemented in the rate-limiting service. This mechanism

stores the current state of the rate limiter in a cache

memory for a specified period, reducing the number of

calls to the database. The cache is updated each time a

service modifies the rate limiter object. However,

inconsistencies can arise due to network delays and

concurrent updates, which may allow clients to exceed

rate limits before the state is synchronized. Achieving

strong state consistency can introduce significant

overhead, resulting in longer processing times and

reduced performance. To address this issue, we decided to

integrate with Redis due to its ability to perform

operations in memory, which reduces latency and makes it

suitable for high-traffic environments where rate limits

need frequent checking and updating.

C. Integration with the Constellations platform

As an evaluation, developed components are

integrated with an open-source platform within a

distributed cloud infrastructure to facilitate two-way

protocol conversion and manage resource availability by

enforcing rate control. To illustrate the flow of the

transcoding process, Figure 3 depicts a scenario in which

two clients send identical requests within a predefined

timeframe. Requests are sent to the service responsible for

configuration management within the Constellations

platform. The service responsible for this feature is

represented as a constellation service in a diagram. For

example, in Figure 3, we demonstrate two calls to an

endpoint that has a system rate limit of one request per

minute. After receiving a request, the gateway uses

DescriptorSource to determine the actual method name

bound to the received HTTP request. Based on the

configuration file, it maps parameters (if any) and

Figure 3. Sequence flow demonstrating the integration of gateway and rate-limiting services with the Constellations platform

43Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 54 / 88

converts the request payload to a byte stream suitable for

the Protobuf format. The method name from the

configuration is then used in a direct gRPC call to the rate-

limiting service. The IsRequestAllowed method in the rate-

limiting service searches for a rate limiter object based on

its ID and then examines the rate limiter type to determine

whether a request can be executed at the moment.

If an optional parameter is provided, the rate limiter

service is also responsible for checking the user priority.

Based on the examination of parameters, if the limit is

reached, the method returns a false flag. Given the flag

value, the gateway decides whether to invoke the actual

gRPC method and transfer the request. As shown in Figure

3, for the second client, the rate limit is reached, and the

request is blocked immediately. The same sequence is

followed in case where a thousand users concurrently send

identical requests, and the control rate is shown in Table 1,

for each rate-limiting algorithm.

In Table 1, we compared the average latency

introduced by different rate-limiting algorithms

implemented in our service. We sent 1000 requests to the

same route, configured to use the token bucket, leaky

bucket, and sliding window algorithm, with the same

reqLimit parameter set to 10. This seemed reasonable,

considering the configuration is per IP address, and the

average response time without a rate limit for the route

was approximately 100-200ms. Both client IP address and

Constellations’ server were connected to the same internal

network. Control rate is measured for the system rate

limiter, representing the ratio between the number of

successful and the number of rejected requests (those with

429 status code). Average latency represents the ratio

between regular response time and response time when the

rate limiter is applied.

TABLE I. A COMPARISON OF RATE-LIMITING ALGORITHMS

 Token bucket Leaky Bucket Sliding Window

avg.

response

time

0.097s 1.001s 0.095s

avg.
latency

0.074s 0.043s 0.022s

control

rate
0.1273 / 0.1235

total time

(~1000
req)

10.502s 13.253s 10.084s

This approach enhances performance by minimizing

unnecessary calls to the destination service while also

providing the possibility to enforce a global rate limit that

a user can achieve, regardless of the cloud service being

accessed. As shown in Table 1, the control rate for the

leaky bucket is not calculated, since all requests pass with

a slight delay. Therefore, it is a client’s responsibility to

define the rate limit in advance, choosing the most

appropriate algorithm depending on the use case. The

transcoding process occurs at the beginning of the request

call. It takes less than 5 ms, which turned out to be

negligible performance-wise, especially considering that

mapping is performed in the beginning, and no additional

handling of routes is needed.

VI. DISCUSSION

In this research, we propose a solution to address

issues in multiprotocol environments, emphasizing the

need for cloud services to communicate in a predefined

manner. Most cloud platforms support RPC internally and

require additional time and resources to expose RPC

methods as REST endpoints. Instead of the time-

consuming process of refactoring existing services, we

propose integration with a component that already offers

protocol conversion and enables straightforward

migration with API versioning. Therefore, we developed a

protocol-aware gateway responsible for transcoding

HTTP to RPC, following reconfigurable mapping of

routes. This approach proved helpful in different settings

as it supports both client reflection and the set of

configuration rules described in YAML files, enabling

proper connection between service methods and REST

endpoints. Having this configuration separated from the

internal logic of the connected services in the cloud

reduces development time while making management

easier. Its scheme is tested against routes with query

parameters, path parameters, authorization, and custom

headers, as well as with a request body, and it performs

transcoding without data or header information loss. It can

differentiate between unauthorized and authorized

methods, preventing misuse, and could leverage access

control measures if they are implemented further in the

cloud environment. Moreover, the solution only requires

following the schema pattern and can be easily integrated

into existing cloud infrastructures, which we have

demonstrated by incorporating it with the Constellations

platform. However, since the proposed transcoding

process heavily relies on the configuration file to extract

routes, it is important to note that a strong automated

YAML scheme validation is needed in order to minimize

ambiguity and reduce the risk of errors.

Furthermore, this prototype relies on I/O operations to

read the configuration and to track changes as new routes

are added. This did not come as a bottleneck for the

current setup, but it should be monitored as the number of

services grows in the cloud. One possible approach would

be to partition the configuration by services or their

deployment location and scale horizontally. We integrated

a protocol-aware gateway with the rate limiter and

demonstrated its strong properties in precision rate control

and manageability. With its priority queueing and system-

agnostic features, it effectively enhances system safety

and ensures alignment with platform requirements. Such

granularity can be a trade-off between rate-limiting

accuracy and performance; therefore, it is up to end users

to decide whether to include fine-tuning of requests or

not.

VII. CONCLUSION

The paper presents mechanisms for achieving desired

performance features in a distributed cloud environment,

with a focus on high availability, scalability, and

robustness. To achieve these goals, we demonstrated the

integration of two prototype components, namely the

gateway and rate-limiting service, with an existing

44Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 55 / 88

configuration dissemination solution. The prototype

emphasizes its ease of adoption, platform-agnostic design,

and the ability to enforce consistent communication

patterns without sacrificing flexibility or performance.

Key contributions include enabling protocol transcoding

from HTTP to gRPC calls with reflection for method

discovery, facilitating the transcoding of HTTP headers

and body to Protobuf messages, and, in the opposite

direction, packaging byte streams into readable HTTP

responses in JSON format, while also ensuring proper

status code mapping. This addressed the necessity for

each service to expose both HTTP and gRPC endpoints.

Additionally, it enhanced the availability of each service

by maintaining communication within the platform on

gRPC, thus boosting efficiency. Furthermore, the

gateway, paired with an independent rate-limiting service,

eliminates the need for each service to alter its internal

logic or modify request implementation to manage and

regulate network congestion. System rate limiting

manages and controls overall network flow within the

platform, while also allowing for the creation of specific

limitations on a per-request or priority basis, which

emerges as a suitable solution for subscription plans

structured around request rates from cloud providers. As

part of our future work, we aim to enhance rate-limiting

capabilities by making them adjustable based on service

telemetry and monitoring, and to extend the current

solution to support distributed rate-limiting. Additionally,

the goal is to further research prototype performance and

general applicability by integrating it with more real-

world solutions.

ACKNOWLEDGMENT

 Funded by the European Union (TaRDIS,

101093006). Views and opinions expressed are however

those of the author(s) only and do not necessarily reflect

those of the European Union. Neither the European Union

nor the granting authority can be held responsible for

them.

This research has been supported by the Ministry of
Science, Technological Development and Innovation
(Contract No. 451-03-65/2024-03/200156) and the
Faculty of Technical Sciences, University of Novi Sad
through project “Scientific and Artistic Research Work of
Researchers in Teaching and Associate Positions at the
Faculty of Technical Sciences, University of Novi Sad”
(No. 01-3394/1).

REFERENCES

[1] S. El Kafhali, I. El Mir, and M. Hanini, “Security Threats,
Defense Mechanisms, Challenges, and Future Directions in
Cloud Computing,” Archives of Computational Methods in
Engineering, vol. 29, no. 1, Apr. 2021, doi:
https://doi.org/10.1007/s11831-021-09573-y.

[2] “constellations” GitHub. [Online] Available from:
https://github.com/c12s [retrieved: 06, 2025]

[3] V. L. Padma Latha, N. Sudhakar Reddy, and A. Suresh
Babu, “Optimizing Scalability and Availability of Cloud
Based Software Services Using Modified Scale Rate
Limiting Algorithm,” Theoretical Computer Science, Jul.
2022, doi: https://doi.org/10.1016/j.tcs.2022.07.019.

[4] D. Goetz, M. Barton, and G. Lange, “Distributed rate
limiting of handling requests,” United States Patent
8930489, Jan. 6, 2015.

[5] L. Sarakis, N. Moshopoulos, D. Loukatos, K. Marinis, P.
Stathopoulos, and N. Mitrou, “A versatile timing unit for
traffic shaping, policing and charging in packet-switched
networks,” Journal of Systems Architecture, vol. 54, no. 5,
pp. 491–506, Sep. 2007, doi:
https://doi.org/10.1016/j.sysarc.2007.08.004.

[6] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong,
“Scalable architectures for integrated traffic shaping and
link scheduling in high-speed ATM switches,” IEEE
Journal on Selected Areas in Communications, vol. 15, no.
5, pp. 938–950, Jun. 1997, doi:
https://doi.org/10.1109/49.594854.

[7] A. W. Berger and W. Whitt, “A comparison of the sliding
window and the leaky bucket,” Queueing Systems, vol. 20,
no. 1–2, pp. 117–138, Mar. 1995, doi:
https://doi.org/10.1007/bf01158434.

[8] M. Niswar, R. A. Safruddin, A. Bustamin, and I. Aswad,
“Performance Evaluation of Microservices Communication
with REST, GraphQL, and gRPC,” International Journal of
Electronics and Telecommunication, vol. 70, no. 2, pp.
429–436, 2024, [Online] Available from:
https://ijet.ise.pw.edu.pl/index.php/ijet/article/view/10.2442
5-ijet.2024.149562

[9] M. Śliwa and B. Pańczyk, “Performance comparison of
programming interfaces on the example of REST API,
GraphQL and gRPC,” Journal of Computer Sciences
Institute, vol. 21, pp. 356–361, Dec. 2021, doi:
https://doi.org/10.35784/jcsi.2744.

[10] “Protocol Buffers,” protobuf.dev. [Online] Available from:
https://protobuf.dev [retrieved: 06, 2025].

[11] T. Ranković, I. Kovačević, V. Maksimović, G. Sladić, and
M. Simić, “Configuration Management in the Distributed
Cloud,” Lecture notes in networks and systems, pp. 224–
235, Jan. 2024, doi: https://doi.org/10.1007/978-3-031-
71419-1_20.

[12] “Gateway architecture | NGINX
Documentation,” Nginx.com, 2025. [Online] Available
from: https://docs.nginx.com/nginx-gateway-
fabric/overview/gateway-architecture/ [retrieved: 06, 2025].

[13] “grpcurl package - Go Packages,” Go.dev, 2025. [Online]
Available
from:https://pkg.go.dev/github.com/fullstorydev/grpcurl
[retrieved: 06, 2025].

[14] I. Ranawaka et al., “Custos: Security Middleware for
Science Gateways,” Practice and Experience in Advanced
Research Computing, pp. 278–284, Jul. 2020, doi:
https://doi.org/10.1145/3311790.3396635.

[15] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum,
and A. C. Snoeren, “Cloud control with distributed rate
limiting,” ACM SIGCOMM Computer Communication
Review, vol. 37, no. 4, pp. 337–348, Oct. 2007, doi:
https://doi.org/10.1145/1282427.1282419.

[16] R. Stanojevic and R. Shorten, “Load Balancing vs.
Distributed Rate Limiting: An Unifying Framework for
Cloud Control,” IEEE Xplore, Jun. 01, 2009.
https://ieeexplore.ieee.org/abstract/document/5199141.

45Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 56 / 88

Barriers and Enablers of AI Adoption in Software Testing: A Secondary Study

Katja Karhu and Jussi Kasurinen
Department of Software Engineering

LUT University
Lahti, Finland

e-mail: {katja.karhu|jussi.kasurinen}@lut.fi

Abstract—It seems that AI adoption in software testing is
not as straightforward as promoted by the hype surrounding
AI: there are a lot of expectations, but the reported practical
implementations are still relatively rare. In this survey paper, we
investigated the reasons behind the slow AI adoption in software
testing by qualitatively analyzing recent empirical studies with
industry context. In our work, we classified the barriers and
enablers from the earlier studies into six categories: management,
processes, human resources, technology, data and external. The
main approach to AI adoption in software testing in the industry
still seems to be investigation and experimentation in individual
organizations without industry-wide reference implementations
or standards. A major barrier for AI adoption in software testing
is the lack of perceived usefulness or produced value. More
research and empirical evidence of successful AI adoption in
software testing is needed.

Keywords-software testing; artificial intelligence; technology
adoption; qualitative research; reflexive thematic analysis.

I. INTRODUCTION

In the industry, the interest in AI in software testing is high
and growing. It is seen as a potential competitive advantage:
companies that do not successfully utilize AI in software
testing will lose in the competition [1]. However, the practical
implementations and the AI adoption rate seem to be lagging
behind [2][3].

In Perforce’s [2] 2024 industry survey, 48 percent of re-
spondents indicated they were interested in AI but have not
yet started any initiatives, and only 11 percent were already
implementing AI techniques in software testing. Interest in
AI is still growing a year later, in Perforce’s newest 2025
industry survey [3], over 75 percent of survey respondents
identified AI-driven testing as a pivotal component in their
strategy for 2025. But actual adoption rate is still behind, with
only 16 percent of respondents reporting on having adopted
AI in testing [3].

On the side of academia, the research on AI in software
testing has been quite extensive [4][5]. However, Nguyen at
al [6][7] found in a study conducted in 2023, that most of
the existing studies on AI in software quality assurance are
"experimental studies and thus do not take into consideration
the industrial context". They further state that "how GenAI
models deal with real-world software quality issues remains a
mystery" [6][7]. King et al [8] had similar findings in 2019:
"only a few of these works are backed by real-world case
studies, or result in industrial tools and methods". Since some
time has passed when the studies mentioned were performed,
and advances in especially generative AI and large language

models have been made, we wanted to explore the current state
of empirical studies on AI in software testing with a strictly
industry context. To our knowledge, literature surveys with
this specific scope have not been conducted before.

Our first paper on AI adoption in software testing, based on
the same dataset of literature, was about how AI is utilized on
software testing and what are the expectations related to it [9].
There, we focused on the actual and potential use cases for
AI in software testing, and their actual and expected benefits
[9].

In this survey paper, we continue the reflexive thematic
analysis of the literature from the point of view of barriers and
enablers of AI adoption in software testing. Overall, our goal
in this study is to explore, why AI adoption rate in software
testing is still quite low, and what could be done about it via
identifying the barriers and enablers. Our research questions
are:

• RQ1: What are the issues that prevent or hinder AI
adoption in software testing?

• RQ2: What are the enablers behind successful AI adop-
tion in software testing?

The paper is structured as follows. In Section 2, we describe
the data collection and research methods and process. In
Section 3, we present the results of the qualitative analysis.
Section 4 contains the discussion, where we further reflect
on the findings. Finally, the conclusion and future work are
presented in Section 5.

II. METHODS

We utilized systematic mapping study, as described by
Petersen, Vakkalanka and Kuzniarz [10] to identify earlier
studies on AI adoption in software testing. Then, we quali-
tatively analyzed the papers found via the systematic mapping
study. Our primary data analysis approach in this study is
reflexive thematic analysis. Braun and Clarke [11][12] define
thematic analysis as a flexible qualitative analysis method, or
more appropriately, a family of methods, for observing themes
within data. The overall research process is documented in
higher detail in the "sister paper" of this study [9].

A. Data Collection

We performed a systematic mapping study, and found 17
papers that fit our inclusion and exclusion criteria [9]. Our
goal was to find recent (year 2020 or later) original empirical
papers on AI in software testing where the data had been
collected from testers or other QA experts. The databases we

46Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 57 / 88

TABLE I. NUMBER OF PAPERS PER YEAR

Year Papers

2020 2 [13][14]
2021 0
2022 2 [1][15]
2023 4 [16]–[19]
2024 10 [20]–[28]
Total: 17

used were Scopus and Google Scholar, because they are known
to include papers from a wide selection of different fields.

Over half of the papers (10) we found had been published
in 2024 (see Table I). Out of the 17 papers, nine were peer-
reviewed, six were theses and two were other grey literature.
The reason, why we included theses and other grey literature
in our study, was that they contained rich and detailed data
collected from experts, making them well suited for qualitative
analysis.

B. Reflexive Thematic Analysis
In this study, we used reflexive thematic analysis, a non-

positivist approach [12], as our data analysis method. A theme
is a concept that captures important patterned information and
insights about the data, related to the research question [11]

We followed the phases of thematic analysis defined by
Braun and Clarke [11]:

• Phase 1: familiarizing yourself with your data
• Phase 2: generating initial codes
• Phase 3: searching for themes
• Phase 4: reviewing themes
• Phase 5: defining and naming themes
• Phase 6: producing the report
In reality, the process was more iterative, where especially

the phases from three to six were repeated several times.
We followed an inductive approach in our analysis, and our
goal was identify interesting themes in the papers. Eventually,
the large number of identified themes resulted in splitting
the reporting into different papers, as too many themes in
one paper resulted in a very incoherent and long report.
In our earlier paper, we focused on how AI is utilized in
software testing, analyzing the actual and expected use cases
and benefits, and the discrepancy between the expectations and
reality of AI adoption in software testing [9].

In this study, we wanted to further investigate the reasons
why AI adoption in software testing seems to be quite low.
Therefore, we selected the barriers and enablers as our primary
theme. We also tried to identify the differences between actual
barriers and enablers, and expected barriers and enablers,
but that proved too complicated, especially with the earlier
literature, where a lot of the context was missing.

III. RESULTS

We grouped the barriers and enablers identified from the
studies into six categories (see Table II): management, pro-
cesses, human resources, tools, data and external. The category

here describes the "source" of the barrier, or the level the
barrier could be resolved. Barriers and enablers in different
categories can also affect each other. For example, outsourcing
can be one way of resolving the barrier of AI skill gap. It is
worth noting, that the barriers of adoption are not inherently
"bad" and enablers "good". For example, strict IT policies or
data privacy and security issues as barriers are essential in
cases where the developed software is safety-critical. Enabling
the AI adoption by loosening the IT policies in this will most
likely result in unwanted side-effects.

The management category describes the barriers and en-
ablers related, for example, to the organization’s finances,
priorities, strategy and personnel management. The process
category contains the barriers and enablers related to the
daily operations within the organizations, such as policies,
communication, software development processes, etc. The
enablers and barriers in the human resources -category include
employee-level topics, such as skills and feelings. In the tools
category, we have technological barriers and enablers. The data
category contains barriers and enablers related to data. And
finally, in the external category, we have items that impact AI
adoption in testing, but come from outside the organization,
for example, societal, business ecosystem, or industry level
barriers and enablers.

