
ICSEA 2020

The Fifteenth International Conference on Software Engineering Advances

ISBN: 978-1-61208-827-3

October 18 -22, 2020

ICSEA 2020 Editors

Luigi Lavazza, Università degli Studi dell’Insubria, Italy

Roy Oberhauser, Aalen University, Germany

Mannaert Herwig, University of Antwerp, Belgium

Krishna Kavi, University of North Texas, USA

 1 / 191

ICSEA 2020

Forward

The Fifteenth International Conference on Software Engineering Advances (ICSEA 2020), held on
October 18 - 22, 2020, continued a series of events covering a broad spectrum of software-related
topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Software engineering for service computing (SOA and Cloud)

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile and Lean approaches in software engineering

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving productivity in research on software engineering

 Trends and achievements

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2020 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2020. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

 2 / 191

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2020 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2020 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research.

ICSEA 2020 Publicity Chair

Lorena Parra, Universitat Politecnica de Valencia, Spain

 3 / 191

ICSEA 2020

Committee

ICSEA 2020 Publicity Chair

Lorena Parra, Universitat Politecnica de Valencia, Spain

ICSEA 2020 Technical Program Committee

Shahliza Abd Halim, UniversityTeknologi Malaysia, Malaysia
Tamer Abdou, Ryerson University, Canada
Eman Abdullah Alomar, Rochester Institute of Technology, USA
Ammar Kareem Obayes Alazzawi, Universiti Teknologi PETRONAS, Malaysia
Talat Ambreen, International Islamic University, Islamabad, Pakistan
Daniel Andresen, Kansas State University, USA
Jean-Paul Arcangeli, UPS - IRIT, France
Takuya Azumi, Saitama University, Japan
Gilbert Babin, HEC Montréal, Canada
Jorge Barreiros, ISEC - Polytechnic of Coimbra / NOVA LINCS, Portugal
Ateet Bhalla, Independent Consultant, India
Mina Boström Nakicenovic, Paradox Interactive, Sweden
Uwe Breitenbücher, University of Stuttgart, Germany
José Carlos Bregieiro Ribeiro, Polytechnic Institute of Leiria, Portugal
Carlos A. Casanova Pietroboni, National Technological University - Concepción del Uruguay Regional
Faculty (UTN-FRCU), Argentina
Fuxiang Chen, DeepSearch Inc., Korea
Rebeca Cortazar, University of Deusto, Spain
Mónica Costa, Polytechnic Institute of Castelo Branco, Portugal
Yania Crespo, University of Valladolid, Spain
Luis Cruz, TU Delft, Netherlands
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Giovanni Daián Róttoli, Universidad Tecnológica Nacional (UTN-FRCU), Argentina
Darren Dalcher, Lancaster University, UK
Thiago C. de Sousa, State University of Piauí, Brazil
Lin Deng, Towson University, USA
Diogo Domingues Regateiro, Instituto de Telecomunicações | Universidade de Aveiro, Portugal
Imke Helene Drave, RWTH Aachen University, Germany
Holger Eichelberger, University of Hildesheim | Software Systems Engineering, Germany
Ridha Ejbali, National Engineering School of Gabes (ENIS) / University of Gabes, Tunisia
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Thelma Elita Colanzi, State University of Maringa (UEM), Brazil
Diana ElRabih, Monty Holding, Beirut, Lebanon
Christoph Elsner, Siemens AG, Germany
Romina Eramo, Universityof L'Aquila, Italy

 4 / 191

Kleinner Farias, University of Vale do Rio dos Sinos, Brazil
Alba Fernandez Izquierdo, Universidad Politécnica de Madrid, Spain
David Fernandez-Amoros, Universidad Nacional de Educación a Distancia (UNED), Spain
Filipe Figueiredo Correia, University of Porto / INESC TEC, Portugal
Harald Foidl, University of Innsbruck, Austria
Jonas Fritzsch, University of Stuttgart - Institute of Software Technology, Germany
Jicheng Fu, University of Central Oklahoma, USA
Stoyan Garbatov, OutSystems SA, Portugal
Jose Garcia-Alonso, University of Extremadura, Spain
Wided Ghardallou, ENISO, Tunisia / Hail University, KSA
Gregor Grambow, Aalen University, Germany
Jiaping Gui, NEC Labs America, USA
Chunhui Guo, California State University, Los Angeles, USA
Zhensheng Guo, Siemens AG, Germany
Bidyut Gupta, Southern Illinois University, Carbondale, USA
Huong Ha, University of Newcastle, Singapore
M. Firdaus Harun, RWTH Aachen University, Germany
Atsuo Hazeyama, Tokyo Gakugei University, Japan
Qiang He, Swinburne University of Technology, Australia
Carlos Henrique Cabral Duarte, Brazilian Development Bank (BNDES), Brazil
LiGuo Huang, Southern Methodist University, USA
Waqar Hussain, Monash University, Australia
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Irum Inayat, National University of Computer and Emerging Sciences, Islamabad, Pakistan
Judit Jász, University of Szeged, Hungary
Yasushi Kambayashi, NIT - Nippon Institute of Technology, Japan
Ahmed Kamel, Concordia College, Moorhead, USA
Chia Hung Kao, National Taitung University, Taiwan
Dimitris Karagiannis, University of Vienna, Austria
Vikrant Kaulgud, Accenture, India
Siffat Ullah Khan, University of Malakand, Pakistan
Reinhard Klemm, Avaya Labs, USA
Radek Koci, Brno University of Technology, Czech Republic
Christian Kop, University of Klagenfurt, Austria
Blagovesta Kostova, EPFL, Switzerland
Akrivi Krouska, University of Piraeus, Greece
Tsutomu Kumazawa, Software Research Associates Inc., Japan
Rob Kusters, Open University, The Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Jannik Laval, University Lumière Lyon 2 | DISP lab EA4570, Bron, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Maurizio Leotta, University of Genova, Italy
Zheng Li, University of Concepción, Chile
Panos Linos, Butler University, USA
Yingjun Lyu, University of Southern California, USA
Ana Magazinius, RISE Research Institutes of Sweden, Sweden
André Magno Costa de Araújo, Federal University of Alagoas, Brazil
Herwig Mannaert, University of Antwerp, Belgium

 5 / 191

Alexandre Marcos Lins de Vasconcelos, Universidade Federal de Pernambuco, Recife, Brazil
Célia Martinie, Université Paul Sabatier Toulouse III, France
Rohit Mehra, Accenture Labs, India
Kristof Meixner, Christian Doppler Lab CDL-SQI | Institute for Information Systems Engineering |
Technische Universität Wien, Vienna, Austria
Vojtech Merunka, Czech University of Life Sciences in Prague / Czech Technical University in Prague,
Czech Republic
José Carlos M. M. Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Sanjay Misra, Covenant University, Nigeria
Mohamed Wiem Mkaouer, Rochester Institute of Technology, USA
Miguel P. Monteiro, Universidade NOVA de Lisboa, Portugal
Óscar Mortágua Pereira, University of Aveiro, Portugal
Kmimech Mourad, Higher Institute for Computer Science and Mathematics of Monastir, Tunisia
Kazi Muheymin-Us-Sakib, Institute of Information Technology (IIT) | University of Dhaka, Bangladesh
Marcellin Nkenlifack, University of Dschang, Cameroon
Marc Novakouski, Carnegie Mellon Software Engineering Institute, USA
Roy Oberhauser, Aalen University, Germany
Shinpei Ogata, Shinshu University, Japan
Thomas Olsson, RISE Research Institutes of Sweden, Sweden
Safa Omri, Daimler AG / Karlsruhe Institute of Technology, Germany
Flavio Oquendo, IRISA (UMR CNRS) - University of South Brittany, France
Marcos Palacios, University of Oviedo, Spain
Beatriz Pérez Valle, University of La Rioja, Spain
Monica Pinto, University of Málaga, Spain
Aneta Poniszewska-Maranda, Institute of Information Technology | Lodz University of Technology,
Poland
Pasqualina Potena, RISE Research Institutes of Sweden AB, Sweden
Evgeny Pyshkin, University of Aizu, Japan
Claudia Raibulet, University of Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Beckett University, UK
Raman Ramsin, Sharif University of Technology, Iran
Fernando Reinaldo Ribeiro, Polytechnic Institute of Castelo Branco, Portugal
Catarina I. Reis, School of Technology and Management | Polytechnic of Leiria, Portugal
Michele Risi, University of Salerno, Italy
Renaud Rwemalika, SnT - University of Luxembourg, Luxembourg
Nyyti Saarimäki, Tampere University, Finland
Bilal Abu Salih, The University of Jordan, Jordan
Hiroyuki Sato, University of Tokyo, Japan
Salva Sébastien, University of Clermont Auvergne | LIMOS Laboratory | CNRS, France
Vesna Šešum-Čavić, TU Wien, Austria
István Siket, University of Szeged, Hungary
Karolj Skala, Hungarian Academy of Sciences, Hungary / Ruđer Bošković Institute Zagreb, Croatia
Maria Spichkova, RMIT University, Australia
Fausto Spoto, Università di Verona, Italy
Sidra Sultana, National University of Sciences and Technology, Pakistan
Yingcheng Sun, Columbia University in New York City, USA
Mahbubur Syed, Minnesota State University Mankato, USA
Christos Troussas, University of West Attica, Greece

 6 / 191

Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
Masateru Tsunoda, Kindai University, Japan
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Rohith Yanambaka Venkata, University of North Texas, USA
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences / University of Szeged, Hungary
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Dietmar Winkler, Institute for Information Systems Engineering | TU Wien, Austria
Xusheng Xiao, Case Western Reserve University, USA
Simon Xu, Algoma University, Canada
Rihito Yaegashi, Kagawa University, Japan
Yilong Yang, University of Macau, Macau
Haibo Yu, Kyushu Sangyo University, Japan
Mário Zenha-Rela, University of Coimbra, Portugal
Qiang Zhu, University of Michigan - Dearborn, USA
Martin Zinner, Technische Universität Dresden, Germany

 7 / 191

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 8 / 191

Table of Contents

A Systematic Literature Review on Misconceptions in Software Engineering
Carolin Gold-Veerkamp and Nermin Saray

1

Agile Specification of Code Generators for Model-Driven Engineering
Kevin Lano, Qiaomu Xue, and Shekoufeh Kolahdouz-Rahimi

9

Plagiarism Detection Systems for Programming Assignments: Practical Considerations
Maxim Mozgovoy and Evgeny Pyshkin

16

Implementing Service Design Methods and Tools into Software Development, A Case Study: Service Design
Sprint
Jemina Luodemaki, Jouni Simila, and Hannu Salmela

19

A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple
Programming Languages
Roy Oberhauser

27

Systematic Review on the Use of Metrics for Estimating the Effort and Cost of Software Applicable to the
Brazilian Public Sector
Washington Almeida, Felipe Furtado, Luciano Monteiro, Fernando Escobar, and Sahra Silva

33

Defining Leadership and its Challenges while Transitioning to DevOps
Krikor Maroukian and Stephen Gulliver

44

Software Quality Evaluation via Static Analysis and Static Measurement: an Industrial Experience
Luigi Lavazza

55

Capacity Planning of Cloud Computing Workloads: A Systematic Review
Carlos Diego Cavalcanti Pereira and Felipe Silva Ferraz

61

An Architectural Smell Evaluation in an Industrial Context
Francesca Arcelli Fontana, Federico Locatelli, Ilaria Pigazzini, and Paolo Mereghetti

68

Offensive and Defensive Perspectives in Additive Manufacturing Security
Rohith Yanambaka Venkata, Nathaniel Brown, Daniel Ting, and Krishna Kavi

75

Experience of Video Classes Related to Mobile Development Produced by Multidisciplinary Students Who Used
the Challenge Based Learning Methodology
Andrew Diniz da Costa, Carlos Jose Pereira de Lucena, Hendi Lemos Coelho, Ricardo Almeida Venieris, and
Gustavo Robichez Carvalho

83

 1 / 3 9 / 191

Performance Comparison of Two Deep Learning Algorithms in Detecting Similarities Between Manual
Integration Test Cases
Cristina Landin, Leo Hatvani, Sahar Tahvili, Hugo Haggren, Martin Langkvist, Amy Loutfi, and Anne Hakansson

90

UML-based Model-Driven Code Generation of Error Detection Mechanisms
Lars Huning, Padma Iyenghar, and Elke Pulvermueller

98

MARKA: A Microservice Architecture-Based Application Performance Comparison Between Docker Swarm and
Kubernetes
Tugba Gunaydin, Goker Cebeci, and Ozgun Subasi

106

A Model-Based Safe-by-Design Approach with IP Reuse for Automotive Applications
Morayo Adedjouma and Nataliya Yakymets

112

Effect of Data Science Teaching for Non-STEM Students. A Systematic Literature Review
Luiz Barboza and Erico Teixeira

118

Not Another Review on Computer Vision and Artificial Intelligence in Public Security - A Condensed Primer on
Approaches and Techniques
Marcos Vinicius Pinto de Andrade and Ana Paula Cavalcanti Furtado

123

Requirements Validation Through Scenario Generation and Comparison
Radek Koci

129

Analyzing Challenges in Software Engineering Capstone Projects
Yvonne Sedelmaier and Dieter Landes

135

Code Quality Metrics Derived from Software Design
Omar Masmali and Omar Badreddin

141

Automated Requirements Engineering Framework for Agile Development
Muhammad Aminu Umar

147

A Prototype of Smart Navigation Service
Chia Hung Kao

151

The Technology Executive Role: A Study of the Main Competencies and Capabilities of the CIO / CTO
Carlos Sampaio and Felipe Ferraz

154

Teaching Agile Software Engineering Practices Using Scrum and a Low-Code Development Platform – A Case
Study
Jose Carlos Metrolho, Fernando Reinaldo Ribeiro, and Pedro Passao

160

 2 / 3 10 / 191

Integrating Two Metaprogramming Environments: An Explorative Case Study
Herwig Mannaert, Chris McGroarty, Scott Gallant, and Koen De Cock

166

Computer-Project-Ontology Construction, Validation and Choice of Knowledge Base
Raja Hanafi, Lassad Mejri, and Henda Hajjemi

173

Powered by TCPDF (www.tcpdf.org)

 3 / 3 11 / 191

A Systematic Literature Review on Misconceptions in Software Engineering

Carolin Gold-Veerkamp
University of Applied Sciences

Aschaffenburg
Aschaffenburg, Germany

Email: carolin.gold-veerkamp@th-ab.de

Nermin Saray
University of Applied Sciences

Coburg
Coburg, Germany

Email: nermin.saray@stud.hs-coburg.de

Abstract—From a constructivist perspective, learning is an
active, cognitive process in which individuals construct their own
knowledge by connecting new concepts with previous knowledge,
skills, and experience that serve as points of departure. The
purpose of this study is to identify and analyse known evidence-
based misconceptions in Software Engineering to use these
insights for higher education. We used a systematic literature
review as a secondary data accumulation, searching 10 databases
automatically using predefined s earch q ueries a nd selection
criteria. Out of 2,158 publications found, 18 could be identified
as appropriate for the selection criteria. These contain over 100
statements which the authors of these publications refer to as
misconceptions/beliefs/myths. Yet, only a fraction of these are
based on evidence; namely 20 items from 3 papers. Currently,
evidence-based research on misconceptions in Software Engineer-
ing is limited. We, therefore, deduce that evidence-based primary
data acquisition and analysis should be the research desideratum.

Keywords–Software Engineering, Higher Education,
Misconceptions, Systematic Literature Review.

I. INTRODUCTION

From a constructivist point of view, learning is to be under-
stood as an active, individual, situated, social, and cognitive
psychological process. Each individual has to build up their
own knowledge by combining new concepts based on previous
knowledge, existing competencies, previous experience, as
well as conceptions and putting it into a network-like rela-
tionship. This means, learners form conceptions and models
to explain phenomena, processes, and artifacts before they are
confronted with them in institutional learning. These possibly
alternative – from scientific or expert perspective – conceptions
have a twofold significant impact on the learning process. On
one hand, they can serve as the basis for learning, on the
other, they can also contradict the educational content and thus
hinder the learning process.

In order to be able to achieve sustainable learning (in
higher education), a purely technical structuring of the learn-
ing content is therefore insufficient. F urthermore, didactics
should do justice to the learners’ “points of departure” [1,
p. 6]. The Model of Educational Reconstruction, which is
epistemologically based on the constructivist position, calls
for precisely this consideration [1][2]. The model comprises
the triad of content clarification, l earners’ c onceptions, and
didactic design; it considers the scientific c oncepts a nd the
student conceptions as equivalents.

To be able to use this model in Software Engineering (SE)
education, we have to take a step back and clarify which
misconceptions undergraduates bring to university. Thus, a
Systematic Literature Review (SLR) as a secondary data anal-
ysis provides information about known SE misconceptions.

Therefore, the paper is structured as follows: It starts with
terminological aspects, as a plurality of terms evolved, and
related work in other disciplines. The SLR process is explained
in Section II, complemented by the results (Section III). Before
the paper closes, a short discussion is given (Section IV).

A. Terminological Aspects

Due to many different ways of looking at the research
object ‘(mis-)conceptions’ as well as the critical examination
of the terminology, an abundance of terms has developed.
The different understandings have led to a plurality of terms
with multiple connotations. The abundance of technical terms
has risen so much in the course of research (especially in
natural sciences didactics) that it is now almost impossible to
survey. The fact that the terms cannot be clearly distinguished
from each other often leads to a more or less synonymous
use and thus to an undifferentiated mix. As a result of
the dissatisfaction with this situation, researchers have again
constructed and defined additional terms, which expands the
existing term dilemma.

In addition to [3] [4], also others include entire collections
of terms. This list (merely referenced by single publications
due to restricted page space) gives an impression of the broad
spectrum:

• Preconceptions [3]–[6]
• (Students’) conceptions [3][4]
• Alternative conceptions [3]
• Naı̈ve conceptions [4]
• Naı̈ve theories [3][4]
• Naı̈ve beliefs [3]
• Beliefs [7]
• Alternative beliefs [3]
• Alternative frameworks [3][4][6]
• Intuitive theories/science [6]
• Prior knowledge [6]
• Misconceptions, the “standard term” as [3, p. 119] state

– despite the negative connotation [4] [6].

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 12 / 191

In spite of the heterogeneity of terms, opposed opinions
and discussions on the different types of expression, it can
be stated consensually that individuals each develop different
conceptions of certain concepts, which should and must be
used as a starting point in teaching. These conceptions can,
but do not have to be in line with modern scientific theories [4]
and therefore may act as learning obstacles [8], often referred
to as misconceptions.

B. Related Work on Misconceptions in Didactics

The research and publications about misconceptions in
natural sciences in the context of school are immense, as a bib-
liography by Duit [9] proves. When looking at the catalogue,
encompassing over 8,300 publications and summarizing them
per decade (Figure 1), it is obvious that since the mid-1970s
international researchers have been investigating the field.

Fig. 1. Diagram of Accumulated Number of Publications per Decade, Sorted
by Discipline Listed in [9]; esp. Focused on ‘Programming’

Out of these, merely five publications [10]–[14] can be
assigned to ‘programming’ as nearest to SE, but also to science
and/or maths; i.e. they are equivocal.

Moreover, in the last few years, several papers on miscon-
ception research in computer sciences appeared concerning:

• ... programming [15]–[18] and object-oriented program-
ming in particular [19][20].
• ... artifacts, e.g., computers, smartphones, and so on [21,
and others].
• ... the Internet [22].
All publications listed have in common that they do not

particularly deal with SE and are contextualised within school
education. This results in research needs for SE in university.

II. METHOD: SLR ON MISCONCEPTIONS IN SE
In order to be able to present the state of research on (under-

graduate) conceptions in SE, there is a need for a SLR, which
summarizes all available information about this phenomenon
thoroughly and impartially [23, p. 7]. Conducting a SLR is
a quantitative methodology of secondary data collection for
the synthesis of research results from primary studies. The
guidelines – used here – that Kitchenham and Charters have
drawn up for SE are derived from several approaches in
medicine and the social sciences [23, p. vi].

The following explanations, which describe the three-phase
process of the SLR – carried out as a computer-based, auto-
mated search – are divided into the initial planning in Section
II-A, the actual practical implementation (Section II-B) and
the subsequent presentation and use of the results (Section
III), see also [23][24].

A. Phase 1: Initial Planning
The planning of the SLR contains some parameters that

require previous definition in order to minimize bias. The SLR
is determined as follows:

1) Research Question(s): To what extent does research on
misconceptions in SE already exist? Which misconceptions in
SE are known/documented?

2) Search Strategy:
a) Language Selection: At this point, the language ra-

dius, which is one of the inclusion criteria, should be antic-
ipated. The reason for this is the following definition o f the
Search Query (SQ). Since research on conceptions is interna-
tional, publications in German and English are considered.

b) Queries and Synonyms: Regardless of the various
connotations (Section I-A), the search should encompass the
previous research on misconceptions in SE as broadly as
possible. Therefore, the search query is based on the numerous
synonymously used English terms shown in Table I. (Indicat-
ing wildcards, i.e. placeholders, by an asterisk (*).)

TABLE I. DEVELOPMENT OF THE ENGLISH SEARCH QUERY USING
SYNONYMS

Synonyms
Substrings

Noun Adjective

preconceptions preconception* –
students’ conceptions

conception*
–

alternative conceptions alternative
naı̈ve conceptions

naı̈venaı̈ve theories –
naı̈ve beliefs

belief*beliefs –
alternative beliefs alternativealternative frameworks –
intuitive theories – intuitiveintuitive science –
prior knowledge – prior
misconceptions misconception* –

In contrast to preconception, conception, belief and miscon-
ception, the terms theory, framework and science (plus plurals)
are only included in combination with the respective adjectives
(Table I), since they are often used as technical terms in
SE and unspecific for answering the research question. Same
applies to the terms student, knowledge and science, because
of the usage of pedagogical databases. These are combined
with the disciplinary focus on SE, resulting in Search Query 1;
including wildcards (*) and search for exact phrases (quotation
marks). (The equivalent German SQ is not attached here.)

c) Database: Electronic literature databases are selected
based on Kitchenham et al. [25] in combination with [26].
Kitchenham et al. have already dealt intensively with SLRs in
the area of SE and set up a list of important English-language
journals and conferences, which they themselves use for their
literature research (see Table II).

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 13 / 191

(“software engineer*” OR “software development*” OR “software
process*”)

AND
(“preconception*” OR “conception*” OR “belief*” OR “misconception*”

OR
“naı̈ve theor*” OR “alternative framework*” OR

“intuitive theor*” OR “intuitive science” OR “prior knowledge”)

Query 1. English Search Query

TABLE II. SELECTION OF ELECTRONIC DATABASES FOR SLR BASED ON
[25] [26]

Source IE
E

E

A
C

M

SD SC SL E
R

IC

W
oS

G
S

ar
X

iv

db
lp

Information and Software Technology X X X
Journal of Systems and Software X X X
IEEE Transactions on SE X X
IEEE Software X X
Communications of the ACM X
ACM Computer Surveys X
ACM Transactions on SE
Methodologies

X

Software Practice and Experience X
Empirical SE Journal X
IEEE Proc. Software (now: IET
Software)

X X

Proc. Int. Conference on SE X X X
Proc. Int. Symp. of Software Metrics X X X
Proc. Int. Symp. on Empirical SE X X X

These are used as a basis to identify databases that include
these compilations, namely: IEEE-Xplore [28], ACM-Digital
Library [29], SpringerLink (SL) [30], Scopus (SC) [31], and
Science Direct (SD) [32]. This selection is supplemented by
further search engines from the educational context (ERIC
[33], Web of Science (WoS) [34]) and the metadata database
GoogleScholar (GS) [35]. In addition to the proposed ones,
arXiv [36], an open access repository for electronic preprints
from numerous areas – including computer science –, and
the dblp [37], which is co-founded by the German federal
government, are used.

3) Selection Strategy: The selection is controlled on the
basis of the following predefined Inclusion (IC) and Exclusion
Criteria (EC).

IC.1 The publication is written in English or German lan-
guage.

IC.2 It is explicitly about the discipline SE.
IC.3 Misconceptions in SE are explicitly mentioned.

EC.1 The contribution is an abstract, workshop, poster, or
similar, as these do not provide in-depth information.

4) Quality Assessment: The gathered publications have to
be qualified against predefined Quality Criteria (QC):

QC.1 Traceability: How do the authors know this misconcep-
tion? It is scientifically important to be able to track
where the information comes from.

QC.2 Validation: Has it been confirmed that it is a miscon-
ception? How did the authors validate the conception to
be “at odds with modern scientific theories” [4, p. 2]?
If not done, there is no indication that it is really a
misconception.

QC.3 Occurence in the population: Does this misconcep-
tion exist in the population? Did the authors test the
misconception in a specific target group? Otherwise,
the existence of the misconception is not empirically
proven at all or limited to individual subjects (e.g.
through interviews).

B. Phase 2: Conducting the SLR

The process of conducting the SLR is shown in Figure 2 as
Phase 2 of the overall process.

Fig. 2. Flowchart of the SLR process (based on [23][24][27])

1) Stage 1: Conducting the Automated Search: For the
search – if possible – use of extended/advanced search
functions, wildcards (e.g., “misconception*”), and Boolean
operators is made in order to be able to exploit the predefined
syntax of the query (see String 1). Nevertheless, the string
must be adapted to the options of the search engine. Care is
taken to ensure no semantic changes take place.

The SQ is limited to document title and abstract, as rec-
ommended by [27, p. 2050] as well as others. (Deviations
from this definition, due to the search options of the individual
databases, are documented accordingly in the evaluation in
Section III). The reason for this is that both metadata are
already indicators of the relevance of a publication.

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 14 / 191

TABLE III. SUMMARY OF SLR RESULTS AFTER APPLYING IN-/EXCLUSION CRITERIA ON TITLE & ABSTRACT

Search Engines
Sum

IEEE ACM SD SC SL ERIC WoS GS arXiv dblp

Results of English SQ 250 410 93 847 0 29 4 87 257 41 2,018
Results of German SQ 16 54 7 46 0 3 0 7 2 5 140

Sum of Search Results 266 464 100 893 0 32 4 94 259 46 2,158
No Papers (e.g. Proc.) 2 2 0 53 0 2 0 34 6 0 99
Duplicates 15 85 18 383 0 10 4 16 18 29 578

Balance without Duplicates 249 377 82 457 0 20 0 44 235 17 1,481
IC.1a: English 249 352 81 442 0 20 0 40 231 10 1,425
IC.1b: German 0 0 0 5 0 0 0 1 0 0 6
IC.2: SE Discipline-Specific 223 253 65 381 0 18 0 34 162 7 1,143
IC.3: Misconceptions 30 60 4 43 0 8 0 6 5 2 158
EC.1: Contribution Type 0 1 0 0 0 1 0 0 0 0 2
EC: No Information 0 0 0 1 0 0 0 2 0 0 3

Paper Candidates 29 40 4 37 0 6 0 5 5 2 128

Note: At this point, IC.3 is not completely applicable,
since misconceptions are not specifically mentioned in title &
abstract, but it is checked, whether the contribution is explicitly
about misconceptions.

2) Stage 2: Applying the In-/Exclusion Criteria: The rel-
evance of a publication is determined in a two-stage process
(see Figure 2, Stage 2). First of all, the title and abstract are
examined and evaluated on the basis of the predefined criteria.
These provide enough information to decide whether a pub-
lication encompasses insights of interest; in doubt they were
included. The papers included are then rechecked regarding
the in-/exclusion criteria; this time considering the full text.

3) Stage 3: Backward Snowballing: Once Stage 2 is com-
pleted, “the references of the selected papers [are] reviewed
and any missing candidate papers [are] assessed against the
inclusion/exclusion criteria” [27, p. 2052] as well; this is
referred to as ‘backward snowballing’.

4) Stage 4: Data Analysis: To assess the quality of the
methods and results in the gathered publications, quality
criteria have to be predefined against which to assess the data
extracted and synthesized.

III. PHASE 3: RESULTS

The results of the coarse search based on the selection
criteria (Section II-A3) applied to titles and abstracts (Section
III-A) and the detailed search using full texts (Section III-B)
are presented. Additionally, the results of the analysis of the
misconceptions found in the selected publications is shown in
Section III-C, which is based on the QCs (Section II-A4).

A. Results: Coarse Search

The automated search has been completed between April,
30th and May, 1st 2020. Since the search was not limited
to a date range, the review process timewise included every
research found, covering papers as of 1970. Table III illus-
trates the number of matches (n = 2, 158) initially received
through the SQs. Excluding data sets that contained entire
proceedings/compilations instead of contributions as well as
duplicates, results in n = 1, 481. Finally, after applying the
inclusion and exclusion criteria to title and abstract, n = 128
papers/articles can be identified as potentially relevant to our

interest. Therefore, only these are considered in the next step,
in which the full text of these publications is considered.

Duplicates could be localized both internally – within the
results of the same SQ, within the same database, or overlaps
between English and German SQs – and externally – between
the results of different search engines. The number of dupli-
cates can be seen in Table IV including multiple mentioning,
as papers might be found in multiple databases. (Therefore,
the sums are not equivalent with the numbers of duplicates
in Table III.)

TABLE IV. NUMBER OF DUPLICATES
IE

E
E

A
C

M

SD SC SL E
R

IC

W
oS

G
S

ar
X

iv

db
lp

IEEE 15 32 222 1 2 15 5 12
ACM 54 111 9 4 7
SD 18 60 4 2
SC 53 7 4 31 10 21
SL 0
ERIC 3 3
WoS 0 3 4
GS 17 19
arXiv 8 2
dblp 4

B. Results: Full Text Search

Proceeding further, the predefined inclusion and exclusion
criteria are then applied to the paper candidates based on the
full text of the contributions. This results in n = 15 papers
that match the criteria (see Table V, on the next page). Papers
are excluded that cover the topic ‘misconception’, but did not
explicitly mention at least one statement the respective authors
refer to as misconception concerning the topic SE (cf. IC.3).
The subsequent backward snowball search – based on the
adequate papers found – reveals some additional publications
that have been checked against the inclusion/exclusion criteria
listed as well. Summing up, a total of n = 18 papers are found
(see Table V) that are of interest to the research question of
this SLR.

Through the selection process in Stage 2 and Backward
Snowballing in Stage 3 as a whole, we double-checked the
contributions by assessing each paper. As Kitchenham et
al. suggest, publications are included if we cannot make a
consensual decision [27, p. 2052].

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 15 / 191

TABLE V. SUMMARY OF SLR RESULTS AFTER APPLYING IN-/EXCLUSION CRITERIA ON FULL TEXTS

Search Engines
Sum

IEEE ACM SD SC SL ERIC WoS GS arXiv dblp

Paper Candidates (see Table III) 29 40 4 37 0 6 0 5 5 2 128

IC.1a: English 29 40 4 37 0 6 0 5 5 2 128
IC.1b: German 0 0 0 0 0 0 0 0 0 0 0
IC.2: SE Discipline 29 40 4 37 0 6 0 4 5 2 127
IC.3: Mention Misconceptions 5 3 1 2 0 0 0 1 3 0 15

Papers Found 5 3 1 2 0 0 0 1 3 0 15

Backward Snowballing 27 5 0 2 0 0 0 1 4 0 39
Already Included in SLR 2 1 0 1 0 0 0 0 2 0 6
After Applying Selection Criteria 0 0 0 1 0 0 0 0 2 0 3

Result 5 3 1 3 0 0 0 1 5 0 18

The matching papers found (n = 18, shown as the result in
Table V) are listed below:

• IEEE: [38]–[42]
• ACM: [43]–[45]
• Science Direct: [46]
• SCOPUS: [47] (cites and covers the myths of the primary

source [48] and 7 new statements) [48][49]
• Google Scholar: [50]
• arXiv: [51][52] (is included in [53] and thus not con-

sidered further) [53][54] (is the basis for [53]); and thus
considered together, covering 21 misconceptions in total)
[55]

C. Results: Misconceptions Found

Within the publications named, a total of 167 individ-
ual statements (see Table VI; without cross-references) are
declared as misconceptions by the respective authors. The
misconceptions gathered should be evaluated by assessing the
quality of the publications in order to determine the capacity
of the findings, using the quality criteria from Section II-A4.

The coding of the subcategories of the quality criteria was
not determined in advance, but developed during the analysis
based on and close to the available data; i.e. the publications
themselves. The following subcategories are considered as
high-quality (see grey marking in Table VI):

QC.1 Traceability: A primary study as well as the reference to
quotable publication(s), in which the misconception(s)

TABLE VI. SUMMARY OF MISCONCEPTIONS FOUND IN THE FULL TEXTS USING THE QUALITY CRITERIA

Papers Found Sum

[38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [53] [54] [55] 17

Misconceptions explicitly named 16 12 12 7 6 4 5 12 4 7 7 10 36 4 10 21 4 167

QC.1: - Study 4 36 21 (in [54]) 51
Traceability - Reference(s) 15 6 6 37

- No Indication 1 6 12 7 5 12 4 7 7 10 4 4 79

QC.2: - Empirically Confirmed 12 8 (in [53]) 20
Validation - Empirically Rejected 2 (in [53]) 2

- Reference(s) 6 6 5 17
- Only based on Explanation 4 4 7 7 10 4 36
- No Indication 10 6 12 2 6 5 36 11 4 92

QC.3: - Practitioners 16 6 4 21 (in [54]) 37
Occurrence - Undergraduates 12 12 12 36

- No Indication 7 5 4 7 7 10 36 4 10/21 (in [53]) 4 94

Intersection (of rows marked) 12 8 20

were found is defined as satisfying scientific claims.
In contrast, no indication is insufficient.

QC.2 Validation: The conception has to be empirically con-
firmed as “at odds with modern scientific theories” [4,
p. 2] to be a misconception. Whereas, a rejection, an
explanation by the author(s) or reference(s) that the
statement given is supposed to be a misconception is no
sufficient evidence for validation. This is also due to the
fact that misconceptions exist in all ages, from primary
level to university and even experts and professors can
hold them themselves [56, p. 9, 11].

QC.3 Occurrence in the population: Practitioners misconcep-
tions are included, as it is very likely that students have
them as well, if they can be encountered in profession-
ally experienced. However, no indication of occurrence
in the population can initially only be interpreted as a
presumption.

The intersection of the QCs results in n = 20 misconcep-
tions (Table VI). Yet, the papers [53] and [54] only deal with
the topic ’defect prediction’, the authors of [45] look at SE
covering the software life cycle more holistically; see thematic
structuring in Table VII (on the next page).

Note: [45] would actually not be included in the intersection,
as it is not explained where the misconceptions come from
(QC.1). But the authors validated them (QC.2) and tested their
occurrence concerning students (QC.3). Thus, the misconcep-
tions listed are hypotheses, that have been empirically con-
firmed; thus, nevertheless, they are included in the intersection.

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 16 / 191

TABLE VII. LIST OF MISCONCEPTIONS MATCHING THE QUALITY CRITERIA

Topic(s)

Pr
oj

ec
t

Pr
oc

es
s

M
od

el
s

T e
am

Sk
ill

s
R

eu
qi

re
m

en
ts

Im
pl

em
en

ta
tio

n
D

ef
ec

ts
D

oc
um

en
ta

tio
n

Misconception Reference(s)

X A defined software process is only important when you are working with people who are less skilled. [45, (1)]
X A good software developer will often choose to work alone on a project in order to get it done faster. [45, (2)]

X X When you have a team of good programmers who work well together, a software process will usually get in the way. [45, (3)]
X My code should take advantage of the implementation details in other code. [45, (4)]

X It is expected that clients will describe their requirements accurately before a team begins programming. [45, (5)]
X As a software developer, most of my time will be spent designing and implementing new algorithms and data structures. [45, (6)]

X Most of the time when I start a new programming task in industry, I will be working on a new project. [45, (7)]
X Developers do not need to know the high-level context of the system; this allows them to concentrate on their task. [45, (8)]

X A software project is successful only if it ships with very few known defects. [45, (9)]
X Software engineering is about producing lots of documentation on the requirements and implementation of the project. [45, (10)]

X X X Process, requirements, and team-management are important to business majors, not software developers. [45, (11)]
X The majority of the cost of a successful software project will be the initial implementation effort. [45, (12)]

X A file with a complex code change process tends to be buggy. [53, (B1)], [54, (S2)]
X A file that is changed by more developers is more bug-prone. [53, (B2)], [54, (S14)]
X A file with more added lines is more bug-prone. [53, (B3)], [54, (S4)]
X Recently changed files tend to be buggy. [53, (B4)], [54, (S7)]
X Recently bug-fixed files tend to be buggy. [53, (B6)], [54, (S10)]
X A file with more fixed bugs tends to be more bug-prone. [53, (B7)], [54, (S11)]
X A file with more commits is more bug-prone. [53, (B8)], [54, (S12)]
X A file with more removed lines is more bug-prone. [53, (B9)], [54, (S13)]

IV. DISCUSSION

A. Methodology: Threats to Validity
Several aspects regarding the SLR should be remarked upon.
First, one significant limitation is the broad number of syn-

onyms for ’misconception’; it is almost impossible – despite
all efforts – to ensure that all relevant papers are found.

Second, we used the four-eyes principle to proceed and
discussed to achieve consensus, but enclosed papers causing
persistent disagreement. However, this is not an ideal process,
affecting reliability of assessment and evidence of results.

Third, a limitation is that own publications could turn out
to be matches in the SLR, which must be handled objectively.
This can result in a systematic error. It is therefore noted that
authors of this paper also authored the publication [50].

B. Discussion of Results
Regarding the results of the SLR, it is noted that the cut

of 2,158 publications to merely 3 [45] [53] [54] of interest
identified is immense. As a result, it could be assumed that the
search (engines/query) or the selection (in-/exclusion/quality
criteria) are inadequate. However, this contradicts that ...

• ... SE didactics are still developing.
• ... the consideration of another database (Section I-B, [9])

also indicates that little research is available to date.
• ... other authors report the same for the adjacent field of

computer sciences: “At present, hardly any empirical data
concerning the issue of expectations and prior knowledge
[...] in informatics [...] are available” [57, p. 143].

V. CONCLUSION

The paper’s purpose, to identify and analyse known
misconceptions in SE to use these insights in higher
education, has been pursued using a systematic literature
review. Predefined search queries have been applied to search
10 databases before the publications have been filtered using

the selection strategy described. Out of 2,158 publications, 18
could be identified as appropriate for the selection criteria.
These contain 167 statements, which the authors of these
papers refer to as misconceptions. 20 of them met the quality
criteria specified; i.e. only 3 publications cover valuable data.

To conclude, the results show that currently evidence-based
research on misconceptions in SE is limited; this secondary
study demonstrates, there is not enough research on evidence-
based misconceptions in SE to use these insights for higher
education. So, in addition a primary study to identify miscon-
ception in SE is indispensable before addressing them.

ACKNOWLEDGEMENT

The present work as part of the EVELIN project was funded
by the German Federal Ministry of Education and Research
(BMBF) under grant numbers 01PL17022B and 01PL17022A.
The authors are responsible for the content of this publication.

REFERENCES

[1] R. Duit, “Science education research internationally: Conceptions, re-
search methods, domains of research,” EURASIA Journal of Mathemat-
ics, Science & Technology Education, vol. 3, no. 1, pp. 3–15, 2007.

[2] R. Duit, H. Gropengießer, U. Kattmann, M. Komorek, and I. Parch-
mann, “The model of educational reconstruction,” in Science Education
Research and Practice, D. Jorde and J. Dillon, Eds. Springer, 2012,
pp. 13–37.

[3] J. P. Smith, A. A. diSessa, and J. Roschelle, “Misconceptions recon-
ceived: A constructivist analysis of knowledge in transition,” Journal of
the Learning Sciences, vol. 3, no. 2, pp. 115–163, 1994.

[4] J. R. Read, “Children’s misconceptions and conceptual change in
science education,” 2004, [retrieved: 09, 2020]. [Online]. Available:
http://acell.chem.usyd.edu.au/Conceptual-Change.cfm

[5] I. Diethelm and S. Zumbrägel, “An investigation of secondary school
students’ conceptions on how the internet works,” in Koli Calling Inter-
national Conference on Computing Education Research, M.-J. Laakso
and R. McCartney, Eds. ACM Press, 2012, pp. 67–73.

[6] S. Todtenhaupt, To develop an understanding of chemistry in schoolchil-
dren: An investigation into the redox topic at a high school. (Original
title: ”Zur Entwicklung des Chemieverständnisses bei Schülern: Eine
Untersuchung zur Redox-Thematik an einem Gymnasium” [German]).
Frankfurt a.M.: Lang, 1995.

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 17 / 191

[7] A. Taylor Kujawski, and P. Kowalski, “Naı̈ve psychological science: the
prevalence, strength, and source of misconceptions,” The Psychological
Record, vol. 54, pp. 15–25, 2004.

[8] R. Reuter, F. Hauser, C. Gold-Veerkamp, J. Mottok, and J. Abke,
“Towards a definition and identification of learning obstacles in higher
software engineering education,” in Annual International Conference on
Education and New Learning Technologies (EDULEARN), IATED, Ed.,
2017, pp. 10 259–10 267.

[9] R. Duit, “STCSE: Students’ and teachers’ conceptions and science
education,” Bibiography, 2009, [retrieved: 09, 2020]. [Online].
Available: http://archiv.ipn.uni-kiel.de/stcse/download stcse.html

[10] D. N. Perkins and R. Simmons, “Patterns of misunderstanding: An
integrative model of misconceptions in science, math and programming,”
in 2. Int. Seminar Misconceptions and Educational Strategies in Science
and Mathematics: Vol. I, J. D. Novak, Ed., 1987, pp. 381–395.

[11] ——, “Patterns of misunderstanding: An integrative model for science,
math, and programming,” Review of Educational Research, vol. 58,
no. 3, pp. 303–326, 1988.

[12] L. Louca and Z. C. Zacharia, “The use of computer-based programming
environments as computer modelling tools in early science education:
The cases of textual and graphical program languages,” International
Journal of Science Education, vol. 30, no. 3, pp. 287–324, 2008.

[13] J. Confrey, “Misconceptions across subject matter: science, mathematics,
programming,” in 2. Int. Seminar Misconceptions and Educational
Strategies in Science and Mathematics: Vol. I, J. D. Novak, Ed., 1987,
pp. 81–106.

[14] N. Taylor and G. Corrigan, “New South Wales primary school teachers’
perceptions of the role of ICT in the primary science curriculum - A
rural and regional perspective,” International Journal of Science and
Mathematics Education, vol. 5, no. 1, pp. 85–109, 2007.

[15] R. D. Pea, “Language-independent conceptual ”bugs” in novice pro-
gramming,” Journal educational computing research, vol. 2, no. 1, pp.
25–36, 1986.

[16] J. Sorva, “Visual program simulation in introductory programming
education.” Dissertation, Espoo, Aalto Univ., Finland, 2012.

[17] A. Swidan, F. Hermans, and M. Smit, “Programming misconceptions for
school students,” in Conference on International Computing Education
Research (ICER). ACM, 2018, pp. 151–159.

[18] Ž. Žanko, M. Mladenović, and I. Boljat, “Misconceptions about variables
at the K-12 level,” Education and Information Technologies, vol. 24,
no. 2, pp. 1251–1268, 2019.

[19] R. Kelter, M. Kramer, and T. Brinda, “Statistical frequency-analysis
of misconceptions in object-oriented-programming: Regularized pcr
models for frequency analysis across oop concepts and related factors,”
in Koli Calling International Conference on Computing Education
Research, M. Joy and P. Ihantola, Eds. ACM, 2018, pp. 6:1–6:10.

[20] S. Holland, R. Griffiths, and M. Woodman, “Avoiding object misconcep-
tions,” in SIGCSE technical symposium on Computer science education,
C. M. White, C. Erickson, B. Klein, and J. E. Miller, Eds. ACM, 1997,
pp. 131–134.

[21] M. T. Rücker and N. Pinkwart, “”How else should it work?” A grounded
theory of pre-college students’ understanding of computing devices,”
ACM Transactions on Computing Education, vol. 19, no. 1, pp. 2:1–
2:23, 2018.

[22] I. Diethelm, P. Hubwieser, and R. Klaus, “Students, teachers and
phenomena: Educational reconstruction for computer science education,”
in Koli Calling International Conference on Computing Education
Research, M.-J. Laakso and R. McCartney, Eds. ACM, 2012, pp. 164–
173.

[23] B. A. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering: Version 2.3,” EBSE
Technical Report (EBSE-2007-01), Keele University & University of
Durham, 2007.

[24] P. O. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” Journal of Systems and Software,
vol. 80, no. 4, pp. 571–583, 2007.

[25] B. A. Kitchenham, et al., “Systematic literature reviews in software
engineering – a systematic literature review,” Information and Software
Technology, vol. 51, no. 1, pp. 7–15, 2009.

[26] A. Bartel, “Conception and development of a DSM-based gamifica-
tion authoring system to support university teaching. (Original title:
”Konzeption und Entwicklung eines DSM-basierten Gamification Au-

thoring Systems zur Unterstützung hochschulischer Lehre” [German]),”
Dissertation, Universität Regensburg, 2018.

[27] B. A. Kitchenham and P. O. Brereton, “A systematic review of systematic
review process research in software engineering,” Information and
Software Technology, vol. 55, no. 12, pp. 2049–2075, 2013.

[28] IEEE, “IEEE Xplore Digital Library,” 2020. [Online]. Available:
https://ieeexplore.ieee.org/Xplore/home.jsp

[29] ACM, “ACM Digital Library,” 2020. [Online]. Available: http:
//dl.acm.org/

[30] Springer Nature Switzerland AG, “SpringerLink,” 2020. [Online].
Available: https://link.springer.com/

[31] Elsevier B.V., “Scopus,” 2020. [Online]. Available: http://www.scopus.
com/

[32] ——, “ScienceDirect,” 2020. [Online]. Available: https://www.
sciencedirect.com/

[33] Institute of Education Sciences of the US Department of Education,
“Eric – education resources information center,” 2020. [Online].
Available: https://eric.ed.gov/

[34] Clarivate Analytics, “Web of Science,” 2020. [Online]. Available:
http://www.webofknowledge.com

[35] Google LLC, “Google Scholar,” 2020. [Online]. Available: http:
//scholar.google.de/

[36] Cornell University, “arXiv.org: e-Print archive,” 2020. [Online].
Available: https://arxiv.org/

[37] Schloss Dagstuhl and Universität Trier, “dblp: computer science
bibliography,” 2020. [Online]. Available: https://dblp.uni-trier.de/

[38] P. Devanbu, T. Zimmermann, and C. Bird, “Belief evidence in empirical
software engineering,” in International Conference on Software Engi-
neering (ICSE), 2016, pp. 108–119.

[39] M. M. Inuwa and A. Varol, “Intensity of misconception in software
engineering,” in International Informatics and Software Engineering
Conference (UBMYK), 2019, pp. 1–6.

[40] J. Ivins, B. R. von Konsky, D. Cooper, and M. Robey, “Software
engineers and engineering: A survey of undergraduate preconceptions,”
in Frontiers in Education (FIE), 2006, pp. MIF–6–11.

[41] B. Özkan and O. Demirors, “On the seven misconceptions about
functional size measurement,” in Joint Conference of the International
Workshop on Software Measurement and the International Conference
on Software Process and Product Measurement (IWSM-MENSURA),
2016, pp. 45–52.

[42] J. S. van der Ven and J. Bosch, “Busting software architecture beliefs: A
survey on success factors in architecture decision making,” in Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), 2016, pp. 42–49.

[43] A. Begel and B. Simon, “Struggles of new college graduates in their first
software development job,” SIGCSE Bull, vol. 40, no. 1, pp. 226–230,
2008.

[44] D. DeMarco Brown, “Five agile ux myths,” Journal of Usability Studies,
vol. 8, no. 3, pp. 55–60, 2013.

[45] L. A. Sudol and C. Jaspan, “Analyzing the strength of undergraduate
misconceptions about software engineering,” in International Computing
Education Research (ICER). ACM, 2010, pp. 31–39.

[46] R. H. Wilcox, “Behavioral misconceptions facing the software engineer,”
in Computer and Information Sciences, ser. SEN Report Series Software
Engineering, J. T. Tou, Ed. Elsevier, 1971, vol. 2, pp. 285–287.

[47] J. P. Bowen and M. G. Hinchey, “Seven more myths of formal meth-
ods: Dispelling industrial prejudices,” in FME’94: Industrial Benefit of
Formal Methods, ser. LNCS 873. Springer, 1994, pp. 105–117.

[48] A. Hall, “Seven myths of formal methods,” IEEE Software, vol. 7, no. 5,
pp. 11–19, 1990.

[49] D. Carlson, “Debunking agile myths,” CrossTalk, vol. 30, no. 3, pp.
32–36, 2017.

[50] S. Jahn, C. Gold-Veerkamp, R. Reuter, J. Mottok, and J. Abke, “Secure
software engineering in academic education: Students’ preconceptions
of it security,” in International Conference of Education, Research and
Innovation (ICERI), IATED, Ed., 2019, pp. 6825–6834.

[51] P. Ralph and B. J. Oates, “The dangerous dogmas of software
engineering,” 2018, [retrieved: 09, 2020]. [Online]. Available: arXiv:
1802.06321v1

[52] Shrikanth N. C. and T. Menzies, “Assessing developer beliefs: A reply
to ”perceptions, expectations, and challenges in defect prediction”,”
2019, [retrieved: 09, 2020]. [Online]. Available: arXiv:1904.05794v1

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 18 / 191

[53] ——, “Assessing practitioner beliefs about software defect prediction,”
2020, accepted at ICSE’20, [retrieved: 09, 2020]. [Online]. Available:
arXiv:1912.10093v3

[54] Z. Wan et al., “Perceptions, expectations, and challenges in defect
prediction,” IEEE Transactions on Software Engineering, pp. 1–26,
2018.

[55] D. Rombach and F. Seelisch, “Formalism in software engineerings:
Myths versus empirical facts,” in Balancing Agility and Formalism in
Software Engineering, D. Hutchison, et al., Ed. Springer, 2008, pp.
13–25.

[56] R. Duit, “Schülervorstellungen – von Lerndefiziten zu neuen Unterricht-
sansätzen [German],” in Schülervorstellungen in der Physik, R. Müller,
R. Wodzinski, and M. Hopf, Eds. Köln: Aulis, 2011, pp. 8–14.

[57] C. Schulte and J. Magenheim, “Novices’ expectations and prior knowl-
edge of software development,” in First international Workshop on Com-
puting education research, R. Anderson, S. A. Fincher, and M. Guzdial,
Eds. ACM Press, 2005, pp. 143–153.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 19 / 191

Agile Specification of Code Generators for Model-Driven Engineering

Kevin Lano, Qiaomu Xue
Dept. of Informatics

King’s College London, UK
Email: kevin.lano@kcl.ac.uk, qiaomu.xue@kcl.ac.uk

Shekoufeh Kolahdouz-Rahimi
Dept. of Software Engineering

University of Isfahan, Iran
Email: sh.rahimi@eng.ui.ac.ir

Abstract—The production of code or other text from soft-
ware models is an essential task in Model-Driven Engineering
(MDE) approaches for software development. Automated code
generation is key to the productivity improvements observed
in MDE approaches. Nonetheless, there has been a lack
of systematic research into optimising the construction of
code generators, and in the current state of the art such
generators are usually developed manually, which involves
detailed programming in 3GLs, or in specialised code gen-
eration languages. In either case, high expertise in the source
language abstract syntax is necessary. In this paper, we survey
different approaches for the construction of code generators,
and we define an approach for declarative specification of code
generators by text-to-text mappings, in terms of the concrete
syntax of both source and target languages. We show that this
approach enables the rapid development of code generators,
which are also more concise and efficient compared to previous
generators.

Keywords — Code generation; Agile development; UML;
Model-Driven Engineering.

I. INTRODUCTION

Code generation is the production of programming lan-
guage code (e.g., Java) or other text (e.g., XML) from a
model of a source language, such as a subset of UML,
or a Domain-Specific Language (DSL). Code generation is
an essential step in the application of Model-Driven Engi-
neering (MDE) [18] to software application development,
enabling the automated production of software artifacts
from specification or design models, which are usually at a
higher abstraction level than the artifacts (i.e., they abstract
away from details of a specific implementation platform
or programming language). This means that an application
can be specified once and different code versions generated
automatically from the specification, targeted at several
different platforms. For example, a mobile app could be
specified in a platform-independent form, and then separate
implementations generated from the specification, targetted
at the iOS and Android mobile platforms [14]. For a new
target platform or language version, a new code generator
needs to be produced, but existing application specifications
can be reused.

Despite the importance of code generation, there has been
relatively little research published on optimising the overall
production process of code generators [5][25]. Instead, most

published work has focussed on describing particular code
generators [1][10][19][26], and issues specific to a particular
generator. There are no general guidelines for assuring the
quality of code generators, and perhaps as a consequence
of this lack, the quality of automatically generated code is
sometimes poor in comparison with manually-written code
[13][17].

The task of developing a code generator consists of three
main activities:

1) Defining a semantically valid representation of the
source language in the target language and verifying
this representation;

2) Defining a code generation strategy to create the target
representation of each source model;

3) Writing and testing code generation rules in a 3GL or
code generation language.

If we restrict attention to source languages which are
subsets of UML, crucial concepts which need to be rep-
resented in a target language are classes and interfaces, fea-
tures (attributes, references and operations), inheritance and
polymorphic operation semantics, object creation/deletion,
object communication, object state changes, and Object
Constraint Language (OCL) data types and operators.

The task of finding a valid representation may be relatively
simple if there is small semantic distance between UML
and the target (e.g., in the case of OO programming lan-
guages, such as Java, C# and C++, which support orthodox
class/inheritance concepts). But for other target languages
(e.g., for C, Python, JavaScript) there is considerable seman-
tic distance from UML, and no simple encoding of UML
concepts.

In this paper we focus on items 2) and 3) above. Section
II reviews the state of the art in code generation approaches,
and Section III introduces our approach to code generation
specification and implementation, using the CST L concrete
syntax transformation language. Section IV provides a com-
parative evaluation of the approach, Section V discusses
threats to validity, and Section VI gives related and future
work.

II. CODE GENERATION APPROACHES

A code generator can be defined either in terms of the
abstract syntax of the languages it relates, or in terms of

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 20 / 191

their concrete syntax: abstract syntax refers to the conceptual
elements of a language, represented as a Backus-Naur Form
(BNF) grammar or metamodel, and the features and inter-
relations and constraints of these elements. Concrete syntax
refers to the written textual form or graphical form of
models/programs or other artifacts in a language.

For example, part of the metamodel of the C language is
shown in Figure 1.

Figure 1. C language metamodel

The CStruct class is the abstract syntax representation of
C struct type definitions, which have the concrete syntax:

struct S
{ MT1 cm1;

...
MTn cmn;

};

where each of the MTi cmi; are the concrete syntax of
CMember elements that are the members of the CStruct.

In these terms there are three general approaches to
writing code generators:

1) Abstract syntax to abstract syntax: code generation
rules are written in a programming language or in a
general Model Transformation (MT) language, to map
from elements of the abstract syntax of the source
language, to elements of the abstract syntax of the
target language.

2) Abstract syntax to concrete syntax: templates using tar-
get concrete syntax are defined, with variable parts or
slots within these templates having content depending
upon source model elements and expressions written
in terms of source language abstract syntax.

3) Concrete syntax to concrete syntax: the mapping is
defined only in terms of source and target language
concrete syntax, with rules specifying how source

concrete syntax fragments should be represented in
target concrete syntax.

In cases where abstract syntax is used, this involves navi-
gation over the elements of a source or target model using
the data structures of a 3GL, or via an expression language,
which is usually based on OCL [24].

An example of the first approach is the UML to C code
generator of [19], which is written in OCL. The second
approach is supported by specialised model-to-text MT
languages, such as EGL [8], Acceleo [2], and Xtext/Xtend
[9]. The third approach is supported by concrete syntax
MT languages, such as the concrete graph transformation
language of [12].

A. Issues in code generation

The task of code generation may require the resolution of
several fundamental problems:

1) Language abstraction gap: the distance between the
source and target languages is too great to be bridged
by a single generation step, and multiple steps or
human input is needed. For example, declarative spec-
ification in Agile UML [6] is expressed using OCL
predicates as invariants or postconditions. This spec-
ification is quite distant from executable code, and
several translation stages are required to refine the
specification into an executable form.

2) Structural gap: the source and target languages may
have different structures, so that one source element
can contribute to the target syntax of multiple target
elements (a 1-many relationship), or information from
multiple source elements could be combined to form
one target element (a many-1 relationship). For exam-
ple, a UML class attribute is represented by a C struct
member, and by possibly multiple setter and getter
operations, in separate header and code files [19].

3) Semantic gap: where source language concepts cannot
be directly represented in the target language because
of semantic differences, so that a more complex and
indirect encoding is needed. For example, UML in-
heritance has no direct representation in C [19], and
differs in its semantics from Python or JavaScript
inheritance. Likewise, the constructs of UML statema-
chines have no direct correspondence with conven-
tional programming language constructs [1][26].

Each of the three general approaches listed above address
these problems in different ways, and there are also various
tradeoffs in each approach. Abstract syntax to abstract
syntax specifications can address the language abstraction
gap by using intermediate languages between the source and
target, and chaining transformations in sequence (Figure 2).
Structural and semantic gaps can be addressed by complex
coding in terms of the abstract syntaxes. However this

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 21 / 191

approach requires deep understanding of the metamodels
of both source and target languages, and understanding of
OCL-style navigation expressions, in addition to knowledge
of target language concrete syntax. Because abstract syntax
is typically more verbose and detailed than concrete syntax,
such specifications can become very large and complex pro-
grams or transformations, which are not easy to understand
or maintain.

Figure 2. Staged code generation

Abstract to concrete syntax approaches using template
languages involve specification with a combination of ab-
stract syntax source language expressions and concrete target
text. Thus to use these approaches, knowledge of the source
language metamodel and of the target language concrete
syntax is needed, but not of the target language metamodel.
Again, complex navigation expressions are typically needed
to refer to and select source model elements. The structure
of a template-based specification is usually closely tied to
the structure of the target language program components.

To address language gaps, preliminary model-to-model
transformations could be used as in Figure 2, with only the
final step being model-to-text [15]. The preliminary trans-
formations could construct a design model suitable for direct
translation to any target language in a given language family.
For structural and semantic gaps, auxiliary operations and
data would need to be used, with possibly multiple passes
through the source model, and multiple output templates
(e.g., for C production from UML, a C header file template
and a C code file template would be needed). This again
requires complex specification in the source abstract syntax.
The mix of source and target languages in one artifact can
be confusing, and such specification can be prone to errors
due to misuse of delimiters between the language texts [21].

Concrete syntax to concrete syntax approaches have the
advantage that no knowledge of abstract syntax is needed.
In addition, any navigation over source and target models is
implicit, based on the concrete syntax structures. Thus, the
code generation rules can be defined in an intuitively natural
manner in terms of the concrete source and target syntax.

However, for cases of abstraction, structural or semantic
gaps, more complex mapping mechanisms are needed, with
auxiliary operations and possibly multiple rules/multiple
passes over the source text. In principle, concrete syntax
to concrete syntax transformations could be chained as in
Figure 2 to use intermediate textual languages to bridge
gaps.

III. CONCRETE SYNTAX TO CONCRETE SYNTAX
SPECIFICATION USING CST L

Our experience of building large code generators in Java
[20] and in OCL [19] convinced us that a more usable, agile
and lightweight approach was needed.

For the simpler specification of code generators, we have
developed a textual concrete syntax transformation notation
CST L. This is a DSL for code generation, which enables
the direct definition of code-generation transformations by
means of concrete syntax to concrete syntax mappings.

A. CST L concepts

CST L is designed to be a small language, which can be
used by general software practitioners, and does not require
a high degree of MDE expertise. Its execution semantics
can be understand in terms of familiar string matching and
replacement concepts. Figure 3 shows the metamodel of
CST L.

Figure 3. CST L metamodel

A CST L module consists of a sequence of rules grouped
into categories. Individual rules in CST L notation have the
form:

selement |-->telement<when> Condition

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 22 / 191

The <when> clause and condition are optional. The left
hand side (LHS) of a CST L rule is some piece of concrete
syntax in the source language, e.g., in Kernel Metamodel
(KM3) [16] textual notation for UML class models, and
the right hand side (RHS) is the corresponding concrete
syntax in the target language (e.g., C, Java, Swift, etc),
which the LHS should translate to. Apart from literal text
concrete syntax, the LHS may contain variable terms 1, 2,
etc, representing arbitrary source concrete syntax fragments
(possibly constrained by the optional condition), and the
RHS may refer to the translation of these fragments also
by 1, 2, etc. This enables CST L mappings to be applied
recursively. Rules are grouped into source language syntactic
categories, such as binary expressions or statements, and
apply to elements in these categories. Specialised rules are
listed before more general rules.

For example, to map a KM3 text syntax of a UML class
to type and data declaration text in a C header file, assuming
that the class contains only simple data feature definitions
x : T , we could write the following rules to translate UML
types, attribute declarations and class declarations:

Type::
Integer |-->int
Real |-->double
Boolean |-->unsigned char
String |-->char*
Set(_1) |-->_1*
Sequence(_1) |-->_1*
_1 |-->struct _1*<when> _1 Class

Attribute::
_1 : _2; |--> _2 _1;\n
_1 : _2; _3 |--> _2 _1;\n _3

Class::
class _1 { _2 } |-->struct _1\n{_2};
class _1 extends _2 { _3 } |-->
struct _1\n{ struct _2* super;\n_3};

These rules translate a class declaration

class Customer extends Person
{ name : String;

age : Real;
}

into:

struct Customer
{ struct Person* super;

char* name;
double age;

};

Rule conditions can be combined by conjunction (comma)
and negation, for example:

_1 = _2 |-->_1 == _2<when>
_1 not String, _1 not object,
_1 not collection

Negation can often be avoided by using the ordering of rules.
The above rule could alternatively be expressed as a default
case after specific = rules for strings, objects and collections.

Any stereotype of an LHS model element may also be
used as a condition on it, for example:

Attribute::
_1 : _2 |--> let _1 : _2<when>_1 readOnly

for a mapping from UML to Swift.

The metafeature notation i‘f enables access to features f
of the abstract syntax. For example, 1‘elementType returns
the element type of whatever language element is held in
variable 1.

Furthermore, a set of rules can be grouped together in a
single file, representing one way of mapping source elements
to target elements. Separate files can define alternative or
additional mappings. For example, separate files cheader.cstl
and cbody.cstl could be used to create the header and body
files of a C program derived from a UML model. This
addresses the issue of 1-many structural gaps, and enables
context-dependent alternative translations of source syntactic
elements. If f .cstl is a file containing a CST L module, then
the notation 1‘f .cstl applies this module to the contents of
1.

B. CST L semantics

The execution semantics of CST L is based on string
pattern matching and rewriting. Given a source text element
elem of syntactic category CT , the first CT rule whose LHS
matches elem and whose conditions are true is applied to
elem, with metavariables i of the LHS being bound to cor-
responding source fragments within elem. These fragments
are then themselves mapped by the rule set and the result of
transformation is substituted for i on the RHS of the rule.
If no rule applies, an element is mapped to itself.

Formally, a CST L specification module cg contained in
a file cg.cstl defines a function τcg from the texts of source
language L1 to those of target language L2 as follows.

For each source text e ∈ L1, of L1 category C, successive
rules r of the C :: group in cg are checked to determine if
r.lhs can match to e.

Each r is of the form

lhs |-->rhs<when> Conditions

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 23 / 191

An absent condition is interpreted as true. r matches e if
e equals r.lhs with substitutions of subtexts ei of e for
the variables i of r.lhs, i.e., e equals r.lhs[ei/ i] (ignoring
leading or trailing spaces). r is then applicable to e if
Conditions[ei/ i] also hold. In this case, the result of cg
applied to e is

τcg(e) = r.rhs[τcg(ei)/ i]

where r is the first C :: rule matching e. If no rule of the
C :: group matches e, then e is copied to the output:

τcg(e) = e

in either case, the specifier must ensure that the result τcg(e)
is a valid text of L2.

For example, the UML attribute declaration s :
Sequence(Real); matches the LHS 1 : 2; of the
first Attribute rule above, with 1 bound to s and 2 bound
to Sequence(Real). The latter type text is then rewritten
to double* by the Type rules for Sequence and Real, so
that the overall result of the attribute rule application is
double* s;\n.

Metafeatures i‘f are evaluated as τcg(ei‘f) = τcg(ei.f),
where ei is the abstract syntax element corresponding to ei.

A module application i‘f .cstl is evaluated as
τcg(ei‘f .cstl) = τf (ei).

C. CST L applications

We have applied CST L to the translation of UML to
Java (UML2Java8), and to Swift (UML2Swift). These are
used as part of UML to Android and UML to iOS mobile
app generation tools. CST L is also provided as part of
the Agile UML toolset [6] as a facility to enable users to
quickly specify new code generators from UML to different
programming languages, hence extending the toolset for
their own needs.

The emphasis in the UML2Java8 and UML2Swift code
generators is on the generation of fully functional code
from OCL expressions. OCL has over 100 operators [24],
thus at least these many rules are needed to translate OCL
expressions to program code. 152 of the 183 rules (83%)
of the UML2Java8 generator are either mapping rules for
different kinds of OCL expression (139 rules) or for state-
ments (13 rules). Some examples of expression rules from
this generator are:

BinaryExpression::
_1 & _2 |-->_1 && _2
_1->count(_2) |-->Collections.frequency(_1,_2)
_1->select(_2 | _3) |-->

Ocl.selectSet(_1,(_2)->{return _3;})
<when> _1 Set

_1->includes(_2) |-->_1.contains(_2)
_1->includesAll(_2) |-->_1.containsAll(_2)

A Java 8 library of OCL functions, Ocl.java, is also defined
to support the implementation of some operators, such as
→select. The UML2Swift generator is similarly constructed.

CST L can also be used for general DSL to code syn-
thesis, provided that the DSL elements can be expressed as
a subset of our UML source language. Stereotypes can be
used to label UML elements as representing DSL elements,
and rules for DSL code generation expressed in terms of
these stereotypes.

IV. EVALUATION

We evaluate the approach by comparing UML to 3GL
code generators specified using different approaches (Table
I). We compare the development effort of the generators, and
their sizes, syntactic complexity and efficiency. The size is
measured in lines of code (LOC). MaxES is the maximum
OCL expression size used in navigation expressions (opera-
tors + identifiers in the expression). This is the MEL measure
of [28]. All approaches cover the structural parts of the
generated code, but differ in how they synthesise behaviour
(constructor and method bodies).

TABLE I. COMPARISON OF CODE GENERATION APPROACHES

Generator Implemented Size MaxES Scope
UML2C++ [20] Java 18,100 – Behaviour

from OCL
UML2Java Acceleo/ 3,957 27 Outline
[7] Java behaviour
UML2Java [27] EGL 1,425 35 Statemachine

behaviour
UML2Java8 [6] CST L 426 11 Behaviour

from OCL
UML2Swift [6] CST L 398 5 Behaviour

from OCL

Table I shows that the CST L Java generator is sub-
stantially smaller compared with other UML to Java ap-
proaches. Unlike the Acceleo and EGL generators, it is
focussed on behaviour implementation instead of structural
implementation. The declarative nature of the specification
should also make it easier to comprehend and to change
than imperative or hybrid code generators involving explicit
model navigation. The syntactic complexity is indicated by
the maximum condition or navigation expression size – for
the CST L solution this is also significantly smaller than for
the other solutions.

In Table II we compare the performances of the Acceleo,
CST L and a Java-coded UML to Java code generator on
the Acceleo test model example.uml, which consists of 6
classifiers, 8 data features, 6 operations and 5 inheritance
relations (Figure 4).

Larger examples were created by duplicating this basic
structure. We also added some functionality to the operations
of the example. The results in Table II show that the CST L

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 24 / 191

Figure 4. Acceleo example model

generator is approximately 10 times more efficient than
the Acceleo generator, despite including OCL expression
processing. This improvement is likely to be caused by the
purely tree-based processing of CST L, in contrast to the
graph navigations of Acceleo. CST L specifications contain
no global variables or other ‘memory’ of which rules have
been applied, so that rule applications (e.g., upon separate
classes) are independent and could be parallelised. The
CST L solution is similar in efficiency to the Java-coded
UML2Java4 generator of [6].

TABLE II. PERFORMANCE COMPARISON OF UML TO JAVA CODE
GENERATION APPROACHES

Model Size Acceleo CST L Java
(UML2Java8) (UML2Java4)

1 25 480ms 45ms 28ms
2 50 750ms 70ms 47ms
4 100 800ms 36ms 37ms
10 250 1.12s 80ms 79ms
15 375 1.52s 104ms 194ms

TABLE III. COMPARISON OF CODE GENERATOR DEVELOPMENT
EFFORT

Approach/Generator Effort
Acceleo/Java: UML2Java [7] 3000+ hours
Java: UML2C++ [20] 2170 hours
OCL: UML2C [19] 1375 hours
CST L: UML2Java8 36 hours
CST L: UML2Swift 50 hours

Table III compares the development effort of different
generators, in terms of person hours. These show substantial
reductions in effort for the CST L developments, compared
to developments using 3GL programming, templates or
OCL. This reduction arises because (i) the code generator
file has a modular structure based on the source language
syntax categories; (ii) no programming language or OCL
code needs to be written; (iii) the overall size of the generator
is substantially reduced and is contained in 2 or 3 small files.
Not only is the initial effort lower in the CST L generators,
but also the cost of making changes to the specification.

We can also compare the size of the generated code for
the example model of Figure 4: this is 107 LOC for the
CST L UML2Java8 generator, 380 LOC for the Acceleo
UML2Java, and 1628 LOC for the Java coded UML2Java4
translator of [6]. The latter provides many additional func-
tionalities, such as input and export of models from XML
and CSV, which the CST L and Acceleo generators do not.

V. THREATS TO VALIDITY

We address instrumental bias by performing all measure-
ments in a consistent manner. Regarding selection bias, our
evaluation example is taken from the Acceleo repository,
and hence it is independent of the authors. Regarding gen-
eralisation from the single example presented here, we have
also used CST L to generate app code for several Android
and iOS apps of different kinds, and found similar results
in terms of high efficiency and low generated code size.
Regarding relevance, we have only implemented UML to
code mappings, DSL to code mappings are the subject of
future work.

VI. RELATED AND FUTURE WORK

Investigations into the use of machine learning, specif-
ically Long Short Term Memory (LSTM) neural nets, to
synthesise model transformations from examples of input
and output models have shown that this can be practically
useful [4], however it requires large numbers of examples
and significant training time. The same approach could
potentially be used to derive code generators from examples
presented either in abstract or concrete syntax.

Tools have also been created that convert UI sketches
into UI code [3][22]. These are based on object recognition
approaches, so could be used as a means of processing
manually-drawn concrete syntax graphical models (such as
class diagrams or activity diagrams) prior to code generation
from these models. Other low-code approaches for code
production are template-based or data-based app builders,
such as Microsoft PowerApps [23] or Google AppSheet
[11].

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 25 / 191

A disadvantage of ML approaches, such as LSTM neural
nets, are that they only produce implicit ‘black box’ spec-
ifications of generators. In contrast, CST L specifications
provide a clear and explicit expression of how source
language syntax maps to target language syntax. Compared
to app builders, we use a wide range of UML features to
define application data and functionality. The CST L rules
give precise control over which code elements are produced
for these specifications.

An important area for future work is ensuring the quality
of generated code [13]: code generators should not increase
the technical debt burden of a software system, and where
possible should ensure that code quality standards are met.
There should not be unnecessary code generated, and du-
plicated and excessively complex code should be avoided,
together with other flaws, such as bidirectional module
dependencies. Our approach can avoid complex duplicated
code by factoring out complex code definitions into the
OCL support library. An example is the complex Swift code
needed for regular expression matching: the Ocl.swift library
defines a function matches(str : String, pattern : String),
which encapsulates this code, so that the CST L translation
rule can be simplified to:

_1->matches(_2) |-->
Ocl.matches(str: _1, pattern: _2)

VII. CONCLUSION

We have considered alternative approaches for the defi-
nition of code generators, and proposed a novel declarative
approach, which permits simpler and more concise specifi-
cations, compared to existing approaches. We showed that
the approach can produce smaller and more efficient code
generators for UML to Java transformation.

REFERENCES

[1] A. Aabidi, A. Jakimi, R. Alaoui and E. Hassan El Kinani,
“An object-oriented approach to generate Java code from
hierarchical-concurrent and history states”, Int. Journal of
Information and Network Security, vol. 2, 2013, pp. 429–440.

[2] Acceleo project, https://www.eclipse.org/acceleo, accessed
18.8.2020.

[3] T. Beltramelli, “pix2code: Generating code from a GUI
screenshot”, https://arxiv.org/abs/1705.07962, 2017. Accessed
18.8.2020.

[4] L. Burgueno, J. Cabot, and S. Gerard, “An LSTM-based neural
network architecture for model transformations”, MODELS
’19, 2019, pp. 294–299.

[5] A. Dieumegard, A. Toon, and M. Pantel, “Model-based formal
specification of a DSL library for a qualified code generator”,
OCL 2012, pp. 61–62.

[6] Eclipse Agile UML project, https://projects.eclipse.org/
projects/modeling.agileuml, accessed 18.8.2020.

[7] Eclipse UML2Java code generator, https://git.eclipse.org/
c/umlgen/, accessed 18.8.2020.

[8] Epsilon project, https://projects.eclipse.org/projects/modeling.
epsilon, accessed 18.8.2020.

[9] M. Eysholdt and H. Behrens, “Xtext: implement your language
faster than the quick and dirty way”, OOPSLA 2010, pp. 307–
309.

[10] M. Funk, A. Nysen, and H. Lichter, “From UML to ANSI-C:
an Eclipse-based code generation framework”, RWTH, 2007.

[11] Google, https://www.appsheet.com, accessed 18.8.2020.

[12] R. Gronmo, B. Moller-Pedersen, and G. Olsen, “Comparison
of three model transformation languages”, ECMDA-FA, 2009,
pp. 2–17.

[13] X. He, P. Avgeriou, P. Liang, and Z. Li, “Technical debt in
MDE: A case study on GMF/EMF-based projects”, MODELS
2016, pp. 162–172

[14] H. Heitkotter, T. Majchrzak, and H. Kuchen, “Cross-platform
MDD of mobile applications with MD2”, SAC 2013, ACM
Press, 2013, pp. 526–533.

[15] Z. Hemel, L. Kats, D. Groenewegenn, and E. Visser, “Code
generation by model transformation: a case study in transfor-
mation modularity”, Sosym, 9: 375–402, 2010.

[16] F. Jouault and J. Bezivin, “KM3: a DSL for metamodel
specification”, ATLAS team, INRIA, 2006.

[17] L. Kapova, T. Goldschmidt, S. Becker, and J. Henss, “Eval-
uating maintainability with code metrics for model-to-model
transformations”, QoSA 2010: Research into Practice – Reality
and Gaps, Springer, 2010, pp. 151–160.

[18] K. Lano, Agile model-based development using UML-RSDS,
CRC Press, 2016.

[19] K. Lano, S. Yassipour-Tehrani, H. Alfraihi, and S. Kolahdouz-
Rahimi, “Translating from UML-RSDS OCL to ANSI C”,
OCL 2017, STAF 2017, pp. 317–330.

[20] K. Lano, H. Alfraihi, S. Kolahdouz-Rahimi, M. Sharbaf,
and H. Haughton, “Comparative case studies in agile MDD”,
FlexMDE 2018, MODELS 2018, pp. 203–212.

[21] K. Lano, S. Fang, H. Alfraihi, and S. Kolahdouz-Rahimi,
“Simplified specification languages for flexible and agile mod-
elling”, FlexMDE, MODELS 2019, pp. 460–467.

[22] Microsoft, sketch2code, https://www.microsoft.com/en-
us/ai/ai-lab-sketch2code, accessed 18.8.2020.

[23] Microsoft, PowerApps, https://powerapps.microsoft.com, ac-
cessed 18.8.2020.

[24] OMG, Object Constraint Language Specification v2.4, 2014.

[25] I. Stuermer, M. Conrad, H. Doerr and P. Pepper, “Systematic
testing of model-based code generators”, IEEE TSE, 33(9),
2007, pp. 622–634.

[26] E. Sunitha and P. Samuel, “Object-oriented method to im-
plement the hierarchical and concurrent states in UML state
chart diagrams”, Software engineering research, management
and applications, Springer-Verlag, 2016, pp. 133–149.

[27] TU/e, SLCOtoJava1.0 code generator,
https://gitlab.tue.nl/SLCO, 2020.

[28] M. Wimmer, S. Martinez, F. Jouault, and J. Cabot, “A Cat-
alogue of Refactorings for model-to-model transformations”,
Journal of Object Technology, vol. 11, no. 2, 2012, pp. 1–40.

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 26 / 191

Plagiarism Detection Systems for Programming Assignments: Practical Considerations

Maxim Mozgovoy and Evgeny Pyshkin
University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu, Fukushima, 965-8580, Japan
Email: {mozgovoy,pyshe}@u-aizu.ac.jp

Abstract—We discuss a project contributing to the quality of
software engineering education by producing a state of the
art code duplication and plagiarism detection system, aimed at
college and university teachers. Though detecting plagiarism (as
unauthorized “borrowings” of code fragments) consumes time
and energy of the teachers, ignoring this issue makes a negative
impact on students’ discipline and lowers motivation of course
participants. While plagiarism detection in software code is a
well-known research task, there are no open source modern
plagiarism detection systems that are designed for actual class-
room use by implementing state of the art detection techniques,
convenient visualizations, integration with course management
systems, and supporting common use case scenarios.

Keywords–Education; plagiarism; software; programming; ex-
ercises; online learning.

I. INTRODUCTION

Societal lock-down of 2020 caused by Covid-2019 out-
spread pushed educational institutions to enforce teaching
and learning processes based on active using of online and
distant education technology. Distant learning tools have many
advantages (flexibility in using them at any time from vir-
tually any device, convenient access, possibilities for user
collaboration, creating less stressful study process), but also
considerable limitations. That’s why methodological and orga-
nizational solutions for distant learning should be developed
so that they would improve the teaching process in a way
serving both remote and traditional face-to-face teacher/student
communication. Further digitalization of learning process does
not mean its transfer to online environments only, developing
better computer-assisted tools to support traditional teaching
is equally important.

Programming is commonly considered as an activity fa-
voring outsourcing, task distribution and online communica-
tion, which make the project work of experienced engineers
more efficient and well organized. However, in programming
teaching, the lack of direct in-person communication often
makes difficult to fairly check the solutions of students and to
support them in their practical work. Even within the scope
of traditional face-to-face classes, it is hard to manage all
the students’ projects, especially if you have big groups of
students. Thus, instructors need good instruments to support
practical exercise assignments and their checks.

Teachers who conduct online classes, as we observe, typi-
cally do not seek to use a single universal tool covering all
their needs. Instead, they tend to choose the most suitable
software for the given task. For example, a teacher might
publish video recordings on YouTube, communicate with stu-
dents via Slack, organize videoconferences using Zoom, and
publish learning materials on Moodle. Some activities are,
however, easier to organize than others. Videoconferencing and

messaging is a relatively straightforward process with today’s
technology, while conducting exercise sessions and ensuring
proper homework evaluation can be more laborious. Since the
students may work on their assignments in an unsupervised
environment (and organizing a proper proctoring procedure
might be complicated and not always desirable), ensuring fair
study conditions for everyone and reducing the amount of
cheating is essential.

Plagiarism is a type of academic dishonesty that consists in
reusing documents composed by other authors without proper
acknowledgement of the original source [1]. Plagiarism is a
common phenomenon among students, as some of them may
tempt to reuse solutions developed by their peers or copied
online, thus, eliminating their educational value.

Many authors note that plagiarism can often be prevented
by designing better, more personalized assignments, training
students to avoid unintentional plagiarism, and administrative
measures [2] [3]. It is also often suggested that preventive mea-
sures should be combined with computer-assisted plagiarism
detection practices. Most detection tools, such as Turnitin [4],
are designed for detecting overlapping online sources for a
given document (an essay or a research paper), but some
recently developed instruments are specifically tailored for de-
tecting duplications in offline collections of software code [5].

II. PLAGIARISM DETECTION IN STUDENT PROJECTS:
CHALLENGES AND PRACTICAL GOALS

Plagiarism detection in student-submitted software source
code is an established research topic, stemming from the
task of identifying duplicated fragments in large software
systems, which has its own importance, since the duplicated
code impairs project architecture, conditions worse project
maintainability, increases the risk of software bugs, and may
seriously affect code efficiency. The problem of detecting
software code improper reuse differs from natural language
plagiarism detection due to several factors:
• Code collections under testing are typically available

offline, since it is nearly impossible to find online
a fragment of code that solves a particular teacher-
supplied task, unless it is a well-known classical
algorithm;

• Students typically receive the same or very similar
assignments, so they tend to borrow code from their
peers or predecessors;

• Software code is easy to modify, refactor or obfuscate,
keeping its functionality intact;

• In principle, code reuse itself is a common engineering
practice, which does not always refer to plagiarism.

Thus, though it seems obvious to apply some natural lan-

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 27 / 191

guage processing algorithms suitable for general-purpose text
processing, we have to mention a number of important issues
demonstrating serious particularities of plagiarism detection in
software programs.

Contradiction between standard software engineering
practices and pedagogical aims. Teachers fight plagiarism,
since, first, it itself contradicts major pedagogical aims. How-
ever, at the same time (specifically, in engineering disciplines),
teachers should introduce existing standard solutions. Software
engineering practices naturally favor reusing the successful
solutions and standardized models, but the proper reuse should
be differentiated from large scale source code copying.

Detecting structural source code similarity. In process of
comparing the source code fragments, we are not so interested
in finding exact matches, but their structural resemblance
and/or functional equivalence. One may expect that recog-
nizing structural similarity of math equations may provide
useful insights in detecting structurally similar source code
fragments [6] [7], the latter being nothing but the texts in
a formal language. However, especially in the cases when
students are encouraged to use structural software organization
and presentation models (such as software design patterns,
specific project architectures, etc.), we could not accuse a
student in plagiarism, based on structural similarity only.

Few solutions may be used in classroom environments.
Surprisingly, there are very few systems designed specifically
for actual classroom use. Most researchers tend to be focused
on purely algorithmic aspects of the problem, such as robust
file comparison procedure, high speed of detection process or
explicit support for specific programming languages. There-
fore, the tasks of designing appropriate user interfaces or
providing specific functionality relevant for teachers of pro-
gramming classes is challenging, and often neglected.

Most commercial solutions are for texts in natural
languages. The gap between the achievements in developing
algorithms for source code processing and their applicability to
classroom environments is not filled by commercial companies
offering solutions focused primarily on detecting matches for
natural-language texts. As a result, teachers still often rely
on manual detection, which is a very time-consuming and
laborious process, they could not gain all the possible benefits
from using the online submission systems (such as Moodle
and/or automated code testing / grading instruments).

Thus, the problem of identifying reliable similarity de-
tection methods, suitable for academic environment and ap-
plicable to a wide range of programming languages is far
from being resolved. That is why, in sum, the practical goal
of our project is to automate teachers’ daily routine tasks
that consume much time and energy. We believe that the
existence of a convenient plagiarism detection instrument can
be a noticeable contributing factor for better quality of courses
offered at educational institutions. The teachers really need to
have more time to be concentrated on developing the course
content, creating interesting tasks, or organizing problem-based
learning teams, while it is in the interests of our society that
the students study harder, honestly, more efficiently and have
lower chances to pass the course by copying their peers’ work.
Some researchers observe that even skillful students often
feel demotivated when they see others passing courses using
“borrowed” solutions (which happens in large courses, where

the teachers have no time for appropriate checks of the whole
corpus of student submissions) [8], so an automated plagiarism
detection system would have a positive effect on all parties
involved in course activities.

III. PLAGIARISM PREVENTION AND DETECTION
TECHNIQUES

Figure 1. Taxonomy of plagiarism detection methods.

It is often noted in the literature that plagiarism prevention
should be the main goal of a teacher, while detection is seen
as a “last resort” measure. Various methods of plagiarism
prevention were suggested. Generally, they are aimed to make
plagiarism technically hard, socially unacceptable, and legally
dangerous [3]. The teachers are advised to design personalized
assignments and conduct onsite problem solving sessions,
when possible. School policymakers are expected to devise
“honor codes” and similar mechanisms to make the students
aware of high importance of “fair play” principles at a given
institution. Furthermore, violators of the code are expected to
face severe disciplinary punishment.

Nevertheless, plagiarism detection is still seen as a valuable
activity, since the very knowledge of plagiarism checking
may deter cheating. As noted above, numerous works are
dedicated to the technical side of the problem. Even systems
belonging to a relatively narrow group of “hermetic detection
systems for source code” [9] can be categorized into several
classes according to their basic approach to detection [3]
(see Figure 1). By “hermetic” we mean that borrowings are
expected to be found in the same collection rather than in an
online source [9]

Over the last decades, a number of software similar-
ity and source code clone detection methods were devel-
oped [10] [11] [12] [13]. However, the evaluation of their
relative detection performance, applicability to particular pro-
gramming languages, and robustness to refactoring techniques
is still a subject of research works [5].