The obvious elephant in the room is the perceived lack
of usefulness or produced value of AI in software testing.
In Purovesi’s [26] investigation of AI adoption in the test
automation context, interviewees had observed that the value
produced by AI is still minimal. Also, Hossain et al [27] found
that in companies there was uncertainty about the usefulness
of AI testing. Some felt that there was a lack of concrete
estimates about the time-saving of AI assisted test automation,
as the evidence was limited [26]. In the study by Amalfitano,
Coppola, Distante and Ricca [20], the respondents "pointed out
that while there are numerous general-purpose tools available
in the domain of Large Language Models (LLM), their poten-
tial for GUI-based testing tasks remains unproven". The earlier
studies reported benefits from AI adoption in software testing,
but in some cases, it was difficult to quantify them [26], or
respondents felt that the speed or efficiency improved only a
little [24][26]. In addition, AI adoption may cause additional
work that may undo the benefits: it takes more time than it
saves [26]. For example, creating test cases with AI is easy,
but maintenance is not: making changes to, or finetuning, AI-
generated test cases takes a lot of time and effort [24].

Significant investments are required in AI adoption: espe-
cially investments in technology and skill development were
seen as important enablers. Hossain et al [27] found that
especially for software development organization that have
no previous experience with AI systems, implementing AI
can be both costly and time-consuming. Costs include, for
example, hiring more staff or consultants, training of person-
nel, and infrastructure and computational resources [27]. The
development of trustworthy AI systems can take a long time,
months or even years, because of the experimental and iterative
approach to development [27].

47Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 58 / 88

TABLE II. BARRIERS AND ENABLERS PER CATEGORY FROM EARLIER LITERATURE

Category Barriers Enablers
Management Lack of usefulness/produced value [1][20][24][26][27] Marketing AI benefits [1][26]

Requires significant investments [1][27] Leadership support [14][16][17][25]
Risk aversion [1][21][27] Investments in technology [14][16][17][26]
Lack of time and resources [1][21][24][25][27] Investments in skill development [26]

Outsourcing [27]
Hiring new employees [27]

Processes Incompatibility with current processes [1][13][21] Evaluation of current processes [1][28]
Strict IT policies [25] Change management [25]
Poor internal communication [25] AI roadmap [27]

Human resources AI skill gap [1][20][21][24][26][27] Personnel training [16][24]–[27]
Lack of trust in AI [13][21][23]–[25] Internal communication [21][25]
Resistance to change [1][25] Collaborative experimentation and research [1]

Guidelines for working with AI [20]–[22][25]
Tools Difficulties in finding and selecting tools [20][24] Explainable AI (XAI) [13][21][28]

Lack of transparency [13][21][28] Monitoring and reviewing [21]
Incompatibility with legacy systems [1][21][26] Building test automation first [1]
Poor usability of tools [1] AI tool documentation [4]
Unreliability (e.g., hallucination and bias) [21][23] Company’s internal AI tools [25]
Tool pricing [20] Open-source AI tools [20]
Lack of domain knowledge [20] Formal screening process for AI tools [25]

Data Lack of training data [1][13][20][21][23][25]–[28] Purposefully collecting data for training [1][26]
Data privacy and security issues [24][27] Creating training datasets [20][26]

Tools for data cleaning and pre-processing [27]
Reliable data sources [27]
Proper training of AI with high quality data [20][27][28]

External Lack of reference implementations or standards [1][21] Education system (e.g., university level) [27]
Collaboration with other organizations [27]
Certifications [16][21][26]

Because of the experimental nature, someone has to make
the initial commitment and investments to the development of
AI-based testing solutions, but without reference implemen-
tations, it can be difficult to get organizations to commit to,
or even try, AI adoption in testing [1]. Ahven [1] investigated
AI adoption in testing in an IT consulting company, where
their customers were not willing to commit because of the
lack of reference implementations. And on the other hand, the
consulting company was not willing to develop AI solutions
internally and take the financial risk of trying something new
that might result in a failure [1]. To get around this problem,
the interviewee’s in Ahven’s [1] mentioned, that the company
had started marketing communications (videos, webinars) to
create excitement about AI-assisted testing within customers.
However, on the other side of the marketing coin, aggressive
marketing, unrealistic promises and a "hype peak" related AI
in testing were observed [26].

Khan et al [21] found that especially small companies doing
software development "may be risk-averse towards adopting
new technologies, including AI-based software testing tech-
niques, due to the fear of potential failures or increased costs".
In addition to the financial risks, AI technologies include
risks, such as risks related to security and privacy. Purovesi
[26] found that, even though the interest in using AI in test
automation, customers wanted to carefully consider the secu-
rity and privacy before making the commitment. Uncertainty

about risks was one of the reasons Hossain et al [27] also
found, that reduced the willingness in organizations to commit
to AI adoption in testing. In safety-critical scenarios, the
uncertainty of results can be unacceptable [20]. In addition,
people unaware of AI risks are a risk. Even though, in most
of the studies, the interviewees were knowledgeable about the
risks related to AI, a complete lack of risk awareness was
also observed: some employees did not see any risks in AI
utilization in software testing [25].

Time and resources are needed in many aspects of AI
adoption in software testing, such as designing, building and
training AI models [27], implementing AI systems for testing
[1], skill development [25]. In addition, new computational re-
sources are needed for the AI infrastructure [27]. AI adoption
means time away from daily work, which may be difficult
to organize and cause delays in testing work [27]. Skill
development may be hindered if testers do not have working
time allocated to learning about new topics that are not directly
related to their current work [25].

AI adoption in software testing also requires changes in
current processes and ways of working. Evaluating current
ways of working and how things could be done differently
were seen as important enablers, but it is also often blocked by
lack of time [1]. Also, resistance to change can hinder adop-
tion: if existing processes are working quite well already, it
might be difficult to convince people to think things differently

48Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 59 / 88

[1]. Laine [25] suggests that change management efforts are
therefore needed to enable successful AI adoption. Hossain
et al [27] suggest creating an AI roadmap, and evaluating,
where AI would fit in, as well as monitoring the performance
indicators and milestones over time [27].

AI skill gap as a barrier was highlighted in several studies.
AI as a term can contain a variety of technologies requiring
specialized skills that is not usually present in a testing organi-
zation [26][27]. Verifying and validating AI model’s accuracy
after training requires skills, such as statistical analysis and
data visualization [27]. Prompting, while seeming deceptively
simple, can require significant effort and a trial-and-error ap-
proach, "which requires a fine-tuning of the prompts used and
implies the possibility of wrong results of the testing activities"
[20]. In order to bridge the AI skill gap, the organization
must invest in skill development via, for example, personnel
training, hiring new employees, developing guidelines (e.g.,
for prompting and creating training datasets) [20][21][27]. In
one company, a study group ("future testing research unit")
had been created, where testing specialists experimented and
researched new tools and new ways of working, and presented
the results to the organization [1]. Another option to resolve
the AI skill gap is hiring new personnel [27].

The lack of trust in AI seems to be closely related to the un-
reliability of AI tools. In a study by Adu [23], and interviewee
summarized the problem of the underlying reliability issue in
LLMs: "My main concern is that LLMs are not capable of
thinking and do not really "understand" the prompts nor the
content they are producing. They are rather content generators
which output the statistically like response given some input.
As such, the problem with using them for testing related tasks
is that there is no guarantee that they are doing what you
asked them to do." [23].

Due to their inherent nature, LLMs are not therefore ideal
for testing tasks that require reliability or determinism. It
comes down to selecting the right AI tools for the right tasks.
In addition, human supervision of AI via monitoring and
reviewing was seen as crucial [21]. Khan et al summarized that
"rule-compliant processes, monitoring systems, and external
oversight contribute to reliability" [21].

Earlier it was mentioned, that marketing, and communi-
cating the benefits of AI to customers are important. Same
seems to go for the internal communication. Laine [25] states
that "when introducing a new AI tool, the communication
should emphasize the benefits, especially to the employees
themselves". Poor internal communication can manifest as lack
of knowledge about, e.g., the internal training materials and
AI tools that are available in the company [25]. Khan et al [21]
highlight also the transparent and ethical organization culture
and communication in order to build long-term trust to AI, as
well as self-regulation and self-imposed AI standards.

Clear communication is also important if, for example,
utilizing public AI tools is forbidden by the IT policy due to
privacy and security reasons. In addition to communication,
the overall leadership support was seen as an important
factor in engaging employees [14][16][17] and was seen as

contributor to a successful adoption [25].
From the technical side, incompatibility with legacy systems

and code was raised as a potential problem in AI adoption
[21][26]. On the other hand, from the data point of view, old
and complex systems were more suitable for leveraging AI,
because of the large amounts of data available for AI model
training [26].

The lack of transparency in AI models and tools can cause
a lack of trust in AI, since it is difficult to understand and trust
their decisions [13][20][21]. With commercial AI testing tools
the black-box nature can hinder also the ability to fine-tune
the tools effectively [20]. In addition, commercial tools were
difficult for testers to evaluate, as they require subscriptions,
which may lead to testers giving up on the tool evaluation
completely [20].

Amalfitano, Coppola, Distante and Ricca [20] suggest open-
source AI tools as way of increasing the transparency and ex-
plainability of AI systems. Khan et al [21] state that "explain-
able AI (XAI) is crucial for building trust, but challenges exist
in achieving transparency". Solutions suggested for enabling
and increasing explainability were: implementing parallel al-
gorithms [21], knowledge distillation, saliency mapping, and
symbolic reasoning [13], as well as visualization [28]

Lack of training data, and especially the lack of high
quality training data was also a major barrier. The quality
of training data directly impacts the reliability of the AI
system [27]. However, potential training data was not collected
systematically or it was discarded as useless [1]. Training
data collection also raises privacy and security concerns [27].
Overall, careless handling of sensitive data in AI tools may
result in compromised security [23]. Another issue was the
bias in AI systems, caused by the training data. Khan et al
[21] suggested using benchmark datasets in addressing the
bias [21]. Overall, collecting, labeling and cleaning training
data was seen as a challenging and high effort activity, which
also requires time and investments [13][21][27].

IV. DISCUSSION

Our research questions were: "what are the issues that
prevent or hinder AI adoption in software testing" and "what
are the enablers behind successful AI adoption in software
testing". We went through earlier empirical studies on AI
in software testing with industry context, and looked for
the barriers and enablers of AI adoption. We found that AI
adoption in software testing is not only a technological issue,
as we classified the barriers and enablers reported in the earlier
studies into six categories: management, processes, human
resources, technology, data and external.

A very significant barrier for AI adoption in software testing
was a lack of usefulness or produced value, combined with the
lack of reference implementations. The potential reasons we
identified based on the analysis of the earlier studies were:

• The early phase of adoption: the approach to AI adoption
is still exploratory and investigative, as there are yet no
industry-wide practices or standards

49Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 60 / 88

• The nature of some AI tools: for example, LLMs are
not suitable for testing tasks that require reliability and
determinism.

In our earlier study of the same literature dataset [9] we
found that there were potential use cases for AI in software
testing, such as test case generation, code analysis, and intelli-
gent test automation, but the reported actual implementations
and observed benefits were limited. Many implementations
were still on the proof-of-concept level [9].

The lack of usefulness or produced value, and the lack
of reference implementations, seem to be also reflected in
grey literature on AI in software testing. Ricca, Marchetto
and Stocco [29] have performed a multi-year analysis of grey
literature in test automation, and concluded that "the nature
of these sources limits to suggestions on how to use AI
for TA, without presenting concrete evidence of its practical
application or usage details".

For the lack of usefulness or produced value we did not
identify many direct enablers. Collaborative experimentation
and research, and collaboration with other organizations, could
be ways for identifying useful reference AI solutions for soft-
ware testing. Most of the enablers were focused on resourcing,
building trust in AI/tackling resistance, skill development, and
documentation.

Simmler and Frischknecht [30] have proposed a taxonomy
for evaluating human-machine collaboration, that could be
utilized also in software testing context to evaluate suitable AI
solutions for different testing tasks, as well as the resources
needed for monitoring these solutions. They define two dimen-
sions: level of automation and level of autonomy. In short, the
higher the level of automation, the less humans have control
over the system, and the higher the level of autonomy is, the
more the transparency decreases and it becomes more difficult
to trace the machine’s actions [30]. The more autonomy
the AI-system has, the more important human monitoring
becomes, and the higher the level of automation is, the more
reliable the system needs to be [30].

It is worth noting, that the interest in AI seems to have in-
creased significantly [2][3], even despite the lack of perceived
value or usefulness. What makes companies want to invest in
new technologies that do not yet have a proven track record?
Gulzar and Smolander [31] provide an explanation to this:
they have established that there are various motivations for
new technology adoption, which can have both positive and
negative effects. These motivations include [31]:

• Market dynamics - staying one step ahead, technology as
a competitive edge

• Internal imperatives - goal setting by management, strat-
egy

• Technological advancement - innovations
• Social influence - fear of missing out, hype, enthusiasm,

collective feelings
• Economic considerations - reducing costs, return-of-

investment (ROI)
• Operational and strategic improvements - increased effi-

ciency, productivity, scalability

As can be seen, there are more motivations to technology
adoption than just operational improvement and technological
advancement. The other motivations, such as market dynamics
and social influence, can weigh in more than the proven
benefits of the new technology.

Monitoring is also one of the ways to tackle the barriers
of lack of transparency and the lack of trust in AI. Soomro,
Fan, Sohu, Soomro and Shaikh [32] have found that "negative
perceptions of AI can slow down its adoption in various
sectors". Open and honest internal communication on AI were
highlighted by Laine [25] and Khan et at [21] as a way of
addressing the lack of trust. Another issue causing lack of
trust in AI are the data privacy and security issues. Kinney,
Anastasiadou, Naranjo-Zolotov and Santos [33] summarized
that the loss of privacy due to data needs of AI systems are a
significant factor in the rejection of AI technology".

The marketing of AI benefits, whether to customers or
in company’s internal communication, should be based on
evidence. In Purovesi’s [26] study interviewees had observed
aggressive marketing, unrealistic promises and a "hype peak"
[26]. On the other hand, there were also reports of resistance
to change [25][26]. If the lack of trust in AI and resistance is
based on legitimate concerns, such as lack of produced value
and usefulness, or security and data privacy problems, it should
not be addressed by only trying to convince the audience of
AI benefits. In summary, we need more research and empirical
evidence of successful AI implementations in software testing
to back up the message of AI benefits.

A. Limitations of the study

The studies we analyzed were from 2020-2024, so it is pos-
sible, that there have been new developments in AI adoption
in software testing after their data collection phases. It can
also be, that we have incomplete knowledge of AI adoption in
software testing, as it may be undocumented. Companies may
be unwilling to reveal their experiences of AI-assisted testing,
in order to maintain business secrets or competitive edge, or
even due to failed adoption attempts.

In this study we did not cover the impact of legislation
and regulation to AI adoption, which could be viewed as
both barriers and enablers. It was noted in the earlier studies,
that for some domains, such as healthcare and banking, the
laws and regulations of handling confidential data are stricter
[27]. In these cases, the laws and regulations are acting as
a barrier, and for a good reason. Laws and regulations were
also seen as a way of increasing trust in AI, making them also
an enabler. Some experts also raised the issue of problems in
regulation, as it was viewed as outdated, and needed to be
extended to cover AI use [27][28]. However, there were not
enough details to analyze the impact of laws and legislation
to AI adoption in software testing in higher detail, as this is a
complex phenomenon. We also address additional limitations
in our earlier study [9].

50Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 61 / 88

V. CONCLUSION AND FUTURE WORK

In order to investigate the reasons behind low AI adoption
rates in software testing, we performed a reflexive thematic
analysis of 17 earlier empirical studies on AI adoption in
software testing. We found that AI adoption is software testing
is still suffering from lack of reference implementations and
standards, as well as perceived usefulness and value. The
limited empirical evidence on the benefits of AI in testing,
combined with significant investments and resources required
are one explanation for the low rates of AI adoption in software
testing.

Future research is needed in evaluating the usefulness of
different AI technologies (such as LLMs) in different testing
tasks. We need more empirical evidence and detailed descrip-
tions of successful AI adoptions, as well as lessons learned
from unsuccessful AI adoption projects. We plan to continue
our research by conducting interviews in software development
organizations in order to further identify the reasons behind
the slow AI adoption, as well as identifying the success factors
of AI adoption in software testing.

REFERENCES

[1] H. Ahven, “Utilization of artificial intelligence in soft-
ware quality assurance,” Finnish, M.S. thesis, University of
Jyväskylä, 2022.

[2] Perforce, The 2024 State of Continuous Testing, 2024. [On-
line]. Available: https://www.perfecto.io/resources/state-of-
continuous-testing, Accessed: 2025-02-14.

[3] Perforce, The 2025 State of Continuous Testing, Feb. 2025.
[Online]. Available: https://www.blazemeter.com/resources/
2025-state-of-continuous-testing-report, Accessed: 2025-02-
18.

[4] D. Amalfitano, S. Faralli, J. C. R. Hauck, S. Matalonga, and D.
Distante, “Artificial Intelligence Applied to Software Testing:
A Tertiary Study,” ACM Computing Surveys, vol. 56, no. 3,
Oct. 2023, ISSN: 15577341. DOI: 10.1145/3616372.

[5] M. Hossain and H. Chen, “Application of machine learning
on software quality assurance and testing: A chronological
survey,” International Journal of Computers and their Appli-
cations, vol. 29, no. 3, pp. 150–157, 2022.

[6] A. Nguyen-Duc et al., “Generative Artificial Intelligence for
Software Engineering A Research Agenda,” preprint, Oct.
2023. DOI: 10.48550/arXiv.2310.18648.

[7] A. Nguyen-Duc et al., “Generative Artificial Intelligence for
Software Engineering A Research Agenda,” Software: Prac-
tice and Exprience, pp. 1–38, Jun. 2025. DOI: 10.1002/spe.
70005.

[8] T. M. King et al., “Ai for testing today and tomorrow: Industry
perspectives,” in 2019 IEEE International Conference On
Artificial Intelligence Testing (AITest), 2019, pp. 81–88. DOI:
10.1109/AITest.2019.000-3.

[9] K. Karhu, J. Kasurinen, and K. Smolander, “Expectations vs
Reality – A Secondary Study on AI Adoption in Software
Testing,” unpublished, Apr. 2025. DOI: 10.48550/arXiv.2504.
04921.

[10] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines
for conducting systematic mapping studies in software engi-
neering: An update,” Information and Software Technology,
vol. 64, pp. 1–18, Aug. 2015, ISSN: 09505849. DOI: 10.1016/
j.infsof.2015.03.007.

[11] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative Research in Psychology, vol. 3,
no. 2, pp. 77–101, 2006, ISSN: 14780887. DOI: 10 . 1191 /
1478088706qp063oa.

[12] V. Braun and V. Clarke, “Toward good practice in thematic
analysis: Avoiding common problems and be(com)ing a know-
ing researcher,” International Journal of Transgender Health,
vol. 24, no. 1, pp. 1–6, 2023, ISSN: 26895277. DOI: 10.1080/
26895269.2022.2129597.

[13] M. Gutiérrez, “AI-Powered Software Engineering: Integrating
Advanced Techniques for Optimal Development,” Interna-
tional Journal of Engineering and Techniques, vol. 2020, no. 6,
pp. 1–9, 2020, ISSN: 2395-1303. DOI: 10.5281/zen.

[14] M. Barenkamp, J. Rebstadt, and O. Thomas, “Applications of
AI in classical software engineering,” AI Perspectives, vol. 2,
no. 1, pp. 1–15, Dec. 2020. DOI: 10.1186/s42467-020-00005-
4.

[15] S. Ramchand, S. Shaikh, and I. Alam, “Role of Artificial Intel-
ligence in Software Quality Assurance,” in Intelligent Systems
and Applications, K. Arai, Ed., Cham: Springer International
Publishing, 2022, pp. 125–136, ISBN: 978-3-030-82196-8.

[16] J. Bhuvana, V. Ranjan, and N. Bhaduariya, “Integration of AI
in the Realm of Software Development,” in 2023 International
Conference on Advances in Computation, Communication
and Information Technology, ICAICCIT 2023, Institute of
Electrical and Electronics Engineers Inc., 2023, pp. 974–978,
ISBN: 9798350344387. DOI: 10.1109/ICAICCIT60255.2023.
10465893.

[17] R. Kumar, V. Naveen, P. Kumar Illa, S. Pachar, and P. Patil,
“The Current State of Software Engineering Employing Meth-
ods Derived from Artificial Intelligence and Outstanding Chal-
lenges,” in 1st IEEE International Conference on Innovations
in High Speed Communication and Signal Processing, IHCSP
2023, Institute of Electrical and Electronics Engineers Inc.,
2023, pp. 105–108, ISBN: 9798350345957. DOI: 10 . 1109 /
IHCSP56702.2023.10127112.

[18] S. Qazi, I. Memon, B. Q. Hashmi, M. S. Memon, and
E. A. Qazi, “Software Quality Assurance Using Artificial
Intelligence Techniques: A Survey of the Software Industry
of Pakistan,” Journal of Hunan University Natural Sciences,
vol. 50, no. 12, pp. 1–9, 2023. DOI: 10 . 55463 / issn . 1674 -
2974.50.12.1.

[19] A. I. Amarasekara, “Challenges of outdated software test
automation tools in the sri lankan it industry and the proposal
of suitable ml strategies for a sustainable quality assurance
process,” M.S. thesis, Uppsala University, 2023.

[20] D. Amalfitano, R. Coppola, D. Distante, and F. Ricca, “AI in
GUI-Based Software Testing: Insights from a Survey with In-
dustrial Practitioners,” in Quality of Information and Commu-
nications Technology, A. Bertolino, J. Pascoal Faria, P. Lago,
and L. Semini, Eds., Cham: Springer Nature Switzerland,
2024, pp. 328–343, ISBN: 978-3-031-70245-7.

[21] S. A. Khan et al., “AI-Based Software Testing,” in Proceedings
of World Conference on Information Systems for Business
Management, A. Iglesias, J. Shin, B. Patel, and A. Joshi, Eds.,
Singapore: Springer Nature Singapore, 2024, pp. 323–334,
ISBN: 978-981-99-8346-9.

[22] R. Santos, I. Santos, C. Magalhaes, and R. De Souza Santos,
“Are We Testing or Being Tested? Exploring the Practical
Applications of Large Language Models in Software Testing,”
in Proceedings - 2024 IEEE Conference on Software Testing,
Verification and Validation, ICST 2024, Institute of Electrical
and Electronics Engineers Inc., 2024, pp. 353–360, ISBN:
9798350308181. DOI: 10.1109/ICST60714.2024.00039.

[23] G. K. Adu, “Artificial Intelligence in Software Testing: Test
scenario and case generation with an AI model (gpt-3.5-
turbo) using Prompt engineering, Fine-tuning and Retrieval

51Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 62 / 88

augmented generation techniques,” M.S. thesis, University of
Eastern Finland, 2024.

[24] H. Jauhiainen, Artificial Intelligence In Software Testing, 2024,
Bachelor’s thesis. HAMK.

[25] A. Laine, “A Change Management Approach to Incorporating
AI into Software Testing,” M.S. thesis, LUT University, 2024.

[26] R. Purovesi, “Test Automation and AI,” M.S. thesis, LUT
University, 2024.

[27] T. Hossain et al., “AI based solutions for Software Testing
in Bangladeshi software companies,” unpublished, Jan. 2024.
DOI: 10.13140/RG.2.2.17371.95526.

[28] L. Layman and R. Vetter, “Generative Artificial Intelligence
and the Future of Software Testing,” Computer, vol. 57, no. 1,
pp. 27–32, Jan. 2024, ISSN: 15580814. DOI: 10 .1109 /MC.
2023.3306998.

[29] F. Ricca, A. Marchetto, and A. Stocco, “A multi-year grey
literature review on ai-assisted test automation,” Information
and Software Technology, vol. 186, p. 107 799, 2025, ISSN:
0950-5849. DOI: https://doi.org/10.1016/j.infsof.2025.107799.

[30] M. Simmler and R. Frischknecht, “A taxonomy of humanma-
chine collaboration: capturing automation and technical au-

tonomy,” AI and Society, vol. 36, no. 1, pp. 239–250, Mar.
2021, ISSN: 14355655. DOI: 10 . 1007 / S00146 - 020 - 01004 -
Z/FIGURES/1.

[31] M. Gulzar and K. Smolander, “Explaining the motivational
drivers in technology adoption: Triggers & Consequences,” in
Proceedings of the 58th Hawaii International Conference on
System Sciences, 2025, ISBN: 9780998133188.

[32] S. Soomro, M. Fan, J. M. Sohu, S. Soomro, and S. N. Shaikh,
“AI adoption: a bridge or a barrier? The moderating role
of organizational support in the path toward employee well-
being,” Kybernetes, vol. ahead-of-print, no. ahead-of-print,
2024, ISSN: 0368492X. DOI: 10.1108/K-07-2024-1889/FULL/
XML.

[33] M. Kinney, M. Anastasiadou, M. Naranjo-Zolotov, and V.
Santos, “Expectation management in AI: A framework for
understanding stakeholder trust and acceptance of artificial in-
telligence systems,” Heliyon, vol. 10, no. 7, e28562, Apr. 2024,
ISSN: 24058440. DOI: 10.1016/J .HELIYON.2024.E28562/
ASSET / 4DE3D17E - E79C - 41C4 - 9450 - 0E69B166AC58 /
MAIN.ASSETS/GR1.JPG.

52Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 63 / 88

Ethical Considerations of Using Generative AI in Software Development

Tiina Tuomisto
Lasse Harjumaa

Kokkola University Consortium Chydenius
University of Jyväskylä

Kokkola, Finland
e-mail: tii2tuo@gmail.com | lasse.m.harjumaa@jyu.fi

Abstract—Generative Artificial Intelligence (GenAI) is gaining
more and more popularity among different professions, and it is
also transforming software development by enabling automated
text, code, and image generation, enhancing productivity across
various tasks. This study examines the most common use cases of
GenAI tools in software development, alongside software profes-
sionals’ experiences, ethical concerns, and awareness of ethical
guidelines related to GenAI. Through qualitative semi-structured
interviews with IT professionals in Finland, the research identifies
that GenAI tools are primarily used for programming, software
testing, and general problem-solving. While these tools acceler-
ate workflows, challenges such as unreliable outputs, outdated
training data, and ethical concerns - particularly regarding
transparency, bias, and data security - remain significant. The
findings align with previous research, highlighting both the
benefits and risks of GenAI adoption. Ethical considerations,
though acknowledged, are rarely integrated into daily practices,
emphasizing the need for clearer guidelines and education. This
study contributes to the discourse on the evolving role of AI
in software engineering, underscoring the importance of ethical
awareness and responsible AI utilization.

Keywords-Generative artificial intelligence; ethics; software de-
velopment; GenAI; GenAI tools.

I. INTRODUCTION

GenAI is one of the most influential technological inno-
vations of recent years. While traditional systems utilizing
artificial intelligence follow predetermined patterns and rules,
GenAI systems can create more imaginative items, such as
text, images, sounds and videos. This ability makes it an
attractive tool for various purposes, including tasks related
to software development. Instead of having to search through
repositories of previously written questions and answers by
other developers, such as searching through StackOverflow,
GenAI tools will create an answer based on huge amounts
of data, which has been used to train them. To improve
the answers over time, they are further trained based on the
feedback given on the generated responses.

Generative AI can improve productivity in various software
development tasks, including coding, testing, debugging, doc-
umentation, reviewing and brainstorming. At best, the quality
of the product and productivity of the developers can improve
significantly [1].

It has been predicted that generative AI will have a sig-
nificant impact on software practitioners’ work, permanently
changing the roles of software engineers. Developers will need
to have new kinds of competencies to master and fully utilize
the potential of GenAI systems [2]. Since generative AI does

not have a comprehensive knowledge of the context in which it
generates a solution, or human language, the engineers’ who
is authoring the prompt has the responsibility to verify the
conformity of the generated outcome.

GenAI tools also pose numerous issues, many of which are
related to ethics. For example, Weidinger et al. [3] identify
six ethical and social risk areas related to language models:
1. Discrimination, Exclusion and Toxicity, 2. Information
Hazards, 3. Misinformation Harms, 4. Malicious Uses, 5.
Human-Computer Interaction Harms, 6. Automation, Access
and Environmental Harms. Tanaka et al. [4] further decompose
these risk classes into more detailed subcategories to help
mitigate risks by either removing the risk sources, avoiding
the hazard, or managing the impact.

Due to the potential ethical problems associated with GenAI
tools, several entities have developed ethical guidelines for
the developers and users of AI systems. An example of this
is the High-Level Expert Group on Artificial Intelligence (AI
HLEG) established by the European Commission [5], which
has created ethical guidelines for developing trustworthy AI
systems. However, adhering to various ethical guidelines and
principles is not easy. As Ryan and Stahl [6] point out, they do
not provide sufficient advice for implementing the principles
in practice. Consequently, software practitioners encounter
various ethical issues when using GenAI tools.

This study brings forward the experiences and opinions of
software practitioners regarding the benefits and drawbacks
of utilizing GenAI tools, as well as the awareness of AI
ethical guidelines and the prevalence of ethical issues. Our
study extends prior research by offering insights into how
practitioners engage with ethical issues specifically in the
context of generating software engineering artifacts and by
examining the extent to which they follow relevant guidelines,
if any. We also integrate perspectives on software quality, the
ethics of software development more broadly, and existing
ethical guidelines for AI to outline the foundations of guide-
lines specifically intended for the use of GenAI in software
development tasks.

The rest of the paper is arranged as follows. Section 2
describes the basic concepts of generative artificial intelligence
and its utilization in the various phases of software devel-
opment, as well as the ethical issues related to AI within
the domain. Section 3 describes the research approach and
the main findings of the study, and the contributions and
limitations of the study are discussed in Section 4. Finally,

53Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 64 / 88

Section 5 concludes the paper.

II. GENERATIVE AI IN SOFTWARE DEVELOPMENT

This section provides a brief overview of the tasks that
typically comprise the software development process and
examines how GenAI has been applied to these tasks, as
reported in academic research. It then discusses how ethical
issues related to GenAI have been addressed in guidelines
issued by major organizations.

A. Software Development Tasks

Software development process models - such as the water-
fall model, agile, spiral, and DevOps - provide structured guid-
ance to build high-quality software efficiently. These models
help developers, project managers, and stakeholders manage
resources, improve predictability, and standardize outcomes.
Regardless of the model, key development tasks remain con-
sistent.

Development usually begins with planning and a feasibility
study, where project goals, risks, and viability are assessed.
Requirements engineering follows, focusing on gathering and
documenting user needs, either through formal specifications
in traditional models or iterative collaboration in agile meth-
ods. System design defines architecture, components, and
interfaces. In the implementation phase, developers choose
suitable tools and follow best practices to ensure maintainable,
high-quality code. Testing and reviews are critical for quality
assurance: testing includes unit, integration, and acceptance
levels, often automated to enhance efficiency. Reviews help
detect defects early. In agile development, testing is continuous
and central to rapid feedback. Deployment moves the finished
product to production, ensuring it is accessible and operational.
Finally, maintenance and support address issues post-launch,
keep the software secure, and adapt it to evolving needs.
Together with project management tasks, these stages form
a cycle that ensures user-focused, robust, and maintainable
software delivery.

B. Applications of GenAI

GenAI tools have been widely studied for their ability to
support software development tasks. These tools can generate
code [7], fix coding errors, translate between programming
languages [8], and assist with writing comments [9] or
answering programming queries [10]. The effectiveness of
GenAI varies by user experience. While Copilot-generated
code provides a good starting point [11], it does not always
speed up development. Moradi Dakhel et al. [12] noted that
experienced developers gain the most, as they can spot and
correct errors. Inexperienced users benefit from guidance and
learning opportunities, provided they evaluate the output criti-
cally. Across skill levels, GenAI reduces time spent consulting
documentation and offers real-time advice - though its sugges-
tions should be validated, as it lacks full context awareness.

GenAI also supports software testing. Studies have explored
its use in generating unit tests [13], for example. Although
generated test data may contain errors, it forms a useful

foundation when properly reviewed. In maintenance, GenAI
enables anomaly detection and automatic code fixes, as shown
in a study by Khlaisamniang et al. [14]. In design, GenAI aids
in producing diagrams [1], UI development, and prototyping
[15]. Project planning is another emerging area, where GenAI
helps with scheduling, cost estimation, and risk analysis [16].
GenAI also assists in requirements engineering: language
models help gather, summarize, and complete requirements
[17], including user story generation. Despite occasional in-
accuracies, GenAI tools offer significant value across the
software development life cycle by providing inspiration,
automating routine tasks, and enhancing productivity.

C. Generative AI Tools

Studies evaluating the code quality of GenAI tools show
mixed results. GitHub Copilot and Microsoft Copilot have
been rated highest in code generation [18][19]. ChatGPT has
also demonstrated strong performance, though it is considered
less effective in implementation and testing [1]. Google Gem-
ini and Claude received lower evaluations in multiple studies,
while Amazon Q Developer was also criticized [19]. GenAI
tool performance varies by programming language, making it
essential to align tool selection with project-specific needs.

Error correction capabilities have been studied primarily
in ChatGPT and GitHub Copilot, showing moderate success
but with limitations in complex problem-solving [8]. Effective
prompting is crucial to improving output quality. Other tools,
such as Claude and Gemini, lack extensive evaluation in this
area. GenAI tools like ChatGPT and GitHub Copilot also assist
with information retrieval and development guidance, though
their utility beyond programming is limited. ChatGPT remains
the most researched tool across software development tasks,
including documentation and design, while others have been
studied mainly for coding purposes.

The reliability of GenAI tools depends heavily on the
comprehensiveness of their training data. When the data is
insufficient or misaligned with the problem, tools may produce
vague or incorrect responses, requiring users to spend time
validating and refining the output [8]. Developers must also
provide clear prompts, as vague inputs can degrade response
quality. Although tools like Copilot can reduce vulnerabili-
ties [7], other studies show they may introduce more errors
than inexperienced developers [12] and obscure error sources
[20]. Programming language and problem familiarity affect
response accuracy, with GenAI tools performing better on
common tasks with ample training data [19]. While GenAI
supports learning and boosts productivity for novices, overre-
liance may hinder skill development. Understanding a tool’s
inner workings is also vital, as misconceptions about how
suggestions are generated can mislead users [20].

D. Ethics in Software Development And Issues Related to
Generative AI

The IEEE-CS/ACM Joint Task Force (2021) outlines eight
ethical principles for software developers, covering responsi-
bilities to the public, clients, employers, products, professional

54Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 65 / 88

judgment, management, the profession, colleagues, and self.
These guidelines, which are also adopted nationally (e.g., in
Finland by TIVIA), emphasize that developers must ensure
their work is safe, lawful, and ethical.

Software must not harm people, nature, or society, and
any risks must be reported. Developers must communicate
honestly about project feasibility, costs, and risks, and should
not misuse confidential information or overstate their skills.
They must deliver products that meet quality standards and
are properly documented, tested, and maintained. Developers
are expected to act impartially, avoid conflicts of interest, and
reject unethical practices like bribery. Managers must ensure
team members understand ethical practices, treat staff fairly,
and handle project resources responsibly.

Professionalism involves educating others, complying with
laws, and taking accountability for software quality and errors.
Developers should also support and evaluate colleagues fairly,
protect confidentiality, and continually improve their skills in
areas like design, maintenance, and testing. Ultimately, ethical
software development requires responsibility, transparency,
fairness, and ongoing self-improvement.

Various organizations, including AI HLEG [5], IEEE
[23][24][26][27], Adobe [25], Google [21], and IBM [22],

have developed ethical guidelines for AI to address risks
throughout its lifecycle. Despite this, no specific, comprehen-
sive ethical standards exist solely for generative AI, highlight-
ing a gap amid its rapid development and increasing use. These
ethical guidelines and principles for AI are not legally binding.
They therefore act as incentives for ethical behavior. Table 1
represents the summary of the ethical principles of these major
organizations.

III. RESEARCH SETTING AND KEY FINDINGS

This section describes the research approach adopted in the
study and summarizes the main findings that emerged from
the interviews.

A. Research Approach

This study examines whether IT companies utilize any
ethical guidelines when using GenAI tools and how familiar
the guidelines for artificial intelligence are to IT-professionals.
The research questions are as follows:
RQ1. What software development tasks are Generative AI

tools used for in practice?
RQ2. What are the benefits and drawbacks of Generative AI

tools as perceived by software developers?

TABLE I. SUMMARY OF THE ETHICAL PRINCIPLES.

Ethical Principle Description Organizations
Privacy Users must be able to control their own data and be informed about why the data is

collected and how it is used. User data must be kept intact and must not be misused.
[5], [21], [22], [23]

Security and
resistance to threats

AI must withstand exceptional situations, such as attacks, without causing harm. It
must perform as intended in varying conditions and its results must be repeatable.

The results of AI must be accurate, and the probability of incorrect predictions must
be disclosed openly. AI should also have security measures.

[5], [21], [22], [24]

Explainability Explainability refers to the comprehensibility of information provided about artificial
intelligence. In this case, the explanation provided should be formulated according
to the level of expertise of the recipients of the information so that the explanation

is understandable. This guideline is closely related to transparency.

[5], [22], [23]

Transparency The user must gain an understanding of how artificial intelligence works, how data
is used and stored. This helps to understand how and why the system reaches a

certain result. Traceability must be ensured so that if an error occurs, the cause of
the error can be determined and prevented in the future. The user must be informed

whether they are working with another person or artificial intelligence. This
guideline is closely related to explainability.

[25], [5], [21], [23]

Justice and equity The aim is to treat different groups and individuals equally. It prevents bias, which
refers to bias towards a position, object or person, which can lead to unfair results.

Data sets, such as training data, can contain unintentional biases that exacerbate
discrimination and prejudice against individuals and groups.

[25], [5], [21], [24]

Sustainability and
well-being

Artificial intelligence should operate in an environmentally friendly manner and
support the well-being of people and society. The aim is to ensure that the artificial

intelligence being developed brings clearly more benefits to society than
disadvantages and challenges.

[5], [21], [26]

Accountability Assessing artificial intelligence and identifying and reporting its negative impacts.
Impact assessments can be used to prevent negative impacts. Users have the right to
appeal if a decision made by an artificial intelligence negatively affects them. The

guideline also includes the principle of fairness.

[25], [5], [21]

Self-determination This guideline aims to protect human rights. Artificial intelligence must not
endanger people’s right to self-determination and artificial intelligence can be

monitored by a human to overturn decisions made by the artificial intelligence, if
necessary. Also includes features of explainability, transparency and accountability.

[5], [21]

Avoiding damage Artificial intelligence should not cause harm to people or nature and should not be
able to be misused. This principle consists of several other principles, such as

fairness and sustainable development and well-being.

[5], [21], [22], [23],
[24], [26], [27]

55Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 66 / 88

RQ3. Have developers encountered ethical issues when using
Generative AI tools?

RQ4. How are ethical guidelines related to AI taken into
consideration in software development when using Gen-
erative AI tools?