In addition to formal clone detection algorithms, the work-
flow analysis can be promising: if the system can detect that
a learner copied and then pasted a large amount of source
code at once, such a behavior may be considered as a possible
plagiarism issue [14]. In particular, the chosen method(s)
should be able to identify matching fragments of the source
code files, which is not always possible for techniques based
on normalization by decompilation.

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 28 / 191

IV. INTRODUCING THE PROJECT: SOURCES AND PROJECT
GOALS

The principal challenge of the project is to create a system
that would combine high plagiarism detection efficiency with
the simplicity of use and appeal to a broad teacher audience
by providing capabilities consistent with pedagogical goals and
teaching practice.

At least, the following goals should be achieved in a
system, applicable in a programming course context:

• “Hermetic” plagiarism detection in a collection of
student-submitted assignments.

• Exclusions of certain fragments marked as “templates”
by the teacher. Teachers often provide code templates
that are expected to be integrated into a student’s
solution, and these templates should not be considered
unauthorized borrowings.

• Simplified detection and reporting procedure “histor-
ical” submissions. When students copy from their
peers, it is desirable to identify specific pairs of similar
documents and deal with their authors on individual
basis. However, if a student copied an assignment
submitted in the past, it might be enough to provide a
simplified report merely proving the fact of cheating.

• Rich reporting and visualization capabilities, which
would enable the teachers to find clusters of matching
documents efficiently and perform manual analysis of
identified similarities.

• Support for a variety of programming languages, and
an option to “tokenize” code (see, for example, [15]),
which helps to identify plagiarism even if the source
code is refactored (lines rearranged, variables re-
named, etc.).

• An efficient approximate matching algorithm, able to
find partial matches located in non-contiguous areas
of source documents.

• Integration with online course management systems
(such as Moodle) and/or online code testing tools
(such as Aizu online judge [16]).

Some of these capabilities can be are found in earlier
systems [17]. For example, WCopyfind [18] for NLP pla-
giarism detection provided features for HTML reporting and
worked with user-defined document collections. Sherlock [19]
supported templates, text tokenization, as well as certain visu-
alization instruments.

V. CONCLUSION

Since, this paper describes an ongoing project, many issues
still need more study and efforts. We need conduct interviews
with other programming class teachers to identify all actual
classroom practices including the use of online submission
systems, current plagiarism prevention and detection measure-
ments, and grading policy. Careful analysis of these practices
will help in revealing the practical use cases for plagiarism
detection to be used as a basis for our system. In large,
achieving the project goals may significantly affect further
development of innovative programming teaching practices
(such as those described in [20]) within the scope of improving
computer education.

ACKNOWLEDGEMENT

The work is supported by the University of Aizu Research
Funding.

REFERENCES
[1] T. Kakkonen and M. Mozgovoy, “Students cyber-plagiarism,” in Ency-

clopedia of Cyber Behavior. IGI Global, 2012, pp. 1168–1177.
[2] R. A. Posner et al., The little book of plagiarism. Pantheon, 2007.
[3] M. Mozgovoy, Enhancing computer-aided plagiarism detection. Uni-

versity Of Joensuu Joensuu, 2007.
[4] M. N. Halgamuge, “The use and analysis of anti-plagiarism software:

Turnitin tool for formative assessment and feedback,” Computer Appli-
cations in Engineering Education, vol. 25, no. 6, 2017, pp. 895–909.

[5] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Software Engineering, vol. 23, no. 4,
2018, pp. 2464–2519.

[6] K. Yokoi and A. Aizawa, “An approach to similarity search for math-
ematical expressions using mathml,” Towards a Digital Mathematics
Library. Grand Bend, Ontario, Canada, July 8-9th, 2009, 2009, pp. 27–
35.

[7] E. Pyshkin and M. Ponomarev, “Mathematical equation structural
syntactical similarity patterns: A tree overlapping algorithm and its
evaluation,” Informatica, vol. 40, no. 4, 2016.

[8] D. Chuda, P. Navrat, B. Kovacova, and P. Humay, “The issue of (soft-
ware) plagiarism: A student view,” IEEE Transactions on Education,
vol. 55, no. 1, 2011, pp. 22–28.

[9] T. Kakkonen and M. Mozgovoy, “Hermetic and web plagiarism de-
tection systems for student essaysan evaluation of the state-of-the-art,”
Journal of Educational Computing Research, vol. 42, no. 2, 2010, pp.
135–159.

[10] M. Novak, “Review of source-code plagiarism detection in academia,”
in 2016 39th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO). IEEE,
2016, pp. 796–801.

[11] D. Kılınç, F. Bozyiğit, A. Kut, and M. Kaya, “Overview of source
code plagiarism in programming courses,” International Journal of Soft
Computing and Engineering (IJSCE), vol. 5, no. 2, 2015, pp. 79–85.

[12] M. Akhin and V. Itsykson, “Clone detection: Why, what and how?” in
2010 6th Central and Eastern European Software Engineering Confer-
ence (CEE-SECR). IEEE, 2010, pp. 36–42.

[13] A. Sheneamer and J. Kalita, “A survey of software clone detection
techniques,” International Journal of Computer Applications, vol. 137,
no. 10, 2016, pp. 1–21.

[14] A. S. Carter and C. D. Hundhausen, “Using programming process
data to detect differences in students’ patterns of programming,” in
Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, 2017, pp. 105–110.

[15] M. Ďuračı́k, E. Kršák, and P. Hrkút, “Current trends in source code
analysis, plagiarism detection and issues of analysis big datasets,”
Procedia engineering, vol. 192, 2017, pp. 136–141.

[16] C. M. Intisar and Y. Watanobe, “Classification of online judge program-
mers based on rule extraction from self organizing feature map,” in 2018
9th International Conference on Awareness Science and Technology
(iCAST). IEEE, 2018, pp. 313–318.

[17] M. Mozgovoy, T. Kakkonen, and G. Cosma, “Automatic student plagia-
rism detection: future perspectives,” Journal of Educational Computing
Research, vol. 43, no. 4, 2010, pp. 511–531.

[18] L. Bloomfield, “Software to detect plagiarism: Wcopyfind (version
2.6),” 2009.

[19] M. Joy and M. Luck, “Plagiarism in programming assignments,” IEEE
Transactions on education, vol. 42, no. 2, 1999, pp. 129–133.

[20] E. Pyshkin, “Liberal arts in a digitally transformed world: Revisiting
a case of software development education,” in Proceedings of the
13th Central & Eastern European Software Engineering Conference in
Russia, ser. CEE-SECR ’17. New York, NY, USA: ACM, 2017, pp.
23:1–23:7.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 29 / 191

Implementing Service Design Methods and Tools into Software Development

A case study: Service Design sprint

Jemina Luodemäki, Jouni Similä, Hannu Salmela

Department of Management and Entrepreneurship

Turku School of Economics, University of Turku

Turku, Finland

Email: jemina.m.luodemaki@utu.fi, jouni.simila@utu.fi, hannu.salmela@utu.fi

Abstract— Service Design is a comprehensive and collaborative

design approach for creating value for all stakeholders. Service

Design includes several methods and tools for the improvement

of a new or an existing service. The implementation of Service

Design into software development has been only partially

studied. Likewise, research regarding the benefits and

challenges concerning the utilization of Service Design precisely

in software development is rather deficient. The aim of this

study was to experiment applying Service Design methods and

tools into software development through a pilot project carried

out in a Finnish software development company. This research

presents possible benefits and challenges that implementing

Service Design into software development may have. In

addition, critical factors to be considered while implementing

Service Design are proposed.

Keywords-service design; agile software development; SaaS;

design sprint.

I. INTRODUCTION

 Nowadays, all companies are involved in the software

business either directly or indirectly. Software affects all

industries and can be seen as the main driver for innovation

[1]. Software development teams often experience pressure

to keep up with the dynamic business environment and

continuously changing customer requirements. The success

of a product or service is determined by the created customer

value and therefore software development teams constantly

aim to create and develop innovative features to provide

added value for the customer [2]. Customer participation and

active involvement throughout the software development

process are key factors to ensure focusing on the correct

matters and consequently creating customer satisfaction.

However, there are often several layers of people and

processes between the end-users and the software

development team, which complicates the user involvement.

Service Design offers methods to bridge the gap between

developers and users [3].

 Service Design is a comprehensive and collaborative

design approach for creating value for all stakeholders. In

Service Design the creation of value is not limited to the end-

user or customer but includes creating added value

throughout the process. Therefore, Service Design can be

utilized for Business-to-Business (B2B), as well as for

internal services or public services [4]. Service Design

includes several methods and tools for the improvement of a

new or an existing service. Service Design has been studied

widely in the field of creating new products and services [5]

[6]. The implementation of Service Design into software

development has been only partially studied. Likewise,

research regarding the benefits and challenges concerning the

utilization of Service Design precisely in software

development is rather deficient.

 The aim of this research was to experiment applying

Service Design methods and tools into software development

through a pilot project carried out in a small Finnish software

development company, referred to as Company X. The

company follows the principles of agile software

development and provides Software-as-a-Service (SaaS) for

human resource management. This research presents possible

benefits and challenges that implementing Service Design

into software development may have. In addition, critical

factors to be considered while implementing Service Design

are proposed. The field of research is relevant, because

Service Design has been a ponderable subject during the past

years, but it has not yet been studied as widely in software

development as in many other fields.

 The main research questions are:

RQ1: How can Service Design methods and tools be

implemented into internal processes in B2B software

development?

RQ2: What are the benefits, challenges and critical factors

when implementing Service Design methods and tools into

software development?

 The key findings of this research consist of suggested

factors to be considered while implementing Service Design

into internal processes in B2B software development and an

aggregation of the benefits, challenges and critical factors of

implementing Service Design into software development.

 The paper is initiated with Section 1 including the

introduction. This is followed by Section 2, which describes

background and related work around the subject. In Section

3 the empirical research design is presented, and this is

followed by Section 4 and the introduction to the actual case

study: the Service Design sprint. In Section 5 results and

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 30 / 191

discussion are presented. Lastly, Section 6 combines the

conclusions of the research.

II. BACKGROUND AND RELATED WORK

A. Service Design

 In this research, Service Design means a holistic and

collaborative approach to create value for the service user as

well as the service provider [7]. The Service Design approach

includes multiple tools and methods for different phases of

the development process to enable comprehensive

understanding of user emotions and motivations for all

stakeholders [8]. In the context of this research Service

Design has an outside-in aspect on the development of

services and the emphasis is especially on applying different

design methods and techniques to the design process of

services [9]. Service Design combines different methods and

approaches that have been utilized before [10].

 Service Design highlights the fact that value is co-created

between the customer and the service provider. This is not

similarly emphasized in other design approaches like

participatory design [11] or digital interaction design [12].

Even though, the term “service” is common in both of the

above-mentioned, the center of attention does not exceed the

customer experience beyond the user experience or use

experience outside of the service touchpoints. In a way,

Service Design has been able to revive other design

approaches [13].

B. Implementing Service Design

 In order to successfully implement Service Design
methods and tools to the software development processes of a
company, it is crucial to recognize all the people involved in
the required changes, both internally and externally. The
implementation of Service Design may require change
management. Junginger & Sangiorgi [14] present a
framework for the link between organizational change and
Service Design based on their findings in their research. They
found four similarities in their case studies regarding the link
between organizational change and Service Design.
 Firstly, Service Design often begins at the organizational
periphery, which means that the marginal location where
Service Design work is first started might limit the
interference in the daily operations. Secondly, building trust
relationships for change between the Service Design team and
stakeholders was recognized as a similarity. A collaborative,
flexible and transparent approach as well as generating
interest were in a key role when building trust relationships.
The third similarity was developing transformative insights
into the values, norms, assumptions and behaviors of the
organization in order to build trust, stimulate interest and co-
create a new vision. Lastly, pilot projects as a seed for change
were recognized in both case studies. Pilot projects can have
an essential role in opening the way for transformative
changes as they can help designers make behavioral values,
norms and patterns tangible.
 As a conclusion from the framework research Junginger
and Sangiorgi [14] state that Service Design is still an

emergent discipline based mainly on informal and tacit
knowledge. Applying this framework into a wide range of
contexts is suggested as a future research focus in the paper.
This research puts the theoretical framework by Junginger and
Sangiorgi [14] into context and further studies how it can be
utilized in B2B software development.

C. Service Design and agile software development

 This research has a focus on how agile software

development affects the implementation of Service Design

methods. Therefore, the principles of agile software

development will be compared to the principles of Service

Design and similarities and differences will be pointed out.

Following agile methods in software development means the

ability to adapt to change. Environments and requirements

change continuously, and agile methods aim to respond to the

changes by being iterative, incremental and cooperative [15].

Agile methods are people-centric and strive to recognize the

value that proficient people and their relationships bring to

software development. Improving customer satisfaction

through cooperation and involving customers and other

important stakeholders are also in a key role while following

agile methods. The organizations ability to emphasize

learning, self-organization and teamwork has a notable

impact on the created value [16].

 Customer involvement is one of the key benefits that

adopting agile methods brings. Satisfaction with the product

has increased among both customers and developers after

following agile software development methods [17].

Building successful software products and services requires

understanding customers’ requirements and involving them

throughout the development process. Customer involvement

refers to different ways of active participation by the

customer or the end-user in the software development process

with different interactive techniques [18].

 Customer collaboration is a key principle also in Service

Design. The new principles of Service Design by Stickdorn

et al. [4] include human-centered and collaborative as key

aspects when applying Service Design. Involving customers

to the design process can be carried out by organizing

workshops with the customers and utilizing different design

tasks and tools like prototyping in the workshops. Service

Design approaches based on collaborative workshops have

enabled applying Service Design as an abbreviated, but

efficient design sprint as a pre-development phase in agile

software development [3].

 Applying Service Design methods into an agile Scrum

process as sprints may support the service provider to

recognize the correct small tasks for delivering a better

Minimum Viable Product (MVP) for the customer [3]. This

again enhances the basic principles of agile software

development as early and frequent deliveries are emphasized

in several definitions of agile software development [19].

Table 1 presents principles of agile software development

and Service Design that have the most resemblance.

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 31 / 191

TABLE I. RESEMBLANCE BETWEEN AGILE AND SERVICE DESIGN

PRINCIPLES

Agile principle Definition

Service

Design

principle

Definition

Collaboration

Business

people should

work with

developers
throughout the

project on a

daily basis.

Collaborative

Stakeholders

from different

backgrounds

should be
involved

throughout the

service design

sprocess.

Motivated
individuals,

good

environment,
support & trust

Projects
should be

built in a

supporting
environment

and around

motivated
individuals.

Human-
centered

Highlights the

importance of

involving all
the people

affected by

the service.

Customer
satisfaction,

continuous
delivery, value

Satisfying the

customer

with early
and

continuous
delivery of

valuable

software.

Holistic

Services
should

address the

needs of all
stakeholders

across the
business.

Sustainability,

people

Promoting
sustainable

development.

Sponsors,
developers

and users

should
maintain an

ongoing pace.

Iterative

An
experimental,

adaptable and

continual
approach,

iterating

towards
implemen-

tation.

Adaptability,
competitiveness

Taking
changing

requirements

into
account.

Sequential

Taking

interrelated
actions into

account.

 The principles of Agile and Service Design have
similarities, which can support applying Service Design
methods into the software development process of an
organization following agile methods. Both principles
highlight the importance of collaboration between different
stakeholders, involving all relevant people as well as
sustainable and iterative development. These similarities can
create synergistic effects when following both agile and
Service Design principles. However, Service Design and
agility have also slight differences, for example when
considering the focus of the approaches in a bigger picture.
Even though both approaches are user-centric agile has more
focus on early delivery of valuable software to the customer,
whereas Service Design highlights understanding the services
from the customer perspective, but also the importance of
creating value through the entire development process for all
stakeholders.
 On the other hand, when comparing Service Design to
traditional software development models, such as the
waterfall model, the benefits of Service Design stand out more
clearly. In the waterfall model progress is seen flowing

steadily downwards like a waterfall and changes during the
design phase should be avoided. It is a linear model, where
each step of the process is frozen before moving on to the next
one, and changes to the requirements will not be considered in
later phases [20]. These are opposite to many Service Design
principles such as continuous iteration, adaptiveness and
involving stakeholders throughout the design process.

III. EMPIRICAL RESEARCH DESIGN

 The research was composed with an action research
approach, which included several data collection methods.
Action research is a methodology that aims to support
organizational learning to develop practical outcomes. In the
end of the 1990’s the importance and popularity of action
research in information systems increased notably. One basic
principle in action research is that the best way of studying
complex social processes is changing these processes and
observing the results and effects of the implemented changes
[21].
 Frequently, action research uses several different methods
for the collection of data. Using multiple methods like analysis
of relevant documents, in depth interviews and participative
socio-technical design concurrently is encouraged. Similar
methods are also utilized in Service Design and therefore the
two approaches support each other. Service Design tools and
methods are in line with qualitative research methods as both
are holistic processes that require participation in a real-life
setting. As action research focuses on organizational learning
through problem solving together with Service Design tools
and methods it can provide a comprehensive way of collecting
data [22]. The data was mainly collected through a focus
group interview, semi-structured interviews, a questionnaire
survey and the actual case study: The Service Design sprint.
Due to the global pandemic regarding Covid-19 the Service
Design sprint had to be held remotely, contrary to the original
plan. The remote implementation brought its own challenges
to the planning phase, but also enhanced the efficiency of the
workshops held during the sprint.

The trustworthiness of this research will be evaluated
through four aspects: credibility, transferability, dependability
and conformability [23]. In doing so, it should be taken into
account that the researcher is part of the organization where
the case study was carried out. The role of the researcher in
the Service Design sprint was the role of a project manager.
The researcher was responsible of the process in its entirety,
including the scope, budget, deadlines and reporting. This
may affect the objectiveness of the results to some point, but
precautions were taken to ensure the objectiveness. The
researcher did not facilitate or lead the sessions and
workshops during the actual case study to ensure as objective
results as possible and to make sure that the workshops were
not even accidentally directed to a desired direction from the
researcher point of view.
 The credibility of this research is desirable as the empirical
material is rather inclusive and based on the empirical results
another person could end up with the same findings and
conclusions. The transferability of the research is reliable as
the research is grounded on similar previous research. The
results are examined in comparison to the findings of these

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 32 / 191

previous studies, and similar findings from previous research
are presented. Dependability is ensured by following a logical
research process and carefully documenting each phase of the
process. In addition, the conformability of the research is
ensured by presenting logical links between the results and
conclusions.

IV. THE SERVICE DESIGN SPRINT

 The structure of the Service Design sprint was combined

from different approaches and frameworks and further

modified to best fit the needs of Company X. The structure

of the Service Design sprint was mainly formed based on the

idea of the Design Sprint developed at Google Ventures, the

Double Diamond model [24] designed by the Design Council

and the three-day Service Design session presented by

Stickdorn [4]. The final version of the Service Design sprint

held in Company X was basically a combination of an

internal design sprint and a co-creative workshop with the

customers. The sprint was held as a pre-development phase

of the agile software development process.

 As discovered by Junginger & Sangiorgi [14] pilot

projects can have an essential role in successful

organizational change. Stickdorn et al. [4] also propose

starting with small Service Design projects as these can be

used to modify the Service Design process as well as the

company’s structures and culture. Therefore, a pilot project

was carried out in Company X, to demonstrate and explore

the benefits, challenges and critical factors that applying

Service Design has in software development.

 Service Design has not been applied to internal processes

in Company X before this case. However, several different

design methods such as user stories and prototyping have

been utilized in the software development process already

previously. Thus, it was also mutually agreed in Company X

that the company would benefit more of examining the use of

the Service Design methods and tools during the research and

ideation phase, than in the prototyping and implementation

phase. Hence, the Service Design sprint will focus on the first

diamond of the Double Diamond model, which includes the

phases discover and define.

 The selected Service Design methods and tools for the

remote implementation of the Service Design sprint include

the following methods and tools: desk research, semi-

structured interviews, developing key insights, mapping key

findings, 5 x Why’s?, voting and prioritization methods,

“How might we..?” questions, brainwriting, brainstorming,

mindmapping, feature planning, mapping features, idea

portfolio, personas, user stories, wireframing, prototyping,

warm-ups as check-in methods, feeling canvases as check-out

methods and compiling research reports. The methods and

tools were utilized during pre-sprint research, the actual three-

day Service Design sprint and post-sprint debriefing.

 See Figure 1 for the structure of the remote version of the

Service Design sprint. The Service Design sprint was

experimented as a pre-development phase of the agile

software development process of Company X.

V. RESULTS AND DISCUSSION

 The results of the action research cycle are compared to

previous research on the field. The findings of this research

support some of the previous findings, but also differences

and additional factors were identified during this research.

Figure 1. Structure of the remote Service Design sprint

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 33 / 191

The key findings and the discussion with previous research

will be presented under three aspects based on the benefits,

challenges and critical factors of implementing Service

Design into software development. Each subchapter will be

approached with the support of a table to present the key

findings regarding the aspect in question.

A. Identified benefits

 The benefits of Service Design that have been identified

in previous literature regarding software development [2]

include improved communication, instant feedback,

increased motivation and innovation, mindset change,

learning and decision making, identification and

prioritization of features or potential market segments and

value creation. The research done by Sauvola et al. [3]

focused on experimenting the prototyping methods of

Service Design whereas this research had the focus on

research and ideation methods. However, several similar

benefits that Sauvola et al. [3] have identified previously can

be recognized based on this research. For example, improved

internal motivation, delivering added value to the customer

and improving the understanding of the customer and typical

use cases of the software were identified based on the

empirical research and are reminiscent to the benefits

identified by Sauvola et al. [3]. Based on this research, the

identified benefits that implementing Service Design can

bring for software development are listed outright in Table 2

below.

TABLE II. IDENTIFIED BENEFITS

Key findings

– benefits

Provided empirical

support

Related findings

in previous studies

Improved internal

motivation

Focus group interview,

Case: Service Design

sprint

Sauvola et al.

(2018)

Improved

understanding of the

customer and typical
use cases of the

software

Focus group interview,
Case: Service Design

sprint,

Questionnaire survey

Sauvola et al.

(2018),

Furrer et al. (2018)

Identifying the

actual needs and

challenges of the

customer

Focus group interview,

Case: Service Design

sprint,

Questionnaire survey

Sauvola et al.

(2018),

Stickdorn et al.

(2018)

Efficient resource

allocation

Focus group interview,

Case: Service Design

sprint

Stickdorn et al.

(2018),

García et al.

(2013),

Sauvola et al.

(2018)

Delivering added

value to the

customer

Case: Service Design

sprint,

Questionnaire survey

Sauvola et al.

(2018),

Furrer et al. (2016)

Improved customer

satisfaction

Case: Service Design

sprint,

Participant observation,

Questionnaire survey

Stickdorn et al.

(2018),

Furrer et al. (2018)

B. Identified challenges

 The identified challenges of Sauvola et al. [2] differ partly
with the ones identified during this research. This may be due
to the difference between the utilized Service Design methods.
However, one similar challenge was discovered in this
research regarding the finding of Sauvola et al. [2] concerning
stakeholder availability. In this research, the related identified
challenges are commitment, selling Service Design as a
concept to the customers and involving the relevant people to
the process. Moreover, another discovered challenge of this
research is that prototyping methods are difficult to execute in
a workshop context remotely. In further iterations, as
prototyping methods are also experimented within the
workshops, the findings can be more profoundly compared to
the previous findings of Sauvola et al. [2]. The possible
challenges outright identified during this research, and that
can be faced while implementing Service Design to software
development, are listed in Table 3.

TABLE III. IDENTIFIED CHALLENGES

Key findings

– challenges

Provided empirical

support

Related findings

in previous studies

Lack of time

Focus group

interview,

Case: Service Design

sprint

Stickdorn et al.

(2018)

Commitment

Focus group

interview,

Case: Service Design

sprint

Sauvola et al.

(2018),

Junginger &

Sangiorgi (2009)

Internal assumptions

Focus group

interview,

Participant

observation,

Case: Service Design

sprint,

Questionnaire survey

Junginger &

Sangiorgi (2009)

Selling Service Design

as a concept to the

customers

Focus group

interview,

Case: Service Design

sprint,

Questionnaire survey

Sauvola et al.

(2018)

Involving the relevant

people to the process

Focus group

interview,

Participant

observation,

Case: Service Design

sprint,

Questionnaire survey

Sauvola et al.

(2018),

Stickdorn et al.

(2018)

Prototyping methods

in remote

workshops

Case: Service Design

sprint

Implementing

Service Design as

an ongoing activity

Case: Service Design

sprint

Junginger &

Sangiorgi (2009)

C. Identified critical factors

 The most important critical factor when implementing

Service Design to an organization can be perceived as

carrying out a pilot project. In order to achieve the above-

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 34 / 191

mentioned benefits and avoid recognized challenges, this

research suggests taking into account the following critical

factors when implementing Service Design into an

organization. The critical factors are proposed to be

considered when planning and executing a pilot project for

implementing Service Design to an organization. The critical

factors identified by this research are listed in Table 4.

TABLE IV. IDENTIFIED CRITICAL FACTORS

Key findings

– critical factors

Provided empirical

support

Related findings

in previous studies

Pilot project

Focus group

interview,

Case: Service Design

sprint

Junginger &

Sangiorgi (2009),

Stickdorn et al.

(2018)

Encompassing

and detailed

preparation

Case: Service Design

sprint,

Questionnaire survey

Sauvola et al.

(2018)

Discovering

suitable

Service Design

methods and tools

Focus group

interview,

Case: Service Design

sprint,

Questionnaire survey

Stickdorn et al.

(2018)

Scoping the sprint

challenge

Case: Service Design

sprint,

Questionnaire survey

Focusing on

appropriate

challenges

Case: Service Design

sprint

Finding a “light-

weight” solution

Focus group

interview,

Case: Service Design

sprint,

Stickdorn et al.

(2018)

Providing concrete

results and findings

Case: Service Design

sprint, Questionnaire

survey

Stickdorn et al.

(2018)

Taking into account

the possible impacts of

a remote

implementation

Case: Service Design

sprint

 The findings of the empirical research of this study
support the above-mentioned critical factors. Similar factors
have been highlighted in previous literature [4][14] regarding
Service Design as well. However, this research presents the
critical findings in respect of software development and
hence supports the corresponding findings of Sauvola et al.
[2].

VI. CONCLUSIONS

 The first research question “How can Service Design

methods and tools be implemented into internal processes in

B2B software development?” was addressed by mapping out

a suitable way of experimenting the implementation of

Service Design to the case company. The research question

was first approached with the focus group interview in order

to acquire understanding of the assumptions and knowledge

that the employees of Company X had related to Service

Design. The results of the focus group interview disclosed

that employees of Company X saw potential benefits

regarding Service Design such as improving internal

motivation and understanding the customer more profoundly.

However, employees were simultaneously concerned of the

lack of time and commitment regarding both internal and

external stakeholders. The factors that were highlighted in the

focus group interview were taken into account while planning

the pilot project for implementing Service Design methods

and tools in Company X.

 The Service Design sprint was created based on the

knowledge gained from previous literature as well as utilizing

the know-how of the employees of Company X. On the

grounds of the research process it was discovered that

implementing Service Design methods and tools into internal

processes requires Service Design to be considered as an

ongoing activity in the organization. This means that in order

to embed Service Design to the organization permanently

further Service Design iterations are required. The Service

Design activities should be continuously improved and

modified if needed to achieve even better results.

 It can be stated that a carefully planned pilot project is in

a key role when implementing Service Design into B2B

software development. Regarding the second research

question it can be concluded that Service Design can be

implemented to B2B software development through a pilot

project, for example a Service Design sprint, which involves

both internal and external stakeholders. Moreover, it was

experimented that a compact Service Design sprint can be

used as a pre-development phase in agile software

development. In addition, to be able to carry out a successful

Service Design pilot project it is crucial to communicate the

objectives of the pilot project as well as the results and

findings to all stakeholders.

 The second research question “What are the benefits,

challenges and critical factors when implementing Service

Design methods and tools into software development?” was

first addressed through the focus group interview by initially

mapping out the benefits, challenges and critical factors that

employees of Company X saw possible regarding the

implementation of Service Design. These findings were then

taken into account while planning action and creating the

pilot project which was based on the three-day Service

Design sprint. Lastly, the final results of the pilot project were

mirrored and compared to the previous findings of the focus

group interview while evaluating and specifying learning.

 Regarding the second research question it can be

concluded that the possible benefits of Service Design in

software development include improved internal motivation,

improving understanding of the customer and typical use

cases of the software, identifying the actual needs and

challenges of the customer, efficient resource allocation,

delivering added value to the customer and improved

customer satisfaction. Furthermore, achieving all these

benefits while utilizing Service Design can simultaneously

assist the organization in finding a common language

between different teams and stakeholders. On the other hand,

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 35 / 191

the possible challenges that may be faced when implementing

Service Design in software development are related with the

lack of time and commitment, internal assumptions, selling

Service Design as a concept to the customer, involving the

relevant people to the process, prototyping methods in remote

workshops and implementing Service Design as an ongoing

activity.

 Related to the identified benefits and challenges it can be

further concluded that the motivation or reason behind the

above-mentioned factors often depends on the stakeholder in

question. For example, the lack of time for Service Design

activities from the developers point of view may be related to

the pressure of delivering new features promptly, whereas

from the customers point of view this may be due to the fact

that they might need a permission for participating to a

Service Design sprint from their superiors, who might not

realize the value of Service Design activities with the service

provider. In order to truly understand the motivations behind

the identified benefits and challenges, further research about

the background of different stakeholders may be required.

The findings could then be advisable to consider while

planning the pilot project for implementing Service Design.

 This research proposes that by taking into account the

following critical factors when implementing Service Design

into software development the above-mentioned challenges

are more likely to be overcome and consequently the above-

mentioned benefits are more likely to be achieved. The

critical factors when implementing Service Design are

composed on the pilot project carried out in Company X. The

key critical factor identified by this research is starting the

implementation of Service Design through a pilot project.

Other critical factors identified are suggested to be

considered while planning and executing the Service Design

pilot project in question. The critical factors regarding the

pilot project consist of detailed and encompassing planning,

discovering suitable Service Design methods and tools,

scoping the sprint challenge, focusing on appropriate

challenges, finding a lightweight solution and providing

concrete results and findings.

 In addition, this research demonstrated that carrying out a

design sprint remotely is possible and profitable. While

planning a remote implementation of Service Design the

remote aspect should be consciously investigated as working

remotely may bring its own challenges to the implementation.

 The limitations of this research include that the research

was carried out in a single case company, which means that

the results may differ in distinct circumstances. Therefore,

generalizations based on the results of this research are

limited. Albeit, the results provide an approach for

implementing Service Design to software development, the

sprint was just one way of carrying out a pilot project.

Different approaches may be discovered more suitable and

functional in other organizations. Therefore, each

organization should discover the best practices for

embedding Service Design in the organization in question.

 For future studies, this research suggests validating the

Service Design sprint model. It can be stated that the Service

Design sprint model presented in this research requires

further iterations before it can be considered practical. For

example, experimenting the Service Design sprint as the first

phase in agile software development could be further studied.

The way Service Design and agile software development may

be able to complete one another is worth examination in

practice. In addition, evaluation of combining a design sprint

and a co-creation workshop would be interesting. An

interesting similar approach combining design thinking, lean

startup and agile development is provided by Flores et al.

[25].

 Another topical subject of research would be comparing

the results of traditionally held workshops to the remote

workshops. The remote working aspect is truly actual

considering the current situation globally.

REFERENCES

[1] C. Elbert, “Looking into the future,” IEEE Software, Vol.

32(6), pp. 92–97, 2015.

[2] T. Sauvola, M. Kelanti, J. Hyysalo, P. Kuvaja, and K.
Liukkunen, "Continuous Improvement and Validation with
Customer Touchpoint Model in Software Development,"
CSEA 2018: The Thirteenth International Conference on
Software Engineering Advances, pp. 52–60, 2018.

[3] T. Sauvola, S. Rontti, L. Laivamaa, M. Oivo, and P. Kuvaja,
“Integrating Service Design Prototyping into Software
Development,” ICSEA 2016: The Eleventh International
Conference on Software Engineering Advances, pp. 325–332,
2016.

[4] M. Stickdorn, M. E. Hormess, A. Lawrence, and J. Schneider,
“This Is Service Design Doing: Applying Service Design
Thinking in the Real World”. O'Reilly Media, England, 2018.

[5] P. Arslan, “Applications of service design in the software
industry,” In: Miettinen, S. (edit.) An Introduction to Industrial
Service Design, pp. 25-34. Routledge. New York, 2017.

[6] R. Garcia, “Creating and Marketing New Products and
Services,” CRC Press. Boca Raton, 2014.

[7] Service Design Network. [Online]. Available from:
https://www.service-design-network.org/about-service-
design, [retrieved: 8, 2020.]

[8] S. Miettinen, S. Rontti, and J. Jeminen, “Co-Prototyping
Emotional Value,” 19th DMI: Academic Design Management
Conference Design Management in an Era of Disruption, pp.
1–19, 2014.

[9] R. Alves and N. J. Nunes, “Towards a taxonomy of service
design methods and tools,” Lecture Notes in Business
Information Processing 2013, Vol.143, pp. 215–229, 2013.

[10] E. Yu and D. Sangiorgi, “Service Design as an Approach to
Implement the Value Cocreation Perspective in New Service
Development,” Journal of Service Research 2018, Vol. 21(1),
pp. 40–58, 2018.

[11] F. Kensing, “Methods and Practices in Participatory Design,”
ITU Press, Copenhagen, Denmark, 2003.

[12] D. Saffer, “Designing for Interaction,” New Riders Press.
ISBN 0-321-43206-1, 2006.

[13] S. Holmlid, “Participative, co-operative, emancipatory: From
participatory design to service design. DeThinking Service

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 36 / 191

ReThinking Design,” First Nordic Conference on Service
Design and Service Innovation, pp. 105–118, 2009.

[14] S. Junginger and D. Sangiorgi, “Service design and
organisational change: Bridging the gap between rigor and
relevance,” International Association of Societies of Design
Research, pp. 4339–4348, 2009.

[15] J. Chaves and S. de Freitas, “A Systematic Literature Review
for Service-Oriented Architecture and Agile Development,”
ICCSA 2019: Computational Science and Its Applications –
ICCSA 2019, pp. 120–135, 2019.

[16] S. Nerur and V. Balijepally, “Theoretical reflections on agile
development methodologies,” Communications of the ACM—
Emergency Response Information Systems: Emerging Trends
and Technologies, Vol. 50(3), pp. 79–83, 2007.

[17] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Information and Software
Technology, Vol. 50, pp. 833–859, 2008.

[18] S.G. Yaman et al. “Customer Involvement in Continuous
Deployment: A Systematic Literature Review,” In: Daneva M.,
Pastor O. (eds) Requirements Engineering: Foundation for
Software Quality. REFSQ 2016. Lecture Notes in Computer
Science, Vol. 9619, pp. 249–265, 2016.

[19] M. Laanti, J. Similä, and P. Abrahamsson, “Definitions of
Agile Software Development and Agility,” Communications in
Computer and Information Science, Vol. 364, pp. 247–258,
2013.

[20] S. Balaji and MS. Murugaiyan, “Waterfall vs. V-Model vs.
Agile: A comparative study on SDLC,” International Journal
of Information Technology and Business Management, Vol. 2
(1), pp. 26–30, 2012.

[21] R. Baskerville, “Investigating Information Systems with
Action Research,” Communication of the Association for
Information Systems, Vol. 2, Article 19, pp. 2-32, 1999.

[22] H. Madden and A.T. Walter, “Using an Action Research
Approach to Embed Service Design in a Higher Education
Institution,” Swedish Design Research Journal, pp. 40-50,
2016.

[23] P. Eriksson and A. Kovalainen, “Qualitative Methods in
Business Research. Introducing Qualitative
Methods: Qualitative methods in business research.” SAGE
Publications Ltd. pp. 194–209, 2011.

[24] M. E. Porter “The Competitive Advantage of Nations,” New
York: Free Press, 1990.

[25] M. Flores et al. “How Can Hackathons Accelerate Corporate
Innovation?,” In: Moon I., Lee G., Park J., Kiritsis D., von
Cieminski G. (eds) Advances in Production Management
Systems. Production Management for Data-Driven, Intelligent,
Collaborative, and Sustainable Manufacturing. APMS 2018.
IFIP Advances in Information and Communication
Technology, vol 535. Springer, Cham, 2018.

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 37 / 191

A Machine Learning Approach Towards Automatic
Software Design Pattern Recognition Across Multiple Programming Languages

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract—As the amount of software source code increases,
manual approaches for documentation or detection of software
design patterns in source code become inefficient relative to the
value. Furthermore, typical automatic pattern detection tools
are limited to a single programming language. To address this,
our Design Pattern Detection using Machine Learning
(DPDML) offers a generalized and programming language
agnostic approach for automated design pattern detection
based on Machine Learning (ML). The focus of our evaluation
was on ensuring DPDML can reasonably detect one design
pattern in the structural, creational, and behavioral category
for two popular programming languages (Java and C#). 60
unique Java and C# code projects were used to train the
artificial neural network (ANN) and 15 projects were then
used to test pattern detection. The results show the feasibility
and potential for pursuing an ANN approach for automated
design pattern detection.

Keywords–software design pattern detection; machine
learning; artificial neural networks; software engineering.

I. INTRODUCTION
In the area of software engineering, software design

patterns have been well-documented and popularized,
including the Gang of Four (GoF) [1] and POSA [2]. The
application of documented solutions to recurring software
design problems has been a boon to improving software
design quality and efficiency.

However, as the design patterns are mostly described
informally, their implementation can vary widely depending
on the programming language, natural language, pattern
structure and terminology awareness of the programmer,
experience, and interpretation. The actual detection and
documentation of these software design solution patterns has
hitherto relied on the experience, recollection, and manual
analysis of experts. The pattern books referenced above were
published over 25 years ago, and while many millions of
lines of code have since been programmed, they have not
been subjected to any comprehensive analysis. Furthermore,
any project documentation of applied patterns, if existent,
may be inconsistent with the current source code reality (e.g.,
prescriptive documentation of intentions, adaptations during
development, maintenance changes) and thus not reflected or
necessarily trustworthy. Additionally, known pattern variants
may occur, the patterns may evolve over time with
technology, and in fact new patterns may unknowingly be
developed that the experts may be unaware of. The many
different programming languages used, the different natural

languages of programmers that affect naming, tribal
community effects, the programmer's (lack of) knowledge of
these patterns and use of (proper) naming and notation or
markers, make it difficult to identify pattern usage by experts
or tooling. While many code repositories are accessible to
the public on the web, many more repositories are hidden
within companies or other organizations and are not
necessarily accessible for analysis. While determining actual
pattern usage is beneficial for identifying which patterns are
used where and can help avoid unintended pattern
degradation and associated technical debt and quality issues,
the investment necessary for manual pattern extraction,
recovery, and archeology is not economically viable.

While automated feature extraction of software design
patterns from documentation or code repositories is not yet
commonly available among popular software development
tools, research has attempted to find automated techniques
that work. However, most of the published techniques have
not applied ML to this problem area. One implicit challenge
for most approaches is to demonstrate coverage of all 23 of
the GoF patterns, which very few if any achieve.

This paper contributes Design Pattern Detection using
Machine Learning (DPDML), a generalized and
programming language independent approach for automated
design pattern detection based on ML. Our realization of the
core of the solution approach shows its feasibility, and an
evaluation using 75 unique Java and C# code projects with
three common GoF patterns for training and testing provides
insights into its potential and limitations.

The structure of this paper is as follows: the following
section discusses related work. Section 3 describes our
solution approach. In Section 4, our realization is presented.
This is followed by our evaluation and then a conclusion.

II. RELATED WORK
Various approaches have been used for software design

pattern detection, and they can be categorized based on
different analysis styles, such as structural, behavioral, or
semantic, with some utilizing a combination of styles. Many
approaches include some form of structural analysis for
pattern detection. Within this style, ML approaches use
classification, decision tree, Artificial Neural Networks
(ANNs), or support vector machines (SVMs), mapping the
pattern detection problem to a learning problem. Examples
include MARPLE-DPD [3], Galli et al. [4], and Ferenc et al.
[5]. Wang et al. [6] uses a reason-based approach based on
matrices. Examples of rule-based approaches include

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 38 / 191

Sempatrec [7] and FiG [8], which use an ontology
representation. Metric-based approaches include MAPeD [9]
and PTIDEJ [10]. Fontana et al. [11] describe a micro-
structure-based structural analysis approach. In the
behavioral analysis style, graph-based approaches include:
DPIDT [12] that analyzes subpatterns in UML, and a UML
semantic graph by Mayvan and Rasoolzadegan [13]. An
example semantic-analysis style approach is Issaoui et al.
[14], which uses an XML representation. DP-Miner [15] is a
matrix-based approach using UML that involves structural,
behavioral, and semantic analysis. Uchiyama et al. [16] uses
a metric-based approach that involves both structural and
behavioral analysis.

The styles and approaches used are quite fractured and
none has reached a mature and high-quality result with an
accessible and executable implementation that we could
evaluate. We are not aware of any approach yet that can
automatically and reliably detect all 23 GoF design patterns.
Most have some limitation or drawback, and the success rate
reported among the approaches varies tremendously. We
conclude further investigation and research in this area is
essential to enhancing the knowledge surrounding this area.
Our solution approach is unique in offering: 1) a generalized
code-centric approach that combines available data (rather
than focusing on only one category of information) without
necessarily requiring behavioral analysis, 2) being
programming language-independent to support multiple
popular programming languages, and 3) leveraging ML.

III. SOLUTION
Our full holistic DPDML solution approach is shown in

Figure 1, indicating the realized DPDML-C core subset. It is
based on the following principles:

Figure 1. General DPDML comprehensive solution approach with
realized core DPDML-C (shown in grey).

ML model: by utilizing ML to analyze sample data, the
model learns how to classify new unknown data, in our case
to differentiate design patterns. Our realization may apply or
combine any ML model that suites the situation. Currently,
an ANN is used because we were interested in investigating
its performance, and intend in future work to detect a wide
pattern scope, pattern variants, and new patterns. From our
standpoint, alternative non-ML methods such as creating a
rule-based system by hand would require labor and expertise
as the number of patterns increases and new undiscovered
patterns should be detected. With an appropriate ML model,
these should be learned automatically and be more readily
detected.

Programming language-independent: the source code is
converted into an abstracted common format for further
processing. For this, in our realization we currently utilize
srcML [17], thus our realization can currently support any
programming languages that have a mapping to the srcML
XML-based format, including C, C++, Java, and C#. If other
abstract syntax formats are standardized and available for
analysis, these also can be considered. Our main purpose is
to extract various metrics in a common fashion from the
source code.

Semantic analysis: common pattern signal words in the
source code can be used as an indicator or hint for specific
pattern usage. Additional natural languages can be supported
to detect usage of pattern names or their constituent
components in case they were coded in other languages. Our
realization supports German, Russian, and French.

Static code metric extraction: various static code metrics
are utilized to detect and differentiate design patterns.

Graph analysis: code repositories are analyzed using
graph-based tools like jQAssistant and metrics extracted.

Dynamic analysis: tracing runtime code behavior can
detect behavioral similarities in event sequencing, especially
for the creational or behavior patterns. From these traces
event and related runtime metrics can be extracted.

UML structural analysis: in case a UML model exists,
the XMI structures can be analyzed and indicators extracted,
such as signal words or other structural metrics. If no UML
diagrams or XMI exist, they could be generated by reverse
engineering UML tools and structural metrics extracted.
Furthermore, a convolutional network could analyze UML
images for similarities to support pattern classification.

Metric normalization: the value ranges of metrics are
normalized to a scale of 0-1 to improve ANN performance.

The hypothesis driving our DPDML solution and
investigation is that by utilizing all available data and more
specifically metrics related to the design patterns, and
feeding this input into an ANN or other ML models, we can
achieve suitable classification accuracy. From a practicality
standpoint, this could reduce the overall manual labor
involved in identifying potential patterns, classifying them,
and can potentially assist developers, maintainers, or experts
involved in software archeology.

IV. (PARTIAL) REALIZATION
For our realization to apply ML, a sufficient data set of

different and realistic projects was needed to support
supervised learning. Not all portions of the full solution
approach could yet be realized due various unexpected
obstacles and project resource constraints, and we plan to
address the complete DPDML realization in future work.

A. Comprehensive DPDML Challenges
UML structural analysis: most of the 60 design pattern

code repositories we used did not contain any or sufficient
UML for us to use in supervised training or testing. If they
contained UML, it would be time-consuming to manually
verify the code to determine if they are correspondingly valid
UML diagrams. If they were created manually rather than
generated, they may contain some additional information or

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 39 / 191

signal words not necessarily available in the code. If,
however, round-trip UML tools were used, then the code
reflects the information found in the diagrams, and thus the
diagrams hold no additional information. While UML can be
helpful for human analysis and verification because it distills
code structure visually, they are difficult to automatically
verify against code and machine-based analysis does not
necessarily benefit from or need the simplification. If UML
diagrams were generated directly from the code by a UML
tool triggered by DPDML, little additional value would
currently be gained, since the basis is the code itself, and no
structural information not already contained or derivable
from the code is created. Given a common UML generator,
structural visual image comparison techniques could be
applied with a convolutional network to determine if it helps
with classification. Lacking a UML training and testing
dataset of sufficient size, this portion of our solution concept
will be evaluated in future work.

Dynamic analysis: many available code projects have
different runtime environments, languages, libraries,
concurrent processing, and require specialized tooling to
acquire behavior tracing data, which is very computing
resource intensive, time consuming to manually setup and
acquire, and requires specialized automated analysis tools,
since no formats or tool standards exist in this area. In the
tracing, one would have to ensure that the patterns are
actually substantially executed, which can be issue for larger
projects. Furthermore, creating sufficiently large training sets
for ML would be challenging. For most users of the
approach we are seeking, requiring this level of analysis
would perhaps be an academic exercise and could improve
our understanding, but it is neither practical nor
economically viable for continued usage, and we thus did not
realize this portion of our solution concept.

Graph analysis: Analysis of code repositories using
graph-based tools such as jQAssistant could be used, but
similar to the dynamic analysis issues, tools such as
jQAssistant require compiled binaries for analysis. Given
this, it could be used to query various aspects and enhance
our classification results and can be used to assist with
manual verification. However, since our training data did not
consist wholly of compiled code, we intend to address the
realization of this aspect in future work.

Various analysis tools could potentially improve the
results, but these are usually developed with a certain
purpose that influences the interaction modes and the output.
For instance, plugins for the Eclipse IDE are often focused
on Java, are primarily graphical to help a developer analyze
the current project, but are not designed for automated
analysis of many projects in various languages from the
command line. Since we chose to include both Java and C#
support, no IDE-specific tooling was utilized. Beyond IDE
tools, reverse-engineering tools such as Imagix 4D or code
analysis tools like SourceMeter require either commercial
licenses or are missing a command-line mode, and are
limited in how they can be used for automated analysis
situations in our context.

B. Core DPDML-C Implementation
A key aspect of our investigation was to determine if the

core of the DPDML solution, metrics-based ML using an
ANN, works as intended. Also, since source code should
usually be readily available, whereas other information
(binaries may not build, instrumentation and UML may not
exist), our prototype realization effort focused on the source
code analysis, known as the core DPDML-C as shown in
grey in Figure 1. Due to resource and time constraints, we
initially focused on having the network learn to detect one
pattern out of each of three pattern categories: from the
structural category, Adapter; from the creational patterns,
Factory; and from the behavioral patterns, Observer. This
pattern scope could then be expanded in future work if the
outcome is positive.

Python was used to implement our prototype due to its
versatility and the available libraries to support the
implementation of ANNs. TensorFlow was chosen along
with Keras as a top-layer API.

Metric-based matching: The ElementTree parser was
used to traverse srcML and count the specific XML-tags.
The metric values were not separated by roles or classes, but
are merged and evaluated as a whole. The metrics used were
inspired by Uchiyama et al. [16] and are shown in Table I.

TABLE I. OVERVIEW OF METRICS

Abbreviation Description
NOC Number of classes
NOF Number of fields
NOSF Number of static fields
NOM Number of methods
NOSM Number of static methods
NOI Number of interfaces
NOAI Number of abstract interfaces

Semantic-based matching: An obvious approach to

pattern detection is naming. If a developer already used
common design pattern terminology in the code, then this
should be utilized as a pattern detection indicator. For our
signal word detection, we translated the signal words to
German, French, and Russian to improve results for non-
English code.

Semantic variations: To determine if other signal words
beyond the design pattern name were used in
implementations, we analyzed several examples of
implemented design patterns and any UML diagrams, if
provided. 12 additional signal words were selected, four for
each pattern as shown in Table II.

TABLE II. SIGNAL WORDS FOR DESIGN PATTERNS

Pattern Signal Words
Adapter Adapter adaptee target adapt
Factory Factory create implements type
Observer observer state update notify

Internationalization: To test internationalization, the

Python library translate was used to translate the signal
words to German, French, and Russian. Rather than
extending the list of metrics passed to the ANN, a match
with a translated word is counted in the same input parameter

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 40 / 191

as the original English words. Applying Natural Language
Processing (NLP) to reduce words by stemming or creating
lemmas to compare to a defined word list would also be
possible, and may improve or deteriorate the results, if for
instance the input array contained further zeros when no
signal words were found.

C. Artificial Neural Network (ANN)
Based on our realization scope, since the input array is

not multidimensional, deep neural networks (DNNs) with
additional layers would not necessarily yield improved
results. We thus chose to realize one input layer, two hidden
layers, and one output layer as shown in Figure 2. We
created the network with the Keras API with the TensorFlow
Python library.

Figure 2. ANN model overview created with Keras.

The input layer size matches the data points, and as there
are 7 metrics and 12 semantic match values, this makes 19
input values total. The input model structure is a numpy
array as follows:
[NOC, NOF, NOSF, NOM, NOSM, NOI, NOAI, ASW1,
ASW2, ASW3, ASW4, FSW1, FSW2, FSW3, FSW4,

OSW1, OSW2, OSW3, OSW4]
The first 7 values correspond to Table I while the rest

indicate the number of signal word matches from Table II.
SW=Signal Word, A=Adapter, F=Façade, and O=Observer,
1-4 implies the corresponding table column. Only 7 metric
values are utilized when no signal words exist.

The first hidden layer is a dense layer (with each neuron
fully connected to the neurons in the prior layer) consisting
of 32 neurons. The activation function was a rectified linear
unit (ReLU). The second layer is a dense layer with 16
neurons. This conforms with the general guideline to
gradually decrease the neurons as one approaches the output
layer. The output layer consists of three neurons to match the
three design patterns that should be detected. The "Softmax"
activation method is used, which is often used in
classification problems and supports identifying the
confidence of the network in its decision. The "Adam"
algorithm is a universal optimizer that is recommended in a
wide assortment of papers and guides. As no specialized
optimizer was needed, "Adam" with its default values was
chosen as defined in [18]. No regularization was applied in
each layer. Adam automatically adjusts and optimizes the

learning rate. Sparse categorical crossentropy was applied as
the loss function for this multi-class classification task.

The size of the ANN should fit the size of the problem.
Small adjustments to the ANN structure showed no
significant performance impact, whereas significantly
increasing the neuron count or layer count negatively
impacted results. With two hidden layers and 48 neurons, the
first layer contains 640 parameters, the second layer 528, and
the output layer 51, resulting in 1219 parameters that are
adjusted during training.

The network is trained in epochs, wherein the complete
training set is sent through the network with weights
adjusted. As the weights and metrics change per epoch, an
early-stopping callback stops the training if the accuracy of
the network decreases over more than 10 epochs, saving the
network that had the best accuracy. A validation dataset is
typically used during training to monitor results on unlearned
data after each epoch, but as our training set was limited, we
used a prepared testing dataset with known labels.

D. Training Datasets
As to possible design pattern training sets, the Pattern-

like Micro-Architecture Repository (P-MARt) includes a
collection of microstructures found in different repositories
such as JHotdraw and JUnit. However, because these
patterns are intertwined with each other, they do not provide
isolated example specimens for training the ANN. The
Perceptrons Reuse Repositories could theoretically provide
many instances of design patterns for a training dataset, but
no results were provided on the website during the timeframe
of our realization, and while the source code analyzer is free,
the servers could not be reached.

We did manage to find training data as detailed in the
next section. Since our initial intent for DPDML was a much
broader scope for data pattern mining, and because we
expected a large supply of sample data, we focused on an
ANN realization. We were also interested in determining if
we could train an ANN to detect these patterns with
relatively few samples. However, due to unexpected
additional resource and time constraints involved in finding
pattern samples manually, we had to reduce the number of
design patterns involved, and could not compare the ANN
with alternative classification schemes such as Naïve Bayes,
Decision Tree, Logistic Regression, and SVMs, but this will
be considered in future work.

V. EVALUATION
The evaluation corresponds to the three patterns that

were the focus of the realization: from the structural
category, Adapter; from the creational patterns, Factory; and
from the behavioral patterns, Observer. The reason for
choosing these three is that each represents a different
pattern category and these are popular patterns. Furthermore,
the number of While such simple design patterns might well
be better detected with other ML models, our overall
DPDML is much more ambitious, and we thus wanted to
validate that an ANN would still work suitably (perhaps not
optimally) in a more constrained low-data case.

30Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 41 / 191

A. Dataset
As shown in Figure 3, the dataset consisted of 75 small

single-pattern code projects from public repositories, 49 in
Java and 26 in C# (mostly from github and the rest from
pattern book sites, MSDN, etc.), evenly distributed into 25
unique code projects per pattern. They were specifically
labeled as examples of these patterns, and manually verified.
These popular languages are supported by srcML, and the
mix permits us to demonstrate the programming language
independent principle. The inequality between language
examples is likely due to the language popularity and age.

Figure 3. Pattern-specific datasets in columns with programming
language specific training sets on the top rows and test sets on the bottom.

Training data: Of the 75 projects, 20 per pattern category
(60 total) were selected for training the ANN, with between
60-75% of the code projects being in Java (green) and the
remainder in C# (blue) as shown in the upper section of
Figure 3.

Test data: The remaining 15 projects of the 75 (five per
pattern category with 3 in Java and 2 in C#) were used for
the test dataset. In order to test whether signal word pattern
matching significantly impacts the ANN results, these
projects were duplicated and their signal words removed or
renamed, resulting in 6 Java (orange) and 4 C# (purple)
projects per pattern/category as shown in the lower section of
Figure 3. This resulted in 10 test projects per pattern.

B. Supervised Training
As shown in Figure 4, during training the accuracy

improves from 47% to 95% in the first seven epochs,
thereafter fluctuating between 85-95% with a peak of 96.7%
in the 27th epoch. The network loss metrics are shown in
Figure 4. The loss value drops from an initial 1.0841 to
0.2816 in epoch 17 before small fluctuations begin, with the
trend continuing downward. The loss value of 0.1995 in
epoch 27 is an adequate prerequisite for detecting patterns in
unknown code projects, and we saw little value in increasing
the training epochs. The early stopping callback was not
triggered since the overall accuracy of the network is still
increasing despite the fluctuations, indicating a positive
learning behavior and implying that with the given data
points, it is finding structures and values that allow it to
differentiate the three design patterns from each other. We
thus chose to stop the training at 30 epochs, which took 2-45

seconds depending on the underlying hardware environment
(any Graphical Processing Unit (GPU) with CUDA support
will improve processing times).

Considering that the worst case of random guessing
would result in an accuracy of 33%, the accuracy result of
97% is significantly better and shows the potential of the
approach.

Figure 4. Network accuracy and loss over 30 epochs of training.

The training results show that not only is the ANN
learning to differentiate the patterns, its confidence for these
determinations increases during the training. By epoch 27
with an accuracy of 96.7% and a loss of 0.1995, only two out
of the 60 total code projects spread evenly across the three
design patterns are incorrectly classified.

C. Testing
Recall from Section V.A. that for the test dataset, 15

unique code projects were taken (five unique projects per
pattern), and these were then duplicated and their signal
words removed, resulting in 30 code projects. By removing
the signal words, we can determine the degree of dependence
of the network on these signal words.

During testing, the reported accuracy dropped to 83.3%,
meaning 25 of the 30 patterns were correctly identified.
Furthermore, the loss went to 0.4060, meaning a loss in
confidence of its determination. A deterioration in these
values is to be expected when working with unfamiliar data.

The results show that the network was able to use its
learned knowledge in training to correctly classify a majority
of unknown projects (25 out of 30).

TABLE III. CONFUSION MATRIX BASED ON 30 CODE PROJECTS

Predicted
Labels

True Labels Accuracy Precision F1 Score
Factory Adapter Observer

Factory 7 0 0 90% 100% 0.82
Adapter 1 9 1 90% 81% 0.86
Observer 2 1 9 86.7% 75% 0.82

Recall 70% 90% 90%

The confusion matrix is shown in Table III. The

precision column indicates how many of the predicted labels
are correct, while the recall row indicates how many true
labels were predicted correctly. Fewer false positives
improve the precision, while fewer false negatives improve
the recall value. All the code projects predicted to be Factory
were correct (a precision of 100%), while the remaining 30%
of the Factory pattern projects were incorrectly classified as
another pattern (these false negatives result in a recall of
70%). This indicates that the Factory is more easily confused

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 42 / 191

with the other patterns, a possible explanation being that the
metrics we used may better differentiate more involved
(more complex) patterns. The other patterns had less
precision (81% or 75%), but a better recall of 90%. The
overall F1 score is 0.83.

As to the influence of signal words, our hypothesis that
signal words would improve the results proved hitherto
unfounded. The classification precision was not affected by
signal words, with 12 projects with signal words and 13
without being correctly classified. Additional test runs
showed similar results (+/- one project). However, in future
work we will investigate this further as we increase the
statistical basis.

The results show suitable accuracy of the DPDML-C,
and we believe a generalization of the DPDML approach
across the GoF and further patterns to be promising.

VI. CONCLUSION
This paper presented our DPDML solution approach, a

generalized and source code-based but programming
language-independent approach for automated design pattern
detection based on ML. Our realization of the core DPDML-
C shows its feasibility for source code-based analysis. An
evaluation using 60 unique Java and C# code projects for
training and then 15 code projects for testing. With an
accuracy of 83% and loss of 0.4060 during testing, the
results show the feasibility and potential for pursuing an
ANN approach for automated design pattern detection as
well as some of the limitations. Furthermore, no cost-
intensive behavioral analysis was involved to achieve this
result. Our results for the three patterns did not show that
signal words substantially improve results, indicating that
other pattern characteristics can potentially suffice as
indicators. While our initial focus on three fundamental
patterns is obviously not of practical use yet, it shows
promise for extending it to others.

Future work will investigate the inclusion of additional
pattern properties and key differentiators to improve the
results even further. This includes analyzing the network
classification errors in more detail to further optimize the
network accuracy, adding support for the remaining GoF
patterns, utilizing semantic analysis with NLP capabilities on
the code for additional natural languages, supporting
additional programming languages such as C++, and
extending our prototype realization to include additional
code metrics, UML structural analysis (if UML is available),
graph-based analysis, and dynamic behavioral analysis if
traces are provided. Also, we intend to evaluate pattern
detection when they are intertwined with other patterns and
evaluate accuracy, performance, and practicality on large
code bases. We will also investigate the detection of new
design patterns and variants to the traditional patterns.
Furthermore, we intend to apply cross-validation and
consider alternative classification schemes such as Naïve
Bayes, Decision Tree, Logistic Regression, and SVMs.
Thereafter, we intend to do an empirical industrial case
study.

ACKNOWLEDGMENT
The author thanks Florian Michel for his assistance with

the design, implementation, evaluation, and diagrams.

REFERENCES
[1] E. Gamma, Design patterns: elements of reusable object-

oriented software. Pearson Education India, 1995.
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal, Pattern-oriented software architecture: a system of
patterns, Vol. 1. John Wiley & Sons, 2008.

[3] M. Zanoni, F. A. Fontana, and F. Stella, "On applying
machine learning techniques for design pattern detection," J.
of Systems & Software, 2015, vol. 103, no. C, pp. 102-117.

[4] L. Galli, P. Lanzi, and D. Loiacono, "Applying data mining to
extract design patterns from Unreal Tournament levels,"
Computational Intelligence and Games. IEEE, 2014, pp. 1-8.

[5] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, "Design pattern
mining enhanced by machine learning," 21st IEEE Int'l Conf.
on Softw. Maintenance (ICSM'05), IEEE, 2005, pp. 295-304.

[6] Y. Wang, H. Guo, H. Liu, and A. Abraham, "A fuzzy
matching approach for design pattern mining," J. Intelligent &
Fuzzy Systems, vol. 23, nos. 2-3, pp. 53-60, 2012.

[7] A. Alnusair, T. Zhao, and G. Yan, "Rule-based detection of
design patterns in program code," Int'l J. on Software Tools
for Technology Transfer, vol. 16, no. 3, pp. 315-334, 2014.

[8] M. Lebon and V. Tzerpos, "Fine-grained design pattern
detection," IEEE 36th Annual Computer Software and
Applications Conference, IEEE, pp. 267-272, 2012.

[9] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection
approaches," Innovations in Systems and Software
Engineering, vol. 11, no. 1, pp. 39-53, 2015.

[10] Y. G. Guéhéneuc, J. Y. Guyomarc’h, and H. Sahraoui,
"Improving design-pattern identification: a new approach and
an exploratory study," Software Quality Journal, vol. 18, no.
1, pp. 145-174, 2010.

[11] F. A. Fontana, S. Maggioni, and C. Raibulet, "Understanding
the relevance of micro-structures for design patterns
detection," Journal of Systems and Software, vol. 84, no. 12,
pp. 2334-2347, 2011.

[12] D. Yu, Y. Zhang, and Z. Chen, "A comprehensive approach
to the recovery of design pattern instances based on sub-
patterns and method signatures," Journal of Systems and
Software, vol. 103, pp. 1-16, 2015.

[13] B. B. Mayvan and A. Rasoolzadegan, "Design pattern
detection based on the graph theory," Knowledge-Based
Systems, vol. 120, pp. 211-225, 2017.

[14] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection
approaches. Innovations in Systems and Software
Engineering," vol. 11, no. 1, pp. 39-53, 2015.

[15] J. Dong, Y. Zhao, and Y. Sun, "A matrix-based approach to
recovering design patterns," IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39,
no. 6, pp. 1271-1282, 2009.

[16] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo,
"Design pattern detection using software metrics and machine
learning," First International Workshop on Model-Driven
Software Migration (MDSM 2011), p. 38-47, 2011.

[17] M. Collard, M. Decker, and J. Maletic, "Lightweight
transformation and fact extraction with the srcML toolkit,"
IEEE 11th international working conference on source code
analysis and manipulation, IEEE, 2011, pp. 173-184.

[18] D. Kingma and J. Ba, "Adam: A method for stochastic
optimization," arXiv preprint arXiv:1412.6980, 2014.

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 43 / 191

Systematic Review on the Use of Metrics for Estimating the Effort and Cost of
Software Applicable to the Brazilian Public Sector

Washington Henrique Carvalho Almeida1, Felipe Furtado1, Luciano de Aguiar Monteiro1, Fernando Escobar2 and
Sahra Karolina Gomes e Silva3

1Center for Studies and Advanced Systems of Recife – CESAR School
Recife, Brazil

2PMI-DF
Brasília, Brazil
3UNINASSAU
Teresina, Brazil

E-mail: {whca, fsfs, lam}@cesar.school
E-mail: {fernando.escobar.br, sahrask}@gmail.com

Abstract— This article presents a systematic literature review
concerning the use of metrics for estimating effort, cost, and
timescale in the scope of software development services for the
federal public administration sector, which seeks to obtain
subsidies to reply to what metrics are used around the world
and can be adopted within the Brazilian normative framework
and applied to the sourcing of Information Technologies
services. The systematic review is strongly related to the
knowledge of associated literature, which can help us to
understand the question. The research was conducted in some
databases (AMC Digital Library, IEEE Xplore, Science Direct
– Elsevier, Springer, Annals SBES and Annals SBQS) to which
many filters were applied to obtain a set of articles that with
thematic synthesis can highlight the adoption of expert-based
estimation technique and metrics that address complexity.
Finally, it was possible to find that there is truly little material
related to the Brazilian case, which can highlight the
importance of both systematic review and research.

Keywords-systematic review; metrics; cost; effort.

I. INTRODUCTION

The evolution of Information Technology (IT) in the
information era, boosted by the digital transformation of
corporations, brings up several questions concerning the
improvement of software quality. This is due to the amount
of investment made by these corporations, whether they
belong to the public or the private sector.

In Brazilian Federal Public Administration (FPA),
software development is submitted to a very restrictive
normative scope when it comes to setting delivery dates at
the moment of hiring specialized services for these specific
ends. With the advent of Normative Instruction IN 04/2008
and its constant alterations culminating in the current
version, the IN 01/2019 from the Digital Government
Department in the Ministry of Economy (DGD/ME) has
equivalent legislation related to the other powers (Legislative
and Judiciary). The IN 01/2019 regulates the requirements
for hiring Information Technology services in the sphere of
the Federal Executive Power. This period of time (2008-
2019) and the adoption of metrics like the Function Point

(FP) technique for compensating the hired effort have
brought a several discrepancies that, in many cases, do not
comprehend the real cost attributed to a commission.

Brazilian law requires payment for results but there is a
discrepancy between the effort undertaken and the pricing
process carried out by the contracting public institution [1].

Thus, as a way to fill this normative gap, this article aims
to identify metrics for effort estimation used in software
development projects with agile methods that seek to identify
metrics or estimation processes that can be used to meet
current Brazilian normative restrictions.

The remainder of this article is structured as follows:
Section 2 approaches some concepts, which are essential for
understanding the terminology that composes the scenario.
Section 3 presents the review protocol, research conduction,
and extraction results regarding this systematic review. In
Section 4, we present the research results. Section 5 presents
discussions, Section 6 the research limitations, and finally in
Section 7, we present conclusions and future works.

II. CONCEPTS

Since the early days of Software Engineering, one of its
fundamental problems is the estimation of effort, deadlines,
and cost involved in software development. A lot has
evolved in this area, but this key question is still the theme of
some studies [2].

Earlier studies stated that large scale software
development estimations and associated costs had a history
of being more often wrong than right [3]. In this setting,
several processes and metrics were established seeking to
improve cost control [4], which is the basis of any area of
Engineering.

Software measuring is concerned with the quantification
of certain attributes in a software system, such as its
complexity or its reliability. By comparing measured values
among themselves and then to standards applied to an
organization, it is possible to draw conclusions about the
quality of the software or evaluate the efficiency of software
processes, tools, and methods [5].

33Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 44 / 191

Software metrics aims to control and efficiently identify
essential parameters that affect software development, as
well as characteristics that cannot always be objectively
measured. The term “software metrics” includes many
activities that involve a certain level of software
measurement and has a relationship with a series of concepts
that base the adoption of metrics [2]. Some of these activities
are listed as follows:

 models and measurements for estimating the cost
and effort;

 data collection;
 models and quality measurements;
 models of reliability;
 security metrics;
 structural and complexity metrics;
 evaluation of the maturity of capacity;
 metrics management;
 evaluation of methods and tools;
 development by different teams of people.

In addition to that, the project and the analysis of
software metrics are important in the life cycle of software
development. Software metrics play a vital role in cost,
quality, programming, reliability, and maintenance. There
are many methods to decide what metrics must be used and
for what ends [6]. The attributes of metrics can be either
independent or they might depend on each other. In software
engineering, there is not a consensus on what to measure and
how to evaluate the result from these measurements [5].

Boehm [7], in his studies, assigned six (6) categories to
the techniques to estimate the cost of a software system. This
classification will be the basis for the thematic synthesis of
metrics found in our selected studies.

The classification is defined as follows.
 Based on the Opinion of Specialists: this

estimation is also known as an analogy-based
estimate. It is the most used and it is generally
accurate. The problem is that it is very subjective
and can be biased. Techniques like Work
Breakdown Structure (WBS) and techniques of
group consensus like Delphi are used to eliminate
the bias. Another deficiency is that the number of
requirement alterations over time can render this
method ineffective.

 Based on Models: there are many parametrical
models but the most used one is COCOMO II. It is
based on the assessment of various factors for
estimates and it often needs dimension metrics such
as Line of Code (LOC) – or its derivations, such as
kLOC – or FP. The problem with these models is
that they were designed having in mind a factory-
like software development process based on a
waterfall model.

 Based on Regression: linear regression is a
statistical model where an equation estimates the
expected value of a variable y given the values of
some variables x. However, it has many
deficiencies and needs a wide array of data.

Another problem occurs in extreme cases, which
are common in software engineering: usually, data
used for building data clusters that will be tested in
the equation are not collected properly due to
limitations in time and budget.

 Combined with Bayesian Statistics: another
alternative that attracts the methods of pure
regression is a Bayesian approach, which combines
the strengths of experience and methods based on
regression. The Bayesian approach provides a
formal process through which prior judgment by
specialists can be combined with sampling (data)
for producing a robust subsequent product. The
Bayesian analysis is a method of inductive thinking
that has been used in many scientific subjects.

 Learning-Oriented: a learning-oriented method is
reasoning based on cases, in which it is possible to
learn more adaptatively what cases in a sample of
projects are better adjusted to the dominion
application. It is currently based on machine
learning and comes with Neural Networks methods,
Genetic Algorithms, among others.

 Based on Dynamic Systems: techniques based on
dynamics explicitly recognize that the effort applied
to a software project or other factors of cost change
throughout development; that is, they are dynamic
rather than static. However, factors like deadlines,
personnel level, project requirements, training
needs, budget, etc. fluctuate over the course of
development and it can cause fluctuations in the
personal productivity of the project. This, in turn,
has consequences on the probability of a project to
be concluded within the planned deadline and
budget – generally negative. System dynamics is a
methodology of continuous modeling simulation in
which the results and the behavior of the model are
shown as information charts that change over time.
The models are represented with modified networks
with positive or negative feedback.

With the classification proposed, we will present
COCOMO II, due to its wide adoption worldwide, and FP
functional metrics, due to its wide application in service
contraction for software development in Brazil [1].

A. COCOMO II

COCOMO II is a technique and tool for algorithmic
modeling of costs. This empirical model was derived from
the collection of data from various software projects of
different sizes. These data were analyzed to discover
formulas that would fit the observation in the best way.
These formulas approached the system size and factors from
the product, the project, the team, and the effort to develop a
system [5].

COCOMO II was developed based on the first
COCOMO cost estimation models (Constructive Cost
Modelling), which were mostly based on the development of
the original code [7]. This technique is usually linked to
metrics and has four (4) basic models (application

34Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 45 / 191

composition model; early design model; reuse model; and,
post-architecture model), depending on the metrics used, as
seen in the FP and LOC studies.

B. Function Point Metrics

In 1979, Allan Albrecht, from International Business
Machines (IBM), published a paper that brought to light a
new metrics that, according to his experiences, proved itself
effective for measuring software and posed as an alternative
to metrics based on LOC. The above metrics started being
used by many software companies as of the 1980s [8].

FP metrics were created from a principle stating that
projects must be completed at a pre-established deadline,
respecting the budget, and satisfying the client. From the
beginning, it must have specific functional objectives and the
desired value for money objectives. If the project can reach
these objectives respecting the timetable and the budget, the
client will be satisfied. Thus, it is necessary to measure
productivity to identify and select the development systems
and technologies that offer the most functionalities for
application with the least effort and the lowest cost [1].

In Brazil, this technique has had accentuated growth,
especially in the federal government sphere, with actions
from Brazil's Federal Court of Accounts (TCU) and the
publication of IN 02/2008 and IN 04/2008, both from the
actual Ministry of Economy. It was determined that the
services hiring should use the unit that would allow the
measurement of results despite the existence of models other
than the one standardized by International Function Point
Users Group (IFPUG), and the fact that all of them are
standardized by International Organization for
Standardization (ISO). The IFPUG model is the most
commonly used one in Brazil [1].

III. METHODS

A. Systematic Review of Planning

To understand the process adopted for conducting the
systematic review, the following activities were defined, as
shown in Figure 1:

 Formulate the research question: refers to define a
question to support the research conduction;

 Define Research Protocol: regards to elaborate a
protocol to research rules control.

 Search research bases: in this activity, a string is
used to find studies in selected databases.

 Identify studies through title and abstract: refers to
studies selection from reading titles and abstracts.

 Retrieve articles from databases: get the chosen
studies from databases for more detailed analysis.

 Select studies according to the criteria: this activity
includes selecting studies according to previously
established criteria.

 Extract data: regards to gettting relevant
information related to the research question.

 Evaluate quality: refers to quality assessment of the
studies cited.

This way, in the first stage and step 1, the research
question was formulated

1) What metrics adequately reward the effort applied
in the construction of software functionality?

Complementarily, as secondary questions, which are
inherently aligned with the answer to the main question, we
have listed:

2) What metrics, according to the normative Brazilian
framework, can be used to reward a supplier in
cases where software development is outsourced by
an FPA entity?

3) What metrics techniques are used in prompt
methods and measure effort, deadline, cost, and size
involved in software development?

4) Is FP Metrics used for calculating the payment of
services in contracts outside of Brazil?

In the research protocol, we did define the Search
Strings, databases to be consulted, and the criteria of quality
for selecting the articles. Then, we move on to the Execution
stage.

1. Planning 2. Execution 3. Result

Formulate the Research Question

Define Research Protocol

Conduct search in research bases

Identify studies through title and
abstract

Retrieve articles from databases

Select studies according to the
criteria

Extract Data

Evaluate quality

Figure 1. Diagram of the methodology of the systematic review.

35Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 46 / 191

B. Research Bases

The gathering of the articles was conducted on four bases
with the automatic search strategy and two bases with the
manual search strategy, as shown in Table I. Besides that,
they were used due to the relevance of each base in this
theme, by Kitchenham [4].

The literature repositories in the area seem to be
promising. As one of the questions concerns a problem
identified in Brazil, the study adopted the search from the
Annals of Software Engineering Symposiums (SBES) and
Software Quality (SBQS) held by the Brazilian Computer
Society (SBC), which are reference events in the area and the
theme of metrics is strongly based on Software Engineering
and the studies of Software Quality.

TABLE I. SELECTED BASES.

Base Address Search
ACM Digital
Library

https://dl.acm.org/
Automatic

IEEE Xplore https://ieeexplore.ieee.org Automatic
ScienceDirect
– Elsevier

https://www.sciencedirect.com/
Automatic

Springer https://link.springer.com/ Automatic

Annals SBES
The address is changed every year
according to the organization of the
event.

Manual

Annals SBQS
The address is changed every year
according to the organization of the
event.

Manual

In the manual searches in both events, there was a
peculiarity. After a certain period, the books start being
indexed to the ACM base, hence the manual research
comprehended the years 2010 – 2019.

C. Research Strings

Considering such bases for research, some combinations
of terms were fundamental for obtaining articles that would
help systematic review and to obtain its state of the art.

We proceeded to cross the main keywords related to the
themes we investigated, which were: “Smart Contract”,
“Metric”, “Agile”, “Effort”, and “Cost”, in addition to other
occasionally necessary ones for enriching our research
sources, aiming to comprise a bigger amount of productions,
avoiding the exclusion of a very important study or one that
would stand out. Thus, some Search Strings were set up and
all the selected papers referred to the 2010 – 2019 period.
The Search Strings for each database are shown in Table II.
In the initial stage, the number of articles found is shown in
Table III.

TABLE II. SEARCH STRINGS.

Id Database Query applied
1 ACM Digital

Library
[[All: "smart contract"] OR [All: metric]] AND
[[All: "agile development"] OR [All: "agile"]]
AND [[Abstract: "effort"] OR [Abstract:
"cost"]] AND [[All: "smart contract"] OR [All:
"metric"]] AND [Publication Date:
(01/01/2010 TO 12/31/2019)]

2 IEEE Explore (((("All Metadata":smart contract OR Metric)
AND "All Metadata":"agile development" OR
agile) AND "All Metadata":effort) AND "All
Metadata":cost)

3 ScienceDirect
– Elsevier

("smart contract" OR metric) AND ("agile
development" OR agile) AND (effort OR cost)
Abstract Effort OR cost

4 Springer '("smart contract" OR metric) AND ("agile
development" OR agile) AND (effort OR cost)
AND "effort estimation"'

TABLE III. ARTICLES IN EACH BASE.

D. Criteria for Selection

Many criteria were selected so a certain article could be
included to or excluded from the analysis for this research,
such criteria are defined in Table IV and Table V. Inclusion
criteria 5 was provided because the first FP contracts in
Brazil were drawn in 2010. Exclusion criteria 3 refers to
studies that are not entirely online accessible or fully
inaccessible. The definition of exclusion criterion 7 is
important to exclude studies that did not explain any metric
for payment for services, such as FP, UCP, etc.

TABLE IV. CRITERIA FOR INCLUDING ARTICLES.

CI Criteria for the inclusion of articles

1 Studies that show empirical or theoretical data or reports of
experiences about metrics applied to payment based on the
effort involved in the development of a software system;

2 Studies of quantitative and qualitative research;

3 Primary and secondary studies;

4 Studies wrote in English and Portuguese;

5 Studies published since 2010 [9].

TABLE V. CRITERIA FOR THE EXCLUSION OF ARTICLES.

CE Criteria for the exclusion of articles
1 Repeated articles;
2 Similar articles;
3 Inaccessibility;
4 The article is not written in Portuguese or English;
5 Published as short paper or only as a poster;
6 Article without an abstract;
7 Studies did not focus on metrics for the payment of services;
8 Studies based solely on the opinion of specialists, not

pointing to a specific experience;
9 Editorials, prefaces, forewords, article abstracts, interviews,

news articles, analysis, tutorials, correspondence, discussions,
commentaries, letters to readers, tutorial summaries,
workshops, and panels.

E. Result Studies

After applying the criteria for inclusion and exclusion,
we selected a set of studies that would be likely to answer the
research question. At this stage, the articles were analyzed by

Database Total
ACM Digital Library 185

IEEE Explore 61

Science Direct - Elsevier 813

Springer 161

Annals SBES 0

Annals SBQS 1

Total 1221

36Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 47 / 191

using the web application Rayyan, for cataloging the studies
and sorting which ones were excluded and which were
selected. The procedure described in the subsections above
resulted in the number of articles per year and per database,
as shown in Table VI.

In Table VII, we have a division by type, being 85 of the
primary studies, 2 systematic mappings, 6 literature reviews,
and 13 systematic reviews. Literature reviews are papers
concerned with various metrics, but in their methodology,
they do not show the thoroughness of a systematic review.

TABLE VI. ARTICLES PER BASE.

Database 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 TOTAL
ACM Digital Library 1 2 1 0 1 1 2 5 4 3 20

IEEE Explore 2 2 2 4 7 1 6 2 2 0 28

Science Direct - Elsevier 2 0 1 2 1 4 2 1 4 3 20

Springer 3 2 4 2 7 1 0 2 8 8 37

SBQS (Manual Research) 0 0 0 0 0 0 0 0 0 1 1

SBES (Manual Research) 0 0 0 0 0 0 0 0 0 0 0

Total 106

TABLE VII. TYPE OF STUDY.

Technique for Estimation Quantity
Primary Study 85

Systematic Mapping 2
Literature Review 6
Systematic Review 13

Total 106

In terms of how these studies were published, we
observed that 46 of these articles (43.4%) were presented
in conferences, 35 (33.02%) were published in journals, 24
(22.64%) were chapters from books and 1 (0.94%) is a
book, as seen in Figure 2.

Figure 2. How the papers were published.

Among the 36 articles published in conferences, Figure
3 shows them, sorted according to their countries of origin.

0

2

4

6

8

10

12

14

16

Sw
it

ze
rl

an
d

In
d

ia

G
er

m
an

y

Sw
ed

en

U
SA

Si
n

ga
p

o
re

C
an

ad
a

C
h

in
a

It
a

ly

V
ie

tn
a

m

Eg
yp

t

Fi
n

la
n

d

Fr
a

nc
e

In
d

o
ne

si
a

Ja
p

an

M
ad

h
ay

P
ra

d
es

h

M
al

ay
si

a

M
ar

ro
co

s

N
et

h
e

rl
an

d
s

So
u

th
A

fr
ic

a

Sp
ai

n

B
ra

zi
l

Figure 3. Countries where the conferences were held.

Moreover, the most relevant journals are listed ahead.
7 papers were published in the Journal of Systems and
Software, 6 in Empirical Software Engineering, 5 in
Information and Software Technology, 3 in Innovations in
Systems and Software Engineering, 3 in Procedia
Computer Science, 2 in the Journal of King Saud
University – Computer and Information Sciences and
Others with 1 article each, as shown in Table VIII.

TABLE VIII. ARTICLES SELECTED ACCORDING TO BASE.

After analyzing the articles and submitting them to a
systematic synthesis with the classification of the
estimation techniques, we found 6 articles that relate to the
review of several techniques and 69 articles with primary
studies that use various metrics, as shown in Table IX.

TABLE IX. CLASSIFICATION OF ARTICLES AND THE ESTIMATION

TECHNIQUE THEY ADOPTED.

Estimation Technique Quantity
Regression-Based 2
Model-Based 7

Learn-Based 20
Expert-Based 38
Dynamic-Based 2

Total 69

Amid this classification, we found the following
metrics, though it is possible to observe that in some cases
there is a combination of studies and several forms of
metrics [10], and the combination of techniques like

Journal Publisher Quantity
Journal of Systems and Software Elsevier 7
Empirical Software Engineering Springer 6
Information and Software
Technology

Elsevier 5

Innovations in Systems and
Software Engineering

Springer 3

Procedia Computer Science Elsevier 3
Journal of King Saud University -
Computer and Information Sciences

Elsevier 2

Others (with 1 study) ACM, Springer,
and Elsevier

9

Total 35

37Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 48 / 191

COCOMO II and the metrics it naturally uses, as it is part
of this model.

In addition to that, several studies related to metrics in
agile methods, but they are complemented with some
calibration done by using multiple factors or even machine
learning, Bayesian statistics, neural networks, genetic
algorithms, or other algorithms proposed in case studies.
In the topic of discussions, we will present a review with
the studies and techniques, methods, and approached
metrics. The list of articles can be found in Appendix A,
with the grade resulted from the classification as shown in
Table X to the thematic synthesis also with techniques and
metrics used.

TABLE X. TECHNIQUES AND METRICS FOUND.

Metrics Kind of Measurement Quantity
FP Functional 10
COSMIC Functional 4

UCP (Use Case Point) Functional 5

SP (Stories Points) Complexity 21

Velocity Complexity 4

LOC or kLOC Size 4

In this topic, we are bound to assess a narrative
synthesis among 69 papers with classified metrics. This
method builds a history based on the evidence found in the
studies that were included [11].

According to Rodgers et al. [12], the recommended
steps for conducting this synthesis are (i) development of
theory; (ii) development of a preliminary synthesis; (iii)
exploration of relationships inside and among studies; and
(iv) assessment of the robustness of the product of
synthesis. The robustness is presented in item 3.7 of the
criteria and quality assessment.

F. Criteria of quality

Criteria of quality were adopted for classifying the
results. The main goal when using quality criteria is to
assess methodological aspects in the studies. When trying
to assess the quality of the primary studies through quality
criteria, the researcher seeks to increase reliability and
generalization in the results [13].

Another way to measure quality in primary studies is
through the application of a checklist, that is, a form that
contains items that will be used to assess the quality of
each study independently [11]. Therefore, a list was
created for verifying the following criteria, as exposed in
Table XI.

TABLE XI. QUALITY CRITERIA.

ID Check List Item

1 Do the metrics adequately reward the effort applied to the

construction of new software functionality?

2 Can the metrics be used following with the Brazilian normative

framework for rewarding the supplier of software development is

outsourced by an entity of the federal public administration?

3 Are the metrics used in agile methods that measure the effort, the

deadline, the cost, and size involved in the construction of a

software system?

4 Are the metrics used for rewarding services in contracts outside

of Brazil?

5 Does the research show evidence or is it only a literature review?

6 Was there a detailed description of the review process?

7 Is the object of the research clearly defined?

8 Is there enough evidence to support a conclusion?

9 Does it show any charts, figures, or tables making a synthesis of

the system?

Thus, a score of 0 or 1 was assigned in case the studies
meet each of the 9 requirements, allowing the creation of a
ranking. Out of the 106 studies initially selected, 69 were
classified as likely to answer the questions – they are listed
in Appendix A. Another 37 did not have a direct answer to
the questions or showed inconclusive results.

G. Tools

To support the process, some tools had to be defined.
Initially, the study used the Mendeley software for
cataloging the list of articles yielded by the selected
databases. For storing the articles (PDF) we used Zotero
after the stages of selection of bases and list of articles
have been repeated.

When the bases had been defined after the initial
validation, the Rayyan software was used, which allowed
the analysis of articles for the reading stage. The
assessment of their quality was done employing an
electronic form with questions and criteria for assessing
each one of the selected articles.

IV. RESEARCH RESULTS

This research sought first to raise the metrics used in
the industry for the adequate remuneration of the costs
involved in the development of a software product, as
presented, criteria were defined seeking to answer the
research questions.

The research identified the most common metrics and
various usage scenarios using the most varied systematics
as a result, they were cataloged in the tables presented in
the previous sections.

In Brazil, rework, which is common practice in agile
methodologies, ends up not being properly remunerated
because in the contractor's view it would be like paying
for a job that does not deliver results. it is quite true that
the rules and manuals of mandatory use due to the
legislation seek to include rework when payment is by FP,
but in practice, the problem lies in the imbalance that this
type of practice ends up generating.

Also, the research helped to identify that the use of PF
is not recommended for the support of systems,
something that had already been identified in applied
research in Brazil [14].

38Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 49 / 191

V. DISCUSSION

After the narrative and thematic syntheses, the
following evidence was obtained to answer the research
question:

Q1: Does the metrics adequately reward the effort
applied to the construction of software functionality?

Yes, we found several metrics techniques that can
assess the effort applied in the construction of software
functionality, from parametric models like COCOMO
[15]–[18] to its evolution COCOMO II [19][20] and this
model requires a wide historical basis that is often based
on functional measurement metrics like FP [21] and
COSMIC [22]–[24] in addition to some studies that used
LOC [25].

Q2: Can the metrics be used in following the Brazilian
normative framework for rewarding the supplier of
software development is outsourced by an entity of the
federal public administration?

Yes, for functional measurement metrics, FP and
COSMIC, but several metrics in more extensive studies
using metrics applied to agile methods as Velocity [26],
Sprint Points [27], Story Points [28], and Delivery Stories
[29]. In some cases, it was combined with multiple factors
techniques [30] to improve the precision and algorithms
with verification list, even so, machine learning use [31].

Q3: Is the metric used in agile methods and measure
effort, deadline, cost, and size involved in software
development?

Yes, the same works presented in Q2 are about agile
methods and measure these 3 aspects focused on software
maintenance activities [32] and bugs fix [33].

Twenty studies focus on the use of machine learning
techniques with the most diverse techniques since genetic
algorithms [34], Bayesian statistics [35], fuzzy logic [36],
[37], neural networks [38][39], and machine learning with
multiple approaches [35][37][40][41].

Therefore, the most used are techniques based on
expertise with an analogy (Expert-Based). It is presented
in the studies several uses of the metrics in agile methods,
mixing functional measure as FP already cited, or
COSMIC [22]–[24][42] and classic agile metrics
combined with multiple factors to precision calibration
[26][27][43]–[45].

Q4: Is FP Metric used for calculating the payment of
services in contracts outside of Brazil?

FP metric was found in 10 studies. The study of Russo
et al. [46] is about FP used by the Italian public sector for
critical service outsourcing. However, the metric is used to
evaluate the functional size, deriving from this,
productivity with effort and cost. Besides, the work
explains Scrum Points that would be a fixed value of
Hours inside a Sprint, for example, 40 hours, and the
deliveries are made within an open scope system.

Another one [47], is about FP within a Dynamic-
Model technique, a combination of Dynamic-Bases
activity and Model-Based applied on agile development.
But an old study from 2010 and another one uses
COCOMO as a technique with Unadjusted Function

Points (UFP) that would not be the FP use based on the
IFPUG manual. The other studies [10][17][21][48]–[51]
use analogy estimation mixing teams experience
estimation with analogy and some agile metrics besides
FP.

VI. RESEARCH LIMITATIONS

The Research looked for metrics used to pay for the
effort and that can be adopted in Brazil following the
Brazilian normative framework. The research found
specific studies that dealt with the adoption of metrics in
public organizations outside of Brazil.

Performing the automatic search in the databases,
many of the studies did not meet the inclusion and
exclusion criteria; therefore, after careful analysis, only
9% of the articles were selected. One of the bases
returned 813 studies but most did not meet the criteria.

But one of the limitations is that the search for metrics
in scientific works may not cover the practices developed
by public organizations, so in an update of this systematic
review, multi-vocal research should be adopted.

VII. CONCLUSION AND FUTURE WORKS

The most found metric in the studies was Story Points
(which is based on a combination of the amount of effort
involved in the development of a feature, with the
complexity of that development, and the risk contained in
it), very much in line with the development in agile
methods, and which together with Velocity complements
the metrics that address complexity.

Functional metrics, with a large advantage of Function
Points (in the Brazilian case, in response to the regulations
and guidelines of the control agencies), are second in the
ranking. LOC, code size metric, performs last in studies, as
it is a measure that we can consider linked to paradigms
and technologies that are no longer in use.

Regarding the techniques, the predominance of Expert
Based shows the importance of specialized opinion, with
consideration and ponderation by Learn Based techniques,
based on machine learning – very aligned with the data
sciences. The grades attributed to the works, based on
Quality Criteria, confirm this predominance.

The low number of works presented in Brazil contrasts
with the importance of the theme for government hiring of
these types of services, which constitutes an avenue of
opportunities for future works.

Moreover, we can draw some conclusions concerning
the research questions. The metrics related to complexity
(Story points and Velocity) demonstrated to be more
adequate to reward the effort applied in the construction of
software functionality.

Also, we can infer some observations from Appendix
A. Commonly, based on the defined technique (with a
large predominance of Expert-based), the experiences
adopt a combination of metrics. Together, they manage to
better respond to the challenge of adequately reward the
effort applied in the construction of software functionality.

39Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 50 / 191

ACKNOWLEDGMENT

The authors would like to thank CESAR School for
financial support and especially teachers Alberto César
Cavalcanti França and Ana Paula Cavalcanti Furtado who
conducted the discipline of Systematic Review at the
doctoral program.

REFERENCES

[1] W. H. C. Almeida and F. Furtado, “Análise sobre Métricas
em Contratos de Fábricas de Software no âmbito da
Administação Pública” (Analysis of metrics in software
factory contracts within the public administration). 1ª ed,
vol. 1. Rio de Janeiro, Albatroz, 2019.

[2] N. Fenton and J. Bieman, “Software Metrics: A Rigorous
and Practical Approach”, 3th Edition, CRC Press, 2014.

[3] R. E. Merwin, “Estimating software development
schedules and costs”, in Proceedings of the 9th Design
Automation Workshop, New York, NY, USA, Jun. 1972, p.
1–4.

[4] B. Kitchenham, “What’s up with software metrics? – A
preliminary mapping study”, Journal of Systems and
Software, vol. 83, no 1, p. 37–51, Jan. 2010.

[5] I. Sommerville, “Software engineering”, 10th edition,
Global edition, Pearson, 2016.

[6] N. Fenton and J. Bieman, “Software Metrics”, vol. 1.
Chapman and Hall/CRC, 2014.

[7] B. Boehm and K. Sullivan, “Software economics: Status
and prospects”, in Information & Software Technology,
Nov 15, 1999, p. 937–946.

[8] R. Pressman and B. Maxim, “Engenharia de Software”
(Software Engineering) - 8a Edição. McGraw Hill Brasil.

[9] D. Kovags, F. L. Falchi, and A. R. Rivas, “Analysis of the
Utilization of Scrum Framework Effort Estimation Metrics
in Federal Public Administration”, in Proceedings of the
XVIII Brazilian Symposium on Software Quality -
SBQS’19, Fortaleza, Brazil, 2019, p. 30–38.

[10] R. Popli and N. Chauhan, “Estimation in agile environment
using resistance factors”, in 2014 International Conference
on Information Systems and Computer Networks (ISCON),
Mathura, India, Mar. 2014, p. 60–65.

[11] E. Y. Nakagawa, K. R. F. Scannavino, S. C. P. F. Fabbri,
and F. C. Ferrari, “Revisão Sistemática da Literatura em
Engenharia de Software: Teoria e Prática” (Systematic
Review of Software Engineering Literature: Theory and
Practice), 2017.

[12] M. Rodgers et al., “Testing Methodological Guidance on
the Conduct of Narrative Synthesis in Systematic Reviews:
Effectiveness of Interventions to Promote Smoke Alarm
Ownership and Function”, Evaluation, vol. 15, no 1, p. 49–
73.

[13] B. Kitchenham and S. Charters, “Guidelines for
performing Systematic Literature Reviews in Software
Engineering”, EBSE Technical report, Ver. 2.3., 2007.

[14] A. Trendowicz and R. Jeffery, “Software Project Effort
Estimation”, Software Project Effort Estimation, 2014.

[15] V. Nguyen, L. Huang, and B. Boehm, “An analysis of
trends in productivity and cost drivers over years”, in
Proceedings of the 7th International Conference on
Predictive Models in Software Engineering - Promise ’11,
Banff, Alberta, Canada, 2011, p. 1–10.

[16] S. Basri, N. Kama, F. Haneem, and S. A. Ismail,
“Predicting effort for requirement changes during software
development”, in Proceedings of the 7th Symposium on
Information and Communication Technology - SoICT ’16,
2016, p. 380–387, Accessed: May 20, 2020. [Online].

[17] M. Farah-Stapleton, M. Auguston, and K. Giammarco,
“Executable Behavioral Modeling of System and Software
Architecture Specifications to Inform Resourcing
Decisions”, Procedia Computer Science, vol. 95, p. 48–57,
2016.

[18] J. A. Pow-Sang and R. Imbert, “Effort Estimation in
Incremental Software Development Projects Using
Function Points”, vol. 340, T. Kim, C. Ramos, H. Kim, A.
Kiumi, S. Mohammed, e D. Ślęzak, Orgs.

[19] R. Litoriya, N. Sharma, and A. Kothari, “Incorporating
Cost driver substitution to improve the effort using Agile
COCOMO II”, in 2012 CSI 6th International Conference on
Software Engineering (CONSEG), Indore, Madhay
Pradesh, India, set. 2012, p. 1–7.

[20] S. Sunkle and V. Kulkarni, “Cost Estimation for Model-
Driven Engineering”, in Model Driven Engineering
Languages and Systems, vol. 7590, R. B. France, J.
Kazmeier, R. Breu, and C. Atkinson, Orgs. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, p. 659–675.

[21] J. Shah, N. Kama, and N. A. A. Bakar, “Estimating Change
Effort Using a Combination of Change Impact Analysis
Technique with Function Point Analysis”, in Proceedings
of the 2019 8th International Conference on Software and
Information Engineering - ICSIE ’19, Cairo, Egypt, 2019,
p. 9–14, doi: 10.1145/3328833.3328836.

[22] I. Hussain, L. Kosseim, and O. Ormandjieva, “Towards
Approximating COSMIC Functional Size from User
Requirements in Agile Development Processes Using Text
Mining”, in Natural Language Processing and Information
Systems, vol. 6177, C. J. Hopfe, Y. Rezgui, E. Métais, A.
Preece, and H. Li, Orgs. 2010, p. 80–91.

[23] M. Salmanoglu, T. Hacaloglu, and O. Demirors, “Effort
estimation for agile software development: comparative
case studies using COSMIC functional size measurement
and story points”, in Proceedings of the 27th International
Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement
on - IWSM Mensura ’17, 2017, p. 41–49.

[24] A. Kaur and K. Kaur, “A COSMIC function points based
test effort estimation model for mobile applications”,
Journal of King Saud University - Computer and
Information Sciences, p. S131915781831317X, Mar. 2019.

[25] H. K. Sharma, R. Tomar, A. Dumka, and M. S. Aswal,
“OpenECOCOMO: The algorithms and implementation of
Extended Cost Constructive Model (E-COCOMO)”, in
2015 1st International Conference on Next Generation
Computing Technologies (NGCT), Dehradun, Sep. 2015,
pp. 773-778.

[26] A. A. Mohallel and J. M. Bass, “Agile Software
Development Practices in Egypt SMEs: A Grounded
Theory Investigation”, in Information and Communication
Technologies for Development. Strengthening Southern-
Driven Cooperation as a Catalyst for ICT4D, vol. 551, P.
Nielsen and H. C. Kimaro, Orgs. Cham, 2019, p. 355–365.

[27] R. Popli and N. Chauhan, “A sprint-point based estimation
technique in Scrum”, in 2013 International Conference on

40Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 51 / 191

Information Systems and Computer Networks, Mathura,
Mar. 2013, p. 98–103.

[28] J. Choudhari and U. Suman, “Story Points Based Effort
Estimation Model for Software Maintenance”, Procedia
Technology, vol. 4, p. 761–765, 2012.

[29] M. Daneva et al., “Agile requirements prioritization in
large-scale outsourced system projects: An empirical
study”, Journal of Systems and Software, vol. 86, no 5, Art.
no 5, May 2013.

[30] M. Usman, R. Britto, L.-O. Damm, and J. Börstler, “Effort
estimation in large-scale software development: An
industrial case study”, Information and Software
Technology, vol. 99, p. 21–40, Jul. 2018.

[31] V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim,
and E. Khatibi, “A flexible method to estimate the software
development effort based on the classification of projects
and localization of comparisons”, Empir Software Eng, vol.
19, no 4, p. 857–884, Aug. 2014.

[32] A. Espinoza and J. Garbajosa, “A study to support agile
methods more effectively through traceability”,
Innovations in Systems and Software Engineering, vol. 7,
no 1, p. 53–69, Mar. 2011.

[33] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R.
Tonelli, “Estimating Story Points from Issue Reports”, in
Proceedings of the 12th International Conference on
Predictive Models and Data Analytics in Software
Engineering - PROMISE 2016, Ciudad Real, Spain, 2016,
p. 1–10.

[34] S. Bilgaiyan, P. K. Panigrahi, and S. Mishra, “Chaos-Based
Modified Morphological Genetic Algorithm for Effort
Estimation in Agile Software Development”, in A Journey
Towards Bio-inspired Techniques in Software Engineering,
vol. 185, J. Singh, S. Bilgaiyan, B. S. P. Mishra, and S.
Dehuri, Orgs. 2020, p. 89–102.

[35] J. Khan, Z. A. Shaikh, and A. B. Nauman, “Development
of Intelligent Effort Estimation Model Based on Fuzzy
Logic Using Bayesian Networks”, in Software Engineering,
Business Continuity, and Education, vol. 257, T. Kim, H.
Adeli, H. Kim, H. Kang, K. J. Kim, A. Kiumi, and B.-H.
Kang, Orgs.

[36] A. Saini, L. Ahuja, and S. K. Khatri, “Effort Estimation of
Agile Development using Fuzzy Logic”, in 2018 7th

International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future
Directions) (ICRITO), Noida, India, Aug. 2018.

[37] K. E. Rao and G. A. Rao, “Ensemble learning with
recursive feature elimination integrated software effort
estimation: a novel approach”, Evol. Intel., Feb. 2020.

[38] Ch. Prasada Rao, P. Siva Kumar, S. Rama Sree, and J.
Devi, “An Agile Effort Estimation Based on Story Points
Using Machine Learning Techniques”, in Proceedings of
the 2nd International Conference on Computational
Intelligence and Informatics, vol. 712, V. Bhateja, J. M. R.
S. Tavares, B. P. Rani, V. K. Prasad, and K. S. Raju, Orgs.
Singapore, 2018, p. 209–219.

[39] A. Panda, S. M. Satapathy, and S. K. Rath, “Empirical
Validation of Neural Network Models for Agile Software
Effort Estimation based on Story Points”, Procedia
Computer Science, vol. 57, 2015, p. 772–781.

[40] M. R. Tayyab, M. Usman, and W. Ahmad, “A Machine
Learning Based Model for Software Cost Estimation”, in
Proceedings of SAI Intelligent Systems Conference

(IntelliSys) 2016, vol. 16, Y. Bi, S. Kapoor, and R. Bhatia,
Orgs.

[41] S. M. Satapathy and S. K. Rath, “Empirical assessment of
machine learning models for agile software development
effort estimation using story points”, Innovations in
Systems and Software Engineering, vol. 13, no 2–3, p.
191–200, Sep. 2017.

[42] J.-F. Dumas-Monette and S. Trudel, “Requirements
Engineering Quality Revealed through Functional Size
Measurement: An Empirical Study in an Agile Context”, in
2014 Joint Conference of the International Workshop on
Software Measurement and the International Conference
on Software Process and Product Measurement, Rotterdam,
Netherlands, Oct. 2014, p. 222–232.

[43] S. Bilgaiyan, S. Mishra, and M. Das, “Effort estimation in
agile software development using experimental validation
of neural network models”, International Journal of
Information Technology, vol. 11, no 3, p. 569–573, Sep.
2019.

[44] Mohd. Owais and R. Ramakishore, “Effort, duration and
cost estimation in agile software development”, in 2016 9th

International Conference on Contemporary Computing
(IC3), Noida, India, Aug. 2016, p. 1–5.

[45] W. Rosa, R. Madachy, B. Clark, and B. Boehm, “Early
Phase Cost Models for Agile Software Processes in the US
DoD”, in 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement
(ESEM), Toronto, Canada, Nov 2017, pp. 30-37

[46] D. Russo, G. Taccogna, P. Ciancarini, A. Messina, and G.
Succi, “Contracting agile developments for mission critical
systems in the public sector”, in the 40th International
Conference, Gothenburg, Sweden, 2018.

[47] S. Kang, O. Choi, and J. Baik, “Model-Based Dynamic
Cost Estimation and Tracking Method for Agile Software
Development”, in 2010 IEEE/ACIS 9th International
Conference on Computer and Information Science, Aug.
2010, p. 743–748.

[48] H. Huijgens, A. van Deursen, L. L. Minku, and C. Lokan,
“Effort and Cost in Software Engineering: A Comparison
of Two Industrial Data Sets”, in Proceedings of the 21st

International Conference on Evaluation and Assessment in
Software Engineering - EASE’17, 2017, p. 51–60.

[49] E. G. Wanderley, A. Vasconcelos, and B. T. Avila, “Using
Function Points in Agile Projects: A Comparative Analysis
Between Existing Approaches”, in Agile Methods, vol. 802,
V. A. dos Santos, G. H. L. Pinto, and A. G. Serra Seca
Neto, Orgs.

[50] W. Rosa, T. Packard, A. Krupanand, J. W. Bilbro, and M.
M. Hodal, “COTS integration and estimation for ERP”,
Journal of Systems and Software, vol. 86, no 2, Art. no 2,
Feb. 2013.

[51] M. Usman and R. Britto, “Effort Estimation in Co-located
and Globally Distributed Agile Software Development: A
Comparative Study”, in 2016 Joint Conference of the
International Workshop on Software Measurement and the
International Conference on Software Process and Product
Measurement (IWSM-MENSURA), Berlin, Oct. 2016, p.
219–224.

[52] A. Kaushik, D. Kr. Tayal, and K. Yadav, “A Comparative
Analysis on Effort Estimation for Agile and Non-agile
Software Projects Using DBN-ALO”, Arabian Journal for
Science and Engineering, vol. 45, no 4, Art. no 4, Apr. 2020.

41Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 52 / 191

[53] L. L. Minku, “A novel online supervised hyperparameter
tuning procedure applied to cross-company software effort
estimation”, Empir Software Eng, vol. 24, no 5, Art. no 5,
Oct. 2019.

[54] V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim,
and E. Khatibi, “A PSO-based model to increase the
accuracy of software development effort estimation”,
Software Quality Journal, vol. 21, no 3, Art. no 3.

[55] S. Baker and E. Mendes, “Aggregating Expert-Driven
Causal Maps for Web Effort Estimation”, in Advances in
Software Engineering, vol. 117, T. Kim, H.-K. Kim, M. K.
Khan, A. Kiumi, W. Fang, and D. Ślęzak, Orgs. Springer
Berlin Heidelberg, 2010, p. 264–282.

[56] R. Popli and N. Chauhan, “Agile estimation using people
and project related factors”, in 2014 International
Conference on Computing for Sustainable Global
Development (INDIACom), New Delhi, India, Mar. 2014,
p. 564–569.

[57] S. Dragicevic, S. Celar, and M. Turic, “Bayesian network
model for task effort estimation in agile software
development”, Journal of Systems and Software, vol. 127,
p. 109–119.

[58] R. Popli and N. Chauhan, “Cost and effort estimation in
agile software development”, in 2014 International
Conference on Reliability Optimization and Information
Technology (ICROIT), Faridabad, Haryana, India, Feb.
2014, p. 57–61.

[59] M. Usman, K. Petersen, J. Börstler, and P. Santos Neto,
“Developing and using checklists to improve software
effort estimation: A multi-case study”, Journal of Systems
and Software, vol. 146, p. 286–309, Dec. 2018.

[60] A. W. Md. M. Parvez, “Efficiency factor and risk factor-
based user case point test effort estimation model
compatible with agile software development”, in 2013
International Conference on Information Technology and
Electrical Engineering (ICITEE), Yogyakarta, Indonesia,
2013.

[61] V. Lenarduzzi, I. Lunesu, M. Matta, and D. Taibi,
“Functional Size Measures and Effort Estimation in Agile
Development: A Replicated Study”, in Agile Processes in
Software Engineering and Extreme Programming, vol. 212,
C. Lassenius, T. Dingsøyr, and M. Paasivaara, Orgs.

[62] A. Zakrani, A. Najm, and A. Marzak, “Support Vector
Regression Based on Grid-Search Method for Agile
Software Effort Prediction”, in 2018 IEEE 5th International
Congress on Information Science and Technology (CiSt),
Marrakech, 2018.

[63] O. Malgonde and K. Chari, “An ensemble-based model for
predicting agile software development effort”, Empirical
Software Engineering, vol. 24, no 2, Art. no 2, Apr. 2019.

[64] D. Taibi, V. Lenarduzzi, M. O. Ahmad, and K. Liukkunen,
“Comparing Communication Effort within the Scrum,
Scrum with Kanban, XP, and Banana Development
Processes”, in Proceedings of the 21st International
Conference on Evaluation and Assessment in Software
Engineering - EASE’17, Karlskrona, Sweden, 2017, p.
258–263.

[65] A. Magazinius and R. Feldt, “Confirming Distortional
Behaviors in Software Cost Estimation Practice”, in 2011
37th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), Oulu, Finland, Aug.
2011.

[66] K. Moharreri, A. V. Sapre, J. Ramanathan, and R. Ramnath,
“Cost-Effective Supervised Learning Models for Software
Effort Estimation in Agile Environments”, in 2016 IEEE
40th Annual Computer Software and Applications
Conference (COMPSAC), Jun. 2016, p. 135–140.

[67] D. K. Goswami, S. Chakrabarti, and S. Bilgaiyan, “Effort
Estimation of Web Based Applications Using ERD, Use
Case Point Method and Machine Learning”, in Automated
Software Engineering: A Deep Learning-Based Approach,
vol. 8, 2020.

[68] E. Mendes, “Improving Software Effort Estimation Using
an Expert-Centred Approach”, in Human-Centered
Software Engineering, vol. 7623, M. Winckler, P. Forbrig,
and R. Bernhaupt, Orgs.

[69] P. Ram, P. Rodriguez, and M. Oivo, “Software Process
Measurement and Related Challenges in Agile Software
Development: A Multiple Case Study”, in Product-Focused
Software Process Improvement, vol. 11271, M. Kuhrmann,
K. Schneider, D. Pfahl, S. Amasaki, M. Ciolkowski, R.
Hebig, P. Tell, J. Klünder, and S. Küpper, Orgs. Cham,
2018, p. 272–287.

[70] E. Scott and D. Pfahl, “Using developers’ features to
estimate story points”, in Proceedings of the 2018
International Conference on Software and System Process -
ICSSP ’18, Gothenburg, Sweden, 2018, p. 106–110.

[71] S. R. Sree and C. P. Rao, “A Study on Application of Soft
Computing Techniques for Software Effort Estimation”, in
A Journey Towards Bio-inspired Techniques in Software
Engineering, vol. 185, J. Singh, S. Bilgaiyan, B. S. P.
Mishra, and S. Dehuri, Orgs.

[72] A. Effendi, R. Setiawan, and Z. E. Rasjid, “Adjustment
Factor for Use Case Point Software Effort Estimation
(Study Case: Student Desk Portal)”, Procedia Computer
Science, vol. 157, p. 691–698, 2019.

[73] N. Ramasubbu and R. K. Balan, “Overcoming the
challenges in cost estimation for distributed software
projects”, in 2012 34th International Conference on
Software Engineering (ICSE 2012), Zurich, 2012, pp. 91-
101.

[74] T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel,
“Predicting the Flow of Defect Correction Effort using a
Bayesian Network Model”, Empirical Software
Engineering, vol. 18, no 3.

[75] P. Jodpimai, P. Sophatsathit, and C. Lursinsap, “Re-
estimating software effort using prior phase efforts and
data mining techniques”, Innovations in Systems and
Software Engineering, vol. 14, no 3, Art. no 3, Sep. 2018.

[76] P. Pospieszny, “Software estimation: towards prescriptive
analytics”, in The 27th International Workshop on Software
Measurement and 12th International Conference on
Software Process and Product Measurement, Gothenburg,
Sweden, 2017, [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3143434.3143459.

[77] B. Tanveer, L. Guzmán, and U. M. Engel, “Understanding
and improving effort estimation in Agile software
development: an industrial case study”, in Proceedings of
the International Workshop on Software and Systems
Process - ICSSP ’16, Austin, Texas, 2016, p. 41–50.

[78] L. Kompella, “Advancement of Decision-Making in Agile
Projects by Applying Logistic Regression on Estimates”, in
2013 IEEE 8th International Conference on Global

42Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 53 / 191

Software Engineering Workshops, Bari, Italy, Aug. 2013, p.
11–17.

[79] S. Thakur and H. Singh, “FDRD: Feature Driven Reuse
Development Process Model”, in 2014 IEEE International
Conference on Advanced Communications, Control and
Computing Technologies, Ramanathapuram, 2014, pp.
1593-1598.

[80] F. Fellir, K. Nafil, R. Touahni, and L. Chung, “Improving
Case Based Software Effort Estimation Using a Multi-
criteria Decision Technique”, in Software Engineering and
Algorithms in Intelligent Systems, vol. 763, R. Silhavy,
Springer International Publishing, 2019.

[81] S. Puhl and R. Fahney, “How to assign cost to avoidable
requirements creep: A step towards the waterfall’s
agilization”, in 2011 IEEE 19th International Requirements
Engineering Conference, 2011, p. 307–312.

[82] M. Lusky, C. Powilat, and S. Böhm, “Software Cost
Estimation for User-Centered Mobile App Development in
Large Enterprises”, in Advances in Human Factors,
Software, and Systems Engineering, AHFE 2017.
Advances in Intelligent Systems and Computing, vol 598.
Springer, Chamvol, T. Ahram and W. Karwowski, Orgs.
Cham, 2018.

APPENDIX A. ARTICLES, QUALITY CRITERIA,
TECHNIQUES, AND METRICS

Ref. Grade Technique Metric
[46] 7 Expert-Based FP or SCRUM POINTS

[45] 7 Expert-Based
SP, UCP, FP, LOC, and OBJECT

POINTS
[9] 7 Expert-Based SP and UCP

[52] 6 Learn-Based
Data Set, DBN (Deep Belief Network)

and ALO (Ant Lion Optimization)
[24] 6 Dynamic-Model Data et, FP, SP and Algorithm
[30] 6 Expert-Based Story Points to Maintenance
[40] 6 Learn-Based ML (Machine Learning)
[47] 6 Expert-Based COSMIC for Test
[28] 6 Learn-Based Data Set and PSO
[53] 5 Model-Based COCOMO and UFP (Unadjusted FP)
[54] 5 Learn-Based SP and HH, ML
[27] 5 Learn-Based Data Set, SP, and Multifactor
[55] 5 Expert-Based EXPERT
[56] 5 Model-Based Data Set and Statistical

[57] 5 Learn-Based
Data Set, Agile and COCOMO-II and

ML and Data mining

[58] 5
Regression

Based
Data Set, SP, and Velocity.

[20] 5 Model-Based COCOMO II and Multifactor
[50] 5 Learn-Based Data Set and ML
[59] 5 Dynamic-Model Causal Structure Aggregation Model
[35] 5 Expert-Based Multifactor and SP, Velocity
[60] 5 Expert-Based Expert and Multifactor
[18] 5 Learn-Based ML and Bayesian
[44] 5 Expert-Based COSMIC
[41] 5 Expert-Based Scrum adopted
[39] 5 Learn-Based ML, NN, Fuzzy, Data Set

[37] 5 Expert-Based
FP, LOC, EOP (Enhanced Object

Points for ERP)
[10] 5 Expert-Based Sprint Points and Multifactor
[61] 5 Model-Based PSO, Data Set, Algorithm
[19] 5 Expert-Based UCP for Test
[62] 5 Learn-Based Bayesian
[22] 5 Learn-Based Data Set, and Algorithm

[29] 4 Expert-Based FP
[26] 4 Expert-Based EXPERT

[38] 4 Model-Based
SP, HH, EXPERT, Algorithm

ensemble-based model
[63] 4 Learn-Based SP, HH, EXPERT

[34] 4 Expert-Based
Data Set, Size (FP), Effort, Cost, and

Duration
[64] 4 Expert-Based COSMIC

[65] 4 Expert-Based
Data Set, User Stories, Story Points

and Sprint Time
[66] 4 Model-Based COCOMO and KLOC with Tool
[48] 4 Expert-Based Interview and Multifactor
[23] 4 Expert-Based COSMIC and SP, User Stories

[43] 4 Expert-Based
Velocity, Testing Performance, Issues’

Estimation Accuracy, and Code
Quality

[30] 4 Expert-Based FP with Agile
[36] 4 Learn-Based EXPERT
[67] 4 Expert-Based EXPERT
[21] 4 Expert-Based Velocity, SP
[68] 4 Learn-Based ML and SP, Rede Neural.
[25] 4 Expert-Based Scrum and FP, SP

[42] 4 Learn-Based
User Stories, Expertise, and

Complexity using Fuzzy Logic to
Predict

[69] 4 Expert-Based
Effort in Communication in Agile

Environment
[70] 4 Expert-Based UCP, size, and productivity
[49] 4 Learn-Based Genetic Algorithm
[71] 3 Model-Based COCOMO and KLOC
[72] 3 Expert-Based UCP
[15] 3 Expert-Based COCOMO and FP

[33] 3 Learn-Based
Data Set, Bayesian, and aspects for

Maturity (CMMI)
[17] 3 Expert-Based Maturity to Best Estimations
[73] 3 Learn-Based NN, Fuzzy, and another ML
[74] 3 Expert-Based Expert, Changes Requirements
[75] 3 Learn-Based ML
[76] 3 Expert-Based Data Set, Data Mining
[77] 3 Expert-Based SP for Issues

[78] 2 Expert-Based
Multifactor (RF, RNF, and DP-

Domain Properties)
[79] 2 Learn-Based COCOMO and Change Request

[80] 2
Regression

Based
Logistic Regression Model

[16] 2 Expert-Based FDD and Reuse
[81] 1 Expert-Based Delphi
[82] 1 Expert-Based Data Set and Quality of Requirements

43Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 54 / 191

Defining Leadership and its Challenges while Transitioning to DevOps

Krikor Maroukian
Microsoft

Modern Service Management
Athens, Greece

e-mail: krmaro@microsoft.com

Stephen R. Gulliver
Henley Business School
University of Reading

Reading, United Kingdom
e-mail: s.r.gulliver@henley.ac.uk

Abstract— DevOps practices and principles adoption is no
longer restricted to technology-specific skills. Many studies
indicate that successful DevOps adoption is part of continuous
corporate transformation at all levels, and that includes
cultural and behavioural patterns, process-driven perspective
and toolchain readiness for usage. Our research method
involves the analysis and evaluation of 30 interviews with
participants from the private and public sectors in the EMEA
region. Analysis and evaluation of a survey completed by 250
participants (73% from Europe) and 76% who have held
previous leadership positions is also included. A mixed
methods approach was used. Thirty (30) participants from
consultancy firms and service provider organisations
generated coded themes to expand our understanding of
relevant factors. From the 250 survey participants, 81% had
10+ years of professional experience and two-thirds were
currently practicing DevOps. The aim of our research was to
unveil leadership-specific observations on characteristics and
factors that would indicate certain reasoning behind challenges
faced by organisations while transitioning to DevOps. Our
results show that top leadership factors identified are:
communication and collaboration, customer-centric mindset,
having a technical background, and being an active listener.
The least important factors identified were: gaining a relevant
certification, design thinking, previous experience on
transformation projects, and talent seeking.

Keywords-DevOps adoption; resistance factors; leadership
characteristics; metrics.

I. INTRODUCTION

The 1990s saw the birth of pre-agile approaches, such as
the Rapid Unified Process [1] and XP [2] [3], which
eventually led to Agile Software Development, which is
characterised mainly by lightweight, flexible, adaptive
processes linked to rapidly changing corporate business
environments aiming to eliminate waste [44]. The traditional
‘waterfall’ approach to release and deployment management
requires a release cycle of 6-18 months, which shifts focus to
maintenance-only. This practically means that operations
teams in Information Technology (IT) organisations are
focused on purely reactive maintenance activities including
bug fixes. There is, however, a lack of development of new
feature development, i.e., change of features or functions that
would fundamentally change the program architecture [13].

Software has become pervasive in day-to-day human
activities, and the world economy is now dependent on
software use. This in turn has increased the importance of

having software-intensive products and services that are
useful, secure and reliable at all times during operational use.

A retrospective view of the last twenty years of software
product development practices and principles shows that a
decline of Extreme Programming (XP) publications has been
succeeded by the gradual increase, i.e., since about 2009, in
the popularity of agile and lean practices, such as SCRUM
[42] and Kanban [43]. Moreover, two other areas that seem
to be gaining popularity are technical debt and code smells,
which address software product development and code
maintenance suboptimisation - in terms of agile team
velocity to deliver sprint artefacts for the minimum-viable
product. Furthermore, certain agile practices, e.g., pair-
programming since 2003, user stories since 2003, test-driven
development since 2007, and code refactoring since 2009,
are relatively stable. In addition, DevOps, Continuous
Integration, Continuous Deployment, Continuous Delivery
are characterised as ‘hot research topics’, with considerable
increases in popularity since 2014 [14].

Leading DevOps practice and principle adoption has
become a fundamental element to the success of DevOps
teams [4] [39]. A high-performing organisation is
characterised by adoption of DevOps practices by multiple
teams and departments, high responsiveness to mean-time-
to-recover from product system failure, i.e., end-user
experience degradation, mean-time-to-market, change failure
rate, and embedding security deep into the source code [15].
However, there is still limited research outlining the
leadership style, traits, competencies and skillset
accompanied with high-performing DevOps-oriented
organisations. Speed in the development and delivery of new
software features provides the opportunity to respond
quickly to customer needs, business opportunities, and get
quick feedback about the new software features [16].
Feedback loops facilitate information that is useful to make
informed decisions regarding software development efforts;
conducted by different stakeholders of the software product
development value stream.

The purposes of our study are (RQ1) to provide a better
understanding of the leadership characteristics required to
enable DevOps practice and principle adoption, (RQ2) to
gain insights into the DevOps adoption inhibitors or
resistance factors slowing down change, and (RQ3) to
examine the associated metrics to these set of competencies
and leadership style.

This paper is divided into four further sections. Section II
lays out the thoroughly researched account of literature
behind DevOps adoption and pertinent leadership research,
the challenges faced in the transitional period towards

44Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 55 / 191

DevOps practice and principle adoption and which type of
technology-agnostic i.e., team-driven, process driven,
metrics can be associated to DevOps. Section III describes
the research method, design and collection process. Section
IV outlines the analysis and evaluation of the interview and
survey results, including an examination of research validity.
Lastly, Section V concludes the paper including future
research considerations.

II. BACKGROUND AND RELATED WORK

A. DevOps Adoption and Leadership

The adoption of DevOps practices and principles requires
several factors to be taken into account. The most popular
model among DevOps adoption is known as Culture-
Automation-Lean-Monitoring-Sharing (CALMS) [17],
which requires a change of people’s mindset, skill and
toolsets. This orientation requires gradual and minor changes
in an organisation’s daily operations. For companies to move
from structured to agile structures in software development,
there needs to be first an adoption stage of agile practices
and a shift to smaller cross-functional teams, and later, when
a certain level of maturity is attained, DevOps practices can
be adopted, such as automated system integration and
continuous integration [18]. When continuous integration is
in place, customers express an interest in receiving
enhancements and bug fixes more frequently. Therefore,
adoption of continuous delivery practices is required. The
final step occurs when the organisation not only releases
software continuously, but also develops mechanisms to
conduct rapid experimentation in order to drive innovation.

The DevOps Institute’s Collective Body of Knowledge
(CBOK) focuses on three pillars: DevOps, Lean and
Leadership [19]. In addition, successful adoption of DevOps
requires agile software development [29]. For practitioners in
the industry, there is a decline of interest in XP, and a steady
increase in SCRUM over time. Between 2006 and 2015,
there was an increase in interest concerning continuous
integration, however, there was a sharp increase in DevOps
adoption in the last few years [20]. This sharp increase has
most likely been triggered by DevOps leaders who have
acquired the transformational acumen required to contribute
to the design, influence, and motivate cultural
transformation, which is proven to be a critical success factor
in DevOps adoption: making it a multidisciplinary topic that
requires application of a mix of skills, practices, and
principles [21].

The State of DevOps Report published by Puppet
discovered a correlation between transformational leadership
and organisational performance [23]. Transformational
leadership comprises of four dimensions: idealised influence,
inspirational motivation, intellectual stimulation, and
individualised consideration and the leader aims to inspire
and transform followers by appealing to their ideas and
emotions [41]. In addition, the State of DevOps Report
conveys that DevOps leaders with a servant leadership
mentality inspired better team performance [23]. In essence,
the leader is serving rather than being served and, therefore,
creates an environment of trust, collaboration and reciprocal

service, which ultimately leads higher performance [40].
Servant leadership was developed as a theory of ethical
leadership, which is comprised of values, such as integrity,
altruism, humility, empathy and healing, personal growth,
fairness, justice and empowerment [41]. Our study attempts
to identify the characteristics presented by a mixed methods
research design approach and how obtained results and
outcomes relate to transformational and servant leadership.

B. DevOps Adoption Challenges

Following a decade of DevOps, there is no firm
consensus amongst software practitioners and scholars as to
what the DevOps definition actually includes [4] [30]-[34].
Moreover, DevOps is unclear but also evolving [13].
Literature defines DevOps in numerous ways, although, the
majority of descriptions specifies ‘DevOps’ as a term that is
used to emphasise the collaboration between software
development and operations. There is, however, a research
and industrial need to develop a better understanding of the
DevOps scope [20], since DevOps has been described as: a
new role within a software organisation [35]; a movement
for change in software industry [30]; a set of software
development practices [4]; a leagile approach [22] – i.e., the
combination of the lean and agile paradigms; and High
Velocity IT [5], which ITIL4® defines as involving
techniques for valuable investments, fast development,
resilient operations, co-created value and assured
conformance.

Cultural enablers, used to promote the adoption of
DevOps practices, are required, such as focus on decision
making, customer focus, engineering practices, learning and
development, leadership, team recognition, innovation,
guilds and performance feedback [21] [36] [37]. Moreover,
to achieve performance gains, while adopting DevOps, the
following are shown to be essential [38]:

 Tightened feedback loops between Dev and Ops
teams;

 Established practices of automated performance
monitoring;

 Measurement of key performance metrics in
Continuous Integration, Test and Ops teams;

 Shared tools and performance metrics across teams.
According to the State of DevOps Report [23], published

by Puppet and the DevOps Research and Assessment
(DORA), there is an increasing inclusion of IT team
members into DevOps teams such that:

 Sixteen percent (16%) of the respondents identified
themselves as working in DevOps teams in 2014;

 Nineteen percent (19%) of the respondents
identified themselves as working in DevOps teams
in 2015;

 Twenty-two percent (22%) of the respondents
identified themselves as working in DevOps teams
in 2016;

 Twenty-seven percent (27%) of the respondents
identified themselves as working in DevOps teams
in 2017.

45Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 56 / 191

Furthermore, there are considerable challenges in
DevOps practice adoption in the IT industry. DevOps
adoption challenges include, but are not limited to, the
insufficient communication, deep-seated company culture,
industry constraints and feasibility, heterogeneous
environments. Moreover, a Delphi study of 42 Norwegian
experts indicated a comprehensive list of problems
influencing poor cooperation between software development
and operations [24], however, the most serious problems in
poor software development – operations cooperation -
included the following aspects:

 Operations not being involved in the requirements
specifications;

 Poor communication and information flow;
 Unsatisfactory test environment;
 Lack of knowledge transfer;
 Systems being put into production before they are

complete;
 Operational routines not being established prior to

deployment.
Additionally, the hierarchical approach of organisational

structures that welcome static team structures can also
become a bottleneck to information flow. Moreover,
obstacles to flow can also be characterised as anything that
acts as an impediment to cognitive load of a DevOps team
topology [45]. Cognitive load refers to the amount of
working memory being used at any one moment within a
team structure. Flow challenges can be due to disengaged
teams, software too big for team structure, confusing
organisational design options, team getting pulled into too
many directions, painful reorganisation every few years,
flow is blocked by certain factors and too many reactive-
natured surprises for the team to handle [45].

For modern software companies, speed facilitates fast
and repeatable software development and delivery processes
[25]. Complexity of performance engineering approaches is a
barrier for wide-spread adoption by practitioners.
Accordingly, performance engineering approaches must be
lightweight and must smoothly integrate with existing tools
in the DevOps pipeline [37]. This is evident by the
emergence and the growing interest of a continuous
deployment paradigm in the software industry. Continuous
deployment entails the capability of an organisation to
deliver new software features at multiple times and in the
shortest time possible. DevOps is an approach that has been
reported to enable the continuous deployment paradigm as it
embodies a set of useful principles crucial to the
development and deployment of software [26]. Practices that
have posed as barriers to continuous deployment include
time pressure, increased technical debt, customer
unwillingness to update and conflicting goals between rapid
released and achieving high reliability and test coverage. In
addition, the adoption challenges that have also been
identified in large scale organisations are cultural barriers,
risk of disintermediation of roles, lack of DevOps education
and awareness, resistance to change, silo mentality and lack
of strategic direction from senior management [36].

In general, organisations and IT professionals place
DevOps in high regard, but DevOps practices adoption is
associated with challenges. These challenges can arise
mainly from a combination of necessity in maintaining a
legacy system, lack of senior management buy-in,
managerial structure, and resistance [21]. Other points which
pose as barriers are blame-culture, communication
difficulties, and delays in producing software releases [4]
[30]-[34].

C. Measuring DevOps

Metrics in traditional highly structured corporate
environments produce development cycles that focus a lot on
defect density of the software product: yet, this is not the
most effective way to measure quality in the context of
software product development [6] [7]. The effect that
traditional approaches have had to software development is
that ‘surrogation’ can lead to enterprise strategy being
replaced with metrics [27], with employees consciously
aiming to contribute to local optima rather than global
corporate optima to increase flow in the value stream [8].

Software development teams commonly express
significant differences in behavioural patterns of developers
and testers when senior management first establishes a key
performance metric of ‘least defects in deployable code’ into
a production environment and announce the downsizing of
the quality assurance team [6]. Software development should
be attempting to get closer to the metrics most frequently
utilised to evaluate the speed with which releases can move
to production environments before performance
inefficiencies start to appear [6]. Additionally, software
development pipeline health is essential to maintaining high
quality software. Measurement approaches in DevOps teams
include, but are not limited to, source code version control,
optimum branching strategy, static analysis, >80% code
coverage, vulnerability scan, open source scan, artifact
version control, auto provisioning, immutable servers,
integration testing, performance testing, build deploy testing
automated for every commit, automated rollback, automated
change order, zero downtime release, feature toggle [12].

In addition to the aforementioned, there is increased
research interest in understanding how DevOps teams
measure cognitive load using relative domain complexity
without measuring lines of code produced, number of
modules, classes, or methods [7]. This can be further
complemented by flow metrics – i.e., flow distribution, flow
velocity, flow time, flow load, flow efficiency [10], which
represent the proportion of each flow work item being active
in a given sprint. In particular, flow velocity measures
features, defects, risks and technical debt in the product
development flow whereas flow time resembles lead time
and process time as defined in value stream maps [27].
Moreover, flow load represents active or waiting work in the
value stream, and flow efficiency is the result of measuring
flow load, i.e., duration of work inactivity in the value
stream.

Workflow can be further categorised according to the
Deployment Pipeline stages [11]. At the requirements
planning level, new and unique work, including repetitive

46Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 57 / 191

work, is considered for optimisation purposes. Moreover,
optimizing it requires fast feedback and a focus on end-to-
end cycle time for an all-round customer feedback.

Another dimension to DevOps can be Microsoft’s
perception on the triage of people, process and technology
while providing a strong focus on the following seven
DevOps habits [28]:

1. Flow of customer value.
2. Team autonomy and enterprise alignment.
3. Backlog groomed with learning.
4. Evidence gathered in production.
5. Managing technical debt.
6. Production-first mindset.
7. Infrastructure is a flexible resource.

In regard to the seven habits, firstly, flow of customer
value entails automated testing, Continuous Integration (CI),
Continuous Deployment (CD) and release engineering and
management. Moreover, scaling that in terms of agile to self-
managing teams and feature crews regards team autonomy
and enterprise alignment. Thirdly, within Microsoft feature
crews, another habit is to refine and reprioritise backlog
items through usage monitoring, telemetry, Testing In
Production (TIP) and stakeholder feedback. In fact, evidence
collected from production environments include all
aforementioned steps for backlog refinement plus the use of
feature flags and continuous experimentation, regarded as
one of key DevOps practices. In addition, managing
technical debt concerns peer code reviews, automated
testing, continuous measurement and agile documentation. In
terms of production first mindset application performance
management and Infrastructure-as-Code (IaC) play big role
in achieving it, coupled with configuration management and
automated recovery. Finally, IaC, automated scaling,
sandboxing for development and test environments as well
as the usage of microservices and containers make
Infrastructure a flexible resource to work with while
adopting DevOps practices and principles.

The aforementioned literature on DevOps metrics at the
team structure-process-toolset level should be taken into
account in a cross-functional manner and be communicated
transparently to both leadership and engineering teams to
establish progress and quality in a consistent format [9].

III. RESEARCH METHOD

Having defined the agile, lean, and DevOps adoption
benefits and challenges described in literature, it is crucial to
determine whether these views align with industry domain
practitioners.

A. Research Design

This paper presents contextually relevant data generated
from thirty (30) semi-structured interviews, see Figure 1, that
were conducted between September 2018 and January 2019
with practitioners in companies working within a wide range
of countries (Czech Republic, Estonia, Italy, Georgia,
Greece, The Netherlands, Saudi Arabia, South Africa, United
Arab Emirates (UAE), United Kingdom). Additionally, a
survey was conducted during the period August 2019 and

December 2019 whereby the responses of 250 participants
were recorded.

Figure 1. Research study process.

B. Data Collection for Interviews

The interview participants were identified with their
roles, organisation size and country within which they work.
Participants selected for the interview process had previous
experience of agile, lean and DevOps practices and
principles. We invited participants through IT events in
Europe and through professional social media networks, see
Table I.

TABLE I. LIST OF INTERVIEW PARTICIPANTS

Industry Practitioner Profile

Job Title
Country of

Work
Domain

P1 PMO Director Saudi Arabia Aviation

P2 Principal Consultant, Italy IT

47Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 58 / 191

Industry Practitioner Profile

Job Title
Country of

Work
Domain

IT Service
Management

Consulting
Services

P3 CIO Greece Insurance

P4 Principal Consultant,
IT Service
Management

UK
IT

Consulting
Services

P5 Managing Director,
IT Service
Management

UK
IT

Consulting
Services

P6
Smart Systems
Manager

Greece
IT

Consulting
Services

P7 Senior Digital
Transformation
Technologist &
Solution Practice
Lead

United Arab
Emirates

IT
Consulting

Services

P8 Principal Consultant,
IT Service
Management

United
Kingdom

IT
Consulting

Services
P9 Founding Consultant,

IT Service
Management

United
Kingdom

IT
Consulting

Services
P10

Managing Director
United

Kingdom

IT
Consulting

Services
P11 Head of Remote

Transactions
Greece

Banking

P12
Consultant Netherlands

IT
Consulting

Services
P13 Deputy Chief

Information Officer
Greece

Construction
Management

P14 Head of Applications Greece Lottery

P15 Principal Consultant,
IT Service
Management

South Africa
IT

Consulting
Services

P16 Founding Consultant,
IT Service
Management

United
Kingdom

IT
Consulting

Services
P17 Managing Director,

IT Service
Management

United
Kingdom

IT
Consulting

Services
P18

Managing Director
and Lead Consultant

United
Kingdom

IT
Consulting

Services
P19 IT Operations

Manager
Greece

Lottery

P20 IT Operations
Manager

United
Kingdom

Government

P21 Founding Consultant,
IT Service
Management

United
Kingdom

IT
Consulting

Services
P22 Assistant General

Manager, IT
Operations

Greece
Banking

P23 Chief Digital Office Estonia Government

Industry Practitioner Profile

Job Title
Country of

Work
Domain

P24 Chief Information
Officer

Greece
Insurance

P25 Chief Information
Officer

Greece
Aviation

P26 Development Team
Lead

Greece
Lottery

P27 IT Operations Lead Georgia Government

P28 Business
Development
Director

Greece
IT

Consulting
Services

P29 Operations and
Innovation Lead, IT
Services

Czech
Republic

Courier
Services

P30 CIO Greece Automotive

To achieve a heterogeneous perspective, and to increase
the wealth of information, practitioners from a variety of
organisations were invited and consulted. The information
provided to interview participants prior to the interview
commencing stated that names or organisation titles would
not be disclosed as part of this research.

Data collection and analysis was mapped to answer the
research questions posed at the end of Introduction section,
see Table II. The entire set of interview questions is
accessible at [46].

TABLE II. RESEARCH QUESTIONS MAPPED TO INTERVIEW QUESTIONS

Research Question
Interview Question

(No.)
Data collection for segmentation
purposes e.g., participant age,
professional experience, job role,
country of work, industry of work.

1, 2, 3, 21

RQ1) Leadership characteristics
required to enable DevOps practice
and principle adoption

17, 18, 19, 20, 21

RQ2) What are the DevOps adoption
inhibitors (resistance factors)?

4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 21

RQ3) How should DevOps leadership
be measured?

4, 20, 21

There were twenty (20) questions - consisting of two
types of questions – participant demographics questions and
questions mapped to the three research questions in this
paper.

The interview series consisted of thirty (30) participants
from nine countries Greece (11), UK, (10), Saudi Arabia (2),
Czech Republic (1), Estonia (1), Georgia (1), Italy (1),
Netherlands (1), South Africa (1), United Arab Emirates (1).
Fifteen (15) were IT consultants and another fifteen (15)
were from service provider organisations. The service
consumers of IT consultants can be service providers or
other IT consultants. The service consumers for the service
provider organisation can also be either internal or external.
All Greek participants were service providers. UK
participants consisted of nine (9) consultants and one (1)
service provider. There was a distinct diversity of participant

48Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 59 / 191

roles, e.g., Principal Consultant (10), Managing Director (4),
Chief Information Officer / Chief Digital Officer (6), IT
Operations Manager (3), PMO Director (1), Head of Remote
Transactions (1), Smart Systems Manager (1), Head of
Applications (1), Development Team Lead (1), Business
Development Director (1), Operations and Innovation Lead
(1). Furthermore, the industries of participants were
Consulting Services (14), Aviation (3), Government (3),
Lottery (2), Insurance (2), Finance (2), Manufacturing (1),
Logistics (1), ISV (1), Automotive (1).

The interview participants were aware of, and had
considerable previously experience applying a range of
frameworks, international standards, methodologies,
practices, and principles; such as ITIL (26), SCRUM (22),
DevOps (19), Lean IT (15), ISO20000 (8), PMBOK (10),
PRINCE2 (8), XP (4), SAFe (3).

C. Data Collection for Survey

The survey was divided into four sections: 1) questions
about the participant’s professional information; 2) questions
about DevOps practices adopted, 3) questions about
leadership related to DevOps, and 4) questions on DevOps
metrics. The target audience of the survey is defined mainly
as Consultant, Product/Software Developer, C-Suite,
Operations engineer, IT Architect. The entire set of survey
questions is accessible at [47].

TABLE III. RESEARCH QUESTIONS MAPPED TO SURVEY QUESTIONS

Research Question
Survey Question

(No.)
Data collection for segmentation
purposes e.g., participant age,
professional experience, job role,
country of work, industry of work.

1, 2, 3, 4, 5, 20

RQ1) Leadership characteristics
required to enable DevOps practice
and principle adoption

7, 8, 13, 14, 17, 18,
19, 20

RQ2) What are the DevOps adoption
inhibitors (resistance factors)?

1, 12, 13, 14, 20

RQ3) How should DevOps leadership
be measured?

8, 11, 15, 16, 20

The 250 participants of the survey answered six
demographics questions. The participant role segmentation is
shown in Figure 2.

Figure 2. Survey participant job role.

Moreover, the industries in which the survey participants
worked in are IT Services/Consulting (33%), Government
(22%), Financial Services (13%),
Technology/Telecommunications (8%), Manufacturing
(4%), Financial Services/Consulting (3%), Aviation (3%),
Construction (3%), Retail/Consumer Services (2%),
Healthcare (2%), Education (2%), Recycling (1%), Insurance
(1%), Energy/Utilities (1%), Leisure & Hospitality (1%).

IV. RESULTS

A. DevOps Adoption and its Challenges

In terms of DevOps adoption inhibitors and resistance
factors, P15 (Principal Consultant, South Africa) mentioned
that “Extremely hierarchical organisational structures are
communication barriers to DevOps adoption”. Another
failure point for DevOps adoption can be that “DevOps
practice adoption has to be at a wider enterprise scale for it to
be labelled successful”. In addition, P27 (IT Operations
Manager, Georgia) stated that “Top management is not
interested in agile and DevOps practice adoption. They do
care about customer satisfaction levels, which can mean a
reactive attitude towards the number of complaints
received”. Notably, P3 (CIO, Greece) mentioned that “We
identified the bottlenecks that we adopted while adopting
these structured approaches”. However, P8 (Principal
Consultant, UK) argues that “senior management and team
members should not blame the person who introduced the
new practice” since “continuous experimentation is crucial to
the success of DevOps adoption and any new practice
adoption”. It is vital to establish the right organisational
culture when it comes to the shift of mindset that DevOps
adoption requires. To that extent P10 (Managing Director,
UK) stated that “the team leading the adoption of the new
way of working has to have the right skills and cultural
drivers to succeed”.

In the survey of 250 participants, there were certain
close-ended questions which aimed to unravel more around
DevOps practice and principle adoption and Figure 3
indicates the results.

Figure 3. DevOps adoption stage of survey participants.

49Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 60 / 191

In addition, the roles responsible for the decision making
process in DevOps adoption initiatives are shown in Table
IV.

TABLE IV. DECISION MAKING ROLE IN DEVOPS ADOPTION PROCESS

Role responsible for decision making
in DevOps adoption process

Participant
Preference (%)

C-Level (Chief Information Officer,
Chief Digital Officer, etc.) 33.6

Development Lead 20.8

Product Owner 16

Architect 10.4

Operations Lead 6

Business Domain 3.6

DevOps Engineer 3.2

Developer 3.2
System/Network/Database
Administrator 1.2

Executive Committee 0.8

Team Leader 0.4

Analyst 0.4

Not Sure 0.4

It is worrisome that Information Security and DevOps
Engineer are given low importance. In addition, there seems
to be low involvement of the business domain in DevOps
adoption initiative. On the other hand, the high concentration
of responses to C-level executive (Chief Information Officer,
Chief Digital Officer, etc.) and development team lead could
suggest that the development teams themselves have to shift
from a highly hierarchical organisational structure to more
autonomous self-organising team behaviours, which
characterise DevOps teams.

Lack of commitment by customer is recognised as the top
inhibitor and resistance factor of DevOps adoption followed
by lack of organisational practice adoption capability. A 4-
point Likert scale was chosen for this question to record
opinions. These results are similar to the overall expressed
opinion during the interviews and indicate that there is
overwhelming agreement on these types of inhibitors to
DevOps adoption. Having identified the set of most
frequently adopted DevOps practice and principles, the next
section attempts to provide clarity on DevOps adoption
leadership.

B. DevOps Leadership

It is worth looking into the level of acceptance of a
leadership role being an individual or team role and the
influential effect it can have on team performance in the
context of software product development and coding pipeline
health. Nine (9) service providers and (6) consultants agreed
that the leadership role should be an individual role whereas
five (5) service providers and five (5) consultants agreed that
the leadership role should be a team role. Lastly, one (1)

service provider and three (3) consultants stated that both
approaches are required interchangeably throughout the
course of a transitioning initiative towards DevOps practice
and principle adoption.

Throughout the series of interviews, there was focus on
DevOps adoption and the leadership role. In fact, P5
(Managing Director, UK) and P19 (IT Operations Manager,
Greece) stated that “Leadership skillset is the most important
thing to adoption barrier breakdown”. P7 (Consultant, United
Arab Emirates) stated that “In the beginning of an adoption
initiative there is a constant link to fear of people for loss of
power, loss of position, etc.”. Moreover, P12 (Principal
Consultant, Netherlands) mentioned that there is “Lack of
Leadership (walk-the-talk, lead by example, confront
‘undesirable behaviours, reward new behaviours)”. In
addition, P23 (CDO, Estonia, P28 (Business Development
Director, Greece) and P30 (CIO, Greece) added that “end-to-
end ownership of the leadership role is required in terms of
cross-functional team leadership”.

Moreover, the survey showed that 76% of participants
have held or hold a leadership position and 91% claimed that
DevOps leadership role is required and that it should be an
individual role (67%). These results are similar to the results
produced from the thirty (30) interview participants.

C. DevOps Metrics

The interview series revealed that version control and
issue tracking have been vastly adopted by the respondents
i.e., 95%. Additionally, performance monitoring, test
automation and automated deployment seem to have
important penetration in the software product development
practices. On the contrary, Infrastructure-as-Code, code
coverage, static code analysis, trunk-based development,
automated provisioning of IT resources, and containerised
environments didn’t score as high as the aforementioned,
three areas.

The main aim of this survey section was to uncover more
around the metrics related to DevOps adoption and its
leadership role. DevOps adoption practices and principles
adoption levels can be measured with the ways indicated in
Figure 4.

Figure 4. DevOps adoption metrics indicated by survey participants.

The traditional approach to measuring adoption in
software development surfaced in the results shown in

50Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 61 / 191

Figure 4, in terms of time to market, Key Performance
Indicators (KPI) and Critical Success Factors (CSF). The
most prominent DevOps oriented metrics were deployment
frequency, deployment duration, time to detect a defect, time
to recovery and behavioural metrics. Feature usage seems to
be an emerging practice for DevOps adoption. Moreover,
88% of respondents agreed that the leadership role should be
associated and have ownership of the aforementioned
metrics in order to facilitate the DevOps teams efforts in the
adoption of practices and principles. Lastly, regarding the
software development-oriented metrics described in section
Background and Related Work – Measuring DevOps, there
was negligible mention in the interviews and the survey.

D. Research Validity

Initially, we considered the internal validity. The main
validity threat relates to possible bias in the participant
selection process. The communication channels, utilised to
invite interview and survey participants, were conferences of
DevOps, Lean IT and IT service management. In addition,
the majority of interview participants related their work to
closed-sourced software products. Future study could focus
on DevOps adoption leadership by considering Open-Source
Software (OSS) products. Next, we considered the construct
validity. A threat to construct validity is that half of the
questions of the online survey consisted of closed-ended
questions. The authors evaluated the survey structure and
deduced that the advantages of closed-ended questions
outweighed the disadvantages. Furthermore, concerning
external validity, although the viewpoint of the interviewed
and surveyed practitioners is considered with different
backgrounds, working in varying industry domains and
geographical regions, the authors do not claim that research
results from this contribution are valid to other scenarios.
However, saturation was achieved after the 20th interview.

V. CONCLUSIONS

This paper indicates that DevOps practice and principle
adoption maintained strong linkage to agile and lean practice
and principle adoption for thirty (30) interview participants
from private and public sectors in the EMEA region. In
addition, the evaluation of a survey completed by 250
participants, of which 76% have held previous leadership
positions further enhanced the linkage of DevOps, agile and
lean practices and principles. Moreover, a mixed methods
approach was used. The 30 interviews generated coded
themes to expand our understanding of relevant factors –
from most to least recurring in interview transcripts; (1)
DevOps leadership, (2) practice and principle adoption, (3)
employee culture, (4) product development and (5) skills.
The data collected from a series of interviews and a survey
indicate a clear list of specific agile, lean and DevOps
practices and principles including leadership characteristics
which form a crucial part to DevOps adoption theory.

A. Discussion

The most important findings of this review, which are
organised according to the study’s research questions, are
summarised below.

RQ1) What are the leadership characteristics required to
enable DevOps practice and principle adoption?

From the 250 survey participants, with 81% possessing
over 10+ years of professional experience, results indicated
that a new practice and principle adoption leadership role
should exist for transformation initiatives; i.e., that the C-
Suite should be the direct report of the DevOps leader. The
most prominent identified DevOps leadership characteristics
associated to leadership skills were: communication and
collaboration, customer-centric mindset, having a technical
background, and being an active listener.

The results obtained from the survey participants shed
more light on the already established beliefs extracted from
the interview participants. For instance, there was strong
indication by interview participants that a shift of skillset
towards acquiring, developing and applying more soft skills
is necessary to achieve new practice and principle adoption,
in this case agile, lean and DevOps. In fact, communication
and collaboration as well as customer-centric or even
customer-obsessed mindset is an extension to that viewpoint.
Another example spurs from the technical and/or business
backgrounds that could play a role in DevOps adoption
leadership. Ever since the term “DevOps” was coined back
in 2009, the worldwide IT and business community have
come to an assumingly obvious realisation; “DevOps” is
associated to the IT organisation and that is where it stays.
This belief seems to reflect in the survey findings where
possessing a technical background is more important than a
business background by as much as 15% in the “Strongly
Agree” category. However, the survey findings also suggest
that possessing a business background is beneficial to a
certain extent with interview participants state that a
balanced background is preferable to technical-only or
business-only.

The least important DevOps leadership characteristics
were: gaining a relevant certification, design thinking,
previous experience on transformation projects and talent
seeking. Furthermore, the Information Security Officer is
mostly seen as a collaborator to the DevOps adoption leader.

Survey results indicate that certification was, by a
considerable degree, the least preferred characteristic for the
DevOps leader. Although there is availability of DevOps
leader certifications e.g., DevOps Leader (DOL)
certification, by the DevOps Institute, it seems that the desire
to become certified in DevOps leadership is not regarded to
be an important characteristic or requirement. In addition,
design thinking which entails observation, insights
generation, ideation, prototype and testing for product
development purposes was clearly not considered a crucial
characteristic or requirement. Furthermore, previous
experience of transformation projects did not yield any
connection to DevOps leadership. The authors’ intent was to
investigate a finding from the interview series, where there
was an indication that constant coaching by an external
entity e.g., consultant is required, although not always, to
sustain transformation initiatives. However, most of the time,
the IT organisation cannot sustain newly adopted practices in
their structure and default to the “old habits of working”,
which could suggest that an individual with previous

51Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 62 / 191

experience on transformation projects would know how to
avoid a similar situation in the transition process to DevOps
practice and principle adoption.

RQ2) What are the DevOps adoption inhibitors?
The analysis and evaluation of interviews showed that

several DevOps adoption inhibitors were recognised (1)
communication barriers, (2) lack of cross-functional
collaboration, (3) lack of senior management buy-in, (4) lack
of leadership, (5) lack of cross-functional leadership, (6) lack
of enterprise-wide DevOps adoption, (7) plethora of IT
systems coupled with numerous IT support roles and (8) lack
of cross-functional collaboration. In addition, the survey
added the (9) lack of commitment by customer and (10) lack
of organisational practice adoption capability.

The interview participants established that the cultural
behaviour of making organisational group distinctions of
defining responsibility, especially in terms of “us” and
“them”, is immensely detrimental to the cross-functional
team collaboration mode and the cross-functional leadership
DevOps aims to achieve. In essence, this inhibitor leads to
DevOps enterprise-wide adoption facing failure from the off
start of such an initiative, implying that it is important to first
let the cultural character within the IT organisation take form
and shape and then aim for adoption at a wider scale, outside
the IT organisation. To that extent, the interviews showed
that Human Resources departments can be a first step outside
the IT organisation where DevOps adoption can contribute in
terms of shift of culture-skillset-toolset. Simply put, as one
interviewee stated, “Leadership skillset is the most important
thing to adoption barrier breakdown”. In addition, the set of
inhibitors identified could have a direct cause of
exacerbation from the perspective of the Human Resources
department, whereby utilising a rudimentary selection
approach that qualifies new hires based on the right toolset
experience without considering mindset and skillset-specific
aspects falls short of DevOps-oriented team structure
expectations. Thus, this selection process could insinuate that
IT teams that fail or partially fail to adopt DevOps practices
and principles are because the transition to the right mindset
e.g., embrace continuous experimentation, cross-
collaboration between development, operations, quality
assurance and information security teams, etc. and skillset is
simply, under-developed. There are findings in the survey to
indicate that talent seeking is not considered an important
characteristic of the DevOps leader since that is a
responsibility area normally covered by Human Resources.
Therefore, the perception that DevOps teams and their
leaders should not engage or engage minimally with talent
seeking opportunities could affect the future staffing of those
teams.

RQ3) How should DevOps leadership be measured?
During the survey, participants indicated that DevOps

adoption leadership practices should still be governed by
traditional approaches, such as CSF, KPI and time-to-
market. However, agile and lean metrics formed a significant
part of the wider picture with the top five most popular being
(1) deployment frequency, (2) deployment duration, (3) time
to detect defect, (4) time to recovery , and (5) behavioural
metrics. The DevOps-oriented metrics from the

aforementioned, i.e., (1) to (4), indicate software product
development measurements that can apply to a DevOps team
structure as well as to the DevOps leadership role. From the
cultural perspective, (5) can refer to behaviour that aims to
increase knowledge sharing in cross-functional fashion, the
frequency that a leader performs one-to-ones with DevOps
teams and their members to understand what is on top of
mind, similar to Gemba walks in the physical or virtual
format, the number of absentees during DevOps adoption
sessions, etc.

Moreover, feature usage is an emerging practice for
DevOps adoption and it regards monitoring usage of a
released product feature in a production system environment
and whether performance is as expected. Lastly, the vast
majority of respondents agreed that the leadership role
should be associated and have ownership of the
aforementioned metrics.

Presently, we conclude that DevOps adoption leadership
is very much a multidisciplinary topic requiring a specific
identified skillset coupled with a set of DevOps practices and
principles. The leadership approach of the organisational
structure is vital to the level of resistance exhibited by IT
professionals during the transitioning period from a highly
structured software product development approach to
DevOps. We also deduce that the transitional phase of
DevOps adoption requires an individual to lead DevOps
teams which leads to the belief that DevOps has a substantial
leadership component at its transitional level.

B. Future Research Directions

DevOps adoption leadership and its relationship to
software product development teams is becoming a vastly
popular research topic. The authors’ intent is to maintain
focus on the analysis and evaluation of presently collected
research data and to provide further insights relative to
current findings in order to witness which leadership styles
can become part of the transitional journey of organisations
towards DevOps practice and principle adoption. The
organisational change required to achieve a successful state
of a DevOps-oriented environment in today’s global market
raises a number of challenges and resistance factors in terms
of the triage of mindset-skillset-toolset. The effects of the
change need to be continuously monitored to identify the
link to the shift of the triage experienced. In that aspect, one
of the future research aims could be to invite and/or select IT
practitioners with prior and/or current Open Source Software
(OSS) experience. Additionally, it is the authors’ belief that
DevOps adoption velocity and its continuous applicability
whether in an IT organisation-wide or enterprise-wide
context, regards the levels of cognitive load under which
DevOps team structures learn to perform. Therefore, future
research could focus in gaining more insights on the extent
of influence posed on DevOps teams and their leadership
role due to cognitive load. Lastly, the current pandemic
crisis, which has shifted the working experience to its virtual
format, colocation; one of DevOps practices, for software
product development, operations, quality assurance and
information security teams is no longer the case. As long as
the “work-from-home” paradigm is enforced in the global

52Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 63 / 191

software product development community teams, that could
potentially be affecting the interplay of DevOps adoption
leadership characteristics and can be part of future research
considerations.

REFERENCES

[1] P. Kruchten, "The rational unified process: an introduction,"
Addison-Wesley Longman Publishing Co., Inc., USA, 1999.

[2] K. Beck, "Extreme programming explained: embrace
change," Addison-Wesley, Don Mills, Ontario, Canada, 2000.

[3] M. Fowler, "Refactoring: improving the design of existing
code," Addison-Wesley, Don Mills, Ontario, Canada, 1999.

[4] L. Bass, I. Weber and L. Zhu, "DevOps: A Software
Architect's Perspective," Addison Wesley, 2015.

[5] AXELOS, "ITIL4® Managing Professional High Velocity
IT," The Stationery Office, London, UK, 2020, ISBN:
9780113316403.

[6] M. Herring, "DevOps for the Modern Enterprise," IT
Revolution, Portland, Oregon, 2018.

[7] M. Kersten, "From Project to Product," IT Revolution,
Portland, Oregon, 2018.

[8] E. Goldratt, "Theory of Constraints and How it Should be
Implemented," North River Press, 1994.

[9] M. Herring, D. DeGrandis, N. Forsgren and S. Guckenheimer,
"Measure efficiency, effectiveness and culture to optimize
devops," IT Revolution, Portland, Oregon, 2015.

[10] G. Gruver, "Start and Scaling DevOps in the Enterprise,"
Bookbaby, 2016.

[11] K. Martin and M. Osterling, "Value stream mapping: how to
visualize work and align leadership for organizational
transformation," McGraw-Hill Education, UK, 2014.

[12] M. Nygard, T. Pal, S. Magill, S. Guckenheimer and J. Willis,
"DevOps Governance Architecture," IT Revolution, Portland,
Oregon, 2019.

[13] H. Alahyari, T. Gorschek and R. B. Svensson, “An
exploratory study of waste in software development
organizations using agile or lean approaches: A multiple case
study at 14 organizations,” Information and Software
Technology, vol. 105, pp. 78-94, Jan. 2019,
doi.org/10.1016/j.infsof.2018.08.006.

[14] P. Rodríguez et al., "Chapter Four - Advances in Using Agile
and Lean Processes for Software Development," Advances in
Computers, Elsevier, vol. 113, pp. 135-224, 2019,
doi.org/10.1016/bs.adcom.2018.03.014.

[15] W. J. W. Geurts, "Faster is Better and Cheaper," Wiley
Online, vol. 26, pp. 1002-1015, Jul. 2016,
doi.org/10.1002/j.2334-5837.2016.00207.x.

[16] T. Schlossnagle, "Monitoring in a DevOps world," ACM
Queue, 2017, dl.acm.org/doi/pdf/10.1145/3178368.3178371.

[17] J. Willis. What DevOps means to me. [Online]. Available
from: https://blog.chef.io/what-devops-means-to-me/,
2020.10.16

[18] P. Rodríguez et al., "Continuous deployment of software
intensive products and services: A systematic mapping
study," Journal of Systems and Software, vol. 123, pp. 263-
291, 2017, doi.org/10.1016/j.jss.2015.12.015.

[19] DevOps Institute. DevOps Collective Body of Knowledge
[Online]. Available from: devopsinstitute.com/resources/,
2020.10.16

[20] T. Dingsøyr and C. Lassenius, "Emerging themes in agile
software development: Introduction to the special section on
continuous value delivery," Information and Software
Technology, pp. 56-60, 2016

[21] S. Jones, J. Noppen and F. Lettice, "Management challenges
for DevOps adoption within UK SMEs." ACM, 2016, 978-1-
4503-4411-1/16/17.

[22] W. Xiaofeng, K. Conboy and O. Cawley, ""Leagile" software
development: An experience report analysis of the application
of lean approaches in agile software development," J. Syst.
Softw. Vol. 85, 2012.

[23] Puppet, DORA. State of DevOps Report 2019 [Online].
Available from: puppet.com/resources/report/state-of-devops-
report/, 2020.10.16

[24] J. Iden, B. Tessem and T. Päivärinta, "Problems in the
interplay of development and IT operations in system
development projects: A Delphi study of Norwegian IT
experts," Information and Software Technology, vol. 53(4),
pp. 394-406, 2011, DOI: 10.1016/j.infsof.2010.12.002.

[25] D. Feitelson, E. Frachtenberg and K. Beck, "Development and
Deployment at Facebook," IEEE 1089-7801/13, 2013.

[26] J. Humble and J. Molesky, "Why enterprises must adopt
devops to enable continuous delivery," Cutter IT Journal, vol.
24(8), pp. 6-12, 2011.

[27] Harvard Business Review, M. Harris, B. Tayler. Don’t Let
Metrics Undermine Your Business [Online]. Available from:
hbr.org/2019/09/dont-let-metrics-undermine-your-business/,
2020.10.16

[28] Azure DevOps Microsoft Documentation. DevOps at
Microsoft [Online]. Available from: docs.microsoft.com/en-
us/azure/devops/learn/devops-at-microsoft/, 2020.10.16

[29] L. E. Lwakatare, P. Kuvaja and M. Oivo, "Relationship of
DevOps to Agile, Lean and Continuous Deployment," 17th

International Conference on Product-Focused Software
Process Improvement (PROFES), Nov. 2016, pp. 399-415,
doi:10.1007/978-3-319-49094-6.

[30] B. B. N. de França, H. Jeronimo and G. H. Travassos,
"Characterizing DevOps by hearing multiple voices,"
Proceedings of the 30th Brazilian Symposium on Software
Engineering (SBES), Association for Computing Machinery,
New York, pp. 53–62, 2016.

[31] A. Dyck, R. Penners and H. Lichter. 2015. Towards
Definitions for Release Engineering and DevOps, 3rd

International Workshop on Release Engineering (RELENG),
doi: 10.1109/RELENG.2015.10

[32] L. E. Lwakatare, P. Kuvaja and M. Oivo, "An exploratory
study of DevOps: extending the dimensions of DevOps with
practices," 11th International Conference on Software
Engineering Advances, pp. 91–99, IARIA, Rome, 2016.

[33] J. Smeds, K. Nybom and I. Porres, "DevOps: A definition and
perceived adoption impediments," Agile Processes in
Software Engineering and Extreme Programming (XP2015),
Lecture Notes in Business Information Processing, vol. 212,
Springer, Cham, 2015.

[34] R. Jabbari, N. bin Ali, K. Petersen and B. Tanveer, “What is
DevOps? A Systematic Mapping Study on Definitions and
Practices,” Proceedings of the Scientific Workshop
Proceedings (XP2016). Association for Computing
Machinery, New York, NY, USA, Article 12, pp. 1–11,
doi.org/10.1145/2962695.2962707.

[35] N. Kerzazi and B. Adams, "Who needs release and devops
engineers, and why?," Proceedings of the International
Workshop on Continuous Software Evolution and Delivery
(CSED2016). Association for Computing Machinery, New
York, NY, USA, pp. 77–83, 2016,
doi.org/10.1145/2896941.2896957.

[36] M. B. Kamuto and J. J. Langerman, "Factors inhibiting the
adoption of DevOps in large organisations: South African
context," 2nd IEEE International Conference on Recent Trends
in Electronics, Information & Communication Technology
(RTEICT), 2017, DOI: 10.1109/RTEICT.2017.8256556.

53Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 64 / 191

[37] C. P. Bezemer et al., "How is Performance Addressed in
DevOps?" Proceedings of ACM/SPEC International
Conference on Performance Engineering (ICPE 2019),
Association for Computing Machinery, New York, NY, USA,
pp. 45–50, 2019, doi.org/10.1145/3297663.3309672.

[38] W. Gottesheim, "Challenges, benefits and best practices of
performance focused DevOps," Proceedings of the 4th

International Workshop on Large-Scale Testing (LT2015),
2015.

[39] K. Maroukian and S. R. Gulliver, "Leading DevOps practice
and principle adoption," Proceedings of the 9th International
Conference on Information Technology Convergence and
Services (ITCSE2020), AIRCC, Computer Science and
Information Technology, pp. 41-56, 2020, ISBN13: 978-1-
925953-19-0.

[40] R. K. Greenleaf, “Servant leadership: A journey into the
nature of legitimate power and greatness”, Paulist Press,
2002, ISBN: 978-0809105540

[41] G. A. Yukl and W. L. Gardner, III, "Leadership in
organizations", Pearson Education, Essex, 2020, ISBN13:978-
1-292-31440-2.

[42] J. Sutherland and K. Schwaber, “The Definitive Guide to
Scrum: The Rules of the Game”, 2017, USA.

[43] J. Anderson, “Kanban: Successful Evolutionary Change for
Your Technology Business”, 2010, Blue Hole Press, USA.

[44] M. Poppendieck and T. Poppendieck, “Lean Software
Development: An Agile Toolkit”, Addison-Wesley
Professional, 2003, Boston, USA.

[45] M. Skelton, M. Pais, “Team Topologies”, IT Revolution,
2019, Portland, USA.

[46] Research Interview Structure. Interview Introduction and
Settings [Online]. Available from:
https://tinyurl.com/ybxrcujq, 2020.10.16

[47] Research Survey Structure. Survey [Online]. Available from:
https://tinyurl.com/yapl9u3u, 2020.10.16

54Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 65 / 191

Software Quality Evaluation via Static Analysis and Static Measurement: an Industrial

Experience

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria

Varese, Italy
Email: luigi.lavazza@uninsubria.it

Abstract—Business organizations that outsource software devel-
opment need to evaluate the quality of the code delivered by
suppliers. In this paper, we illustrate an experience in setting
up and using a toolset for evaluating code quality for a company
that outsources software development. The selected tools perform
static code analysis and static measurement, and provide evidence
of possible quality issues. To verify whether the issues reported by
tools are associated to real problems, code inspections were car-
ried out. The combination of automated analysis and inspections
proved effective, in that several types of defects were identified.
Based on our findings, the business company was able to learn
what are the most frequent and dangerous types of defects that
affect the acquired code: currently, this knowledge is being used
to perform focused verification activities.

Keywords–Software quality; Static analysis; Software measure-
ment; Code clones; Code measures.

I. INTRODUCTION

Today, software is necessary for running practically any
kind of business. However, poor quality software is generally
expensive, because poor quality code can cause expensive
failures, increased maintenance cost and security breaches.
Hence, organizations that rely on software for running their
business need to keep the quality of their software under
control.

Many companies do not have the possibility or the will of
developing the software they need. Hence, they outsource soft-
ware development. In this case, an organization has no direct
visibility and control of the development process; instead, they
can only check the quality of the delivered product.

In this paper, we report about an experience in setting up
the toolset needed for evaluating the quality of the code pro-
vided by a supplier to an organization. The software involved
in the reported activities is used by the organization to run two
Business-to-Consumer (B2C) portals.

The organization needed to evaluate the quality of the
supplied code; specifically, they wanted to check that the code
was correctly structured, cleanly organized, well programmed,
and free from defects that could cause failures or could be
exploited by attackers. The organization had already in place
a testing environment to evaluate the quality of the code from
the point of view of behavioral correctness. They wanted to
complement test-based verification with checks on the internal
qualities that could affect maintainability, fault-proneness and
vulnerability.

To accomplish this goal, we selected a set of tools that
provide useful indications based on static analysis and mea-
surement of code. The toolset was intended to be used to
evaluate two releases of the portal, and then to be set up at
the company’s premises, and used to evaluate the following
releases.

The contributions of the paper are twofold. We provide
methodological guidance on the selection and usage of a small
set of tools that can provide quite useful insights on code
quality. We also provide some results, which can give the
reader a measure of the results that can be achieved via the
proposed approach.

Because of confidentiality constraints, in this paper we
shall not give the names of the involved parties, and we shall
omit some non-essential details.

The paper is structured as follows. In Section II, we provide
some details concerning the evaluated software and the tools
used for the static analysis and measurement. Section III
illustrates the methodological approach. In Section IV, the
results of the evaluation are described. Section V provides
some suggestions about the organization of a software devel-
opment process that takes advantage of a static analysis and
measurement toolset. Section VI illustrates the related work,
while Section VII draws some conclusions and outlines future
work.

II. THE CONTEXT

In this section, we describe the problem and the tools that
were available to be employed in the problem context.

A. The Software to be Evaluated and the Aim of the Study
The evaluation addressed two B2C portals, coded almost

entirely in Java. The analyses concentrated exclusively on
the Java code. Table I provides a few descriptive statistics
concerning the two portals (LLOC is the number of logical
lines of code, i.e., the lines that contain executable code).

TABLE I. CHARACTERISTICS OF THE ANALYZED PORTALS.

Portal 1 Portal 2
Number of files 1507 280
LLOC 100375 37467
LOC 202249 55934
Number of Classes 1158 247
Number of Methods 13351 5370

55Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 66 / 191

The aim of the study consisted in evaluating the quality
of the products, highlighting weaknesses and improvement
opportunities. In this sense, it was important to spot the types
of the most frequently recurring issues, rather than finding all
the actual defects and issues.

It was also required that the toolset could be transferred to
the company’s premises. To this end, open-source (or free to
use) software was to be preferred.

Accordingly, we looked for tools that can
– Detect bad programming practices, based on the iden-

tification of specific code patterns.
– Detect bad programming practices, based on code

measures (e.g., methods too long, classes excessively
coupled, etc.).

– Detect duplicated code.
– Identify vulnerabilities.
After some search and evaluation, we selected the tools

mentioned in Table II. These tools are described in some detail
in the following sections.

TABLE II. TOOLS USED AND THEIR PURPOSE.

Purpose Tool Main features
Identify defects SpotBugs Static analysis is used to identify code

patterns that are likely associated to defects.
Collect static SourceMeter Static measurement is applied at different
measures granularity levels (class, method, etc.) to

provide a variety of measures.
Detect code clones SourceMeter Structurally similar code blocks

are identified.
Identify security FindSecBugs A plug-in for FindBugs, specifically
issues oriented to identifying vulnerable code.

B. Tools Used
1) Static Analysis for Identifying Defects: SpotBugs (for-

merly known as FindBugs) is a program which uses static
analysis to look for bugs in Java code [1][2]. SpotBugs looks
for code patterns that are most likely associated to defects. For
instance, SpotBugs is able to identify the usage of a reference
that is possibly null.

SpotBugs was chosen because it is open-source and one
among the best known tools of its kind. Besides, SpotBugs
proved to be quite efficient: on a reasonably powerful laptop,
it took less than a minute to analyze Portal 1.

SpotBugs provides “confidence” and “rank” for each of the
issued warnings. Confidence indicates how much SpotBugs
is confident that the issued warning is associated to a real
problem; confidence is expressed in a three-level ordinal scale
(high, medium, low). The rank indicates how serious the prob-
lem is believed to be. The rank ranges from 1 (highest) to 20
(lowest); SpotBugs also indicates levels: “scariest”(1 ≤rank≤
4), “scary” (5 ≤rank≤ 9), “worrying” (10 ≤rank≤ 14), “of
concern” (15 ≤rank≤ 20).

2) Static Analysis for Identifying Vulnerabilities: Having
selected SpotBugs as a static analyzer, it was fairly natural to
equip it with FindSecBugs [3], a plug-in for SpotBugs that
addresses security problems.

FindSecBugs works like FindBugs and SpotBugs, looking
for code patterns that can be associated to security issues, with
reference to problems reported by the Open Web Application
Security Project (OWASP) [4] an the weaknesses listed in the
Common Weaknesses Enumeration (CWE) [5].

3) Static Measures of Code: Several tools are available to
measure the most relevant characteristics of code, including
size, complexity, coupling, cohesion, etc.

SourceMeter [6] was chosen because it is free to use,
efficient and provides many measures, including all the most
popular and relevant.

4) Code Clone Detection: Noticeably, SourceMeter is also
able to detect code clones. Specifically, SourceMeter is capable
of identifying the so-called Type-2 clones, i.e. code fragments
that are structurally identical, but may differ in variable names,
literals, identifiers, etc.

III. THE METHOD

Since the most interesting properties of code are undecid-
able, tools that perform static analysis often issue warnings
concerning problems that are likely—but not certain—to occur.
In practice, the issues reported by static analysis tools can be
false positives. Therefore, we always inspected manually the
code that had been flagged as possibly incorrect by the tools.

Similar considerations apply to static measures. For in-
stance, consider a method that has unusually high McCabe
complexity: only via manual inspection we can check whether
the program was badly structured or the coded algorithm is
intrinsically complex.

Problem detection was performed as described in Figure 1.
The real problems identified via the process described in
Figure 1 were classified according to their type, so that
the company that asked for the code quality analysis could
focus improvement efforts on the most frequent and serious
problems.

IV. RESULTS

Here, we describe the code quality problems that were
identified.

A. Warnings issued by SpotBugs
Tables III and IV illustrate the number of warnings that

SpotBugs issued for the analyzed code, respectively by confi-
dence level and by rank. In Table III, the density indicates the
number of warnings per line of code.

TABLE III. SPOTBUGS WARNINGS BY CONFIDENCE.