The research methodology employed was a qualitative semi-
structured interview, incorporating elements of thematic inter-
viewing as introduced by Hirsjarvi and Hurme [28]. Invitations
for interviews were sent to randomly chosen IT companies
with offices in the middle part of Finland, in a region known
for active software industry. A total of nine individuals with
long experience in software engineering participated in the
interviews, which were conducted remotely. The gathered
research data were transcribed, coded and analyzed. The full
interview template including all questions is available at [29].

Interview requests were sent to 74 different sized compa-
nies, of which seven companies participated in this study. From
these seven companies, a total of nine IT professionals agreed
to be interviewed. Seven of the interviewees have worked in
IT for at least 15 years, which allows them to analyze the
changes that the GenAI tools have brought to the field. Eight
of the interviewees have experience as software developers,
while one interviewee’s responsibility seems to be the quality
control of software products.

The data analysis begins with open coding in which
Urquhart [30] suggests analyzing the data systematically by
reading paragraphs one by one to create codes. Once the
text has been coded, they can then be categorized in a phase
called axial coding. According to Williams and Moser [31] in
this phase, relations between the codes found in open coding
are examined and then they can be categorized into groups.
Williams and Moser [31] also showcase that these categories
can then be combined into themes in the selective phase.
To create the final themes, the relations between codes are
actively compared as were the relations between categories.
The research questions were then answered based on the
found themes. An example of formulating codes, categories
and themes is represented in Table 2. The table shows issues
that were mentioned concerning the code that GenAI tools
produce. Both issues pertain to the trustworthiness and quality
of the generated responses and are therefore categorized under
the same theme.

B. Findings

1) Tasks for Which GenAI Tools Are Utilized: The most
popular tools used among the interviewees are GitHub Copilot
and different versions of ChatGPT. Based on the interviews,
the tools are used for different tasks according to their
strengths and weaknesses.

While ChatGPT is used for various tasks, GitHub Copilot
is a popular choice for programming and testing. Eight out
of nine interviewees mention that they have used GenAI
tools for programming tasks while two interviewees have
also used them for testing. Three of the interviewees also
compliment the quality of GitHub Copilot’s autocompletion
ability. GitHub Copilot’s autocompletions and integration to

TABLE II. AN EXAMPLE OF CODING

Comment Open
code

Axial
coding:
Cate-
gories

Selective
phase:
Themes

“. . . if I just copy
paste the generated
response and use it
as it is in my code
it never works. They
rarely work.” (I)

Errors in
code

Faulty
re-
sponses

GenAI
tools
generate
low
quality
and
untrust-
worthy
responses

“. . . they [GenAI
tools] generate
repetitive amateur
level code. . . ” (E)

Amateu-
rish code

Low
quality
re-
sponses

an IDE helps to streamline different coding tasks. ChatGPT is
also considered a user-friendly tool because it allows the users
to have conversational interactions with the tool.

Six interviewees mention that GenAI tools can also be
useful for different word processing tasks. Especially ChatGPT
is used for many tasks that require word processing. The
interviewees have used it for content creation for websites
and documentation. One interviewee also mentions that Mi-
crosoft Copilot has potential in making presentations. Creative
work. Three of the interviewees have used GenAI tools in
visual and creative tasks. They have been used to generate
process images, promotional videos and ideas. The tools lack
understanding of causality, which is the reason they are not
suitable for creating pictures that showcase logic. One of the
interviewees mentions that GenAI tools seem promising in
generation of game graphics, but they seem to be lacking in
animation tasks.

Among the interviewees, GenAI tools were most frequently
used for tasks that are already well-documented, such as
programming, testing, and word processing. Despite this, the
tools appear to hold considerable potential, even though signif-
icant development is still required. The participants appeared
interested in experimenting with the tools to reduce the amount
of repetitive or monotonous tasks, for example.

2) Benefits and Drawbacks: The interviewees identify sev-
eral pros and cons of using GenAI tools. They streamline a
variety of tasks and are easy to use but can generate incorrect
or untrustworthy answers. Users must assess and fix low-
quality outputs and know enough about the subject to create
effective prompts. If problems are frequent, the tools may be
seen as unnecessary.

Interviewees agree that GenAI tools can speed up tasks,
though their usefulness depends on the quality of training
data. They support testing, coding, and writing by generating
templates and offering simple integration. GitHub Copilot,
for instance, integrates into programming environments and
provides automatic suggestions, which three interviewees rated
as high-quality. These tools help with repetitive tasks, allow-
ing users to focus on more interesting work, increasing job

56Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 67 / 88

satisfaction.
ChatGPT can substitute for Stack Overflow by helping

users solve programming problems efficiently. Information
retrieval is quicker, and tools provide concise answers without
web browser distractions. ChatGPT is especially effective in
word processing, and interviewees generally viewed it more
favorably for this than for coding. Two interviewees noted
that GenAI tools can outperform people in some tasks. They
possess broader domain knowledge and are unaffected by
fatigue, potentially reducing users’ mental burden.

Despite the benefits, two interviewees do not use GenAI
tools due to poor output quality. All interviewees noted the
risk of incorrect answers, which require user verification and
correction. Prompt quality impacts output, and ineffective
prompts may force users to restart conversations. Thus, users
need enough expertise to evaluate answers and formulate
prompts.

Even with good prompts, hallucinations—confident but in-
correct outputs—are common. If answers are unreliable, as
one interviewee experienced, users may abandon the tools.
Quality also varies across programming languages, with some
tools struggling with niche tasks or using outdated libraries.
Poor training data may lead to overly generic or unusable
outputs. Three participants raised concerns about censorship
and moderation, limiting use in ethically sensitive projects.
One interviewee mentioned accessibility issues and memory
limitations. Two interviewees noted the tools can’t generate
diagrams showing causality and context. Since many limita-
tions are outside user control, it’s important not to over-rely on
GenAI tools and to retain traditional methods when needed.

3) Ethical Issues: Lack of knowledge on ethical issues
related to GenAI and how they emerge during software de-
velopment may shape interviewees’ experiences. Developers
often focus on their own ethical conduct and may overlook
ethical problems caused by GenAI tools. Although some inter-
viewees encountered issues while using GenAI, they might not
recognize them as ethical in nature. Even without identifying
specific ethical concerns, users may still avoid these tools, as
in the case of one interviewee who stopped using them due to
potential ethical risks. Only two interviewees explicitly men-
tioned ethical concerns. However, when considering inequality,
such as GenAI’s varying performance across programming
languages, the number rises to six. Four of these six did not
identify this inequality as an ethical issue, highlighting a lack
of awareness.

Six interviewees bring up that GenAI tools lack trans-
parency and three of these interviewees also mention that AI
models can be black boxes. The generated answers may also
be derived from copyright-protected and licensed material. The
interviewees are aware of this risk, even though they have not
faced it themselves while using GenAI tools. The interviewees
agree that the GenAI tools can produce untrustworthy answers.
GenAI tools need to be more explainable and transparent
so that they can be trusted. Because the tools can generate
inaccurate and incorrect information users should develop their
critical thinking abilities.

Two interviewees noticed that the tools may repeat the same
answers while solving programming tasks. They reported that
the tools tend to replicate the same programming mistakes and
problem-solving methods, which may indicate a bias.

Six of the nine interviewees also recognize that GenAI tools
may cause information security risks. The tools may gather
information from customers and companies to be used for its
training. Users must also consider carefully what information
can be given to the tool via prompts. Two interviewees also
mention the communication platform, Slack, having a potential
ethical issue where they use the user data to train their AI
models.

AI development can also impact societal well-being and the
environment. Two of the nine interviewees expressed concern
about the impact that AI can have on the environment because
their development and usage require a lot of resources. Three
interviewees also believe that the tools may cause inequality
between societies, companies and people. Four interviewees
noticed that the code produced by GenAI tools varies in its
quality according to the used programming language. This may
also cause inequality among software developers because the
training data does not represent all programming languages
extensively.

In general, the interviewees are not worried about AI
replacing them. This might partly be because of their long
work experience in the IT field. Though, they do agree that AI
can replace people to some extent in software development,
especially in software testing and possibly in coding. Three
interviewees are also worried about the impact that the tools
might have on the professional skills of the software devel-
opers. These worries are especially related to programming
when the tools can generate code quickly and effortlessly. As
a result, users may be less likely to think about the problem
independently but instead strives to solve the problem as fast
as possible.

4) Ethical Guidelines: Five of the nine interviewees had
little to no awareness of the existing ethical guidelines for
AI. Though, even if the guidelines were unknown for these
interviewees, the ethical terms and subjects related to ethics of
AI were familiar to them. The interviewees have gotten infor-
mation about the ethics of AI through the internet, colleagues
and training but only two interviewees have gotten information
from official sources, for example, the ethical guidelines made
by AI HLEG. Four of the interviewees mention that they
get most of their information about the ethics of AI from
the internet by reading and listening to discussions. The
responsibility of understanding and learning about the ethics
of AI seem to fall on the employees.

Seven of the companies do not comply with any ethical
guidelines meant for AI. Because of this the ethical discussions
and decisions are left to the users of GenAI tools. This means
that the users are most likely guided by their own morals and
other guidelines and requirements in software development.

Two interviewees mention that their companies have meth-
ods to avoid possible ethical issues. One of the companies
has appointed a group that handles ethics and informs and

57Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 68 / 88

guides the employees on these matters. The other company is
aware of different ethical guidelines provided by the Digital
and Population Data Services Agency of Finland, for example.
Two interviewees also mention that it’s possible to forbid the
use of GenAI tools in a project to avoid ethical issues. Though,
it’s possible that the clients are not aware or informed about
the use of these tools in their projects.

Three interviewees mention that their companies are cur-
rently updating their ethical guidelines to include AI. Compa-
nies seem to develop their processes according to the changes
brought by AI but updating the guidelines and understanding
the different ethical aspects takes time. One interviewee also
brings up that the use of ethical guidelines of AI not only help
with understanding how to use these tools ethically, but they
also help the user to decide whether these tools should be used
at all when making a product.

IV. DISCUSSION

This section summarizes the main contributions of the study
and discusses its limitations and threats to validity.

A. Main Contributions

The study reveals that GenAI tools are primarily used for
programming, testing, and problem-solving, with occasional
use in text processing. Although earlier research suggests
broader applicability, real-world use remains limited, espe-
cially in visual tasks due to poor output quality. GitHub
Copilot is preferred for coding, while ChatGPT is assigned
more varied tasks. GenAI tools help accelerate work, but users
must critically evaluate outputs due to frequent hallucinations,
errors, and outdated code - especially with newer libraries.
Effective use requires strong prompt design skills, as tools
struggle with context, particularly in visual logic tasks.

Ethical considerations are largely overlooked in practice.
Most professionals are unfamiliar with formal AI ethics guide-
lines, though they recognize concepts like transparency and
explainability. Ethical concerns raised include data security,
response repetition, and inequality due to uneven support for
different languages and frameworks. While many companies
lack formal ethical policies, internal discussions are increasing.
Additionally, broader concerns such as unauthorized data
use, data leaks, and bias are acknowledged. The findings
align with earlier studies and highlight the growing need for
ethical awareness as adoption increases across development
workflows.

The results show that ethical guidelines related to artificial
intelligence are poorly known. Based on this, it could be
useful to know how companies that develop or specialize in
developing artificial intelligence systems follow ethical guide-
lines. These companies could also provide practical advice
on preventing ethical problems. The concern is that ethical
guidelines related to artificial intelligence may also be ignored
in companies that develop artificial intelligence systems. An
interesting topic for further research would therefore be to
examine the knowledge of ethics and related practices of
companies that provide artificial intelligence systems.

B. Limitations and Threats to Validity

Because the sample is small, the results cannot provide
a comprehensive picture of the entire software development
field. The results of the study can provide an indication of
typical problems, benefits and uses, as well as compliance with
ethical guidelines, but they lack more specific perspectives on,
for example, the use of tools in game development.

Some interviewees reported having only limited experience
with GenAI tools, which may have constrained the depth of
their engagement. Nonetheless, even these participants were
able to articulate a range of challenges they had encountered,
with many indicating that such difficulties constituted the pri-
mary reason for their discontinuation of tool use. Furthermore,
the specific purposes for which study participants used GenAI
tools do not necessarily reflect typical usage patterns, but
rather serve as illustrative examples of the tools’ potential
applications.

V. CONCLUSION AND FUTURE WORK

Addressing ethical issues related to AI and large language
models is vital for achieving trustworthiness of the tools and
requires a multidisciplinary approach involving professionals
from the fields of technology, ethics, law and policy. However,
it seems that even though the software professionals are
familiar with the concepts of ethical principles related to AI,
they do not know the ethical guidelines provided by several
organizations, and the employer companies do not utilize the
guidelines.

The issues related to transparency and explainability of the
generated answers were particularly familiar to the intervie-
wees. In addition, it seems that recurring responses generated
by the tools seem to be an issue. Concerns were also raised
about the security of the tools. Furthermore, many felt that the
quality of the responses provided by the tools was insufficient.

This study illustrates and raises discussion on ethical issues
that may arise in software development, as well as examines
the awareness of AI ethics among software professionals. Cur-
rently, GenAI tools support various work tasks, but they have
several weaknesses that require users to actively evaluate the
quality and reliability of responses. Additionally, not all users
benefit equally from these tools. While guidelines published by
different organizations aim to prevent potential ethical issues
and enable the development of reliable AI systems, it appears
that GenAI tools still have significant room for improvement.

Since it is expected that awareness of ethical problems
caused by AI systems will increase among users, companies
will likely create their own guidelines to avoid them. In the
future, it may be useful to find out how considering the ethical
perspective is developing in companies that utilize AI tools,
or whether the developers of the tools have created their own
guidelines.

REFERENCES

[1] Z. Özpolat, Ö. Yildirim, and M. Karabatak, “Artificial
intelligence-based tools in software development processes:
Application of chatgpt,” Eur. J. Technic, vol. 13, no. 2,
pp. 229–240, 2023.

58Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 69 / 88

[2] C. Ebert and U. Hemel, “Technology trends 2023: The com-
petence challenge,” IEEE Softw., vol. 40, no. 3, pp. 20–28,
2023.

[3] L. Weidinger et al., Ethical and social risks of harm from
language models, https://arxiv.org/abs/2112.04359, retrieved:
August, 2025, 2021.

[4] H. Tanaka et al., “Taxonomy of generative ai applications for
risk assessment,” in Proc. IEEE/ACM 3rd Int. Conf. AI Eng.-
Softw. Eng. AI, 2024, pp. 288–289.

[5] AI HLEG, Ethics guidelines for trustworthy ai, https : / /
www . europarl . europa . eu / meetdocs / 2014 _ 2019 / plmrep /
COMMITTEES / JURI / DV / 2019 / 11 - 06 / Ethics - guidelines -
AI_FI.pdf, retrieved: June, 2025, Apr. 2019.

[6] M. Ryan and B. C. Stahl, “Artificial intelligence ethics guide-
lines for developers and users: Clarifying their content and
normative implications,” J. Inf. Commun. Ethics Soc., vol. 19,
no. 1, pp. 61–86, 2021.

[7] O. Asare, M. Nagappan, and N. Asokan, “Is github’s copilot
as bad as humans at introducing vulnerabilities in code?”
Empirical Software Engineering, vol. 28, no. 129, 2023.

[8] M. A. Haque and S. Li, “The potential use of ChatGPT for
debugging and bug fixing,” EAI Endorsed Trans. AI Robot.,
vol. 2, 2023.

[9] T. Kumari and A. Das, “Towards development of an effective
ai-based system for relevant comment generation,” in Proc.
15th Annu. Meet. Forum Inf. Retrieval Eval., 2023, pp. 118–
120.

[10] G. Giunti and C. P. Doherty, “Cocreating an automated
mhealth apps systematic review process with generative ai:
Design science research approach,” JMIR Med. Educ., vol. 10,
e48949, 2024.

[11] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation
vs. experience: Evaluating the usability of code generation
tools powered by large language models,” in CHI Conf. Hum.
Factors Comput. Syst. Ext. Abstr., 2022, pp. 1–7.

[12] A. M. Dakhel et al., “Github copilot ai pair programmer: Asset
or liability?” J. Syst. Softw., vol. 203, p. 111 734, 2023.

[13] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An empirical
evaluation of using large language models for automated unit
test generation,” IEEE Trans. Softw. Eng., vol. 50, no. 1,
pp. 85–105, 2024.

[14] P. Khlaisamniang, P. Khomduean, K. Saetan, and S. Wonglap-
suwan, “Generative ai for self-healing systems,” in Proc. 18th
Int. Joint Symp. Artif. Intell. Nat. Lang. Process. (iSAI-NLP),
2023.

[15] V. Bilgram and F. Laarmann, “Accelerating innovation with
generative ai: Ai-augmented digital prototyping and innovation

methods,” IEEE Eng. Manag. Rev., vol. 51, no. 2, pp. 18–25,
2023.

[16] A. Barcaui and A. Monat, “Who is better in project planning?
generative artificial intelligence or project managers?” Project
Leadership and Society, vol. 4, p. 100 101, 2023.

[17] D. Luitel, S. Hassani, and M. Sabetzadeh, “Improving re-
quirements completeness: Automated assistance through large
language models,” Requirements Eng., vol. 29, pp. 73–95,
2024.

[18] H. Hochmair, L. Juhász, and T. Kemp, “Correctness compar-
ison of chatgpt-4, gemini, claude-3, and copilot for spatial
tasks,” Trans. GIS, vol. 28, no. 7, pp. 2219–2231, 2024.

[19] B. Idrisov and T. Schlippe, “Program code generation with
generative ais,” Algorithms, vol. 17, no. 2, p. 62, 2024.

[20] S. Barke, M. B. James, and N. Polikarpova, “Grounded copi-
lot: How programmers interact with code-generating models,”
Proc. ACM Program. Lang., vol. 7, pp. 85–111, 2023.

[21] Google, Our principles, https : / / ai . google / responsibility /
principles/, retrieved: August, 2025, Oct. 2023.

[22] IBM, IBM artificial intelligence pillars, https://www.ibm.com/
policy / ibm- artificial - intelligence- pillars/, retrieved: August,
2025, Aug. 2023.

[23] IEEE Standard 7001, IEEE standard for transparency of
autonomous systems, IEEE, 2022.

[24] IEEE Standard 7002, IEEE standard for data privacy process,
IEEE, 2022.

[25] Adobe, Adobe’s Commitment to AI Ethics, https://www.adobe.
com/content /dam/cc /en /ai - ethics /pdfs /Adobe- AI - Ethics -
Principles.pdf, retrieved: June, 2025, Oct. 2023.

[26] IEEE Standard 7009, P7009 standard for fail-safe design of
autonomous and semi-autonomous systems, IEEE, 2024.

[27] IEEE Standard 7010, IEEE recommended practice for as-
sessing the impact of autonomous and intelligent systems on
human well-being, IEEE, 2020.

[28] S. Hirsjärvi and H. Hurme, Tutkimushaastattelu : teema-
haastattelun teoria ja käytäntö, H. Hurme, Ed. Helsinki:
Yliopistopaino, 2000, retrieved: February, 2025. [Online].
Available: https://jyu.finna.fi/Record/jykdok.829757.

[29] T. Tuomisto, “Generatiivisen tekoälyn käyttö ja etiikka
ohjelmistokehityksessä,” retrieved: August, 2025, M.S. thesis,
University of Jyväskylä, 2024. [Online]. Available: https://urn.
fi/URN:NBN:fi:jyu-202411287512.

[30] C. Urquhart, Grounded Theory for Qualitative Research: A
Practical Guide. 55 City Road: SAGE Publications, Ltd, 2013.