Portal 1 Portal 2
Metric Warnings Density Warnings Density
High Confidence 68 0.07% 50 0.13%
Medium Confidence 774 0.77% 502 1.34%
Low Confidence 824 0.82% 420 1.12%
Total 1666 1.66% 972 2.59%

SpotBugs also classifies warning by type (for additional
information on warning types, see [7]). Table V illustrates the
warnings we obtained, by type. It can be noticed that most
warnings concerned security (types “Security” and “Malicious
code vulnerability”).

1) Results deriving from the inspection of SpotBugs warn-
ings: The effort allocated to the project did not allow analyzing
all the warnings issued by SpotBugs. Therefore, we inspected
the code where SpotBugs had identified issues ranked “scary”
and “scariest.” Specifically, we analyzed the warnings de-
scribed in Table VI.

56Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 67 / 191

Figure 1. The evaluation process: problem detection phase.

TABLE IV. SPOTBUGS WARNINGS BY RANK

Rank 1 6 7 8 9 10 11 12 14 15 16 17 18 19 20
Portal 1 24 9 1 42 12 39 21 2 604 17 129 562 82 122
Portal 2 10 6 1 7 8 27 18 191 10 59 401 66 168

TABLE V. SPOTBUGS WARNINGS BY TYPE.

Portal 1 Portal 2
Warning Type Number Percentage Number Percentage
Bad practice 73 4.38% 81 8.33%
Correctness 91 5.46% 30 3.09%
Experimental 0 0.00% 1 0.10%
Internationalization 16 0.96% 39 4.01%
Malicious code vulnerability 496 29.77% 316 32.51%
Multithreaded correctness 28 1.68% 1 0.10%
Performance 74 4.44% 143 14.71%
Security 631 37.88% 215 22.12%
Dodgy code 257 15.43% 146 15.02%
Total 1666 100% 972 100%

TABLE VI. SPOTBUGS WARNINGS THAT WERE VERIFIED
MANUALLY.

Occurrences
Rank Type Portal 1 Portal 2

1 Suspicious reference comparison 10 9
1 Call to equals() comparing different types 14 1
6 Possible null pointer dereference 8 –
8 Possible null pointer dereference – 2
8 Method ignores return value – 4
9 Comparison of String objects using == or != – 1

Our inspections revealed several code quality problems:

– The existence of problems matching the types of
warning issued by SpotBugs was confirmed.

– Some language constructs were not used properly. For
instance, class Boolean was incorrectly used instead
of boolean; objects of type String were used
instead of boolean values; etc.

– We found redundant code, i.e., some pieces of code
were unnecessarily repeated, even where avoiding
code duplication—e.g., via inheritance or even simply
by creating methods that could be used in different
places—would have been easy and definitely conve-
nient.

– We found some pieces of code that were conceptually
incorrect. The types of defect were not of any type that
a static analyzer could find, but were quite apparent
when inspecting the code.

Concerning the correctness of warnings issued by Spot-
Bugs, we found just one false positive: the “comparison of
String objects using == or !=” was not an error, in the ex-
amined case. We also found that the four instances of “Method
ignores return value” were of little practical consequences.
In summary, the great majority of warnings indicated real
problems, which could cause possibly serious consequences.
The remaining warning indicated situations where a better
coding discipline could make the code less error prone, if
applied systematically.

2) Results deriving from the inspection of FindSecBugs
warnings: The great majority of the security warnings (types
“Security” and “Malicious code vulnerability”) were ranked by
FindSecBugs as not very worrying. Specifically, no “scariest”)
warning was issued, and only one “scary” warning was issued.
Therefore, we inspected the only “scary” warning (rank 7, see
Table VII), and all the warnings at the highest rank of the level
“troubling” (rank 10, see Table VII).

We found that all the warnings pointed to code that had
security problems. In many cases, SpotBugs documentation
provided quite straightforward ways for correcting the code.

TABLE VII. FINDSECBUGS WARNINGS THAT WERE VERIFIED
MANUALLY.

Occurrences
Rank Type Portal 1 Portal 2

7 HTTP response splitting vulnerability 1 –
10 Cipher with no data integrity 4 2
10 ECB mode is insecure 4 2
10 URL Connection Server-Side Request 1 –

Forgery and File Disclosure – –
10 Unvalidated Redirect 2 –
10 Request Dispatcher File Disclosure – 1

57Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 68 / 191

Figure 2. Boxplots illustrating the distributions of McCabe complexity in the
two portals (blue diamonds indicate mean values). The scale is logarithmic.

B. Inspection of code elements having measures beyond
threshold

Static measures concerning size, complexity, cohesion,
coupling, among others, are expected to provide indications on
the quality of code. In fact, one expects that code characterized
by large size, high complexity, low cohesion, strong coupling
and similar “bad” characteristics is error-prone. Accordingly,
we inspected code elements having measures definitely out or
the usually considered safe ranges. Specifically, we considered
McCabe complexity [8], Logical Lines of Code and Response
for Class (RFC) [9] as possibly correlated with problems.
In fact, we also looked at Coupling Between Objects, Lack
of Cohesion in Methods and Weighted Method Count, but
these measures turned out to provide no additional information
with respect to the aforementioned three measures, i.e., they
pointed to the same classes or methods identified as possibly
problematic by the aforementioned measures.

We found that several methods featured McCabe com-
plexity well over the threshold that is generally considered
safe. Figure 2 shows the distributions of McCabe complexity
of methods (excluding setters and getters) together with two
thresholds representing values that should and must not be
exceeded, according to common knowledge [8][10][11][12].
Specifically, we found methods with McCabe complexity close
to 200.

When considering size, we found several classes featuring
over 1000 LLOC; the largest class contained slightly less
then 6000 LLOC. When considering RFC, we found 12
classes having RFC greater than 200. Interestingly, the class
with the highest RFC (709) was also the one containing the
method with the greatest McCabe complexity. The biggest
class contained the second most complex method. These results
were not surprising, since it is known that several measures are
correlated to size.

Inspections revealed that the classes and methods featuring
excessively high values of LLOC, RFC and McCabe complex-
ity were all affected by the same problem. The considered code
had to deal with several types of services, which where very
similar under several respects, although each one had its own
specificity. The analyzed code ignored the similarities among
the services to be managed, so that the code dealing with

similar service aspects was duplicated in multiple methods.
The code could have been organized differently using basic
object-oriented features: a generic class could collect the
features that are common to similar services, and a specialized
class for every service type could take care of the specificity
of different service types.

In conclusion, by inspecting code featuring unusual static
measures, we found design problems, namely inheritance and
late binding were not used where it was possible and conve-
nient.

C. Inspection of duplicated code
SourceMeter was also used to find duplicated code. Specif-

ically, structurally similar blocks of 10 or more lines of code
where looked for. Many duplicated blocks were found. For
instance, in Portal 1, 434 duplicated blocks were found. In
many cases, blocks included more than one hundred lines. The
largest duplicated blocks contained 205 lines. A small minority
of detections concerned false positives.

We found three types of duplications:
a) Duplicates within the same file. That is, the same

code was found in different parts of the same file (or
the same class, often).

b) Duplicates in different files. That is, the same code
fragment was found in different files (of the same
portal).

c) Duplicates in different portals. That is, the same code
fragment was found in files belonging to different
portal.

Duplicates of type c) highlighted the existence of version-
ing problems: different versions of the same class were used
in the two portals.

Duplicates of types a) and b) pointed to the same type
of problem already identified, i.e., not using inheritance to
factor code that can be shared among classes dealing with
similar services. Concerning this issue, it is worth noting that
static measures revealed a general problem with the design
of code, but were not able to indicate precisely which parts
of the code could be factorized. On the contrary, duplicated
code detection was quite effective in identifying all the cases
where code could be factorized, with little need of inspecting
the code. In this sense, code clone detection added some value
to inspections aiming at understanding the reasons for ‘out of
range’ measures.

V. SUGGESTIONS FOR IMPROVING THE DEVELOPMENT
PROCESS

Given the results described in Section IV, it seems conve-
nient that the capabilities of static analysis and measurement
tools are exploited on a regular basis. To this end, we can
observe that two not exclusive approaches are possible.

1) Evaluation of code: The toolset can be used to evaluate
the released code as described in Section III. However, it
would be advisable that developers verify their own code via
SpotBugs and SourceMeter even before releasing it: in such a
way, a not negligible number of bugs would be removed even
before testing and other Verification&Validation activities, thus
saving time and effort. With respect to the evaluation described
in Section III, where just a sample of the issues reported by
the tools were inspected, in the actual development process all
issues should be inspected.

58Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 69 / 191

Figure 3. Suggested Development Process.

2) Prevention: The practice of issue identification and veri-
fication leads to identifying the most frequently recurring types
of problems. It is therefore possible to compile a catalogue
of the most frequent and dangerous problems. Accordingly,
programmers could be instructed to carefully avoid such issues.
This could imply teaching programmers specific techniques
and good programming practices.

As a result of the considerations illustrated above, software
development activities could be organized as described in Fig-
ure 3. If development is outsourced, as in the cases described
in this paper, the catalogue of recurrent problems could be
used as part of the contract annex that specifies the required
code quality level.

Finally, it is worth noting that the proposed approach can
be applied in practically any type of lifecycle. For instance,
in an agile development environment, the proposed evaluation
practices could be applied at the end of every sprint.

VI. RELATED WORK

The effectiveness of using automated static analysis tools
for detecting and removing bugs was documented by Zheng
et al. [13]. Among other facts, they found that the cost per
detected fault is of the same order of magnitude for static
analysis tools and inspections, and the defect removal yield of
static analysis tools is not significantly different from that of
inspections.

Thung et al. performed an empirical study to evaluate to
what extent could field defects be detected by FindBugs and
similar tools [14]. To this end, FindBugs was applied to three
open-source programs (Lucene, Rhino and AspectJ). The study
by Thung et al. takes into consideration only known bugs,
and is performed on open-source programs. On the contrary,
we analyzed programs developed in an industrial context, and
relied on manual inspection to identify actual bugs.

Habib and Pradel performed a study to determine how
many of all real-world bugs do static bug detectors find [15].
They used three static bug detectors, including SpotBugs, to
analyze a version of the Defects4J dataset that consisted of 15
Java projects with 594 known bugs. They found that static bug
detectors find a small but non-negligible amount of all bugs.

Vetrò et al. [16] evaluated the accuracy of FindBugs. The
code base used for the evaluation consisted of Java projects
developed by students in the context of an object-oriented
programming course. The code is equipped with acceptance
tests written by teachers of the course in such a way that all
functionalities are checked. To determine true positives, they
used temporal and spatial coincidence: an issue was considered
related to a bug when an issues disappeared at the same time
as a bug get fixed (according to tests). In a later paper [17]
Vetrò et al. repeated the analysis, with a larger code set and
performing inspections concerning four types of issues found
by FindBugs, namely the types of findings that are considered
more reliable.

Tomassi [18] considered 320 Java bugs from the
BugSwarm dataset, and determine which of these bugs can
potentially be found by SpotBugs and another analyzer—
namely, ErrorProne (https://github.com/google/error-prone)—
and how many are indeed detected. He found that 40.3% of
the bugs were of types that SpotBugs should detect, but only
one of such bugs was actually detected by SpotBugs.

In general, the papers mentioned above have goals and use
methods that are somewhat similar to ours, but are nonetheless
different in important respects. A work that shares context,
goals and methods with ours was reported by Steidl et al. [19].
They observed that companies often use static analyses tools,
but they do not learn from results, so that they fail to im-
prove code quality. Steidl et al. propose a continuous quality
control process that combines measures, manual action, and a
close cooperation between quality engineers, developers, and
managers. Although there are evident differences between the
work by Steidl et al. and the work reported in this paper
(for instance, the situation addressed by Steidl et al. does
not involve outsourcing), the suggestions for improving the
development process given in Section V are conceptually
coherent with the proposal by Steidl et al.

Similarly, Wagner et al. [20] performed an evaluation of the
effectiveness of static analysis tools in combination with other
techniques (including testing and reviews). They observed that
a combination of the usage of bug finding tools together with
reviews and tests is advisable if the number of false positives is
low, as in fact is in the cases we analyzed (many false positives
would imply that a relevant effort is wasted).

An alternative to static analyzers like SpotBugs is given by
tools that detect the presence of “code smells” [21] in code. A
comparison of these types of tools was performed by applying
SpotBugs and JDeodorant [22][23] to a set of set of open-
source applications [24]. The study showed that the considered
tools can help software practitioners detect and remove defects
in an effective way, to limit the amount of resources that would
otherwise be spent in more cost-intensive activities, such as
software inspections. Specifically, SpotBugs appeared to detect
defects with good Precision, hence manual inspection of the
code flagged defective by SpotBugs becomes cost-effective.

Another empirical study evaluated the persistence of Spot-
Bugs issues in open-source software evolution [25]. This study
showed that around half the issues discovered by SpotBugs
are actually removed from code. This fact is interpreted as
a confirmation that SpotBugs identifies situations that are
considered worth correcting by developers.

59Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 70 / 191

VII. CONCLUSIONS

Evaluating the quality of software is important in gen-
eral, and especially for business organization that outsource
development, and do not have visibility and control of the
development process. Software testing can provide some kind
of quality evaluations, but to a limited extent. In fact, some
aspects of code quality (e.g., whether the code is organized
in a way that favors maintainability) cannot be assessed via
testing.

This paper describes an approach to software quality
evaluation that consists of two phases: in the first phase,
tools are used to identify possible issues in the code; in the
second phase, code is manually inspected to verify whether
the reported issues are associated to real problems. The tools
used are of two kinds: the first performs static analysis of
code looking for patterns that are likely associated to prob-
lematic code; the second type yields measures of static code
properties (like size, complexity, cohesion, coupling etc.), thus
helping identifying software elements having excessive, hence
probably problematic, characteristics.

The mentioned approach was applied to the code of the
web portals used by a European company to let its customers
use a set of services. The experience was successful, as
tool-driven inspections uncovered several types of defects. In
the process, the tools (namely SpotBugs and SourceMeter)
identified problems of inherently different nature, hence it is
advisable to use both types of tools.

Based on our findings, the business company was able to
learn what are the most frequent and dangerous types of defects
that affect the acquired code: this knowledge is being used to
perform focused verification activities.

The proposed approach and toolset (possibly composed
of equivalent tools) can be useful in several contexts where
code quality evaluation is needed. Noticeably, the proposed
approach can be used in different types of development pro-
cess, including agile processes.

Among the future possible evolutions of this work, the most
intriguing one concerns studying the possibility of replacing
inspection via some sort of AI-based models that can discrim-
inate false positives and true problems.

ACKNOWLEDGMENT

This work has been partially supported by the “Fondo di
ricerca d’Ateneo” of the Università degli Studi dell’Insubria.

REFERENCES

[1] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
notices, vol. 39, no. 12, 2004, pp. 92–106.

[2] https://spotbugs.github.io/ [retrieved: August 2020].
[3] https://find-sec-bugs.github.io/ [retrieved: August 2020].
[4] “Open Web Application Security Project (OWASP),”

https://www.owasp.org [retrieved: August 2020].
[5] “Common Weaknesses Enumeration,” https://cwe.mitre.org [retrieved:

August 2020].
[6] R. Ferenc, L. Lang, I. Siket, T. Gyimthy, and T. Bakota, “Source

meter sonar qube plug-in,” in 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, 2014, pp. 77–
82.

[7] https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html/
[retrieved: August 2020].

[8] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308–320.

[9] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6,
1994, pp. 476–493.

[10] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured testing: A
testing methodology using the cyclomatic complexity metric. US De-
partment of Commerce, Technology Administration, National Institute
of , 1996, vol. 500, no. 235.

[11] M. Bray, K. Brune, D. A. Fisher, J. Foreman, and M. Gerken, “C4
software technology reference guide-a prototype.” Carnegie-Mellon
Univ., Pittsburgh PA, Software Engineering Inst, Tech. Rep., 1997.

[12] JPL, “JPL Institutional Coding Standard for the C Programming Lan-
guage,” Jet Propulsion Laboratory, Tech. Rep., 2009.

[13] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE transactions on software engineering, vol. 32, no. 4,
2006, pp. 240–253.

[14] F. Thung, L. Lucia, D. Lo, L. Jiang, P. Devanbu, and F. Rahman,
“To what extent could we detect field defects? an extended empirical
study of false negatives in static bug-finding tools,” Automated Software
Engineering, vol. 22, no. 4, 2015, pp. 561–602.

[15] A. Habib and M. Pradel, “How many of all bugs do we find? a
study of static bug detectors,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018,
pp. 317–328.

[16] A. Vetrò, M. Torchiano, and M. Morisio, “Assessing the precision of
FindBugs by mining java projects developed at a university,” in 2010
7th IEEE Working Conference on Mining Software Repositories (MSR
2010). IEEE, 2010, pp. 110–113.

[17] A. Vetrò, M. Morisio, and M. Torchiano, “An empirical validation
of findbugs issues related to defects,” in 15th Annual Conference on
Evaluation and Assessment in Software Engineering (EASE 2011).
IET, 2011, pp. 144–153.

[18] D. A. Tomassi, “Bugs in the wild: examining the effectiveness of static
analyzers at finding real-world bugs,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp.
980–982.

[19] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke, and B. Uhink-
Mergenthaler, “Continuous software quality control in practice,” in 2014
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 561–564.

[20] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing bug
finding tools with reviews and tests,” in IFIP International Conference
on Testing of Communicating Systems. Springer, 2005, pp. 40–55.

[21] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[22] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant: Iden-
tification and removal of feature envy bad smells,” in 2007 IEEE
International Conference on Software Maintenance. IEEE, 2007, pp.
519–520.

[23] “JDeodorant website,” 2020. [Online]. Available:
https://github.com/tsantalis/JDeodorant

[24] L. Lavazza, S. Morasca, and D. Tosi, “Comparing static analysis and
code smells as defect predictors: an empirical study,” in Empirical
Software Engineering and Measurement – ESEM 2020, 2020.

[25] L. Lavazza, D. Tosi, and S. Morasca, “An empirical study on the
persistence of spotbugs issues in open-source software evolution,”
in 13th International Conference on the Quality of Information and
Communications Technology – QUATIC, 2020.

60Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 71 / 191

Capacity Planning of Cloud Computing Workloads

A Systematic Review

Carlos Diego Cavalcanti Pereira
CESAR – Recife Center for Advanced Studies and Systems

Recife, Brazil
Email: cdcp@cesar.org.br

Felipe Silva Ferraz
CESAR – Recife Center for Advanced Studies and Systems

Recife, Brazil
Email: fsf@cesar.org.br

Abstract—Cloud Computing is a prominent field of research
with several areas of knowledge to be explored. The current
state of the art of cloud computing regarding capacity planning
is a more specific field to address in research and further
studies. This work has the objective of identifying, evaluating
and interpreting published research that examines sizing and
capacity planning for cloud computing workloads. To achieve
that, a systematic literature review was conducted. This review
resulted in the finding of 504 works, of which 52 were
identified as primary studies. The studies were then classified
according to research focus and aspect of cloud capacity
planning. The work investigates what is known about capacity
planning models for cloud computing workloads. The results
show statistical data about cloud capacity planning, gaps in
current research and models for sizing cloud computing
workloads with no historical use and workloads based on
functional characteristics or architecture.

Keywords - cloud capacity planning; capacity planning;
cloud computing.

I. INTRODUCTION

Cloud Computing is a way of referring to the use of
shared computing resources [1]. Cloud Computing groups
gather a large number of servers and other computing
resources and generally offer combined capacity based on
payment on demand and by cycle [2]. Conceptually, Cloud
Computing deals equally with partial or complete abstraction
of computational capacity, delivering infrastructure
components in the form of service to the end customer [3].

Cloud Computing brought us a new paradigm after the
evolution of the use of mainframes for x86 servers [4]. In
this model, users no longer have control over the physical
technology infrastructure [5]. Cloud computing describes a
new approach for how computing services and components
are available to users.

One of the key aspects to define and implement a cloud
computing workload is to understand the appropriate amount
of resources needed to meet demand. Mainly, this activity is
conducted by applying empirical approaches [6]. On the
other hand, “empirical methods” generally imply that the
workloads use some sort of historical data to address the
sizing – which is not always possible, especially in
innovative systems. Another aspect is that to define the
amount of resources needed by a specific workload, it is
important to understand its architecture, since, even though

historical data may be available, it is not effective to assume
that this workload has appropriate enhancements in terms of
the amount of resources needed to meet the demand.

To understand how those gaps are usually managed, a
Systematic Literature Review (SLR) was conducted to map
out how to address those issues and processes with regards to
capacity planning of cloud computing workloads.

This work is structured as follows: Section I presents the
introduction of Capacity Planning of Cloud Computing
Workloads; in Section II, related works are presented; in
Section III, a brief introduction to cloud capacity planning is
addressed; in Section IV, the applied protocol of this
systematic review is presented; in Section V, all results are
presented; in Section VI, all findings are addressed and
discussed; finally, in Section VII, conclusions are presented.

II. RELATED WORK

Considering that Cloud Computing is a relatively new
research field, especially in the case of Capacity Planning,
there was no related work found regarding Systematic
Literature Reviews on this subject. Even so, the different
aspects addressed in this research can be found individually
in the primary studies found as a result of this Systematic
Literature Review (SLR).

In regards of capacity planning models for cloud
computing workloads, most of current approaches somehow
apply historical use data as key source of information to
establish workload resource needs [6]. Although this
assertion can be confirmed as presented on the results of this
research, there was no research found in the systematic
review addressing cloud capacity planning. When evaluating
the results of this study, when relating systematic reviews
and cloud computing, the only topic addressed in the
research found was Cloud Migration [1]. So, is possible to
assume that capacity planning of cloud computing workloads
is a subject that has unanswered questions that are relevant to
be studied.

III. CLOUD CAPACITY PLANNING

Restrictions regarding software development projects,
especially considering shortened schedule horizons and
contracted time-to-market deadlines, manifest in traditional
approaches to capacity planning, where often a gap is seen
and is a major risk compromising their production plans [6].
A formal Capacity Planning approach facilitates forecasting

61Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 72 / 191

of sizing requirements based on the opportunistic use of
whatever performance data and tools are available
[1][6][54]-[56]. One of the key aspects when analyzing the
relevance of capacity planning in cloud computing projects is
the amount of resources needed to meet demand. Depending
on the stage at which a project based on cloud computing is,
it may be economically unfeasible. This is because
architectural decisions can directly impact the need for
resources and consequently make the project unviable [4].
Thus in scenarios where there are resource limitations, it is
essential to establish a formal capacity planning model [7].

IV. APPLIED PROTOCOL

For the development of this study, general approaches for
performing systematic reviews in software engineering [8]
and also for its analysis [9] were applied. Our review process
has six steps: (1) establish research protocol, (2) inclusion
and exclusion criteria definition, (3) perform search (4)
content assessment, (5) data extraction, and (6) synthesis.

The objective of this review is to identify current
approaches in scientific literature on sizing and capacity
planning for cloud computing workloads. The following
questions help identify primary studies:

 What are the capacity planning models for cloud
computing workloads available in scientific
literature?

 Do capacity planning models consider workloads
with no historical use?

 Are there capacity planning models for cloud
computing workloads based on functional
characteristics or its architecture?

A. Inclusion and Exclusion Criteria

For this systematic review, we considered studies that
focus in analyzing cloud capacity planning models. The
studies could refer to cloud capacity planning specifically or
have a broader scope, taking in consideration both cloud
computing and capacity planning individually. Considering
that this field of research is recent but also in constant
development, this review examined studies published from
the year 2017.

We also excluded:
 Studies not published in the English language;
 Studies that were unavailable online.

B. Search Strategies

The databases considered in the study are in the list
below:

 ACM Digital Library;
 IEEE Xplore;
 ScienceDirect – Elsevier.

To ensure that relevant studies would not be excluded
when querying different scientific databases, the search
strings were tested on each one of databases to guarantee that
it would work for all of them. As a result, a general search
string was defined:

1. “cloud capacity planning” OR;
2. “capacity planning” AND “cloud computing” OR;

3. “capacity planning” AND “cloud”.
As mentioned before, the due process of database search

and search strings were tested individually on each database
until a final statement was defined. The searches were
performed between March 2020 and April 2020. The results
of each search were summarized and later examined in order
to identify duplicity among them. Table 1 presents the
number of studies found on each database.

TABLE I. NUMBER OF STUDIES FOUND IN EACH DATABASE

Database Number of Studies

ACM Digital Library 139

IEEE Xplorer 155

Science Direct 219

Amount of Studies 513

C. Studies Selection Process

The papers that were collected in the search process were
gathered and added to the Mendeley [61] tool. It was found
that there were 9 duplicated works among all databases,
resulting in a total of 504 non-duplicated papers. Then, they
all had their titles analyzed to determine their relevance and
adherence to this study. At this stage, the works that did not
have a relationship to capacity planning of cloud computing
workloads were eliminated. Papers where the titles were
unclear about their relation with the subject of this study
were put aside to be analyzed in the next step. At the end of
this stage, 365 works were excluded and remaining were 137
items for further analysis of abstracts.

At this stage, all works found previously had their
abstracts analyzed. Many were also eliminated due to not
conforming to the scope of capacity planning of cloud
computing workloads. Papers where it was difficult to
determine if they conform to the scope of this study due to
the aforementioned reasons were included to be filtered out
at a further step. As result of this phase of analysis, 75 papers
were excluded, thus remaining were 62 to be analyzed more
closely. Table 2 presents the number of studies filtered in
each step of selection process.

TABLE II. NUMBER OF STUDIES IN SELECTION PHASE

Phase of Selection Process Number of Studies

1. Databases Search 504

2. Title Analysis 137

3. Abstract Analysis 62

D. Quality Assessment

After analyzing the search results that did not conform to
the scope of this review, we moved on to the quality
assessment stage. In this stage, all 62 studies were analyzed,
and not only titles or abstracts. In the quality assessment,
relevance criteria were established to analyze several aspects
regarding each paper selected on prior stages.

To assess the quality of publications, eight questions
were defined, based on [9], to support in quality assessment

62Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 73 / 191

process. Questions supported the analysis, ensuring that
relevance and credibility of all papers were being considered.
Of the eight questions raised, the first and last one were used
to establish whether the paper was relevant for this review. In
this case, both questions were used as final exclusion criteria.
The other six questions were useful to determine the quality
of papers regarding research methods and other related
aspects. In this case, those grades supported a formal quality
analysis of publications. The questions were:

1. Does the study examine capacity planning models
for cloud computing workloads?

2. Is the study based on formal research methods - not
just empirical applications?

3. Are the objectives of the study clearly defined?
4. Is the study context adequately described?
5. Were the methods for data collection used and

described correctly?
6. Was the research project adequate to achieve the

research objectives?
7. Have the research results been properly validated?
8. Does the study directly contribute to this research?

Of the 62 select studies in prior stages, 52 passed to the
stage of synthesis and were thus considered primary studies.
In the results section, quality assessment process will be
described in detail along with the assessment of the 52
remaining studies.

V. RESULTS

As presented previously, 52 studies were identified [9] –
[60] as primary studies. In general, all of them address
aspects of this systematic review, whether in terms of scope
or research questions.

A. Quantitative Analysis

The research process conducted resulted in 52 primary
studies. They were written by 185 authors affiliated to
institutions from 19 different countries and were published
between 2017 and 2020. A total of 82 different keywords
were identified in all papers.

Regarding country of origin, most of the publications
were from United States and India (both with eight
publications, each, comprising 15% of all primary studies),
followed by Brazil (six publications, comprising 12% of all
primary studies). United Kingdom had four publications,
Australia, China, Finland, Iran and Italy, had three
publications, followed by Spain with two publications.
Germany, Chile, France, Macedonia, Malaysia, Qatar,
Sweden, Taiwan, and Ukraine each had one publication.
Considering the various different origins, it can be concluded
that capacity planning of cloud computing workloads is a
globally widespread topic.

The most common keywords used in selected works,
with their respective frequency were: cloud computing (13),
capacity planning (8), performance model (5), resource
management (5), prediction (4), application (3), performance
(3), simulation (3), workload (3), auto-scaling (2), big data
(2), quality of service (2), resource provisioning (2), web
application (2), workload characterization (2). The first two

keywords - cloud computing and capacity planning - reflect
exactly the subject of this research.

B. Quality Analysis

As presented before, all primary studies were assessed
considering eight quality aspects to ensure their credibility
and relevance to this review. The purpose of this analysis
was to establish an objective evaluation that all papers
selected could actually contribute to the conclusions of this
review. To do that, each quality criteria was classified as
positive (1) or negative (0).

Table 3 presents the results of this quality assessment of
each one of all 52 selected papers. Columns "Q1" to "Q8"
represent all of the criteria defined by questions to evaluate
the following aspects of publications: Focus, Research,
Objectives, Context, Data Collection, Research Project,
Validation and Added Value. As mentioned before, all of the
selected papers were marked "1" in both "Focus" and
"Added Value" criteria. All studies with negatives answers
(0) in one of those two criteria were removed during the
selection stage.

TABLE III. QUALITY ANALYSIS OF PRIMARY STUDIES

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

[9] 1 1 1 1 1 0 1 1 88%

[10] 1 1 1 0 1 1 1 1 88%

[11] 1 1 0 1 1 1 1 1 88%

[12] 1 1 1 1 1 1 1 1 100%

[13] 1 1 1 0 1 1 1 1 88%

[14] 1 1 1 0 1 1 1 1 88%

[15] 1 1 0 1 0 1 1 1 75%

[16] 1 1 1 1 0 0 1 1 75%

[17] 1 1 1 1 0 1 1 1 88%

[18] 1 1 0 1 1 1 1 1 88%

[19] 1 1 0 0 1 1 1 1 75%

[20] 1 1 0 1 0 1 0 1 63%

[21] 1 1 0 1 0 1 0 1 63%

[22] 1 1 1 0 0 1 0 1 63%

[23] 1 1 1 0 0 1 1 1 75%

[24] 1 1 0 0 1 1 1 1 75%

[25] 1 1 1 1 0 1 1 1 88%

[26] 1 1 0 1 1 0 1 1 75%

[27] 1 1 0 1 0 1 0 1 63%

[28] 1 1 1 1 1 1 0 1 88%

[29] 1 1 1 1 1 1 1 1 100%

[30] 1 1 0 1 1 0 1 1 75%

[31] 1 1 1 1 1 1 1 1 100%

[32] 1 1 1 1 0 1 1 1 88%

[33] 1 1 1 1 0 1 1 1 88%

63Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 74 / 191

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

[34] 1 1 0 1 0 1 0 1 63%

[35] 1 1 0 1 0 1 0 1 63%

[36] 1 1 0 1 1 1 0 1 75%

[37] 1 1 0 1 1 1 0 1 75%

[38] 1 1 1 0 1 1 1 1 88%

[39] 1 1 1 0 1 1 1 1 88%

[40] 1 1 1 0 0 0 1 1 63%

[41] 1 1 1 1 0 0 1 1 75%

[42] 1 1 1 1 1 0 1 1 88%

[43] 1 1 1 1 1 0 1 1 88%

[44] 1 1 1 1 0 1 1 1 88%

[45] 1 1 1 1 1 1 0 1 88%

[46] 1 1 1 1 1 0 1 1 88%

[47] 1 1 1 1 1 0 1 1 88%

[48] 1 1 1 1 1 0 1 1 88%

[49] 1 1 1 1 0 0 1 1 75%

[50] 1 1 1 1 1 1 1 1 100%

[51] 1 1 1 1 1 1 1 1 100,00%

[52] 1 1 1 1 1 1 1 1 100%

[53] 1 1 1 1 1 1 1 1 100%

[54] 1 1 1 1 1 0 1 1 88%

[55] 1 1 1 0 1 1 0 1 75%

[56] 1 1 1 0 1 1 0 1 75%

[57] 1 1 1 1 1 1 1 1 100%

[58] 1 1 1 1 1 1 1 1 100%

[59] 1 1 1 1 1 1 1 1 100%

[60] 1 1 1 1 1 1 1 1 100%

All of the papers that were analyzed in this review
provided information on the research method, adding an
important value regarding its relationship with the scientific
method. Considering that all studies applied some sort of
formal research method, all criteria scored above 70%,
except one where data collection scored 67%. Even so, this
lack of clarity as to the methods of data collection in some of
the works does not generally compromise the quality of the
selected papers.

VI. DISCUSSION

After performing the search, data extraction and
synthesis of primary studies, the authors were able to identify
some patterns regarding capacity planning of cloud
computing workloads. At first, it was possible to conclude
that cloud computing - and the process of capacity planning
for workloads running on cloud - is a very recent field of
research and also subject to a lot of entropy, given the
characteristic of being fast evolving within computer science.

It is also possible to conclude that there is a lack of
standardization of capacity planning methods for cloud
computing workloads and methods that are not intensive on
historical use data. This was identified after the classification
of primary studies in a parallel to research questions - that
covers both aspects mentioned previously. The majority of
studies applied historical use data to predict future resource
demands for a specific type of workload - such as IoT
(Internet of Things) solutions, database and so forth - using
machine learning and artificial intelligence techniques.

A. Cloud Capacity Planning models

Capacity planning is a process that is not applied only in
the field of computer science. Most engineering sciences - or
any field that works with limited resources - need to address
how to manage and properly apply resources to meet
changing and constant evolving demands.

As such, in cloud computing environments, in which
resources are offered as services, they are considered as
practically infinite - as long as the customer pays for it.
Capacity planning models are being applied to manage how
to use resources efficiently and in a well architected way.

This research has found that although scientific literature
covers formal methods to perform capacity planning for
cloud computing workloads, there is no standardization
regarding inputs and outputs, processes and generalization,
to cover broader scenarios and types of workloads.

B. Cloud Capacity Planning models for cloud computing
workloads with no historical use

An important finding of this review was that most of
capacity planning methods for cloud computing workloads
consider historical data use for understanding demands needs
and for planning. This empirical approach shows some
efficiency – especially when using historical data as an input
for prediction models – but it often fails to deliver a higher
percentage of assertiveness on new workloads. Another gap
on this type of approach is that when performing capacity
planning for an unprecedented type of workload – such as
innovative or disruptive software – whereby there is no
historical data for that workload; this leads current methods
to apply a benchmark as input for those prediction models,
decreasing percentage of assertiveness on capacity planning
metrics for new or unprecedented workloads.

C. Cloud Capacity Planning models based on type of
workloads and architectural characteristic

Scientific literature analyzed in this review showed that
there are methods to perform capacity planning for specific
types of workloads – such as IoT, database, fog computing
and so forth. However, those models vary widely in their
method, calculations, and, especially, assertiveness.

In this sense, this systematic review has not found
generalist models which could cover capacity planning
broadly and which could also consider specific
characteristics of different types of workloads. The authors
believe that standardization and generalization in the method
would enhance scientific evolution for capacity planning of
cloud computing workloads.

64Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 75 / 191

D. Towards Cloud Capacity Planning

As presented previously, one of the main challenges of
working with cloud computing environments is how to
properly plan and calculate the amount of resources needed
for a specific set of workload. Besides the use of historical
data as major input to predict resource demands and the
absence of generalist models for capacity planning, our study
found another set of challenges:

 Standardization: The lack of standards in gathering
and provisioning capacity planning models makes
reuse difficult;

 Assertiveness: Although current models deliver
some capacity planning metrics, those calculations
often fail to deliver a high percentage of
assertiveness to define resource needs;

 Generalization: Most of current models address
specific types of workloads, and do not cover a
more generalist workload based on its architecture,
for instance.

VII. CONCLUSION

This systematic review focuses on mapping and
identifying studies that aim to establish a formal process for
capacity planning of cloud computing workloads. In the
search phase, 504 papers were found, of which 52 were
classified as primary studies, following applied selection and
quality criteria.

All papers were classified considering their focus on
answering the research questions. After this stage, a quality
analysis was performed to access how the papers addressed
eight different quality criteria, as this method was applied to
ensure that each study covered formal scientific methods and
covered relevant aspects of this systematic review.

In regards to the aspects of capacity planning, the
majority of studies covered some type of formal method to
perform capacity planning of cloud computing workloads.
Most of them focused on historical data use to somehow
predict future resource demands. To do that, machine
learning and artificial intelligence techniques were generally
applied. Another important aspect in parallel to research
questions is that no general method or framework was found
to cover different type of workloads - although there are
methods to perform cloud capacity planning for specific
workloads, as mentioned before, each method however
establishes a different approach and is focused in analyzing a
specific type of workload.

In order to expand the results found and to improve the
conclusions of this systematic review, some considerations
about the limitations of this study need to be highlighted:

 Perhaps considering a wider period of publications -
more than 3 years of publishing - even the great
entropy of the subject;

 Apply search strings that include more keywords
with terms related to the object of this research,
such as “Resource Management”;

 Look for capacity planning challenges in other
science and engineering references, given that

resource-limited scenarios is a characteristic not
only present in computer science.

For future work and further research, it would be
important to analyze specifically capacity planning methods
that do not apply historical data use - considering that not all
software projects have a precedent of use, such as for
innovative and disruptive software - and also to cover
different types of workloads - since current methods aim to
analyze specific types of cloud computing workloads.

REFERENCES

[1] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud Migration
Research: A Systematic Review,” IEEE Trans. Cloud
Comput., vol. 1, no. 2, pp. 142–157, 2013, [Online].
Available:
https://ulir.ul.ie/bitstream/handle/10344/3656/Jamshid_clou
d.pdf?sequence=2.
[2] S. Bhardwaj, L. Jain, and S. Jain, “Cloud Computing : a
Study of Infrastructure As a Service (Iaas),” Int. J. Eng., vol.
2, no. 1, pp. 60–63, 2010, [Online]. Available:
http://ijeit.org/index_files/vol2no1/CLOUD COMPUTING
A STUDY OF.pdf.
[3] L. Wang et al., “Cloud computing: A perspective study,”
New Gener. Comput., vol. 28, no. 2, pp. 137–146, 2010,
doi: 10.1007/s00354-008-0081-5.
[4] W. Hasselbring and S. Frey, “Model-Based Migration of
Legacy Software Systems to Scalable and Resource-
Efficient Cloud-Based Applications: The CloudMIG
Approach,” First Int. Conf. Cloud Comput. GRIDs,
Virtualization Model., no. c, pp. 155–158, 2010.
[5] S. Sheshadhri and R, Nithiya, “Mapping multi-tier
architecture into cloud environment using slicing and
virtualization,” 40th IRF Int. Conf., pp. 6–10, 2016.
[6] N. Gunther, Guerrilla capacity planning: A tactical
approach to planning for highly scalable applications and
services. Springer, 2007.
[7] Barbara A. and Kitchenham. Systematic review in
software engineering: where we are and where we should be
going. In Proceedings of the 2nd international workshop on
Evidential assessment of software technologies. Association
for Computing Machinery, New York, NY, USA, September,
2012, 1–2. DOI:https://doi.org/10.1145/2372233.2372235
[8] T. Dybå and T. Dingsøyr, “Empirical studies of agile
software development: A systematic review,” Inf. Softw.
Technol., vol. 50, no. 9, pp. 833–859, 2008, doi:
https://doi.org/10.1016/j.infsof.2008.01.006.
[9] W. Iqbal, A. Erradi, and A. Mahmood, “Dynamic
workload patterns prediction for proactive auto-scaling of
web applications,” J. Netw. Comput. Appl., vol. 124, pp.
94–107, 2018, doi:
https://doi.org/10.1016/j.jnca.2018.09.023.
[10] M. Amiri and L. Mohammad-Khanli, “Survey on
prediction models of applications for resources provisioning
in cloud,” J. Netw. Comput. Appl., vol. 82, pp. 93–113,

65Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 76 / 191

2017, doi: https://doi.org/10.1016/j.jnca.2017.01.016.
[11] M. Amiri, L. Mohammad-Khanli, and R. Mirandola, “A
sequential pattern mining model for application workload
prediction in cloud environment,” J. Netw. Comput. Appl.,
vol. 105, pp. 21–62, 2018, doi:
https://doi.org/10.1016/j.jnca.2017.12.015.
[12] V. de N. Personé and A. Di Lonardo, “Approximating
finite resources: An approach based on MVA,” Perform.
Eval., vol. 131, pp. 1–21, 2019, doi:
https://doi.org/10.1016/j.peva.2018.11.005.
[13] J. O. de Carvalho, F. Trinta, D. Vieira, and O. A. C.
Cortes, “Evolutionary solutions for resources management
in multiple clouds: State-of-the-art and future directions,”
Futur. Gener. Comput. Syst., vol. 88, pp. 284–296, 2018,
doi: https://doi.org/10.1016/j.future.2018.05.087.
[14] R. Tolosana-Calasanz, J. Á. Bañares, and J.-M. Colom,
“Model-driven development of data intensive applications
over cloud resources,” Futur. Gener. Comput. Syst., vol. 87,
pp. 888–909, 2018, doi:
https://doi.org/10.1016/j.future.2017.12.046.
[15] K.-J. Wang and P. H. Nguyen, “Capacity planning with
technology replacement by stochastic dynamic
programming,” Eur. J. Oper. Res., vol. 260, no. 2, pp. 739–
750, 2017, doi: https://doi.org/10.1016/j.ejor.2016.12.046.
[16] M. Zakarya and L. Gillam, “Modelling resource
heterogeneities in cloud simulations and quantifying their
accuracy,” Simul. Model. Pract. Theory, vol. 94, pp. 43–65,
2019, doi: https://doi.org/10.1016/j.simpat.2019.02.003.
[17] M. Amiri, L. Mohammad-Khanli, and R. Mirandola,
“An online learning model based on episode mining for
workload prediction in cloud,” Futur. Gener. Comput. Syst.,
vol. 87, pp. 83–101, 2018, doi:
https://doi.org/10.1016/j.future.2018.04.044.
[18] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U.
Arronategui, and O. F. Rana, “Characterising resource
management performance in Kubernetes,” Comput. Electr.
Eng., vol. 68, pp. 286–297, 2018, doi:
https://doi.org/10.1016/j.compeleceng.2018.03.041.
[19] M. S. Aslanpour, M. Ghobaei-Arani, and A. Nadjaran
Toosi, “Auto-scaling web applications in clouds: A cost-
aware approach,” J. Netw. Comput. Appl., vol. 95, pp. 26–
41, 2017, doi: https://doi.org/10.1016/j.jnca.2017.07.012.
[20] B. Treynor, M. Dahlin, V. Rau, and B. Beyer, “The
calculus of service availability,” Commun. ACM, vol. 60,
no. 9, pp. 42–47, Aug. 2017, doi: 10.1145/3080202.
[21] A. Kiani, N. Ansari, and A. Khreishah, “Hierarchical
Capacity Provisioning for Fog Computing,” IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 962–971, 2019, doi:
10.1109/TNET.2019.2906638.
[22] S. R. Shishira, A. Kandasamy, and K. Chandrasekaran,
“Workload Characterization: Survey of Current Approaches
and Research Challenges,” in Proceedings of the 7th
International Conference on Computer and Communication
Technology, 2017, pp. 151–156, doi:
10.1145/3154979.3155003.
[23] M. Ciavotta, E. Gianniti, and D. Ardagna, “Capacity

Allocation for Big Data Applications in the Cloud,” in
Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion, 2017,
pp. 175–176, doi: 10.1145/3053600.3053630.
[24] J. C. Mogul, R. Isaacs, and B. Welch, “Thinking about
Availability in Large Service Infrastructures,” in
Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, 2017, pp. 12–17, doi:
10.1145/3102980.3102983.
[25] J. Ericson, M. Mohammadian, and F. Santana,
“Analysis of Performance Variability in Public Cloud
Computing,” in 2017 IEEE International Conference on
Information Reuse and Integration (IRI), 2017, pp. 308–
314.
[26] I. Stypsanelli, O. Brun, S. Medjiah, and B. J. Prabhu,
“Capacity Planning of Fog Computing Infrastructures under
Probabilistic Delay Guarantees,” in 2019 IEEE International
Conference on Fog Computing (ICFC), 2019, pp. 185–194.
[27] M. Torquato, L. Torquato, P. Maciel, and M. Vieira,
“IaaS Cloud Availability Planning using Models and
Genetic Algorithms,” in 2019 9th Latin-American
Symposium on Dependable Computing (LADC), 2019, pp.
1–10.
[28] O. Biran et al., “Heterogeneous Resource Reservation,”
in 2018 IEEE International Conference on Cloud
Engineering (IC2E), 2018, pp. 141–147.
[29] L. Tang and H. Chen, “Joint Pricing and Capacity
Planning in the IaaS Cloud Market,” IEEE Trans. Cloud
Comput., vol. 5, no. 1, pp. 57–70, 2017.
[30] R. Vaze, “Online Knapsack Problem Under Expected
Capacity Constraint,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 2159–
2167.
[31] B. Xia, T. Li, Q. Zhou, Q. Li, and H. Zhang, “An
Effective Classification-based Framework for Predicting
Cloud Capacity Demand in Cloud Services,” IEEE Trans.
Serv. Comput., p. 1, 2018.
[32] C. Melo, R. Matos, J. Dantas, and P. Maciel, “Capacity-
Oriented Availability Model for Resources Estimation on
Private Cloud Infrastructure,” in 2017 IEEE 22nd Pacific
Rim International Symposium on Dependable Computing
(PRDC), 2017, pp. 255–260.
[33] M. Noreikis, Y. Xiao, and A. Ylä-Jaäiski, “QoS-
oriented capacity planning for edge computing,” in 2017
IEEE International Conference on Communications (ICC),
2017, pp. 1–6.
[34] K. N. Kumar and R. Mitra, “Resource Allocation for
Heterogeneous Cloud Computing Using Weighted Fair-
Share Queues,” in 2018 IEEE International Conference on
Cloud Computing in Emerging Markets (CCEM), 2018, pp.
31–38.
[35] T. P. Roseline, C. J. M. Tauro, and M. Miranda, “An
approach for efficient capacity management in a cloud,” in
2017 IEEE International Conference on Current Trends in
Advanced Computing (ICCTAC), 2017, pp. 1–6.
[36] K. M. Maiyama, D. Kouvatsos, B. Mohammed, M.

66Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 77 / 191

Kiran, and M. A. Kamala, “Performance Modelling and
Analysis of an OpenStack IaaS Cloud Computing
Platform,” in 2017 IEEE 5th International Conference on
Future Internet of Things and Cloud (FiCloud), 2017, pp.
198–205.
[37] H. A. Kholidy, “An Intelligent Swarm Based Prediction
Approach For Predicting Cloud Computing User Resource
Needs,” Comput. Commun., vol. 151, pp. 133–144, 2020,
doi: https://doi.org/10.1016/j.comcom.2019.12.028.
[38] M. Liaqat et al., “Federated cloud resource
management: Review and discussion,” J. Netw. Comput.
Appl., vol. 77, pp. 87–105, 2017, doi:
https://doi.org/10.1016/j.jnca.2016.10.008.
[39] V. K. Prasad, M. Shah, N. Patel, and M. Bhavsar,
“Inspection of Trust Based Cloud Using Security and
Capacity Management at an IaaS Level,” Procedia Comput.
Sci., vol. 132, pp. 1280–1289, 2018, doi:
https://doi.org/10.1016/j.procs.2018.05.044.
[40] N. Sadashiv, S. M. Dilip Kumar, and R. S. Goudar,
“Cloud capacity planning and HSI based optimal resource
provisioning,” in 2017 Second International Conference on
Electrical, Computer and Communication Technologies
(ICECCT), 2017, pp. 1–6.
[41] M. Noreikis, Y. Xiao, and Y. Jiang, “Edge Capacity
Planning for Real Time Compute-Intensive Applications,”
in 2019 IEEE International Conference on Fog Computing
(ICFC), 2019, pp. 175–184.
[42] S. Gupta and D. A. Dinesh, “Online adaptation models
for resource usage prediction in cloud network,” in 2017
Twenty-third National Conference on Communications
(NCC), 2017, pp. 1–6.
[43] C. Verbowski, E. Thayer, P. Costa, H. Leather, and B.
Franke, “Right-Sizing Server Capacity Headroom for
Global Online Services,” in 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS),
2018, pp. 645–659.
[44] C. H. G. Ferreira et al., “A Low Cost Workload
Generation Approach through the Cloud for Capacity
Planning in Service-Oriented Systems,” 2017, doi:
10.1145/3018896.3018900.
[45] D. Ardagna et al., “Performance Prediction of Cloud-
Based Big Data Applications,” in Proceedings of the 2018
ACM/SPEC International Conference on Performance
Engineering, 2018, pp. 192–199, doi:
10.1145/3184407.3184420.
[46] J. C. Christopher, “Analytics Environments on
Demand: Providing Interactive and Scalable Research
Computing with Windows,” 2017, doi:
10.1145/3093338.3093369.
[47] M. Marin, V. Gil-Costa, A. Inostrosa-Psijas, and C.
Bonacic, “Hybrid capacity planning methodology for web
search engines,” Simul. Model. Pract. Theory, vol. 93, pp.
148–163, 2019, doi:
https://doi.org/10.1016/j.simpat.2018.09.016.
[48] A. Brunnert and H. Krcmar, “Continuous performance
evaluation and capacity planning using resource profiles for

enterprise applications,” J. Syst. Softw., vol. 123, pp. 239–
262, 2017, doi: https://doi.org/10.1016/j.jss.2015.08.030.
[49] T. Le Duc, R. G. Leiva, P. Casari, and P.-O. Östberg,
“Machine Learning Methods for Reliable Resource
Provisioning in Edge-Cloud Computing: A Survey,” ACM
Comput. Surv., vol. 52, no. 5, 2019, doi: 10.1145/3341145.
[50] S. K. Moghaddam, R. Buyya, and K. Ramamohanarao,
“Performance-Aware Management of Cloud Resources: A
Taxonomy and Future Directions,” ACM Comput. Surv.,
vol. 52, no. 4, 2019, doi: 10.1145/3337956.
[51] D. Irwin and B. Urgaonkar, “Research Challenges at
the Intersection of Cloud Computing and Economics,”
National Science Foundation, USA, 2018.
[52] P. Mitrevski, F. Mitrevski, and M. Gusev, “A Decade
Time-Lapse of Cloud Performance and Dependability
Modeling: Performability Evaluation Framework,” 2019,
doi: 10.1145/3320326.3320400.
[53] R. Han et al., “Workload-Adaptive Configuration
Tuning for Hierarchical Cloud Schedulers,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 12, pp. 2879–2895, 2019.
[54] P. Östberg et al., “Reliable capacity provisioning for
distributed cloud/edge/fog computing applications,” in 2017
European Conference on Networks and Communications
(EuCNC), 2017, pp. 1–6.
[55] M. Carvalho, D. A. Menascé, and F. Brasileiro,
“Capacity planning for IaaS cloud providers offering
multiple service classes,” Futur. Gener. Comput. Syst., vol.
77, pp. 97–111, 2017, doi:
https://doi.org/10.1016/j.future.2017.07.019.
[56] K. C. Anupama, R. Nagaraja, and M. Jaiganesh, “A
Perspective view of Resource-based Capacity planning in
Cloud computing,” in 2019 1st International Conference on
Advances in Information Technology (ICAIT), 2019, pp.
358–363.
[57] M. Carvalho et al., “Multi-Dimensional Admission
Control and Capacity Planning for IaaS Clouds with
Multiple Service Classes,” in Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2017, pp. 160–169, doi:
10.1109/CCGRID.2017.14.
[58] E. Zharikov, O. Rolik, and S. Telenyk, “An integrated
approach to cloud data center resource management,” in
2017 4th International Scientific-Practical Conference
Problems of Infocommunications. Science and Technology
(PIC S T), 2017, pp. 211–218.
[59] R. I. Cartwright and B. Gilmer, “The Infinite Capacity
Media Machine,” SMPTE Motion Imaging J., vol. 128, no.
9, pp. 1–7, 2019.
[60] B. T. Sloss, S. Nukala, and V. Rau, “Metrics That
Matter,” Queue, vol. 62, no. 4, p. 88, 2018, doi:
10.1145/3305263.3309571.
[61] Elsevier Mendeley Tool. Available at
https://www.mendeley.com/

67Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 78 / 191

An Architectural Smell Evaluation in an Industrial Context

Francesca Arcelli Fontana
University of Milano-Bicocca

Milano, Italy
email: arcelli@disco.unimib.it

Federico Locatelli
Anoki

Milano, Italy
email: f.locatelli@anoki.it

Ilaria Pigazzini
University of Milano-Bicocca

Milano, Italy
email: i.pigazzini@campus.unimib.it

Paolo Mereghetti
Anoki

Milano, Italy
email: p.mereghetti@anoki.it

Abstract—A known symptom of architectural erosion is the
presence of architectural smells in software systems. They are
the result of design decisions which negatively impact on software
quality, and may lead to what is called Architectural Technical
Debt. When such problems arise, developers feel difficulties in
maintaining and evolving their architectures. Some tools have
been developed to automatically identify architectural smells and
in this study we propose the evaluation of architecture erosion
in an industrial context through Arcan, an analysis tool able to
identify eight architectural smells. In particular, we report the
results of an industrial case study born from the collaboration
between a Laboratory of the University of Milano-Bicocca and
an italian company active in the software consulting field. The
study has been structured as a survey on the architectural smells
detected by the tool, from which we collected the feedback and
opinions of the three projects’ developers. Developers learned
about architectural smells and became aware of the fact that
their project had additional problems with respect to what they
knew. We propose this work as a pilot for future works on the
perception of AS in industrial context.

Keywords–Architectural Smells; Architectural Debt; Industrial
study; Refactoring; Criticality.

I. INTRODUCTION
Architectural Smells (AS) are design decision which neg-

atively impact on software quality. They represent the main
source of investigation in order to evaluate and manage archi-
tectural debt [1][2]. While code smells [3], in particular some
of them (such as Large Class, Long Methods, Duplicate Code)
are all well known from the developer/practitioner perspective,
architectural smells are not so well known. Developers are
often unaware of these smells, and they focus their attention
on short term tasks, such as bug fixing and other code level
issues. They are not aware of the possible accumulating debt
due to the presence of architectural smells in their projects.

In order to better investigate how architectural smells
are perceived by the developers, we describe in this work
an evaluation we performed in an industrial context on the
detection and perception of architectural smells by the develop-
ers/practitioners. With this purpose, we started a collaboration
between the Evolution of Software Systems and Reverse
Engineering Laboratory (ESSeRE Lab) of the University of
Milano Bicocca [4] and the Anoki company in Milano [5].
The architectural smells considered in this evaluation are those
currently recognized by the Arcan tool [6] developed by the
ESSeRE Lab. The developers of the company received ma-
terial and explanations on the considered architectural smells.
Then we proposed a survey with different questions that they
had to answer related to each instance of the inspected smells.

Through this study we aim to answer the following Re-
search Questions:

RQ1: How are architectural smells perceived in an indus-
trial context? With the answer to this question we aim to
investigate whether the concept of AS is known and whether
developers perceive them as problems with some kind of
impact on software quality attributes. We are also interested
in exploring other possible smells/problems present in the
analyzed project considered harmful by developers, in order
to improve the Arcan tool with new detectors.
RQ2: What practitioners suggest according to the refac-
toring of the smells? The effort required to fix AS, such as
Cyclic Dependency, is higher than fixing a code smell [3],
because it implies to move/modify both methods and classes
of a system [7]. For this reason, we aim to investigate the
opinion of the developers about the possible actions to be taken
regarding the refactoring of the AS.
RQ3: Which are the most critical smells according to
the practitioners perception? We aim to identify the smells
perceived as most critical according to the evaluation of the
interviewees. This information could be useful during software
development by trying to avoid them and remove them first,
since the most critical smells could lead to a progressive
architecture degradation.

Moreover, with our study we aimed to reach further goals
related to the validation of the Arcan tool, namely: The eval-
uation of 8 different types of architectural smells detected by
Arcan through the feedback of the developers of the company,
which could provide also useful hints to enhance the AS
detection strategies and the possible definitions of new metrics
(severities) able to discriminate the different smells by their
criticality and Additional feedback on the possible usefulness
of architectural smell detection, as the one outlined by the
practitioners, related to the migration towards a microservice
architecture.

The paper is organized through the following sections: in
Section 2 we describe some related work, in Section 3 we
introduce the AS considered during this evaluation, in Section
4 we describe the study design and the different questions
used in the survey, in Section 5 we outline the main results,
in Section 6 the lessons learned and in Section 7 the threats
to validity. Finally, in Section 8 we report the answers to our
RQ, the conclusions and future developments.

II. RELATED WORK
Several works have been done on the evaluation of code

smells or other kind of code violations in collaboration with
practitioners, such as for example a survey on code smells
performed by Yamashita et al. [8] which outlines that a large
proportion of developers did not know about code smells.
A study of Soh et al. [9] where professionals were hired

68Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 79 / 191

to perform maintenance tasks in order to assess whether
code smells affect maintenance activities. Palomba et al. [10]
conducted a study on developer’s perception of the nature and
severity of code smells. Tahir et al. [11] investigated how
developers discuss code smells and anti-patterns across three
technical Stack Exchange sites.

Few works focused on the evaluation of AS, in particular
in an industrial context through the feedback of the devel-
opers/practitioners. Arcelli et al. [6] evaluate the precision
of the detection results provided by the Arcan tool on the
detection of three smells in two industrial projects. Wu et al.
[12] present their experience in using a software architecture
measurement standard through a collaboration with a company
to evaluate, measure, and improve the architectures of their
software products. Mo et al. [13] report their experiences of
applying three complementary automated software architecture
analysis techniques, in some industrial projects. Pigazzini et
al. [14] describe an approach based on AS detection and topic
detection for the migration towards a microservice architecture
in an industrial case study, where the developer provided also
several feedbacks on the usefulness of the AS detection during
the migration steps.

In a previous study [2], we conducted an in-depth investi-
gation on the identification and prioritization of architectural
debt in an industrial context through a survey, interviews and
inspection of the code with the practitioners of an industry in
Sweden. With respect to this work, in this study we consider
a larger number of smells, eight smells instead of three,
the developers evaluated a higher number of instances of
smells, the previous detection rules of the three smells have
been improved and the survey has been changed through the
introduction of new questions.

III. ARCHITECTURAL SMELLS
We consider eight AS, which correspond to the currently

detected smells by the Arcan tool [6] on Java components i.e.
classes and/or packages:
Cyclic Dependency (CD): refers to a component that is
involved in a chain of relations that break the desirable acyclic
nature of a component dependency structure. Arcan detects this
smell on classes (CD-C) and packages (CD-P) and according
to different shapes as those described by Al-Mutawa et al.
[15].
Hub-Like Dependency (HL): occurs when a component has
(outgoing and ingoing) dependencies with a large number of
other components [7]. This smell is detected on both classes
(HL-C) and packages (HL-P).
Unstable Dependency (UD): describes a component that
depends on other components that are less stable than itself,
with a possible ripple effect of changes in the system [16].
This smell is detected on packages.
God Component (GC): occurs when a component is exces-
sively large either in terms of Lines Of Code (LOC) or number
of classes [17]. This smell is detected on packages.
Dense Structure (DS): arises when components in a project
have excessive and dense dependencies without any particular
structure i.e. without following a specific architectural design
[18]. This smell is detected on the entire project under analysis
and occurs when the density (the ratio of dependencies over the

components) of the project is high. Hence, only one instance
can be detected per single project.
Feature Concentration (FC): occurs when an architectural
component implements different functionalities in a single
design construct [19]. This smell is detected on packages.
Insufficient Package Cohesion (IPC): occurs when an archi-
tectural component has low internal cohesion [18]. This smell
is detected on packages.
Scattered Functionality (SF): describes a system where mul-
tiple components are responsible for realizing the same high-
level concern and, additionally, some of those components
are responsible for orthogonal concerns [20]. For concern,
we mean a software system’s role, responsibility, concept, or
purpose [21]. This smell is detected on packages.

We considered the above AS because they violate different
design principles, so that we can ask for developer feedback
on different kinds of architectural problems. In particular, CD,
HL, UD and DS are based on dependency issues: depen-
dencies are of great importance in software architecture and
components that are highly coupled and with a high number
of dependencies are considered more critical, since they have
higher maintenance costs. GC and IPC smell violate the
modularity principle; finally FC and SF violate the separation
of concerns principle [21].

Arcan bases all its computations on the dependency graph
which is the representation of the project under analysis in
form of a directed graph. The basic nodes represent the
system entities, such as Java classes, packages and methods.
Edges represent the relationships among the various entities.
We exploit the graph to detect all the smells which affect
the dependencies, e.g., Cyclic Dependency smell, which is
caused by the presence of circular dependencies in the graph.
However, some smells need other kinds of information in
order to be detected, for instance the Feature Concentration
and Scattered Functionality smells regard how system features
are organized inside a project. Hence, Arcan is also able to
generate the feature graph, whose aim is to represent the
features (as synonym of concerns) that can be associated to
the different parts of the system architecture. The feature graph
associates a name in natural language to a set of project files,
enabling developers to read how features are disposed across
the project. Both Arcan graphs can be stored in the Neo4j [22]
graph database, which we exploit also to visualize them.

IV. CASE STUDY DESIGN
In this study, a survey with different questions was given

to the practitioners in order to obtain meaningful data on the
AS listed in Section III. The practitioners were three and they
were all developers belonging to the team that was working on
the analyzed project at the time the survey was proposed. The
first one was a junior developer with 4 years of experience
working on the project analysed in this study. The second one
was a middle developer with 9 and a half years of experience
of which 1 year and a half spent working on the project. The
third one, the team leader, was a senior developer with almost
15 years of experience working on the project for 2 years. We
now describe the steps followed in the case study:
1) During a meeting at the company, one of the author
introduced the practitioners to the notion of AS by explaining
them what they are and why it is important to identify and

69Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 80 / 191

refactor them. In the same meeting, Arcan and its principal
functionalities have been introduced.
2) We then sent them a document containing the detailed
descriptions of all the AS detected by Arcan, including a
description on how Arcan detects them, the metric thresholds
and formulas used for the detection. We gave them a week to
read (during their normal work at the company) the document
and study the AS meaning and relevance.
3) After that time, we instructed them on how to properly
answer the questions of the survey, by briefly explaining the
different categories and meaning of the questions.
4) We exploited the Google Form tool to create the survey.
We provided the URLs to access it and we assigned 15 days
to answer all the questions.

The survey contains 12 questions that the three practi-
tioners had to answer individually for each AS instance. In
particular, 19 AS instances were presented. For each instance,
we provided the description of the smell type it refers to
and we contextualized it by reporting all classes/packages
affected by the smell. We also attached a visual representation
of the smell with the dependency graph thanks to the Neo4j
graph visualizer used by Arcan[23]. We presented 19 instances
because we selected for each type of AS the ones that, in
our opinion, were the most interesting, trying also to include
instances with different granularity (for CD and HL) and
different characteristics (for IPC, FC and GC). We call smell
characteristics the smell properties that can be measured by a
metric. For IPC we measure the Lack of Component Cohesion
(LCC) [24], which is a metric ranging in (0, 1], where 1
corresponds to packages with a complete lack of cohesion. For
SF and FC we consider the number of features inside packages.
For GC we compute the number of classes in a package and
the LCC metric.

We assume that according to the different characteristics,
AS can have different criticalities intended as the severity and
effort needed to remove them: in this paper we also study if the
perceived AS severity has a relation with such characteristics.
Table III in Section V contains all the instances considered
for each AS. We decided to analyse a greater number of
instances for the new smells that we did not evaluate in
previous works [6][25].

A. Analyzed Project
The analyzed project is a Business Management System

written in Java with a monolithic architecture, but the devel-
opers are interested in a migration towards a microservices
one. Table I reports the project’s metrics and the number of
AS instances detected by Arcan on it. The analyzed project

TABLE I. ANALYZED PROJECTS METRICS AND ARCHITECTURAL
SMELLS

metrics architectural smells

NOC NOP #CD
(classes)

#CD
(package)

#HL
(classes)

#HL
(package) #UD #GC #DS #IPC #FC #SF

1343 112 135 5 3 3 19 10 1 107 4 81

is 10 years old and can be considered a medium-large project
with 1343 classes and 112 packages. Arcan detected a total of
367 smell instances of which mostly are Cyclic Dependency

between classes (135), Insufficient Package Cohesion (107)
and Scattered Functionality (81), while smells like Hub-Like
(3) and Feature Concentration (4) are much less present.

B. Data Collection through the Survey
The questions asked to the developers in the survey are

reported in Table II. Each question aims to gather the devel-
oper’s evaluation on specific aspects of the analyzed AS, that is
particularly valuable considering their deep knowledge on the
project. The proposed questions can be grouped by category:
AS detection and awareness [Q1 − Q3, Q12]: this set of
questions aim to evaluate the precision of the Arcan detection
strategies and investigate the awareness of the developers on
the presence of the smells.
AS impact[Q5−Q6]: these questions aim to collect information
about the perceived impact of AS on different software quality
attributes.
AS refactoring[Q7 − Q9]: such questions gather information
about whether refactoring activities, in the opinion of the
developers, should be conducted and the type of refactoring
needed to remove the smell.
AS severity, refactoring effort and priority[Q4, Q10 − Q11]:
these questions aim to evaluate the effort/time needed to apply
the refactoring and understand whether the smells can be
ranked depending on their criticality (severity), i.e. if it is
possible to quantify the smell impact thanks to the evaluation
of specific smell characteristics, e.g., smell size (the number
of affected classes/packages). To evaluate the answers of
these questions, we define and compute three metrics (see
section 5 for more details on the metrics computation), namely
Average Severity of the smells, i.e., the average criticality that
developers’ associate to the smells, the Average Effort needed
to refactor the smells and the Average Priority of refactoring
that can be associated to the smells, i.e., the ordering of the
smells depending on which should be refactored first. We
chose to compute these values in order to summarize the
collected data and be able to compare them.

The proposed questions are of three types: binary ques-
tions, where the possible answers are Yes or No; closed-
ended questions, with multiple possible answers and open-
ended questions, which were optional because we did not want
to force the practitioners to spend too much time on them and,
in some cases, no answer was needed, e.g., Q3 if the smell
instance is considered as a problem by the practitioner. In this
way we were able to collect both quantitative and qualitative
answers, in particular the latter allowed us to gain insights
about the concrete opinions of the practitioners.

V. RESULTS
After an accurate analysis of the answers submitted by the

practitioners, significant results were extracted and reported
in Table III and Table IV. The collected data reported in this
section will be exploited to answer the RQs.

A. AS detection and awareness
One of the information we aimed to obtain from this case

study was the classification of each AS instance in true positive
or false positive. A smell instance discovered by Arcan was
classified as true positive if most of the developers asserted
that it is an actual issue/problem in the system, otherwise, it

70Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 81 / 191

TABLE II. PROPOSED QUESTIONS

ID Question Possible Choices

Q1 Does the reported smell represent a problem in the
system? Yes or No

Q2 Were you aware of the presence of this smell in the
system? Yes or No

Q3
If it’s not a problem, do you think that this could
be a case of false positive AS? Or an AS not
critical? For which reasons?

N/A (open-response)

Q4 How significant are the negative impacts caused by
the smell in your opinion?

0 - Not a problem
1 - Low severity
2 - Mid-Low severity
3 - Mid-High severity
4 - High severity

Q5
If it has negative impacts, which of the following
software internal qualities has this type of smell an
impact on?

• Reliability (R)
• Efficiency (E)
• Security (S)
• Maintainability (M)
• Other

Q6 If not removed, the impact of this type of smell get
worse as time passes

0 - Disagree
1 - Somewhat Disagree
2 - Somewhat Agree
3 - Agree

Q7

What refactoring would you suggest to conduct?
(e.g. move class, extract class, extract components,
extract layers, etc.. Take in consideration your
best option only)

N/A (open-response)

Q8
Do you think that conducting the refactoring would
create negative side-effects? If yes which
ones?

N/A (open-response)

Q9 If no refactoring should be conducted, which is the
reasons?

• Not a real AS
(false positive)
• The smell does not
represent a problem
because there is not a
better solution
• The removal of this
smell is too expensive
• Other

Q10 How much effort/time can be required to refactor
the smell?

0 - No refactoring needed
1 - Low (< 8 h)
2 - Mid-Low (8-50 h)
3 - Mid-High (50-100 h)
4 - High (>100 h)

Q11 What do you think is the overall priority of
refactoring this smell?

0 - No refactoring needed
1 - Low priority
2 - Mid-Low priority
3 - Mid-High priority
4 - High priority

Q12
There is any architectural issue that you know is
present in the system, but was not treated in this
survey? If there is, describe it briefly

N/A (open-response)

was classified as false positive. The related questions are Q1
and Q3, but in some cases the answers given by a developer
to these questions were incoherent, so we considered as more
relevant answer the one provided for Q3 because it is an open
answer question. Among all the 19 AS instances presented
in this survey, only 6 were classified as false positives, for
an overall precision equals to 70%. The AS with the higher
rate of false positives are the HL on Package with 1/1 and
SF with 2/3, while only 2/4 of GC and 1/4 of IPC are false
positives. All the other AS instances have been indicated as
true positives.

The developers explained also why some instances were
false positives, i.e., real smells present in the code which do not
represent a problem, in their opinion. For example, some false

positives are special cases: the Hub-Like Dependency on Pack-
ages instance was detected on a package that contains utility
classes which “are supposed to be used by classes of any kind”,
as stated by the developers; one of the God Component was
detected on a package that contains many classes hierarchically
organized in that package to avoid boilerplate code (sections
of code that have to be included in many places with little or
no alteration [26]) as declared by the practitioners. Regarding
Scattered Functionality, only one of them was considered a
true positive: this kind of smell is meant to point out defects
in a package-by-feature [27] organization which is desirable
in some cases, but not when the actual design is layered, as
the project analyzed in this study. Developers got aware of
that and signaled it to us, except for the case they considered
true. Consequently, they also indicated this type of smell as
the less critical, meaning that on their architecture the detected
instances do not cause harm.

Another information we acknowledged from the answers to
question Q2 was the awareness of the developers regarding
the considered AS. One developer declared that he/she was
already aware of the presence of 15 out of 19 (78%) smell
instances, while the others 8 out of 19 (42%) and 5 out of 19
(26%). This information points out that the analysis with Arcan
allowed them to discover some smells they were not aware of.
Finally, we asked them to list smells or other problems that
they knew were present in the system, but not included in
the list of smells detected by Arcan in order to identify other
possible problems/smells to consider for future extension of
the tool detection strategies (Q12). However, no problem has
been outlined by the developers in answering this question, so
we could not extract useful information in this regard.

B. AS impact
Questions Q5 and Q6 had the purpose of gathering data

about which software attributes each smell instance affects and
if this negative effect of the smell will get worse as time passes.
In question Q5, each developer could select more than one
software attribute between Maintainability, Efficiency, Security
and Reliability and suggest others ones that were not present
among the possible choices. On the other hand, by answering
question Q6, they could specify how much they agree with the
statement “If not removed, the impact of this type of smell
get worse as time passes”. This information is summed up
in Table III: for each AS instance (first column), the number
of practitioners that selected each quality attribute is reported
next to the letter indicating the attribute (second column), the
Agreement on Q6 answer (third column) was computed by
assigning a value (from 0 to 3, see Table II) to each possible
choice of question Q6 and summing these values based on the
answers of the developers. The higher this sum, the higher the
agreement.

One relevant observation is that all the smells were
considered affecting maintainability by at least one devel-
oper. For one smell instance, God Component A, a developer
suggested an additional aspect, that “they affect the domain
structure” i.e. how the domain model is organized across the
different packages. For what concerns smells that get worse
as time passes, we discovered that the developers found
Hub-Like on Classes and Feature Concentration the most
problematic in these terms. Even if we sum up the agreement
for each type of smell and normalize respect to the number of

71Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 82 / 191

TABLE III. RESULTS FOR EACH ARCHITECTURAL SMELL
INSTANCE

Architectural Smell Instance Affected Software Aspects Agreement
on Q6

Cyclic Dependency on Classes M(3), E(2) 6

Cyclic Dependency on Packages M(3), E(1), R(1) 6

Hub-Like Dependency on Classes M(3), E(2), R(1) 8

Hub-Like Dependency on Packages false positive −

Unstable Dependency M(3), E(1), R(1), S(1) 5

God Component A
M(1), E(1),

Domain structure/feature
concentration(1)

4

God Component B M(3), E(1), S(1) 7
God Component C false positive −
God Component D false positive −

Insufficient Package Cohesion A false positive −
Insufficient Package Cohesion B M(2), E(1), R(1) 3
Insufficient Package Cohesion C M(3), E(1), R(1) 3
Insufficient Package Cohesion D M(3), E(1), R(1) 6

Feature Concentration A M(2), E(1), R(1) 3
Feature Concentration B M(3), E(1), R(1), S(1) 8

Scattered Functionality A M(1), R(1) 3
Scattered Functionality B false positive −
Scattered Functionality C false positive −

Dense Structure M(1), E(1), R(1), S(1) 5

Key: M: Maintainability, E: Efficiency, R: Reliability, S: Security

instances, the smell which get worse the most is still Hub Like
Dependency on classes.

C. AS refactoring
We also asked various questions (Q7, Q8, Q9) regarding

the possible refactoring of each smell. Answering two of these
questions (Q7,Q8) was optional since they are open-ended
questions, thus we collected a limited number of answers.
However, the few data helped us in confirming a specific
aspect: smells like Scattered Functionality, Insufficient
Package Cohesion and Feature Concentration are meant to
point out defects in a package-by-feature [27] organization
which is desirable in some cases, but not when the actual
design is layered. These smells are detected by Arcan to pro-
vide also a microservice migration support, where a package-
by-feature organization is preferable and more useful [14].
Hence, the refactoring of these smells is effective with the
aim of reorganizing the project as package-by-feature i.e.
transforming the layers into microservices.

Instead, with the answer to Q9, developers provided the
reason why they would not refactor the smells instances which
they indicated as true positive. In particular, there was a similar
response for all CD-P, HL-C, UD and FC asserting that they
should not be refactored because “their refactoring would be
too expensive”. For the FC instance, there was also another
answer declaring that “it should not be refactored because
there is not a better solution”. The same answer was given
for one GC instance, all the SF and all the IPC. In brief,
developers reported that no refactoring should be conducted
on the detected smells because the refactoring activity is
too expensive and because sometimes the smell presence is

unavoidable. We suggested to the developers that a possible
solution to avoid the too expensive smells is to periodically
run Arcan on the system and remove smells as soon as they
appear. Moreover, their new knowledge about AS can help
them in avoiding their introduction in the first place.

D. AS severity, refactoring effort and priority
Other useful data collected for each AS are the perceived

severity (Q4), refactoring effort (Q10) and refactoring priority
(Q11), which we summarize through the metrics introduced in
Section IV-B: the Average Severity, the Average Effort needed
to refactor the smell and its Average Priority of refactoring.
They are computed by assigning a score to each possible
choice the developers could pick to answer questions Q4,
Q10 and Q11, then calculating, for each smell instance, the
sum of the scores indicated by the developers and eventually
computing the average sum for each AS. The maximum
reachable value is 12, which happens if all developers agree on
answering “High”. We found out that the metrics values for all
the AS are very close to each other, meaning that developers
perceive these three metrics as linearly dependent. The only
smells for which one of the three metrics mentioned above
has a value that is much higher than the other two metrics
are 1) the Cyclic Dependency smells, which have an Average
Priority of refactoring of 8, while the other metrics are equal
to 5 and 2) Dense Structure, which has an Average Effort of 8
and an Average Severity of 5. If we consider the percentages
computed on all the smells of the answers regarding Severity,
Effort and Priority, we find out that the majority of the smells
have been classified as having Medium-Low Severity (35%),
Effort (33%) and Priority (25%).

Furthermore, we ranked the true positive AS depending
on the metrics’ values. We reported the most notable ones in
Table IV. As we previously mentioned the developers assigned
values very close to each other for every AS, so the logical
consequence is that the AS with the highest severity has
the highest priority of refactoring and requires the highest
effort to be removed too and vice-versa. In this scenario,
Hub-Like Dependency on Classes is the smell with the highest
values for all the metrics and Insufficient Package Cohesion
is the one with the lowest.

Moreover, we analyzed the possible correspondence be-
tween the severity of the AS as perceived by the developers
and the metrics used to detect the AS by Arcan, with the aim
of identifying a specific smell characteristic (see Section IV)
that may become a severity criterion. We checked the 1)
Insufficient Package Cohesion smell according to the Lack
of Component Cohesion (LCC)[24], 2) Feature Concentration
according to the number of features inside packages and 3)
God Component according to the number of classes in a
package and the LCC metric. We did not check smells with
only one true positive.

TABLE IV. RELEVANT SMELLS

Severity Effort Priority

AS Most
critical

Least
critical

Most
hard-to-remove

Least
hard-to-remove

Most
urgent-to-remove

Least
urgent-to-remove

HL-C X X X
IPC X X X

72Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 83 / 191

We observed that all the Insufficient Package Cohesion
instances have a severity of 3 except for one instance that
has a severity of 4: this is also the only one with a LCC
equals to 1, which indicates a complete lack of cohesion
among the classes belonging to the affected package. The
two instances of Feature Concentration have respectively a
severity of 4 and 7 and a number of features inside the
package of 14 and 28, so we think that this characteristic
may be linked to the severity of the smells. Finally, God
Component’s instances did not show a link between the
severity and the number of classes contained in the package
even considering only true positives instances, but we
identified a relationship between the developers’ severity
perception and the Lack Of Component Cohesion of the
affected package. The packages corresponding to the most
severe instances (severity=5) have also the highest values of
LCC (0.57 and 0.78), while the instance with a severity of 4
affects a package with a LCC of 0.45 and the package affected
by the least severe instance (severity=2) has a LCC inferior to
0.2: the higher the LCC of the package, the higher the severity
of the AS instance. In brief, we identified a link between:
1) the severity of the IPC instances and the LCC metric; 2)
the severity of the GC instances and the LCC metric; 3) the
severity of the FC instances and the number of features inside
the affected packages.

VI. LESSONS LEARNED
We briefly describe below the principal lessons learned

and feedback we obtained from the survey that we exploit
to answer the RQs in the next section.

Lesson learned for the Arcan tool developers First of all,
we received a feedback from project experts on the precision of
the results of the Arcan tool and their usefulness, in particular
we obtained feedback on how many detected AS were not
actual issues and, taking a closer look to these smells, we
can improve the tool in order to reduce the number of false
positives results. Secondly, we gathered useful data on how
critical each AS instance is, which software attributes it affects
and which AS’s characteristics may be linked to its criticality:
we can use this information to add new functionalities to
the tool, like assigning a severity value to each AS instance
in order to establish a priority ranking that can reduce the
developers’ overall refactoring effort. One remarkable example
is the severity of GC, which we hypothesised linked to the
progressive higher number of classes inside the package.
Actually, we found out that developers considered more critical
GC instances which have higher LCC: hence a large package
with a very low internal cohesion represents the worst possible
case that a developer can face.

Lesson learned for the developers/practitioners of the com-
pany The developers got useful feedback while examining the
smells we showed them through the survey. When we asked
them about what the survey taught them, they outlined that 1)
an analysis made through the support of a tool, like Arcan, can
bring up issues that the developers did not notice before: they
discovered new AS that they never considered as problems and
they will keep them in mind from now on to avoid falling into
the same mistakes. 2) They also learned that AS can become
relevant issues when working with a large system, because
coding can easily lead to the creation of several little smells
instances that become progressively greater as the project

grows. This aspect, in their opinion, can make the system hard
to maintain and understand, specially when trying to identify
and separate the system functionalities, such as for a possible
migration to a microservices architecture which requires to
identify, isolate and put in the same microservice all the classes
that work on the same functionality. 3) Finally, they also got
aware of the fact that the developer’s experience is important
in a perspective of knowledge of the project he/she’s working
on: the junior developer, thus the least experienced among the
three, was also the least aware of the reported smells even
though he/she has been working on the project for a longer
period (4 years vs 1.5/2 years) compared to the others.

VII. THREATS TO VALIDITY
As for construct validity, there is a possibility that the

practitioners misinterpreted what the AS represent or what
we asked in the questionnaire. However, we mitigated this
threat by explaining each type of smell and also each smell
instance with a detailed description and the support of a
graph visualization. As for internal validity, it is unlikely
that the opinions on the negative impact of the smells on
the project quality reported by the practitioners would be
affected by factors that are not related to the AS, since we
explained and contextualized each smell in the survey in detail
and practitioners were careful to inquire the main causes of
the perceived negative impact inside the code. The threat to
external validity is due to the fact that the case-study has
been conducted in a single company and on a single project,
hence the results may not apply to other application domains.
The reason of such limited scope is due to the difficulties of
finding available industrial projects to analyze: in the future,
we aim to extend our work with more of them. Moreover, the
number of studied AS was limited and for some types, such
as Hub-Like Dependency on package, only one instance was
analyzed. However, we mitigate this aspect by interviewing
three developers with different skills and seniority and by
measuring their accordance. As for reliability, we identified
cases where the practitioners contradicted themselves, however
we mitigated this problem by proposing also open-ended
questions and collecting their concrete opinions. Even if the
study is replicable, the results are based on practitioners’
experience and perception, hence the real impact and severity
of the AS might differ from the one reported here. However,
we subjected the survey to the developers who are actively
working on the project and are directly interested by the
possible presence and impact of the AS, so their opinion is
the most valuable for validating the AS and Arcan.

VIII. CONCLUSION
In this paper, we described the evaluation of 8 AS through

the feedback of 3 developers on one industrial project. In
particular, we ran the AS detection tool Arcan on the project
and presented the results to the developers. Then, for each
analyzed instance of AS, we collected information about AS
impact, severity and its refactoring through a survey composed
of 12 questions. Every developer individually answered the
questions of the survey and on such data we build our study.
We now report the answers to our research questions, which
summarise the results of our study:

RQ1: How are architectural smells perceived in an indus-
trial context? Developers did not know about the concept of

73Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 84 / 191

AS, however they reported that they were aware of some of
them. They also confirmed that AS have a negative impact
on software internal qualities, in particular on maintainability.
They recognized the risk linked to the presence of AS in their
architecture and acknowledged the usefulness of automatic
tools, like Arcan, which can detect this kind of anomaly.

RQ2: What practitioners suggest according to the refac-
toring of the smells? We were not able to extract from the
survey answers, valuable suggestions concerning the refac-
toring of the smells. However, the few data pointed out that
developers would not refactor some of the detected instances
because the refactoring activities could be too expensive and
for some cases, the smell could represent the only possible
solution. A specific comment was made on the refactoring of
Feature Concentration, Scattered Functionality and Insufficient
Package Cohesion: the refactoring of such ASs is useful, when
the system architecture is layered, to prepare the migration
towards microservices, by structuring the packages by feature
and thus easing the identification of the candidate services.
This comment confirmed a result investigated in our previous
work, where we exploited Arcan to detect the candidate mi-
croservices of an industrial project and collected the developers
feedback on the proposed solution [14].

RQ3: Which are the most critical smells according to
the practitioners perception? The most critical smell, in the
context of this study and the developers’ opinion, is HL on
classes, which is also one of the smell which gets worse
the most, as time passes. Developers should pay attention to
this kind of AS and remove it as soon as it appears. On the
contrary, IPC is the least critical AS.

In the future, we aim to carry out more studies like the one
presented in this paper, on different projects of different ap-
plications domain and companies in order to better understand
how AS are perceived in an industrial context and improve the
AS detection support. We also aim to study how to prevent
the introduction of AS by leveraging on machine learning
techniques [28]: in this way practitioners could avoid the extra
costs due to the refactoring of the AS.

REFERENCES
[1] R. Verdecchia, “Architectural technical debt identification: Moving for-

ward,” in 2018 IEEE International Conference on Software Architecture
Companion, ICSA Companion 2018, Seattle, WA, USA, April 30 - May
4, 2018, pp. 43–44.

[2] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying
and prioritizing architectural debt through architectural smells: a case
study in a large software company,” in Proc. of the European Conf. on
Software Architecture (ECSA). Madrid, Spain: Springer, Sep. 2018.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, USA: Addison-Wesley, 1999.

[4] E. Lab, Evolution of Software Systems and Reverse Engineering
Laboratory Official Website, 2020 (accessed August 2020). [Online].
Available: https://essere.disco.unimib.it/

[5] Anoki, Anoki s.r.l., 2020 (accessed August 2020). [Online]. Available:
https://www.anoki.it/

[6] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni,
and E. D. Nitto, “Arcan: A tool for architectural smells detection,” in
Int’l Conf. Software Architecture (ICSA) Workshops, Gothenburg, Apr.
2017, pp. 282–285.

[7] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2014.

[8] A. F. Yamashita and L. Moonen, “Surveying developer knowledge and
interest in code smells through online freelance marketplaces,” in USER
2013, San Francisco, CA, USA, May 26, 2013, pp. 5–8.

[9] Z. Soh, A. Yamashita, F. Khomh, and Y. Guéhéneuc, “Do code smells
impact the effort of different maintenance programming activities?” in
SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - vol. 1, pp.
393–402.

[10] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, “Do
they really smell bad? A study on developers’ perception of bad code
smells,” in 30th IEEE ICSME, Victoria, BC, Canada, September 29 -
October 3, 2014, pp. 101–110.

[11] A. Tahir, J. Dietrich, S. Counsell, S. Licorish, and A. Yamashita, “A
large scale study on how developers discuss code smells and anti-pattern
in stack exchange sites,” Information and Software Technology, vol.
125, 2020, p. 106333.