[31] M. Williams and T. Moser, “The art of coding and thematic
exploration in qualitative research,” Int. Manag. Rev., vol. 15,
no. 1, pp. 45–55, 2019.

59Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 70 / 88

Software Engineering for Educational AI Applications: Insights from Student
Requirements for a VR Coaching System

Yvonne Sedelmaier
Department Education

SRH University of Applied Sciences Heidelberg
Fuerth, Germany

Yvonne.sedelmaier@srh.de

Jens Grubert, Dieter Landes
Center for Responsible Artificial Intelligence

University of Applied Sciences Coburg
Coburg, Germany

{ jens.grubert, dieter.landes }@hs-coburg.de

Abstract—This paper presents findings of a study which
explored students’ perspectives on a virtual reality (VR)-based
AI coach designed to support preparation for oral examinations.
It highlights the complex interplay between user experience,
acceptance, and software development priorities. The
qualitative data collected from informatics students provides
important insights into their learning goals, expectations, and
specific requirements for such a tool and reveals significant
implications for the design and development process.

The study shows that students are generally open to the use of
AI-based VR applications in exam preparation. They express
strong interest in virtual coaching — particularly to build
confidence and reduce exam-related anxiety in oral settings.
Students value the opportunity to engage in realistic
simulations, receive authentic and useful feedback, and benefit
from a personalized learning environment that adapts to their
individual needs.

The students articulated high expectations regarding the
realism of the virtual coaching scenarios, the accuracy and
completeness of the content, and the degree of individualization
provided by the system.

In summary, the student feedback underscores the critical role
of user experience and perceived value in the development of
educational technologies. When prospective developers are also
the users, their standards become even more stringent. To
succeed, a VR-based coaching system must not only be
technically functional but also pedagogically credible and
emotionally acceptable from its very first use. These insights
challenge typical development rhythms and require a raised
awareness of the experiential dimension of educational
software.

Keywords-AI-based learning; virtual reality; VR; educational
software engineering; oral examination; requirements.

I. INTRODUCTION
Digital transformation has become a key driver in

reshaping educational practices in higher education. In recent
years, the rapid advancement of Artificial Intelligence (AI)
and immersive technologies such as Virtual Reality (VR) has
opened new possibilities for designing personalized and
interactive learning environments. Particularly large language
models (LLMs) like ChatGPT have catalyzed discussions

about the potential of AI to enhance teaching and learning
experiences.

Despite these technological innovations, the formats of
academic assessments have remained largely unchanged.
Written examinations still dominate the assessment landscape,
followed by oral examinations. While students are generally
accustomed to preparing for written assessments, oral
examinations are often associated with discomfort, anxiety,
and uncertainty. Many students report feelings of nervousness
or even fear when faced with the challenge of articulating
knowledge in a face-to-face examination setting.

These emotional barriers can significantly affect
performance and learning outcomes. To address this, AI-
based learning companions – specifically, virtual coaches
using VR and conversational AI – may offer a promising
approach. By simulating realistic examination situations,
providing feedback, and offering adaptive support, such tools
could help students prepare more effectively and confidently
for oral assessments.

This paper presents an exploratory study investigating
students’ goals, preferences, and requirements for an AI-based
VR coach designed to support oral examination preparation.
Through qualitative content analysis of open-ended
questionnaire data, we aim to understand better how such a
tool should be designed to meet learners' needs. It derives
some implications for software engineering for educational AI
applications.

II. RELATED WORK
The development of virtual and AI-based coaching

systems for educational purposes is interlinked with numerous
research approaches, including virtual reality in higher
education, user-centered design in educational software
engineering, and adaptive feedback mechanisms for oral
communication training.

A. Virtual Reality in Higher Education
The use of VR technologies in education has gained

momentum over the past decade, especially in domains that
benefit from immersive, scenario-based learning
environments. VR has been applied in healthcare (e.g.,
surgery) [1], [2], engineering (e.g., simulation of hazardous
environments) [3], and language learning (e.g., simulated
dialogues) [4], [5] to enhance experiential learning and
motivation [6], [7]. Recent studies highlight that VR can

60Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 71 / 88

support cognitive, affective, and behavioral learning when
used in well-structured instructional designs [8], [9].

In the context of assessment preparation, however,
research is still emerging. Some initial works have
investigated VR as a means to reduce anxiety [10], [11] and
increase speaking fluency [12], [13], [14]. Others have
explored virtual exam situations [15] but often in context of
healthcare [16], [17]. The integration of adaptive, AI-based
elements, especially for open-ended oral interactions, is still
relatively novel.

B. Coaching Systems and AI in Educational Feedback
AI-based coaching systems are increasingly used to

provide personalized feedback and scaffolded learning
environments. Intelligent tutoring systems have been shown
to improve learning outcomes by offering adaptive support
based on user input, performance history, or predefined
instructional rules [18], [19]. Recent approaches leverage
natural language processing and machine learning to model
open-ended communication, such as in empathic pedagogical
conversational agents [20].

In oral exam preparation, however, such systems are rarely
used. While virtual agents have been developed for interview
training or job application scenarios [21], [22], the level of
pedagogical alignment and realism required in academic oral
examinations presents unique challenges. The present study
addresses this gap by investigating learner expectations for a
VR-based AI coach in this high-stakes educational context.

III. RESEARCH QUESTION AND RESEARCH DESIGN

A. Research Questions
This study primarily aims at better understanding students’

needs and expectations regarding the use of a virtual coach to
prepare for oral examinations in higher education.
Specifically, the research explores if students are generally
open to learning with a virtual coach, and if so, what their
intended learning outcomes are. Furthermore, the study aims
to identify students’ requirements and preferences for a virtual
coach that supports the preparation for oral examinations.

The following questions guided the study:
• Would students be willing to use a virtual coach for

exam preparation? (RQ1)
• What are their learning goals when using such a tool?

Which purposes do students associate with using a
virtual coach? (RQ2)

• Which requirements and expectations do they have
with respect to the functionality and behavior of a
virtual coach? (RQ3)

• Which features or behaviors would lead students to
reject or avoid using such a coach? (RQ4)

B. Research Design
The study employed a qualitative design based on a paper-

and-pencil questionnaire containing open-ended questions.
These questions invited students to complete sentence
prompts related to their expectations, goals, and concerns
regarding a virtual coach for oral examination preparation. We
asked the following questions:

“Imagine you had the ability to prepare for oral exams
with the support of virtual reality. What should such a VR-
based training system look like, what should it be able to do?
Please complete the following sentences:

- The most stressful thing for me before or during an oral
exam is ...

- From a VR-coach I expect ...
- I would like to train with a VR coach...
- I’d love to...
- It’s not possible that ...”
Participants included a total of 44 participants from

informatics (bachelor) and data science (master). The survey
was conducted in the middle of the term.

Qualitative content analysis (QCA) following Mayring
[23] was applied to analyze the data. This approach allows a
structured, category-based, and research question–oriented
evaluation of the open responses [24]. QCA was chosen
because it is systematic and transparent, ensuring that results
are understandable and intersubjectively verifiable.

The analysis followed the eight standard steps of QCA:
1) Definition and Selection of Material

The first step determines the type and scope of the material
to be analyzed. A representative subset of the complete data
corpus should be selected, ensuring relevance and alignment
with the research questions. The selection criteria are
informed by the aim to capture the diversity and key
dimensions of the material in a manageable, yet meaningful
way. In our case, no selection was necessary because we can
include all 44 questionnaires received.

2) Analysis of the Context of Material Production
To understand the material in its original context, the

circumstances of its creation should be examined. This
includes identifying the individuals or institutions responsible
for compiling the material, their motivations, and the intended
purposes. Particular attention should be paid to the broader
socio-institutional and thematic context in which the material
was produced, which is essential for interpreting its content
appropriately. This step was not relevant for us as we
conducted the survey ourselves.

3) Formal Characterization of the Material
The selected material should be formally described with

respect to its type and structure. This includes documentation
of the transcription conventions and other formatting rules
applied, ensuring transparency and reproducibility of the
analytical process. The questionnaire was answered by our
students in a paper-and-pencil survey.

4) Determination of the Analytical Perspective
The focus of the analysis should be defined by specifying

which aspects of the material would be explored. This study
primarily concentrated on students’ requirements and
preferences for an AI-based VR coach, in accordance with the
overarching research interest.

5) Theory-Guided Differentiation of the Research
Question

The main research question should be refined into several
sub-questions, based on relevant theoretical considerations.
This step allows for a more nuanced investigation and
facilitates the development of a structured analytical

61Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 72 / 88

framework. In our case, section III.A. describes the detailed
research questions.

6) Selection of Analytical Techniques
Based on the nature of the material and the research aims,

appropriate analytical techniques should be selected. These
include elements of summarizing, explicating, and structuring
content. In our study, we focus on summarizing the content
[25, p. 64ff] and analyzing frequencies.

7) Definition of Units of Analysis
According to Mayring, “the focus [of CQA] is always on

the development of a category system. These categories are
developed in a relationship between the theory (question) and
the concrete material, defined by construction and assignment
rules and revised during the analysis.” [25]

In principle, both an inductive and a deductive approach
to category formation is possible. In deductive category
formation, a coding guideline clearly defines the category
system. These category definitions are formulated in advance
from the theoretical background. Only then the material
processing starts and searches for relevant sections of text.
This approach is often used for explicating and structuring
content analysis.

In contrast, we chose summarizing content analysis as
analyzing technique. The summary content analysis tries to
take all material into account and systematically reduce it to
the essentials. If only certain components (to be determined
according to a definition criterion) are taken into account in
such reductive text analysis processes, this is a kind of
inductive category formation [25]. Therefore, inductive
category development was used in our study, allowing
categories to emerge from the data in close relation to the
research questions. Inductive category definition derives
categories directly from the material in a generalization
process, without referring to previously formulated theoretical
concepts [25, p. 84].

8) Conducting the Material Analysis
The material was analyzed according to the established

procedure. The category system was applied iteratively,
allowing for dynamic interplay of the coding process and the
refinement of categories. When the category system was
adjusted substantially, previously coded material was re-
examined to ensure consistency and validity.

IV. RESULTS
Participants included bachelor students in their second or

third year (Informatics) and master students in Data Science.
The survey was conducted in the middle of the semester, and
22 students from each course (a total of 44 participants)
completed the questionnaire.

Bachelor students attach much more importance to the
goal of "gaining certainty, reducing excitement" (21), while
this is only a marginal phenomenon for master students (6).
The latter put more emphasis on closing knowledge gaps and
achieving understanding of the content (18), while bachelor
students prefer to learn answers to all possible questions (7)
and thus build knowledge (2). There is a striking shift during
the course of studies from the "soft" focus on gaining security

and reducing examination anxiety to content-related and
knowledge-related aspects.

Interaction and feedback are also becoming increasingly
important for training with a VR coach during the course of
studies, even though bachelor students already have high
demands here. 12 bachelor students want real feedback rather
than an imposed, standardized interaction. This aspect
becomes even more important for the master students (17).

It is also striking that bachelor students prefer to be
motivated by a VR coach (2, in the master’s program only one
person), while master students want the VR coach to develop
an individual schedule for further learning together with them.

Overall, individualization and personalization gain
relevance along with the study progress: while only one
bachelor student expects personalized feedback from the VR
coach, there are already 7 master students who wish to do so.

The main requirement for a VR coach is particularly
striking: about 70 percent of students (15 bachelor and 16
master students) expect realistic scenes and as real situations
as possible from a VR coach. 5 bachelor and 5 master students
wish to have images of the real examiners and sometimes even
a picture of the real examination room. In terms of proximity
to reality, both groups are very similar in their statements and
see this as an essential requirement and also a prerequisite for
using the VR coach.

The statements of the students can be summarized into two
super-categories with sub-categories:

1. One category puts a focus on learning goal-related
aspects (RQ2), which in turn can be subdivided into
personal and content-related learning outcomes.

2. The second category relates to aspects of the learning
process (RQ3 and RQ4), including realistic scenarios
and the simulation of real instructors and assessors as
well as the examination room. Another sub-category
is real interaction and individualized feedback. A
third aspect is personalized and individualized
support of the learning process including the
motivation and development of learning paths.

V. DISCUSSION OF RESULTS
The results of the QCA provide valuable insights into

students' learning goals and expectations regarding the use of
a virtual coach to prepare for oral examinations. Regarding
RQ1, all but two students have no fundamental reservations
against using a virtual coach.

Regarding learning goals (RQ2), students expressed both
personal and cognitive motivations for using a virtual coach.
On a personal level, many bachelor students emphasized a
desire to gain confidence in their performance, reduce
examination anxiety, and manage nervousness prior to the
exam. This shows a strong emotional component in preparing
for oral assessments, which a virtual coach might address
through repeated exposure to realistic exam-like settings.

On the cognitive level, students wish to identify and close
knowledge gaps and assess their own level of understanding.
This indicates that learners are not only looking for emotional
support but also expect the virtual coach to contribute to their
academic progress by offering feedback that enhances
metacognitive awareness and supports self-regulated learning.

62Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 73 / 88

Regarding the requirements for the VR-coach (RQ3),
students highlighted several key expectations. First and
foremost, authenticity and realism are essential. Students
expect the simulation to closely mirror real-life examination
scenarios, including realistic examiners, spaces, and question
types. Furthermore, the coach must enable real interaction and
provide meaningful, situation-specific feedback. Simple or
generic responses were considered insufficient.

A second major requirement is personalization. Students
want the virtual coach to support their individual learning
processes by offering customized feedback, motivation, and
structured guidance, such as helping to create a personalized
preparation schedule.

Notably, although most participants were in favor of using
a virtual coach, two students preferred not to engage with such
a tool. One key reason cited was physical discomfort or
motion sickness when using VR/AR devices, illustrating that
technical accessibility and user comfort must be considered in
system design.

Students were also clear on what would be unacceptable
in a virtual coach (RQ4). These “no-go” criteria include
predefined or incorrect answers, impolite or insensitive
behavior, and above all a lack of personalization or the use of
unrealistic or artificial scenarios. Such deficiencies would
undermine the coach’s credibility and usefulness and might
even exacerbate exam-related stress rather than reduce it.

Taken together, these findings suggest that a virtual coach
can be a valuable tool for preparing oral examinations – but
only under certain conditions. Technically limited or overly
generic solutions are unlikely to be accepted by students.
From a development perspective, this implies that the virtual
coach must be technically mature, pedagogically sound, and
tailored to the needs of individual learners. While iterative
development methods such as agile approaches offer
flexibility, they can only be applied within narrow limits if the
product is to meet user expectations from the outset. In
particular, iterative and agile approaches often develop
solutions in short iterations that result in increments which can
be rolled out to users even way before the system is complete.
This does not seem to be a viable option here since a large
share of students declines to learn with an incomplete or partly
faulty VR tutor. Consequently, incremental development may
kill user acceptance due to bad user experience.

In conclusion, the data point toward a clear user demand
for realistic, interactive, and personalized virtual learning
environments. If these criteria are met, a virtual coach may not
only support cognitive preparation but also help students
overcome emotional barriers, ultimately contributing to more
confident and competent oral performance.

VI. CONCLUSIONS FROM THE USER SURVEY
This study investigated students’ perspectives on a VR-

based AI coach developed to support preparation for oral
examinations. Overall, the findings point to clear priorities for
educational software engineering and challenge assumptions
about early-stage development and user tolerance.

A. High Expectations rather than Skepticism
Students exhibit general openness and interest in the

concept of a VR-based coach, especially regarding managing
exam-related anxiety, building oral communication
confidence, and enabling repeated, self-directed practice.
They want to use the VR coach also for preparing content. The
survey also revealed that students see the VR-based coach
primarily as a means to an end, i.e. a tool to improve their
exam performance. Yet, this openness is paired with very high
expectations. From the outset, the system is expected to
deliver accurate content, reflect realistic exam scenarios, and
provide individualized responses. Core requirements include
realism, individualization, and content accuracy. Rather than
accepting early-stage imperfections, students only consider
the VR coach useful if it works meaningfully from the very
first interaction. This leaves little room for gradual quality
improvements or tolerance of rough, minimally functional
prototypes. A “wobbly” first impression, as several students
implied, would result in the tool’s immediate rejection.

B. Tension between Virtual and Real Examiners
The potential trade-off between realism and emotional

safety emerged as an implicit theme. While real examiners
might represent the gold standard for authenticity, the idea of
a virtual coach offers psychological advantages—especially
the ability to practice without judgment, make mistakes safely,
and repeat scenarios as needed. This tension between learning
in a realistic environment and practicing in a protected space
suggests a need for further exploration into the pedagogical
positioning of virtual coaches. Students’ responses indicate
that the VR coach is not expected to replace real examiners
but rather to supplement preparation in a way that increases
emotional readiness and perceived control.

C. Shifting Perspectives: From Developer to User
Nearly all surveyed students had a technical background,

often engaging in software development themselves. In
particular, the bachelor students were enrolled in a course that
deals with requirements elicitation and analysis. Interestingly,
their expectations changed when viewing the VR system not
as developers, but as users. When eliciting requirements in the
course, they often complained that customers did not care
about a system’s technical issues but were only interested in
getting a solution for their problem. Now, they were not
interested in specific VR features of the tutor system but
showed a marked shift toward usability and outcome
orientation. Likewise, while they typically accept early-stage,
technically incomplete prototypes in development contexts,
they became far less tolerant when taking a user role
themselves. In that mindset, the technical implementation
became secondary to the learning outcome. When imagining
themselves as users of the VR-based coach, students showed
less concern about the underlying technology and focused
instead on whether the system would provide real value in
preparing them for exams.

This shift illustrates a known but often underestimated
cognitive bias in software development: when students are in
the user role, their tolerance for imperfection and
experimentation decreases dramatically. Their focus shifted

63Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 74 / 88

from "how the system works" to "what the system enables".
This highlights a critical insight: when students are the end
users, their standards for usability, reliability, and educational
effectiveness rise sharply—regardless of their technical
empathy for the development process. This also underlines the
importance of integrating user-centered perspectives early and
consistently in the software engineering process.

D. Implications for Development: Beyond Classical Agile
Approaches
The findings raise questions about the applicability of

conventional agile development practices in this context.
While agile methodologies promote early user feedback and
continuous improvement, the survey responses suggest that in
this particular use case, this can backfire if early iterations do
not meet the expected level of realism and content quality. In
the case of educational technologies used in emotionally
charged situations—such as oral exam preparation—careless
early releases may compromise user acceptance.

This is not an argument against agile principles as such but
calls for cautious and strategically staged implementation of
increments. Each release must meet high quality standards in
terms of usability, realism, and content correctness, even in
early stages. Thus, an adapted or hybrid approach is required:
agile principles may be maintained but with greater emphasis
on upfront planning, anticipatory design, and thorough quality
assurance in each increment to ensure that early impressions
do not jeopardize the tool’s acceptance.

VII. SUMMARY AND OUTLOOK
This study presented a qualitative analysis of students’

expectations for a VR-based AI coach to support oral exam
preparation. The qualitative data collected from
undergraduate and graduate informatics students provides
important insights into students’ learning goals, expectations,
and specific requirements for such a tool.

The results clearly show that students appreciate the idea
of a virtual coach and express a strong interest in using it,
especially to manage examination anxiety and improve their
confidence in oral settings.

The results underline that while students are highly
receptive to the concept, they also hold clear and demanding
expectations: Students are critical of systems that feel
inauthentic, lack individualization, or provide overly generic
responses. They value realism, personalized feedback, and
content accuracy, and they require these features to be present
from the very first use.