[12] W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen, Y. Ge, W. Liu,
and J. Zhang, “Software architecture measurement - experiences from
a multinational company,” in ECSA 2018, Madrid, Spain, September
24-28, 2018, Proc., pp. 303–319.

[13] R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele,
“Experiences applying automated architecture analysis tool suites,”
in Proc. of the 33rd ACM/IEEE, ASE 2018, Montpellier, France,
September 3-7, 2018, pp. 779–789.

[14] I. Pigazzini, F. A. Fontana, and A. Maggioni, “Tool support for the
migration to microservice architecture: An industrial case study,” in
Software Architecture - 13th European Conference, ECSA 2019, Paris,
France, September 9-13, 2019, Proceedings, pp. 247–263.

[15] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, “On the
shape of circular dependencies in java programs,” in ASWEC 2014,
Milsons Point, Sydney, NSW, Australia, April 7-10, 2014. IEEE
Computer Society, 2014, pp. 48–57.

[16] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, 2012, pp. 9:1–9:13.

[17] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, Apr. 2006.

[18] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 189–200.

[19] H. S. de Andrade, E. S. de Almeida, and I. Crnkovic, “Architectural
bad smells in software product lines: an exploratory study,” in Proc. of
the WICSA 2014 Companion Volume, Sydney, NSW, Australia, April
7-11, 2014. ACM, 2014, pp. 12:1–12:6.

[20] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th CSMR, Kaiserslautern, Germany,
2009, pp. 255–258.

[21] E. W. Dijkstra, “On the role of scientific thought,” 01 1974.
[22] N. Inc., Neo4j, 2020 (accessed August 2020). [Online]. Available:

https://neo4j.com/
[23] ——, Neo4j graph visualization, 2020 (accessed August 2020).

[Online]. Available: https://neo4j.com/developer/graph-visualization/
[24] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design

quality assessment tool,” in Proc. of the 1st Intern. Workshop on Bring-
ing Architectural Design Thinking into Developers’ Daily Activities,
ser. BRIDGE ’16. NY, USA: ACM, 2016, p. 1–4.

[25] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Proc. of the 32nd Intern.
Conf. on Software Maintenance and Evolution (ICSME 2016). Raleigh,
North Carolina, USA: IEEE.

[26] N. Mitchell and C. Runciman, “Uniform boilerplate and list processing,”
in Proc. of the ACM SIGPLAN Workshop on Haskell Workshop, ser.
Haskell ’07. NY, USA: ACM, 2007, p. 49–60.

[27] K. Lee, K. C. Kang, W. Chae, and B. W. Choi, “Feature-based approach
to object-oriented engineering of applications for reuse,” Software:
Practice and Experience, vol. 30, no. 9, 2000, pp. 1025–1046.

[28] F. A. Fontana, P. Avgeriou, I. Pigazzini, and R. Roveda, “A study
on architectural smells prediction,” in 45th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2019,
Kallithea-Chalkidiki, Greece, August 28-30, 2019, pp. 333–337.

74Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 85 / 191

Offensive and Defensive Perspectives in Additive Manufacturing Security

Rohith Yanambaka Venkata, Nathaniel Brown, Daniel Ting and Krishna Kavi

Center for Agile & Adaptive Additive Manufacturing (CAAAM)
and Dept. of Computer Science and Engineering

University of North Texas
Denton, Texas

USA
Email: {ry0080, nathanielbrown, danielting}@my.unt.edu and krishna.kavi@unt.edu

Abstract—Additive Manufacturing (AM) is transforming the
manufacturing industry by reducing prototyping time and easing
the production of complex parts. Notably, use of AM has gained
traction in the medical and aerospace fields, and is rapidly
increasing in usage in traditional industry. However, AM’s cyber-
physical nature opens systems up to vulnerabilities that can result
in both cyber and physical damage. In this paper, we document
and categorize the state of the art in Additive Manufacturing
security research in three ways - by using Microsoft’s Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Ser-
vice and Elevation of Privilege (STRIDE) threat model, by the
intent of the attacker, and by the overall purpose of the published
works. We also provide a list of security recommendations for AM
that could aid in the design of secure AM systems. We hope our
approach will enable an understanding of AM security from both
the attacker’s and defender’s perspective, and serve as a survey
of relevant research in the field, and stimulate more research into
securing AM systems.

Keywords–additive manufacturing; cybersecurity; threat model-
ing.

I. INTRODUCTION

Advanced manufacturing is a key component in what is
called Industry 4.0 - manufacturing relying on sophisticated
technologies including networked sensors and actuators, cyber
technologies and machine learning to make processes flexible,
agile and cost-effective. However, the reliance on these in-
terconnected yet emerging technologies make these processes
prone to cybersecurity attacks. In this paper, we will provide a
high-level, concise but comprehensive survey of the currently
known vulnerabilities with manufacturing, focusing on AM in
particular, and suggested best practices for mitigating cyber
attacks. First, we will briefly describe AM processes.

AM can produce a component in a layer-wise fashion rather
than starting with a block of material and removing material
using milling, cutting, or lathing processes (referred here
as Subtractive Manufacturing, or SM). In this way, additive
processes are not constrained in the same way as subtractive
processes, meaning that the manufacturing envelope is opened
very wide to produce technically or financially infeasible
components due to such challenges as shape complexities, cost,
new material combinations, etc. Relevant examples of AM
include surgical joint replacement components (such as tita-
nium hip or knee replacements), components whose traditional
manufacturing methods would be cost or time prohibitive [1],
or components for which the original tooling (such as the
dies for forging) no longer exists (such as various components
replaced on aging aircraft systems expected to continue serving
for many years into the future [2]). Using this manufacturing
method allows mass customization while simultaneously de-

centralizing the manufacturing and distribution process. Under-
lining mass customization, three-dimensional (3-D) printing is
being developed to fabricate highly dose-specific medication.
In 2015, the U.S. Food and Drug Administration (FDA)
approved the first 3-D printed drug available in the United
States — Levetiracetam (Spirtam - Aprecia), which is used to
treat partial onset, myoclonic, and primary generalized tonic-
clonic seizures in patients with epilepsy [3]. There have even
been efforts to design and print medical equipment from simple
face masks to complex ventilators [4] following the shortage
during the COVID-19 pandemic.

Presently, there are many types of AM that vary based on
cost, material system, manufacturing method, user capabilities,
and characteristics of the desired final component. The most
common forms of AM/3-D printing are - Vat Photopolymer-
ization, Material Extrusion, Material Jetting and Powder Bed
Fusion [1].

The AM process is a complex interaction of automated
and manual workflows with numerous dependencies - both
informational and physical. Additionally, AM my be provided
as a service which would include several actors, software appli-
cations, sensors, actuation mechanisms and logistical activities.
Not all of these entities may reside within a service provider’s
controlled environment. This cyber-physical nature of Additive
Manufacturing processes leaves systems vulnerable to a certain
array of unique attacks, including:

• Side-channel attacks that steal valuable intellectual
property by listening to an AM system’s sounds during
product synthesis and running the data through a
machine-learning model [5].

• Attacks that target the design stage to create fatal
deficiencies (like voids) in key parts of synthesized
products [6].

• Attacks that alter printing orientation to decrease end
products’ tensile strength [7].

• Attacks that target insecure methods of transferring
stereolithographic (STL) files, such as via USB sticks
[8].

• Attacks that exploit vulnerabilities in the code and
programming languages that control AM systems; [9].

• Attacks that target AM quality-assurance techniques
to ensure low product quality [10].

Our goal in this paper is to provide a high-level, concise
but comprehensive survey of the current state of the art in
security for AM; first from the attacker’s point of view, then

75Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 86 / 191

from the defender’s, using Microsoft’s STRIDE security model
to reason about security.

The structure of the remainder of the article is as follows.
Section II describes related work and how we sourced the
material for our research. Section III describes Microsoft’s
STRIDE threat model and its unique advantages when analyz-
ing AM security. Section IV describes the intents of attackers
seeking to exploit vulnerabilities in AM systems. Section V
lists security recommendations for AM systems taken from
recommendations for similar systems by the National Institute
of Standards and Technology (NIST). Finally, Section VI
provides conclusions about this work and future extensions.

II. RELATED WORK

There have been a number of practical attacks specific to
3D printing executed in a lab setting. Works that we will touch
upon include Sturm et al. [11], Zeltmann et al. [7], and Moore
et al. [12]. These papers demonstrate one specific or narrow
range of attacks.

Other papers introduce frameworks to reason about threats
in this newly emerging domain of cybersecurity. Zhang &
Padmanabhan [13] proposed five categories of risk and applied
them to six separate stages in the manufacturing pipeline.
Yampolskiy et al. [14] discussed multiple taxonomies over
the different elements that can be attacked, how they can be
attacked, and consequences of an attack. Glavach et al. [8]
describe protocols and security recommendations for proper
AM system operation.

Table I groups papers into three categories - papers that
present or analyze a specific attack, those that propose a
security design framework and those that propose/perform risk
assessment on cyber attack(s).

In this paper, we organize vulnerabilities that affect Addi-
tive Manufacturing systems using the STRIDE threat model,
consolidate and catalog research articles to provide an insight
into the perspective of an adversary, and identify potential
mitigation techniques.

These articles come from a mix of independent research,
conferences, and journals focusing on AM or general man-
ufacturing security, and were sourced from searching online
databases for research on AM security, as well as from
references from other papers. Since AM security is a relatively
new field, most of the research we have compiled is recent.

To reiterate, we aim not to propose a new offensive or
defensive strategy, but to unify these works under a common
theme, the STRIDE model.

III. STRIDE MODEL

Most software systems today face a variety of cyber threats.
The threat landscape is constantly evolving with the advances
in technology. Malware that exploits software vulnerabilities
grew 151% in the second quarter of 2018 [15]. Threats can
originate from within or outside an organization and lead to
devastating consequences. To prevent threats from wreaking
havoc, system administrators/designers use threat modeling to
profile the security posture of a system.

Threat modeling must be performed early in the develop-
ment cycle to successfully identify and remedy vulnerabilities.
Incorporating threat modeling into the design process of a
system will lead to proactive architectural decisions that reduce

threats from the start. Cyber physical systems in general, and
Additive Manufacturing systems in particular, conflate soft-
ware technology with physical infrastructure, which introduces
a unique challenge of multiple stakeholders being involved
in the system design process. Performing threat modeling
on a cyber physical system from the perspective of multiple
stakeholders is essential in identifying and eliminating threats
across a wide spectrum of threat types.

Some of the popular threat models are:

• PASTA : The Process for Attack Simulation and
Threat Analysis (PASTA) is a risk-centric threat model
developed in 2012 [16]. PASTA brings business ob-
jectives and technical requirements together. It utilizes
several design and elicitation tools at various stages
of design and approaches threat-modeling from a
strategic level by involving key decision makers and
requiring input from operations, governance, architec-
ture and development. PASTA employs an attacker-
centric perspective to produce an asset-centric output
in the form of threat enumeration and scoring [16].

• LINDDUN : The Linkability, Identifiability, Non-
repudiation, Detectability, Disclosure of information,
Unawareness, Non-compliance (LINDDUN) frame-
work focuses primarily on privacy concerns and is
used for data security [16]. The frameworks involves
constantly iterating over data elements and analyzing
them from the perspective of threat categories. The
design involves identifying a threat’s applicability to
the system and building threat trees [16].

• Attack Trees : Using trees to model attacks on a
system is an old and widely used technique. The trees
are diagrams where the root represents the goal of an
adversary and the leaves represent ways to achieve that
goal. Each goal is represented by a separate tree. For
complex systems, the number of attack trees may be
too large to provide valuable and actionable insights
into the security posture of the system.

The STRIDE threat model was invented in 1999 and
adopted by Microsoft in 2002 [16]. This model identifies six
main types of threats:

• Spoofing : Claiming a false identify in order to gain
unauthorized access to resources. This type of threat
violates the authenticity requirement of a system.
Examples of this threat include spoofing the identity of
a user by brute-forcing user credentials and phishing.

• Tampering : Malicious modification of data or pro-
cesses. This modification may occur on data in transit,
data at rest or on processes. This type of threat violates
the integrity requirement of a system. Examples in-
clude SQL injection attacks and code-injection attacks.

• Repudiation : Falsely denying the occurrence of an
action or event. Typical repudiation attacks involve
a user denying performing a destructive action such
as deleting records from a database and attackers
truncating log files to remove all traces of a system
breach.

• Information disclosure : Refers to data leaks or
breaches. Perhaps, the most common type of threat to-
day, information disclosure violates the confidentiality

76Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 87 / 191

requirement of a system. Eavesdropping, data sniffing,
unauthorized access to a database are all examples of
information disclosure attacks.

• Denial of Service : Disruption of a service or network
resource. This prevents legitimate users from access-
ing the desired network service. This type of attack
violates the availability requirement of a system. Typ-
ical examples include inundating a network service
with multiple requests, using up available space on a
shared hard drive, etc.

• Elevation of Privilege : Unauthorized access to sys-
tem resources by violating the authorization require-
ment of a system. A typical example would be a
user gaining root privileges on a system using buffer
overflow.

We chose STRIDE model for this article because it is the
most mature threat model [16]. It provides a balance between
risk-assessment, security and privacy, which is vital when
modeling complex cyber physical systems. While the other
threat models discussed above have useful characteristics in
cyber-only systems, we feel that STRIDE is the most well
understood and widely used for cyber physical systems. Table
II classifies research articles into the constituent attack types
of the STRIDE model based on the type and nature of threats
described in the articles.

IV. INTENT OF THE ATTACKER

There are a number of articles focusing on the intent of a
possible attacker. Graves et al. [21] propose a framework for
the analysis of attacks on or with AM systems. The authors
describe the attack targets as the intersection of the effects the
attacks would have with the adversarial goals and objectives.
The three major threat categories they identified are technical
data theft, AM sabotage, and illegal part manufacturing. Table
III summarizes research articles into three categories based on
the intent or objective of an attacker.

A. Technical Data Theft
Technical data theft is the unauthorized use of Intellectual

Property (IP). To an attacker, IP can be the most lucrative
target because it forms the basis of an organization’s com-
petitive advantage. Stealing IP from an AM system is not so
different from other manufacturing systems. However, security
in AM systems may be less developed than that in traditional
manufacturing, giving an attacker the edge.

AM is very new compared to traditional manufacturing
methods that have been extensively tested in the field. An
attacker can exploit zero-day flaws in AM systems that would
likely have been patched long ago in a SM system. Do, Martini,
and Choo [23] demonstrated several severe security oversights
in MakerBot consumer 3D printers: print jobs are transmitted
and stored unencrypted, allowing anyone on the same network
to steal the model. Even worse, although the printer authen-
ticates a computer over Hypertext Transfer Protocol Secure
(HTTPS), it does not properly check the legitimacy of the
certificate used, allowing them to do an Address Resolution
Protocol (ARP) poisoning attack and perform privileged ac-
tions on the printer.

Furthermore, AM exhibits unique properties that enable all
kinds of attacks. One such property that an attacker could
choose to exploit is the fact that 3D printers use a small

set of primitive operations that make consistent acoustic and
magnetic emissions. Song et al. [24] were able to conduct a
side-channel attack using an ordinary smartphone’s sensors.
By training a support vector machine to convert sensor data
into G-code, they could accurately reconstruct the shape of a
design being printed by the widely-used Ultimaker 2 Go.

B. AM Sabotage
AM sabotage most commonly exhibits itself in the ma-

nipulation of an AM system to degrade the quality of the
manufactured part, though it may also refer to damage done
to the AM system itself or its surroundings. The bulk of
research done about security challenges in AM fall under this
category, as the unique properties of AM open up even more
possibilities. One attack unique to AM is the insertion of voids
in the middle of a product. Sturm et al. [11] discuss such an
attack and show that doing so causes a noticeable degradation
in strength while slipping undetected by human operators.

Belikovetsky et al. [6] applied this attack to a real-life
scenario from start to finish. Exploiting a patched WinRAR
vulnerability on an out-of-date test machine, they inserted
gaps inside drone propellers that broke apart in flight. The
test machine was intentionally left unpatched, but the main
takeaway is that once an attacker gains access to an AM
system, they have a wider range of opportunities to sabotage
manufactured parts. For example, the previous attack required
infiltrating the STL file. But if the attacker gains access to
the printer’s controls, they can choose to alter the orientation
that the part is printed in, which also somewhat unintuitively
turns out to impact strength as well, as Zeltmann et al. [7]
demonstrate.

C. Illegal Part Manufacturing
Illegal part manufacturing is the creation of products pro-

hibited by law. Unlike the other two intentions mentioned
above, which consider an attack by an external actor on the
end user, illegal part manufacturing is not an attack in the
traditional sense. However, it is still an important considera-
tion, more for the printer manufacturer than the end user. As
with all technologies with potential for danger, the thin balance
between liberty and safety ought to be explored. There are
currently little published works that describe scenarios where
such attacks were conducted.

V. SECURITY RECOMMENDATIONS

Although currently there are no specific recommendations
for AM systems, guidance is available from NIST for industrial
control systems (ICS) and general manufacturing processes.
We believe ICS recommendations found in [27] contain many
valuable recommendations due to the shared security concerns
of AM and ICS systems. Additionally, [28], which is primarily
distributed for Federal Information Systems, contains many
recommendations relevant to the security of Additive Manu-
facturing systems due to information systems’ reliance on a
consistent flow information and the relevance of many of the
paper’s recommendations to general manufacturing security.
Where applicable, recommendation names and descriptions
have been paraphrased to contain specific terms that fit the
context of AM.

This section is a compilation from three major papers and
technical articles from the National Institute of Standards and

77Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 88 / 191

TABLE I. CATEGORIZATION OF PAPERS BY PURPOSE

Analyzing a specific attack: Papers with
the primary purpose of presenting and ana-
lyzing a specific AM attack.

Belikovetsky et al. [6] demonstrate an attack in which a largely undetectable void is added to an AM drone part, causing a disastrous
loss of structural integrity. Moore et al. [12] demonstrate an attack on AM quality via malicious printer firmware. Sturm et al. [11]
examine potential attack vectors along the AM process chain, and present security recommendations for preventing and detecting
attacks. Al Faruque et al. [5] demonstrate an attack that derives the intellectual property of an AM-constructed object by listening
on the sounds produced by the construction process and running them through a machine-learning model.

Proposing a security framework: Papers
with the primary purpose of presenting a
new or modified security framework for the
benefit of AM cybersecurity.

Hutchins et al. [17] establish a framework that identifies specific vulnerabilities within a manufacturing supply chain. Padmanabhan
and Zhang [13] review cybersecurity risk and mitigation strategies in AM, and propose a framework to ”detect threats and assess
vulnerabilities in the AM process.” They also suggest a new encryption technique to help secure the AM process. Yampolskiy et al.
[18] propose a new model for outsourcing Additive Layer Manufacturing (ALM) based manufacturing. Vincent et al. [19] propose
an approach to detect attacks in cyber-physical manufacturing systems through the use of structural health monitoring techniques.

Risk Assessment/Analyzing Multiple At-
tacks: Papers that analyze a variety of at-
tacks on AM or the potential attack vectors
of Additive Manufacturing systems.

Prinsloo et al. [20] explore cybersecurity risks associated with the transition to Industry 4.0 and address relevant countermeasures.
Yampolskiy et al. [14] analyze attacks that can cause AM machines to exhibit weaponized effects. Zeltmann et al. [7] provide a brief
overview of AM security risks and evaluate risks posed by two classes of modifications to the AM process that ”are representative
of the challenges that are unique to AM.” Glavach et al. [8] ”address cybersecurity threats to the Direct Digital Manufacturing
(DDM) community.” Graves et al. [21] assess AM from three security awareness perspectives: ”exposure to an attack, evaluation
of the system, and potential liability for a successful attack.” Slaughter et al. [10] identify techniques used to ensure bad quality in
metal AM through malicious manipulating an infrared thermography quality assurance device. Straub [22] discusses attacks on the
3D printing process that involve changes in printing orientation, and proposes an imaging-based solution to combat the problem.

TABLE II. A STRIDE ASSESSMENT OF ADDITIVE MANUFACTURING

Threat type Papers
Spoofing An attacker may spoof a printer or computer’s identity to intercept 3D models [23] or as part of a larger attack to take control of and sabotage

an AM system [6].
Tampering Assuming access was gained through another attack, an adversary may choose a number of ways to sabotage the system, including, but not

limited to, inserting invisible voids [11], altering print settings [7], and/or installing malicious firmware [12].
Repudiation Repudiation is a generally overlooked threat in AM security articles. Considering secure logging is not a built-in standard in 3D printers, an

attacker would simply need to target the tracing capabilities of the surrounding infrastructure.
Information Disclosure Traditional malware could be deployed to steal the 3D model, which can exist in many forms and place [11]. There also exists side-channel

attacks that listen to the predictable acoustic and magnetic emissions of a printer to reconstruct IP with a machine learning model [5] [24].
Denial of Service One who has gained control of a poorly designed 3D printer may hypothetically manipulate its operating parameters e.g. the electron/laser

beam or source material to inflict irreversible damage upon itself.
Elevation of Privilege Privilege escalation is used as a stepping stone to launch further attacks [6]. However, it is not even needed for some AM systems that perform

incorrect authentication or none at all [23].

TABLE III. CATEGORIZATION OF ATTACKS BY INTENT

Adversary’s intent Papers
Technical data theft Al Faruque et al. [5] describe a novel side-channel attack in which a machine learning model is used to derive an object’s geometry by

analyzing the noise created by a Fused Deposition Modeling (FDM) 3D printer. Yampolskiy et al. [18] emphasize how there are many places
along the AM supply chain in which IP can be stolen, and offer a unique outsourcing model to help secure the process. Campbell and
Ivanova [25] describe the potential for AM to increase the ease of violating patents and producing patented products.

AM sabotage Sturm et al. [11] describe the ease of creating voids in products fabricated by AM to sabotage their mechanical strength. Zeltmann et al.
[7] describe how embedded defects and altered printing orientation can negatively affect a printed object’s integrity as well. Belikovetsky et
al. [6] and Vincent et al. [19] demonstrate the consequences of these attacks by testing sabotaged parts on real-life equipment. Moore et al.
[12] takes another route and sabotages the printer firmware, replacing it with a malicious version that can corrupt the print jobs as they are
received.

Illegal part manufacturing Kietzmann et al. [26] describe the potential for AM to catalyze the creation of fake medical products and drugs.
Campbell and Ivanova [25] describe the potential of bad actors to manufacture illegal gun parts through AM.

Technology (NIST) regarding security practices to counteract
malicious attacks in the cyber and cyber-physical domains.
The recommendations come from NIST’s Guide to Industrial
Control Systems (ICS) Security [27], Security and Privacy
Controls for Federal Information Systems and Organizations
[28], and Framework for Improving Critical Infrastructure Cy-
bersecurity [29]. We organized these recommendations along
STRIDE threat model, describing how to mitigate the different
threat types.

A. Spoofing and Repudiation
• Identity Management, Authentication and Access

Control: Access to physical and logical assets and
associated facilities is limited to authorized users,
processes, and devices, and is managed consistent with
the assessed risk of unauthorized access to authorized
activities and transactions.

• Security Monitoring: The system and assets are
monitored to identify cybersecurity events and verify
the effectiveness of protective measures. This includes
monitoring for unauthorized personnel, connections,
devices and software.

• Access Enforcement: The system enforces approved
authorizations for logical access to information and
system resources in accordance with applicable access
control policies.

• Remote Access: The organization establishes usage
restrictions, configuration/connection requirements,
and implementation guidance for each type of remote
access allowed, and authorizes remote access to the
system prior to allowing such connections.

• Least Functionality: The organization configures the
system to provide only essential capabilities; and

78Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 89 / 191

prohibits or restricts the use of prohibited or restricted
functions, ports, protocols, and/or services.

• Device Authentication: The system uniquely iden-
tifies and authenticates devices before establishing a
connection.

• Adaptive Identification and Authentication The or-
ganization requires that individuals accessing the sys-
tem employ supplemental authentication techniques or
mechanisms under circumstances or situations deter-
mined to need the extra security.

• Physical Access Authorizations: The organization
develops, approves, and maintains a list of individuals
with authorized access to the location of the system
and issues authorization credentials for such access.

• Developer Security Architecture and Design: The
organization requires the developer of the system,
system component, or system service to produce a
design specification and security architecture that:
◦ Is consistent with and supportive of the orga-

nization’s security architecture which is estab-
lished within and is an integrated part of the
organization’s enterprise architecture;

◦ Accurately and completely describes the re-
quired security functionality, and the allocation
of security controls among physical and logical
components; and

◦ Expresses how individual security functions,
mechanisms, and services work together to
provide required security capabilities and a
unified approach to protection.

• Boundary Protection: The system connects to exter-
nal networks or other systems only through managed
interfaces consisting of boundary protection devices
arranged in accordance with an organizational security
architecture.

• Network Disconnect: The system terminates the
network connection associated with a communica-
tions session at the end of the session or after an
organization-determined time period of inactivity.

• Session Authenticity: The system protects the authen-
ticity of the communications sessions.

• Information System Monitoring: The organization
◦ Monitors the system to detect:

Attacks and indicators of potential attacks
in accordance with organization-defined
monitoring objectives; and
Unauthorized local, network, and remote
connections.

◦ Identifies unauthorized use of the system
through relevant techniques and methods;

◦ Deploys monitoring devices:
Strategically within the system to collect
essential information; and
At ad hoc locations within the system
to track specific types of transactions of
interest to the organization; and

◦ Protects information obtained from intrusion-
monitoring tools from unauthorized access,
modification, and deletion.

• Firewalls: The organization deploys appropriate fire-
wall policies at pertinent locations to avoid unautho-
rized access to systems and resources.

• Repudiation: The information system protects against
an individual (or process acting on behalf of
an individual) falsely denying having performed
organization-defined actions to be covered by non-
repudiation, which may include creating information,
sending and receiving messages, or approving infor-
mation.

B. Tampering, Denial of Service and Elevation of Privilege

• Risk Assessment: The organization understands the
cybersecurity risk to organizational operations (includ-
ing mission, functions, image, or reputation), organi-
zational assets, and individuals.

• Anomalies and Events: Anomalous activity is de-
tected and the potential impact of events is understood.
◦ Detected events are analyzed to understand

attack targets and methods;
◦ Event data are collected and correlated from

multiple sources and sensors; and
◦ The impact of events is determined.

• Security Continuous Monitoring: The system and its
assets are monitored to identify cybersecurity events
and verify the effectiveness of protective measures.
◦ The network is monitored to detect potential

cybersecurity events;
◦ The physical environment is monitored to de-

tect potential cybersecurity events;
◦ Personnel activity is monitored to detect po-

tential cybersecurity events;
◦ Malicious code is detected;
◦ Unauthorized mobile code is detected;
◦ External service provider activity is monitored

to detect cybersecurity events; and
◦ Vulnerability scans are performed.

• Detection Processes: Detection processes and proce-
dures are maintained and tested to ensure awareness
of anomalous events.

• Continuous Monitoring: The organization develops
a continuous monitoring strategy and implements a
continuous monitoring program that includes:
◦ Establishment of metrics to be monitored.
◦ Ongoing security status monitoring of

organization-defined metrics in accordance
with the organizational continuous monitoring
strategy.

• Software Usage Restrictions: The organization uses
software and associated documentation in accordance
with contract agreements and copyright laws, and
tracks the use of software and associated documenta-
tion protected by quantity licenses to control copying
and distribution.

• User-Installed Software: The organization estab-
lishes policies governing the installation of software
by users and enforces software installation policies
through organization-defined methods.

79Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 90 / 191

• Incident Monitoring: The organization tracks and
documents security incidents impacting the system.

• Risk Assessment: The organization conducts an as-
sessment of risk, including the likelihood and mag-
nitude of harm, from the unauthorized access, use,
disclosure, disruption, modification, or destruction of
the system and the information it processes, stores, or
transmits.

• Vulnerability Scanning: The organization:
◦ Scans for vulnerabilities in the system and

hosted applications and when new vul-
nerabilities potentially affecting the sys-
tem/applications are identified and reported;

◦ Employs vulnerability scanning tools and tech-
niques that facilitate interoperability among
tools and automate parts of the vulnerability
management process by using standards for:

Enumerating platforms, software flaws,
and improper configurations;
Formatting checklists and test procedures;
and
Measuring vulnerability impact.

◦ Analyzes vulnerability scan reports and results
from security control assessments; and

◦ Remediates legitimate vulnerabilities in accor-
dance with an organizational assessment of
risk.

• Supply Chain Protection: The organization pro-
tects against supply chain threats to the system,
system component, or system service by employing
organization-defined security safeguards as part of a
comprehensive, defense-in-breadth information secu-
rity strategy.

• Criticality Analysis: The organization identifies crit-
ical system components and functions by performing
a criticality analysis.

• Tamper Resistance and Detection: The organization
implements a tamper protection program for the sys-
tem, system component, or system service.

• Customized Development of Critical Components:
The organization re-implements or custom develops
system components deemed critical enough by the
organization to take such measures.

• Application Partitioning: The system separates user
functionality (including user interface services) from
system management functionality.

• Security Function Isolation: The system isolates
security functions from nonsecurity functions.

• Trusted Path: The system establishes a trusted com-
munications path between the user and organization-
defined security functions to include at a minimum,
system authentication and re-authentication.

• Protection of Information at Rest: The sys-
tem protects the confidentiality and/or integrity of
organization-defined information at rest.

• Malicious Code Protection: The organization:
◦ Employs malicious code protection mecha-

nisms at system entry and exit points to detect
and eradicate malicious code;

◦ Updates malicious code protection mecha-
nisms whenever new releases are available in
accordance with organizational configuration
management policy and procedures;

◦ Configures malicious code protection mecha-
nisms to:

Perform periodic scans of the system at
a defined frequency and real-time scans
of files from external sources at specified
endpoints and/or entry and exit points as
the files are downloaded, opened, or ex-
ecuted in accordance with organizational
security policy; and

◦ Addresses the receipt of false positives during
malicious code detection and eradication and
the resulting potential impact on the availabil-
ity of the system.

• Software, Firmware, and Information Integrity:
The organization employs integrity verification tools
to detect unauthorized changes to organization-defined
software, firmware, and information.

• Information Input Validation: The system checks
the validity of organization-defined information inputs.

• Error Handling: The system
◦ Generates error messages that provide infor-

mation necessary for corrective actions without
revealing information that could be exploited
by adversaries; and

◦ Reveals error messages only to trusted person-
nel or roles.

• Memory Protection: The system implements
organization-defined security safeguards to protect its
memory from unauthorized code execution.

• Denial of Service Protection: The system protects
against or limits the effects of denial of service attacks
by employing aforementioned organization-defined se-
curity safeguards.

C. Information Disclosure
• Governance: The policies, procedures, and processes

to manage and monitor the organization’s regulatory,
legal, risk, environmental, and operational require-
ments are understood and inform the management of
cybersecurity risk.

• Data Security: Information and records (data) are
managed consistent with the organization’s risk strat-
egy to protect the confidentiality, integrity, and avail-
ability of information.

• Information Protection Processes and Procedures:
Security policies (that address purpose, scope, roles,
responsibilities, management commitment, and co-
ordination among organizational entities), processes,
and procedures are maintained and used to manage
protection of systems and assets.

• Component Authenticity: The organization develops
and implements anti-counterfeit policy and procedures
that include the means to detect and prevents counter-
feit components from entering the system.

80Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 91 / 191

• Information in Shared Resources: The system pre-
vents unauthorized and unintended information trans-
fer via shared system resources.

• Transmission Confidentiality and Integrity: The
system protects the confidentiality and/or integrity of
transmitted information.

• Wireless Link Protection: The system protects exter-
nal and internal wireless links from designated types
of signal parameter attacks or references to sources
for such attacks.

• Boundary Protection: Boundary protection devices
are implemented to control the flow of information be-
tween interconnected security domains to protect the
system against malicious cyber adversaries and non-
malicious errors and incidents...Boundary protection
devices determine whether data transfer is permitted,
often by examining the data or associated metadata.

VI. CONCLUSION AND FUTURE WORK

Additive Manufacturing is a technology with enormous
potential. However, this makes it easy to rush things to market
without taking due consideration of security implications. And
because AM is still a developing area of research, it is a
challenge to properly secure systems against the expanded
variety of things that could go wrong. In this paper, we
considered the mind of the opposition by analyzing the intent
of the attacker and discussing many possible ways for an
attacker to achieve their goal. Furthermore, we categorized
these attacks into the STRIDE model and compiled a number
of steps that one could take to secure each category. Since AM
is a developing area of research, there are still a number of
questions that should be further explored:

A. Exactly how much work have manufacturers of consumer
and industrial AM devices put into securing their systems?

Do, Martini, and Choo [23] have shown an instance where
a 3D printer manufacturer neglected fundamental security
practices. However, this is just a single case in a consumer
printer. Although we believe this may be an expected symptom
of the emerging nature of AM, we do not have enough data
to conclude if this is an isolated incident or a widespread
concern, and how much worse, if at all, it is than in traditional
manufacturing.

B. Are there any additional properties unique to AM that an
attacker could exploit?

A key benefit of AM is that it gives manufacturers more
flexibility, but at the same time gives malicious actors more
opportunities to attack. We covered several such attacks that
are only possible or simplified on AM, such as those given by
[11] and [7]. We anticipate that a motivated adversary will find
even more ways to cleverly exploit AM’s advantages. More
work can be done to explore other attacks and raise awareness
among AM users.

C. What steps, if any, should be taken to prevent the use of
3D printers for potential harm, such as illegal part manufac-
turing?

We have so far exclusively focused on securing 3D printers
so that the user is protected from any malicious actions by

outside actors. Graves et al. [21] make the case for considering
securing 3D printers so that the outside community environ-
ment is protected from destructive uses of this technology.

Regardless, we hope this paper provides a useful, under-
standable overview of AM security from all sides and concrete
ideas for what next steps can be taken.

ACKNOWLEDGMENT

The authors would like to acknowledge the infrastructure
and support of Center for Agile & Adaptive and Additive
Manufacturing funded through State of Texas Appropriation
(#190405-105-805008-220).

REFERENCES
[1] D. Thomas, “Costs, benefits, and adoption of additive manufacturing:

a supply chain perspective,” The International Journal of Advanced
Manufacturing Technology, vol. 85, no. 5, 2016, pp. 1857–1876.
[Online]. Available: https://doi.org/10.1007/s00170-015-7973-6

[2] P. O, “3-d printing is changing the way air force fixes its ag-
ing planes,” URL: https://www.military.com/defensetech/2017/05/02/3-
d-printing-is-changing-way-air-force-fixes-its-aging-planes [accessed :
2020-05-21].

[3] J. Kite-Powell, “Fda approved 3d printed drug available in the
us,” URL: https://www.forbes.com/sites/jenniferhicks/2016/03/22/fda-
approved-3d-printed-drug-available-in-the-us [accessed: 2020-06-02].

[4] R. Tino, R. Moore, S. Antoline, P. Ravi, N. Wake, C. Ionita, J. Morris,
S. Decker, A. Sheikh, F. Rybicki, and L. Chepelev, “Covid-19 and the
role of 3d printing in medicine,” 3D Printing in Medicine, vol. 6, 12
2020.

[5] M. A. Al Faruque, S. R. Chhetri, A. Canedo, and J. Wan,
“Acoustic side-channel attacks on additive manufacturing systems,”
in 2016 ACM/IEEE 7th International Conference on Cyber-
Physical Systems (ICCPS). IEEE, Apr 2016. [Online]. Available:
http://dx.doi.org/10.1109/ICCPS.2016.7479068

[6] S. Belikovetsky, M. Yampolskiy, J. Toh, and Y. Elovici,
“dr0wned - cyber-physical attack with additive manufactur-
ing,” CoRR, vol. abs/1609.00133, 2016. [Online]. Available:
http://arxiv.org/abs/1609.00133

[7] S. Zeltmann, N. Gupta, N. G. Tsoutsos, M. Maniatakos, J. Rajendran,
and R. Karri, “Manufacturing and security challenges in 3d printing,”
JOM, vol. 68, 2016, pp. 1872–1881.

[8] D. Glavach, J. LaSalle-DeSantis, and S. Zimmerman, Applying and
Assessing Cybersecurity Controls for Direct Digital Manufacturing
(DDM) Systems. Springer International Publishing, 2017, p. 173–194.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-50660-9 7

[9] S. Moore, P. Armstrong, T. McDonald, and M. Yampolskiy,
“Vulnerability analysis of desktop 3d printer software,” in 2016
Resilience Week (RWS). IEEE, Aug 2016. [Online]. Available:
http://dx.doi.org/10.1109/RWEEK.2016.7573305

[10] A. Slaughter, M. Yampolskiy, M. Matthews, W. E. King, G. Guss,
and Y. Elovici, “How to ensure bad quality in metal additive
manufacturing,” in Proceedings of the 12th International Conference
on Availability, Reliability and Security - ARES ’17. ACM Press,
2017. [Online]. Available: http://dx.doi.org/10.1145/3098954.3107011

[11] L. Sturm, C. Williams, J. Camelio, J. White, and R. Parker, “Cyber-
physical vulnerabilities in additive manufacturing systems: A case study
attack on the .stl file with human subjects,” Journal of Manufacturing
Systems, vol. 44, Jul 2017, p. 154–164. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0278612517300961

[12] S. Moore, W. Glisson, and M. Yampolskiy, “Implications of malicious
3d printer firmware.” Proceedings of the 50th Hawaii International
Conference on System Sciences, 01 2017, pp. 6089–6098.

[13] A. Padmanabhan and J. Zhang, “Cybersecurity risks and mitigation
strategies in additive manufacturing,” Progress in Additive Manufac-
turing, vol. 3, no. 1-2, 2018, pp. 87–93.

[14] M. Yampolskiy, A. Skjellum, M. Kretzschmar, R. A.
Overfelt, K. R. Sloan, and A. Yasinsac, “Using 3d printers
as weapons,” International Journal of Critical Infrastructure
Protection, vol. 14, 2016, pp. 58 – 71. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1874548215300330

81Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 92 / 191

[15] W. Ashford, “WannaCry and NotPetya inspiring new attacks,” URL:
https://www.computerweekly.com/news/252449265/WannaCry-and-
NotPetya-inspiring-new-attacks [accessed: 2020-05-21].

[16] N. Shevchenko, “Threat Modeling: 12 Available Methods,” URL:
https://insights.sei.cmu.edu/sei blog/2018/12/threat-modeling-12-
available-methods.html [accessed: 2020-05-24].

[17] M. J. Hutchins, R. Bhinge, M. K. Micali, S. L. Robinson,
J. W. Sutherland, and D. Dornfeld, “Framework for identifying
cybersecurity risks in manufacturing,” Procedia Manufacturing,
vol. 1, 2015, pp. 47 – 63, 43rd North American Manufacturing
Research Conference, NAMRC 43, 8-12 June 2015, UNC
Charlotte, North Carolina, United States. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2351978915010604

[18] M. Yampolskiy, T. R. Andel, J. T. McDonald, W. B.
Glisson, and A. Yasinsac, “Intellectual property protection in
additive layer manufacturing: Requirements for secure outsourcing,”
in Proceedings of the 4th Program Protection and Reverse
Engineering Workshop, ser. PPREW-4. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2689702.2689709

[19] H. Vincent, L. Wells, P. Tarazaga, and J. Camelio, “Trojan detection
and side-channel analyses for cyber-security in cyber-physical manu-
facturing systems,” Procedia Manufacturing, vol. 1, 2015, p. 77–85.
[Online]. Available: http://dx.doi.org/10.1016/j.promfg.2015.09.065

[20] J. Prinsloo, S. Sinha, and B. von Solms, “A review of industry
4.0 manufacturing process security risks,” Applied Sciences,
vol. 9, no. 23, Nov 2019, p. 5105. [Online]. Available:
http://dx.doi.org/10.3390/app9235105

[21] L. M. G. Graves, J. Lubell, W. King, and M. Yampolskiy, “Characteristic
aspects of additive manufacturing security from security awareness
perspectives,” IEEE Access, vol. 7, 2019, pp. 103 833–103 853.

[22] J. Straub, “Identifying positioning-based attacks against 3D printed
objects and the 3D printing process,” in Pattern Recognition and
Tracking XXVIII, M. S. Alam, Ed., vol. 10203, International Society
for Optics and Photonics. SPIE, 2017, pp. 22 – 34. [Online].
Available: https://doi.org/10.1117/12.2264671

[23] Q. Do, B. Martini, and K.-K. R. Choo, “A data exfiltration and remote
exploitation attack on consumer 3d printers,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 10, 2016, pp. 2174–
2186.

[24] C. Song, F. Lin, Z. Ba, K. Ren, C. Zhou, and W. Xu, “My smartphone
knows what you print: Exploring smartphone-based side-channel attacks
against 3d printers,” in Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2016, pp. 895–907.

[25] T. A. Campbell and O. S. Ivanova, “Additive manufacturing as
a disruptive technology: Implications of three-dimensional printing,”
Technology & Innovation, vol. 15, no. 1, Jan. 2013, pp. 67–79. [Online].
Available: https://doi.org/10.3727/194982413x13608676060655

[26] J. Kietzmann, L. Pitt, and P. Berthon, “Disruptions, decisions, and
destinations: Enter the age of 3-d printing and additive manufacturing,”
Business Horizons, vol. 58, no. 2, 2015, pp. 209 – 215, eMERGING
ISSUES IN CRISIS MANAGEMENT. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0007681314001608

[27] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn,
“Guide to industrial control systems (ICS) security,” Tech. Rep., Jun.
2015. [Online]. Available: https://doi.org/10.6028/nist.sp.800-82r2

[28] J. T. Force and T. Initiative, “Security and privacy controls for federal
information systems and organizations,” Tech. Rep. 53, Apr. 2013.
[Online]. Available: https://doi.org/10.6028/nist.sp.800-53r4

[29] Critical Infrastructure Cybersecurity, “Framework for
improving critical infrastructure cybersecurity,” URL:
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
[accessed: 2020-06-18].

82Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 93 / 191

Experience of Video Classes Related to Mobile Development Produced by
Multidisciplinary Students Who Used the Challenge Based Learning Methodology

Andrew Diniz da Costa, Carlos José Pereira de Lucena, Hendi Lemos Coelho,
Ricardo Almeida Venieris, Gustavo Robichez Carvalho

Informatics' Department
Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil
e-mails: {acosta, lucena, guga, rvenieris}@inf.puc-rio.br,

hendi@les.inf.puc-rio.br

Abstract— In Brazil, many people cannot speak English and at
the same time there is increasing interest in learning mobile
development. Depending on the subject, it is easy to find good
video classes online in English in the form of tutorials and even
more traditional lectures from top universities. However, the
same is not true for videos in Portuguese, which are scarce and
often times poorer in quality. From that scenario, there is a
great opportunity to create video classes in Portuguese with
high quality that can impact the community interested to learn
mobile development. Aiming to help the community, this paper
presents the experience of an activity, which requested the
creation of video classes covering topics related to mobile
development from two multidisciplinary groups of students
coming from different courses at a university in South
America. These videos aimed to be short and offer direct
explanations using practical examples. That group of students
learned to develop mobile applications using the Challenge
Based Learning (CBL) methodology, which provides an
efficient and effective framework for learning while solving
real-world challenges. This experience shows how different
approaches used to present CBL impacted the creation of
videos, and how the offered activity contributed positively to
the learning of the students and the mobile community in
Brazil.

Keywords-challenge based learning; video classes;
multidisciplinary groups; mobile development.

I. INTRODUCTION

The Learning Pyramid [1][2] approach of study, also
known as “cone of learning”, developed by the National
Training Laboratory, suggests that most students only
remember 5% from traditional lectures and 10% from what
they read from textbooks. On the other hand, students retain
nearly 90% of what they learn through teaching others.
According to [1], active activities (e.g., to practice doing and
teaching other people) help to better retain contents than
passive activities (e.g., lecture and reading). Following that
idea, there are several new learning methodologies [3]-[5]
that look for a more fulfilling learning journey for students.
One of these methodologies is Challenge Based Learning
(CBL) [3] created by Apple in 2008. CBL fosters learning
while solving real-world challenges. In order to create
learning opportunities, CBL offers a framework that

motivates collaborative work among learners to identify big
ideas, ask thoughtful questions, and identify, investigate and
solve challenges. According to [3], this approach helps
students gain deep subject area knowledge and develop the
necessary skills to thrive in an ever-changing world.

This paper describes learning experiences with two
multidisciplinary groups of students, who came from
different courses (e.g., computer science, engineering, law,
design, communication etc.) from an activity which
requested the creation of video classes related to themes
about mobile development. Both groups were participating
in an educational program that taught how to develop iOS
apps [8] using CBL.

As many students did not have any previous
programming knowledge, an additional motivation was to
leave them to choose the theme for the video. However, the
requirement of being a subject related to mobile
development in some way had to be respected – examples
ranged from creation of sounds to apps to publishing an app
in the App Store. According to CBL [6], students have to be
engaged to learn something. Thus, that freedom to choose a
theme was a strategy to engage them.

Another motivation to offer such activity was to produce
content in Portuguese that could contribute to the community
interested to learn more about mobile development.
According to [7], only around 5% of Brazilians state they
have some knowledge of English. Considering that scenario,
the second requirement for the activity was that all video
classes should be in Portuguese. Beyond describing how that
activity was offered, the paper explains how it contributed to
the learning of the students, how CBL influenced the video
classes created, and which additional impacts happened from
these new contents.

This paper is organized as follows. Section II presents an
overview of the CBL methodology. Section III describes the
profile of each students group that participated in the
activity, beyond explaining how that activity was offered.
Section IV presents results collected from the activity and
discusses this data. Lastly, Section V presents the final
considerations about the work performed.

83Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 94 / 191

II. THE CHALLENGE BASED LEARNING (CBL)
METHODOLOGY

According to [6], CBL provides an efficient and effective
framework for learning while solving real-world challenges.
The framework is collaborative and hands-on, asking all
participants (students, teachers, families, and community
members) to identify big ideas, ask good questions, identify
and solve challenges, gain deep subject area knowledge,
develop 21st century skills, and share their experience with
the world.

CBL is based on the foundation of experiential learning
and is divided into three main phases [6], Engage,
Investigate, and Act, which are explained below.

 Engage. Learners move from an abstract big idea to
a concrete and actionable challenge using the
Essential Questioning process. This process allows
the generation of a variety of essential questions that
help learners to think about personal interests and
needs of the community. At the end, one essential
question should be chosen. From this question a
Challenge turns it into a call to action to learn in
detail about the subject.

 Investigate. The learners plan and participate in a
journey that builds the foundation for solutions and
addresses academic requirements. This phase begins
generating Guiding Questions (GQs) related to the
Challenge. GQs are questions that need to be
answered to allow the development of a solution.
The necessary action that allows answering some
GQs is called guiding activity (e.g., interviewing an
expert in a specific area, reading some book etc.). At
the end, learners analyze the data and consolidate the
knowledge acquired from the research.

 Act. In the Act phase, learners already have a solid
foundation to begin developing solution concepts.
After the approval of this solution concept, learners
develop prototypes, experiment and test. These
actions can contribute to raise new guiding questions
that need to be answered in the next steps to be
performed. Thus, learners can return to the
investigate phase to complete the research. After
developing their solutions, learners implement them,
measure outcomes, and reflect about the work. The
refinement of the solution can go on until learners
are satisfied.

Throughout the challenge, learners document
the experience using audio, video, and photography. This
ongoing collection of content provides the resources for
reflection, informative assessment and evidence of learning.

III. CREATION OF VIDEO CLASSES

In this section, we describe how the activity to create
video classes was offered for two groups of students. Thus,
this section is organized as follows. Subsection A presents
the profile of the participants. Subsection B describes when

and how the activity was executed with the first group, while
subsection C describes the application to the second group.

A. Participants

Both groups engaged in the activity of creating video
classes while they were part of an educational program,
which taught how to develop iOS apps. Each group
participated during two years of the program and they were
required to be dedicated 20 hours per week. Hence, that
activity was offered during two years of program.

The first group, which received the activity, had 37
students coming from different courses, as shown in Table I.
That group began their learning journey in February, 2016
and ended in December, 2017. Every week students were
mentored by four teachers (3 related to computing and 1
designer), who guided them and provided additional support
throughout their learning process.

TABLE I. GROUP 1 WITH 37 PARTICIPANTS

Courses Amount

Business 1

Chemistry Bachelor 1

Computing 16

Communication 1

Design 10

Civil Engineering 1

Electric Engineering 2

Mechanic Engineering 1

Law 1

Production Engineering 3

The second group of students had 38 people. Like the
first group, these students also came from different courses
and were mentored by the same teachers. Their participation
began in February, 2018 and ended in December, 2019.
Table II presents which courses these students came from.

TABLE II. GROUP 2 WITH 38 PARTICIPANTS

Courses Amount

Architecture 1

Business 1

Computing 16

Communication 1

Design 10

Chemistry Engineering 2

Control and Automation
Engineering

1

Mechanical Engineering 1

Production Engineering 5

B. Approach Applied to Group 1

Aiming to explain when and how the activity of creating
video classes was offered to the first group, this subsection is
structured in three parts: (i) first, it is contextualized how the
students were using the CBL methodology, before receiving

84Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 95 / 191

the activity; (ii) second, it is explained when and how the
activity was offered; and (iii) third, it is described how and
which data related to that experience were collected.

1) CBL application: When students began the program,
they were presented CBL in a lecture, which explained each
phase and the vocabulary of the methodology (e.g., big idea,
essential question, challenge, guiding questions etc.).

Before receiving the activity, students participated in
several challenges ranging from 2 weeks to 3 months. Each
challenge had different group formations, such as, free,
respecting a maximum number of members per team (3 or 4
people per group), teams with people who never worked
together before, groups pre-defined by teachers considering
the profile of the students (e.g., course and knowledge of
programming) etc. Hence, the main goals of the challenges
were: providing different learning and practical experiences,
engaging students to exchange knowledge between them,
learning technical and soft skills to be a world class iOS
developer, and enjoying their learning journey. Considering
that context, the term challenge was used to refer to the
activity of creating video classes.

In order to put students’ autonomy, proactivity, and
flexibility solving issues to test during challenges, teachers
avoided giving immediate answers to questions asked by
them. The approach adopted was to recommend resources
and ask questions that could motivate them to research and
start questioning themselves about how to find the desired
answers. These issues mapped were used by teachers to
make new lectures, which could help students by providing
additional context after having an actual experience with that
topic during the challenge.

2) Video class activity: The activity was offered to
students twice. The first time was in July, 2016 and the
second in July, 2017. The requirements of the activity
defined by teachers and presented to them were the
following.

 Choosing any theme related to mobile development;
 Validating the theme chosen with at least one

teacher;
 Creating at least one video class;
 Respecting the maximum of 10 minutes per video;
 Creating videos in Portuguese, with practical

examples, and avoiding explanations with slides
with a lot of text;

 Choosing to work alone or with some colleague;
 Creating and delivering a document that described

their CBL process was not necessary. During all
previous challenges, such document was requested
to students. Thus, that was an important difference.

Considering that one of the main goals was to contribute
to the community interested to learn more about mobile
development, a YouTube channel, called DEV PUC-Rio [9],
was created to share these videos.

In order to guarantee technical correctness and good
quality in the videos, a set of steps was followed by students
and teachers during the activity. Below, the order of these
steps is presented.

1. Teachers offered a set of resources, which students
could use to create good video classes. Examples of
resources were: links that explained how to use
video edition tools, examples of videos classes etc.

2. Students brought themes to create videos. Teachers
validated these themes 3 days after the activity was
announced. In general, the themes were accepted,
but a few cases (5 in total) of students with difficulty
in defining some theme were identified. In these
situations, teachers talked with them individually.
Aiming to help them, teachers tried to identify
passions that each student had. Next, some options
were considered together to support their final
decision.

3. Students created the first version of the video classes
in 10 days. Teachers recommended students in the
first two days to bring a script, which described the
narrative of the video(s).

4. Teachers validated the videos delivered. Each
teacher was responsible for a set of videos
considering their expertise. Thus, feedback was
written for each video content and shared with its
creator after 7 days the first version was delivered.
The main improvements identified by teachers were:
(i) adjusting the sound or image presented, (ii)
improving or correcting some explanation made,
such as including some resource that could support
it, and (iii) breaking videos in two parts, because, in
some cases, they exceeded the maximum time of 10
minutes.

5. All students produced a new version of the videos.
Teachers validated and offered feedback for each
new version created. That process was repeated until
achieving a final version for all video classes. The
time it took was more than 20 days.

6. Teachers published the validated videos on the
YouTube channel created. Thus, the community
could access them easily.

3) Gathering data: After finishing the second activity,
students received a survey with a set of questions. These
questions looked mainly to understand how the experience
with participating in both activities was, how they felt about
the learning acquired from the activity, and if the CBL
impacted the video classes created. To make students more
comfortable answering the survey, it was anonymous.
Below, there is a more detailed list with the points collected
from the survey.

1. Time spent to create each video class;
2. How the experience to create the video classes was;
3. Learning improvement related to the theme chosen;

85Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 96 / 191

4. Additional learning in topics related to video
creation skills (e.g., video edition, audio edition
etc.);

5. CBL influence on the final result achieved;
6. Opinion of the students regarding the usefulness of

the activity to their learning.

C. Approach Applied to Group 2

Following the structure presented previously, in the
current subsection we explain when and how the activity of
creating video classes was offered to the second group. Here,
the main differences are highlighted, such as how the second
group had the first contact with CBL, how the activity was
offered to them, and the approach used to gather data related
to that learning experience of students.

1) CBL application: In the beginning of the program,
students had a first contact with CBL in a challenge offered
without having any previous lecture mentioning its terms and
definitions. The main goal was to understand the
methodology from the practical experience, making the
process of understanding CBL more natural. Aiming to
engage students and relate the challenge to their lives, the big
idea (i.e., theme, area) offered was the city where they lived:
Rio de Janeiro. That challenge lasted 2 weeks, and students
had to propose something that could improve the city.
However, to propose some solution, students must first
motivate themselves for the challenge (Engage phase),
perform research (Investigate phase), and propose a solution

during a presentation (Act phase). At the end, the teachers
informed the students that the methodology applied was
CBL, and next a lecture presenting the original English terms
of the methodology was made.

Similarly to the first group (see subsection III.B), the
second one also had several challenges ranging from 2 weeks
to 3 months of duration, different group formation strategies,
mentoring with the same four teachers of the group 1, and
they had the same approach to learning that involved
motivating them to be more autonomous, proactive, and
flexible while solving issues.

Lastly, the term challenge was not used to describe the
activity to be offered. The main reason was that some
students did not perform the CBL steps that would contribute
with their learning. Thus, it was called as activity.

2) Video class activity: It was offered for the students
once in September, 2018. The requirements of the activity
and the steps adopted during its execution were the same as
the ones offered for group 1. Like the first group, all students
of group 2 also had to produce at least a second version of
each video. The necessary changes were the same identified
in group 1. At the end of the activity, the video classes were
also published in the YouTube channel created.

3) Gathering data: After the delivery of all video classes,
the same survey applied to group 1 was offered to the second
group. Thus, the survey was answered anonymously, making
students more comfortable to fill it.

TABLE III. THEMES OF VIDEOS PUBLISHED

Themes Group 1
Activity 1

Group 1
Activity 2

Group 2
Activity 1

Publishing app at AppStore 1 - -
Monetization - 2 -
Disclosure of apps - 1 -
Persistence 4 4 7
Front-end development and/or UIKit 7 10 10
Software Test or control version 1 3 -
Creative commons license - 1 -
Autolayout and/or constraint 1 1 3
Camera and/or Photos - 1 1
Architecture and /or code organization 1 2 3
Control version 1 - -
Game development 7 1 2
Approaches to login 2 - -
Concepts/paradigms of programming 2 3 1
Dependency manager 2 - -
Accelerometer and gyroscope 2 - -
watchOS 1 - -
TvOS 1 - 3
Vision or Augmented Reality - 5 2
MachineLearning and/or IA - 1 6
Sound from Garageband - - 2
Learning Approach to create an app - - 1
Other Apple Kits 2 5 5

Total: 35 40 46

86Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 97 / 191

IV. DATA COLLECTED AND DISCUSSION

In this section, data gathered from the survey applied
to the students’ groups are presented and analyzed. As
group 1 had taken part in two activities related to creation
of video classes, teachers requested from them answers
based on both experiences. If some difference was
identified, this fact would be mentioned in the survey,
which offered an additional area for comments. On the
other hand, group 2 considered only the single experience
performing the activity offered to them.

Initially, Table III categorizes themes chosen by
students and the number of videos created per category.
Notice that by activity applied, i.e., two activities for group
1 and one for group 2, “front-end development and/or
UIKit” was the theme with the highest number of videos
created. According to [11], UIKit is a framework that
provides the required infrastructure for iOS or tvOS [14]
apps. It provides the window and view architecture for
implementing interfaces, the event handling infrastructure
for delivering Multi-Touch and other types of input to
apps, and the main run loop needed to manage interactions
among the user, the system, and the app.

According to teachers, having a good number of
students producing videos related to front-end was not a
big surprise, because many of them presented high interest
about the topic since the beginning of their participation in
the program. Besides, considering that some technologies
had increased visibility over time, such as Vision [12],
Augmented Reality [13], Machine Learning and IA, such
themes also aroused great interest from the students.

Another piece of information gathered from the survey
was the time spent to create each video. Table IV shows
that more than 50% of the students per group spent more
than 5 hours creating each video. Analyzing the
information in more detail, many of them mentioned that
the process of defining the script, creating materials that
could support the videos, learning how to edit videos, were
examples of tasks which influenced the time.

TABLE IV. TIME SPENT TO CREATE EACH VIDEO.

Options Group 1 Group 2
Less than 1 hour 0 0
1 to 2 hours 1 3
2 to 5 hours 15 7
More than 5 hours 21 28

The survey also aimed at understanding how students
felt about the experience of creating video classes for other
people. Table V shows that students from group 2
considered the activity more enjoyable than students from
group 1. Analyzing comments made by students from the
first group, it was possible to identify that some of them
were not as enthusiastic about creating content as when the
first activity was introduced. That feedback was important
and influenced the decision made by teachers to run the
activity with the second group only once.

TABLE V. HOW THE EXPERIENCE TO CREATE THE VIDEO(S) WAS.

Scales Group 1 Group 2
1 (not enjoyable) 1 2
2 1 2
3 10 4
4 7 1
5 9 13
6 7 10
7 (very enjoyable) 2 6

Another important piece of information analyzed was
a self-assessment by the students considering their
knowledge level before and after the activity was
performed. From Table VI, it is possible to realize that
both groups felt learning improvements in relation to the
themes chosen. For instance, group 1 had 34 students
answering 5 or higher, and the same happened with group
2, also with 34 students.

TABLE VI. KNOWLEDGE LEVEL PER TOPIC.

Scales Before
Activity
Group 1

After
Activity
Group 1

Before
Activity
Group 2

After
Activity
Group 2

1 (none) 3 0 0 0
2 2 0 4 0
3 7 1 10 1
4 12 2 8 3
5 7 7 7 5
6 4 21 9 24
7 (expert) 2 6 0 5

As these activities were the first experience of students
creating videos, the survey also looked for mapping which
additional contents related to it, they could have learned.
Thus, Table VII shows answers considering how many
students considered to have a good learning in relation to
the following topics: storyboard, screen capture, video and
audio editing. For both groups, more than 80% of the
students confirmed to have learned at least one of these
topics mentioned. In addition, group 1 had more people
learning these topics than group 2. Analyzing more deeply
the comments offered by students and analyzing the
profile of each group, teachers identified that the second
group had more people with some previous experience
related to video creation. Thus, it probably influenced the
answers collected.

TABLE VII. NUMBER OF STUDENTS THAT AGREED TO HAVE HAD A

GOOD LEARNING RELATED TO SOME TOPICS FROM THE ACTIVITY.

Themes Group 1 Group 2
Storyboarding 3 3
Screen capture 24 12
Video edition 20 17
Audio edition 17 14

Following the idea of mapping other topics learned by
students during the activity, an additional open question
was offered to them. Thus, as the answer to that question
students could share if they had learned something else.
The results showed improvements related to development
topics (e.g., object oriented programming [16],

87Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 98 / 191

architecture and modularization [17][18]), beyond
improvements in communicating to an audience. That was
the soft-skill that was the most mentioned by the students
(more than 20% per group).

The next question was more related to the learning
methodology applied in the program the students were
participating in. It looked to understanding what influence
CBL had on the video classes created according to the
students’ perspective. Table VIII shows that a good part of
the students considered the impact of the learning
methodology minor (equal or less than 3): 23 students of
the first group and 14 students of the second group.
Aiming to better understand these answers, an additional
area in the survey was offered requesting explanations.

TABLE VIII. CBL INFLUENCING VIDEO CREATION.

Scales Group 1 Group 2
1 (strongly not influenced) 7 2
2 10 7
3 6 5
4 4 8
5 6 6
6 3 6
7 (strongly influenced) 1 4

After analyzing these answers, it was possible to
achieve some important conclusions and learned lessons,
as follows.

 According to some students from group 1, CBL
would be present if some document describing the
learning process was created. In all previous
challenges offered to group 1 such document was
requested, which could have influenced their
mindsets. From that feedback, teachers realized
they needed to improve how they presented the
idea of the methodology instead of sharing a view
that CBL depends on a formal document to be
delivered during the learning process.

 In all challenges offered previously to the students
of both groups, CBL vocabulary was used
intensively. However, when the activity to create
video classes began, these terms were not used as
often by students and teachers. That approach
should be improved.

 The activity was offered to the first group as a
challenge. However, after talking with students
and analyzing their experience, teachers realized
that some students did not follow the CBL steps,
such as deep research (Investigate phase) during
that work. To consider an activity as a challenge, it
is important to perform extensive research to help
support some solution proposal. From that,
teachers decided to no longer present the activity
as a challenge to the second group, but simply as
an activity.

 Some students, who had previous experience with
other active learning/teaching approaches (e.g.,
project based learning [15], design thinking etc.),

sometimes did not connect the steps of the CBL to
the actions that they were taking, such as to
answer the identified guiding questions. Only after
talks with teachers, students realized this. That
was an alert to improve CBL understanding.

Lastly, the survey requested the opinion of the students
if the activity offered was useful to their learning. Table IX
shows that group 2 thought it was more useful than group
1. However, almost 50% of the students (18 people) from
the first group thought it was useful (answered from 5 to
7).

TABLE IX. OPINION OF THE STUDENTS CONSIDERING THE VIDEO

ACTIVITY AS USEFUL TO THEIR LEARNING EXPERIENCE.

Scales Group 1 Group 2
1 (strongly disagree) 3 1
2 4 1
3 6 0
4 6 8
5 7 8
6 4 8
7 (strongly agree) 7 12

After the activities performed by both groups, more
than 120 videos were made available on the YouTube
channel. Besides, the channel got more than 2 thousand
subscribers, and became an additional reference to new
editions of the educational program performed in Rio de
Janeiro. When some video of the channel becomes
outdated, teachers are looking to motivate the creators or
new students to produce a new version of the video.

An interesting situation that happened with some
students who made videos was to be recognized at national
and international events of development from people, who
were subscribers of the YouTube channel. Some videos
achieved more than 10 thousand views in a few months,
being a resource that the community has been interacting a
lot with through questions and feedback.

After the participation in the program, teachers
mapped on social media students who continued creating
contents for the community (e.g., videos, papers etc.) or
participating in events related to development
(conferences, symposiums, hackathons etc.). From group
1, at least 15 people, and from group 2, at least 22 students
participated in these activities.

Having students interested in producing contents and
sharing experiences with other people, it is a way of
contributing to the learning of more people and making the
knowledge wheel spin even more.

V. CONCLUSION AND FUTURE WORKS

Aiming to contribute to the Brazilian community
interested to learn more about mobile development, this
paper described the learning experience of an activity
related to video class creation applied in two
multidisciplinary students’ groups. The videos produced
are available on a YouTube channel and focus on different
themes related to iOS development.

88Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 99 / 191

Considering that such activity was offered in an
educational program that applied CBL, it was important to
understand how students looked for the methodology and
how teachers could improve the approach to use it.

One future work intended is to propose a translation
of the CBL vocabulary, which is currently in English, into
Portuguese. Thus, many students who do not master
English will be able to learn from a CBL version using
their native language. When an immediate translation to
Portuguese is made, some of the CBL terms can be
ambiguous or misleading, as some participants of the
program report. Thus, performing a study that can gather
feedback from beginners or more advanced learners that
use CBL it a possible approach to be followed.

Another work that teachers are thinking to adopt in
the program is to identify from the very beginning which
students are interested to produce content in Portuguese.
Thus, a possible more personalized learning track related
to production of new contents could be introduced to
students. Hence, offering personalized tracks is a possible
approach to engage students to learn more contents and
maybe contribute to the learning of other people.

ACKNOWLEDGMENT

This work was supported by PPI Softex Convênio
01250.048578/2019-86.

REFERENCES

[1] A. Kybartaite, J. Nousiainen , V. Marozas, and R. Jurkonis,
“WP4: Final report: Development and testing of new e-
learning and e-teaching practices and technologies”. N.p.,
European Virtual Campus for Biomedical Engineering
(EVICAB), pp. e1584-e1593, 2007.

[2] Educationcorner, The Learning Pyramid. [Online].
Available from: https://www.educationcorner.com/the-
learning-pyramid.html [retrieved: September, 2020]..

[3] M. Nichols, K. Cator, and M. Torres, “Challenge Based
Learner User Guide”. Redwood City, CA: Digital Promise.
[Online]. Available from: https://cbl.digitalpromise.org/wp-
content/uploads/sites/7/2016/10/CBL_Guide2016.pdf
[retrieved: September, 2020].

[4] W. Hung, D. H. Jonassen, and R. Liu, “Problem-based
learning”. In the Handbook of research on educational
communications and technology (3rd ed.), Routledge, 485-
506, 2008

[5] P. K. Jha, “Modern Methods of Teaching and
Learning”. Rajat Publications, 2006.

[6] The Challenge Institute, CBL. [Online]. Available from
https://www.challengebasedlearning.org [retrieved:
September, 2020].

[7] B. Council, Learning English in Brazil: Understanding the
aims and expectations of the Brazilian emerging middle
classes. [Online.] Available from
https://www.britishcouncil.org.br/sites/default/files/learnin
g_english_in_brazil.pdf [retrieved: September, 2020].

[8] Apple Inc, iOS Overview. [Online]. Available from
https://developer.apple.com/ios/ [retrieved: September,
2020].

[9] PUC-Rio, DEV PUC-Rio channel. [Online]. Available
from
https://www.youtube.com/channel/UCWb9EHguiXaEvLc
GZiydIqA [retrieved: September, 2020].

[10] Apple Inc, Swift Language. [Online]. Available from
https://www.apple.com/ swift/ [retrieved: September,
2020].

[11] Apple Inc, UIKit Framework. [Online]. Available from
https://developer.apple.com/documentation/uikit [retrieved:
September, 2020].

[12] Apple Inc, Vision Framework. [Online]. Available from
https://developer.apple.com/documentation/vision
[retrieved: September, 2020].

[13] Apple Inc, Augmented Reality. [Online]. Available from
https://developer.apple.com/augmented-reality/ [retrieved:
September, 2020].

[14] Apple Inc, tvOS. [Online]. Available from:
https://www.apple.com/tvos [retrieved: September, 2020].

[15] J. S. Krajcik and P. C. Blumenfeld, “Project-based
learning”. In R. Sawyer (Ed.), The Cambridge Handbook of
the Learning Sciences, pp. 317-334, 2006.

[16] B. D. McLaughlin, G. Pollice, and D. West, “Head First
Object-Oriented Analysis and Design”. 1st edition,
O’Reilly Media, December 2006.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object- Oriented
Software”, Addison-Wesley Professional Computing
Series, 1994.

[18] J. Greene and J. Strawn, Design Patterns by Tutorials. First
Edition. [Online]. Available from
https://store.raywenderlich.com/products/design-patterns-
by-tutorials [retrieved: September, 2020].

[19] M. Michalko, “Thinkertoys: A Handbook of Creative-
Thinking Techniques”. Ten Speed Press, 2nd ed, June
2006.

89Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 100 / 191

Performance Comparison of Two Deep Learning Algorithms in Detecting Similarities

Between Manual Integration Test Cases

Cristina Landin˚;, Leo Hatvani§, Sahar Tahvili:§, Hugo Haggren:, Martin Längkvist;, Amy Loutfi;, Anne Håkansson¶
˚ Product Development Unit Radio, Production Test Development, Ericsson AB, Kumla, Sweden

cristina.landin@ericsson.com
:Global Artificial Intelligence Accelerator (GAIA), Ericsson AB, Stockholm, Sweden

{sahar.tahvili, hugo.haggren}@ericsson.com
;School of Science and Technology, Örebro University, Örebro, Sweden

{cristina.landin, martin.langkvist, amy.loutfi}@oru.se
§School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

leo.hatvani@mdh.se
¶School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

annehak@kth.se

Abstract—Software testing is still heavily dependent on human
judgment since a large portion of testing artifacts, such as
requirements and test cases are written in a natural text by
experts. Identifying and classifying relevant test cases in large test
suites is a challenging and also time-consuming task. Moreover,
to optimize the testing process test cases should be distinguished
based on their properties, such as their dependencies and simi-
larities. Knowing the mentioned properties at an early stage of
the testing process can be utilized for several test optimization
purposes, such as test case selection, prioritization, scheduling,
and also parallel test execution. In this paper, we apply, evaluate,
and compare the performance of two deep learning algorithms
to detect the similarities between manual integration test cases.
The feasibility of the mentioned algorithms is later examined
in a Telecom domain by analyzing the test specifications of five
different products in the product development unit at Ericsson AB
in Sweden. The empirical evaluation indicates that utilizing deep
learning algorithms for finding the similarities between manual
integration test cases can lead to outstanding results.

Keywords–Natural Language Processing; Deep Learning; Soft-
ware Testing; Semantic Analysis; Test Optimization

I. INTRODUCTION

Employing Artificial Intelligence (AI) techniques for test
optimization purposes in the industry is regarded to be ben-
eficial due to their ability to analyze the complex software
model and a large amount of generated test data [1]. One
of the principal ideas behind test optimization is to test a
subset of the test cases (in any form of test case selec-
tion, prioritization, and test suite minimization) while still
covering the requirements [2]–[5]. Parallel test execution [6]
and test execution scheduling [7] can be also considered as
promising approaches to optimizing the testing process [8].
However, while employing the aforementioned approaches,
manual work, domain knowledge, and human judgment are
still required. Due to utilizing AI technologies, such as Natu-
ral Language Processing (NLP), machine learning and deep
learning can help to reduce human effort and improve the
performance of the optimization approaches. Additionally, test
optimization has been considered as a multi-criteria optimiza-
tion problem [3], where several criteria, such as dependency

and similarity between test cases, execution time, and re-
quirement coverage are recognized as critical elements for
selecting, ranking, scheduling, or removing any test case in
the testing cycle. As stated earlier, in manual test execution,
test cases are designed and created manually, which may
result in having similar test cases that are just designed or
written differently. Finding the similarities between test cases
opens the possibility to apply the aforementioned optimization
approaches, such as parallel test execution. In fact, similar
test cases can be clustered together and executed at the same
time, in parallel with other test cases. Knowing the similarities
between test cases at an early stage of a testing process can
help us execute test cases more efficiently and directly, thus
reducing costs and time [6] [9]. In this paper, we apply two
deep learning algorithms for finding the similarities between
manual integration test cases that are designed for testing five
different products at Ericsson AB. Later, similar test cases are
clustered and proposed for execution in parallel. This paper
makes the following contribution:

‚ Applying and comparing the performance of two deep
learning algorithms, finding the similarities between
manual integration test cases against labeled data con-
ducted from the so-called subject matter experts (SME).

‚ Clustering similar test cases and scheduling them for
parallel test execution.

Moreover, the proposed approach in this paper is utilized to
develop our previous work [6], for the similarity threshold cal-
culation. The organization of this paper is as follows: Section II
provides a background and problem statement. Section III
presents an overview of research on NLP in the testing domain.
Section IV describes the proposed approach in this paper. An
industrial case study laid out in Section V. Section VI analyzes
the performance between the utilized deep learning algorithms
is compared against the labeled data. Threats to validity
and delimitations are discussed in Section VII. Section VIII
clarifies some points of future directions of the present work
and finally, Section IX concludes the paper.

90Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 101 / 191

TABLE I. TWO EXAMPLES OF SIMILAR AND NON-SIMILAR TEST CASES. TCi,j , WHERE TC STANDS FOR A TEST CASE, i IS THE TEST CASE NUMBER AND j
IS THE PRODUCT NAME. THE HIGHLIGHTED WORDS ARE IMPORTANT WORDS FOR COMPARISON BETWEEN TEXTS.

Annotation Test case specification
Similar TC1,A: This test case will measure the current value of LED 1. Start by supplying 2.4 V into Pin 2 to the FPGA G1 and read the output of Pin 5. Pass

criteria is 10 mA. Save the result in database 1.
TC2,B : Measure the current across LED 2. Supply 2.4 V into Pin 2 to the FPGA G2 and read the output of Pin 5. Pass criteria is 15 mA. Save the result
in db 2.

Non-Similar TC1,A: This test case will measure the current value of LED 1. Start by supplying 2.4 V into Pin 2 to the FPGA G1 and read the output of Pin 5. Pass
criteria is 10 mA. Save the result in database 1.
TC3,B : This test case will measure the voltage of LED 1. Supply 10 V to the input T1 and measure the voltage in T2. Compare the results with the
calculated and save the result in database 1.

II. BACKGROUND

Ericsson AB is one of the leading providers of Information
and Communication Technology (ICT) and has, among many
units, a business unit network, which produces the latest
technology in Radio Base Stations (RBS). An RBS is a radio
transceiver used in wireless communication. Figure 1 shows a
block diagram of an RBS, where the transmitter and receiver
are the radio parts and the digital control supplies and receives
the digital signals to both transmitter and receiver.

Transmitter

Receiver

Power supply
and digital control

Circulator

Antenna

öööö
2n:i/o ports

Radio Base Station (RBS)

Figure 1. A block diagram of a simplified version of a Radio Base Station 2n

is the number of ports.

The power supply powers the RBS and its specification
depends on the target market (e.g., USA, Europe, and Asia).
Because both receiver and transmitter contain analog devices,
these parts must be calibrated and tested at the device level and
unit level together with the antenna. The number of ports to be
tested in production is 2n, pn “ 1, 2, 3, ...q and each port may
be tested separately. A circulator is a simplified version of the
design, which only allows the signal to go one direction and
not vice versa to protect the internal components. Among all
faced challenges the new generation of RBSs are bringing into
test and production, the test capacity and the long run-time of
each test process can be considered as the main two challenges.
The increase in functionality and the number of features (e.g.,
emerging technologies) that the new generation of products
needs to cover aggravate the complexity of the RBS design.
Although the design is more complex, the RBS still has to
be tested to follow international standards, e.g., 3GPP, FCC,
IEC, UL. These standards specify the technical protocols and
requirements for mobile communication systems. The above-
mentioned factors have resulted in the more complex testing
process which increases the required number of test cases that
need to be tested. Executing all generated test cases for testing
an RBS without any specific order could lead to the waste

of testing resources and time. Equation (1) indicates the total
testing time, T , when the test cases are executed sequentially.
Because of the RBS complex design, such as the number of
ports, 2n, and the number of technologies to cover, h, the total
test time increases exponentially and linearly respectively. ti
represents the test time to run each test case and m is the total
number of test cases.

T “ h ˚ 2n ˚
m
ÿ

i“1

ti (1)

Hereof parallel test execution has been considered as a po-
tential solution to optimize the integration testing process at
Ericsson. Moreover, the saving time (ST) using parallel test
execution for similar test cases can be calculated as:

ST “
pnp´ 1q

np
ˆ 100 (2)

where np is the number of test cases with the same system
setup. We define the concept of two similar test cases in this
paper as:

Definition 1. Test case TC1 and TC2 are similar if only if
they are designed to test the same functionality or they have
the same preconditions, execution requirements (installation),
system setup.

In other words, if two or more test cases are semantically
similar, they might be designed to test the same functionality
or require the same system setup or pre-condition. Examples
of similar and non-similar test cases are shown in Table I,
where LED is Light Emitting Diode and FPGA stands for
Field-Programmable Gate Array. They give a glimpse of how
the test cases are described in natural language and their
pre-requisites. Although parallel test execution is a promising
approach for time and resource-saving, however, there are
some assumptions that need to be satisfied. For instance,
there are no dependencies between test cases and there are
enough available test stations to execute test cases simul-
taneously. In fact, utilizing (2) (in one example scenario)
means that the system setup or installation effort needs to
be performed once for product A where np ´ 1 products
can be executed after product A on the same test station.
Since the designed test cases for testing RBSs are written in a
non-formal language, employing NLP techniques for semantic
analysis might provide some clues to detecting the similarities
between test cases. Furthermore, similar test cases can be
grouped into several clusters based on their semantic text
similarities. On the other hand, finding the similarities between
text cases manually requires human work where the testers
need to go through the test case descriptions and comparing

91Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 102 / 191

them with each other. However, analyzing a large number of
test cases manually is a time-consuming process and suffers
from ambiguity and uncertainty. Consequently, employing AI
algorithms with a combination of human supervision can be
considered as a promising approach, where the knowledge of
the testers can be captured during the learning process. In
addition, the use of NLP techniques can help test engineers to
extract relevant information in a large document automatically
and thereby distinguishing test cases from each other. Usually,
test engineers use different terminologies and the quality of
a test case specification is dependent on the test engineers’
knowledge, experience, and skill. Therefore, it is crucial to
find a proper NLP algorithm to meet the goal. In this regard,
we decide to compare the performance of two deep learning
algorithms to detect the similarities between test cases and
comparing the performance of them against the labeled data
conducted by SMEs at Ericsson. Deep learning algorithms for
NLP have a high tolerance to noisy data and they are able
to classify patterns on which they have not been trained [10],
[11].

III. RELATED WORK

There have been several techniques proposed for the cru-
cial step of test optimization. The proposed strategies vary
depending on the industrial product, development method,
complexity of the models, and data availability and reliability
[12]. The overall aim of test optimization is to minimize the
required testing time by detecting failed test cases as early as
possible. Since the duration and relevancy vary between test
cases, the testing time can be reduced by test case selection,
prioritization, minimization, and test execution scheduling. The
proposed test case prioritization by Nardo et al. [13] uses
a coverage-based method that prioritizes test cases with the
most recent code changes. This strategy is suitable for software
development practice, such as Continuous Integration (CI) [14]
[15] [9] where the components are regularly implemented and
tested during the development process. Fowler and Foem-
mel [16] propose an information retrieval approach for detect-
ing code changes that are used for regression test prioritization.
For full system testing [17] or when tracking of code changes is
unavailable, history-based test prioritization has been proposed
by several researchers [18], [19] for prioritizing test cases that
have failed more frequently in the past. Spieker et al. [20] pro-
pose an adaptive reinforcement learning approach for history-
based test case prioritization and selection that learns to rank
test cases based on their duration, previous last execution,
and failure history. One of the disadvantages of learning-
based approaches is that it requires a history of executed test
cases and the learning process needs to be repeated for any
new product. Test case selection and prioritization based on
human-designed test cases have the advantage of evaluating
the test cases before they are even executed. Previously [6]
used the Levenshtein distance to detect the similarity between
each pair of test cases (which were designed to test five
different products at Ericsson AB) to detect the similarities
between them. The test case pairs were clustered into four
groups (identical, very similar, similar, and partially similar)
ranked for parallel test execution. The threshold for each of
the mentioned groups in [6] is assigned manually using the
subject matter expert (SME) experience. The NLP technique
that was used in [6] did not take into account the order of

the words in a test specification, which can be a disadvantage,
considering how specific a procedure of each test case must
be implemented. Using NLP techniques has received a great
deal of attention in different domains, such as social network
analysis [21]. NLP has also been studied to find sentiment
analysis [22] and to find semantic and syntactic similarities
in large context [23], where the training complexity can be
considered as an important aspect. Moreover, using deep learn-
ing for natural language analysis has been a focus since the
year 2000. Young et.al [24] discuss the recent trends in deep
learning on NLP tasks. For learning word representations, Le
and Mikolov [25] introduced a new method called Word2vec
that finds semantic similarities between paragraphs taking into
account the order and semantic context of the vectors (not
only limited to a sentence or a fixed length of text), in order
to predict words based on the content of the paragraphs.
Patil et al. [26] use the Word2vec algorithm as inputs to
the Convolutional Neural Network (CNN) to classify binary
and multi-class document categorization. Although CNN is
effective in finding semantic similarities, it has problems to
preserve sequential order and model long-distance dependen-
cies. Moreover, Tahvili et al. [27] [28] employed the Doc2vec
algorithm (which is an extension of Word2vec) for finding the
functional dependencies between manual integration test cases
at Bombardier transportation.
In the present study, we aim to compare the performance
of two well-known deep learning algorithms, Doc2vec and
Sentence Bidirectional Encoder Representations from Trans-
formers (SBERT), in a set of labeled data from five RBSs
from Ericsson AB. Moreover, the similarity threshold which
has been assumed manually in [6] can now be automatically
computed though comparing the utilized edit distance approach
with the deep learning algorithms.

IV. PROPOSED APPROACH

The proposed approach in this paper is mirrored in Fig-
ure 2. The manual test cases are the input to our model. In step
1 (Similarity Analysis) in Figure 2, the similarities between
test cases are detected by employing deep learning algorithms,
such as Doc2vec and SBERT. Applying deep learning models
for semantic analysis provides a set of high dimensional
vectors, where each vector represents a test case. To split
test cases (step 2 in Figure 2) a clustering algorithm needs
to be utilized which can handle high dimensional data points.
Finally, since the main application of the proposed approach in
Figure 2 is to test efficiency, similar test cases can be scheduled
for test execution, e.g., parallel test execution. We need to
consider that, the proposed approach in Figure 2 is not just
limited to the mentioned algorithms, where other approaches,
such as edit distance, string matching, and text classification
can be utilized as well. Later in this paper, we provide
more information regarding employing other techniques for
both Similarity Analysis and Splitting Test Cases steps in
Figure 2. Furthermore, in the upcoming subsections, more
details are provided for the utilized algorithms for each step.

A. Doc2vec

Deep learning algorithms use representation learning to
learn the data representation instead of using manually hand-
crafted features [29]. Doc2vec is a deep neural networks-based

92Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 103 / 191

Test Cases Deep Learning Clustering Scheduling test cases
for parallel test execution

Inputs Similarity Analysis1 Splitting Test Cases2 Outputs

Figure 2. The block diagram of the proposed approach.

algorithm that generates a vector representation for a word,
paragraph, or document [25]. Doc2vec represents a non-fixed
length document into a vector. Besides, it concatenates each
word of the document. Figure 3 shows a representation of the
structure of the Doc2vec algorithm to predict the next word.
For instance, W3 based on the sentence rW1`W2s. Producing
in this way two vectors, one vector for the document, called D
and one vector for the words called W . One important facility
of this algorithm is to keep the words’ properties and the
relations between words and semantics of the whole document.

On

D W1 W2 W3

Classifier

Concatenate

Paragraph vector Word vector

Figure 3. A representation of the Doc2vec algorithm to predict a word, based
on the semantics of the sentence.

In fact, each paragraph will have an ID represented in
paragraph vector D, and the words are represented in the word
vector W . They will concatenate to predict the next word of
the sentence.

B. SBERT

SBERT is an algorithm in the domain of NLP, which is
designed to pre-train deep bidirectional representations from
an unlabeled text [30]. SBERT is a modified version of BERT
[31] that jointly conditions on both left and right context in
all the layers. Reimers and Gurevych [32] developed sentence
embedding based on Euclidian distance which allows finding
semantic similarities in sentences and is suitable for clustering
and information retrieval purposes. Furthermore, SBERT is
computationally more efficient than the heavy and complex
BERT. Figure 4 shows the structure of SBERT to compute
similarity scores. SBERT adds a pooling operation to the
output of BERT and computes the cosine-similarity between
sentence embeddings u and v. The pooling operation is to
derive a fixed-sized sentence embedding.

The pooling operation is added after BERT to give the same
size to the sentence embeddings, u, and v. After this step, the
similarities are computed using cosine-distance.

C. HDBSCAN

For the clustering part of the proposed approach in this pa-
per, we propose to use the Hierarchical Density-Based Spatial

u

pooling

BERT

v

pooling

BERT

cosine-sim (u,v)

1 . . . 1

Sentence A Sentence B

Figure 4. The architecture of the SBERT algorithm which is designed to
compute similarity scores between sentences.

Clustering of Applications with Noise (HDBSCAN), which
is a density-based clustering algorithm based on a hierarchi-
cal density estimate [33]. HDBSCAN generates a simplified
hierarchy and extracts the most significant clusters. Using
HDBSCAN has two main advantages: 1-HDBSCAN is able
to clusters the high dimensional data point without employing
any dimension reduction technique (e.g., Principal Component
Analysis (PCA)), 2-HDBSCAN provides a cluster of non-
clusterable data points which can be interpreted as noises,
outliers or anomalies. In this paper, the non-clusterable data
points are considered as non-similar test cases. However, if
the high dimensional data is projected onto a lower dimension
space (using a technique like PCA), other standard clustering
techniques can be employed instead of HDBSCAN.

V. INDUSTRIAL CASE STUDY

The provided industrial case study in this work follows the
proposed guidelines for conducting and reporting case study
research in software engineering by Runeson and Höst [34] and
specifically the way guidelines are followed in [35] and [3],
[36]. Hereof, five multi-standard RBSs compatible with their
respective number of test cases are utilized as a case under
study.

A. Unit of analysis and procedure

The test specifications of five products of the 4th Generation
(4G) RBS are our dataset, which includes 444 test cases in
total. The utilized test cases are written in natural language
text and by the SME at Ericsson. As illustrated in Figure 2
our approach aims to cluster similar test cases and also
provide a cluster of non-similar test cases. Table I provides
two real industrial examples of similar and non-similar test
cases. However, using human knowledge and judgment for the
similarity analysis is a time and resource-consuming process

93Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 104 / 191

(a) The clustered test case using the generated vectors by the SBERT. (b) The clustered test case using the generated vectors by the Doc2vec.

Figure 5. The clustered test cases using HDBSCAN algorithm on the generated vectors by two deep learning algorithms. There are 75 and 76 clusters plotted
in different colors for SBERT and Doc2vec respectively. The outliers are shown in gray.

and it might suffer from ambiguity and uncertainty. Therefore,
employing AI techniques for similarity analysis and thereby
clustering purposes is critical in large industries.

B. Experimental Setup

SBERT provides the option to train a new model or to use
a pre-trained model to convert test cases to feature vectors.
As our dataset is rather small and built out of test cases
written in English, we are able to use a pre-made BERT-
base model with mean-tokens pooling, bert-base-nli-mean-
tokens, obtainable from the SBERT repository [37]. We have
not made any customizations to the code and thus the result
is a feature vector with 768 features for each of the 444
observed test cases. The employed implementation of the
SBERT produces consistent results between different runs. For
the Doc2vec approach to feature vector generation, we have
used the Gensim [38] implementation. For this approach, we
have used the following parameters: feature vector size of 100,
min word count for dictionary inclusion of 1, and 100 training
epochs. Gensim approach is based on training a new neural
network every iteration and thus can produce various results
depending on the input parameters and a random initial value.
To estimate the impact of these parameters, we varied them
within reasonable ranges across 150 iterations and found that
the largest standard deviation from the results presented in this
paper is 0.08 across all of the measures presented in Table III.

The generated feature vectors are then clustered using the
standard implementation of the HDBSCAN algorithm using
the default clustering values with distances being computed
as cosine distances between feature vectors. Pairs of test
cases from the labeled data are then compared against the
clusters to obtain the confusion matrix from which precision,
recall, and F1 score are calculated. Further details about the
implementation of the HDBSCAN algorithm are available at
[39].

VI. RESULT

Figure 5 shows the clustered test cases using the HDB-
SCAN, each color represents a unique cluster of test cases
which are being considered as semantic similar by Doc2vec
and SBERT algorithms. Figure 5a illustrates the obtained
clusters using the provided vectors by SBERT, where the
number of obtained clusters is equal to 75. Figure 5b shows the
clusters where HDBSCAN used the generated vectors provided
by Doc2vec, the number of obtained clusters is equal to 76.
The t-SNE is used to plot the results after the clustering
done by HDBSCAN. Both results are expected due to the
properties of the dataset and resemble the SME’s criteria. We
need to consider that the size of each cluster is different for
the Doc2vec and SBERT. Moreover, using HDBSCAN can
help us to have a cluster of non-clusterable data points, which
indicates to non-similar test cases in this study.

A. Model Performance Evaluation

Table II summarizes the cluster size and the obtained non-
clusterable data points. The entire results and implementation
source are available at [40]. In order to compare the perfor-
mance of the employed deep learning algorithms against the
labeled data, 402 out of 444 test cases manually labeled by the
SME at Ericsson, wherein in total we received labels for 211
similar and 191 non-similar test cases. Test cases similarity
detection might suffer the class imbalance problem when the
class distributions (similar and non-similar) are imbalanced.
Therefore, selecting a suitable performance metrics is critical
and also influences the measured performance of a model [41].
To evaluate the performance of the proposed approach in this
paper, precision, recall, and F1 score are measured instead of
accuracy. F1 score conveys the balance between the precision
and the recall, which is a suitable metric for the imbalance
problems, shown in (3).

F1 score “ 2ˆ
PrecisionˆRecall

Precision`Recall
(3)

94Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 105 / 191

TABLE II. THE NUMBER OF CLUSTERS, CLUSTER SIZE, AND THE NUM-
BER OF NON-CLUSTERABLE DATA POINTS USING DOC2VEC, SBERT, AND
HDBSCAN.

Cluster Size

Cluster Number Doc2vec SBERT

Cluster 1 5 3
Cluster 2 5 5
Cluster 3 7 3

...
Cluster 75 3 2
Cluster 76 5 0
Non-clusterable 132 133

Table III summarizes the evaluation of the obtained results,
using precision, recall, and F1 score.

TABLE III. THE PERFORMANCE COMPARISON OF DOC2VEC AND SBERT
AGAINST THE LABELED DATA PROVIDED BY THE SME.

Similar Non-similar

Algorithm Precision Recall F1 score Precision Recall F1 score

Doc2vec 0.952 0.943 0.947 0.937 0.947 0.942
SBERT 0.946 0.834 0.886 0.837 0.947 0.889

As can be seen in Table III, the F1 score for Doc2vec is
0.947 and 0.942 for similar and non-similar, respectively. The
obtained F1 score for SBERT is about 0.89, which indicates
a good overall performance as well but not as good as that
of Doc2vec. Moreover, the presented clusters in Figure 5 and
Table II can be utilized for parallel test execution and also test
suite reduction. For parallel test execution, each cluster (which
contains several test cases) can be scheduled for execution
simultaneously. As mentioned before, if two test cases are
similar in their test specifications they might be designed
for testing the same functionality or they required the same
precondition, i.e. in system setup. Using the presented results
in Table II for instance for the Doc2vec algorithm, we have 5
test cases (distributed between five different products) which
are grouped into cluster 1. There are two different scenarios
in this case. 1-The mentioned five test cases are designed to
test a common function between five different products. In
this scenario, executing all five mentioned test cases leads to
this function will be tested fully before we are scheduling
another function for the testing. All other presented clusters
in Table II can be executed parallel on the other test stations,
while cluster 1 is executed completely. 2-The mentioned five
test cases in cluster 1 are required the same installation effort.
Thus the testing environment needs to be configured once
for just one test case inside of cluster 1 and all other four
test cases can be executed after each other on the same test
station. Using 2 can help us to measure the saving time for this
scenario. On the other hand, selecting just one test candidate
from each cluster for execution can be utilized for the test
suite reduction purposes. Furthermore, the non-clusterable data
points presented in Table II indicate the non-similar test cases
which can be executed sequentially before or after other similar
test cases.

B. The Similarity Threshold Calculation

Previously [6], the test cases were classified into several
classes (e.g., identical, very similar, similar) based on their
Levenshtein distance and the similarity threshold, which was
set manually using the SME’s experience. In this regard, the
similarity threshold is selected as 0.8 ď LD ď 1, where 0.8
is the desired lower limit for the similarity of two test cases.
Moreover, a Levenshtein distance equal to 1 represents two
identical test cases and a Levenshtein distance lower than 0.8
represents non-similar test cases. Finding an optimal similarity
threshold is beneficial in terms of reducing human judgment.
It can also be utilized for identifying the first distance that test
cases are started to be similar to each other. In this study,
an automatic threshold detection approach (see Threshold
Detection21 in Figure 6) is applied through measuring the
Levenshtein distance between the vectors (which belong to
the same cluster) generated by the deep learning models. The
second contribution of this paper is to find the similarity
threshold to delimit between similar and non-similar test cases
using The Levenshtein distance in our previous work [6].
The Levenshtein distance is measured between all test cases
that have been clustered as similar by HDBSCAN. Table IV
presents The sum of the averages Levenshtein distance per
cluster. In fact, the Levenshtein distance between each test
case, which ended up into the same clustered, is measured. As
can be seen, the mean value of the Levenshtein distances is
equal to 0.69 and 0.64 for Doc2vec and SBERT respectively.

TABLE IV. THE SIMILARITY THRESHOLD CALCULATION USING DEEP
LEARNING ALGORITHMS (DOC2VEC AND SBERT) AND CLUSTERED RE-
SULTS (HDBSCAN) BASED ON LEVENSHTEIN DISTANCE.

Algorithm Doc2vec SBERT
Number of clusters 76 75

The sum of the averages Levenshtein distance per cluster 0.69 0.64

This result indicates that test cases can already be consid-
ered similar if their Levenshtein distance is equal or greater
than 0.64 for SBERT and 0.68 for Doc2vec respectively. This
improves the results found in [6], where the lowest boundary of
similarity was assumed 0.8 in close consultation with SMEs at
Ericsson. Moreover, these performance measures in this study
are an improvement to the edit distance approach which used
by us previously [6]. The F1 score of 0.61 using Levenshtein
distance obtained utilizing the same dataset. According to the
presented result in Table III, Doc2vec has a better performance
compared to both SBERT and significantly better than Leven-
shtein distance on this application.

VII. THREATS TO VALIDITY

There are some risks in applying the proposed approaches
in this paper. Infrastructure, enough available testing stations,
and resource limitation can be considered as the major con-
struct validity threat to the parallel test execution. For applying
the proposed approach in this study, we need to have several
available test stations for testing each product parallel with
others. The coming technologies as 5G will only enlarge those
challenges due to the increase in the number of elements i.e.
the number of ports, making this solution a necessity. Using
the test specifications for finding the similarities between test

95Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 106 / 191

Test Cases Deep Learning Clustering Scheduling test cases
for parallel test execution

Edit Distance Classification

Inputs Similarity Analysis1 Splitting Test Cases2 Outputs

Threshold Detection21

Figure 6. The similarity threshold calculation for the Edit distance approach using the clustering results. The lower part of the diagram shows the approach used
previously in [6].

cases might be sensitive in terms of changing a single character
in the test. For instance, TC1,A in Table I, the change of
only one character in the pass criteria from 10mA to 100mA
could affect much in the measurement results of a LED,
which could result in a broken component. However, deep
learning algorithms are more stable to the character changing
compare to the edit distance and string matching approaches.
The proposed approach in this paper has been applied on just
one industrial testing project in the Telecom domain, however,
it should be applicable to other similar contexts in other testing
domains. Nevertheless, we cannot claim that the proposed
approach in this paper works well in all fields where precision
is a very important variable, e.g., medicine, chemistry, and
electronics. Furthermore, the labeled data, which has been used
for the performance evaluation was conducted manually by the
testing expert at Ericsson and it might suffer from uncertainty.
Therefore, another type of ground truth needs to be conducted
in order to generalize the proposed approach in this study.
Finally despite deep learning and word embedding approaches
being interesting, one cannot exclude that traditional rule-
based methods may also be applicable and sometimes result
in better performance than the latest deep learning methods,
which depend on the application. In our case, rules are given
by the specialist in the area which could give more importance
to specific sections on the test case description to find better
insights and extract relevant features before clustering.

VIII. DISCUSSION AND FUTURE WORK

The main goal of this study is to compare the performance
of two deep learning algorithms on an industrial case study. To
this end, we make the following contributions: 1-Doc2vec and
SBERT have been employed to detect the similarities between
manual integration test cases automatically. The similarities
have been extracted by analyzing test case specifications
written in a non-formal natural language. 2-The evaluation
of the proposed algorithms was performed by conducting an
industrial testing project in the Telecom domain at Ericsson in
Sweden. 3-The performance of the Doc2vec and SBERT was
compared against the labeled data using SME knowledge at Er-
icsson. The obtained results show the outstanding performance
of the mentioned deep learning algorithms on the conducted
industrial case study. 4-The performance of the Doc2vec and
SBERT was compared against our previous work [6] where the
Levenshtein distance was utilized for the similarity detection
on the same dataset. The obtained results indicate that the
lowest boundary of similarity using Levenshtein distance can
go down to 0.64 compared to 0.8, which was the empirical
value used previously in [6] by the SME.

A. Future Work

The main future direction of this paper is employing other
text analysis approaches such as edit distance and string match-
ing for similarity detection. In fact, the mentioned approaches
in Figure 6 can be extended to all existing text mining methods.
Other clustering and classification algorithms can be adopted to
Figure 6. As stated earlier, using data dimensionality reduction
techniques, e.g., random forests, PCA and thereby applying
other standard clustering techniques (e.g., k-means) might
provide better results compared to HDBSCAN. Moreover,
conducting a larger case study and comparing the performance
of all text mining methods, which are applicable for similarity
analysis, can provide a clue for finding the best method in
terms of accuracy and execution time. Generally, running
a deep learning or neural network algorithm requires more
time compared to the other text-mining algorithm, which has
a less complex structure. Developing the utilized algorithms
of this study as a tool that can handle even larger sets of
test specifications is one of the future directions. Despite the
fact that the results found in this paper using deep learning
algorithms are promising, they are entirely based on one
dataset within a specific domain i.e. five fourth-generation
(4G) RBSs. We aim to test this approach in other datasets and
domains thus, in this way it can be generalized and transfer to
other products, e.g., fifth-generation (5G) RBSs or even future
generations of RBSs. Furthermore, we are aiming to verify
the robustness of the tool. For this purpose, a long time study
is needed within production, which will secure this tool to
be scalable and compatible with different platforms proper
of old and new technologies. A question left to answer is
whether these deep learning approaches are better than the
traditional rule-based methods for this application. Usually,
the traditional rule-based methods are hand-crafted and require
field knowledge, which may not be a disadvantage in very
complicated industrial applications. Although we can see many
potential improvements to the traditional rule-based methods,
a formal comparison of those methods and deep learning
methods is worth investigating.

IX. CONCLUSION

Parallel test execution plays a vital role in test optimization
and can lead to saving time and cost in a testing process. In this
paper, two deep learning algorithms (Doc2vec and SBERT) are
applied and evaluated to find the semantic similarities between
manual integration test cases for test optimization. The ob-
tained results indicate that Doc2vec shows better performance
(F1 score=0.947 for the similar test cases and F1 score=0.942
for non-similar test cases) compare to SBERT (F1 score=0.886

96Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 107 / 191

for the similar test cases and F1 score=0.889) when it evaluated
against the labeled data. This conclusion opens possibilities to
use the method for parallel testing and test suite minimization.

ACKNOWLEDGMENT

This work has been supported by the Swedish Knowledge
Foundation (KKS) and VINNOVA through CoAIRob industrial
research school and the TESTOMAT project respectively.

REFERENCES

[1] S. Khan and T. Yairi, “A review on the application of deep learning in
system health management,” Mechanical Systems and Signal Process-
ing, vol. 107, pp. 241–265, 2018.

[2] R. Ducloux, L. Fourment, S. Marie, and D. Monnereau, “Automatic
optimization techniques applied to a large range of industrial test cases,”
Int. Journal of Material Forming, vol. 3, no. 1, pp. 53–56, 2010.

[3] S. Tahvili, “Multi-criteria optimization of system integration testing,”
Ph.D. dissertation, Mälardalen University, December 2018.

[4] S. Tahvili et al., “Dynamic Integration Test Selection Based on Test
Case Dependencies,” in The 11th Workshop on Testing: Academia-
Industry Collaboration, Practice and Research Techniques, 2016.

[5] S. Tahvili et al., “Towards earlier fault detection by value-driven
prioritization of test cases using fuzzy topsis,” in The 13th Int. Conf.
on Information Technology: New Generations, 2016, pp. 745–759.

[6] C. Landin et al., “Cluster-based parallel testing using semantic analysis,”
in 2020 IEEE International Conference on Artificial Intelligence Testing
(AITest), 2020, pp. 99–106.

[7] S. Tahvili et al., “sortes: A supportive tool for stochastic scheduling of
manual integration test cases,” Journal of IEEE Access, pp. 1–19, 2019.

[8] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritiza-
tion: An empirical study,” in Proceedings IEEE International Confer-
ence on Software Maintenance-1999 (ICSM’99).’Software Maintenance
for Business Change’(Cat. No. 99CB36360). IEEE, 1999, pp. 179–188.

[9] S. Tahvili et al., “Cost-benefit analysis of using dependency knowledge
at integration testing,” in The 17th Int. Conf. On Product-Focused
Software Process Improvement, 2016, pp. 268–284.

[10] T. Khuat and B. Gabrys, “A comparative study of general fuzzy min-
max neural networks for pattern classification problems,” Neurocom-
puting, vol. 386, pp. 110 – 125, 2020.

[11] O. Engström, S. Tahvili, A. Muhammad, F. Yaghoubi, and L. Pel-
laco, “Performance analysis of deep anomaly detection algorithms for
commercial microwave link attenuation,” in The 2020 International
Conference on Advanced Computer Science and Information Systems,
October 2020.

[12] A. Petrenko, A. Dury, S. Ramesh, and S. Mohalik, “A method and
tool for test optimization for automotive controllers,” in 2013 IEEE
Sixth International Conference on Software Testing, Verification and
Validation Workshops, 2013, pp. 198–207.

[13] D. Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based regression test case selection, minimization and prioritization:
A case study on an industrial system,” Software Testing, Verification
and Reliability, vol. 25, no. 4, pp. 371–396, 2015.

[14] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[15] M. Fowler and M. Foemmel, “Continuous integration,” 2006, [Online].
Available from: https://martinfowler.com/articles/continuousIntegration/
2020.09.02.

[16] R. Saha, L. Zhang, S. Khurshid, and D. Perry, “An information retrieval
approach for regression test prioritization based on program changes,”
in IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, vol. 1, 2015, pp. 268–279.

[17] A. Dias, R. Subramanyan, M. Vieira, and G. Travassos, “A survey on
model-based testing approaches: a systematic review,” in Proceedings
of the int. work. on Empirical assessment of software engineering
languages and technologies, 2007, p. 31–36.

[18] J. Kim and A. Porter, “A history-based test prioritization technique for
regression testing in resource constrained environments,” in Proceedings
of Int. Conf. on Software Engineering, 2002, pp. 119–129.

[19] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in Int. Conf.
on Software Maintenance, 2013.

[20] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of Int. Symp. on Software Testing and
Analysis, 2017.

[21] A. Sarlan, C. Nadam, and S. Basri, “Twitter sentiment analysis,” in Int.
conf. on Information Technology and Multimedia, 2014.

[22] P. Sanguansat, “Paragraph2vec-based sentiment analysis on social media
for business in thailand,” in Int. Conf. on Knowledge and Smart
Technology (KST), 2016.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[24] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” 2017.

[25] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Int. conf. on machine learning, 2014.

[26] S. Patil, A. Gune, and M. Nene, “Convolutional neural networks for text
categorization with latent semantic analysis,” in Int. Conf. on Energy,
Communication, Data Analytics and Soft Computing, 2017.

[27] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, and M. Bohlin, “Au-
tomated functional dependency detection between test cases using
doc2vec and clustering,” in Int. Conf. On Artificial Intelligence Testing,
2019.

[28] S. Tahvili et al., “Cluster-based test scheduling strategies using semantic
relationships between test specifications,” in Int. Work. on Requirements
Engineering and Testing, 2018.

[29] D. Erhan et al., “Why does unsupervised pre-training help deep learn-
ing?” J. Mach. Learn. Res., vol. 11, p. 625–660, 2010.

[30] J. Lee et al., “BioBERT: a pre-trained biomedical language represen-
tation model for biomedical text mining,” Bioinformatics, no. 4, pp.
1234–1240, 2019.

[31] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Conf.
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2019.

[32] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Conf. on Empirical Methods in Natural
Language Processing, 2019.

[33] R. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Advances in Knowledge
Discovery and Data Mining, 2013.

[34] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[35] E. Engström and P. Runeson, “Decision support for test management
and scope selection in a software product line context,” in Int. Conf. on
Software Testing, Verification and Validation Workshops, 2011.

[36] S. Tahvili, L. Hatvani, E. Ramentol, R. Pimentel, W. Afzal, and
F. Herrera, “A novel methodology to classify test cases using natural
language processing and imbalanced learning,” Engineering Applica-
tions of Artificial Intelligence, vol. 95, pp. 1–13, August 2020.

[37] “Sbert source code and model repository,” [Online]. Available from:
http://github.com/UKPLab/sentence-transformers/ 2020.09.01.

[38] R. Rehurek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in LREC Work. on New Challenges for NLP
Frameworks, 2010.

[39] “Hdbscan source code and model repository,” [Online]. Available from
github.com/scikit-learn-contrib/hdbscan/ 2020.09.01.

[40] “Model performance evaluation,” [Online]. Available from:
http://github.com/leohatvani/landin-performance-comparison/
2020.09.01.

[41] Z. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal thresholding
of classifiers to maximize f1 measure,” in Machine Learning and
Knowledge Discovery in Databases, 2014.

97Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 108 / 191

UML-based Model-Driven Code Generation of Error Detection Mechanisms

Lars Huning

Institute of Computer Science
University of Osnabrück

49069 Osnabrück, Germany
Email: lhuning@uos.de

Padma Iyenghar

Institute of Computer Science
University of Osnabrück

49069 Osnabrück, Germany
Email: piyengha@uos.de

Elke Pulvermüller

Institute of Computer Science
University of Osnabrück

49069 Osnabrück, Germany
Email: epulverm@uos.de

Abstract—The complexity of safety-critical embedded systems
increases as more and more functions are realized in software. In
order to deal with this rising complexity and still achieve a high-
level of software quality, Model-Driven Development (MDD) is in-
creasingly adopted in the industry. This paper proposes an MDD
approach based on the Unified Modeling Language (UML) in
order to automatically generate code for selected error detection
mechanisms recommended by the safety standard IEC-61508.
Thereby, we provide developers with a generative and automated
approach for the software design and implementation of these
error detection mechanisms. We demonstrate the application of
our approach in the context of a safety-critical fire detection
system.

Keywords–Automatic Code Generation; Embedded Systems;
Error Detection; Functional Safety; Model-Driven Development.

I. INTRODUCTION

Software quality is concerned with how well a piece of
software conforms to a set of functional and non-functional
requirements. It is especially important in safety-critical do-
mains, where deviation from the requirements specification
may result in serious harm for the environment or people, e.g.,
severe injuries or even loss of life [1]. A recent example is the
crash of two aircraft of type Boeing 737 MAX, leading to the
loss of life of everyone on board. The source for this crash has
been traced to the malfunction of sensor equipment which led
to an erroneous activation of a software module responsible
for the crash [2]. Further accidents have occurred in several
other safety-critical domains, such as railways, spacecraft or
nuclear energy [3].

Safety standards, such as IEC-61508 [1], aim to decrease
the risk of such accidents by proposing a set of software safety
mechanisms that increase software quality. Several approaches
in the literature have been suggested for providing support
for some phases of the lifecycle of a safety-critical system
defined in IEC-61508 (cf. Section V). However, step ten of the
safety lifecycle of IEC-61508, which is the actual realization
of the system and its safety mechanisms, has received little
attention in the literature. Thus, the realization of the system
is often left to the individual developers, i.e., realizing the
safety mechanisms via handwritten code. This process has
the usual drawbacks of manually implemented code compared
to automatic code generation, e.g., bugs introduced by the
developer.

This paper addresses this research gap for a subset of safety
mechanisms recommended by IEC-61508, as proposed in [4].
For this, we present a Model-Driven Development (MDD)

approach based on the Unified Modeling Language (UML) [5].
This approach enables developers to specify a set of error
detection mechanisms in an application model via UML stereo-
types. Subsequently, these error detection mechanisms may
be automatically generated into source code without requiring
any other manual changes to the application model. Thus, our
approach automates the design and implementation of error
detection mechanisms by leveraging generative programming
in the form of MDD.

Error detection is a crucial element of safety-critical em-
bedded systems for detecting and reacting to faults in the
system during runtime. For example, the output of a sensor
may be monitored for values that are outside the expected
range, indicating an error in the sensor. Such an error may
occur due to natural degradation processes in the sensor
hardware. Alternatively, it may be the result of environment
influences, such as cosmic rays or alpha particles that lead to
spontaneous bit flips in the software of the sensor (also known
as a soft error) [6].

In order to realize the vision of automatically generated
error detection mechanisms via MDD, we extend a model
representation for error detection mechanisms [7] and provide
the following, novel contributions:

1) A generic software architecture based on wrapper
classes that enables error detection via checksums,
replica voting and sanity checking.

2) Model transformations that enable the automatic gen-
eration of these error detection mechanisms without
requiring manual developer actions.

3) A prototype of our approach for the MDD tool IBM
Rational Rhapsody.

4) A use case demonstration of our approach for a
safety-critical fire detection system.

The remainder of this paper is organized as follows: In
Section II, we present a model representation of error de-
tection mechanisms that is the basis for the subsequent code
generation. The code generation itself, as well as the design
choices that shaped the process, are described in Section III.
We apply these concepts in a use case, which is presented in
Section IV. Section V presents existing literature related to our
work, before we conclude this paper in Section VI.

II. MODEL REPRESENTATION

This section describes the first part of our approach, the
model representation for error detection mechanisms. This

98Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 109 / 191

Figure 1. UML 2.5 profile for error detection mechanisms. Adapted and
extended from [7].

model representation, in the form of a UML profile, is
used in Section III to automatically generate source code
for these mechanisms. Initial concepts of this profile have
already been proposed for the purpose of memory protec-
tion in [7]. In this paper, the profile has been refined and
extended to not only cover memory protection mechanisms,
but also general error detection mechanisms. This entails
a re-purposing of the <<CRCCheck>>, <<MNCheck>>,
<<RangeCheck>> stereotypes, as well as the introduction
of an additional stereotype, the <<UpdateCheck>>. Further-
more, as there are now more usage scenarios, the tagged values
of the <<AttributeCheck>> stereotype have been extended.
The extended profile is shown in Figure 1.

Each error detection mechanism is represented by its own
stereotype that may be applied to any variable appearing in a
UML model. However, the main targets are member variables
(attributes) inside UML classes, as local variables are often not
modeled in UML diagrams. Furthermore, due to their longer
lifetime than local variables, it is more likely that attributes
are the subject of an error.

At the center of the profile is a top-level stereotype,
<<AttributeCheck>>. It contains all those tagged values,
which are common among different types of attribute checks.
Several concrete attribute checks inherit from this stereotype
and provide additional modeling information relevant to the
respective attribute check. For the scope of this paper, it is
sufficient to know, that each attribute check contains several
configuration parameters and that some of these parameters
may be shared among several attribute checks applied to the
same attribute. For example, the “nrReplicas” tagged value
represents the number of replicas of the attribute to which
the attribute checks are applied. If two or more attribute
checks are applied to an attribute, then this value must be
consistent among all modeled attribute checks, lest there may
be conflicting modeling information.

Currently, the profile models the following error detection
mechanisms:

• <<CRCCheck>>, which models a cycling redun-

dancy checksum (CRC) for the protected attribute.
The checksum may be used to detect that the variable
has been changed in an unauthorized fashion, e.g.,
due to spontaneous bit flips caused by environmental
circumstances [6].

• <<RangeCheck>>, which models a numeric lower
and upper bound for the protected attribute. The
bounds may be used to detect erroneous values de-
livered by sensors outside their specification range,
as well as implementation errors, e.g., in case of a
typographical error in a mathematical formula.

• <<MNCheck>>, which realizes an M-out-of-N
check. It creates a total of N replicas of the attribute.
Of these, at least M must agree with each other for
the check to be passed. A well known example for
this is triple-modular-redundancy, where there are a
total three replicas, of which at least two must agree
with each other. This enables error detection, e.g., in
case one replica contains another value than the other
two. It also enables error correction, i.e., in case two
replicas still contain the same value, the third replica
may be set to the value of the two others.

• <<UpdateCheck>>, which defines a duration t. In
order to pass the check on access, the variable has to
have been updated within the previous t. For example,
the variable has to be updated within the previous
500ms before the variable was accessed. This type
of check may be used to detect that the module
responsible for updating the protected variable is still
running, as well as observing its timing constraints.

III. CODE GENERATION

This section describes how a software architecture may be
automatically generated from the UML profile described in
Section II. The approach consists of two steps. In the first
step, the UML application model designed by the developer
is transformed via model-to-model transformations to generate
model elements for the error detection mechanisms. This re-
sults in an intermediate model that contains the error detection
mechanisms, as well as the original application model. In the
second step, model-to-text transformations are performed that
generate source code from the intermediate model.

A. Basic Concept
A key challenge for our approach is how to generate

the error detection mechanisms in the model without manual
developer actions. We term such transformations without any
developer interactions transparent. In order to solve this design
challenge, we employ the concept of a wrapper class that
replaces the stereotyped protected variable. The transformation
from the primitive variable to the wrapper class is shown
in Figure 2. This wrapper class contains the variable that
should be protected and replaces the original variable inside
the containing class. We use the term containing class to refer
to the class in which the variable that should be protected
originally resides.

In order to achieve transparency for the replacement of the
original protected variable (var in Figure 2), the wrapper class
(ProtectedAttribute in Figure 2) contains a getter and
a setter by which the protected variable may be accessed or

99Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 110 / 191

Figure 2. Basic concept for the transparent generation of error detection
mechanisms via MDD.

updated. Transparency may be achieved if the containing class
(ContainingClass in Figure 2) observes the information
encapsulation principle, i.e., var is only accessible through
dedicated getter and setter methods in ContainingClass.
If this is the case, then the getter or setter for var in
ContainingClass may transparently call the getter or
setter of ProtectedAttribute and pass along the return
values of the getProtected() and setProtected()
methods respectively.

The actual error detection check is performed when the
method getProtected() is called. In case there is no error
and the check is passed, the value of the protected variable
(protectedVar in Figure 2) is returned. In case there is
an error, specific error handling is performed to restore the
system to a safe state. This is described further in Section III-D.
The method setProtected() is used to update the value
of protectedVar. During this update, depending on the
specific error mechanism, additional operations may be carried
out. For example, a new CRC checksum may be calculated for
the updated value.

B. Software Architecture

This section describes the software architecture that may
be automatically generated from the stereotypes shown in
Figure 1. Reasons for certain design choices are explained in
Section III-C. The software architecture is shown in Figure 3.

We use the class ProtectedAttribute as the wrapper
class that contains the protected variable. It contains one or
more instances of the AttributeCheck interface, which
presents the previously mentioned abstraction of error detec-
tion mechanisms. Besides an initialization method, it provides
two methods: check(), which performs the error detection,
and update(), which may be used to update internal re-
dundant values required to perform the error detection. As
part of a prototype, we also implemented four realizations
of these interfaces, corresponding to the mechanisms de-
scribed in Section II (CRCCheck, MNCheck, RangeCheck,
UpdateCheck). New error detection mechanisms may eas-

Figure 3. Generic software architecture for error detection at the variable
level.

ily be introduced by constructing a corresponding class that
realizes the AttributeCheck interface.

The enumeration ACStatus and the singleton class
ErrorHandler are used to handle errors in case an error
detection mechanism has detected an error. The template
parameters TRestoreThreshold and TDefaultValue
of ProtectedAttribute are also used for error han-
dling. These error handling concepts are discussed sep-
arately in section III-D. The template TFirstAC in
ProtectedAttribute refers to the template parameter
employed to specify the types of error detection mecha-
nisms used by ProtectedAttribute. Figure 3 shows the
variant for a single error detection mechanism. Variants of
ProtectedAttribute that include more error detection
mechanisms would employ more template parameters that
specify the type of one error detection mechanism each. In that
case there may be a TSecondAC or even a TThirdAC as ad-
ditional template parameters for the ProtectedAttribute
class.

The remaining template parameters of
ProtectedAttribute specify an error identifier string
(TErrIdLen), the data type of the protected variable

100Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 111 / 191

(TVar), as well as the length of the array used to store
replicas of the protected variable (TNrReplicas). These
replicas may either be used as part of an error detection check,
e.g., as part of an M-out-of-N check (<<MNCheck>>),
or they may be used as additional copies of the protected
variable for error correction in case the original fails the
error detection check. For example, the <<CRCCheck>>,
which uses a CRC checksum, does not require any replicas
of the protected variable for error detection. However, such
a replica may still be included within the wrapper class
(ProtectedAttribute), as the replica may be used
for error correction by restoring the value of the protected
variable to the value of the replica [8].

C. Discussion of Design Choices
This section describes some design choices made in the

development of the software architecture described in Sec-
tion III-B. The basic concept presented in Section III-A shows
the use of a CRC-based checksum in Figure 2 to protect a
variable. While this is sufficient to explain the concept of
transparency, safety standards recommend a wide variety of
error detection mechanisms, which is also captured in the
UML profile presented in Section II. Thus, it is necessary that
the wrapper class introduced in Section III-A is part of an
architecture that enables the use of different error detection
mechanisms.

In order to enable the usage of different error detection
mechanisms, we introduce an interface (AttributeCheck
in Figure 3). This interface must contain methods for perform-
ing the error detection check and for updating any mechanism-
specific redundancy (check() and update() methods in
AttributeCheck). For example, a CRC-based checksum
mechanism realizes this interface by providing a method that
calculates a new checksum whenever the protected variable is
updated, as well as a method that checks the current checksum
for correctness whenever the protected variable is accessed.
Several versions of the wrapper class may be implemented,
each instantiating a different number of interface realizations.
This way, there is no unnecessary memory overhead for instan-
tiating more interface realizations than required. In order to still
provide transparency, the specific types of the interface real-
izations may be passed as template parameters to the wrapper
class (cf. template parameters of ProtectedAttribute in
Figure 3). Due to the use of template parameters, the source
code of the wrapper class is independent of any specific error
detection mechanism. Furthermore, as the specific types are
known at compile-time, no dynamic memory allocation is
required. This is an important requirement in safety-critical
embedded systems [9].

There is another design challenge that is due to the
possibility of using several error detection mechanisms for
the same variable. Different error detection mechanisms may
require the same type of information, e.g., the value of
the protected variable (cf. variable toProtect in class
ProtectedAttribute in Figure 3), or the values of any
replicas of the protected variable (cf. variable replicas in
class ProtectedAttribute in Figure 3). Thus, values that
may be used by several error detection mechanisms should
be located inside the wrapper class in order to avoid un-
necessary memory redundancy. Other values, that are specific
to a certain error detection mechanism, should be located in

the interface realizations of AttributeCheck in order to
maintain the independence of the wrapper class of any specific
mechanism. Examples for this are the template parameters of
the AttributeCheck interface realizations in Figure 3. A
specific example is the location of the checksum variable
within the CRCCheck class, as no other error detection
mechanism in our architecture employs CRC checksums.

D. Error Handling
The main purpose of this paper is to introduce an approach

for the automatic generation of error detection mechanisms
via MDD. However, once an error has been detected, the next
step is to determine how such an error should be handled.
We identify two categories for the error handling alternatives:
those that are application independent (e.g., restoring from
replicas) and those that are application specific (cf. Section IV
for an example). Within the context of our approach, the main
challenge is how such error handling mechanisms may be
executed transparently during runtime.

Our approach detects errors when a protected variable is
accessed. Therefore, a transparent approach requires that the
protected variable is returned in any case, regardless whether
an error has been detected. Thus, it is paramount that the
system is in a safe state when the protected variable is returned.
For this, our approach provides an iterative recovery process.

In the first stage, application independent recovery mech-
anisms are executed. For example, in case the error detec-
tion mechanism specifies replicas of the protected variable,
these may be used to restore the protected variable to a
safe value. Alternatively, the protected variable may be re-
stored to a safe default value. The specific usage of these
application independent recovery mechanisms is given via
the tagged values shown in the profile described in Sec-
tion II. The <<AttributeCheck>> stereotype contains the
“nrReplicas” tagged value, that allow developers to include
a number of replicas of the protected variable within the
wrapper class ProtectedAttribute. The “restoreThresh-
old” tagged value may be used to specify how many of
these replicas need to agree with each other in case of an
error to restore the protected variable to the value of these
replicas. A common example is that there are a total of three
replicas. In case at least two of these replicas agree with each
other, then the protected variable is restored to this value. The
“safeDefaultValue” tagged value may be used to specify a safe
default value for the protected variable.

At the code level, these tagged values are used
to set the values for the template parameters of the
ProtectedAttribute class (cf. Figure 3 in Section III-C).
The “nrReplicas” and “restoreThreshold” tagged values cor-
respond to the TNrReplicas and TRestoreThreshold
template parameters, whereas the “safeDefaultValue” tagged
value corresponds to the TDefaultValue template parame-
ter. In case the application independent recovery mechanisms
are not desired, developers may prevent their automatic code
generation by not specifying any value for the relevant tagged
values.

In case the application independent recovery mech-
anisms are not specified or their execution was un-
successful, the ErrorHandler singleton (cf. Figure 3)
is called. It is provided the information of the error
identifier and the ACStatus enumeration value of the

101Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 112 / 191

ProtectedAttribute instance that failed the check (cf.
Figure 3). Our approach assumes that this code, manu-
ally written by developers, returns the system to a safe
state and returns a valid value for the protected variable in
ProtectedAttribute. In a worst-case scenario the system
may need to be shut-down in systems where fail-stop behavior
is acceptable.

E. Transparent Model Transformations
Section III-A describes the basic concept for the model

transformations that generate error detection mechanisms in
a transparent way. For this, a primitive variable is replaced
with a wrapper class that contains the required error detection
mechanisms. This section describes the required model trans-
formations for this approach in more detail. The class names
used in this section refer to the elements from Figure 3.

• Action 1: At the beginning of the model transfor-
mations, each attribute in a UML class diagram is
checked regarding whether a stereotype from the
profile presented in Section II is applied. For each
attribute where this is the case, the information of
the tagged values of these stereotypes are parsed and
stored temporarily.

• Action 2: After parsing the stereotype information, a
getter and setter with default method declaration for
the respective attribute are created in the containing
class.

• Action 3: Besides adding getters and setters, it
is also necessary to include the dependencies
to the utilized classes, such as to the wrap-
per class (ProtectedAttribute). Furthermore,
ContainingClass must contain a constructor for
initializing the value of the protected variable inside
the instance of the wrapper class.

• Action 4: In this step, the stereotyped attribute is
deleted from the containing class. The information
from the tagged values of the stereotype is still ac-
cessible due to action 1.

• Action 5: An instance of the wrapper class is added
to the containing class, with the same name as the
attribute that was deleted in action 4. The template
parameters of the instance declaration may be inferred
from the tagged values of the stereotype stored in
action 1.

• Action 6: The constructor of the containing class is
updated by calling the init() method of the created
ProtectedAttribute instance. Here, the initial
value of the protected variable is set, as well as the
error identifier. The call of the init() method is
prepended to the method body of the constructor. For
this, we assume that the behavior of the method is
supplied in textual form within the model. This may be
achieved by employing the opaque behavior property
of operations in UML.

• Action 7: The opaque behavior of the getter and setter
created in action 2 is modified to return the results of
getProtected() and setProtected() of the
ProtectedAttribute instance created in action
5 respectively.

We implemented the automatic execution of these model-
to-model transformations within the MDD tool IBM Rational
Rhapsody [10], as well as the open source tool Papyrus [11].
Due to space constraints we do not discuss implementation
details. However, we illustrate the application of these model
transformations within Rhaposdy in Section IV.

IV. USE CASE

This section shows how our approach may be applied in
the development of a safety-critical fire detection system. This
system is conceptually similar to smoke detectors that are used
in private households. However, in contrast to smoke detec-
tors, fire detection systems employ multiple types of sensor
information to determine whether a fire has been detected.
In this specific application, we use temperature, humidity and
infrared sensors besides the usual carbon monoxide sensors.
This variety of sensors decreases the likelihood for a false
alarm (e.g., due to smoke from burnt cooking), and also pro-
vides intentional redundancy, so that the fire detector remains
partially operational in case a sensor malfunctions.

A. Safety Requirements

This section presents some selected safety requirements of
the fire detection system which we will use to demonstrate
our approach. The safety standard IEC-61508 [1] defines four
Safety Integrity Levels (SIL), which mandate an increasing
number of safety measures for each level. These measures aim
to ensure the availability and reliability constraints associated
with each SIL. According to [12], [13] a fire detection system
may be classified as a SIL 2 system. For SIL 2 systems, IEC-
61508 part 3, table A.2 recommends fault detection and diag-
nosis for software and hardware faults (e.g., a malfunctioning
sensor).

This fault detection, among others, may be performed in
the value and time domain. These fault detection checks cor-
respond to the <<RangeCheck>> and <<UpdateCheck>>
described in Section II. The fault detection may also be
performed in the logical domain via error detecting codes, e.g.,
to detect soft errors (spontaneous bit flips). This corresponds
to the <<CRCCheck>> described in Section II. While the
complete fire detection system has to satisfy further safety
requirements, the above requirements are sufficient to demon-
strate our approach.

B. Hardware Level

This section presents the hardware elements used for our
realization of the fire detection system. A Raspberry Pi 4B
is used as the basis of the system and to process the sensor
information. While the use of a Raspberry Pi may not be a cost-
efficient solution for commercial fire detection systems, the
application of our concept remains the same when applied to
a lower-priced microcontroller. The Raspberry Pi is connected
to several sensors: a gas sensor to detect carbon monoxide,
an infrared sensor that may detect flames and a humidity
and temperature sensor, that measure the respective values.
Furthermore, the Raspberry Pi is connected to a buzzer that
sounds an alarm when a fire has been detected. A button
element deactivates the alarm when it is pressed.

102Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 113 / 191

Figure 4. UML 2.5 class diagram showing the classes of the fire detection
application that are relevant for the demonstration of the approach presented

in this paper.

C. Functional Model of the Software
This section describes the software implementation of

the fire detection system. From a high-level perspective, the
implementation is a single program that runs as a background
task on the Raspberry Pi that is automatically started when the
Pi is booted. The program checks the measured values of the
sensors every second. These values are each compared to a
predefined threshold. If two or more sensor values are above
the threshold for five seconds or more, the buzzer is used to
sound an alarm.

Figure 4 shows a UML class diagram of the most important
classes of the application. It is a screenshot from the MDD
tool IBM Rational Rhapsody [10], i.e., the class diagram
also contains implementation details from which the code
for the application is generated automatically. The classes
GasSensor, IRSensor and HumTempSensor represent
the hardware sensors and contain methods that return the cur-
rently measured value of the sensors. Instances of these classes
execute concurrently and update the member variables with
the last measured value. The update frequency is one second
(1000ms). These instances are created by the FireDetector
class, which concurrently checks the member variables repre-
senting the sensor values (method detectFire()). These
values are compared to their respective thresholds, which are
also defined in the FireDetector class. If two or more
sensor values exceed their respective threshold for five seconds
in a row, an instance of the Buzzer class is used to activate
the acoustic alarm (method playAlarm()). During each call
of detectFire() the status of the Button instance is
checked. In case the button is pressed, the alarm is turned
off.

D. Applying Safety Stereotypes to the Functional Model
This section describes how the approach presented in Sec-

tion III is applied to the functional application model presented
in Section IV-C to fulfill the safety requirements described in
Section IV-A. The approach is applied to a number of member
variables within Figure 4. To each member variable that
represents a measured sensor value, the <<RangeCheck>>
and <<UpdateCheck>> stereotypes are applied.

The tagged values of the <<RangeCheck>> correspond
to the upper and lower limit of the sensors’ range, i.e., the
check is failed in case a sensor returns a value outside of
its specification range. The <<UpdateCheck>> is configured
to report an error in case the sensor value has not been
updated within the last minute when the variable is accessed.
Both check types indicate that there is some kind of sensor
malfunction. The measureRate variable in each sensor is
not protected, as any errors related to this variable will be
detected by the respective <<UpdateCheck>> for the sensor.

A number of member variables contain the stereotype
<<CRCCheck>>. This stereotype is used to protect the vari-
ables from soft errors (i.e., spontaneous bit flips) that may oc-
cur in long lasting applications [6]. The protected variables are
chosen, because they represent safety-critical values (e.g., the
threshold for raising an alarm). Some variables, like the current
sensor values, do not contain this sort of memory protection,
as they are frequently overwritten and the likelihood for a soft
error is small. Other variables, like the alarmTone variable
in the Buzzer class, do not contain memory protection, as
they are not strictly safety-critical. In this case alarmTone
is not safety-critical, as it only contains the specific tone
played during an alarm - a bit flip that changes this tone
slightly is only a very minor issue from a safety perspective.
Only protecting those variables that require memory protection
from a safety perspective reduces the overhead of the safety
mechanisms on the whole application.

In case any of the ProtectedAttribute instances (cf.
Figure 2) report an error, the ErrorHandler singleton (not
shown in Figure 4, cf. Figure 3) is used to log the detected
error. Furthermore the singleton activates a maintenance tone
(method playMaintenance() in class Buzzer). This is
an acoustic warning, that the fire detection system provides
only a limited protection and should be checked by a profes-
sional.

E. Code Generation
The UML class diagram presented in Section IV-C was

created with the MDD tool IBM Rational Rhapsody [10]. It
allows to specify the source code of the operations within the
model and therefore enables code generation of the complete
source code. We modified this code generation process by
implementing a plugin that executes the model transformations
described in Section III-E automatically. The plugin executes
the model transformations each time source code is generated
from the class diagram. The developer model (the class dia-
gram shown in Figure 4) is not changed by the transformations.
Instead, the plugin creates an intermediate model with the
transformed model. In this transformed model, the member
variables that contain a stereotype from the profile shown in
Figure 1 have been replaced with a corresponding instance of
ProtectedAttribute (cf. Section III for details). After
the model transformations, the default code generation of

103Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 114 / 191

Rhapsody is applied to the intermediate model. For debugging
purposes, developers have access to the intermediate model
within Rhapsody.

F. Discussion

This section discusses the application of our approach to
the use case presented in Section IV. As described in Sec-
tion IV-C and Section IV-D, our approach enables developers
to initially create a functional model of the application and
apply a number of safety mechanisms in a following step.
This approach has a number of advantages. First, developers
do not require specific knowledge of how a error detection
mechanism is implemented. The implementation is generated
automatically by the model transformations described in Sec-
tion III. Despite this automatic implementation, the tagged
values of the stereotypes still allow to change important con-
figuration parameters of the mechanisms. Another advantage
of our approach is the increase in developer productivity. The
implementation of the error detection mechanisms and the
model transformations is only required once. Afterwards, both
are reusable similar to an application programming interface
(API). The automatic code generation of the error detection
mechanisms also reduces the likelihood of bugs that may
be produced by developers during manual implementation of
the mechanisms. Additionally, our approach models the error
detection mechanisms clearly visible within the UML model
of the application, instead of hiding it in between other source
code or sub-layers of the models.

While our approach enables these advantages, it also faces
some limitations. These include the higher runtime and mem-
ory overhead associated with generic approaches, as opposed
to implementations created explicitly for a specific applica-
tion and hardware platform. Care is also required when our
approach is used in systems with hard real-time requirements.
While the runtime overhead of the error detection mechanisms
is constant, it still has to be taken into account during timing
analysis of the system.

The approach presented in this paper is extensible, i.e.,
other error detection mechanisms that work at the variable level
may be included. For this, three steps are required:

1) A UML stereotype has to be designed that contains
all the configuration parameters of the error detection
mechanism as tagged values. This stereotype should
inherit from <<AttributeCheck>> (cf. Figure 1 in
Section II).

2) A dedicated class for the error detection mechanism
needs to be implemented. This class has to realize
the AttributeCheck interface (cf. Figure 3 in
Section III-C).

3) Model transformations that parse the information
from the stereotypes and create the required instance
declarations for the class that implements the error
detection mechanism. The specific steps for this have
been described in Section III-E. These model trans-
formations may be applied to a number of MDD
tools. The only requirements are, that they allow
developers to create class diagrams and that these
diagrams may be modified via a tool specific API,
e.g., IBM Rational Rhapsody [10], or via dedicated
model-to-model transformations languages, e.g., Pa-

pyrus [11] in combination with the Epsilon frame-
work [14].

V. RELATED WORK

This section describes approaches that are related to ours.
The automatic generation of error detection mechanisms has
been proposed in a number of research approaches. How-
ever, they either do not consider the integration in an MDD
context [8], or they depend on domain-specific modeling
languages instead of building atop a wide-spread, standardized
modeling language, such as UML [15], [16]. This makes
integration into a wide variety of MDD tools more difficult,
as these often only support UML. Our approach, in contrast,
is entirely specified in UML on the modeling level. Another
category of approaches enables the model-driven generation of
structural model elements that represent safety features [17].
However, they depend on manual refinements of the model to
produce the dynamic behavior of the safety feature. Thus, this
approach is only semi-automatic.

UML-based approaches to model-driven code generation
for safety mechanisms have been presented in [4], [7], [18],
[19], [20]. The model representation presented in [7] is the
basis for the UML profile presented in Section II. The approach
in [4], on the other hand, describes a generic high-level work-
flow for generating code from UML safety stereotypes. We
adopted this approach in this paper to derive our results. The
approaches presented in [18], [19] describes model-driven code
generation for an error handling mechanism. Their approaches
may be used to automatically generate code for dealing with
the errors, that the approach presented in this paper is able
to detect. A model representation of selected safety design
patterns for the use of code generation has been proposed
in [20]. However, they provide only a model representation and
leave the actual code generation for future work. Our approach
may contribute to fill this gap.

Several other approaches combine selected safety aspects
with MDD [21], [22], [23]. However, they target other phases
of the development lifecycle rather than the actual realization
step of the system which is the focus of our approach. As
these phases are mostly located prior to the realization step,
their approaches may be used in a complimentary fashion to
ours.

The issue of error detection has also been targeted for
specific application scenarios. The issue of software-based
memory protection, which has been used as an example for an
application scenario in this paper, has also received research
attention, e.g., [8], [24]. However, they employ other tech-
niques than MDD for code generation. Additionally, they only
consider memory protection, while our approach is explicitly
designed to incorporate other error detection mechanisms, such
as sanity checking.

There is also some theoretical research regarding the au-
tomatic generation of fault-tolerance mechanisms, e.g., [25],
[26]. As these approaches take all possible system states for
the addition of fault tolerant mechanisms into consideration,
they are limited to small and medium-scale systems.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an extensible, generic software
architecture that enables the use of error detection mechanisms

104Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 115 / 191

for primitive variables in safety-critical systems. We use a set
of UML stereotypes that model the desired error detection
mechanisms. These stereotypes may be applied to safety criti-
cal variables inside the UML class diagram of the application.
By parsing these stereotypes and performing model-to-model
transformations, we replace the stereotyped variable with a
suitable wrapper class that performs the error detection checks
during runtime before every access of the stereotyped variable.
The generation result is transparent with respect to the rest of
the application, i.e., no other parts of the application need to be
changed by the developer when our code generation is used.
The effectiveness of the approach is demonstrated by applying
it to the development of a safety-critical fire detection system.

For future work, we will evaluate the runtime and memory
overhead that the generated error detection mechanisms incur,
as well as the overhead of performing the model transforma-
tions during code generation. Furthermore, we aim to extend
our approach to a wide variety of safety mechanisms, thereby
creating a model-driven code generation framework for safety
mechanisms. We also aim to combine this approach with the
concept of safety assurance cases, in order to improve valida-
tion and traceability of the specific assurance cases. Besides
safety, we also aim to generalize our approach to include
runtime monitoring of other non-functional properties, such as
timing and energy. Finally, we want to extend the concept of
model-driven code generation for embedded systems to other
development issues, e.g., generating code for the low-level
hardware initialization of heterogeneous microcontrollers from
suitable model representations.

ACKNOWLEDGMENT

This work was partially funded by the German Federal
Ministry of Economics and Technology (Bundesministeriums
fuer Wirtschaft und Technologie-BMWi) within the project
“Holistic Model Driven Development for embedded systems
in consideration of diverse hardware architectures” (HolMES).

REFERENCES

[1] IEC 61508 Edition 2.0. Functional safety for electri-
cal/electronic/programmable electronic safety-related systems,
International Electrotechnical Commission Std., 2010.

[2] P. Johnston and R. Harris, “The Boeing 737 MAX saga: Lessons
for software organizations,” Software Quality Professional Magazine,
vol. 21, 2019, pp. 4–12.

[3] P. G. Neumann, Computer Related Risks. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1995.

[4] L. Huning, P. Iyenghar, and E. Pulvermueller, “A workflow for auto-
matically generating application-level safety mechanisms from UML
stereotype model representations,” in Proceedings of the 15th Inter-
national Conference on Evaluation of Novel Approaches to Software
Engineering - Volume 1: ENASE, INSTICC. SciTePress, 2020, pp.
216–228.

[5] “OMG Unified Modeling Language Version 2.5.1,” Object Management
Group, Tech. Rep., 2017.

[6] R. C. Baumann, “Radiation-induced soft errors in advanced semi-
conductor technologies,” IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3, 2005, pp. 305 – 316.

[7] L. Huning, P. Iyenghar, and E. Pulvermueller, “UML specification
and transformation of safety features for memory protection,” in Pro-
ceedings of the 14th International Conference on Evaluation of Novel
Approaches to Software Engineering, INSTICC. Heraklion, Crete,
Greece: SciTePress, May 2019, p. 281–288.

[8] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generative software-
based memory error detection and correction for operating system
data structures,” in Proceedings of the 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
Washington, DC, USA: IEEE Computer Society, 2013, pp. 1–12.

[9] MISRA C++2008 Guidelines for the use of the C++ language in critical
systems, The Motor Industry Software Reliability Assessment Std., Jun.
2008.

[10] “IBM. Rational Rhapsody Developer. https://www.ibm.com/us-
en/marketplace/uml-tools (accessed 20th August 2020),” 2020.

[11] “The Eclipse Foundation. Eclipse Papyrus Modeling Environment.
https://www.eclipse.org/papyrus (accessed: 20th August 2020),” 2020.

[12] R. M. Robinson and K. J. Anderson, “Sil rating fire protection equip-
ment,” in Proceedings of the 8th Australian Workshop on Safety Critical
Systems and Software - Volume 33, ser. SCS ’03. AUS: Australian
Computer Society, Inc., 2003, p. 89–97.

[13] S. Kim and Y. Kim, “A case study on an evaluation procedure of
hardware sil for fire detection system,” International Journal of Applied
Engineering Research, vol. 12, 01 2017, pp. 359–364.

[14] “Epsilon family of languages. https://www.eclipse.org/epsilon/ (ac-
cessed 20th August 2020).”

[15] R. Trindade, L. Bulwahn, and C. Ainhauser, “Automatically generated
safety mechanisms from semi-formal software safety requirements,” in
Computer Safety, Reliability, and Security, A. Bondavalli and F. Di Gi-
andomenico, Eds. Cham: Springer International Publishing, 2014, pp.
278–293.

[16] M. Pezzé and J. Wuttke, “Model-driven generation of runtime checks
for system properties,” International Journal on Software Tools for
Technology Transfer, vol. 18, no. 1, Feb 2016, pp. 1–19.

[17] R. Mader, G. Grießnig, E. Armengaud, A. Leitner, C. Kreiner, Q. Bour-
rouilh, C. Steger, and R. Weiß, “A bridge from system to software
development for safety-critical automotive embedded systems,” in 2012
38th Euromicro Conference on Software Engineering and Advanced
Applications, Sep. 2012, pp. 75–79.

[18] L. Huning, P. Iyenghar, and E. Pulvermueller, “A UML profile for auto-
matic code generation of optimistic graceful degradation features at the
application level,” in Proceedings of the 8th International Conference
on Model-Driven Engineering and Software Development - Volume 1:
MODELSWARD, INSTICC. SciTePress, 2020, pp. 336–343.

[19] D. Penha, G. Weiss, and A. Stante, “Pattern-based approach for
designing fail-operational safety-critical embedded systems,” in 2015
IEEE 13th International Conference on Embedded and Ubiquitous
Computing, Oct 2015, pp. 52–59.

[20] P. O. Antonino, T. Keuler, and E. Y. Nakagawa, “Towards an approach
to represent safety patterns,” in Proceedings of the Seventh International
Conference on Software Engineering Advances, Lisbon, Portugal, Nov.
2012, pp. 228–237.

[21] T. J. Tanzi, R. Textoris, and L. Apvrille, “Safety properties modelling,”
in 2014 7th International Conference on Human System Interactions
(HSI). IEEE Computer Society, June 2014, pp. 198–202.

[22] K. Beckers, I. Côté, T. Frese, D. Hatebur, and M. Heisel, “Systematic
derivation of functional safety requirements for automotive systems,” in
Computer Safety, Reliability, and Security, A. Bondavalli and F. Di Gi-
andomenico, Eds. Cham: Springer International Publishing, 2014, pp.
65–80.

[23] N. Yakymets, M. Perin, and A. Lanusse, “Model-driven multi-level
safety analysis of critical systems,” in 9th Annual IEEE International
Systems Conference. IEEE Computer Society, 06 2015, pp. 570–577.

[24] K. Pattabiraman, V. Grover, and Zorn, B. G., “Samurai: Protecting
critical data in unsafe languages,” in Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008.
New York, NY, USA: ACM, 2008, pp. 219–232.

[25] A. Arora and S. Kulkarni, “Detectors and correctors: A theory of fault-
tolerance components,” in Proceedings of the 18th International Confer-
ence on Distributed Computing Systems, ser. ICDCS ’98. Washington,
DC, USA: IEEE Computer Society, 1998, pp. 436–443.

[26] Y. Lin, S. Kulkarni, and A. Jhumka, “Automation of fault-tolerant
graceful degradation,” Distributed Computing, vol. 32, no. 1, Feb 2019,
pp. 1–25.

105Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 116 / 191

MARKA: A Microservice Architecture-Based Application
Performance Comparison Between Docker Swarm and Kubernetes

Tuğba Günaydın

Yıldız Technical University
Computer Engineering

İstanbul, Turkey
E-mail: tugba.gunaydin@std.yildiz.edu.tr

Göker Cebeci

Yıldız Technical University
Computer Engineering

İstanbul, Turkey
E-mail: goker.cebeci@std.yildiz.edu.tr

Özgün Subaşı

Integrated Finance
London, United Kingdom

E-mail: ozgun.subasi@integrated.finance

Abstract—Container-based distributed programming techniques
are used to make applications effective and scalable. Microservice
architecture is an approach that has been on the rise among
software developers in recent years. This paper presents a case
study comparing the performance of two commonly used con-
tainer orchestrators, Docker Swarm and Kubernetes, over a Web
application developed by using the microservices architecture. We
compare the performances of Docker Swarm and Kubernetes
under load by increasing the number of users. The aim of
this study is to give an idea to researchers and practitioners
about the performances of Docker Swarm and Kubernetes in
applications developed in the proposed microservice architecture.
The Web application developed by the authors is a kind of loyalty
application, that is to say, it gives a free item in exchange for
a certain number of purchased items. With this study, it was
concluded that the Docker Swarm is more efficient as the number
of users increases compared to Kubernetes.

Keywords–Microservice Architecture; Performance Evaluation;
Docker Swarm; Kubernetes; JMeter.

I. INTRODUCTION

With the microservice architecture, applications are devel-
oped that are very flexible and scalable. In the microservice
architecture approach, the application is split up into its small-
est functions; each function is dedicated for one job only, and
it is called as microservice. Microservices are put in packages
that are called containers that provide everything necessary
for running [1]. Microservices are difficult to operate because
they are distributed [2]. Container-based technologies are used
to orchestrate microservices. Two technologies stand out in
orchestrating microservices: Docker Swarm and Kubernetes
[3].

The proposed prototype is a loyalty application. Today, it
is very important to gain new customers and retain existing
customers for restaurants and cafes. For this reason, loyalty
applications are used. A product is offered to the customer free
of charge for a certain amount of purchased product. With this
study, the concept of loyalty application was realized with the
microservice architecture approach.

This paper presents a performance comparison of Docker
Swarm and Kubernetes on a microservice architecture-based
Web application. As the number of users increased, the time
to complete the test scenario of Docker Swarm and Kubernetes
was compared. The study can be classified under three main
titles: (1) Proposed Software Architecture and Application
(software architecture, approaches and application used for

implementation), (2) Test Scenario (scenario used to test the
system, Docker Swarm and Kubernetes) and (3) Experimental
Setup (load tests for orchestration tools). The rest of the
paper is structured as follows. In Section II, we present the
relevant studies in the literature. In Section III, our devel-
oped application and the microservice architecture used are
discussed in detail. The test scenario simulating the operation
of the application in real life is explained in Section IV. The
experimental environment and parameters are shown in Section
V. Finally, in Section IV, the results obtained are discussed and
we conclude our work.

II. LITERATURE REVIEW

With the increasing importance of scalability in recent
years, microservice architectures have become popular [4].
Microservices are used more effectively with container tech-
nology. There are different application approaches of container
technology and performance evaluation studies of these ap-
proaches [5]. We compared performances of Docker Swarm
and Kubernetes with an application using microservice archi-
tecture model.

Using scaling and microservice architecture approach stud-
ies of frequently used orchestrators, the appropriate orches-
trator can be selected for a certain application [6]. In this
comparison, the effect of more complex applications on the
performance of orchestrators is clearly shown [7]. Studies have
shown that cloud-based approaches are more performant and
flexible than traditional approaches for developing increasingly
complex applications [8]. We made a performance comparison
by revealing the microservice architecture we use in our
application.

There exist many studies focusing on designing and im-
plementing traditional monolithic Web service based Service
Oriented Architecture (SOA) systems with a focus on high
performance [9]-[10]. However, in this particular study, our
main focus is the use of microservices in creating SOA
based systems with a focus on load balancing amongst the
nodes. To enable the load balancing functionality, we utilize
technologies like Docker Swarm and Kubernetes. In this study,
the performance was compared by using the loyalty application
MARKA in 3 scenarios: without an orchestrator, using Docker
Swarm, and using Kubernetes.

106Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 117 / 191

Figure 1. System Architecture Model and Network.

III. PROPOSED SOFTWARE ARCHITECTURE AND
APPLICATION

The Web application MARKA [11] has six microservices:
API (Application Programming Interface) Gateway, Authenti-
cation Service, User Service, Code Service, Transaction Ser-
vice, and QR (Quick Response) (Image) Generator Service. It
also has a front-end for user control screen and a database for
the management of data. The system architecture model can
be seen in the Figure 1.

Microservices communicate with each other over the HTTP
(Hyper-Text Transfer Protocol). For instance, in order to create
a new transaction, the transaction service receives the informa-
tion of the received code from the code service first, and then
it gets the information of the user associated this code from
the user service. If the user and the owner of the code are
the same, it generates an error.This is because the user who
created the code and the user using it cannot be the same. Then,
the code service compares the company identification number
associated with the code from the database and determines
whether the code is a purchased item or a free item. When
these jobs are completed, the transaction service creates the
transaction. It calls the code service and updates the code as
used. If the code is for the purchased item, it also receives the
free item quantity information of the company from the user
service (information on how many products will be given free
of charge in sales). After getting the relevant company and the
number of transactions, it calculates how many free items the
user has won from the code service. From this, it calculates
whether the user earns free items with the final purchased
product(s). If the user has won free items, the code service
generates as many codes as there are free items.

A. Marka.Club (Front-End)
Front-end (Marka.club) is a software provided for the

end users to perform their operations. It enables the user to
create an account, log into the system, create codes and use
codes. End-user interactions are created here. An example of
a company dashboard can be seen in Figure 2 and an example
of a customer dashboard can be seen in Figure 3.

Customers buy the product and read the QR code produced
by the restaurant. When they purchase the amount of product
determined by the restaurant, they have the right to get one

Figure 2. Marka.club Front-End Screen Company Dashboard

Figure 3. Marka.club Front-End Screen Customer Dashboard

free product, so they produce a QR code. The restaurant reads
the QR code produced by the customer and gives one free
product to the customer.

B. API Gateway
The API gateway is the microservice that ensures that the

incoming request is directed to the responsible microservice.

C. Authentication Service
The authentication service is a login and register service.

If a user is not yet registered in the system, first, they get
registered into the system. There are two roles for registration:
customer or company. After users register, they can log in.

D. User Service
The user service is the service that keeps the user informa-

tion such as e-mail, first and last names, company-customer
roles, etc.

E. Code Service
The code service is a microservice that generates the codes

that the user will use in another role. For example, if the user’s

107Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 118 / 191

role is the company, it generates the codes that will be used by
the customer when purchasing an item. If the user’s role is the
customer, he/she generates the codes that will be used by the
company to get free items from the company. In other words,
when the customer earns a free item, a code is generated for
that free item and this code is used by the company. If it is a
valid code, the company gives a free item to the customer.

F. Transaction Service
The transaction service keeps the code transaction infor-

mation, such as which role produced the code, which role was
used, and how many codes were produced and used.

G. QR (Image) Generator Service
The QR generator service converts the codes generated to

the image file (QR) to be used on mobile devices. This feature
will be used when the application is used on mobile devices.

H. Database
A database has been created in which all transactions and

information are kept. MongoDB [12] was used as the database.
A single database has been created for proof of concept,
but each microservice uses its own collections that they are
responsible for, and they do not interfere with other areas of
responsibility.

IV. TEST SCENARIO

A test scenario was prepared to compare the container
orchestration platforms’ behavior under load. In this study,
Docker Swarm and Kubernetes were used as container orches-
tration tools. Docker Swarm [13] is developed by Docker En-
gine. Kubernetes [14] is developed by Google. The responses
of the platforms were measured according to the test scenario,
depending on the request per unit time. The flow diagram of
the test scenario is as shown in Figure 4.

The test scenario was created by simulating the real-time
operation of the application: a company signs up for the
system, then logs into the system. Anyone who does not exist
in the system, be it a company or a customer, must sign up
in order to log into the system. By signing into the system, a
new user is created each time. The company generates codes
for the items to sell. The codes generated by the company are
saved into the database because the customers will use them
automatically. The customer signs up for the system and then
signs into the system. The customer will use all the unused
codes stored in the database; we make the customers use all
the codes generated to simulate a real-life load scenario for
our load testing. The customer generates free codes in return
for a certain number of codes used (as initially determined by
the company). The unused codes generated by the customer
are received and saved into the database. The company signs
into the system and uses all of the unused free codes generated
by the customer; with this, the customer takes the free items.

V. EXPERIMENTAL SETUP

The test procedure of the application was run in 3 different
ways: test without orchestrator, which means without any con-
tainer (except mongoDB); Docker Swarm test; and Kubernetes
test. The application is run with Docker Swarm and Kubernetes
on Docker Desktop.

Company Signs Up

Company Generates Codes

Gets Unused Codes and Saves

Gets Free Codes and Saves

Gets Free Unused Codes

Company Signs In

Company Uses All Free Unused
Codes which come from

Customer

End

Start

Customer Signs Up

Company Signs In

Customer Signs In

Customer Uses Unused Codes

Figure 4. API Test Scenario Flow Chart

JMeter [15] is a tool for load testing. It is used to test the
application against real-life situations. There are three basic
parameters that should be in a JMeter test plan: Thread Group,
Samplers and Listeners [16]. The thread group decides how
many threads there will be and for how long each thread
will be active. Samplers are for request types such as FTP
(File Transfer Protocol) requests, HTTP requests, JDBC (Java
Database Connectivity) requests etc. Listeners are used for the
visualization of results in the form of a graph, table, etc.

There is a bar graph named "aggregate" in JMeter. The
aggregate graph shows the average of the response time for
each request in the test. We compared the average response
times of requests by the number of users via aggregate graphs
for each one of our tests.

Test Without Orchestrator, Docker Swarm and Kubernetes
were compared with 10, 20 and 50 users as response times;
Docker Swarm and Kubernetes were compared with 100, 200,
400 and 500 users as response times.

The letters on the charts are as follows:

• A: Company Sign Up,
• B: Company Sign In,
• C: Get user info,
• D: Generate codes,
• E: Get codes,
• F: Customer Sign Up,
• G: Customer Sign In,

108Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 119 / 191

A B C D E F G H I J
0

1,000

2,000

3,000

4,000

5,000

Ti
m

e
(m

s)
TWO
DOCKER SWARM
KUBERNETES

Figure 5. Comparison of Average Response Time with 10 threads

• H: Customer uses codes,
• I: Get gifts,
• J: Use gifts.

The average response times of each request in the test are
shown on the aggregate graph with 10 users in Figure 5, 20
users in Figure 6, 50 users in Figure 7, 100 users in Figure 8,
200 users in Figure 9, 400 users in Figure 10 and, finally, 500
users in Figure 11.

A. Test Without Orchestrator (TWO)
For TWO, all services are used locally, without using any

container or orchestration tool. The local system information
is as follows: the Operating System is Windows 10 Home,
the RAM is 8 GB, the Processor is Intel(R) Core(TM) i5-
8250U CPU 1.60 GHz 1.80 GHz, and the System Type is
64-bit OS, x64-based processor. The JMeter settings for the
number of threads (users) are 10, 20 and 50, the rump-up
period (in seconds) is 0 and the loop count is 1.

Below are the times taken for each the test scenario to
complete, based on the number of users:

• 10 users: 1 minute and 9 seconds,
• 20 users: 1 minute and 43 seconds,
• 50 users: 3 minutes and 40 seconds.

When we performed the test with 100 threads, some threads
started timing out, so the test was not completed.

B. Docker Swarm Test
For Docker Swarm test, the application is using the Docker

Desktop and Docker Swarm as orchestrator. Docker Swarm
worked with 3 replicas. The local system information is the
same as in the case of TWO. The JMeter settings for the

A B C D E F G H I J
0

1,000

2,000

3,000

4,000

5,000

Ti
m

e
(m

s)

TWO
DOCKER SWARM
KUBERNETES

Figure 6. Comparison of Average Response Time with 20 threads

A B C D E F G H I J
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Ti
m

e
(m

s)

TWO
DOCKER SWARM
KUBERNETES

Figure 7. Comparison of Average Response Time with 50 threads

109Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 120 / 191

A B C D E F G H I J
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 8. Comparison of Average Response Time with 100 threads

A B C D E F G H I J
0

5,000

10,000

15,000

20,000

25,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 9. Comparison of Average Response Time with 200 threads

A B C D E F G H I J
0

10,000

20,000

30,000

40,000

50,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 10. Comparison of Average Response Time with 400 threads

A B C D E F G H I J
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 11. Comparison of Average Response Time with 500 threads

110Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 121 / 191

number of threads (users) are 10, 20, 50, 100, 200 and 400, the
rump-up period (in seconds) is 0 and, finally, the loop count
is 1.

Below are the times taken for each the test scenario to
complete, based on the number of users:

• 10 users: 52 seconds,
• 20 users: 1 minute 42 seconds,
• 50 users: 4 minutes 7 seconds,
• 100 users: 6 minutes 53 seconds,
• 200 users: 12 minutes 18 seconds,
• 400 users: 34 minutes 51 seconds,
• 500 users: 44 minutes 16 seconds.
When we performed the test with 1000 threads, some

threads started timing out, so the test was not completed.

C. Kubernetes Test
For Kubernetes Test, the application stand-up with using

Docker Desktop and Kubernetes as orchestrator. Kubernetes
worked with 3 replicas. Local system information is same
with TWO. The JMeter settings for the number of threads
(users) are 10, 20, 50, 100, 200 and 400, the rump-up period
(in seconds) is 0 and, finally, the loop count is 1.

Below are the times taken for each the test scenario to
complete, based on the number of users:

• 10 users: 51 seconds,
• 20 users: 1 minute 6 seconds,
• 50 users: 2 minutes 36 seconds,
• 100 users: 5 minutes 40 seconds,
• 200 users: 12 minutes 20 seconds,
• 400 users: 40 minutes 25 seconds,
• 500 users: 48 minutes 33 seconds.
When we performed the test with 1000 threads, some

threads started timing out, so the test was not completed.

VI. CONCLUSION

The performances of Docker Swarm and Kubernetes under
load were compared via an application. A conclusion has been
reached regarding the performances of Docker Swarm and
Kubernetes in the architecture described in this study.

The test we did without using an orchestrator (TWO) could
not handle the load in more than 50 threads. Thus, it is clearly
seen that it is not efficient as the load on the application
increases. The application could not respond to high loads.

Although Docker Swarm takes longer time in tests with
fewer users, when the number of users increased, it was
completed in a shorter time than Kubernetes. The ability of
Docker Swarm and Kubernetes to be scalable in load tests has
not been tested in this study.

Considering the architecture of the application and the
number of microservices, we can say that its complexity is low.
For this reason, as the number of users increases, we see that
the Docker Swarm test yields better results than Kubernetes
and also completes in a shorter time.

In this study, 3 replicas were used in Kubernetes and
Docker Swarm. As the number of incoming requests increases,
the automated replica creation capabilities test will be dis-
cussed in a future study.

ACKNOWLEDGMENT

We would like to thank Associate Professor Mehmet Sıddık
AKTAŞ (affiliation: Yıldız Technical University, Computer En-
gineering, İstanbul, TURKEY) for his valuable contributions
and inspiring guidance.

REFERENCES
[1] A. Modak, S. Chaudhary, P. Paygude, and S. Ldate, “Techniques to

secure data on cloud: Docker swarm or kubernetes?” in 2018 Second
International Conference on Inventive Communication and Computa-
tional Technologies (ICICCT). IEEE, 2018, pp. 7–12.

[2] R. Heinrich et al., “Performance engineering for microservices: research
challenges and directions,” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion,
2017, pp. 223–226.

[3] N. Marathe, A. Gandhi, and J. M. Shah, “Docker swarm and kubernetes
in cloud computing environment,” in 2019 3rd International Conference
on Trends in Electronics and Informatics (ICOEI). IEEE, 2019, pp.
179–184.

[4] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), 2016, pp.
44–51.

[5] M. Amaral et al., “Performance evaluation of microservices architec-
tures using containers,” in 2015 IEEE 14th International Symposium
on Network Computing and Applications, 2015, pp. 27–34.

[6] L. Mercl and J. Pavlik, “The comparison of container orchestrators,”
in Third International Congress on Information and Communication
Technology, X.-S. Yang, S. Sherratt, N. Dey, and A. Joshi, Eds.
Singapore: Springer Singapore, 2019, pp. 677–685.

[7] Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, and R. Sinnott, “A
performance comparison of cloud-based container orchestration tools,”
in 2019 IEEE International Conference on Big Knowledge (ICBK), Nov
2019, pp. 191–198.

[8] W. Li and A. Kanso, “Comparing containers versus virtual machines
for achieving high availability,” in 2015 IEEE International Conference
on Cloud Engineering, 2015, pp. 353–358.

[9] G. C. Fox et al., “Real time streaming data grid applications,” in
Distributed Cooperative Laboratories: Networking, Instrumentation, and
Measurements. Springer, 2006, pp. 253–267.

[10] M. Aktas et al., “iservo: Implementing the international solid earth
research virtual observatory by integrating computational grid and
geographical information web services,” in Computational Earthquake
Physics: Simulations, Analysis and Infrastructure, Part II. Springer,
2006, pp. 2281–2296.

[11] Marka.club. [accessed Oct. 2020]. [Online]. Available: https://github.
com/kodkafa/marka.club

[12] Mongodb. [accessed Oct. 2020]. [Online]. Available: https://www.
mongodb.com/

[13] Docker swarm. [accessed Oct. 2020]. [Online]. Available: https:
//docs.docker.com/engine/swarm/

[14] Kubernetes. [accessed Oct. 2020]. [Online]. Available: https://
kubernetes.io/

[15] Jmeter. [accessed Oct. 2020]. [Online]. Available: https://jmeter.apache.
org/

[16] D. Nevedrov, “Using jmeter to performance test web services,” Pub-
lished on dev2dev, 2006, pp. 1–11.

111Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 122 / 191

A Model-Based Safe-by-Design Approach with IP Reuse for Automotive Applications

Morayo Adedjouma
Université Paris-Saclay, CEA, LIST

F-91120, Palaiseau, France
Email: morayo.adedjouma@cea.fr

Nataliya Yakymets
Université Paris-Saclay, CEA, LIST

F-91120, Palaiseau, France
Email: nataliya.yakymets@cea.fr

Abstract—The paper presents an approach for design/safety co-
engineering and reuse of safety IP Cores. The approach is based
on a compositional development process coupling system devel-
opment and safety processes from a formalization of activities
proposed in ISO26262. The co-engineering approach integrates
reuse of safety and design artifacts to reduce development efforts.
We illustrate the approach on the example of an Adaptive Cruise
Control System within a tool called Sophia. We discuss the
advantages and limitations that the approach brings for the
development of safety critical systems.

Keywords–automotive system; model-based; functional safety;
IP Core reuse.

I. INTRODUCTION

With the growing complexity of systems in the automotive
domain, vehicles become more and more safety-critical as
failures or hazardous decisions about the environment may
lead to accidents that cause human lives. Due to the safety-
critical nature of such systems, system and safety engineers
are prone to follow safety standards (e.g., ISO26262 [1]),
best system development pratices and associated tools. In this
context, Model-Based System Engineering (MBSE) and IP
Core reuse are promising approaches. MBSE helps to integrate
various methods and tools for safety analysis into the common
system modeling environment, to customize this environment
to the automotive domain and to provide extensive traceability
links across the safety analysis process [2]. The IP Core reuse
approach allows reducing the system development efforts by
using libraries of pre-existing design artifacts [3]. We also
integrate the reuse of safety artifacts like libraries of failures
modes, hazards, etc. to reduce the safety activities effort [4].
In practice, however, the tool support of the aforementioned
approaches is not well integrated.

In this paper, we present an approach based on MBSE,
Model-Based Safety Assessment (MBSA) and reuse concepts.
Our approach extends such approaches as [5][6] to the au-
tomotive domain based on ISO26262 standard, in particular,
the recommendations of Part 4 about product development
at the system level. Although ISO26262 provides generic
recommendations on which safety related workproducts should
be issued, it does not specify the particular processes on
how to get those workproducts. There may exist dependencies
between workproducts recommended by ISO26262, which can
slow down the system development. Therefore, an efficient
way to implement the standard recommendations is to turn to
system and safety co-engineering and parallelize steps of both
processes when possible. The advantage of such an approach is
that the safety activities do not block the system development
activities, and vice-versa.

In addition, we apply well-trusted design principles by
exploiting the ability to reuse pre-modeled (and already pre-
analyzed) IP Cores, as well as libraries of safety artifacts. As
defined in Part 4 of ISO26262, by IP Cores we consider well-
trusted designs for elements (including hardware and software
components), as well as well-trusted or standardized interfaces.
By safety artifacts we understand well-trusted technical safety
concepts and mechanisms for the detection and the control of
failures [1]. Although, pre-analyzed design elements and safety
analysis results are context-dependent and cannot be reused as-
is according to ISO26262, certain artifacts (e.g., definition of
generic failure modes, risks and their causes) can be detached
from the context and reused in the form of libraries.

We illustrate the approach on an Adaptive Cruise Control
(ACC) system [7]. The ACC is an example of safety-critical
system that requires engineers to adopt a safety standard.
We conduct our analysis of the ACC system using Sophia
[6], a modeling tool which offers a graphical development
environment for system design and safety analysis. Sophia
semi-automates the proposed methodology and improves the
traceability of system and safety artifacts at the early phases
of the system development lifecycle. Using this case study, we
show how to obtain a safe-by-design automotive system and
reduce the design and analysis efforts due to the co-engineering
and libraries reuse approach.

The rest of the paper is organized as follows. Section I
motivates our work. Section II presents the current practices
and weaknesses for safe development of automotive systems.
We present our approach in Section III and its tool support in
Section IV. We outline the approach application on the ACC
system in Section V and discuss our concluding remarks in
Section VI.

II. STATE OF THE ART AND PRACTICE

The integration of any classical safety analysis method
into an MBSE environment requires three main steps [5]: (1)
system model creation, (2) safety annotation and modeling, (3)
safety analysis and generation of results. Several initiatives,
approaches and tools have evolved over time in the field
of MBSA. In these approaches, the system model can be
created using languages, such as UML (Unified Modeling
Language) [8], SysML (System Modeling Language) [9], or
domain specific languages like EAST-ADL [10]. Then the
system model is extended with the safety concepts and re-
lations either by using safety profiles like [6][11]-[12] or by
translating the system model into formal or safety languages
for further analysis [13][14]. Some of these approaches come
with a methodology to comply with standards, e.g., ISO26262
[10][12]. Once the model has been annotated with safety

112Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 123 / 191

data, it can be analyzed using MBSA tools that offer one
or a few methods for safety analysis. The latter case needs
additional efforts to study the semantics of the languages
and to implement the bridges between tools. Examples of
analytical and simulation tools are xSAP [14] and AltaRica
toolset [13]. Despite profound analysis provided by those
tools, many of them require professional knowledge of model-
ing methods (e.g., Markov chains or Petri nets) and formal
languages (e.g., AltaRica, SMV, etc.), which is a barrier
for widespread utilization. Concerning reuse of pre-existing
artifacts, these tools require reverse engineering to build system
models. RiskWatch [15] or Pilar [16] are examples of tools
implementing risk management methodologies. Those tools are
exclusively qualitative, and based on various tabular structures
filled by informal description methods. The running system is
never explicitly modeled, hence there is no reuse capabilities of
the IP Core provided. Some others research and model-based
tools like Hip-Hops [17], Visual Figaro [18], CAFTA, Isograph
Reliability Workbench [19], ConcertoFLA [20] and Medini
Analyze [21] implement features to store and reuse some safety
artifacts. Most of them provide libraries or databases of failure
modes, their causes and effects, component failure patterns,
etc. However, the lack of interoperability between the tools
and/or closed data formats make it difficult to reuse and/or
export the safety models, libraries and results.

There were also some initiatives and projects working
on safety certification platforms, e.g., the European projects
OPENCOSS [22] and AMASS [23]). These projects and
their associated tools aim at safety certification according to
different standards (including ISO26262) based on MBSA. As
part of the AMASS platform, our work helps follow ISO26262
recommendations for the system development through a MBSE
and MBSA approach in an unified environment. The work
relies on open data and open languages (UML/SysML) and
provides reusability features of IP Core and safety artifacts
libraries.

III. APPROACH

Figure 1 presents the co-engineering methodology at a
glance. The methodology shows how to conduct safety assess-
ment based on the reference phase model for the development
of a safety-related item at system level (Part 4) described in
ISO26262. It allows conducting system development in parallel
with safety assessment with respect to ISO26262 requirements.
By parallelizing both concerns into a co-engineering process,
the system development steps are not blocked by the safety
steps. The reuse of pre-analyzed IP Cores and safety artifacts
reduces development and analysis efforts.

The inputs for the proposed methodology are: 1) sys-
tem description including requirements, functional and system
architecture; and 2) safety analysis results from the FMEA
(Failure Mode and Effects Analysis) [24], the FTA (Fault Tree
Analysis) [25] and the HARA (Hazard Analysis and Risk
Assessment), obtained at the prior phases of system develop-
ment lifecycle, such as concept definition. To harmonize the
methodology with ISO26262 reference model, we prefix its
main steps with the appropriate clauses of the standard. The
methodology includes the following steps:

• (4.5) Initiation of product development at the system
level. We determine and plan the functional safety ac-

tivities to perform during the development of Automotive
System (AS).

• (4.6) Specification of the technical safety requirements
synchronized with system requirements. The system re-
quirements are specified and analyzed by the system
engineer and safety expert to derive the technical safety
requirements. At this stage, one can reuse existing safety
mechanisms from the IP Core library for the require-
ments specification, e.g., fault detection measure, self-
monitoring concept, warning concept.

• (4.7) System design synchronized with system safety
analyses. The technical safety requirements as result of
previous step help define the system design. If the library
contains prior pre-modeled and analyzed components
included in the system under analysis, they could be
reused (with regard to appropriate impact analysis related
to the new system context). Safety analyses are conducted
on the defined architectural design to avoid systematic
failures of the system. System safety analyses may include
the HARA in the case of usage of reusable elements
and if new hazards are introduced, the FMEA and the
qualitative FTA. During safety assessment, various safety
artifacts (hazards, failure modes, causes, effects, control
mechanisms, etc.) could be reused from and added to the
safety artifacts libraries. The newly analyzed elements are
also stored into the libraries for their reuse during further
iterations or for future usage in other projects.

IV. TOOL SUPPORT

The co-engineering methodology given in Section III is
semi-automated in Sophia tool, a MBSE/MBSA framework
[26]. Sophia includes a set of DSLs (Domain Specific Lan-
guage) dedicated to several aspects of safety assessment
methodology. Each DSL is a UML profile having its equivalent
viewpoint [27]. As shown in Figure 1, each viewpoint could
be used during one or several steps of the methodology. The
Safety Requirement DSL describes a taxonomy and properties
of safety requirements compliant with ISO26262 (Part 8). The
Process Management DSL defines the evolution of system
architecture through its lifecycle by introducing such concepts
like system, function, hardware, software along with corre-
sponding allocation relationships. The HARA, FMEA, FTA
and property verification DSL describe the safety concepts
related to these methods recommended in ISO26262.