The pedagogical potential of such systems is evident.
Students appreciate the chance to train in a psychologically
safer space and repeat challenging scenarios without social
consequences. Yet, the virtual coach’s success hinges on more
than functionality: it must offer a credible learning experience
and be perceived as professionally valuable.

Crucially, informatics students—mostly with
development experience—demonstrated a significant shift in
mindset when viewing the system as users rather than as
developers. While technically-minded in many academic
contexts, they deprioritized implementation details in favor of
usability, effectiveness, and emotional relevance. This

highlights the importance of continuous, user-centered
validation throughout the development process.

A further question that emerges from the data concerns the
relationship between virtual and real-life exam preparation: Is
a real examiner ultimately the better coach, or can a realistic
virtual alternative offer distinct advantages? On the one hand,
the authenticity of real-life interaction may provide the highest
degree of realism and thus better prepare students for actual
exams. On the other hand, a well-designed virtual coach could
offer a psychologically safer and more flexible environment
for iterative practice—free from fear of judgment—allowing
students to practice more calmly, make mistakes without
embarrassment, and build confidence over time. The real
examiner may be most authentic, but a virtual system could
lower emotional barriers, enabling deeper, repeated
engagement with the exam format.

This tension between realism and psychological safety
presents a promising area for future comparative studies. Such
studies should empirically examine the relative benefits of
human versus virtual coaching scenarios, particularly in terms
of learner outcomes, confidence development, and long-term
skill retention.

These insights have important implications for educational
software engineering. First, they underline a strong
pedagogical demand for immersive, user-adaptive
technologies that support oral communication skills in
realistic settings. Second, they point to a need for development
strategies that prioritize the user experience—not only in
terms of interface design, but also regarding the system’s
pedagogical effectiveness and credibility; otherwise, the
technology may neither be accepted, nor used effectively. The
findings further suggest that a purely technical focus or
minimal-viable approach may fall short if it does not align
with learners’ expectations for realism and relevance. A VR
coach that fails to simulate realistic examiner behavior or
classroom dynamics may even increase insecurity rather than
alleviate it.

In terms of outlook, further research and iterative
development with student involvement are necessary. Future
work should investigate how adaptive AI systems can
dynamically tailor content and feedback to individual learners
and how the realism of examiner behavior can be technically
modeled in VR. Moreover, long-term studies may also
provide valuable insights into the actual learning impact of
such systems on learning outcomes, examination
performance, and user acceptance over time.

The next step for our project is a prototype development
phase, in which a minimal viable product will be co-created
and evaluated with student feedback loops. Special attention
will be paid to usability, immersion, content reliability, and
pedagogical effectiveness from the start. By addressing users’
expectations proactively, we aim to ensure that the VR-based
coach is not only technically sound, but also pedagogically
credible and emotionally supportive. The challenge will be to
strike the right balance between technical feasibility,
psychological comfort, and educational impact—ensuring
that the VR-based coach becomes a credible, accepted, and
effective tool in students' academic journeys.

64Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 75 / 88

REFERENCES
[1] R. Q. Mao et al., ‘Immersive Virtual Reality for Surgical

Training: A Systematic Review’, J. Surg. Res., vol. 268, pp.
40–58, Dec. 2021, doi: 10.1016/j.jss.2021.06.045.

[2] A. Luca et al., ‘Innovative Educational Pathways in Spine
Surgery: Advanced Virtual Reality–Based Training’, World
Neurosurg., vol. 140, pp. 674–680, Aug. 2020, doi:
10.1016/j.wneu.2020.04.102.

[3] R. Toyoda, F. Russo-Abegão, and J. Glassey, ‘VR-based
health and safety training in various high-risk engineering
industries: a literature review’, Int. J. Educ. Technol. High.
Educ., vol. 19, no. 1, p. 42, Aug. 2022, doi: 10.1186/s41239-
022-00349-3.

[4] L. Hsu, ‘Exploring EFL learners’ acceptance and cognitive
absorption at VR-Based language learning: A survey and
experimental study’, Heliyon, vol. 10, no. 3, p. e24863, Feb.
2024, doi: 10.1016/j.heliyon.2024.e24863.

[5] I. W. E. D. Rahmanu and G. Molnár, ‘Multimodal immersion
in English language learning in higher education: A
systematic review’, Heliyon, vol. 10, no. 19, p. e38357, Oct.
2024, doi: 10.1016/j.heliyon.2024.e38357.

[6] G. Makransky, T. S. Terkildsen, and R. E. Mayer, ‘Adding
immersive virtual reality to a science lab simulation causes
more presence but less learning’, Learn. Instr., vol. 60, pp.
225–236, Apr. 2019, doi: 10.1016/j.learninstruc.2017.12.007.

[7] J. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt,
‘A systematic review of immersive virtual reality applications
for higher education: Design elements, lessons learned, and
research agenda’, Comput. Educ., vol. 147, p. 103778, Apr.
2020, doi: 10.1016/j.compedu.2019.103778.

[8] M. Conrad, D. Kablitz, and S. Schumann, ‘Learning
effectiveness of immersive virtual reality in education and
training: A systematic review of findings’, Comput. Educ. X
Real., vol. 4, p. 100053, 2024, doi:
10.1016/j.cexr.2024.100053.

[9] M. Poupard, F. Larrue, H. Sauzéon, and A. Tricot, ‘A
systematic review of immersive technologies for education:
Learning performance, cognitive load and intrinsic
motivation’, Br. J. Educ. Technol., vol. 56, no. 1, pp. 5–41,
Jan. 2025, doi: 10.1111/bjet.13503.

[10] Y. Wang, M. Hu, and Q. Wan, ‘The application and prospects
of artificial intelligence in the treatment of anxiety disorders’,
in Proceedings of the 2023 4th International Symposium on
Artificial Intelligence for Medicine Science, Chengdu China:
ACM, Oct. 2023, pp. 923–926. doi:
10.1145/3644116.3644274.

[11] J. Grubert, Y. Sedelmaier, and D. Landes, ‘Towards
Embodied Conversational Agents for Reducing Oral Exam
Anxiety in Extended Reality’, in IEEE International
Symposium in Mixed and Augmented Reality (ISMAR-
Adjunct), IEEE, 2025.

[12] S. A. SalsabilaHadi, M. S. Putri, F. Ismiarti, A. A. Santoso
Gunawan, and F. S. Pramudya, ‘A Systematic Literature
Review:Virtual Reality’s in Decreasing Public Speaking
Anxiety (PSA)’, in 2023 International Conference on
Information Technology and Computing (ICITCOM),

Yogyakarta, Indonesia: IEEE, Dec. 2023, pp. 1–5. doi:
10.1109/ICITCOM60176.2023.10442335.

[13] S. Saufnay, E. Etienne, and M. Schyns, ‘Improvement of
Public Speaking Skills Using Virtual Reality: Development of
a Training System’, in 2024 12th International Conference on
Affective Computing and Intelligent Interaction Workshops
and Demos (ACIIW), Glasgow, United Kingdom: IEEE, Sept.
2024, pp. 122–124. doi: 10.1109/ACIIW63320.2024.00025.

[14] J. Schneider, G. Romano, and H. Drachsler, ‘Beyond
Reality—Extending a Presentation Trainer with an Immersive
VR Module’, Sensors, vol. 19, no. 16, p. 3457, Aug. 2019,
doi: 10.3390/s19163457.

[15] N. Badve et al., ‘Development of Online Exam System for the
Institution’, Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no.
4, pp. 4303–4311, Apr. 2023, doi:
10.22214/ijraset.2023.50576.

[16] A. Shomorony, R. Weitzman, H. Chen, and A. P. Sclafani,
‘Augmented otorhinologic evaluation in telemedical visits’,
Am. J. Otolaryngol., vol. 45, no. 1, p. 104088, Jan. 2024, doi:
10.1016/j.amjoto.2023.104088.

[17] S. Moroz, R. Andrade, L. Walsh, and C. L. Richard, ‘Student
Performance on an Objective Structured Clinical Exam
Delivered Both Virtually and In-Person’, Am. J. Pharm.
Educ., vol. 87, no. 7, p. 100088, July 2023, doi:
10.1016/j.ajpe.2023.100088.

[18] D. Landes, Y. Sedelmaier, F. Böck, A. Lehmann, M. Fraas,
and S. Janusch, ‘Combining Data- and Knowledge-Driven AI
with Didactics for Individualized Learning
Recommendations’, in 2024 IEEE Global Engineering
Education Conference (EDUCON), Kos Island, Greece:
IEEE, May 2024, pp. 01–08. doi:
10.1109/EDUCON60312.2024.10578640.

[19] R. Britto, W. G. De Oliveira Filho, C. G. Barros, and E. C.
Lopes, ‘Intelligent tutor system model applied to basic
electronics’, in 2017 12th Iberian Conference on Information
Systems and Technologies (CISTI), Lisbon, Portugal: IEEE,
June 2017, pp. 1–5. doi: 10.23919/CISTI.2017.7975832.

[20] E. Ortega‐Ochoa, M. Arguedas, and T. Daradoumis,
‘Empathic pedagogical conversational agents: A systematic
literature review’, Br. J. Educ. Technol., vol. 55, no. 3, pp.
886–909, May 2024, doi: 10.1111/bjet.13413.

[21] M. J. Smith et al., ‘Mechanism of Action for Obtaining Job
Offers With Virtual Reality Job Interview Training’,
Psychiatr. Serv., vol. 68, no. 7, pp. 747–750, July 2017, doi:
10.1176/appi.ps.201600217.

[22] M. D. Bell and A. Weinstein, ‘Simulated Job Interview Skill
Training for People with Psychiatric Disability: Feasibility
and Tolerability of Virtual Reality Training’, Schizophr. Bull.,
vol. 37, no. suppl 2, pp. S91–S97, Sept. 2011, doi:
10.1093/schbul/sbr061.

[23] P. Mayring, Qualitative Content Analysis. London: SAGE
Publications Ltd, 2021. Accessed: Feb. 06, 2023. [Online].
Available: https://uk.sagepub.com/en-gb/eur/qualitative-
content-analysis/book269922

[24] P. Mayring, ‘Qualitative Content Analysis: Demarcation,
Varieties, Developments’.

[25] P. Mayring, Qualitative Inhaltsanalyse: Grundlagen und
Techniken, 13th edn. Weinheim Basel: Beltz, 2022.

65Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 76 / 88

On the Keeping Models in the System Design and Implementation

Radek Kočı́

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
email: koci@fit.vut.cz

Abstract—An essential criterion for software design and im-
plementation is the effectiveness of requirements specification,
development, and verification. One possibility is the use of high-
level models and languages. A particular disadvantage is the
need to transform models into a production environment, either
manually or automated. In both cases, the link to the original
models is often lost, degrading their usability in the future. In
this paper, using a demonstration example, we will look at the
possibility of modeling requirements using Object-Oriented Petri
Nets (OOPN) and then transforming them into Java to maintain
the model’s and implementation’s correlation. We will discuss
the automation of this process and possible ways to increase
efficiency.

Keywords—Object Oriented Petri Nets; model transformation;
Java.

I. INTRODUCTION

Model and Simulation-Based System Design (MSBD) refers
to a set of techniques and tools for developing software
systems that are based on formal models and simulation tech-
niques throughout the development process. The fundamental
problem with model transformations is often the impossibility
of a fully automated process and, therefore, the mismatch
between models and their implementation. In this paper, using
a demonstration example, we will look at the possibility
of modeling requirements using Object-Oriented Petri Nets
(OOPN) and then transforming them into Java to maintain
the model’s and implementation’s correlation. We will discuss
the automation of this process and possible ways to increase
efficiency.

There are many approaches to code generation. First, the
generation of models in the chosen language from UML mod-
els [1]–[3], the transformation of different levels of diagrams
[4], or the transformation of conceptual models described,
e.g., in SysML into simulation models [5]. Second, more
accurate code generation from simplified variants of UML
models (xUML or fUML) [6][7]. The biggest pitfall of these
approaches at the moment is tool support. Freely available
tools often fail to exploit the full potential of the underlying
principles. Our closest approaches are probably the Network-
within-a-Network (NwN) formalism and the associated tool
Renew [8]. Like us, NwN combines Petri nets and the Java
language, and the models are directly translated into Java.
Nevertheless, our approach works not only with one language,
but we can combine Smalltalk, Java, or C++, including directly
writing the code within models. We aim to create a system

and tool for more efficient modeling and model deployment,
including code generation on languages like Java and C++.

The paper is structured as follows. In Section II, we intro-
duce the basics of the OOPN formalism. Section III introduces
the demonstration example and describes the basic principles
of modeling components and layers based on the Discrete
Event System Specification (DEVS) formalism. Section IV
describes the way we can move from DEVS like components
to objects. Section V discusses possibilities of code generation
in two ways – unsupervised and sipervised.

II. OBJECT ORIENTED PETRI NETS FORMALISM

An OOPN is a set of classes specified by high-level Petri
nets [9]. Formally, an OOPN is a triple (Σ, c0, oid0) where Σ
is the class set, c0 is the initial class, and oid0 is the name
of the initial object of c0. A class is determined primarily by
the object net and the set of method nets. Object nets describe
the possible autonomous actions of objects, while method nets
describe the reactions of objects to messages sent to them from
outside.

o

o := Rand next

t1

p2

p1

#e

C0 is_a PN

init: x
x

x

t1

x

return

x‘#e

o

get: o

o

C1 is_a PN

doFor: x

return

x

c := C0 new.

c init: x.

x t1

t2

c

c get: n

s := s + n
c empty

t3

c

s

c

ss
s

p1

p20

empty

Figure 1. Example of the OOPN model.

An example illustrating the essential elements of the OOPN
formalism is shown in Figure 1. Two classes are depicted, C0
and C1. The object net of the class C0 consists of places p1
and p2 and one transition t1. The object net of the class C1
is empty. The class C0 has a method init:, a synchronous port
get:, and a negative predicate empty. The class C1 has the
method doFor:. An invocation of the method doFor: leads to
the random generation of x numbers and a return of their sum.

Object nets consist of places and transitions. Each place
has an initial marking. Each transition has conditions (i.e.,
inscribed test arcs), preconditions (i.e., inscribed input arcs),
guard, action, and postconditions (i.e., inscribed output arcs).

66Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 77 / 88

Method nets are similar to object nets, but each net has a
multiplicity of parameter places and the return place. Method
nets can access the places of the corresponding object nets to
allow running methods to change object states.

III. REQUIREMENTS MODELING

This section presents a demonstration example and the
essence of requirements modeling using the OOPN and DEVS
formalisms.

A. Demonstration Example

Let us start with the following example, which is inspired
by the simple game LightBulb. First, let’s give the basic text
description. The game board consists of fields that are either
empty, contain connections (only the edges of a square can
be connected), an energy power, or a light (bulb). Connectors
can connect two, three, or four edges. There is just one source
and at least one bulb in the game. The player can rotate each
field 90 degrees to the right. At the beginning, the fields are
rotated so there is no connection between the power and the
bulbs. The game’s goal is to rotate the boxes so that the source
connects with all the bulbs and thus lights them up. If a field is
energized (connected to the power), indicate this by changing
color. We will focus here on defining the behavior of each
field.

B. Components and Layers in the Model

In the specification and design, we will assume that a field is
a component that operates on specific input values and passes
information about changes through outputs. It will settle the
initial design and reasoning over the requirements and their
modeling. We can combine the OOPN (behavioural model)
and DEVS (structure and component model) formalisms for
these purposes. We start specifying a field as a DEVS com-
ponent with four input and four output ports. Each input and
output pair represents the information transfer between fields
adjacent to the corresponding edge, as shown in Figure 2.

PIN_L

L_O

PIN_D D_O

PIN_R

R_O

PIN_U U_O

PIN_L

L_O

PIN_D D_O

PIN_R

R_O

PIN_U U_O

PIN_L

L_O

PIN_DD_O

PIN_R

R_O

PIN_U U_O

Figure 2. Component model using DEVS formalism.

The behaviour will be defined using the OOPN formalism,
where we will create so-called layers. Each layer represents
a separate functionality, which can then be modeled as part
an object net or a method net. Working with layers allows us

to structure behavior better and manipulate the distribution of
responsibilities.

C. Initial Requirements Model and Layers

In specifying the requirements, we will start from the
elements that follow from the specification, model them using
the OOPN formalism, and gradually reveal other essential
components.

U

R

D

L

false

false

false

false

false

state

ports

constructor initUp: u right: r down: d left: l

u r d l

(u, r, d, l)

U_O

R_O

D_O

L_O

<trigger>check

Figure 3. Initial model of the Field component.

The basic definition assumes that each field knows whether
an edge is part of a connection. The information is stored
in the place ports and can be modeled by a sequence of
true/false values indicating whether the edge is connected.
The sequence always starts with the top edge and proceeds
clockwise. For example, the sequence (true, true, false, false)
corresponds to the left bottom field shown in Figure 2. The
field stores information about the surrounding fields (modeled
as U, R, D, and L places) and informs the surrounding fields
of the change (modeled as U O, R O, D O, and L O output
ports). The information indicates whether the field is connected
to power. Finally, the place state indicates whether this field
is under the power (values true or false). Figure 3 shows the
basic model of the Field component. The model is initialized
by the constructor initUp:right:down:left:.

init turn change_in

check check

produce change_out

Field initialization rotation of the field change of input

verification of

connection

informs all

surrounding fields

about the change

informs the output

fields about

the change

Figure 4. The model flow including layers.

Depending on the task, we can distinguish three basic
actions – initialization, rotation, and reaction to a change
coming from the surroundings. Figure 4 depicts the basic
flows. When the corresponding event is triggered (i.e., the
trigger place receives a token), the field is always checked
to see whether the field is connected to the energy source,

67Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 78 / 88

i.e., whether the triggered action caused the change. However,
the subsequent actions differ according to the originator, so
that we can find two basic flows. In the case of initialization
and rotation, we have to inform all the surrounding fields,
since a link between fields may have been created or broken.
In the case of a change coming from the surroundings, we
only inform the fields connected through existing links of the
change, if any.

D. Basic Layers

Now, we will look at the model’s layers. First, the check
layer, which is shown in Figure 5. The model clearly shows
how the new state is evaluated.

res := (in_up = up = true)

|| (in_right = right = true)

|| (in_down = down = true)

|| (in_left = left = true)

t1 (up, right, down, left)

res

old

in_up

in_right

in_down

in_left (old, res)

U

R

D

L

<trigger>check ports

state

<trigger>check_res

Figure 5. The check layer.

The evaluation is based on the knowledge of the state of the
surrounding fields (places U, R, D, and L) and whether the
corresponding edge contains a connection to the corresponding
fields (see the place ports). If at least one edge containing a
connection is true, this field is connected to the energy power.
The new value has been rewritten in the state place. The
execution of the layer is conditioned by the token in the place
check, and termination is indicated by inserting the previous
and new state pairs in the place check res.

<trigger>turn

ports

(u, r, d, l) (l, u, r, d)

<trigger>check

Figure 6. The turn layer.

The next layer is turn, which is captured in Figure 6. The
principle of modeling this functionality is evident from the
model – the original sequence is removed from the place ports
and new sequence, which rotates one position to the right, is
inserted back. The execution of the layer is conditioned by
the token in the trigger place turn. The termination can be
indicated by the addition of an exit place, similar to the check
layer. The necessity of such an addition will become apparent
during model creation.

U

PIN_U

v

old

v

R

PIN_R

v

old

v

...

<trigger>

 check

Figure 7. The change in layer.