Figure 2 shows an overview of Sophia architecture. The
tool is implemented as Eclipse plugins on top of Papyrus
tool, a customizable environment supporting modelling of
systems using standardized languages (e.g., UML, SysML).
The framework is modular so that dedicated analysis modules
can be used either independently or conjointly in a given
user-defined process. Sophia provides a fluent and integrated
flow supported by ISO26262 Process package that interacts
with the safety analyses. These packages 1) refer to the
Safety and Reliability package providing generic definitions
to dependability concepts; 2) provide a mechanism to save
and reuse safety artifacts obtained during safety analyses in
the form of annotated elements; 3) provide functionality to
save and reuse pre-analyzed safe IP Cores in form of SysML
models or SysML Blocks annotated with safety concepts.
Sophia also provides bridges to other external tools for further
safety analyses like NuSMV [28], AltaRica, FIDES [29]and

113Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 124 / 191

Figure 1. System/safety co-engineering methodology and safety viewpoints mapping

Figure 2. Sophia tool architecture to support ISO26262 recommendations

XFTA [13]. The analyses yield results that are propagated back
through the design and display in the models using dedicated
profiles, editors, tables, and Papyrus customization toolsets.

V. CASE STUDY

We apply the proposed methodology (Figure 1) to design
a safety-critical Adaptive Cruise Control (ACC) System. The
ACC is a well-known automotive system that allows a vehicle’s
cruise control to adapt the vehicle’s speed to the traffic environ-
ment. The ACC uses a radar attached to the front of the vehicle
to detect whether preceding vehicles are moving in the path of
the host car with the ACC. If there is no preceding vehicle, the
ACC maintains the driver selected speed. When a preceding
vehicle shows up, the system may automatically apply braking,
control throttle or shift gear to adapt the vehicle speed and
maintain the selected clearance without driver intervention.

A. Initialization of Product Development at the System Level
As we consider the reuse of various elements from IP Core

and safety artifact libraries, we perform an impact analysis to
assess the effects of the reused artifacts in our context and to
determine the applicable safety activities that we will need to
conduct for the ACC system development.

B. Specification of the Technical Safety Requirements
We capture and model the system requirements of the ACC

system. Hereafter, we consider the requirement REQ ACC 03
given in Figure 3. This requirement is satisfied by the
component ACC module (Figure 4), and its refinement in
several sub-requirements REQ ACC 03a, REQ ACC 03b,
REQ ACC 03c, are satisfied by the system function Incre-
ment speed, Decrement speed and Shift gear, respectively.
These requirements are enriched with safety requirements
(prefixed by Safety REQ ACC) specifying the safety mea-
sures/mechanisms identified as we performed the safety anal-
yses of the system (see Section V-D). We store the technical
safety requirements into the appropriate library for later usage.

C. System Design
Figure 4 shows the top level design of the ACC system with

the interconnecting interfaces between its components. The
core part of the ACC system is the ACC module. It processes
data information from the Radar.

The ACC module sends a signal to Brake Control in
case of braking. The Engine Control and Electronic Throttle
Control control the vehicle speed by increasing or decreasing

114Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 125 / 191

Figure 3. Excerpt of functional (shown in white) and safety (shown in red) requirements of the ACC system.

Figure 4. Top level architecture of the ACC system shown in Internal Block Diagram. The ACC architecture was modified (shown in green) to satisfy safety
requirements

the throttle injection. The Cruise Switches component allows
the driver to command the ACC functionalities and to set
the selected speed and clearance. The Instrument Cluster is a
panel in front of the driver that processes the Cruise Switches
and sends them to the ACC and Engine Control modules.
The Instrument Cluster also displays information regarding
the ACC system state. The Brake Switches can deactivate
the Cruise Control operation. The Brake Lights component
allows illumination of the stop lamps during automatic braking
from the ACC module request. The Brake Actuators & Speed
Sensors component includes the sensors and devices, such as
the brake pedal, the accelerator pedal, etc. The communication
bus and the Controller Area Network (CAN) transmit all
the signals between the components. We link the technical
safety requirements to appropriate system components. The
requirement REQ ACC 03 given in Figure 3 is satisfied by
the component ACC module (Figure 4). The sub-requirements
REQ ACC 03a, REQ ACC 03b, REQ ACC 03c, are satis-
fied by the system functions Increment speed, Decrement
speed and Shift gear, respectively. Those system functions
are realized by components that we reuse from the IP Core
libraries, namely the Brake Lights, Brake Switches and Cruise
Switches.

D. System Safety Analysis

Hereby, we focus on performing the HARA and FMEA
analyses with Sophia tool [26] to illustrate the proposed
concept of IP Cores and safety artifacts reuse.

HARA. We perform the HARA on the system design
to determine new hazards and effects that may arise as we
reuse some libraries elements in a new context. The HARA
is based on the usage scenarios and the main functionalities
of the ACC system. It takes into account requirement and
architecture models defined in the Safety Requirements and
Process Management viewpoints. Some HARA artifacts are
defined in a specific library as model elements reusable from
one viewpoint to another, e.g., the set of operating conditions
are derived from the vehicle states and the malfunctions
are specified for all functions that satisfied the functional
requirements of the system. The hazards, nature of injuries
are also coming from a predefined list corresponding to the
injury category described in the ISO26262 standard. During the
analysis, we reused the HARA results for the Brake Lights,
Brake Switches and Cruise Switches that improved analysis
time.

Hereafter, we analyze the following operational situation:
the ACC system being active when the vehicle is driving on
highway at medium speed, following a preceding vehicle. We

115Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 126 / 191

Figure 5. Excerpt of the FMEA results for the ACC system. Columns 5, 9 and 12 are calculated automatically according rules given ISO26262

analyze the ACC function Increment speed (Figure 4) used to
maintain the desired distance with the preceding vehicle. Some
malfunctions associated with this function are the ACC system
increases vehicle speed when it is too close to preceding
vehicle and the ACC system increases vehicle speed beyond
desired speed set by driver. The generic hazard Unintended ac-
celeration is associated with these malfunctions. The resulting
hazardous event, as defined by ISO26262, is a combination
of the hazard and the operational situation, i.e., the ACC
module requests an unintended acceleration when preceding
vehicles are too close. In our example, the hazardous event is
evaluated at the Automotive Safety Integrity Level (ASIL) C,
with Exposure=E4, Controllability=C2, Severity=S3. Finally,
we determine the safety goals for the hazardous events to
prevent an unacceptable risk level from those events or re-
duce their impact. The safety goals refine/extend the ACC
requirements defined in the Safety Requirement Engineering
viewpoint (Figure 3). For our example of hazardous event, we
define two safety goals, Safety REQ ACC 03a: ACC should
not increase the speed beyond the desired speed set by the
driver, and Safety REQ ACC 03b: ACC should decrease the
speed if the distance to the preceding vehicle is too close.
The newly analyzed ACC components and safety artifacts are
stored into the IP Core and safety artifacts libraries (as shown
in Figure 1).

FMEA. The FMEA complements the HARA by deter-
mining the corrective actions to be implemented to meet
previously defined safety objectives. This analysis uses as
inputs the usage scenarios, the ACC system architecture, as
well as the results of the HARA model elements (libraries
of accidents, malfunctions, hazardous events, accidents, etc.)
and their properties (severity, ASIL, etc.). The analysis helps
determine the effects and the criticality of single basic causes
of failure modes at the component level until the system level.

With the help of the safe IP Core libraries, the tool traces
the FMEA artifacts to the hazardous events and accidents
previously identified in the HARA. Figure 5 shows the FMEA
table generated for the ACC module component. The malfunc-
tions found during the HARA are stored into the safety artifacts
library and then reused for failure mode identification. As an
example, we specify the failure mode Loss of the ACC module,
its causes (missing input signal, CAN fault) and effects (loss).
This failure mode can lead to different effects until the crash of
the vehicle at customer level referring to the accident identified
during the HARA. We found that the ACC module changes
its criticality level from critical to moderate after application
of recommended and well-trusted preventive actions (already
existing in the libraries). The list of safety requirements is
derived from the specified preventive actions: for our example,
it is prevent activation of cruise module when braking system
fails. These new safety requirements are traced by the tool
to the safety goals elicited during the HARA. As during the
HARA, the analyzed components with the FMEA results are
stored to safe IP Core library (as shown in Figure 1). We reused

existing results of the analysis for the Brake Lights, Brake
Switches and Cruise Switches that reduce efforts to perform
the FMEA.

Figure 4 shows how the ACC architecture was modified
to satisfy the safety requirements derived during the ACC
development process. The improved scenario is that the ACC
module should send a brake actuator request to a new added
Actuator Controller in order to duplicate the brake actuator
command from both the Brake Control and the Actuator
Controller.

VI. CONCLUSION AND DISCUSSION

The ever growing complexity of modern automotive sys-
tems presents certain challenges in meeting time to market
constraints. To address this issue, we suggest a methodology
that helps in formalizing, synchronizing and semi-automating
the system development and the safety analysis activities
recommended in ISO26262. The methodology includes the
ability to reuse libraries of already pre-modeled and pre-
analyzed IP Cores as basic elements for building more complex
automotive systems. In addition, we can reuse safety artifacts
(e.g., hazards, failure modes, etc.) for analysis of other systems.
It makes the design process more flexible and reduces the
design time.

We implement the proposed methodology in Sophia tool.
Sophia is a modeling tool offering a graphical development
environment for system design and safety analyses. It relies
on SysML and UML languages, so that the models and
libraries can be imported and reused in different modeling
environments. Beside, as both the development and safety
activities are conducted in the same environment, we avoid
interoperability and traceability issues that undermine the reuse
capabilities of certain tools. Although we focus on the system
development process to demonstrate the methodology, the pro-
posed methodology is applicable to later development phases,
in particular, to software and hardware development and testing
activities. For example, we may refer to FIDES to refill our IP
Core libraries, as it is a well-known and standardized database
for reliability prediction of hardware components.

We apply the model-based safety analysis and IP Core
reuse approach to an ACC system. During the case study,
we model the ACC system architecture and conduct safety
analyses according to the proposed methodology. As a result,
we identify critical components of the ACC system and
propose architectural changes to reduce the system overall
criticality level. In the case study, we reuse pre-analyzed IP
Cores (in particular, Brake Lights, Brake Switches and Cruise
Switches), as well as various HARA and FMEA safety artifacts
(e.g., hazards, malfunctions, failure modes, safety mechanisms,
etc.) across the development process. This possibility helps us
reduce the design and analysis effort.

The case study shows the important efforts for the deploy-
ment of the methodology the first time: it takes time to model
the system and to fill in the libraries. However, this effort

116Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 127 / 191

may be rapidly amortized during next iterations or in future
projects by saving time and cost on the analyses thanks to
the reusability inherent to the model-based and IP Core reuse
paradigms.

From our case study, we also notice the lack of certain
domain specific expertise about which safety artifacts can
be reused in specific context. Another difficulty comes from
maintenance of the libraries while IP Cores or safety artifacts
must be accompanied with justifications about their application
context. As future work, we might consider exploration of
solutions based on Safety Element out of Context (SEooC)
concept from ISO26262. We would also develop dedicated
libraries per domain to be able to address other standards (e.g.,
aerospace, robotic, and medical).

REFERENCES

[1] ISO 26262: Road Vehicles : Functional Safety. International Organi-
zation for Standardization, 2018.

[2] D. Brugali, “Model-driven software engineering in robotics: Models are
designed to use the relevant things, thereby reducing the complexity and
cost in the field of robotics,” Robotics & Automation Magazine, IEEE,
vol. 22, no. 3, 09 2015, pp. 155–166.

[3] D. D. Gajski et al., “Essential issues for ip reuse,” in Proceedings 2000.
Design Automation Conference. (IEEE Cat. No.00CH37106), 02 2000,
pp. 37 – 42.

[4] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri, Tool-
Supported Safety-Relevant Component Reuse: From Specification to
Argumentation. Cham: Springer International Publishing, 01 2018,
pp. 19–33.

[5] N. Yakymets, S. Dhouib, H. Jaber, and A. Lanusse, “Model-driven
safety assessment of robotic systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 1137–1142.

[6] N. Yakymets, M. Perin, and A. Lanusse, “Model-driven multi-level
safety analysis of critical systems,” in 2015 Annual IEEE Systems
Conference (SysCon) Proceedings, 2015, pp. 570–577.

[7] W. Pananurak, S. Thanok, and M. Parnichkun, “Adaptive cruise control
for an intelligent vehicle,” in 2008 IEEE International Conference on
Robotics and Biomimetics, 2009, pp. 1794–1799.

[8] The Unified Modeling Language Specification Version 2.5, 2015.
Object Management Group, retrieved: September, 2020. [Online].
Available: https://www.omg.org/spec/UML/2.5/

[9] System Modeling Language Specification Version 1.5, 2017. Object
Management Group, retrieved: September, 2020. [Online]. Available:
https://www.omg.org/spec/SysML/

[10] P. Cuenot, C. Ainhauser, N. Adler, S. Otten, and F. Meurville, “Applying
model based techniques for early safety evaluation of an automotive
architecture in compliance with the ISO 26262 standard,” in Embedded
Real Time Software and Systems (ERTS2014), Toulouse, France, 02
2014.

[11] G. Biggs, T. Juknevicius, A. Armonas, and K. Post, “Integrating safety
and reliability analysis into mbse: overview of the new proposed OMG
standard,” INCOSE International Symposium, vol. 28, no. 1, 07 2018,
pp. 1322–1336.

[12] P. Feth et al., “Multi-aspect safety engineering for highly automated
driving,” in Computer Safety, Reliability, and Security, B. Gallina,
A. Skavhaug, and F. Bitsch, Eds. Cham: Springer International
Publishing, 2018, pp. 59–72.

[13] Altarica. Alatarica Association, retrieved: September, 2020. [Online].
Available: https://altarica.labri.fr/

[14] G. Biggs, T. Juknevicius, A. Armonas, and K. Post, “The xsap safety
analysis platform,” in Tools and Algorithms for the Construction and
Analysis of Systems, M. Chechik and J.-F. Raskin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 04 2015.

[15] RiskWatch. Risk Watch International, retrieved: September, 2020.
[Online]. Available: http://www.riskwatch.com/

[16] Pilar. EAR, retrieved: September, 2020. [Online]. Available: www.
pilar-tools.com/en/tools/pilar/

[17] Hip-Hops. Hull University, retrieved: September, 2020. [Online].
Available: http://hip-hops.eu/

[18] Visual Figaro. Electricite De France, retrieved: September, 2020.
[Online]. Available: https://sourceforge.net/projects/visualfigaro/

[19] Isograph Reliability Workbench, retrieved: September, 2020. [Online].
Available: https://www.isograph.com/software/reliability-workbench/

[20] B. Gallina, Z. Haider, and A. Carlsson, “Towards generating ECSS-
compliant fault tree analysis results via ConcertoFLA,” IOP Conference
Series: Materials Science and Engineering, vol. 351, 05 2018, p.
012001.

[21] Ansys, Medini Analyzer. Ansys, retrieved: September,
2020. [Online]. Available: https://www.ansys.com/products/systems/
ansys-medini-analyze

[22] OPENOCSS project. The OPENCOSS Consortium, retrieved:
September, 2020. [Online]. Available: http://www.opencossproject.eu

[23] AMASS project. The AMASS Consortium, retrieved: September,
2020. [Online]. Available: https://www.amassecsel.eu

[24] IEC 60812: Analysis techniques for system reliability - Procedures for
FMEA. International Electrotechnical Commission, 1985.

[25] NASA, “Fault tree handbook with aerospace applications,” 2002.
[26] M. Adedjouma and N. Yakymets, “A framework for model-based

dependability analysis of cyber-physical systems,” in 2019 IEEE 19th
International Symposium on High Assurance Systems Engineering
(HASE), 2019, pp. 82–89.

[27] M. Mori et al., “Systems-of-systems modeling using a comprehensive
viewpoint-based SysML profile,” Journal of Software: Evolution and
Process, vol. 30, no. 3, 2018, p. e1878, e1878 JSME-16-0093.R2.

[28] NuSMV. NuSMV Project, retrieved: September, 2020. [Online].
Available: http://nusmv.fbk.eu/

[29] FIDES. The Fides Consortium, retrieved: September, 2020. [Online].
Available: https://www.fides-reliability.org/

117Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 128 / 191

Effect of Data Science Teaching for Non-STEM Students
A Systematic Literature Review

Luiz Barboza

CESAR School
Recife, Brazil 50030–390

Email: lcbj@cesar.school

Erico Souza Teixeira

CESAR School
Recife, Brazil 50030–390

Email: est@cesar.school

Abstract—The evolution of computing capacity allowed specialists
in certain areas to benefit from this advance, although with little
knowledge about data analysis technologies. In this way, our role
as software scientists, more than increasing computational power,
is to facilitate the access of people from other areas to these
technologies and, with this combined effort, bring more relevant
results to society. With this objective in mind, a systematic
literature review was carried out to understand if (RQ1), how
(RQ3) and why (RQ2) data science is being taught to students of
non-STEM (Science, Technology, Engineering and Mathematics).
The bases used in this research were ACM and IEEE, dismissing
the articles that met the exclusion criteria. These criteria were: a)
articles focused on the use of technology to improve the learning
process in general; b) articles targeting different groups than the
one prioritized here, non-STEM; c) educational improvements
obtained with different proposals other than the introduction of
data science.

Keywords–Data Science; Non-STEM; Teaching.

I. INTRODUCTION
The popularity of data science courses has increased over

the last five years (2015 to 2020), as we can see on the graph
generated by Google Trends shown in Figure 1.

Figure 1. Worldwide search term, Data Science Course (source: Google
Trends)

This is true for industry and academia, particularly in
STEM courses, where this discipline has a solid base and even
a reference curriculum [1] as the main guide. On the other
hand, this type of knowledge is still not widespread in non-
STEM areas. In fact, data science applied in different domain
areas, is one of three data science pillars, as seen in Figure 2.

Bearing this in mind, a systematic review of the literature
is presented based on the current state of the art of if, how and
why data science is being offered in non-STEM courses. In
the next sections, the method for research, selection, extraction
and synthesization will be detailed to answer the three research
questions.

Figure 2. Data Science comprised of Computation, Domain Knowledge and
Math/Statistics [2]

II. BACKGROUND

Since their emergence in the 1950s [3], machine learning
algorithms have had limited applications, as they depended
on computational power to process large volumes of data [4].
From the beginning of this century, the increase in computing
power and the demand for understanding and relating the
large mass of information available, machine learning solutions
have become more sophisticated [5] and more popular in
their use [6]. This popularization allowed machine learning
to reach an important milestone, the possibility of access for
people without specific training in science or data technology.
Today, it is possible for people from different areas, such as
Economics, Administration, Health, Philosophy, Architecture,
among others, to be able to extract information from their
data without the need for prior in-depth knowledge of data
science. Even tough, this paper focuses on non-STEM students
in general, we can consider economists as an example of it
as the background context presented as follows. Like physi-
cists, economists acquire non-experimental data generated by
processes they want to understand. The mathematician John
von Neumann defined a game [7] as: 1) a list of players; 2)
a list of actions available to each player; 3) a list of how the

118Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 129 / 191

accumulated winnings for each player depend on the actions of
all players; and, 4) a time protocol that tells who chooses what
and when. This definition corresponds to what economists call
the economic system, a social understanding of who chooses
what and when.

In addition, economists would like to conduct experiments
to study how a hypothetical change in the rules of the game
or in a pattern of behavior observed by some ”players”,
for example, government regulators or a central bank, can
affect the patterns of behavior of other players. Thus, the
“structural model builders” in economics seek to infer, from
historical patterns of behavior, a set of invariant parameters for
hypothetical situations in which a government or regulatory
body follows a new set of rules. ”Structural models” look for
invariant parameters to help regulators and market designers
understand and predict data patterns in historically unprece-
dented situations.

Like physicists, economists use models and data to learn.
These models are then used to explain new data. Then, new
models are built as evolution of their predecessors. This
allows us to learn from the depressions and financial crises
of the past. Nowadays, with big data, faster computers and
better algorithms, patterns can be seen where only noise was
previously heard.

The work presented here proposes to evaluate how the
study of data analysis, even if not in-depth, can better train
students from different non-technical areas of study, such as
Economics and Administration.

III. REVIEW METHOD
A. Research Questions

The research questions analysed here were: RQ1) How
is knowledge in data science being taught to non-technical
target audiences, particularly economics and business students?
RQ2) What are the learning improvements that these students
are experiencing with the use of data science in different areas
of their studies? RQ3) What was the method used in teaching
data science?

B. Search Protocol
Using IEEE and ACM as the main source of research

without year of publication threshold, the work here will look
for documents related to data science knowledge that are being
introduced to either secondary or higher level education tar-
geting non-technical audiences, such as students of economics
or business administration, defined by the following research
string:
(”data science”) AND (teaching OR education) AND (eco-
nomics OR administration OR humanities OR non-technical)

The protocol applied here was comprised of four steps:
1) Apply the search string: apply the string according to
the objectives; 2) Filter based on the criterion: Filter the
articles by the inclusion and exclusion criteria by analyzing
their abstracts; 3) Validate answers to the research questions:
read the selected texts, checking if they answer the research
questions. If so, extract them as a reference for the final article
resulting from a systematic review; 4) Synthesize: apply the
thematic synthesis method in order to summarize the research
findings.

TABLE I. SELECTION PROTOCOL RESULTS

IEEE ACM
Initial set of papers 300 130
Passed inclusion criteria 11 18
Final list of papers 3 6

After the inclusion/exclusion criteria review, the article set
was filtered if it answered one of the research questions. The
results are summarized in Table I.

C. Selection

The criteria for the inclusion of the article are:
- The article should be written in the English language.
- The article should have its scope focusing on data science

studies of non-technical target audiences.
The criteria for the exclusion of the article are:
- Articles focusing on the use of technology to improve the

learning process.
- Articles targeting different groups other than the one

prioritized here, namely, non-STEM.
- Educational improvements achieved through different

proposals other than data science introduction.
- Data Science application without the explicit goal of

educational purposes.

D. Extraction

At this step of the process, specific extracts of the analysed
papers were identified as being a valid answer to any of
the three research questions. As an example, [8] could be
cited here, specially as the author starts beautifully with this
sentence: ”Because no data exists in a vacuum, each Data
Analytics major must choose an applied domain in which to
specialize. The goal of this specialization is to understand
the types of questions that data are used to answer in that
discipline, and how data are collected and interpreted in this
context. There are currently seven available domains: An-
thropology and Sociology; Biology; Economics; Philosophy;
Physics; Political Science; and Psychology”

The domains mentioned by [8] adhered to the data science
studies in different proportions, as depicted in Figure 3.

E. Synthesis

In order to answer the first research question, the following
classification was applied: a) school level to which it was
applied; b) location/scope; c) concepts taught; and d) target
audience. The coding applied to analyze the answers of the
second research question was: e) the achieved results; and f)
how they were measured. Finally, the last research question had
its own coding, g) the method used in teaching data science.

IV. RESULTS
A. RQ1) The IF

In order to answer this research question, the following as-
pects were analysed: education level, location/scope, concepts
taught and target audience.

119Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 130 / 191

Figure 3. Proportion of courses applying data science on a particular study
[8]

1) School Level: Junior High School (from 5th up to 9th
graders): As seen in [9], Data Science is being taught to school
kids, from 10 up to 15 years old. ”We organized a half-day
long data science tutorial for kids in grades 5 through 9 (10-
15 years old). Our aim was to expose them to the full cycle of
a typical supervised learning approach - data collection, data
entry, data visualization, feature engineering, model building,
model testing and data permissions”. The main goal of this
experience is to expose young kids to data analysis reasoning
and to an intuitive overview of the data science process. Senior
High School (from 10th up to 12th graders): A deeper approach
can be observed in [10], in which programming (python),
data analysis and problem solving are experienced by high
school students. Serving as a bridge between programming
intuition and logic to actual imperative coding, as stated by
the author ”this course is a crucial component of the K-12
computational thinking pathways we are developing at our
school district, which take students from block-based pro-
gramming and computational thinking (elementary school) to
text-based programming and applications of computer science
(high school). Our mandatory 8th grade course serves as
a bridge between these two components”. College/University
level (undergraduate and graduate): At the college/university
level is where we can see most of data science teaching. The
most relevant aspect for the scope analysed here is if it is
being taught to non-STEM students. This particular item will
be reviewed under the target audience topic of this study.
Anyhow, this kind of practice can be observed at undergraduate
level by numerous authors [2][8][11][12][13][14]. To depict
an example of it we can cite [12] ”data analysis and visu-
alization techniques could be applied in an English literature
class in order to help students better understand contextual
information, analyze characters’ social networks, and visualize
literary techniques”. At the graduate level, we can mention the
experience reported by [15]: ”We are developing educational
materials for data science to provide broad and practical
training in data analytics non-CS students. This includes
students majoring in science and engineering who want to

acquire skills to analyze data, such as biology, chemistry, and
geosciences. This also includes students in the humanities that
would like to pursue data-driven research, such as journalism
students interested in social media analysis”.

2) Location/Scope: All the studies analysed report local-
ized experiences, in the sense that none of the studies reported
a broader experiment throughout a larger region rather than
the local institution in which the study itself was used as base
for the research. Most of the studies considered were based in
the following states of the USA [14]: California [9][12][15],
Washington DC [10] and Ohio [8]. The remaining of the
studies were performed in Europe, in the following countries:
Germany [2], Switzerland [13] and Finland [11].

3) Concepts Taught: The level of depth in which the
concepts are being taught can be categorized in the following
groups: Data Analysis, Programming, Big Data, Data Science
and Machine Learning. Data Analysis: It can be defined [16]
”as a set of mathematical/statistical procedures, generally
used as computer programs, embracing elementary but par-
ticularly multidimensional statistical techniques that require
an iterative application in order to statistically process the
data and extract information from the data set. This method
involves the use of mathematical/statistical rules generally
applicable and not subject dependent as procedures for the
assessment of data and the acquisition of new information”.
With this definition in mind, some studies focused on analysing
historical data and extracting knowledge from it, such as
[2][9][11][12]. Programming: Constructing programs is recog-
nized as a complex task, as mentioned by [17] over 30 years
ago: ”All software construction involves essential tasks, the
fashioning of the complex conceptual structures that compose
the abstract software entity, and accidental tasks, the repre-
sentation of these abstract entities in programming languages
and the mapping of these onto machine languages within
space and speed constraints”. Nevertheless, it can present its
intuition and rationale, in order to encourage early logical
thinking, as [10] has been doing for high school students. Big
Data Engineering: Parallel processing of large amounts of data
has been disrupted by the iconic paper published by Google
researchers about its now open source technology, MapReduce
[18]: ”MapReduce is a programming model and an associated
implementation for processing and generating large data sets”.
This is a key concept when talking about Data Engineering,
which is also a discipline being taught as a foundation concept
of Data Science Programs, as is being done by [15]. Data
Science: According to [19], ”Data science updates the concept
of data mining in the light of the availability of big data, that
differ from data by their automatic generation through social
networks, sensors and other data generating tools. In this
sense, data science can be defined extending Giudici (2003),
as an integrated process that consists of a series of activities
that go from the definition of the objectives of the analysis, to
the selection and processing of the data to be analysed, to the
statistical modelling and summary such data and, finally, to the
interpretation and evaluation of the obtained statistical mea-
sures’”.In that sense, it comprises a more complete process, in
which it processes large amounts of data in order to infer new
knowledge for the business context. According to this view,
some studies [14] offer a more complete program combining
all previous concepts. Machine Learning: It is considered a
subset of Data Science specialized in identifying patterns in

120Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 131 / 191

data as described by [20] ”knowledge discovery process as
the chain of accessing data from various sources, integrating
and maintaining data in data warehouses, extracting patterns
by machine learning methods”. Some programs cover that
important topic, including supervised, unsupervised methods
and reinforced learning, as [8][13].

4) Target Audience: The last aspect, and probably the
most important one, analysed in order to answer the research
question RQ1, is to which target audience the data science
content is being taught to, if to non-STEM or STEM only.
On this topic we can observe different areas, from liberal arts,
business and life sciences, that are being complemented with
this kind of content. In [15], Journalist students use big data to
understand social impact in a collaborative environment. [12]
reports the use of data analysis to make social civic issues more
tangible. Different areas such as: Anthropology and Sociology;
Biology; Economics; Philosophy; Physics; Political Science;
and Psychology were pointed in [8]. Besides humanities areas
mentioned before, [14] presents evidences of data science
being applied to to life science related courses, such as:
Medical Statistics; Marine biology; Biostatistics; Genomics;
Psychology; and Neuroscience. And lastly, [13] acknowledges
a wide variation of courses being supported by data science
studies: Physics; Biochemistry and physics; Environmental
sciences; Earth sciences; Statistics; Mathematics; Biomedical
engineering; Bioinformatics; Materials Architecture Manage-
ment; and Social-Political Sciences.

B. RQ2) The WHY
The aspects analysed in order to answer this research ques-

tion were the results achieved and how they were measured.
1) Results Achieved: Most of the success criteria adopted

by the analyzed studies was the feedback of the students
about the level of learning on the presented data science
content [2][9][11][12][14][15]. In particular, we could mention
[13] as an example ”The course has received so far two
official evaluations by the students conducted on behalf of
ETH Zurich. The general satisfaction has been 4.4/5.0 and
the lecturers’ evaluation 4.5/5.0 on the following aspects:
understandable and clear explanation of the subject, learning
goals, lecture significance, motivation to active participation,
and material made available”. In two other cases [8][10], since
data science programs were being offered for the first time,
what was mainly measured were the number of consecutive
offerings and the popularity that of the courses, for example
in [8]: ”Over the first four semesters of the program, we
have offered 13 sections of Introduction to Data Analytics,
enrolling approximately 240 students in total. At the end
of the program’s second academic year (2017–2018), there
were already about 100 declared DA majors among the first
year, sophomore, and junior classes. Overall, 37% of our
majors are women, and this percentage has been rising with
each class year. At the end of the 2018–2019 academic year,
our first year with graduating seniors, we anticipate that
we will enroll approximately 130 total declared majors, and
that we will graduate 27”. Besides the success level, based
on student satisfaction or courses popularity, some studies
collected lessons learned and improvements to be incorporated
to the programs, as cited by [13]: ”This paper concludes that
cross-disciplinary data science education is highly challenging
and requires a very different approach in the design of study

courses than data science education exclusively for computer
scientists. However, this paper shows that cross-disciplinary
data science education is feasible and highly rewarding for
students”.

2) Measurement Techniques: The achieved results men-
tioned in the previous section were measured in different ways.
In some cases as a qualitative survey of students feedback, as
in [11]: ”According to students feedback, the courses one and
two went well. Both, the ADA as a subject, and the course
structure were thanked. Most of all, the students appreciated
the absence of a final exam”. In some other cases, a more
quantitative approach was made, even without the concern of
being statistically validated, as in [13] and [9]. In comparison
with cases that had this level of validation, as in [10]: ”We
analyzed each construct using a repeated-measure ANOVA
with a type 2 sum of squares, using time-of-survey (pre- or
post-survey) as the within-subjects factor and gender, prior
familiarity with Python, and the trimester they took the course
in as between-subject factors. Post-hoc testing was done using
a t-test (paired when the independent variable was time-of-
survey), with the Bonferroni correction to address family-wise
error rate”. Lastly, for the course [8] that had popularity as
its main success criterion, they simply performed an accrual
offering after offering of the program.

C. RQ3) The HOW
1) Proprietary Methodologies: Most experiences apply

proprietary methodologies [2][8][9][10][11][12][13][14][15]
that are in some extent a variation of ACM Data Science
Curricula [1], which originally was designed for technical
undergraduate educational formation. As an example of a
proprietary methodology we can mention [11]: ”To achieve
a good learning atmosphere leading to effective learning, we
use pedagogic methods, such as, collaborative learning, pair
programming, and learning by doing. During the day, we
are aloud to find something we haven’t even planned. This
approach draws us near to the ideology where data scientist
is thought as ’part analyst, part artist’”.

2) ACM Data Science Curricula: The ACM Data Science
Curricula [1], comprises the following knowledge areas:

• Computing Fundamentals, including: Programming,
Data Structures, Algorithms, and Software Engineer-
ing

• Data Acquirement and Governance
• Data Management, Storage, and Retrieval
• Data Privacy, Security, and Integrity
• Machine Learning
• Data Mining
• Big Data, including: Complexity, Distributed Systems,

Parallel Computing, and High Performance Comput-
ing

• Analysis and Presentation, including: Human-
Computer Interaction and Visualization

• Professionalism

V. LIMITATIONS AND THREATS TO VALIDITY
As a process to apply the techniques of a formal SLR,

it was an interesting experience. Even if it were performed

121Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 132 / 191

by applying a strict methodology, it relies only on technical
research databases, ACM and IEEE. Some domain specific
databases were used as reference, however no relevant studies
were found. In that sense, this could be a threat to the validity
of this study.

VI. CONCLUSION
In conclusion, teaching data science to different areas

of knowledge other than the technical ones (non-STEM) is
already collecting its fruits, and still has room for further
growth. It is interesting to observe how it is being applied
to different levels of students, from primary school and high
school up to undergraduate and post-graduate courses. Another
interesting point is that it is being offered to different target
audiences, from economics, to medicine, social studies and so
on. In terms of benefits, it is possible to see that the level
of learning and interest on the subject are aspects that have
being monitored by the providers of such courses. Not only
that, but also the lessons learned in terms of how the teaching
methodology could improve in order to present this kind of
content to non-STEM students. Finally, the technique used to
measure those results varies from practitioner to practitioner,
ranging from no measurement at all up to statistically validated
quantitative research.

VII. ACKNOWLEDGMENTS

This article was produced as the final activity of the first
class, systematic literature review, of the doctorate program
at CESAR School. Hence, we would like to thank the course
professors, Cesar Franca and Paula Carvalho, as well as the
course coordinator, Felipe Ferraz.

REFERENCES
[1] A. Clear, A. S. Parrish, J. Impagliazzo, and M. Zhang, “Computing

Curricula 2020: Introduction and Community Engagement,” in
Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 653–
654, event-place: Minneapolis, MN, USA. [Online]. Available:
https://doi.org/10.1145/3287324.3287517

[2] J. Engel, “Statistical literacy for active citizenship: A call for data
science education,” Statistics Education Research Journal, vol. 16, no. 1,
2017, pp. 44–49.

[3] B. G. Buchanan, “A (very) brief history of artificial intelligence,” Ai
Magazine, vol. 26, no. 4, 2005, pp. 53–53.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” 2004.

[5] I. Mierswa, “May 9, 2017,” library Catalog: ingomierswa.com.
[Online]. Available: https://ingomierswa.com/2017/05/09/

[6] A. Ng, “What Artificial Intelligence Can and Can’t Do Right
Now,” Harvard Business Review, Nov. 2016, section: Analytics.
[Online]. Available: https://hbr.org/2016/11/what-artificial-intelligence-
can-and-cant-do-right-now

[7] J. Von Neumann and O. Morgenstern, Theory of games and economic
behavior (commemorative edition). Princeton university press, 2007.

[8] J. Havill, “Embracing the Liberal Arts in an Interdisciplinary
Data Analytics Program,” in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, ser.
SIGCSE ’19. Minneapolis, MN, USA: Association for
Computing Machinery, Feb. 2019, pp. 9–14. [Online]. Available:
https://doi.org/10.1145/3287324.3287436

[9] S. Srikant and V. Aggarwal, “Introducing Data Science to School Kids,”
in Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, ser. SIGCSE ’17. Seattle, Washington,
USA: Association for Computing Machinery, Mar. 2017, pp. 561–566.
[Online]. Available: https://doi.org/10.1145/3017680.3017717

[10] “Pythons and Martians and Finches, Oh My! Lessons Learned from a
Mandatory 8th Grade Python Class | Proceedings of the 51st ACM
Technical Symposium on Computer Science Education.” [Online].
Available: https://dl.acm.org/doi/abs/10.1145/3328778.3366906

[11] M. Marttila-Kontio, M. Kontio, and V. Hotti, “Advanced data
analytics education for students and companies,” in Proceedings
of the 2014 conference on Innovation & technology in computer
science education, ser. ITiCSE ’14. Uppsala, Sweden: Association for
Computing Machinery, Jun. 2014, pp. 249–254. [Online]. Available:
https://doi.org/10.1145/2591708.2591746

[12] S. J. Van Wart, “Computer Science Meets Social Studies: Embedding
CS in the Study of Locally Grounded Civic Issues,” in Proceedings
of the eleventh annual International Conference on International
Computing Education Research, ser. ICER ’15. Omaha, Nebraska,
USA: Association for Computing Machinery, Aug. 2015, pp. 281–282.
[Online]. Available: https://doi.org/10.1145/2787622.2787751

[13] E. Pournaras, “Cross-disciplinary higher education of data science -
beyond the computer science student,” Data Sci., vol. 1, 2017, pp. 101–
117.

[14] S. Kross and P. J. Guo, “Practitioners Teaching Data Science in
Industry and Academia: Expectations, Workflows, and Challenges,”
in Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’19. Glasgow, Scotland Uk: Association
for Computing Machinery, May 2019, pp. 1–14. [Online]. Available:
https://doi.org/10.1145/3290605.3300493

[15] Y. Gil, “Teaching Parallelism without Programming: A Data Science
Curriculum for Non-CS Students,” in 2014 Workshop on Education for
High Performance Computing, Nov. 2014, pp. 42–48.

[16] V. Vitali, “Formal methods for the analysis of archaeological data: Data
analysis vs expert systems,” Computer Applications and Quantitative
Methods in Archaeology, 1990, pp. 207–209.

[17] F. P. Brooks, “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, Apr. 1987, p. 10–19. [Online].
Available: https://doi.org/10.1109/MC.1987.1663532

[18] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, Jan. 2008, pp. 107–113. [Online]. Available:
https://dl.acm.org/doi/10.1145/1327452.1327492

[19] P. Giudici, “Financial data science,” Statistics and Probability Letters,
vol. 136, may 2018, pp. 160–164.

[20] G. Kauermann and T. Seidl, “Data Science: a proposal for a
curriculum,” International Journal of Data Science and Analytics,
vol. 6, no. 3, Nov. 2018, pp. 195–199. [Online]. Available:
https://doi.org/10.1007/s41060-018-0113-2

122Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 133 / 191

Not Another Review on Computer Vision and Artificial Intelligence in Public
Security

A Condensed Primer on Approaches and Techniques

Marcos Vinicius Pinto de Andrade
Software Engineering Department

Cesar School
Recife, Brazil

email:vinivdg@gmail.com

Ana Paula Cavalcanti Furtado
Computing Department

Pernambuco Federal University, UFRPE
Recife, Brazil

email: anapaula.furtado@ufrpe.br

Abstract— The threats and attacks, perpetrated by criminals
and terrorists in many cities around the world have made the
use of automated tools for detecting violent acts via video feeds,
an invaluable tool to law enforcement authorities. The use of
surveillance cameras is widespread, becoming a de facto in the
security of most cities and makes the use of such content in
public security an obvious course of action. The major caveat
is the enormous amount of footage that needs to be analyzed,
making such tasks not suitable for human operators, and a
great candidate for computer vision techniques. The present
work aims to bring objective and synthetic information on the
subject through a compilation of findings extracted from
numerous articles on the subject, serving as a guide for those
entering the area: what are the main strategies, approaches,
techniques, and features of interest in the area. The paper, in
comparison with older but more comprehensive reviews,
boasts similar, even though not so comprehensive results, being
a valuable starting point for newcomers to this dynamic
research area.

Keywords - artificial intelligence; computer vision;
surveillance; public security.

I. INTRODUCTION

Security is among one of the major concerns in modern
cities. To address this issue, authorities are using video
surveillance on a scale never seen before. This context
brings a problem: how to process video streams in a timely
manner to avoid damages to people’s health or property.
The large number of cameras used for surveillance all over
the world has created the necessity of streamlining the
process of interpreting the large amount of visual data
originated from such devices [1]. The obvious choice
always leads to some sort of automation, because the
amount of data originated from systems with hundreds of
cameras will demand an extremely high number of
operators, plus coordination and communication strategies
in order to work properly, making such setups unpractical in
real-world applications [2].

In this context, the advances in computer vision in the
past years have made it the technology of choice in any
system of automated or intelligent video processing. For this
task, a plethora of methods have been developed for

processing and analyzing different features or characteristics
of video streams. The present research aims to find out what
are the most used algorithms, strategies, and tools in
computer vision with Artificial Intelligence (AI) for security
and surveillance. Since this knowledge area has seen the
number of works published grow each year, a study with
objective information on how the knowledge in the area is
evolving over the years, and what are the best practices
used, gains importance serving as a guide for those arriving
in the area, bringing guidelines on where to focus the time,
resources and energy to make the contribution the most
relevant possible.

The first readings in the area showed a myriad of works
that, at first sight, seemed very heterogeneous. Further
studies showed how many of the approaches are variations of
similar algorithms or techniques. The idea for the study is to
group all similar approaches, techniques, or algorithms in a
way to make clear what are the so-called macro approaches
in the area. This work intends to map, in a brief, but
insightful way, what techniques of artificial intelligence are
being coupled with computer vision techniques for
processing security cameras feeds or recordings, aiming at
automating violent events detection. Other works approach
the same knowledge domain, but the main issue identified is
that the search for comprehensiveness has generated works
where the big picture, most of the time, is not clear enough
for newcomers to the area addressed in this work.

The rest of the paper is structured as follows. Related
work is presented in Section II, including the citation of
some of the most interesting papers. The methodology is
described in Section III and addresses how the papers were
selected and the information extracted. The results of the
findings are summarized in Section IV, and Section V is a
conclusion that brings some observations on the analyzed
material.

II. RELATED WORK PANORAMA

An interesting approach using dynamic images, namely
a compression of series of video frames into a single bitmap,
is presented by Imran et al. in [3]. These images are then fed
into MobileNet a Convolutional Neural Network (CNN) for
short-term spatio-temporal features extraction. These

123Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 134 / 191

features are combined for a representation of the long-term
dynamics of the video feed that is analyzed by a Recurrent
Neural Network (RNN) that classifies a video content as
violent or not. The method also implemented privacy
protection layers and is said to have real-time performance
capabilities.

Differently from [3], which uses the Optical Flow (OF)
of the images, the work by Febin et al. [4] use a Scale-
Invariant Feature Transform (SIFT) coupled with a Motion
Bound Optical Flow, creating a method that is more robust
when dealing with moving camera footage. The work brings
results using both Random Forests (RF) and Support Vector
Machines (SVM) as classifiers for performance comparison
purposes.

In the field of Human Activity Recognition (HAR), [5]
bring algorithms based on multi-features processing fed to a
CNN for classification. The work claims the approach is
reliable in complex real-world scenarios what should open
possibilities for use in many areas like smart surveillance for
children, elderly, and also uses for entertainment and human-
machine interfaces. Interesting, yet simple, work is presented
in [6]. A simple layout of a real-world alarm system based on
smart surveillance, real word considerations like server
topology and other technicalities are worth mentioning.

III. METHODOLOGY CONSIDERATIONS

For the search, the following databases were selected:
IEEEexplore, Scopus, and Science Direct. The main
motivation for this choice is based on the fact that this paper
was written during the Covid-19 lockdown and these were
the databases that could be accessed with no restrictions
from outside the campus.

In a quick summarization, the present research consists
of the following stages:

 Paper gathering and selection (including paper
search, inclusion and exclusion criteria).

 A quick analysis of the approach used.
 Taxonomy definitions (a database structure with all

information classes to be stored and how to do it).
 In-depth analysis of the tools used and/or created

on papers.
 Findings compilation.
 Findings uniformization.
 Final synthesis.
 Comparison with similar studies previously

selected.
In the selection of the final papers, four works were

chosen to draw comparisons with the present work. They
were more comprehensive, yet old works, and were used to
analyze if the coverage and search quality of the research is
acceptable [1]–[6].

The search was conducted initially in an automated way
with posterior manual selection phases. Various search
strings were tested until the searches began to bring more
uniform results. The final search string defined was:

("computer vision" AND surveillance) AND ("computer
vision" AND violence) OR ("computer vision" AND
harassment)

Four exclusion passes were done after the search. They
were based on exclusion criteria applied while title reading

and then by abstract examination, and, finally, for the
remaining papers, a complete reading was conducted for

data extraction and posterior summarization. The first
exclusion pass was based on a set of rules defined to

maintain uniformity and usefulness of the gathered material,
and also to reduce the total number of papers that would be
read in full. They are listed below and the final results are

depicted in

Figure 1 and Error! Reference source not found.. Below are
the discriminated criteria.

 Keep a temporal range from 2012 - 2020: When
technologies researched began to gain momentum,
“the cat experiment” was used as a time mark.

 Eliminate health sciences related material.

 Eliminate other non-security-related material.

 Exclude all material related to Natural Language
Processing (NLP).

 Exclude duplicates.

 Exclude non Artificial Intelligence (AI) material.

 Select reviews and surveys, but do not process
them.

TABLE I. NUMBER OF PAPERS IN EACH STAGE

All papers were gathered in Mendeley [22] for reading

and extraction. The resulting data was compiled in an Excel

spreadsheet. For databases that did not directly exported

CSV files, JabRef [23] was used to do the conversion from

RIS or BIB to CSV. The remaining papers were grouped in

a single folder for reading and extraction.

The file structure described above permitted the free

flow of documents up and down in the folder structure. If

one needed to review a discarded document to reconsider a

decision, it was instantaneous. All the time, it was possible

to have access to all documents in full-text format, which

proved to be useful in a small research team configuration,

as was the case with the present work.

124Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 135 / 191

Figure 1. Overview of the selection process, with the amount of paper in
each stage of the search/selection.

It was decided to take an approach similar to grounded
theory, where a small portion of the material was read to
establish a taxonomy of what was important to be extracted
to answer the research question. Then, a search for specific
pieces of information was conducted inside the papers. The
data of interest in the case was:

 What is observed
 Feature identification strategy
 Feature extraction strategy
 Reasoning/classification strategy
 Solution statement by the researcher
 The computational cost of the proposed

approach (if present).

Figure 2. Folder structure inside Mendeley with all the selection stages.

Figure 2 shows a sample of the folder structure created inside
Mendeley to process the files. The upper folder always will
have all the files downstream, so it was possible to move
papers up and down as they were selected or discarded in a
given document search phase.

IV. RESULTS

The results can be divided into three main types of
researches. First, there were the ones that used some
algorithm of computer vision coupled with variants of a

Machine Learning (ML) classifier, as in Error! Reference
source not found.. This approach was found in the vast
majority of the works with many variations using modified
or enhanced solutions from prior works. A possible
explanation may rely on the accuracy and speed of machine
learning algorithms like SVM, Random Forests (RF), and
their variants. Secondly,

Figure 3. Topology of violence identification systems with Computer
Vision and Machine Learning Classifier.

less common initiatives used computer vision algorithms
and a kind of neural network for classification ranging from
Recursive Neural Networks (RNN) to Deep Learning
deployments. At the beginning of this research, there was an
a priori idea that there will be an emergence of this
approach that was not verified in the researched material,
which leads to the third macro-approach, depicted in Error!
Reference source not found..

Figure 4. Topology of violence identifications systems with Neural
Networks, were found custom trained and pre-trained model used via

transfer learning.

The use of pre-trained, custom-trained networks,
receiving the direct input of the image feed despite the
lower number of occurrences was an approach more
consistently identified in the search. The advent of transfer
learning is making possible the use of pre-trained networks
in many tasks without the burden of training that requires
large datasets and more robust computing power. These
things are not at easy reach for what was stated in the
researched materials.

A. On what the algorithms process

Figure 5 summarizes the findings on what is processed
in video feeds in the search of violent events. Most of the
search features on images for things like edge and gradients

125Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 136 / 191

and tracks them in the subsequent frames [3]. The other
feature more commonly used was Optical Flow (OF), which
is a measure of how the pixels of the image behave over
time, which is an indicator of how abrupt the movements in
the scene are. These are strong indicators of violent events
taking place [7]–[9].

Figure 5. The distribution of findings on what the algorithms look at.

There were ingenious works, like [10], which uses
image processing coupled with sensors placed in seats in a
public transport vehicle informing when a passenger stands
up. Also, it is worth mentioning the use of dynamic images
[11][12]. Each approach has its own technicalities, but in
general, these are the features the algorithms search within
video sequences to classify them as violent or not.

B. The most used feature identifications and extraction
strategies

Figure 6. The algorithms and strategies for features identification and
extraction of images.

The Violent Flow Descriptor (ViF) uses the variation of
the OF magnitude in consecutive frames, being an indicator
of abrupt events happening. This approach is present in
many of the works. What differs is the subsequent

classification model used, which ranges from extremely
simple ML models like K Nearest Neighbor (KNN) [13]
[14] to deep learning models [15][16].

The big lesson extracted from the material in Error!
Reference source not found. is that approaches differ in
detail, but all the papers used similar strategies with
performance improvement modification both in accuracy
and computational performance on training and recognition.

C. The main interpretation and classification techniques
used and computational cost issues.

In the classification area still, ML techniques are

prevalent (Error! Reference source not found.). SVM and

its variations are by far the classifier implemented in almost

half the studied solutions. Despite being used for a long

time, SVM is a classifier with wide adoption mainly due to

the fact that it is non computationally intensive in the

training phase and generates models that perform very well

near real-time for classifications.

Figure 7. Classification strategies for violent or non-violent definitions.

Our findings raised the question on how are these
technologies adoption evolving in time. Are SVM classifiers
on their way to retirement? Is deep learning the next big
thing in violence detection? For this matter, a short study
was done with the evolution of publications on these
technologies in the last ten to fifteen years that are presented
below (Figure 8) giving a clear panorama on how
techniques are evolving. The searches were conducted in
Science Direct only, and give a clue on how things are
evolving. As can be seen by the graphics, SVM classifiers
are still a used choice, probably because of their capabilities
and performance On the other hand, deep learning is now
beginning to gain momentum on its adoption, being a
promising new technology to build new approaches upon.

126Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 137 / 191

The use of an optical-flow-based descriptor seems to be
reaching a plateau, but it is still relevant.

Figure 8: Evolution of the main technologies found in the work and their
adoption evolution over time.

D. Comparison with other reviews

The scope of the present work was not to exhaust all
techniques and approaches, but give a direction on how
things are evolving in the academic area on automated
surveillance with artificial intelligence and computer vision.
Even though not having total comprehension ambitions, the
study was able to spot all the main techniques and strategies
found in larger and exhaustive studies, like [1]–[6].

V. CONCLUSION

Since the main goal of this research was to give a
starting point for those entering the area, some observations
on the big picture must be made by the research team. They
are as follows:
● Despite being around for quite a while, SVM is still

very used.
● The use of deep learning, although being much talked

about, appears to be an interesting area to be explored.
● Neural network studies in these areas are being more

streamlined by the use of pre-trained networks with
good results (transfer learning).

● There was the occurrence of systems that worked in
real-time, this being a crucial feature for any
surveillance system aiming to prevent violence.

● Some experiments used reenacted scenes as datasets
[11], which is an interesting way to supply training
data.

TABLE II. ACRONYMS

TABLE OF ACRONYMS

ViF Violent Flow Descriptor

STEC Spatio Temporal Elastic Cuboid

SSD Single Shot Detection

OFCH Optical Flow Context Histogram

HOG Histogram of Optical Gradients

DiMOLIF Dist. of Magnitude and Orientation of Local Interest Frame

BRISK Binary Robust Invariant Scalable Key-points

AUC Area Under Curve

ML Machine Learning

REFERENCES

[1] M. Ramzan et al., “A Review on State-of-the-Art Violence Detection
Techniques,” IEEE Access, vol. 7, pp. 107560–107575, 2019.

[2] A. C. Nazare Jr. and W. R. Schwartz, “A scalable and flexible
framework or smart video surveillance,” Comput. Vis. Image
Underst., vol. 144, pp. 258–275, 2016.

[3] J. Imran, B. Raman, and A. S. Rajput, “Robust, efficient and privacy-
preserving violent activity recognition in videos,” in Proceedings of
the 35th Annual ACM Symposium on Applied Computing, 2020, pp.
2081–2088.

[4] I. P. Febin, K. Jayasree, and P. T. Joy, “Violence detection in videos
for an intelligent surveillance system using MoBSIFT and movement
filtering algorithm,” Pattern Anal. Appl., vol. 23, no. 2, pp. 611–623,
May 2020.

[5] A. Jalal, M. Mahmood, and A. S. Hasan, “Multi-features descriptors
for Human Activity Tracking and Recognition in Indoor-Outdoor
Environments,” in 2019 16th International Bhurban Conference on
Applied Sciences and Technology (IBCAST), 2019, pp. 371–376.

127Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 138 / 191

[6] A. Sangeerani Devi, S. Prakash, K. Laavanya, A. Shali, and D.
Sathish Kumar, “Violence detection and target finding using
computer vision,” Int. J. Eng. Adv. Technol., vol. 8, no. 5 Special
Issue 3, pp. 235–238, Jul. 2019.

[7] A. Stergiou and R. Poppe, “Analyzing human–human interactions: A
survey,” Comput. Vis. Image Underst., vol. 188, p. 102799, 2019.

[8] S. Roshan, G. Srivathsan, K. Deepak, and S. Chandrakala, “Chapter
11 - Violence Detection in Automated Video Surveillance: Recent
Trends and Comparative Studies,” in Intelligent Data-Centric
Systems, D. Peter, A. H. Alavi, B. Javadi, and S. L. B. T.-T. C. A. in
C. C. and I. of T. T. for S. T. S. Fernandes, Eds. Academic Press,
2020, pp. 157–171.

[9] P. Bour, E. Cribelier, and V. Argyriou, “Chapter 14 - Crowd behavior
analysis from fixed and moving cameras,” in Computer Vision and
Pattern Recognition, X. Alameda-Pineda, E. Ricci, and N. B. T.-M.
B. A. in the W. Sebe, Eds. Academic Press, 2019, pp. 289–322.

[10] A. Boukerche, A. J. Siddiqui, and A. Mammeri, “Automated vehicle
detection and classification: Models, methods, and techniques,” ACM
Comput. Surv., vol. 50, no. 5, 2017.

[11] R. K. Tripathi, A. S. Jalal, and S. C. Agrawal, “Suspicious human
activity recognition: a review,” Artif. Intell. Rev., vol. 50, no. 2, pp.
283–339, Aug. 2018.

[12] S. Mohammadi, H. Kiani, A. Perina, and V. Murino, “Violence
detection in crowded scenes using substantial derivative,” in 2015
12th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), 2015, pp. 1–6.

[13] E. Y. Fu, H. Va Leong, G. Ngai, and S. Chan, “Automatic Fight
Detection in Surveillance Videos,” in Proceedings of the 14th
International Conference on Advances in Mobile Computing and
Multi Media, 2016, pp. 225–234.

[14] E. Y. Fu, H. V. Leong, G. Ngai, and S. Chan, “Automatic fight
detection in surveillance videos,” in ACM International Conference
Proceeding Series, 2016, pp. 225–234.

[15] M. J. Santofimia et al., “Hierarchical Task Network planning with
common-sense reasoning for multiple-people behaviour analysis,”
Expert Syst. Appl., vol. 69, pp. 118–134, Mar. 2017.

[16] Y. Fan, G. Wen, D. Li, S. Qiu, and M. D. Levine, “Early event
detection based on dynamic images of surveillance videos,” J. Vis.
Commun. Image Represent., vol. 51, pp. 70–75, Feb. 2018.

[17] I. Serrano, O. Deniz, J. L. Espinosa-Aranda, and G. Bueno, “Fight
Recognition in Video Using Hough Forests and 2D Convolutional
Neural Network,” IEEE Trans. Image Process., vol. 27, no. 10, pp.
4787–4797, Oct. 2018.

[18] X. Xu, S. Gong, and T. M. Hospedales, “Chapter 15 - Zero-Shot
Crowd Behavior Recognition,” V. Murino, M. Cristani, S. Shah, and
S. B. T.-G. and C. B. for C. V. Savarese, Eds. Academic Press, 2017,
pp. 341–369.

[19] A. Mumtaz, A. B. Sargano, and Z. Habib, “Violence Detection in
Surveillance Videos with Deep Network Using Transfer Learning,” in
2018 2nd European Conference on Electrical Engineering and
Computer Science (EECS), 2018, pp. 558–563.

[20] C. James and D. Nettikadan, “Student Monitoring System for School
Bus Using Facial Recognition,” in 2019 3rd International Conference
on Trends in Electronics and Informatics (ICOEI), 2019, pp. 659–
663.

[21] I. Serrano, O. Deniz, G. Bueno, G. Garcia-Hernando, and T.-K. Kim,
“Spatio-temporal elastic cuboid trajectories for efficient fight
recognition using Hough forests,” Mach. Vis. Appl., vol. 29, no. 2, pp.
207–217, Feb. 2018.

[22] Elsevier Mendeley Tool. Available at https://www.mendeley.com/

[23] JabRef Tool. Available at https://www.jabref.org/

128Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 139 / 191

Requirements Validation Through Scenario Generation and Comparison

Radek Kočı́

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

email: koci@fit.vutbr.cz

Abstract—When designing systems, we must solve many problems
associated with the correct definition of system requirements, the
right understanding, and proper implementation. Finding that
design or implementation contains an error or is incomplete,
and identifying where a change needs to be made, are different
issues that require different approaches. Models and diagrams,
often diagrams from the Unified Modeling Language (UML), are
used to capture the system’s requirements and basic design. The
basic ones include the domain model, use case diagram, activity
diagram, and scenario models. Scenarios show the communication
and cooperation of objects in solving the use case under specific
conditions. If the system is implemented following the design,
it is possible to generate scenarios at runtime (either actual
implementations or using simulation models). Thus, we can have
assumed scenarios of the investigated use case’s behavior and
real scenarios reflecting the performed design. In many cases, it
is not useful to have a detailed view of the entire communication
between objects. However, it is enough to focus on specific parts,
such as messages or states of objects. In this paper, we will focus
on detecting discrepancies between expected and actual behavior
and quickly identifying the problem’s location through scenarios.

Keywords–Requirements modeling; simulation; scenarios.

I. INTRODUCTION

When designing systems, we have to solve many problems
associated with the correct definition of system requirements,
the right understanding, and proper implementation. There are
many ways to approach these problems, but their common
denominator is always verifying the correctness and correcting
possible problems. Finding that design or implementation
contains an error or is incomplete, and identifying where a
change needs to be made, are different issues that require
different approaches.

Models and diagrams, often diagrams from the UML
language, are used to capture the system’s requirements and
basic design. The basic models include class diagrams, use
case diagrams, and activity diagrams. The domain model (class
diagram) depicts the basic concepts of the proposed system.
The use case diagram summarizes the possibilities of using the
system. The activity diagram captures the system’s behavior
in various conditions (it is a workflow defining individual use
cases).

An integral part of the requirements and design analysis
should be scenario modeling. Scenarios are an essential el-
ement, as they show the communication and cooperation of
objects in solving the use case under specific conditions. Thus,
one use case may have multiple scenarios, which may differ
in certain parts. If the system is implemented (at least for
verification purposes) following the design, it can generate
scenarios at runtime (either actual implementations or using

simulation models). Thus, we can have assumed scenarios
of the investigated use case’s behavior and current scenarios
reflecting the created design. As already mentioned, one use
case can have several different scenarios. However, the struc-
ture of the scenario is usually the same for the learned set of
conditions. Therefore, it is possible to use scenarios to compare
the expected and actual course of solving the use case.

Many tools allow you to set various conditional breakpoints
and record the passage through set points. However, in many
cases, it is necessary to reconstruct (or record) the entire path
to the breakpoint (including information on the conditions
achieved) at least from a specified point in time. A suitable
means is to generate scenarios according to preset criteria. In
many cases, it is not useful to have a detailed view of the
entire communication between objects. Still, it is enough to
focus on specific parts, messages, states of objects, etc. This
paper will focus on how to detect differences between expected
and actual behavior and quickly identify the problem’s location
through scenarios. We will focus only on selected problems of
requirements and design validation through scenarios.

The paper is structure as follows. First, we introduce the
basic principles of the work in Section III. The demonstration
case study is described in Section IV. Then, problems of
scenario modeling and validation are introduced in Sections
V and VI.

II. RELATED WORK

This work is part of the Simulation Driven Development
(SDD) approach [1][2], which combines basic models of the
most used modeling language Unified Modeling Language
(UML) [3][4] and the formalism of Object-Oriented Petri Nets
(OOPN) [5].

One of the fundamental problems associated with software
development is the specification and validation of the system
requirements [6]. The use case diagram from UML is often
used for requirements specification, which is then developed
by other UML diagrams [7]. The disadvantage of such an
approach is an inability to validate the specification models
and it is usually necessary to develop a prototype, which is no
longer used after fulfilling its purpose. Utilization of OOPN
formalism enables the simulation (i.e., to execute models),
which allows to generate and analyze scenarios from spec-
ification models. All changes enforced during the validation
process are entered directly in the specification model, which
means that it is not necessary to implement or transform
models.

There are methods of working with modified UML models
that can be transformed to the executable form automatically.
Some examples are the Model Driven Architecture (MDA)
methodology [8], Executable UML (xUML) [4] language, or

129Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 140 / 191

Foundational Subset for xUML [9]. These approaches are
faced with a problem of model transformations. It is hard to
transfer back to model all changes that result from validation
process and the model becomes useless. Further similar work
based on ideas of model-driven development deals with gaps
between different development stages and focuses on the usage
of conceptual models during the simulation model develop-
ment process [10]. This approach is called model continuity.
While it works with simulation models during design stages,
the approach proposed in this paper focuses on live models
that can be used in the deployed system.

III. INITIAL ASSUMPTIONS

In this section, we will briefly describe the initial assump-
tions of the work. It consists of the basis of presented concepts
and the way on how we will demonstrate their usage.

A. Basic Concepts
As already mentioned, we will deal only with selected

possible uses of scenarios for requirements validation. Among
the most important are in particular:

• During the development of requirements, scenarios
of correct behavior under the given conditions were
specified. Our goal is to verify this behavior on the
created model or part of the implementation. In other
words, verify that the messaging sequence matches the
expected behavior.

• It is necessary to find out when and under what
conditions a specific method is called.

• It is needed to verify whether a specific method is
always called under certain conditions.

Figure 1. Domain model.

Because it is a simulation verification, it is always depen-
dent on simulation (test) data. In our view, however, we are
based on scenarios prepared in advance during the creation
of requirements and design. Suppose the models are modified
during the development process. In that case, these scenarios
are modified (here we come across the MDE condition, namely
that we always try to work at the model level).

B. Demonstration method
We will use the following procedure to demonstrate the

possibilities of working with scenarios. We will present an
example containing one simulation step in the balance calcu-
lation tool. We will design a domain model and a sequence
diagram according to the standard procedure. We can create a

workflow using Petri nets that allow us to generate scenarios.
We then make a so-called scenario model based on these
scenarios, which can be compared with scenarios generated
under different conditions. In the next step, we will include
a new request, which will be reflected in the addition of new
calls to the scenarios. We modify the created scenario model
and then compare it again with various generated scenarios.

IV. CASE STUDY

In this section, we will present a simple example based on
the part of the software solution of a tool for the simulation
of balance calculations of technological processes. This part
concerns the execution of one calculation step. We will present
only the part of the calculation step that is essential for
explaining the concept.

A. Domain Model
The basis of each design is a domain model that captures

the basic concepts of the proposed system. These concepts,
modeled mostly as classes, appear in other models describing
objects’ behavior or interaction. Technological processes are
modeled by units (blocks) that work with input streams (e.g.,
water, air, gas) and generate output streams. During processing,
the blocks recalculate the output streams’ properties following
the input streams and block settings.

Data:
simList : a list of blocks
forall b ∈ simList do

initialize b
end
forall b ∈ simList do

if b.hasChanged() then
b.innerFunction()
b.outFunction()
foreach p ∈ b.ports do

if p.hasChanged() then
recalculate a stream
copy a stream
send a stream copy to the connection

end
end

end
end

Figure 2. Description of the Balance calculation Use case.

The basic domain model is shown in Figure 1. It
contains classes modeling the following concepts: blocks
(UnitBlock), block ports (BlockPort), port connections
(Connection) and streams (Stream). Each port stores in-
formation about the associated stream, streams are transmitted
between blocks via a connection. The class Scheme models
the schema containing blocks and joints. Balance calculations
are then controlled by Solver.

B. Behavioral Model
A UML use case diagram is often used as the default model

specifying individual use cases to capture system requirements.
The behavior of use cases is then described in the text or
modeled by other diagrams, such as the activity diagram.
However, it is possible to use different formalisms, such as
Petri nets. The chosen concept then defines in what detail the
use case’s behavior can be specified and how difficult it is to
simulate the models created in this way due to requirements
verification or transform into the selected source code. For

130Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 141 / 191

our purposes, we will choose only one use case, namely
performing a balance calculation. Its basic form is outlined
in Figure 2.

Data:
b is a block
p ∈ b.ports is an output port of the b
s ∈ p is a steam associated to the port p
p.setAttr(value)
s.setValue(value)
p.setChanged()

Figure 3. Description of the attribute changing.

Each block models different technological units, and there-
fore the calculations are different too. However, the basic
structure is the same, and from the simulation point of view,
the critical question is whether or not any of the output streams
have changed. Assume that each port has a flag set when any
attribute of the associated stream from the output function
changes. In this case, the behavior description could look like
the one shown in Figure 3.

C. Workflow Model
To model behavior as workflow, the formalism of Petri

Nets can be used. The model is conceived as a sequence
of events, i.e., transitions, whether internal or external. The
execution of an event may be conditional, and it is possible to
define different branches and, thus, different specific use case
execution scenarios. An event’s execution may involve sending
a message to another object, or the event may be executed in
response to an incoming event. In the classical concept, it is
necessary to map individual sent messages to specific methods
of classes, which makes it difficult to read and understand the
model. When using Petri nets, the scenario is clearly defined
by a sequence of events (i.e., transitions), whether internal or
external.

p1

p2

self innerF.

self outF.

#e

t1

#e

p3

self propagate.

t2

#e

#e

self hasChanged

Figure 4. The calculation workflow.

Figure 4 shows the workflow modeling method for the
Balance calculation use case from Figure 2. The workflow
models the behavior for one specific calculation block. Figure
5 shows the workflow modeling method for the method outF().
The workflow models one possible scenario consisting of set
one attribute of the port @p with value 10.

V. SCENARIO MODELING

One scenario corresponds to a sequence of interactions
between individual system objects or system objects and users.
Interactions are often written in the form of a diagram, the most
commonly used in this area being an activity diagram and a
sequence diagram from UML. The activity diagram is suitable
for modeling the whole use case’s behavior, while the sequence
diagram captures one specific use case scenario. This section
will introduce the possibilities of using sequence diagrams as
a base for scenario modeling.

A. Predefined Scenarios
Scenarios help to specify the correct, expected system

behavior for a particular task. As already mentioned, scenarios
are often modeled using sequence diagrams. The disadvantage
is that the designer often creates these diagrams manually and
must follow the rules for their creation, such as following the
names defined by the domain model.

p1

return

p setAttr: v.

(p, v)

t1

#e

(@p, 10)

Figure 5. The outF workflow – one scenario.

However, if we have, in addition to the domain model,
also created models of behavior as a workflow, it is possible
to generate these scenarios and make our work easier. A small
example of such a workflow, created using Petri nets, is shown
in Figures 4 and 5. Figure 4 shows part of the method calculate
of the UnitBlock concept (class), and Figure 5 shows part of
the outF method’s behavior.

The problem is that the outF method captures only one
possible scenario, while the sequence diagram allows you to
capture different variants of similar behavior. In this article, we
will not deal with the possibilities of sequence diagrams. We
will only outline this problem on a more complex diagram to
capture the behavior caused by sending the method calculate,
i.e., by performing the appropriate use case. The diagram is
shown in Figure 6.

B. Scenario Definition
To define the scenario model, we start from the description

of scenarios described in [11]. These scenarios work with Petri
net models but can be easily adapted to messaging-defined
scenarios. The scenario model is described as a messaging
sequence, where messages can be grouped into blocks. These
blocks represent one sub-scenario. There may be messages and
sub-scenarios in the model, which may be repeated – it is
possible to define their repetitions using regular expressions.

Each captured message is a pair of msg = (msgs,msgr)
representing the sending of the message and its return (termi-
nation). Between msgr and msgr, there may be a sequence of
additional messages that express the calculation to achieve the
desired goal of the msg message.

131Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 142 / 191

Figure 6. Sequence diagram of the balance calculation behavior.

The message msgs is defined in the model as a param-
eterized tuple msgs = (C1{o1},C2{o2},msgn{a1, ..., an}),
where C1 is the classifier of the class whose instance sends
the message msgn (msgn is the identifier of the sent message)
of the object of class C2. Each of the listed elements can be
parameterized; the parameters are given in curly braces. For
the class classifier it is possible to mark (name) their instances
(o1, o2), for the sent message its attributes can be defined
(a1, ..., an). Attributes can have a form of specific values or
just formal parameters.

The message msgr is defined in the model as a parameter-
ized tuple msgr = (C1{o1},C2{o2},msgn{a1, ..., an}, ret),
where the first three elements semantically correspond to the
message msgs and ret is the return value (object) of the
message. This value can be a specific object, variable, or
special symbol ε representing the information that the method
returns nothing or the return value is not important from the
scenario definition point of view.

We denote the scenario model by the symbol δ. The model
consists of a sequence of symbols msgs, msgr, and δ, which
can be repeated according to the given rules. The rules are
simple. It is necessary to follow the pairing of msgs and msgr,
and the syntax of the notation. The rules can be described by
a context-free grammar GM = (Σ,N,P, {S}), where Σ =
{msgs,msgr, δ, ∗} (∗ represents the iteration symbol, i.e., the
possibility of repetition), N = {S} and P is a set of rewriting
rules in the following form.

S ⇒ δ S
S ⇒ δ ∗ S
S ⇒ msgs S msgr

When checking compliance with the rule, it is usually
unnecessary to examine the parameters, only whether the

correct syntax has been followed. This possibility can be
expressed in grammar, either by engaging in the above context-
free grammar or by creating a regular grammar.

The example scenario model from our example then looks
like this. First, we define a sub-scenario δsc set for setting the
attributes corresponding to the red highlighted sequence sc-set
in Figure 6.

δsc set = (UnitBlock,Port, setAttr{v}),
(Port, Stream, setValue{v}),
(Port, Stream, setValue{v}, ε),
(Port{p},Port{p}, setCahnged),
(Port{p},Port{p}, setCahnged, ε),
(UnitBlock,Port, setAttr{v}, ε)

Another sequence that can be repeated is marked in red in
Figure 6. Part of this sequence is captured as a sub-scenario
δsc prop. The scenario captures only significant points for the
idea; the whole scenario would be unnecessarily long in this
listing.

δsc prop = (UnitBlock,Port, propagate),
...
(Port, Stream, copy),
(Port, Stream, copy, s),
...
(Port,Connection, accept{s}),
...
(UnitBlock,Port, propagate, ε)

The resulting model scenario, which corresponds to Figure
6, is then captured by the scenario δm.

132Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 143 / 191

δm = (Solver,UnitBlock, calculate),
(UnitBlock{b},UnitBlock{b}, innerF),
(UnitBlock{b},UnitBlock{b}, innerF, ε),
(UnitBlock{b},UnitBlock{b}, outF),
δsc set∗,
(UnitBlock{b},UnitBlock{b}, outF, ε),
δsc prop∗,
(Solver,UnitBlock, calculate, ε)

VI. SCENARIO VALIDATION

The validation is then performed by comparing the model
scenario with the actual scenario, respecting the regular expres-
sion’s control characters. A tool based on finite state machines
can be used for evaluation. Evaluation can take place in several
modes, depending on the type of authentication required.

• Entire scenario validation. We verify the whole se-
quence of the scenario. If we encounter a deviation,
we record an error at this point. In this way, it is
possible to verify that a method should not be called;
that the method is not called in the correct place; or the
method with the wrong parameters (attributes, object
sending the message, the object receiving the message)
is called.

• Pass validation. The model defines only the key
aspects that must be followed in that order. If there
are other calls outside these defined points, they are
ignored for evaluation. It can be used, for example,
if we are only interested in the question of whether a
particular message is sent after another message has
been executed.

A. Entire Scenario Validation
We will now introduce these verification concepts with our

examples. Let us start with the whole sequence. We must first
obtain a scenario of the actual models or implementations.
We modify the original workflow to new conditions and then
generate different scenarios, which, however, must structurally
correspond to the model scenario. Such a workflow modifica-
tion is shown in Figure 7 – in this case, the attribute is set
more than once.

p1

return

p setAttr: v.

(p, v)

t1

#e

(@p1, 10),

(@p2, 20)

(@p3, 30)

empty

o

Figure 7. The outF workflow – second scenario.

The generated scenario δ1 then corresponds to the original
scenario from Figure 6, only the part marked sc-set is replaced
by the sequence of calls from Figure 8. Sequence of calls
δsc−set1 and δsc−set2 corresponding to marked blocks sc-set1
and sc-set2 in Figure 8 is as follows (only an example for
sc-set1 is presented).

δsc set1 = (UnitBlock,Port, setAttr{10}),
(Port, Stream, setValue{10}),
(Port, Stream, setValue{10}, ε),
(Port{p},Port{p}, setChanged),
(Port{p},Port{p}, setChanged, ε),
(UnitBlock,Port, setAttr{10}, ε)

Figure 8. Sequence diagram of the extended outF workflow.

By comparing the sub-scenario δsc set with the sequence of
scenarios δsc set1 and δsc set2 we find that they are structurally
identical, only substitutions {v/10} and {v/20} occur. Then,
it can be concluded that δscset∗ == δscset1, δscset2 and then
δm == δ1. The newly generated scenario thus corresponds to
the scenario model.

B. Pass Validation
We will show a variant where we will not be interested in

the whole scenario, but only the fulfillment of some condition.
We will create/generate a model scenario containing only those
calls that we consider crucial for validation. In our example,
this can be the condition the propagate method must always be
called after any call of the setAttr method. The model scenario
can then look like this. The newly generated scenario thus
corresponds to the scenario model.

δpass = (UnitBlock,Port, setAttr{v}),
(UnitBlock,Port, propagate)

When comparing the model scenario with the generated
one, we will only be interested in whether the above sequence
is followed and other parts of the scenario will be uninteresting.

C. New Functionality Validation
The last example is the addition of new functionality to an

existing requirements model and implementation. This func-
tionality refers to a new type of attribute change propagated
backward, i.e., through input streams back to input blocks.
When setting the attribute, the given port must be set as
changed, and at the end of the use case, the backProp method
must be called, which will ensure data transfer in the correct
direction. A possible scenario for this behavior is shown in
Figure 9.

133Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 144 / 191

Figure 9. Scenario of the new functionality – backProp.

A model scenario δback verifying the correctness of the
primary sequence of messages is shown in the following
statement.

δback = (UnitBlock,Port, setBackAttr{v}),
(Port, Stream, copy)
(Port, Stream, copy, s2)
(UnitBlock,Port, backProp)
(Port,Connection, backAccept{s2})

VII. CONCLUSION

In this paper, we introduced the basic concept of require-
ments validation and its implementation through scenarios.
Scenarios can be described in various ways, such as sequence
diagrams. However, workflows offer a more general descrip-
tion ability than a sequence diagram and allow the generation
of specific scenarios or models, i.e., some patterns that can
then be used for comparison. The workflow can be modeled,
for example, by Petri nets, as briefly shown in this paper.
Real scenarios can then be obtained either by modifying the
workflow or directly from the implementation if a tool was
available that captures essential information for generating
sequence diagrams or their parts.

We currently have a tool for generating sequence diagrams
from models described by Petri nets. The presented concept

works only with a structural comparison. In the future, it
seems to be an interesting possibility to parameterize the
sequences themselves. This feature would make it possible,
for verification purposes, to specify precisely which specific
objects are involved in the communication, in what state, etc.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science
- LQ1602.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[2] R. Kočı́ and V. Janoušek, “Modeling System Requirements Using Use
Cases and Petri Nets,” in ThinkMind ICSEA 2016, The Eleventh
International Conference on Software Engineering Advances. Xpert
Publishing Services, 2016, pp. 160–165.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[5] M. Češka, V. Janoušek, and T. Vojnar, “Modelling, Prototyping, and Ver-
ifying Concurrent and Distributed Applications Using Object-Oriented
Petri Nets,” Kybernetes: The International Journal of Systems and
Cybernetics, vol. 31, no. 9/10, 2002, pp. 1289–1299.

[6] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press,
2014.

[7] N. Daoust, Requirements Modeling for Bussiness Analysts. Technics
Publications, LLC, 2012.

[8] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in International Conference on Software
Engineering, FOSE, 2007, pp. 37–54.

[9] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation, vol. 1069,
2013, pp. 11–20.

[10] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015, pp. 17:1–17:24.

[11] R. Kočı́ and V. Janoušek, “Tracing and Reversing the Run of Software
Systems Implemented by Petri Nets,” in ThinkMind ICSEA 2018, The
Thirteenth International Conference on Software Engineering Advances.
Xpert Publishing Services, 2018, pp. 122–127.

134Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 145 / 191

Analyzing Challenges in Software Engineering Capstone Projects

Yvonne Sedelmaier, Dieter Landes
Faculty of Electrical Engineering and Informatics
Coburg University of Applied Sciences and Arts

96450 Coburg, Germany
e-mail: yvonne.sedelmaier@hs-coburg.de, dieter.landes@hs-coburg.de

Abstract—Engineering complex software systems is a very
delicate and challenging task, which involves a variety of
technical, general non-technical, and context-specific non-
technical challenges. Getting better insight into the nature of
these challenges is of paramount importance for aligning
intended learning outcomes and didactical setup in software
engineering capstone projects that aim at exercising and
extending these competences. In order to obtain a fine-grained
understanding of perceived challenges in capstone projects, this
work presents results of a qualitative analysis of self-reports
which students wrote as post-mortem documents after being
part of such a capstone project. As a main contribution, the
qualitative analysis substantiates results in earlier work that
technical issues tend to be less challenging than non-technical
ones, e.g., collaboration within the team and beyond, issues of
project management and organisation, and methodological
issues related to requirements engineering and effort estimation.
In addition, the paper reveals challenges that might have been
overlooked so far, e.g., project organisation (and not just
planning), individual motivation, and individual deficiencies in
setting or adhering to deadlines.

Keywords-capstone project; software engineering; challenges;
qualitative analysis.

I. INTRODUCTION
Software is a core ingredient of nearly any part of our

everyday life. Software, however, requires highly skilled
developers. Consequently, software engineering education
plays an important role in higher education in order to acquire
and exercise these skills. Traditionally, universities
emphasized technical skills, such as, e.g., programming or
testing skills, in software engineering education.
Undoubtedly, software development requires profound
technical knowledge [1]. Evidently, technical proficiency is
not the only thing that matters. In recent years, it has become
increasingly clear that non-technical, or soft, skills are equally
important as software is developed in teams of individuals
which need to interact with each other and various
stakeholders such as, e.g., customers or users of their software.
Software engineers need to analyze and understand complex
situations and use a creative and solution-oriented approach.
Various researchers emphasize the importance of non-
technical skills in software engineering [2]–[6].

Software engineering requires a specific profile of
competences that combines technical, general non-technical,
and context-specific non-technical skills [7].

Internal surveys we conducted over the years indicate that
students tend to overestimate their level of technical and non-
technical competences. Many software engineering projects
fail due to at least one of the following reasons: scheduling,
specifications and/or average manufacturing costs [8]. Button
and Sharrock [8] also state that software engineers tend to
distinguish between two basic types of problems: "First, those
that are due to deficiencies in the state of general engineering
practice, and second, those that arise from the state of the
project they were engaged in. Engineering work on any
particular development thus does not involve only the
resolution of the problems arising from the specific
circumstances of the project itself, but also contends with
problems that are recognized as generic problems of
engineering work per se" [8]. Students hardly believe these
facts. In their opinion they would do much better and lead the
project to success if they were the actors.

As soft skills are core competences of a software engineer,
they should be a core ingredient of software engineering
education at universities. Yet, soft skills should not be
exercised in isolation, but rather in a typical professional
setting and in conjunction with technical skills.

Project work is one approach to bring complexity and
problem awareness into university education. Project work
fosters many soft skills, such as communication skills and the
ability to work together in a team. Interpersonal skills cannot
be trained without other people around, and project work
combines these competences with the context in which they
are needed. Furthermore, project work offers students
opportunities to understand inter-relationships between
technical knowledge and soft skills. Project work in a
university context gives students the chance to prove that they
can really succeed while understanding the difficulties of
project work and the reasons for failure.

This contribution investigates these issues in more detail.
More specifically, the research question that drives this work
is identifying the (major) challenges that students face in
software engineering projects during their university
education. To that end, we performed a qualitative analysis of
post-mortem reports after finishing a capstone software
engineering project.

The next section discusses related work before Section III
provides some details on the setup of the capstone project and
its underlying intended learning outcomes. Section IV
outlines the research design before Section V presents and
discusses the results of the qualitative analysis. A summary
and outlook on future work concludes the paper.

135Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 146 / 191

II. RELATED WORK
A better understanding of the inner workings of (capstone)

projects in software engineering has been addressed in earlier
work under various perspectives.

Brereton and Lees [9] investigate four factors that
arguably have some impact on the outcomes of student
projects. In particular, they focus on team size, range of
abilities within the teams, the presence of female team
members, and the mix of expertise beyond computing in the
team. Their findings indicate that these factors do not have
significant impact except for the gender mix – teams with two
or more female members performed better than purely male
teams.

Wikstrand and Börstler [10] identified various correlations
between structural aspects of team projects. Most
importantly, the type of the project, i.e., Web project, editors
/ generators, or other projects, plays a major role for project
success. In addition, the authors identified project planning as
a crucial, but often underestimated issue in student projects,
particularly as students tend to not take planning and other
process issues seriously.

Bastarrica et al. [11] investigated the role of four major
aspects in capstone software engineering projects, namely
technical challenges, teamwork, planning, and requirements
clarification. For each of these four aspects, the authors tried
to figure out if they changed between project initiation and
closure with respect to their perceived value and difficulty.
Most prominently, they perceived a decrease in the value of
addressing technical issues properly and an increase of
perceived difficulty of negotiating requirements with clients.
On the other hand, in this study students seemed to have a
realistic impression of difficulties associated to proper project
planning, while they found teamworking harder than
expected.

In a similar vein, Paasivara et al. [12] investigate 15
hypotheses with respect to a change in attitude over the
duration of a capstone project. They also substantiated that
technical issues lose importance, while non-technical issues,
e.g., communication within the team and with stakeholders,
understanding requirements, or following a defined process
gained in terms of perceived importance and difficulty.

All the mentioned research provides valuable insights by
substantiating of refuting hypotheses, based on a statistical
analysis of data gained in surveys or interviews. Nevertheless,
the origin of the formulated hypotheses remains unclear. For
that reason, our research takes a step back in order to identify
potential challenges, technical as well as non-technical, in
capstone projects, based on a qualitative research design. In
other words, our work tries to lay the foundation for
formulating hypotheses on relevant success factors and
challenges on a sound basis. This seems to be an important
contribution to avoid overlooking crucial aspects due to
premature formulation of hypotheses.

III. STRUCTURE AND GOALS OF THE CAPSTONE PROJECT

A. Educational Context
Students in our bachelor program in informatics can enroll

in a Software Engineering project (SE project) in their final

year. Participants acquired solid programming skills during
courses in their first and second years, and they already took
a compulsory introduction to software engineering and two
elective courses focusing on software requirements,
architecture, and testing in more detail. The SE project is
intended as a means to tie together what has been learned on
software engineering so far and gain hands-on experience in a
self-directed mode. Students are supposed to learn from their
own experiences, rather than getting rigid instructions from
instructors. Generally, the main task in the project consists of
devising and implementing a (Web-based) information
system that supports and automates some business process
(i.e., belongs to type “Web project” in Wikstrand’s and
Börstler’s terminology [10]). In most cases, development is
from scratch, i.e., no enhancement or reengineering of existing
systems.

The SE project is offered as an elective course, which
typically runs for 14 weeks with 6 European Credit Transfer
System (ECTS) credits, i.e., puts a workload of approximately
180 hours on each participant. This workload includes 4
contact hours per week in which the project teams physically
meet at the university. During these physical meetings,
instructors are present, but act as observers in the background
unless explicitly asked for support. Teams also meet virtually,
using tools such as Skype or social media to make agreements.
So far, we have had nine iterations of the SE project from 2011
to 2020.

Since the course is an elective, the number of participants
varies from year to year, ranging from 10 to 25 students.
Participants are split in project teams of 4 to 6 members.
Typically, project topics are contributed by real customers and
differ between teams. Customers typically do not have an IT
background, which brings issues of multidisciplinarity into
the projects.

Organizing a team, tailoring a process model, and
developing a software system at the same time overstrained
bachelor students. Therefore, we mixed bachelor and master
students in the same project, starting with the third iteration of
the SE project. Bachelor students focus on technical issues,
constitute the development team, and experience project
management in a more passive fashion. In contrast, the master
students are in charge of leading the project and in particular
of adapting the process model to the specific situation. Each
team is free to choose a process model. In the more recent
offerings of the project, teams regularly embarked on agile
approaches, in particular Scrum [13]. The project teams
decide on which deliverables and which project roles are
really important and how they will implement the chosen
process model.

To enable them to fulfill their roles, instructors offer on-
demand coaching for master students to reflect and improve
their leadership skills. This individual coaching establishes a
forum to discuss challenges and problems they face in their
teams and obtain help by the instructors to master these
challenges.