The next layer is change in, which is captured in Figure
7. This layer responds to a change in an input port value
and ensures that the contents of the corresponding places
are changed. Ports are modeled by special places; see, e.g.,
PIN U in Figure 7. If the new value is accepted from the
surrounding, it is placed to the input port. The layer updates
field’s information about the surrounding and activates the
check layer by inserting a token in the place check. The model
assumes that the change occurs at exactly one input port at a
time.

(old, res)

<trigger>check_res

ports

(u, r, d, l)

(res, u)

(res, r)

(res, d)

(res, l)

(res, true)

(res, false)

(res, true)

(res, false)

(res, true)

(res, false)

(res, true)

(res, false)

U_O

R_O

D_O

L_O

res

false

res

false

res

false

res

false

Figure 8. The produce layer.

The next layer is produce, which is captured in Figure 8.
This layer is activated by inserting a pair of values of the
original and new value of the field state. The layer ensures
that the new value is distributed to the surrounding patches
through the output ports. However, the insertion of the new
value is conditional on a connection on the corresponding
edge. If there is no connection, it informs the connected patch
of the false state (if there was a connection in the previous
state, the connected patch must process this change).

(old, res)

 <trigger>

check_res

old != res

(a, a)

ports

ps

(res, ps)

(res, (u, r, d, l))

(res, (r, d, l))

(res, u)

(res, true)

(res, false)

U_O
res

(res, (r, d, l))

(res, (d, l))

(res, r)

(res, true)

(res, false)

R_O
res

...

Figure 9. The change out layer.

68Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 79 / 88

The next layer is change out, which is captured in Figure
9. This layer is fundamentally similar to the layer produce,
it captures an alternative modeling option. First, it checks
whether the state has changed. If so, all surrounding fields are
informed, i.e., the new value is inserted into the appropriate
output port if it exists on that link edge. If there is no
connection on the edge, no value is inserted (the field is not
informed).

IV. TRANSFORMATION OF DEVS COMPONENTS TO
OBJECTS

So far, we have considered the model of the field as a
DEVS component that communicates with its surroundings
through ports. However, we need a conventional approach for
use in classical programming languages and environments,
i.e., communication via messaging. At the same time, in the
modeling, we worked with a sequence of logical values at
the port location, which determined which edges contained
the connector. It carries specific modeling implications, e.g.,
repetitive capture of the same functionality over different
edges, since the result must always be placed in a different
component output port. This section illustrates two steps. First,
the edges are named for more flexible handling, and then the
DEVS component is transformed into an object component.

A. Ports identification

For our simple example, we choose naming using symbols
that bind to the pair (name, exist) in the place ports.

U

R

D

L

false

false

false

false

false

state

ports

constructor initUp: u right: r down: d left: l

u r d l

((#U,u), (#R, r), (#D, d), (#L, l))

outPort: name value: v

...

#U

v

v

<trigger>check

U_O

R_O

D_O

L_O

Figure 10. Modification of the init layer.

Figure 10 shows a preview of the change at the init layer.
At the same time, we introduced the outPort:value: method,
which inserts the specified value into the output port identified
by name. We make similar modifications for the check and turn
layers (see Figures 11 and 12).

B. Replacement of Ports

We will show more substantial modifications to the produce
layer. Since we have the output ports named, we can use the
concept of foreach as shown in Figure 13. The basic idea

res := (in_up = up = true)

|| (in_right = right = true)

|| (in_down = down = true)

|| (in_left = left = true)

t1

((#U, up), (#R, right),

 (#D, down), (L, left))

res

old

in_up

in_right

in_down

in_left (old, res)

U

R

D

L

check

ports

state

check_res

Figure 11. Modification of the check layer.

of the foreach loop is based on list processing in the Prolog
language.

<trigger>turn

ports

((#U,u), (#R,r),

 (#D,d), (#L,l))

((#U,l), (#R,u),

 (#D,r), (#L,d))

<trigger>check

Figure 12. Modification of the turn layer.

Let us return to the produce layer (Figure 13). We build on
the original solution, but instead of inserting a value into a
specific output port, we call the outPort:value: method. This
evaluation is done only once for all edges stored in the place
ports. A similar modification could be made for the check out
layer.

(old, res)

check_res

ports

foreach: ((dir, exist) | _)

(res, dir, exist)

(res, dir, true)

(res, dir, false)

self outPort: dir value: res

(false, dir)

(res, dir)

(res, dir)

Figure 13. Modification of the produce layer.

Finally, we replace ports with methods or method calls. We
generate a corresponding method for each input port with the
same name and one argument. Instead of passing data through
DEVS components, objects will send messages to each other.
An example of changing the PIN U input port to a method
is shown in Figure 14.

Output ports are replaced by calling the corresponding
method. For instance, for the output port U O, it is necessary
to call the method PIN D:, because the output of the up field
corresponds to the down input of the connected field (see the

69Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 80 / 88

PIN_U: v

U

old

v
v

<trigger>

 check

self

return

Figure 14. Replacing the input port with the method.

DEVS component model in Figure 2). An example is shown
in Figure 15.

outPort: name value: v

...

#U

v

field U_O

R_O

D_O

L_O

field PIN_D: v.

Figure 15. Replacing the output port with the method call.

Figure 16 schematically depicts the resulting OOPN model
– places, methods, and basic layers initiated by trigger places.

V. CODE GENERATION

This section presents the possible outputs of the model
transformation into Java. We build on the work of [10]. Due
to the generality of the OOPN formalism, the fundamen-
tal transformation mechanism is cumbersome (unsupervised
generation), but introducing some additional information can
make code generation more efficient (supervised generation).
This information can be supplied manually, or it can be derived
by automated analysis of the model. We will present examples
of generated code for only one part of the model. In both
cases, we obtain executable code that differs in complexity
and efficiency.

A. Basic Framework Classes

The created OOPN models, which correspond to the princi-
ples mentioned so far, can be automatically translated into
Java. The resulting class system needs a basic framework
prepared for these purposes [10]. Figure 17 shows the basic
structure of classes and interfaces required to transform OOPN
models into Java.

The class Place represents the collection corresponding to a
place. The OOPN class is always derived from the PN class,
which provides the primary means for object handling and
communication. The object net is represented by the construc-
tor. The object net’s places can be considered attributes (object
variables) of the object, and their declarations are, therefore,
placed in the member fields space. Because the OOPN lan-
guage is typeless, the common type of all variables is the
PNObject class, and communication, i.e., sending messages,
must be done specially.

U

R

D

L

false

false

false

false

false

state

ports

constructor initUp: u right: r down: d left: l

outPort: name value: v

U_O

R_O

D_O

L_O

PIN_U: v

PIN_R: v

PIN_D: v

PIN_L: v

turn

<trigger>check

<trigger>check_res

Figure 16. Model of the class Field overview.

Figure 17. Basic Java classes for OOPN transformation.

PNObject is the interface implemented by the PN class and,
thus, by all OOPN classes. However, we must consider that
models also work with other objects (e.g., primitive Java data
types and other Java classes). Therefore, we need wrappers for
objects of these classes that implement the PNObject interface
to ensure compatibility. For each transition, a class derived
from the Transition class is generated, containing methods to
verify the input conditions (guard) and a method containing the
actual actions of the transition (action). A place corresponds
to an unordered collection of objects from which objects can
be read and removed, and new objects can be added.

B. Unsupervised Generation

As mentioned, we will demonstrate the transformation (code
generation) capabilities only on selected parts of the model.
The model consists of a single class Field. Figure 18 shows
the generated code for the model layer captured in Figure 16
in the basic (unsupervised) version.

All variables and values are typed as class PNObject. A
special class PNList is used to implement the list of values.
This figure does not capture the whole listing; it is only an
outline of the generated code.

70Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 81 / 88

p u b l i c c l a s s F i e l d ex tends PN {
p r o t e c t e d boolean s t a t e ;
p r o t e c t e d L i s t<L i s t<Dir , Boolean>> p o r t s ;
p r o t e c t e d boolean U, R , D, L ;
p r o t e c t e d boolean U O, R O , D O, L O ;
p u b l i c enum Dir {U, R , D, L} ;
p u b l i c C1 (boolean u , boolean r , boolean d ,

boolean l) {
s t a t e = f a l s e ;
p o r t s = new A r r a y L i s t <>();
p o r t s . p u t (new A r r a y L i s t <>(Di r . U, u)) ;
p o r t s . p u t (new A r r a y L i s t <>(Di r . R , r)) ;
p o r t s . p u t (new A r r a y L i s t <>(Di r . D, d)) ;
p o r t s . p u t (new A r r a y L i s t <>(Di r . L , l)) ;
. . .

}
}

Figure 19. Supervised translation of the class Field into Java.

C. Supervised Generation
For supervised generation, we use the constraints introduced

in [9], which allow us to define different constraints on models.
The constraints can be defined manually or derived by ana-
lyzing the model or its simulated run [11]. This analysis finds
the following constraints on the model under consideration.

p u b l i c c l a s s F i e l d ex tends PN {
p r o t e c t e d P l a c e s t a t e ;
p r o t e c t e d P l a c e p o r t s ;
p r o t e c t e d P l a c e U, R , D, L ;
p r o t e c t e d P l a c e U O, R O , D O, L O ;
p u b l i c C1 (PNObject u , PNObject r , PNObject d ,

PNObject l) {
s t a t e = new P l a c e (t h i s) ;
p o r t s = new P l a c e (t h i s) ;
f i e l d s = new P l a c e (t h i s) ;
i n p u t s = new P l a c e (t h i s) ;

s t a t e . add (f a l s e) ;
P N l i s t l s t = new PNLis t () ;
l s t . add (new PNLis t (” #U” , u)) ;
l s t . add (new PNLis t (” #R” , r)) ;
l s t . add (new PNLis t (” #D” , d)) ;
l s t . add (new PNLis t (” #L” , l)) ;
p o r t s . add (l s t) ;
. . .

}
}

Figure 18. Unsupervised translation of the class Field into Java.

context Field::state: Boolean
context Field::ports: OrderedList
context Field::ports element: OrderedList (Dir, Boolean)
context Dir: enum(U,R,D,L)
. . .

The generated code can be simplified and streamlined based
on the defined constraints, as shown in Figure 19.

VI. CONCLUSION

This paper presented the possibilities of modeling require-
ments using OOPN formalisms (for behavior definition) and

DEVS-like components (for structure description). The model
can then be gradually transformed into a more efficient form
and a programming language (currently Java). The essential
feature we want to achieve is that the resulting code does not
need to be further modified, because the original model allows
the use of code and objects from the target environment. Thus,
all changes and modifications occur at the model level.

In the future, we want to focus on fully automated constraint
derivation over the model (while retaining the possibility of
manual intervention) and automated support for model modifi-
cations. For these purposes, we plan to explore the possibilities
of involving artificial intelligence, particularly large language
models (LLMs). It also assumes tool support, which we will
continue to work on.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-23-8151.

REFERENCES

[1] T. Hussain and G. Frey, “UML-based Development Process for IEC
61499 with Automatic Test-case Generation,” in 2006 IEEE Conference
on Emerging Technologies and Factory Automation. IEEE, 2006, pp.
1277–1284.

[2] C. A. Garcia, E. X. Castellanos, C. Rosero, and Carlos, “Designing
Automation Distributed Systems Based on IEC-61499 and UML,” in
5th International Conference in Software Engineering Research and
Innovation (CONISOFT), 2017, pp. 61–68.

[3] I. A. Batchkova, Y. A. Belev, and D. L. Tzakova, “IEC 61499 Based
Control of Cyber-Physical Systems,” Industry 4.0, vol. 5, no. 1, pp. 10–
13, November 2020.

[4] S. Panjaitan and G. Frey, “Functional Design for IEC 61499 Distributed
Control Systems using UML Activity Diagrams,” in Proceedings of the
2005 International Conference on Instrumentation, Communications and
Information Technology ICICI 2005, 2005, pp. 64–70.

[5] G. D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anag-
nostopoulos, “Model-based system engineering using SysML: Deriving
executable simulation models with QVT,” in IEEE International Systems
Conference Proceedings, 2014, pp. 531–538.

[6] F. Ciccozzi, “On the automated translational execution of the action
language for foundational uml,” Software and Systems Modeling, vol. 17,
no. 4, p. 1311–1337, 2018, doi: 10.1007/s10270-016-0556-7.

[7] E. Seidewitz and J. Tatibouet, “Tool paper: Combining alf and uml
in modeling tools: An example with papyrus,” in 15th Internation
Workshop on OCL and Textual Modeling, MODELS 2015, pp. 105–119,
[retrieved: June, 2025]. [Online]. Available: http://ceur-ws.org/Vol-
1512/paper09.pdf

[8] L. Cabac, M. Haustermann, and D. Mosteller, “Renew 2.5 - towards a
comprehensive integrated development environment for petri net-based
applications,” in Application and Theory of Petri Nets and Concurrency
- 37th International Conference, PETRI NETS 2016, Toruń, Poland,
June 19-24, 2016. Proceedings, 2016, pp. 101–112. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-39086-4 7

[9] R. Kočı́ and V. Janoušek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309–315.

[10] R. Kočı́, “On the object oriented petri nets model transformation into
java programming language,” in The Nineteenth International Confer-
ence on Software Engineering Advances, ICSEA 2024. Xpert Publishing
Services, 2024, pp. 38–42.

[11] R. Kočı́ and V. Janoušek, “Tracing and Reversing the Run of Software
Systems Implemented by Petri Nets,” in ThinkMind ICSEA 2018, The
Thirteenth International Conference on Software Engineering Advances.
Xpert Publishing Services, 2018, pp. 122–127.

71Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 82 / 88

VR-DeltaDebugging: Visualization Support for Delta Debugging in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract – Debugging is a challenging activity involved in
software development and maintenance processes. Delta
Debugging (DD) is an automatic debugging algorithm and
methodology that applies a scientific recurrent hypothesis, trial,
and result loop to systematically reduce failure-inducing inputs
to a minimal set. Yet, especially for larger (structured) input
sets, how DD arrived at its results and its intermediate inputs
and test results may not be intuitively evident to practitioners.
This paper contributes our solution concept VR-
DeltaDebugging for an immersive visualization in Virtual
Reality to support comprehension, analysis, and collaboration.
A prototype demonstrates its feasibility, and a cased-based
evaluation on execution, comprehension and analysis, and
scalability provides insights into its capabilities and potential.

Keywords – delta debugging; visualization; virtual reality;
debugging; software engineering.

I. INTRODUCTION
Debugging is a costly and time-consuming activity

incurred during software development and maintenance
processes. A 2021 study [1] found debugging sessions (even
during programming) occurred on average every eight
minutes, with sessions lasting from less than a few minutes to
over 100 minutes. A 2020 survey [2] of 73 developers
reported that roughly a quarter of their time (26%) was spent
reproducing and fixing failing tests, averaging 13 hours to fix
a single bug. A study on debugging [3] found that almost half
of the 303 developers (47%) spend 20-40% of their time
debugging, with 26% spending even 40–60%. Over half had
no formal debugging knowledge or training, and over 70%
were unaware of more advanced debugging tools or
approaches, which only very few applied.

Among automated software fault localization techniques
and tools, Delta Debugging (DD) [4] is a method and
algorithm that simplifies and isolates failure-inducing input
automatically and systematically by testing subsets and
complements of the input. This can reduce debugging effort
by narrowing the relevant inputs that cause a test to fail.
Debugging and testing are often performed
contemporaneously, and one application area that exemplifies
DD’s applicability and benefit is fuzzing. Fuzzing (or fuzz
testing) is an automated dynamic test technique that injects
random, invalid, or unexpected inputs and observes a
software’s behavior (crash, memory leak, vulnerabilities,
etc.). Yet fuzzing can result in a large (random) input set for a
test failure. DD has been shown to be effective and efficient
at isolating some input to the minimum set that still reproduces

the failure [5]. DD is also applied in compiler development
when dealing with program code as structure text inputs, as
exemplified in [6]. As to DD’s benefits, the empirical study
on DD by Yu et al. [7] found that two thirds of isolated
changes in the studied programs were helpful in terms of
accuracy and efficiency, providing (in)direct clues in locating
regression bugs; yet a third were superfluous changes or
incorrect isolations. Thus, DD practitioners should have better
analysis and process support tooling for insights into
determining the validity of a DD result. This is a problem and
underlying motivation for this paper’s contribution. We seek
a solution that can support DD practitioners in comprehending
and analyzing the DD reduction input sets and results, and
thus more readily determine valid results (or input or test case
issues) and the intermediate steps that led to it. Visualization
could support DD and make advanced debugging approaches
more accessible to practioners. While 2D debugging tools
(textual, visual, or Integrated Development Environment
(IDEs)) are prevalent, there has been relatively little
investigation into the potential of Virtual Reality (VR) for
debugging support, in particular for DD and structured inputs.

In this paper, we propose and investigate applying
immersive VR to support the DD method. In prior work, we
investigated the application of VR to various other areas. A
selection of our prior VR-related contributions in the Software
Engineering (SE) space: VR-SDLC [8] models development
lifecycles, VR-Git [9] models Git repositories, VR-DevOps
[10] models Continuous Development pipelines, VR-SBOM
[11] models Software Bill of Materials (SBOM) and software
supply chains. HyDE [12] showed a VR-based multi-display
IDE that could also be used for debugging support. This paper
contributes our VR-DeltaDebugging solution concept towards
immersive visualization support for Delta Debugging in VR.
A prototype demonstrates its feasibility, while a case-based
evaluation provides insights into its capabilities and potential
for supporting comprehension, analysis, and collaboration.

This paper is structured as follows: the next section
discusses related work. Section 3 describes our solution. In
Section 4, our realization is presented, which is followed by
our evaluation in Section 5. Finally, a conclusion is provided.

II. RELATED WORK
Regarding DD, the survey by Wong et al. on software fault

localization [13] analyzed 587 papers and 68 theses, with the
discussion also encompassing DD - yet there is no mention of
visualization or VR. Further, all searches found no work
directly involving DD visualization. Any work, tools, or

72Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 83 / 88

libraries are text-based or involve a Command Line Interface
(CLI). As to IDE integration, DDinput [14] was an Eclipse
plugin (appears to no longer appears be supported [15]). Work
regarding DD tools or libraries includes Picire [16] as
described in [17], and that cited in Wong et al. above [13].

As to debugging in general, VR-based work includes
Mauer et al. [18] with a VR-based 3D-debugging prototype,
demonstrating how VR can be used for programming
comprehension and debugging. Our own prior work HyDE
[12] demonstrated a VR-based multi-display IDE (Integrated
Development Environment), which could also be used for
direct programming and debugging support. 3D visualization
work includes Code Park [19], which provides a code-centric
environment for code comprehension, yet offers no debugging
or editing support. Examples of 2D visualization tools
supporting fault localization include Tarantula [20] and
GZoltar [21], which showed that visualizations can drastically
reduce debugging time.

In contrast, VR-DeltaDebugging is a VR solution directly
addressing DD visualization support for (un)structured inputs.

III. SOLUTION CONCEPT
Our solution concept is grounded on prior VR research in

areas related to modeling, analysis, and collaboration, some of
which is highlighted here. Akpan & Shanker’s systematic
meta-analysis [22] in discrete event modeling found VR/3D
to be advantageous for model development, analysis, and
Verification and Validation (V&V). 95% of 23 papers
concluded 3D was more potent and provided better analysis
than 2D (e.g., evaluating model behavior or what-if analysis).
Another finding was a consensus that 3D/VR can present
results convincingly and understandably for decision-makers.
In 74% of 19 papers, model development tasks improved
significantly in 3D/VR (team support, precision, clarity).

Figure 1. Conceptual map of our published VR solution concepts
highlighting their differentiation (VR-DeltaDebugging highlighted in blue).

Our conceptual map of Figure 1 shows our VR-
DeltaDebugging solution concept (blue) within the SE and
SysE (Systems Engineering) area and in relation to our other
prior VR solutions. VR-MF, our generalized VR Modeling
Framework (detailed in [23]), provides the basis, providing a
domain-independent hypermodeling framework addressing
the VR aspects of visualization, navigation, interaction, and
data integration. We have published VR-based solutions
specific to the Enterprise Architecture (EA) and Business
Process (BP) space (EA & BP): VR-EA [23] for mapping EA
models to VR, VR-BPMN for BPMN models, VR-EAT for

enterprise repository integration, VR-EA+TCK [24] for
knowledge and content integration, and VR-EvoEA+BP [25]
for EA evolution and business process animation, and VR-
SBOM [11]. Solutions in the SE and SysE areas include: VR-
Git [9], VR-GitCity, and VR-GitEvo+CI/CD for git-related
solutions, VR-DevOps [10], VR-V&V (Verification and
Validation), VR-TestCoverage, VR-SDLC [8], VR-ISA for
Informed Software Architectures, and VR-UML and VR-
SysML for software and systems modeling. HyDE [12] is our
VR-based multi-display IDE, and while it can be used for
debugging, hitherto none of our work focused directly on
supporting debugging in VR.

With regard to structured inputs, Hierarchical Delta
Debugging (HDD) [26] has been proposed as a variant to
improve DD’s effectiveness. However, the study by Yu et al.
[27] found that HDD suprisingly did not improve accuracy nor
efficiency. Thus, while our solution concept is compatible
with HDD, our prototype initially focuses on DD support,
incorporating HDD in future work. Since HDD is an AST-
oriented reducer, our AST-based nexus can be seen as a
precursor to eventual AST-based input support for HDD.

A. Visualization in VR
For text visualization (both input and test code), an

interactive scrollable billboard analogy is used for the main
screen, similar to terminal screens but enhanced for DD
support. It offers a large interaction and viewing space for
text-centric analysis. A menu is provided on the side to readily
offer interaction without interfering in the analysis. The nexus
view is kept synchronized and to the side of the billboard.

For structured DD text inputs, a common alternative
graphical visualization form is an Abstract Syntax Tree (AST)
(e.g., source code input to debug a compiler/interpreter, or any
JSON/XML/HTML/YAML inputs). In VR, we visualize this
AST as a nexus graph of nodes and edges on the surface of an
invisible sphere. 3D nodes depict syntactical elements
(classes, functions), while the edges (directed lines) are used
to indicate semantic relationships, such as calls or class
affiliations. A sphere was chosen to reduce dependency
collisions while holding the entire graph spatially compact for
immersive flythrough navigation. A Boundary Box (BB) is
used to delimit the context of the visual model in case multiple
models or model versions are loaded.

B. Navigation in VR
Dual navigation modes are supported in our solution:

default gliding controls for fly-through VR, and teleporting to
instantly place the camera at a selected position in space.
Although teleporting can be potentially disconcerting, it may
reduce the likelihood of VR sickness.

C. Interaction in VR
User-element interaction is supported through the VR

controllers. A DD Replay capability is provided via a slider
above the main screen. It is labeled with the total number of
DD steps invoked. By adjusting the slider, the DD step and its
result are correspondingly displayed on the main screen.
Green line numbers indicate the input that passed, and red
denotes inputs that failed. Since during main screen

VR-SysML+Traceability

SysML

Enterprise
Models

Enterprise
Views
ATLAS

Blueprints

Archimate

DataNaviga3onVisualiza3on Interac3on

KMS ECMS
VR-EAT

VR-EA

VR-MF

VR-EA+TCK

VR-BPMN
BPMN

SE & SysE

VR-SysMLVR-ProcessMine VR-UML

EA & BP
VR-SBOMVR-EvoEA+BP

VR-V&VVR-TestCoverage

VR-SDLC
LML

VR-ISA
VR-EDStream+EDA

VR-DevOps
VR-GitCityVR-GitEvo+CI/CD
VR-Git Git

SySML

SPDX/CDX VR-DeltaDebugging

HyDE
UML

73Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 84 / 88

interaction no movement is involved, DD interaction controls
are offered either directly on the main screen, or via a side
screen with a menu to change the context of the main screen.
The VR-Tablet travels with the VR camera to support nexus
interaction, in particular AST filtering by node type, and can
provide detailed context-specific information for a selected
element (e.g., node or relations) from the AST data.

IV. REALIZATION
The logical architecture of our prototype realization is

shown in Figure 2. The VR visualization aspects of our
prototype (referred to as our frontend) were realized in C#
using Unity 2022.3.5f1 (LTS) with the XR Interaction Toolkit
2.3. Our backend consists of our Data Hub that contains a data
repository and adapters for invocation and data transformation
using Python 3.10. While the Data Hub is conceptually
separated via a communication channel, in our prototype this
would have created unnecessary overhead. The necessary
JSON data could be readily transferred via a socket or Web
API. Thus, invocation from C# of the Python adapters utilized
subprocesses instead.

Figure 2. Logical architecture.

Figure 3. Extract snippets of DD execution step log output in JSON
(intermediate results removed at line 25 for brevity), showing step number,
input and corresponding line numbers, and test result for that subset.

A. Backend
We utilized the Picire [16] Python DD implementation. It

splits input (by characters or lines) into n chunks (we used
n=2), testing these to see if any remain interesting. We created
a generic DD logging proxy for testcases, which tracks
separate testcase invocation sequences, storing corresponding
step, input, line numbers, and result, shown in our JSON-
based log output snippet in Figure 3. This retains DD
execution state for subsequent playback and analysis.

Visual analysis for structured DD inputs (like source code
for compilers/interpreters, JSON, markup) is supported via an
AST. We exemplify feasibility by initially supporting Python.
The Python Astroid module (extends the Python ast module)
provides an enhanced AST with additional semantic
information. We then generate a JSON-based AST data model
with the following features:

• Nodes for syntactic units: classes, functions, variable
assignments, imports.

• Edges between semantically-linked nodes, such as
method calls or class affiliations.

• Additional data such as line numbers, code snippet, node
type, and parent nodes.

B. Frontend
The nexus assists with structured inputs, exemplified with

Python source code. The nexus layout is based on the
Fibonacci sphere algorithm for spatial separation together
with a force-directed graph algorithm, which adjusts node
placement proximity based on relations, the results of which
is illustrated in Figure 4. To depict directed relations between
elements, rather than adding arrow heads, direction is
indicated by coloring from the source (black) to the
destination (white) as a gradient, as seen in Figure 5.

To support immersive interaction in the nexus sphere, a
VR-Tablet offers a Nexus Stepper check box: when
unchecked, the entire AST is depicted; if checked, only the
corresponding portion of the input for that step is shown. It
also offers a filtering capability (to ghost or make opaque in
the nexus) of the visible node types using checkboxes, as
shown in Figure 5. To simplify tablet interaction while
keeping its size small, pagination was used instead of
scrolling. The node type options depend on the loaded AST,
and can include, e.g.: Module, Import, classdef, functionsdef,
arguments, assign, assignname, assignattr, etc. The BB around
the nexus offers a legend of the node type color assignment,
and well as metrics such as the total number of nodes visible.
To retain and utilize a user’s spatial memory, rather than
optimize spatial distance, the nexus is not relocated or its
layout changed once instantiated, even if steps or filtering
cause far fewer nodes to be visible.

Support for selecting a DD Replay step was implemented
as a slider on top of the main screen, ranging from initial input
on the left to the final result on the right. During Replay
interaction in VR, the corresponding input is shown, and the
line numbers are colored according to the step and test result
(green for pass, red for fail). A menu screen to the right of the
main screen provides the ability to load and execute a different
DD context.

3D Environment

Laser Pointer
via Controller

VR-Tablet

Structure
Visualiza<on

3D Object
Selec<on

ScriptsAssets

Frontend (Unity) Backend
(Data Hub)

Repository

AST

Python
Adapters

DD Logs

Tools/Libraries
Picire (DD)

Others
JSON

Astroid (AST)

Test Code

Samples
Code Input

74Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 85 / 88

Figure 4. Input nexus of AST code graph.

Figure 5. Nexus closeup showing directional dependencies via gradients
and the node type filtering ability in the VR-Tablet.

As our evaluation did not necessitate text entry, a virtual
keyboard was not included. The implementation could readily
be enhanced with a virtual keyboard using laser pointer key
selection, as demonstrated in our other VR solutions.

V. EVALUATION
The evaluation of our VR solution concept is based on the

design science method and principles [28], in particular a
viable artifact, problem relevance, and design evaluation
(utility, quality, efficacy). A case study is used based on the
following scenarios: DD execution support, DD
comprehension and analysis support, and nexus scalability.

A. DD Execution Support in VR
To evaluate DD execution capability in VR, various tests

with structured and unstructured inputs were run. The nexus
only applies to structured input. To illustrate unstructured
input support, input and a Python test from a DD reference site
[29] were slightly adapted for our implementation, shown in
Figure 6 and Figure 7 respectively.

Figure 6. Example unstructured text input. Adapted from [29].

Figure 7. Example provided Python DD testcase. Adapted from [29].

After execution, the initial result (Step 1/9) is as shown in
Figure 8, and moving the stepper to the end (Step 9/9) shows
the final result of the line found that causes the test to fail,
shown in Figure 9.

Figure 8. Unstructured input (left) and step and result status (top). Unclear
as yet if the input can be further reduced to a single line (or set of characters).

Figure 9. A single input line found to cause the DD test to fail.

B. DD Comprehension and Analysis Support in VR
DD comprehension and analysis are supported in two

ways: DD Replay (via the stepper slider) and the graphical DD
nexus, which provides a synchronized graphical view for
structured DD input, which text-based tools do not offer.

Figure 10. Complete input AST nexus (Tablet Nexus Stepper unchecked).

75Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 86 / 88

Figure 11. Replay synchronized AST nexus (left) shows reduced input set
for Step 4 of 28 on screen (red line numbers indicate set in testcase failure).

To illustrate the comprehension capability, a full AST
nexus (since the Nexus Stepper is unchecked on VR-Tablet)
of 1500 elements, based on the complete structured text input
of 500 lines of assignments in Python code, is shown in Figure
10. A faulty line was intentionally placed on line 250. The
nexus view supports DD comprehension by also depicting any
known structural relations of the input in a graphical and
immersive form, allowing the user to better understand large
structured input sets as they may relate to the DD
(intermediate) results. A Python AST was used to illustrate
this capability, but any structures that can be transformed to a
graph-based form could use this capability.

To support analysis of DD results, with the Nexus Stepper
checked, moving the slider to Step 4 shows a reduced nexus
as well as a reduced textual input set on the main console, as
shown in Figure 11. At Step 8, the nexus is further reduced,
and the main console shows the passing input (via green line
numbers), as seen in Figure 12. The Replay final result shows
the failing line found, with a reduced nexus visible on the left
that contains only 3 elements, shown in Figure 13.

Immersion in the nexus allows the user to perceive the
relations between element types in structured input. The
filtering capability by node type is illustrated in Figure 14.
Here, the assign nodes were deselected in the VR-Tablet and
thus ghosted, enabling the user to focus on (a) specific AST
node type(s) of interest.

Figure 12. Replay synchronized AST nexus showing reduced input set on
Step 8 (main screen green line numbers indicate input passing testcase).

Figure 13. Replay final result showing failing line (reduced nexus on left
contains only 3 elements, pointed to by red arrow annotation).

Figure 14. AST nexus filtering (assign nodes are ghosted since deselected).

Figure 15. DD test execution input and result status.

C. Nexus Scalability in VR
VR has no theoretical spatial limitations. However, the

number of visible elements depicted affects the frame rates,
which are dependent on software and hardware capabilities.
For our scalability scenario, the setup was a desktop Win 11
PC AMD Ryzen 9 7900X with 32GB RAM and NVIDIA
RTX 4070 using Unity 2022.3.5f1 (LTS). A large structured
input (500 lines of Python code) was depicted as an AST as
shown in Figure 4. It consists of 1500 visible elements of
three different types (ASSIGN, ASSIGNNAME, CONST) of
500 each and their associated dependencies, as shown on the
BB in No negative usability issues were encountered, and it
demonstrates the feasibility and scalability of the nexus
visualization concept for structured inputs such as ASTs.
Future work will evaluate larger code repositories.

VI. CONCLUSION AND FUTURE WORK
Debugging has received relatively little visualization

support, especially investigating 3D and VR enhancements
opportunities and integration with automated debugging tools.
This paper described our VR-DeltaDebugging solution
concept that offers immersive visualization support for Delta
Debugging in VR. Instead of relying on purely text-based DD

76Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

 87 / 88

invocation, comprehension, and analysis, it offers an
interactive cockpit with visual support offering intermediate
DD result replay the DD steps that led to the DD result.
Structured DD inputs are enhanced with an optional graphical
nexus visualization that depicts elements and relations within
the input, which might affect the failure, and it’s depiction is
synchronized with the DD Replay results.

The prototype demonstrates its feasibility. The case-based
evaluation provided insights into its capabilities and potential
for supporting comprehension, analysis, and scalability. VR
could also offer a collaboration space regarding DD issues.

Future work includes support for Hierarchical Delta
Debugging (HDD), git-bisect integration, and a
comprehensive empirical study that also includes usability.

ACKNOWLEDGMENT
The author would like to thank Umut Dönmez and Jonas

Kling for their assistance with the implementation,
screenshots, and data preparation.

REFERENCES
[1] A. Alaboudi and T. D. LaToza, “An exploratory study of

debugging episodes,” arXiv preprint arXiv:2105.02162, 2021.
[2] Cambridge University Judge Business School: The business

value of optimizing CI pipelines (2020). [Online]. Available
from: https://info.undo.io/ci-research-report 2025.08.19

[3] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld,
“Studying the advancement in debugging practice of
professional software developers,” Software Quality Journal,
25(1), 2017, pp.83-110.

[4] A. Zeller, “Yesterday, My Program Worked. Today, It Does
Not. Why? ” in Proc. Seventh European Software Eng. Conf.,
Seventh ACM SIGSOFT Symp. Foundations of Software Eng.,
(ESEC/FSE '99), vol. 1687, 1999, pp. 253–267.

[5] A. Zeller and R. Hildebrandt, "Simplifying and isolating
failure-inducing input," in IEEE Transactions on Software
Engineering, vol. 28, no. 2, 2002, pp. 183-200.

[6] D. Stepanov, M. Akhin, and M. Belyaev, "ReduKtor: How We
Stopped Worrying About Bugs in Kotlin Compiler," In: 34th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2019), IEEE, 2019, pp. 317-326.

[7] K. Yu, M. Lin, J. Chen, and X. Zhang, „Towards automated
debugging in software evolution: Evaluating delta debugging
on real regression bugs from the developers’ perspectives,”
Journal of Systems and Software, 85(10), 2012, pp.2305-2317.

[8] R. Oberhauser, "VR-SDLC: A Context-Enhanced Life Cycle
Visualization of Software-or-Systems Development in Virtual
Reality," In: Business Modeling and Software Design (BMSD
2024), LNBIP, vol 523, Springer, Cham, 2024, pp. 112-129.

[9] R. Oberhauser, "VR-Git: Git Repository Visualization and Im-
mersion in Virtual Reality," 17th Int’l Conf. on Software Engi-
neering Advances (ICSEA 2022), IARIA, 2022, pp. 9-14.

[10] R. Oberhauser, “VR-DevOps: Visualizing and Interacting with
DevOps Pipelines in Virtual Reality,” Nineteenth International
Conference on Software Engineering Advances (ICSEA 2024),
IARIA, 2024, pp. 43-48.

[11] R. Oberhauser, “VR-SBOM: Visualization of Software Bill of
Materials and Software Supply Chains in Virtual Reality,” In:
Business Modeling and Software Design (BMSD 2025),
LNBIP, vol 559, Springer, Cham, 2025, pp. 52-70.

[12] R. Oberhauser, A. Matic, and C. Pogolski, “HyDE: A Hyper-
Display Environment in Mixed and Virtual Reality and its
Application in a Software Development Case Study,”

International Journal on Advances in Software, 11(1 & 2),
2018, pp.195-204.

[13] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A
survey on software fault localization,” IEEE Transactions on
Software Engineering, 42(8), 2016, pp.707-740.

[14] P. Bouillon, M. Burger, and A. Zeller, “Automated debugging
in Eclipse: (at the touch of not even a button),” In: Proceedings
of the 2003 OOPSLA workshop on eclipse technology
eXchange, 2003, pp. 1-5.

[15] DDinput. [Online]. Available from: https://www.st.cs.uni-
saarland.de/eclipse/ 2025.08.19

[16] Picire. [Online]. Available from:
https://github.com/renatahodovan/picire/ 2025.08.19

[17] R. Hodován and Á. Kiss, “Practical improvements to the
minimizing delta debugging algorithm,” In: International
Conference on Software Engineering and Applications, Vol. 2,
SciTePress, 2016, pp. 241-248.

[18] S. T. Mauer et al., „A Novel Approach for Software 3D-
Debugging in Virtual Reality,” In: International Conference on
Human-Computer Interaction (HCII 2024), LNCS, vol 14708.
Springer, Cham, 2024, pp. 235-251.

[19] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner and J.
Laviola, "Code Park: A New 3D Code Visualization Tool,"
2017 IEEE Working Conference on Software Visualization
(VISSOFT), 2017, pp. 43-53, doi: 10.1109/VISSOFT.2017.10.

[20] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for
fault localization,” In: Proceedings of ICSE 2001 Workshop on
Software Visualization, 2001, pp. 71-75

[21] C. Gouveia, J. Campos, and R. Abreu, “Using HTML5
visualizations in software fault localization,” In: Proceedings
of the First IEEE Working Conference on Software
Visualization, IEEE, 2013, pp. 1–10.

[22] I. J. Akpan and M. Shanker, “The confirmed realities and
myths about the benefits and costs of 3D visualization and
virtual reality in discrete event modeling and simulation: A
descriptive meta-analysis of evidence from research and
practice,” Computers & Industrial Engineering, 112, 2017, pp.
197-211

[23] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Business Modeling and Software
Design (BMSD 2019), LNBIP, vol. 356, Springer, Cham,
2019, pp. 170-187.

[24] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EA+TCK: Vis-
ualizing Enterprise Architecture, Content, and Knowledge in
Virtual Reality," In: Business Modeling and Software Design
(BMSD 2022), LNBIP, vol 453, Springer, 2022, pp. 122-140.
https://doi.org/10.1007/978-3-031-11510-3_8.

[25] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EvoEA+BP: Us-
ing Virtual Reality to Visualize Enterprise Context Dynamics
Related to Enterprise Evolution and Business Processes," In:
Business Modeling and Software Design (BMSD 2023),
LNBIP, vol 483, Springer, 2023, pp. 110-128,
https://doi.org/10.1007/978-3-031-36757-1_7.

[26] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,”
In: International Conference on Software Engineering (ICSE
2006), ACM, 2006, pp. 142–151.

[27] K. Yu, M. Lin, J. Chen, and X. Zhang, „Towards automated
debugging in software evolution: Evaluating delta debugging
on real regression bugs from the developers’ perspectives,”
Journal of Systems and Software, 85(10), 2012, pp. 2305-2317.

[28] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105.

[29] A. Zeller, “Reducing Failure-Inducing Inputs.” [Online].
Available from: https://www.debuggingbook.org/html/
DeltaDebugger.html 2025.08.19

77Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 88 / 88

http://www.tcpdf.org