B. Intended Learning Outcomes
The teaching goals of the capstone project differ for

bachelor and master students. The focus for bachelor students

136Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 147 / 191

lies on understanding and combining chunks of technical
knowledge, which up to then have been isolated, into one big
picture, and on integrating in a team, which includes fostering
communication skills. Master students focus on organizing
and leading a team. The difficulties for them are, e.g.,
communicating with team members, structuring tasks, and
motivating team members for effective teamwork. Master
students are responsible for the results and for meeting
deadlines, as well as for assuring the quality of the software.

Intended learning outcomes are mainly competences and,
consequently, assessment is competence-oriented as well. At
least two instructors accompany/observe the project teams
during the presence hours each week to get an idea of
teamwork and individual contributions.

In particular, grading of the bachelor students is based on
the following aspects:

• technical quality of results (completeness, complexity
of the project topics) including artefacts, such as
requirements specifications, software architecture
documents, test specifications, etc.

• (customization of and) adherence to a process model,
• individual technical contribution,
• individual team-orientation,
• individual self-reflection, and
• final presentation.

Likewise, grading for the master students is based on
• adaptation of the process model including

documentation of the tailored process,
• process quality and leadership,
• self-reflection, and
• final presentation.
A post-mortem reflection is conducted as an additional

element to stimulate learning. To that end, students were
asked to reflect on their own individual role in the project, as
well as the performance of the entire team. Reflection and
metacognition are advantages of project work and are
didactical methods to foster soft skills and competences.

Self-reflection is stimulated in two steps. First, each of the
students has to prepare a short individual self-report that
addresses issues such as

• their roles and tasks in the project,
• their expectations with respect to the project and the

degree to which these had been met,
• particular issues in the project that they personally

would have handled differently and, from their
personal point of view, more successfully,

• which role they would have liked in the project and
what they would have done differently in that role,
and

• how interaction and cooperation between team
members evolved during the project, including their
subjective explanation for these changes.

Secondly, one week after the project is complete, the
project teams meet with instructors for a post-mortem analysis
session of approximately two hours, which serves to reiterate
any possible aspect that seems worth being discussed in the
group.

The self-reports establish the data base that we analyze
subsequently.

IV. RESEARCH DESIGN

A. Qualitative Research Design
The research uses a mixed methods approach with focus

on qualitative analyses applying the basic strategy of
Grounded Theory (GT) [14] in combination with Mayring’s
content analysis [15] [16] . GT aims at developing middle
range theories by generating codes in a multi-stage procedure
[17]. One step of the analysis consists of going through the
material carefully and assigning appropriate semantic codes to
the text segments to which they apply. “Coding means
categorizing of segments of data with a short name that
simultaneously summarizes and accounts for each piece of
data. Your codes show how you select, separate, and sort data
to begin an analytic accounting of them” [18]. In particular,
the generation of the code system is not accomplished up-
front, but rather by inductive category formation while going
through the material. Simultaneously, new or existing codes
are added as tags to relevant portions of the material while
reading, abstracting and interpreting the texts.

B. Research Questions
This paper focusses on the following research questions:

What are the main challenges for students in SE projects?
What are major issues they have to deal with?

C. Research Data
An SE project team consists of 5 members on average. The

large majority of participants was male, with only four
females taking part over the years. All females were enrolled
in the bachelor program.

To get answers to the research question, we rely on
students’ post-mortem self-reports. Over nine years we
collected 79 reports from 81 students in 13 teams. All teams
were guided by a master student, so that 14 self-reports were
written by master students. The reports have an average length
of two pages of prose text. Self-reports were written
anonymously.

The self-reports encompass lots of potentially interesting
data, which may be analysed from various perspectives. At the
current stage of our research, we focus on challenges in SE
projects to answer our research questions.

D. Application of the Research Design
As outlined above, our approach develops a category

system incrementally by first marking those text segments that
refer to challenges that students had to face in SE projects.
This was accomplished using the MAXQDA analysis tool
[19]. In the first coding procedure, subcategories are
developed by going through all self-reports and marking text
passages. Doing so results in an initial category system with
little structure, which possibly includes some duplications. In
a second step, initial categories are merged, sorted, and

137Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 148 / 191

grouped according to their meaning. In this way, an
unambiguous and structured category system arises.

E. Initial Results - Overview
As a result, our research process yielded 1,379 codes in 19

categories. One of these categories is a main category
“challenges”, which is of particular interest for this paper.

The main category “challenges” encompasses 3
unambiguous subcategories (professional & technical issues,
human factors, and organizational matters). Furthermore, we
found 3 categories that collect complex challenges.
Challenges in this category (internal communication,
complexity, leadership) combine at least 2 challenges of the
unambiguous categories. Challenges concerning internal
communication, for example, may have human and
organizational causes. In addition, a category “other
challenges” was built to sum up marginal problems of
working together.

Focussing on these relevant categories, 732 coded text
segments from 72 self-reports were evaluated and showed the
top three challenges in SE projects (see Table I and Figure 1):
Human factors are the biggest challenges for students when
working in a team, followed by organizational matters and
professional & technical issues.

It is worth noting that the main categories “Internal
communication”, “Big picture / Complexity”, and
“Leadership (-)” are atomic in the sense that they do not have
any subcategories.

TABLE I. STUDENTS’ CHALLENGES IN SE CAPSTONE PROJECTS

Students’ Challenges in SE Capstone

Projects
Percent (valid) Percent Documents

Human factors 87.5 79.75 63

Organizational Matters 75 68.35 54
Professional & Technical
Issues 72.22 65.82 52

Internal Communication 50 45.57 36

Big Picture / Complexity 47.22 43.04 34

Other Challenges 40.28 36.71 29

Leadership (-) 25 22.78 18
DOCUMENTS with
Code(s) 100 91.14 72

DOCUMENTS without
Code(s) - 8.86 7

ANALYSED
DOCUMENTS - 100 79

F. Most Prominent Issues in Main Categories
A closer look at the main categories shows the following

top issues within a specific category, as seen in Tables II, III,
IV, and V.

TABLE II. TOP ISSUES IN HUMAN FACTORS

Top 4 Issues in Category “Human factors”

Category Number of
codes Percent

Collaboration bachelor and master
students 32 10.49

Motivation 31 10.16

Collaboration 25 8.2
Communication with Third / Other
Disciplines 20 6.56

The first subcategory refers to issues that relate to the

interaction of bachelor and master students within a project
team. The second subcategory reflects issues that are linked to
a lack of individual motivation. The third subcategory refers
to issues of how members of the project teams (excluding the
master students) cooperated, while the last subcategory
focusses on the communication with stakeholders outside the
project team, possibly across disciplinary boundaries.

Figure 1. Students’ Challenges in SE Capstone Projects (in percent)

88
75 72

50 47 40
25

Challenges Percent (valid)

138Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 149 / 191

TABLE III. TOP ISSUES IN ORGANIZATIONAL MATTERS

Top 5 Issues in Category “Organizational Matters”

Category Number of
codes Percent

Time aspects / Timeliness 34 26.15

Management in general 33 25.38

Software Process Modell 16 12.31

Distribution of Tasks and Responsibilities 16 12.31

Communication 13 10.00

In terms of organisational matters, the first subcategory

refers to issues related to stretching deadlines or skipping
tasks due to time pressure or lack of time. The second
subcategory collects issues related to organizing the project,
e.g., developing a precise project plan, arrange meetings,
facilitate meetings, etc. The third category refers to issues in
the context of making the process model work properly. The
fourth category addressed issues related to sharing the
workload and assigning / accepting responsibilities in the
project team, while the last one refers to (lack of)
communication among team members.

TABLE IV. TOP ISSUES IN PROFESSIONAL & TECHNICAL ISSUES

Top 5 Issues in Category “Professional & Technical Issues”

Category Number of
codes Percent

Documentation 27 21.77

Software Requirements 25 20.16

Technical Knowledge 17 13.71

Effort Estimation 12 9.68

Tools 10 8.06

In the main category „Professional & Technical issues”,

the first subcategory deals with the deliverables beyond the
actual code, e.g., requirements or architecture documents. The
second subcategory refers to methodological issues related to
clarifying requirements. The third and fifth subcategories deal
with issues related to missing technical knowledge or tool
deficiencies, while the fourth category refers to deficiencies
related to time and effort estimations.

TABLE V. TOP ISSUES AMONG OTHER CHALLENGES

Top 3 Issues in Category “Other Challenges”

Category Number of
codes Percent

General Organisation 12 29.27

Shared Vision 9 21.95

Individual Situation 5 12.20

The main category „Other Challenges” relates to issues on
a meta level, namely the organization of the project as a course
and the individual situation of team members in the context of
other subjects, but also a common understanding of priorities
for the project, within the team or between team and
instructors.

V. DISCUSSION
In contrast to the majority of earlier work on the subject,

this work employs a well-founded qualitative approach to
analysing educational data, in this case in the context of
software engineering capstone projects.

Following this qualitative line of research, we arrived at
19 main categories of challenges that students face in capstone
projects. These 19 main categories correspond to semantic
clusters of issues raised in more than 70 textual post-mortem
self-reports. Due to the chosen approach, categories and
subcategories are subject to change whenever additional data
become available.

The database of more than 70 textual self-reports is rich in
the sense that it might provide insight from various diverse
points of view. For now, we put a focus on identifying
challenges students might face in a capstone project. Given
that perspective, our result is closest in nature to the analysis
by Paasivaara et al. [12]. Given our data, we can substantiate
their findings that technical issues play only a minor role with
respect to the “success” of a student project in comparison to
other aspects, such as collaboration within the team and
beyond, issues of project management and organisation, and
methodological issues related to requirements engineering
and effort estimation. In addition, we also found indications
that, like stated by Wikstrand and Börstler [10], issues related
to project planning are some challenge. Yet, our results are
more fine-grained, thus allowing for more sophisticated
hypotheses that might be tested subsequently. For instance,
project organisation (and not just planning), individual
motivation and individual deficiencies in setting or adhering
to deadlines have not been mentioned as important issues in
related research.

Furthermore, our findings are pretty well in line with the
intended learning outcomes of the capstone project. As
mentioned in Section III-B, developing problem-awareness
with respect to issues related to a gross oversight and team
formation and teamwork are among the most important goals
of the capstone project. As these issues are mentioned
frequently in the coded text segments (see Table I), students
actually seem to realize that things look simpler as they are on
closer inspection. As a consequence, we largely reached our
intended learning outcomes.

VI. SUMMARY AND OUTLOOK
Providing students with an opportunity to tie together their

knowledge on engineering (moderately) complex software
systems and exercise and expand non-technical competences
is paramount for well-educated graduates in software
engineering. Capstone software engineering projects are very
popular approach to that end. Yet, these capstone projects vary
in terms of “success”, both from the point of view of involved
stakeholders and with respect to intended learning outcomes.

139Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 150 / 191

This paper aims at getting better insight into which
challenges student face in software engineering capstone
projects. To do so, self-reports of nine years were evaluated
qualitatively with the MAXQDA analysis toolset. Our
findings indicate that major challenges for students lie in
human, organizational and professional. Furthermore, internal
communication, complexity, and leadership are areas of
potential difficulties in student projects.

As main results, our research identifies areas that pose
difficulties of some sort or another to students when running
a somewhat complex software engineering project. This
establishes an opportunity to state more elaborate hypotheses
on success or risk factors with respect to intended learning
outcomes for software engineering outcomes.

In future studies, self-reports will be evaluated with other
foci, e.g.: What are the learning outcomes from students`
perspectives? What did students learn? Are there differences
between bachelor and master students concerning the
mentioned questions?

ACKNOWLEDGMENT
This work is funded by the German Federal Ministry of

Education and Research (Bundesministerium für Bildung und
Forschung) under grant number 01PL17022A as part of the
EVELIN project. The authors are responsible for the content
of this publication.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed. Boston:
Pearson, 2011.
[2] C. Gold-Veerkamp, Erhebung von Soll-Kompetenzen im
Software Engineering - Anforderungen an Hochschulabsolventen
aus industrieller Perspektive. Wiesbaden: Springer Vieweg, 2015.
[3] P. L. Li, A. J. Ko, and J. Zhu, “What Makes a Great
Software Engineer?,” in 37th International Conference on Software
Engineering (ICSE), 2015, pp. 700–710.
[4] H.-K. Lu, C.-H. Lo, and P.-C. Lin, “Competence analysis
of IT professionals involved in business services — Using a
qualitative method,” in 24th Conference on Software Engineering
Education and Training (CSEE&T), 2011, pp. 61–70.
[5] I. Richardson, L. Reid, S. B. Seidman, B. Pattinson, and
Y. Delaney, “Educating software engineers of the future: Software
quality research through problem-based learning,” in 24th

Conference on Software Engineering Education and Training
(CSEE&T), 2011, pp. 91–100.
[6] J. G. Rivera-Ibarra, J. Rodríguez-Jacobo, and M. A.
Serrano-Vargas, “Competency Framework for Software
Engineers,” in 23rd Conference on Software Engineering Education
and Training (CSEE&T), 2010, pp. 33–40.
[7] Y. Sedelmaier, Basics of didactics for software
engineering: Research-based and application-oriented development
and evaluation. Saarbrücken: LAP LAMBERT Academic
Publishing, 2019.
[8] G. Button and W. Sharrock, “Project work: The
organisation of collaborative design and development in software
engineering,” (en), Comput Supported Coop Work, vol. 5, no. 4, pp.
369–386, 1996.
[9] P. Brereton and S. Lees, “An Investigation of Factors
Affecting Student Group Project Outcomes,” in 18th Conference on
Software Engineering Education & Training (CSEE&T), 2005, pp.
163–170.
[10] G. Wikstrand and J. Borstler, “Success Factors for Team
Project Courses,” in 19th Conference on Software Engineering
Education & Training (CSEE&T), 2006, pp. 95–102.
[11] M. C. Bastarrica, D. Perovich, and M. M. Samary, “What
Can Students Get from a Software Engineering Capstone Course?,”
in 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering Education and Training Track
(ICSE-SEET), 2017, pp. 137–145.
[12] M. Paasivaara, D. Voda, V. T. Heikkilä, J. Vanhanen, and
C. Lassenius, “How Does Participating in a Capstone Project with
Industrial Customers Affect Student Attitudes?,” in 2018
IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-
SEET), 2018, pp. 49–57.
[13] M. Klopp, C. Gold-Veerkamp, J. Abke, K. Borgeest, R.
Reuter, S. Jahn, J. Mottok, Y. Sedelmaier, A. Lehmann, and D.
Landes, “Totally Different and yet so Alike,” in 4th European
Conference on Software Engineering Education (ECSEE'20): ACM,
2020, pp. 12–21.
[14] B. G. Glaser and A. L. Strauss, The Discovery of
Grounded Theory: Strategies for Qualitative Research. Chicago:
Aldine Transaction, 2009.
[15] P. Mayring, Qualitative Content Analysis. Available:
http://www.qualitative-
research.net/index.php/fqs/article/view/1089/2385 (2020, Sep. 02).
[16] ____, Qualitative Inhaltsanalyse: Grundlagen und
Techniken, 11th ed. Weinheim: Beltz, 2010.
[17] U. Kuckartz, Qualitative Inhaltsanalyse. Methoden,
Praxis, Computerunterstützung, 4th ed. Weinheim, Basel: Beltz
Juventa, 2018.
[18] K. Charmaz, Constructing grounded theory, 2nd ed. Los
Angeles: SAGE, 2014.
[19] S. Rädiker and U. Kuckartz, Analyse qualitativer Daten
mit MAXQDA. Wiesbaden: Springer Fachmedien Wiesbaden, 2019.

140Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 151 / 191

Code Quality Metrics Derived from Software Design

Omar Masmali
Department of Computer Science

The University of Texas
El Paso, Texas USA

email: oamasmali@miners.utep.edu

Omar Badreddin
Department of Computer Science

The University of Texas
El Paso, Texas USA

email: obbadreddin@utep.edu

Abstract-Code smells are assumed to indicate bad design that
can cause an unsustainable system. Many studies have tailored
fixed threshold values for code smell metrics. However, these
threshold values have ignored the fact that every system is
unique, and it cannot be dynamically evolved throughout the
codebase life cycle. This paper presents a novel approach that
formulates dynamic code quality metrics with thresholds that are
derived from software design. The first step in this approach is to
measure the complexity of the design. Many researchers had
developed many complexity metrics to measure the level of
complexity in software models. Most of these metrics are limited
and focus on counting the number of elements in each design,
ignoring the unique characteristics of these elements and their
interactions. In this study, we also propose a new methodology to
measure the complexity of any software design. This
measurement approach is based on evaluating each element in
any class diagram by assigning a complexity rate. Finally, we
propose a methodology to evaluate the effectiveness of this
approach.

Keywords - code quality; model-driven engineering; software
quality metrics; UML class diagram; software design.

I. INTRODUCTION

An important goal of software engineering is to deliver
software systems that can be sustainably maintained for an
extended period of time. Software sustainability is a systematic
challenge facing many communities, including professional
software developers, open source communities and the
research and scientific communities. It is estimated that half of
software engineers’ time and efforts are consumed performing
avoidable maintenance activities. Current software code quality
metrics that reply to code smells and technical debt suffer from
key fundamental limitations. First, current methods are reactive
in nature, as they are dependent on the emergence of adverse
symptoms. Generally, such methods promote code refactoring
to address deficiencies but provide little upfront guidance to
avoid or minimize the emergence of such deficiencies.
Moreover, current metrics are insensitive to diverse
technologies, platforms and software contexts. This is a
significant limitation, particularly at this period when software
platforms, middlewares and contexts are in rapid flux. In
addition, quality quantifications are not sufficiently fluid to
adapt to changing software priorities and context throughout
the software life cycle.

This paper presents a methodology to define code quality
metrics with thresholds that are derived from software design.
This ensures alignment between the intentional specification of
software design characteristics and its implementation. This
approach means that metrics can evolve as the codebase design
evolves throughout the software lifecycle. Moreover, this

approach means that each code module will have its own
unique quality metrics that are tailored to its unique context.
Also, in this paper, we introduce new complexity metrics for
software designs. Many researchers had developed some
complexity metrics to measure the level of complexity in
software models [26]-[30]. Most of these metrics are limited in
scope and focus on counting the number of elements in each
design, overlooking the unique characteristics of these
elements and their interactions. In this study, we propose a new
methodology to measure the complexity of any software
design. This measurement approach is based on evaluating
each element in any class diagram by assigning a complexity
rate.

The rest of the paper is structured as follows. In Section II,
we describe the problem of current code quality metrics, then,
we cover some related works. In Section IV, we present our
proposed approach, and in Section V, we show the expected
contribution of this work. In Section VI, we present the current
status of our approach, and finally, we conclude our work in
Section VII.

II. PROBLEM

Current code quality quantification methodologies adopt
metrics with rigid thresholds. These methodologies do not
adequately consider variations in development technologies
and the architectural roles of various code and design elements.
For example, one of the code quality metrics is large class code
smell [1], defined as any class with more than 1000 lines of
code. As software development platforms advance, managing a
class with 1000 lines of code may no longer be detrimental to
codebase quality. Similarly, high-performance computing
platforms may require classes that are significantly larger in
size to maximize performance. Moreover, long-living software
systems may require significantly lower thresholds to
accommodate the codebase as it evolves over an extended
period of time.

To illustrate the current situation, consider the following
simplified the Unified Modeling Language UML class diagram
shown in Figure 1. The class diagram lists a data-heavy class
(Class D), a computational heavy class (Class E) and some
associations between classes. A software engineer who
develops an implementation for this design, while following
the design closely, will inevitably create code that suffers from
significantly low sustainability quantification. For example,
because Class D is data-heavy, its size, in terms of lines of
code, will be very small, resulting in Lazy class code smell
[14]. Similarly, Class C is designed to access many methods
and attributes in other classes (it participates in five
associations). The code analysis of Class C returns God class
code smell [15].

141Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 152 / 191

Contemporary code analysis approaches that uncover code
smells are agnostic to the intentions of the software designer,
as demonstrated in the example above. Traditional analysis
does not consider to what extent the implementation is aligned
with the design. The identified code smells are frequently not
an indication of unsustainable code but are, rather, a direct
result of the intentional design specifications.

Figure 1. UML class diagram example.

Class D is Lazy because it is designed to host data and
perform few computations. Class C is Large and has access to
many external entities because it is designed as a root element
in the design. Recommended code refactoring to remove the
code smells will unavoidably suggest refactorings that are
difficult to implement without violating the design
specification. Therefore, we argue that such metrics with rigid
thresholds are too rigid and are ineffective in characterizing
codebase qualities.

III. RELATED WORK

This section will cover some related works in code quality
metrics and design complexity metrics.

A. Code Quality Metrics

It has been argued that identifying appropriate code quality
metrics and their thresholds is challenging, many have
proposed using experience as a primary source for metric
definition [21]- [23]. Code metrics are too sensitive to context
and that metrics appropriate to one project are not adequate
predictors for another. Aniche et al. investigated the effect of
architecture on code metrics [4], proposing Software
Architecture Tailored Thresholds (SATT), an approach that
detects whether an architectural role is considerably different
from others in the system in terms of code metrics and provides
a specific threshold for that role. Our work presented in this
paper is similar in the sense that it aims to improve the
accuracy of code metric thresholds. However, while the SATT
approach derives a unique threshold only if the architectural
role of the module is deemed to be significantly different, our
approach derives unique thresholds even in cases where the

architectural role may only be slightly different. Gil and
Lalouche demonstrated this phenomenon by applying both
statistical and visual analyses of code metrics [2]. Fortunately,
they demonstrate that context dependency can be neutralized
by applying a Log Normal Standardization (LNS) technique. In
a similar study, Zhang et al. showed that code metrics are
dependent on six factors, namely, application domain,
programming language, age, lifespan, the number of changes
and the number of downloads [3].

Oliveria et al. proposed a method that extracts relative
thresholds from benchmark data, and they evaluated their
method in the Qualitas Corpus, finding that the extracted
thresholds represent an interesting balance between real and
idealized design rules [12]. Furthermore, Kapova et al.
presented an initial set of code metrics to evaluate the
maintainability that can be applied to different relational
transformations, which play important roles when considering
architecture refinement transformations [13]. The authors
demonstrated the use of these metrics on a set of reference
transformations to show their application in real-world settings
and to help software architects judge the maintainability of
their model transformations. Based on these judgments,
software architects can take corrective actions (like
refactorings or code-reviews) whenever they identify a decay
in the maintainability of their transformations.

B. Design Complexity Metrics

Many different metrics for the class diagram has been
developed to help software developers to analyze complexity
and maintainability in the early phase of software lifecycle.
One of them is developed by Peter, in [26], to analyze the
complexity of architecture by using metric tree. He used UML
diagram as an input to find some key indicators. He developed
metrics to predict class’s fault-proneness and to provide quality
measurements. M. Genero discussed two groups of metrics to
measure the complexity of class diagrams [30]. Kang et al.
proposed weighted class dependence graphs to present a
structure complexity measure for the UML class diagram by
calculating classes and relationships between them [28]. They
are using the entropy distance to measure the complexity of the
class diagram. Use stochastic variables x and y to denote the
output and input edges weight of each node. Doraisamy et al.
proposed a model metric to be a guideline for software project
managers in order to control and monitor software [25].

Moreover, a class diagram metrics proposed by Marchesi
metrics to measure the complexity by balancing the
responsibilities among packages and classes, and of cohesion
and coupling among system entities [31]. The metrics are
Design Size in Classes (DSC), Number of Hierarchies (NOH),
Average Number of Ancestors (ANA), Direct Class Coupling
(DCC), Cohesion Among Method of Class (CAM), and
Measure of Aggregation (MOA). Chidamber and Kemerer
proposed some metrics, only three of them for measuring the
UML class diagram [27][29] which are Number of Children
(NOC), Depth of Inheritance Tree (DIT), and Weighted
methods per Class (WMC). Concas in his work focuses on
investigating process complexity [5]. He defines process

142Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 153 / 191

complexity as the degree to which a business process is
difficult to analyze, understand or explain. claims that the only
way to analyze the process complexity is by using the process
control-flow complexity metrics. Ma et al. [32] proposed a
hierarchical metrics set in terms of coupling and cohesion for
large-scale Object-Oriented (OO) software systems. They
analyzed the proposed approach on a sample of 13 open-source
OO software systems to empirically validate the set. Fourati et
al. [33] propose an approach that identifies anti-patterns in
UML designs through the use of existing and newly defined
quality metrics that examines the structural and behavioral
information through the class and sequence diagrams. It is
illustrated through five of some well-known anti-patterns:
Blob, Lava Flow, Functional Decomposition, Poltergeists, and
Swiss Army Knife. Kim and Boldyreff suggested a software
metrics that can be applied to the elements of UML
modelling [24]. The proposed UML metrics are based on the
metamodel scheme and divided into four categories of metrics
which are model, class, message, and use case metrics.

IV. PROPOSED SOLUTION

Our proposed approach derives code quality metrics and
their dynamic threshold values from software designs.
Beginning, our approach focuses on design elements pertaining
to data types, their complexities, frequencies, and the estimated
complexity of the operations of such data. Then, from the
estimated class and method complexity, We quantified fuzzy
quality metrics to measure two of the bad code smells, which
are large class and long method.

A. Complexity Metrics

The approach involves assigning complexity rate [20]
values to each attribute, method and association within the
class as shown in TABLE I. We assign a complexity rate
(������) to an attribute’s visibility (����.) and type (����.) to
estimate the attribute’s complexity (�������). Each complexity
rate (������) can be primitive, simple, or complex. Then we
estimate method complexity (���ℎ������) by summing the
complexity of the method’s visibility (�����.), the return type
(�����.) and the total parameters list (�����.). Further, We
estimate the association complexity (��������) by adding all
incoming (����.) and outgoing (�����.) association links.
Finally, by summing all attributes, methods and association
complexities, we can estimate the class complexity
(���������), which we use to quantify code quality factors,
such as expected lines of code for any class (����(�����)).

The following formulas describe the proposed approach.
Formula 1 estimates the complexity of the attributes, as derived
from the UML class diagram shown above. Formula 2
estimates method complexity based on the complexity of the
parameters and return types. Formula 3 estimates the
complexity of the association for each class. Formula 4 uses
the previous calculations to estimate the class complexity. The
following describes the quantification approach in greater
detail.

������� = (����. ∗ ������) + (����. ∗ ������) (1)

where (�������) is attribute complexity, (����.) attribute
visibility, (����.) attribute type and (������) the complexity
rate.

TABLE I. CLASSIFICATION OF THE COMPLEXITY RATE

���ℎ������ = (�����. ∗ ������) + (�����. ∗ ������)

+ ��(�����.

�

���

∗ ������)� (2)

Element Scope Name Classification Examples Rating

Attributes

Visibility ������

Primitive Private 1

Simple
Protected,
Package

2

Complex Public 3

Type �������

Primitive
int, char,
boolean

1

Simple
float, long,
double, str

2

Complex
array, struct,
tuple, date,

time, list, map
3

Derived
object, array
of complex

types
4

Methods

Parameters �����.

Primitive
int, char,
boolean

1

Simple
float, long,
double, str

2

Complex
array, struct,
tuple, date,
time, list

3

Derived
object, array
of complex
types, map

4

Return Type �����.

Primitive
int, char,

boolean, void
1

Simple
float, long,
double, str

2

Complex
array, struct,
tuple, date,
time, list

3

Derived
object, array
of complex
types, map

4

Visibility �����.

Primitive Private 1

Simple
Protected,
Package

2

Complex Public 3

Association

Incoming ����.

Primitive 1 to many 1

Simple
many to

many, 1 to 1
2

Complex

all others
(such as
n .. m to

many, etc..)

3

Outgoing �����.

Primitive 1 to many 1

Simple
many to

many, 1 to 1
2

Complex all others 3

143Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 154 / 191

Here, (���ℎ������) is method complexity, (�����.) is
method visibility, (�����.) is method return type and
(∑ (�����.

�
��� ∗ ������)) is the complexity rate for all

parameters in the method.

�������� = ��(����.

�

���

∗ ������)� + ��(�����.

�

���

∗ ������)� (3)

(��������) is the association complexity, (∑ (����.
�
��� ∗

������)) is the complexity for all incoming associations to the
class and (∑ (�����.

�
��� ∗ ������)) is the complexity for all

outgoing associations.

��������� = ���������

�

���

� + �����ℎ������

�

���

�

+ �������� (4)

The class complexity (���������) can be calculated by

summing the complexity of all class attributes �∑ �������
�
��� �,

the complexity of all methods in the class
�∑ ���ℎ������

�
��� � ��� the class association complexity

(��������).

Class complexity (���������) and method complexity
(���ℎ������) can be used to estimate the expected lines of
code for the class, or any method within the class, by
multiplying them by the class factor (������) or method factor
(�������). Both the class factor and method factor will be
estimated empirically as part of the planned research activities.

B. Fuzzy Metrics

The fuzzy quality metrics are a new methodology to
measure two of the bad code smells, which are large class and
long method. This methodology is based on measuring the
difference between the actual and expected values of the lines
of code for the class and method. To demonstrate this concept,
we illustrate a fuzzy metric for the large class and long method
code metrics [20].

�����������(�����) = ���(�����) − ����(�����) (5)

����(�����) = ��������� ∗ �����(���������) (6)

�����(���������)

=
���(�����) ∗ ���(�������)

���������(�����) ∗ ���������(�������)
(7)

Where ����(�����) is the expected size in terms of lines
of code, ���(�����) is the total LOC for all classes, and
���(�������) is the average of LOC for all classes.
Similarly, the fuzzy metric for method is defined as follows:

�����������(���ℎ��) = ���(���ℎ��) − ����(���ℎ��) (8)

����(���ℎ��) = ���ℎ������ ∗ ���ℎ��(���������) (9)

���ℎ��(���������) = ���ℎ������(�������) (10)

V. EXPECTED CONTRIBUTIONS

The expected contribution of this work is to present a new
methodology for estimating software code quality. We expect
that design-driven code quality metrics will improve the
maintainability and sustainability of software systems by
considering the variations in development technologies and the
architectural roles of various code and design elements. This
ensures that the derived metrics are uniquely tailored to the
software under development and the derived metrics can
dynamically evolve throughout the codebase life cycle.
Another contribution in this paper is to introduce new
complexity metrics for software designs. The approach is based
on evaluating every element in each software design by
assigning a relative complexity rate. The complexity rate can
be either primitive, simple, or complex. As such, the
complexity of a system can be estimated by summing the
complexity values of all elements within the system.

VI. CURRENT STATUS

This work has been formulated and submitted to different
conferences. Overall, the plan came over the following phases.
Phase 1: Define the complexity metrics for software design and
evaluate it theoretically and empirically. Four conference
papers have been submitted based on the first phase. One of
those papers has been accepted at the 20th IEEE International
Conference on Software Quality, Reliability, and Security.
Two other papers were accepted at the Future Technologies
Conference 2020 [34][35]. The fourth paper is under review at
the Software Quality Days conference 2021. Phase 2:
formulate and evaluate the fuzzy quality metrics. In this phase,
three conference papers have been submitted to some venuses.
The first one has been accepted and presented at the
International Conference on Model-Driven Engineering and
Software Development MODELSWARD 2020 [20]. The other
two paper are under review at the International Conference on
Computer Science and Software Engineering CASCON 2020,
and 20th IEEE International Working Conference on Source
Code Analysis and Manipulation SCAM 2020. Phase 3:
Completing, submitting, and defending the dissertation.

The preliminary results pertaining to class-level complexity
and code fuzzy smell are as follows. In class complexity we
have applied the proposed approach on code repositories
obtained from opensource projects. The selection criteria
considered code repositories that are most active on GitHub
[16]. We included, among others, codebases developed by
Google [17], Microsoft [18] and the National Security Agency
[19]. We compared the results from our quantification metrics
to the actual metrics derived from the codebase analysis
(Figure 2). High correlation with 84%, would suggest that our
metrics accurately characterize codebase quality. In the near
future, we plan to compare correlation values obtained from
this approach to those obtained from applying traditional code
quality metrics.

144Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 155 / 191

In fuzzy code smells we attempted an extensive empirical
evaluation of fuzzy code smell approach using expert reviews
of large corpuses [37] of smells in open source repositories by
comparing our metics, and a wide range of static code analysis
tools (PMD [38], infusion [39], JDeodorant [40], and JSpIRIT
[41]), against the expert reviews data sets. The results for the
precision and recall show that fuzzy smell method aligned
significantly better with expert’s data sets than contemporary
code analysis tools as shown in Figure 3.

Figure 2. Correlation between class complexity and LOC.

Figure 3. Precision and recall of large class code smell.

Finally, we calculated the F1 score, which is the harmonic
mean of precision and recall. The F1 score is used because in
many studies, the F-measure is the ultimate measure of
performance of a classifier [36]. After calculating the F1 score
for all the approaches, we found that the best performance for

detecting a bad large class smell is our approach. Figure 4
shows that the accuracy of the fuzzy metric is the highest with
55%. The second highest is PMD with 39%, then JDeodorant
with 33%, and after that JSpIRIT with 27%. The lowest
accuracy is found for inFusion with only 7%. Moreover, for
detecting a bad long method smell, we found that our approach
is the best as well.

Figure 4. The total F1 score for classes of each tool.

VII. CONLUSION AND FUTURE WORK

In this paper, we presented a new approach that defines
code quality metrics with thresholds that are derived from
software design. This ensures alignment between the
intentional specification of software design characteristics and
their implementation. This approach means that metrics can
evolves as the codebase design evolves throughout the
software lifecycle. Moreover, this approach means that each
code module will have its own unique quality metrics that are
tailored to its unique context. Our approach started with
measuring the complexity of each class and method in the
system. We then estimated the expected size for each class and
method by using the complexity measurement that we
calculated from the first step. The last step is to calculate the
fuzzy code smell based on the difference between the actual
and expected size of each class and method.

The research plan in future work is to evaluate the proposed
metrics theoretically and empirically by using the following
methodologies: (1) Theoretical evaluation of the complexity
metrics by using Weyuker’s nine properties model. (2)
Evaluate whether the metrics derived from software designs
provide a better characterization of codebase quality and
sustainability than alternate traditional metrics. (3) Quantify
thresholds for the fuzzy code smells derived from the software
design. (4) Compare our new fuzzy code smells with code
smells resulting from code smells detection tools for different
codebases.

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

LOC

Class
Complexity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Precision Recall

0%

10%

20%

30%

40%

50%

60%

145Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 156 / 191

REFERENCES

[1] R. Oliveira et al., “Identifying code smells with collaborative
practices: A controlled experiment,” presented at X Brazilian
Symposium on Software Components, Architectures and Reuse
(SBCARS). Brazil, 2016.

[2] J. Y. Gil and G. Lalouche, “When do software complexity
metrics mean nothing? When examined out of context,” Journal
of Object Technology, vol. 15, no. 1, pp. 1-25. 2016.

[3] F. Zhang, A. Mockus, Y. Zou, F. Khomh and A. E. Hassan,
“How does context affect the distribution of software
maintainability metrics?” In 2013 IEEE International
Conference on Software Maintenance, pp. 350-359.

[4] M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and M. A.
Gerosa, “SATT: Tailoring code metric thresholds for different
software architectures,” presented at IEEE 16th International
Working Conference on Source Code Analysis and
Manipulation (SCAM). Raleigh, NC, USA, 2016.

[5] G. Concas, M. Marchesi, S. Pinna and N. Serra, “Power-laws in
a large object-oriented software system,” IEEE Transactions on
Software Engineering, vol. 33, no. 10, pp. 687-708, 2007.

[6] R. Wheeldon and S. Counsell, “Power law distributions in class
relationships,” In Proceedings Third IEEE International
Workshop on Source Code Analysis and Manipulation, 2003,
pp. 45-54.

[7] Y. Yao, S. Huang, Z. Ren and X. Liu. “Scale-free property in
large scale object-oriented software and its significance on
software engineering,” In 2009 Second International Conference
on Information and Computing Science, vol. 3, 2009, pp. 401-
404.

[8] I. Herraiz, D. M. German and A. E. Hassan, “On the distribution
of source code file sizes,” In ICSOFT (2), 2011, pp. 5-14.

[9] M. Lanza and R. Marinescu, Object-oriented metrics in practice:
using software metrics to characterize, evaluate, and improve
the design of object-oriented systems. Springer Science &
Business Media, 2007.

[10] D. Coleman, B. Lowther and P. Oman, “The application of
software maintainability models in industrial software systems,”
Journal of Systems and Software, vol. 29, no. 1, pp. 3-16, 1995.

[11] B. A. Nejmeh, “Npath: A measure of execution path complexity
and its applications,” Communications of the ACM, vol. 31, no.
2, p. 188, 1988.

[12] P. Oliveira, M. T. Valente and F. P. Lima, “Extracting relative
thresholds for source code metrics,” IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). Belgium, 2014.

[13] L. Kapova, T. Goldschmidt, S. Becker and J. Henss, “Evaluating
maintainability with code metrics for model-to-model
transformations,” International Conference on the Quality of
Software Architecture, 2010.

[14] D. Taibi, A. Janes, and V. Lenarduzzi, “How developers
perceive smells in source code: A replicated study,” Information
and Software Technology Journal, Vol. 92, pp. 223-235,
December 2017.

[15] F. A. Fontana, V. Ferme, and M. Zanoni, “Towards assessing
software architecture quality by exploiting code smell relations,”
IEEE/ACM 2nd International Workshop on Software
Architecture and Metrics. pp. 1-7, Italy, 2015.

[16] https://github.com/ , Accessed Feb. 2019

[17] https://github.com/google , Accessed Nov. 2019

[18] https://github.com/microsoft , Accessed Nov. 2019

[19] https://github.com/nationalsecurityagency , Accessed Nov. 2019

[20] O. Masmali and O. Badreddin. "Towards a Model-based Fuzzy
Software Quality Metrics." In MODELSWARD, pp. 139-148.
2020.

[21] L. Michele, and R. Marinescu, Object-oriented metrics in
practice: using software metrics to characterize, evaluate, and

improve the design of object-oriented systems. Springer Science
& Business Media, 2007.

[22] D. Coleman, B. Lowther, and P. Oman, “The application of
software maintainability models in industrial software systems,”
Journal of Systems and Software, vol. 29, no. 1, 1995.

[23] B. A. Nejmeh, and W. Riddle, "The PERFECT approach to
experience-based process evolution." In Advances in computers,
vol. 66, pp. 173-238. Elsevier, 2006.

[24] H. Kim, and C. Boldyreff, “Developing software metrics
applicable to UML models,” Proc. of the 6th ECOOP Workshop
on Quantitative Approaches in Object-oriented engineering,
Malaga, Spain, June 2002.

[25] M. Doraisamy, S. bin Ibrahim, and M. N. Mahrin, "Metric based
software project performance monitoring model", Proceedings
of the IEEE International Conference on Open Systems (ICOS),
August 2015.

[26] P. In, S. Kim, and M. Barry, “UML-based object-oriented
metrics for architecture complexity analysis”. Department of
computer science, Texas A&M University, 2003.

[27] M. Manso, M. Genero, and M. Piattini, “No-redundant metrics
for UML class diagram structural complexity”. Lecture Notes
on Computer Science, 2681, 2003, pp.127-142.

[28] D. Kang et al., “A structural complexity measure for UML class
diagrams.” In International Conference on Computational
Science 2004 (ICCS 2004), Krakow Poland, June 2004, pp. 431-
435, 2004.

[29] J. Bansiya, and C. G. Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment.” IEEE Trans. on Software
Engineering, 28, 1, 2002, pp. 4-17.

[30] M. Genero, M. Piattini, and C. Calero, "A survey of Metrics for
UML Class Diagrams". Journal of Object Technology, 4 (9). p.
59-92. 2005.

[31] M. Marchesi, “OOA metrics for the unified modeling
languages.” In Proceedings of 2nd Euromicro Conference on
Software Maintenance and Reengineering (CSMR'98), Palazzo
degli Affari, Italy, March 1998, pp. 67-73, 1998.

[32] Ma, Yu-Tao, K. He, B. Li, J. Liu, and X. Zhou, "A hybrid set of
complexity metrics for large-scale object-oriented software
systems." Journal of Computer Science and Technology 25, no.
6, pp. 1184-1201, 2010.

[33] R. Fourati, N. Bouassida, and H. B. Abdallah. "A metric-based
approach for anti-pattern detection in UML designs." In
Computer and Information Science 2011, pp. 17-33. Springer,
Berlin, Heidelberg, 2011.

[34] O. Masmali and O. Badreddin, "Code Complexity Metrics
Derived from Software Design: Framework and Theoretical
Evaluation", In Proceedings of the Future Technologies
Conference (FTC 2020), Canada, Vancouver, 2020.

[35] O. Masmali and O. Badreddin, "Theoretically Validated
Complexity Metrics for UML State Machines Diagram", In
Proceedings of the Future Technologies Conference (FTC
2020), Canada, Vancouver, 2020.

[36] G. Forman, "An extensive empirical study of feature selection
metrics for text classification." Journal of machine learning
research 3, 2003, pp 1289-1305.

[37] T. Paiva, A. Damasceno, E. Figueiredo and C. Sant Anna, "On
the evaluation of code smells and detection tools," Journal of
Software Engineering Research and Development, Springer
2017.

[38] PMD. Accessed Feb. 2020. Avalibale at: https://pmd.github.io/

[39] inFuction. Accessed Feb. 2020. Avalibale at:
http://loose.upt.ro/iplasma/

[40] JDeodorant. Accessed Feb. 2020. Avalibale at:
https://github.com/tsantalis/JDeodorant

[41] JSpIRIT. Accessed Feb. 2020. Available at:
https://sites.google.com/site/santiagoavidal/projects/jspirit

146Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 157 / 191

Automated Requirements Engineering Framework for Agile Development

Muhammad Aminu Umar
Department of Informatics, King’s College London

Strand, London WC2R 2LS, United Kingdom
e-mail: aminu.umar@kcl.ac.uk

Abstract—Requirements engineering has been established as a
critical success factor for software projects. On the other hand,
most requirements documents are often written in natural
language; often prone to structure errors and inconsistent
semantic, thereby, exposing the documents to
misunderstanding arising from undue misinterpretations.
This paper first proposes a framework to automate
requirements engineering activities with focus on modelling
while equally articulating the strategies and work plan for the
implementation and evaluation.

Keywords-Automation; Requirements engineering; NLP;
Agile development.

I. INTRODUCTION

In software development, Requirements Engineering (RE)
is a critical success factor as well as a complex process [1].
It is critical because the quality of the system depends
largely on the quality of the requirements and, it is complex
because it considers diverse product demands from a
diverse set of stakeholders [2]. Inadequacies resulting from
the RE process can have negative impact on the overall
software development and lead to high costs for any
organization involved [3]. Therefore, Requirements
Engineering is highly significant to modern success of
quality software development.

Software requirements are often specified in Natural
Language (NL). Meanwhile, software requirements specified
in natural language often suffer from ambiguity,
incompleteness and inconsistency in the choice of syntax.
Moreover, anything described in NL has the potential and
tendency of being influenced by geographical, psychological
and sociological factors in terms of understanding and
interpretation [4]. It is therefore imperative that empirical
studies are conducted to derive solutions to this challenge in
software development with the emerging trends in human
activities which must eventually be captured beyond NL.
Consequently, addressing these problems through researches
has paved the way for model-driven engineering and lately
automated requirements engineering which have all improve
the status of requirements written in natural language. These
tools and technologies now facilitate software development
generally. More specifically, these tools and technologies
enable numerous RE activities such as requirements
classification [5][6] requirements validation and review
[7][8], inconsistency check in requirements [9], duplicate
requirements detection [10], automated RE reuse [11],
recommendation of omitted steps in requirements analysis
[12] and RE security enhancement [13].

As part of the effort to support agile RE and the
development of fast software in general, this work seeks to
propose an automated RE framework that combines the
Natural Language Processing (NLP) and the Artificial
Intelligence techniques for more efficient agile software
development. In agile development, rapid change and
flexibility are very important and the development process is
made as lightweight as possible. The essence of automated
RE is to reduce software development time, effort, and cost
of RE whilst still maintaining consistent, accurate and
comprehensive requirements.

The remainder of this paper is structured as follows:
Section 2 discusses automated requirements engineering.
Section 3 discusses previous literature on automated
requirements engineering. In Section 4, the techniques for the
integration of NLP and Artificial Intelligence (AI) are
highlighted. Section 5 summarizes the proposed work plan.
Section 6 concludes the paper.

II. AUTOMATED REQUIREMENTS ENGINEERING

Requirements engineering is the lifecycle stage with the
highest influence on the quality of a final product [14].
Traditional RE process continued to be applied to manage
the knowledge generated in this field, and this has made it
difficult to attain a quick and objective understanding of the
diverse and continuous emerging needs of the interested
stakeholders. Apart from the fact that automated RE
development reduces cost, effort and time it enhances the
quality of the final product. Requirements identification and
requirements classification are two important activities
supported by automated requirements elicitation from NL
document [15]. Some of the successful techniques that have
been employed to implement automated requirements
elicitation are NLP and Information Retrieval [16].
Additionally, in recent times, text mining, which is an
automated technique for generating requirements document
have been employed [17].

Requirements engineering involves the process of finding
out, analyzing, documenting and checking the services and
constraints on a system [18]. The following are generic
activities (phases) common to all RE process.

 Requirements elicitation. The process of identifying
and collecting requirements from stakeholders and
other sources. This includes both functional and
non-functional requirements.

 Requirements analysis and specification. It is the
logical breakdown and structuring of the proceeds
from elicitation. It includes detailed understanding
of the requirements and structuring such

147Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 158 / 191

information and other derived requirements as
written documents and model diagrams.

 Requirements validation. Requires that the collected
information is correct and well arranged to meet the
system business objectives. This is done by making
sure the documents and/or models with specified
requirements are accurate, complete and correct.

 Requirements management. This step helps to keep
track of possible changes in requirements and
ensures that the changes are made to meet
stakeholder’s requirement.

Automated RE support has been successfully achieved in
various activities (phases) of requirements engineering (see
Table 1). The NLP plays a great role in achieving automated
RE due to the fact that most requirements are written in
natural language.

TABLE I. APPLICATION OF NLP IN RE ACTIVITIES

Ref Elicitation Analysis Validation Management

[12]
*

[17]
*

[19]
*

[4]
*

[20]
*

[21]
*

[22]
*

[11]
*

[10]
*

[23]
*

[24]
*

[25]
*

[26]
*

[27]
*

[28]
*

[29]
*

[30]
*

[31]
*

[32]
*

Accordingly, Lucassen et al. [30] have categorized the
fundamental approach of all NLP and RE tools into four
types based on their functions or what they can do:

1. Finding defects and deviations in natural
language (NL) requirements document;

2. Generating models from NL requirements
descriptions;

3. Inferring trace links between NL requirements
descriptions and

4. Identifying the key abstractions from NL
documents.

From the foregoing, the second category of tools forms
the concern of this work.

III. RELATED WORK

Automated requirements engineering has attracted the
attention of researchers over the years. Each work cited here
has proposed an approach or a software tool to achieve the
continuous effectiveness and efficient application of
automated requirements engineering.

For instance, the UML model Generator from Analysis of
Requirements (UMGAR) [4] is a domain independent tool
which generates use case diagram, conceptual model,
collaboration diagram, and designs class model. The tool
follows the object-oriented analysis design approach while
eliciting object from requirements described in Natural
Language. It also uses the NLP techniques to process textual
documents and XML import facility to visualize UML
diagram.

Other works, such as [26], have proposed a framework
that provides the requirements engineers with the capacity to
automatically generate UML class diagram. The framework
allows for reinterpretation of natural language requirements
into models and has the possibility of specification
reusability through reverse engineering process. The
approach used the MIMB tool to transform the XML
schema into a UML class diagram and vice versa.

In [33], the authors proposed a requirements model
generation to support requirements elicitation from a
lightweight textual document. However, the approach
transforms requirements specification expressed in natural
language into semi-structured specifications. The proposal
was based on Cerno, which is a semantic annotation
environment that uses high-speed context-free robust
parsing combined with simple word search.

For [21], the Natural Language Processing technique was
applied to automatically transform user stories into UML
use case diagram. The approach uses TreeTagger parser to
generate use case and Part of Speech (POS) tags allows for
the categorization of term into various part of speech.

In [30], a Visual Narrator tool is described as a tool which
automatically generates a conceptual model from a
collection of user story requirements. This narrator tool was
part of what the authors termed the ‘Grimm method’ – the
method combines three Natural Language Processing and
thereby enabling requirements tools to support conducting
user story-based requirements engineering.

A system described in [22] is claimed to facilitate
automatically the creation of conceptual model from
functional requirements written in natural language. The
tool allows for automatic identification of classes and
relationships and subsequently renders the conceptual model
with the Extended Entity Relationship (EER) diagram
notations.

The use of Artificial Neural Network (ANN) for
extracting actions and actors from requirement document by

148Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 159 / 191

[32] proposes an approach to automatically identify actors
and actions in natural language-based requirements with the
goal to overcome the challenges of manual extraction. This
tool uses an NLP parser with a general architecture for text
engineering, producing lexicons, syntaxes, and semantic
analysis. This was achieved through the development of an
ANN using five different use cases.

From the reviewed works, it is evident that automation of
requirements engineering is a challenging area due to the
nature of the diverse inputs to be processed i.e. natural
languages. Therefore, this work proposes an alternative
automation paradigm framework to automate RE. The
proposed approach is an interactive tool support with
dynamic model generation. This will be achieved through
the integration of NLP and other artificial intelligence
techniques.

IV. PROPOSED APPROACH

From our findings of the literature review, there is the
need for research into a full and alternative automation
paradigm and integration of more artificial intelligence
techniques into automating requirements engineering.
Therefore, this work proposes a framework that will facilitate
automation of requirements engineering activities with
specific focus on model generation (modelling) with
traceability. The work intends to employ natural language
processing techniques and artificial intelligence in the design
and development of the framework.

Figure 1. Overview of the proposed framework.

The proposed approach works as follows (see Figure 1).
Initially, the analyst (requirements engineer) input a set of
textual requirements written in natural language. These texts
are analyzed by several natural language processing
components with the target of gathering knowledge about the
textual scenarios. Sentences, token boundaries, token
properties, and semantic constituents are some of the
information of the natural language processing components.

After the basic natural language processing is completed,
the approach will carry out textual analysis through pre-
processing, word structuring and linguistic attributes. The
aim of pre-processing is to code the inputs required by the
next processing step. A corpus which contains English words
with their respective code will be used to compose
requirements documents. These are words collected from
several English natural language requirements texts from
different domains.

Mapping linguistic tokens to the semantics specification
is the next step in the approach. Token comprises of
word/phrase from the corpus and the semantic attributes
define in the previous step. The output of the approach is a
set of UML models that will be subjected to review of
human analyst. It is up to the analyst to corroborate the
output of the approach and make an informed decision.

V. WORK PLAN

In order to accomplish this, we have defined a work
programme. The work programme includes work on
foundations, framework development and applications
inform of case study evaluation.

 Conceptualization – this involves designing of the
proposed framework and testing of the existing
algorithms.

 Tool development – implementation of the tool
support base on the proposed framework. Highlight
of the development technique languages.

 Applications – this has to do with the evaluation
through industrial case studies to establish the
applicability of the proposed framework and
generate useful feedbacks.

VI. CONCLUSION

This paper proposes a new framework for automated
requirements engineering using natural language processing
and artificial intelligence techniques. The proposed
framework herein will be implemented and evaluated using
at least two institutions/organizations as case studies. This is
to establish the applicability of the framework in order to
serve as one of the several empirical evidences/sources for
academic and corporate discourse and application.

ACKNOWLEDGMENT

This work is funded by the Petroleum Technology
Development Fund (PTDF) of the Federal Government of
Nigeria.

149Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 160 / 191

REFERENCES

[1] H. F. Hofmann and F. Lehner, “Requirements engineering as a
success factor in software projects,” IEEE Software, vol. 18, no. 4,
pp. 58–66, 2001, doi: 10.1109/MS.2001.936219.

[2] T. Shah and S. Patel, “A Novel Approach for Specifying Functional
and Non-functional Requirements Using RDS (Requirement
Description Schema),” Procedia Computer Science, vol. 79, pp. 852–
860, 2016, doi: 10.1016/j.procs.2016.03.083.

[3] H. Meth, M. Brhel, and A. Maedche, “The state of the art in
automated requirements elicitation,” Information and Software
Technology, vol. 55, no. 10, pp. 1695–1709, Oct. 2013, doi:
10.1016/j.infsof.2013.03.008.

[4] D. K. Deeptimahanti and M. A. Babar, “An Automated Tool for
Generating UML Models from Natural Language Requirements,” in
2009 IEEE/ACM International Conference on Automated Software
Engineering, Auckland, New Zealand, Nov. 2009, pp. 680–682, doi:
10.1109/ASE.2009.48.

[5] E. Parra, C. Dimou, J. Llorens, V. Moreno, and A. Fraga, “A
methodology for the classification of quality of requirements using
machine learning techniques,” Information and Software Technology,
vol. 67, pp. 180–195, Nov. 2015, doi: 10.1016/j.infsof.2015.07.006.

[6] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated
classification of non-functional requirements,” Requirements Eng,
vol. 12, no. 2, pp. 103–120, May 2007, doi: 10.1007/s00766-007-
0045-1.

[7] N. A. Moketar, M. Kamalrudin, S. Sidek, M. Robinson, and J.
Grundy, “TestMEReq: generating abstract tests for requirements
validation,” in Proceedings of the 3rd International Workshop on
Software Engineering Research and Industrial Practice - SER&IP
’16, Austin, Texas, 2016, pp. 39–45, doi: 10.1145/2897022.2897031.

[8] W. Miao et al., “Automated Requirements Validation for ATP
Software via Specification Review and Testing,” in Formal Methods
and Software Engineering, vol. 10009, K. Ogata, M. Lawford, and S.
Liu, Eds. Cham: Springer International Publishing, 2016, pp. 26–40.

[9] R. Sharma and K. K. Biswas, “A Semi-automated Approach towards
Handling Inconsistencies in Software Requirements,” in Evaluation
of Novel Approaches to Software Engineering, vol. 410, L. A.
Maciaszek and J. Filipe, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 142–156.

[10] A. Rago, C. Marcos, and J. A. Diaz-Pace, “Identifying duplicate
functionality in textual use cases by aligning semantic actions,” Softw
Syst Model, vol. 15, no. 2, pp. 579–603, May 2016, doi:
10.1007/s10270-014-0431-3.

[11] Y. Li, T. Yue, S. Ali, and L. Zhang, “Enabling automated
requirements reuse and configuration,” Softw Syst Model, vol. 18, no.
3, pp. 2177–2211, Jun. 2019, doi: 10.1007/s10270-017-0641-6.

[12] D. Ko, S. Kim, and S. Park, “Automatic recommendation to omitted
steps in use case specification,” Requirements Eng, vol. 24, no. 4, pp.
431–458, Dec. 2019, doi: 10.1007/s00766-018-0288-z.

[13] N. Yusop, M. Kamalrudin, S. Sidek, and J. Grundy, “Automated
Support to Capture and Validate Security Requirements for Mobile
Apps,” in Requirements Engineering Toward Sustainable World, vol.
671, S.-W. Lee and T. Nakatani, Eds. Singapore: Springer Singapore,
2016, pp. 97–112.

[14] S. M. Edgar, B. S. Oscar, and S. A. Alexei, “Knowledge meaning and
management in requirements engineering,” International Journal of
Information Management, vol. 37, no. 3, pp. 155–161, Jun. 2017, doi:
10.1016/j.ijinfomgt.2017.01.005.

[15] H. Meth, A. Maedche, and M. Einoeder, “Is Knowledge Power? The
Role of Knowledge in Automated Requirements Elicitation,” in
CAiSE 2013, LNCS 7908, Springer-Verlag Berlin Heidelberg, 2013,
pp. 578–593.

[16] D. Berry, R. Gacitua, P. Sawyer, and S. F. Tjong, “The Case for
Dumb Requirements Engineering Tools,” in REFSQ 2011. LNCS,
vol. 7195, Springer, Heidelberg, 2012, pp. 211–217.

[17] B. Aysolmaz, H. Leopold, H. A. Reijers, and O. Demirörs, “A semi-
automated approach for generating natural language requirements
documents based on business process models,” Information and

Software Technology, vol. 93, pp. 14–29, Jan. 2018, doi:
10.1016/j.infsof.2017.08.009.

[18] I. Summerville, Software Engineering, 9th ed. Person Education, Inc.,
2011.

[19] N. A. Moketar, M. Kamalrudin, S. Sidek, M. Robinson, and J.
Grundy, “An automated collaborative requirements engineering tool
for better validation of requirements,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering - ASE 2016, Singapore, Singapore, 2016, pp. 864–869,
doi: 10.1145/2970276.2970295.

[20] Y. Li, E. Guzman, K. Tsiamoura, F. Schneider, and B. Bruegge,
“Automated Requirements Extraction for Scientific Software,”
Procedia Computer Science, vol. 51, pp. 582–591, 2015, doi:
10.1016/j.procs.2015.05.326.

[21] M. Elallaoui, K. Nafil, and R. Touahni, “Automatic Transformation
of User Stories into UML Use Case Diagrams using NLP
Techniques,” Procedia Computer Science, vol. 130, pp. 42–49, 2018,
doi: 10.1016/j.procs.2018.04.010.

[22] V. B. R. Vidya Sagar and S. Abirami, “Conceptual modeling of
natural language functional requirements,” Journal of Systems and
Software, vol. 88, pp. 25–41, Feb. 2014, doi:
10.1016/j.jss.2013.08.036.

[23] V. Antinyan and M. Staron, “Rendex: A method for automated
reviews of textual requirements,” Journal of Systems and Software,
vol. 131, pp. 63–77, Sep. 2017, doi: 10.1016/j.jss.2017.05.079.

[24] V. Ambriola and V. Gervasi, “On the Systematic Analysis of Natural
Language Requirements with CIRCE,” Autom Software Eng, vol. 13,
no. 1, pp. 107–167, Jan. 2006, doi: 10.1007/s10515-006-5468-2.

[25] R. Gacitua, P. Sawyer, and V. Gervasi, “Relevance-based abstraction
identification: technique and evaluation,” Requirements Eng, vol. 16,
no. 3, pp. 251–265, Sep. 2011, doi: 10.1007/s00766-011-0122-3.

[26] Y. Alkhader, A. Hudaib, and B. Hammo, “Experimenting With
Extracting Software Requirements Using NLP Approach,” in 2006
International Conference on Information and Automation, Colombo,
Sri Lanka, Dec. 2006, pp. 349–354, doi:
10.1109/ICINFA.2006.374136.

[27] J. L. Cybulski and K. Reed, “Computer-assisted analysis and
refinement of informal software requirements documents,” in
Proceedings 1998 Asia Pacific Software Engineering Conference
(Cat. No.98EX240), Taipei, Taiwan, 1998, pp. 128–135, doi:
10.1109/APSEC.1998.733606.

[28] J. Natt och Dag, T. Thelin, and B. Regnell, “An experiment on
linguistic tool support for consolidation of requirements from
multiple sources in market-driven product development,” Empir
Software Eng, vol. 11, no. 2, pp. 303–329, Jun. 2006, doi:
10.1007/s10664-006-6405-5.

[29] Q. A. Do, S. R. Chekuri, and T. Bhowmik, “Automated Support to
Capture Creative Requirements via Requirements Reuse,” in Reuse in
the Big Data Era, vol. 11602, X. Peng, A. Ampatzoglou, and T.
Bhowmik, Eds. Cham: Springer International Publishing, 2019, pp.
47–63.

[30] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf, and S.
Brinkkemper, “Extracting conceptual models from user stories with
Visual Narrator,” Requirements Eng, vol. 22, no. 3, pp. 339–358,
Sep. 2017, doi: 10.1007/s00766-017-0270-1.

[31] I. Reinhartz-Berger and M. Kemelman, “Extracting core requirements
for software product lines,” Requirements Eng, vol. 25, no. 1, pp. 47–
65, Mar. 2020, doi: 10.1007/s00766-018-0307-0.

[32] A. Al-Hroob, A. T. Imam, and R. Al-Heisa, “The use of artificial
neural networks for extracting actions and actors from requirements
document,” Information and Software Technology, vol. 101, pp. 1–
15, Sep. 2018, doi: 10.1016/j.infsof.2018.04.010.

[33] N. Kiyavitskaya and N. Zannone, “Requirements model generation to
support requirements elicitation: the Secure Tropos experience,”
Autom Softw Eng, vol. 15, no. 2, pp. 149–173, Jun. 2008, doi:
10.1007/s10515-008-0028-6.

150Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 161 / 191

A Prototype of Smart Navigation Service

Chia Hung Kao

Department of Applied Mathematics
National Taitung University

Taitung, Taiwan
Email: chkao@nttu.edu.tw

Abstract—Travelers may arrange tourist destinations, plan a
travel route, book a hotel accommodation, and reserve a restau-
rant through different online services. However, the scattering of
the above travel information hinders the efficient browse, search,
and usage during the trip. Besides, the travel information is not
leveraged well for timely and personalized assistance. In this
work, a smart navigation service is proposed to provide efficient
navigation for travelers. Based on travel planning and travel
context of travelers, the smart navigation service can identify
the purpose of travelers, and provide corresponding navigation
through the information retrieved from transportation or news
services proactively.

Keywords–Navigation; travel navigation; cloud computing.

I. INTRODUCTION

Before a trip, travelers may arrange tourist destinations,
plan a travel route, book a hotel accommodation, and reserve
a restaurant through different online services [1]. During the
trip, travelers can use smart devices to search for corresponding
travel information preserved in different services [2]. For
instance, travelers can log into online booking service (e.g.,
Booking.com [3], Agoda [4], Trivago [5], and so on) to
retrieve the information of hotel accommodation, and then use
navigation services to find the way to the hotel. Travelers
can also log in to mail service to retrieve the message of
transport ticket, find the way to the station, locate the correct
platform, and take the corresponding vehicle to the tourist
destinations. Moreover, travel planning preserved in the online
calendar (e.g., Google Calendar) or note applications (e.g.,
Evernote [6], OneNote [7], and Google Keep [8]) provides
navigation reference for travelers during the trip. However, it
can be found that travelers need to manually perform several
tasks through different services to achieve their purpose in the
trip. Major obstacles are stated as follows.

• The scattering of travel information: One obstacle is
that information associated with the trip could exist in
several services, including online calendar, note appli-
cations, booking services, and mail services. Travelers
need to browse and search for corresponding travel
information from different services during the trip.
The scattering of travel information hinders timely and
efficient assistance to travelers [9][10].

• The lack of personalized guidance: The other obsta-
cle is the lack of personalized guidance for travelers
according to their travel plans. Based on the infor-
mation (e.g., destination, transportation, reservation,
and so on) preserved in the travel plan and the travel
context of travelers (e.g., date, time, and location),

corresponding navigation could be identified and pro-
vided proactively [11].

To overcome the obstacles identified above, a smart nav-
igation service is proposed to provide timely and personal-
ized navigation for travelers. The smart navigation service
acquires travel information from different services under the
authorization of travelers and derives a comprehensive travel
plan. During the trip, the smart navigation service collects
travel context of travelers from smart devices continuously,
and identifies the purpose of travelers based on the identified
travel plan. In addition, the smart navigation service collects
information about transportation or emergency events contin-
uously. According to the identified purpose of travelers and
the collected transportation or emergency information, corre-
sponding navigation can be provided for travelers proactively.

In the remainder of this work, Section 2 introduces the ar-
chitecture of the smart navigation service. Section 3 describes
an use case of the prototype of the smart navigation service.
Finally, conclusion and future directions are given in Section
4.

II. ARCHITECTURE

The overview of the smart navigation service is shown in
Figure 1. Major components in the smart navigation service
are stated as follows.

• Smart devices: The smart devices carried or wore by
travelers acquire travel context (e.g., date, time, and
location) and transmit the information to the travel
navigation cloud continuously. The travel context will
be used by the travel navigation cloud for identifying
the travel status and purpose of travelers. Based on
the purpose of travelers, the corresponding navigation
can be displayed by the smart devices [12]. In the
near future, augmented reality navigation can also
be employed to achieve better assistance to travel-
ers [13][14].

• Travel navigation cloud: The travel navigation cloud
is responsible for three major functionalities in the
smart navigation service. The first functionality of the
travel navigation cloud is to construct a comprehensive
travel plan based on the information preserved in
different online services. Important information during
a trip, including destination, transportation, accommo-
dation, itinerary, restaurant, associated date and time,
can be retrieved through Application Programming
Interfaces (APIs) of different online services. The in-
formation can be further identified and recognized by

151Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 162 / 191

Figure 1. Overview of the smart navigation service.

natural language processing and named-entity recog-
nition methods [15][16]. The second functionality of
the travel navigation cloud is to collect current travel
context (e.g., date, time, and location) of travelers
through smart devices and identify the purpose of
travelers based on the derived travel plan. The final
functionality of the travel navigation cloud is to collect
information from transportation services and news
services continuously. Similarly, the collected infor-
mation can be further identified and recognized by
natural language processing and named-entity recog-
nition methods. Based on the information recognized
in the travel plan and the travel context of travelers,
corresponding navigation according to the information
provided by transportation services and news services
could be identified and provided proactively.

• Travel planning: Travelers can arrange their travel
plans through various online services nowadays.
For instance, hotel accommodation can be reserved
through online booking services. Transportation tick-
ets can also be purchased online. In addition to the
information preserved in different online services, cor-
responding reservation information might be provided
for travelers through emails. Travelers can also use
online calendar or note applications to manage their
tourist destinations and associated itineraries. Thus,
a travel plan can be extracted and identified from
the above travel information existed in different ser-
vices. Under the authorization of travelers, the travel
navigation cloud acquires, analyzes, and identifies a
comprehensive travel plan of travelers for proactive
navigation during the trip.

• Transportation information: During a trip, travel
from one place to another is one of the most important
activities. However, travelers might need to forage
for travel information scattered across different online
services and make a right decision based on several
transmit choices. The provision of personalized trans-
portation information (e.g., timetable, route, vehicle
status, travel time, and fare) will be highly beneficial
to travelers [17]. Thus, detailed information of airport,
rail service, ferry service, bus, and so on will be
retrieved by the travel navigation cloud through APIs
provided by service providers or government open

Figure 2. Travel plan in the online calendar.

data [18]. Based on the derived travel plan, identified
travel context, and the transportation, proactive navi-
gation can be provided for travelers for better travel
experience.

• Emergency information: During a trip, emergency
situations (e.g, disaster, traffic accident, strike, and
so on) might happen and have influences on travel-
ers. The travel navigation cloud retrieves news from
different news services or social networks [19]. The
location, occurrence time, and impact of specific
emergency situations can be extracted by natural lan-
guage processing and named-entity recognition meth-
ods. Based on the transportation information and the
emergency information, the travel navigation cloud
can identify and provide alternative travel choices for
travelers to avoid emergency situations.

III. USE CASE

One use case is described to demonstrate the usage of the
smart navigation service. As shown in Figure 2, a traveler
arranges a list of cities (i.e., Tokyo, Nagoya, and Kyoto) on
a journey and puts the information in the online calendar. On
a specific day during the trip, the traveler arrives at the train
station of the city (i.e., Tokyo). Through the travel context
acquired by the smart device and the travel plan (destination
city) retrieved from the online calendar, the travel navigation

152Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 163 / 191

Figure 3. Travel navigation for travelers.

cloud identifies the current travel status and the purpose of the
traveler (i.e., travel to Nagoya). As shown in Figure 3, based
on the identified purpose of the traveler and the transportation
information retrieved from the government open data, train
number, departure time, and arrival time of the appropriate
train can be identified and provided by the smart navigation
service. Thus, without manual operation, the traveler can
get timely and personalized travel guidance efficiently. Better
travel experience can be achieved.

IV. CONCLUSION AND FUTURE WORK

A smart navigation service is proposed in this work to
provide timely and personalized navigation for travelers. Based
on travel planning and current travel context of travelers, the
smart navigation service can identify the purpose of travelers,
and provide corresponding navigation through the information
retrieved from transportation services or news services proac-
tively. The design of the smart navigation service is introduced,
and the current prototype is demonstrated through a use case.
Future work includes the integration of more online services,
transportation services, and news services for comprehensive
navigation for travelers.

ACKNOWLEDGMENT

This study is supported by the Ministry of Science and
Technology of the Republic of China under grant MOST 108-
2221-E-143-003-MY3.

REFERENCES
[1] T. Stepan, J. M. Morawski, S. Dick, and J. Miller, “Incorporating spatial,

temporal, and social context in recommendations for location-based
social networks,” IEEE Transactions on Computational Social Systems,
vol. 3, no. 4, Dec 2016, pp. 164–175.

[2] K. Meehan, T. Lunney, K. Curran, and A. McCaughey, “Context-
aware intelligent recommendation system for tourism,” in 2013 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), March 2013, pp. 328–331.

[3] Booking.com, URL: https://www.booking.com/ [accessed: 2020-10-12].
[4] Agoda, URL: https://www.agoda.com/ [accessed: 2020-10-12].
[5] Trivago, URL: https://www.trivago.com [accessed: 2020-10-12].
[6] Evernote, URL: https://evernote.com/ [accessed: 2020-10-12].
[7] OneNote, URL: https://www.onenote.com/ [accessed: 2020-10-12].
[8] Google Keep, URL: https://keep.google.com/ [accessed: 2020-10-12].
[9] A.-C. Schering, M. Dueffer, A. Finger, and I. Bruder, “A mobile tourist

assistance and recommendation system based on complex networks,”
in Proceedings of the 1st ACM International Workshop on Complex
Networks Meet Information and Knowledge Management, 2009, pp.
81–84.

[10] R. Sood, “Intelligent mobile based tourist assistance system,” in 2017
2nd International Conference for Convergence in Technology (I2CT),
April 2017, pp. 655–658.

[11] P. Craig and Y. Liu, “A vision for pervasive information visualisation to
support passenger navigation in public metro networks,” in 2019 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), 2019, pp. 202–207.

[12] M. K. Vichrova, P. Hájek, M. Kepka, L. Fiegler, W. Dorner, and
M. Juha, “Peregrinus silva bohemica. a digital travel guide for navi-
gation assistance,” in 2019 9th International Conference on Advanced
Computer Information Technologies (ACIT), 2019, pp. 492–495.

[13] A. Rácz and G. Zilizi, “Virtual reality aided tourism,” in 2019 Smart
City Symposium Prague (SCSP), 2019, pp. 1–5.

[14] S. M. C. Loureiro, J. Guerreiro, and F. Ali, “20 years of research on
virtual reality and augmented reality in tourism context: A text-mining
approach,” Tourism Management, vol. 77, 2020, p. 104028.

[15] G. G. Chowdhury, “Natural language processing,” Annual Review of
Information Science and Technology, vol. 37, no. 1, 2003, pp. 51–89.

[16] R. S. Dudhabaware and M. S. Madankar, “Review on natural language
processing tasks for text documents,” in 2014 IEEE International
Conference on Computational Intelligence and Computing Research,
2014, pp. 1–5.

[17] M. Handte, S. Foell, S. Wagner, G. Kortuem, and P. J. Marrón, “An
internet-of-things enabled connected navigation system for urban bus
riders,” IEEE Internet of Things Journal, vol. 3, no. 5, 2016, pp. 735–
744.

[18] P. Yochum, L. Chang, T. Gu, and M. Zhu, “Linked open data in location-
based recommendation system on tourism domain: A survey,” IEEE
Access, vol. 8, 2020, pp. 16 409–16 439.

[19] N. Cassavia, P. Dicosta, E. Masciari, and D. Saccà, “Improving tourist
experience by big data tools,” in 2015 International Conference on High
Performance Computing Simulation (HPCS), 2015, pp. 553–556.

153Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 164 / 191

The Technology Executive Role: A Study of the Main Competencies and
Capabilities of the CIO / CTO

A Systematic Review

Carlos Sampaio
CESAR – Recife Center for Advanced Studies and Systems

Recife, Brazil
Email: ccbs@cesar.org.br

Felipe Silva Ferraz
CESAR – Recife Center for Advanced Studies and Systems

Recife, Brazil
Email: fsf@cesar.org.br

Abstract—Emerging trends in technology bring about a
fundamental career change for professionals and,
consequently, for companies and businesses. The digital
transformation and the introduction of new technologies are
exerting a huge impact on the role and responsibilities of the
Technology Executive to support the organization's goals. This
study proposes to examine the skills and responsibilities
associated with the role of the Technology Executive,
systematically reviewing the literature and comparing patterns
in the analysis of the profiles and skills for this role. The result
shows that the competences of the Technology Executive have
undergone a significant change to incorporate skills in
different areas, apart from the traditional technical area,
which can be categorized into five main groups: Technologist,
Strategist, Enabler, Innovator, and Financial.

Keywords — IT; Executive; CIO; CTO; Competency; Capability;
Systematic Review; As a Service.

I. INTRODUCTION

The pace of technological development has reached such
high rates that even the great discoveries of a few years ago
already face challenges from the more recent competing
technologies, before even being able to establish themselves
in a competitive market like the one we live in. Emerging
technologies, named by Gartner, Inc. as Nexus of Forces [1]
[2], or the convergence and mutual reinforcement of trends,
like: social, mobile, data analytics, cloud computing, and the
Internet of Things, just to name a few, leads us to a reflection
about what the professional of the future's work will be like.
It is not difficult to be surprised by the pace of change that
these technologies are exacting in today's professionals and
businesses, but, at the same time, we see that this is exactly
the fast pace that paves the opportunity paths for the entire
reinvention of complicated business models, established
decades, perhaps centuries ago [3]. These business models
are replaced not only by creativity, innovation, or
entrepreneurial vision but also by the simple competent
application of those new technologies, promoting real
revolutions in certain markets.

In view of these new innovative technologies, we observe
a common trend, the “service-based” business models [4].
Initially associated with specific types of cloud computing
and Big Data, the name came to be used by different offer

opportunities, in markets with heavy user-centric services, as
their main competitive distinctiveness. This trend is defined
by the new jargon of Everything as a Service (XaaS) [4]. It is
this type of offer that serves as a catalyst for several business
initiatives with a focus on the global offer of services, and
with accelerated growth, as is the case of some successful
startups. These new business models are by nature extremely
dynamic and flexible and benefit from the fact that they are
not tied to long-term contracts or large investments in
infrastructure, as with traditional models.

While emerging technologies and service-based business
models are facilitators of innovation and a gateway to an
excess of opportunities, it is not uncommon to be presented
with excellent ideas for new products or services, that never
left the drawing board. The failure to achieve a market-ready
solution can be due to a simple lack of knowledge of the
current technology state that would support this new venture,
or to the unfamiliarity with the market for the supply of raw
materials, support solutions, and information. The absence of
the Technology Executive's proper knowledge and planning
often results in innovative services offers that cannot scale to
global demand, even local demand but with increased
volume, because the technological platform has not been
updated at the same speed as required, or due to the absence
of a link to the next step of development [5]. All of these
factors could pose as roadblocks and will terminate a project
prior to even being started. In this scenario, the technology
executive plays a fundamental role in the success or failure
of a new idea or business model. However, the qualifications
necessary for a good performance of this professional
include, but are not limited to, in-depth technical knowledge,
relationship with the market, leadership, negotiation skills,
interpersonal skills, and strategic foresight of the future. This
causes the recruitment and hiring of a professional with this
skillset difficult and costly for the company [6]. Within this
context, we observe opportunities and challenges to the
mapping of the competencies and role of a Technology
Executive, when submitted to the opportunity to offer these
competencies in an "as a service" model.

This work intends to expand the knowledge about the
role and competencies of the Technology Executive,
evaluate the work that has already been done on the
definition of this role, and how the responsibilities associated
with this profile are categorized, to support future work that

154Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 165 / 191

would allow for the development of a software abstraction
with the ability to mimic the role of a Chief Information
Officer (CIO) / Chief Technology Officer (CTO), even if
partly.

The rest of the paper is structured as follows. In Section
II, we present basic concepts related to the role of the
Technology Executive and how its relevance and
responsibilities to business success grew in importance over
time. Next, in Section III, we introduce the methodology
along with the objectives, the description of the methods,
processes, and the protocol used in the systematic review of
this study. In Section IV, we will detail the results
associated with the research. Then, in the following section,
we will interpret the results from the previous one and how
they relate to the research questions. Finally, we conclude
the work in Section VI, where some conclusions and future
works will be depicted.

II. THE TECHNOLOGY EXECUTIVE ROLE

The preliminary applications, associated with computers
and information systems, had simplified scopes of objectives
and well-defined expectations for both the Information
Technology departments and their managers. They were
required to collect, store, and process financial and
accounting data [7]. However, the responsibilities of this role
evolved. The changes began with the need for hardware and
software integration activities, in the 1970s, and continued
with the design and implementation of networked platforms,
in the 1990s. These changes continued with the analysis,
selection, and acquisition of new software and services, in
the 2000s. During the last decade, it became expected that
the IT department produced a direct link with the companies'
business model and results. The historical evolution for the
responsibilities of the Technology Executive could be
measured, in the history of companies, by the maturity and
growth of their business model, from the basic use of
technology in everyday processes to the exploration of
emerging technologies to create a differential competitive in
their business objectives.

III. APPLIED PROTOCOL

Based on the guidelines for performing Systematic
Literature Reviews in Software Engineering proposed by
Kitchenham [8], this work introduces the following
methodology: (1) search strategy, (2) automatic search and
selection, (3) identification of inclusion and exclusion
criteria, (4) critical evaluation, (5) data extraction and (6)
synthesis. This methodology is presented next in the order
indicated above.

The principal goal of this review is to "identify studies
that allow assessing the adoption of the concept of
Everything as a Service, in the offering of technical,
behavioral and business skills, associated with a technology
executive". This study applied the aforementioned guidelines
to systematically review the published research databases,
looking for answers to three research questions:

 RQ1 - What studies on defining the technology
executive role have previously been conducted?

 RQ2 - What are the responsibilities of the
technology executive role?

 RQ3 - How are the competencies associated with the
role of the technology executive categorized?

To properly define the scope of the principal goal of this
review and allow for better structuring of the research
questions, this study used the Population, Intervention,
Comparison, Outcome, and Context (PICOC) criteria [8] in
formulating the search strings, as will be presented on the
following step.

A. Search Strategies

The research strategy underwent some modifications and
trials before the use of the Population, Intervention,
Comparison, Outcome, and Context (PICOC) criteria, due to
the broad scope of our study, to better define the structure of
the research questions. It was decided not to limit the
findings by Context criterion to allow a larger universe of
responses.

 Population: The technology executive (CIO / CTO);
 Intervention: Utilization of an "as a service" model;
 Comparison: Companies with a technology

executive;
 Outcomes: Reduced dependence on technical,

business, or behavioral skills.

B. Automatic Search and Selection

This work prioritized the search for results in the format
of preliminary, academic, and industrial studies, which
presented evidence about the objective of this work
(PICOC), on the indicated research data sources. Research-
Articles, Journals, Magazines, and studies presented at
conferences, were used. Due to time constraints and better
adherence to the methodology, only two selected data
sources were used for this study. The IEEE Xplore and the
ACM Digital Library are highly recommended and were
chosen due to their recognized scope, content, and relevance.
Both are data sources frequently used in reviews with the
indexed scientific literature.

TABLE I. BUILDING OF SEARCH STRINGS

PICOC
Criterion

Search String

Population

(("chief information officer" OR cio) OR ("chief
technology officer" OR cto)) AND (challenges OR
opportunities OR role OR attribution OR qualification
OR competencies OR task OR survey)

Intervention

((("chief information officer" OR cio) OR ("chief
technology officer" OR cto)) OR ((corporate OR
enterprise) AND (it OR ("information technology"))))
AND ("as a service")

Comparison

(("technology executive" OR "cto" OR "cio") OR (("c-
level" OR "c level") AND ("it" OR "technology")))
AND ("enterprise" OR "enterprises" OR "company"
OR "companies")

Outcome
(("it" OR "information technology") AND "as a
service") AND ("cost reduction" OR "increased
performance" OR ("return" AND "investment"))

Context Not used

155Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 166 / 191

We chose to compose specific strings to match each
Population, Intervention, Comparison, Outcome, and
Context (PICOC) criteria. The detail of each criterion was
used to form the basis for the building of each search string,
as described in Table I.

These search strings were applied separately in each of
the research databases, and later consolidated into a single
reference file in the BibTeX format. The total number of
results was 4,236. The initial results are shown in the Table
II below, separated by data source and construction criteria
for each search string.

TABLE II. INITIAL SEARCH RESULTS

PICOC Criterion IEEE Xplore ACM DL

Population 364 1476

Intervention 433 425

Comparison 194 902

Outcome 63 409

Context Not used Not used

The initial result, after consolidation, was assessed to
exclude duplicated items. Next, the partial result was
submitted to the inclusion and exclusion criteria presented in
the next step of this study.

C. Identification of Inclusion and Exclusion Criteria

In this work, we admitted only studies related to the role
of the Chief Information Officer (CIO) / Chief Technology
Officer (CTO) as a technology executive. Results that did not
highlight in their title any of the criteria for constructing the
search terms were discarded. This review narrowed the
studies examined to those published between 2017 and June
2020, as it is related to a more recent research area.

The studies that fit one or more of these following criteria
were also excluded:

 Not written in the English language;
 Related to topics with similar acronyms, but

different meanings from the desired;
 Call for works, prefaces, conference annals,

handouts, summaries, panels, interviews, and news
reports.

We will now describe the application of the inclusion and
exclusion criteria presented above in the search and initial
selection of research papers. This step started with an
individual search per string, described in the previous stage,
in each of the research sources. Each search result,
associated with one PICOC criterion in one data source, was
stored in a file in the BibTeX format. The result files were
then concatenated and grouped by PICOC criteria, and then
merged into a single result file to be imported into the Zotero
software [9] for duplicates exclusion.

A total of 1,418 duplicate items were eliminated from the
initial results after the consolidation. This activity produced
2,848 unique items that were submitted to the Inclusion and
Exclusion Criteria.

Then, a list was generated with the results, in Comma-
Separated Values (CSV) format, for importing into the
Google spreadsheet tool (Google Sheets). Only articles of the
types Conference Papers and Journal Articles were selected,
using the Google Sheets filter tool and the "Item Type"
column.

Additionally, it was established that the cut-off date
required for consideration in this study would be works
produced within the last 3 years at the most. We decided to
consider only the results published from 2017 onwards as
this study relates to new concepts and recent research areas.
The Google Sheets filter tool was used again, and we
selected all results with a value equal to, or greater than,
2017 in the column "Publication Year". This resulted in
another 1,980 items excluded. After limiting the types of
publications and applying the time cut-off criteria described
above, the number of unique items was brought down to 869.

In the next step, we filtered the titles of the remaining
articles to exclude items that do not highlight the relationship
with the main purpose of this review or the alignment with
any of the research questions. To do this, we used the Google
Sheets filter function, with the syntax described below, to
select articles using multiple criteria:

=FILTER('Sampaio-DPES_SLR'!A2:CI,
regexmatch('Sampaio-DPES_SLR'!E2:E ,
"CIO|CTO|Chief Information Officer|Chief
Technology Officer|Information Technology|as a
Service|Role|Technology Management|IT
Governance|Best Practices"))

A total of 238 works remained after this last step. We
analyzed the title for each of these articles to determine its
adherence to this systematic review. Several works that were
not related to the main theme or research questions, but that
met some of the terms used in the filter of the previous step
were eliminated, as we can see from the details below.

Some works related to physics, performance analysis in
software development, human resources, and deployment of
cloud services, were included in the result due to the use of
terms such as “role”, “software as a service”, “executive”,
and the acronyms CIO / CTO. In such cases, papers whose
titles did not comply with the scope of the review were
eliminated. The works whose titles left uncertainties about
their adherence to the main theme were also listed for review
in the next step. At the end of this step, 193 entries were
excluded, leaving 45 items for further analysis.

All abstracts of the remaining works from the previous
stage were evaluated. We were able to perceive that they
ranged greatly in content. Similar to the previous step, some
works were eliminated because they did not have the desired
adherence to the main object of this study. It was necessary
to manually retrieve the summary field of some articles
because they did not present this information as a result of
the search and initial selection. Also included for later
analysis were the articles in which the analysis of adherence
with the scope of this work proved to be imprecise or left
doubts. The reading of the abstract resulted in the exclusion
of another 29 articles, leaving 16 for thorough critical
analysis and data extraction.

156Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 167 / 191

Table III below shows the exclusion numbers for each
step in this part of the study.

TABLE III. NUMBER OF STUDIES FILTERED IN EACH STEP OF
THE SELECTION PROCESS

Selection process step
Number of articles

selected

Data source search (after deduplication) 2848

Inclusion, exclusion, and time cut-off criteria 869

Title examination 45

Abstract analysis 16

D. Critical Evaluation

The studies that reached this critical evaluation step were
submitted to a complete analysis. The studies were then
analyzed in full, not just titles or abstracts. Six papers were
discarded at the end of this stage since they did not exhibit
adherence to the theme of the review nor answered any
aspect of the leading questions. This resulted in a final set of
10 papers.

The final studies analyzed went on to the data extraction
and synthesis stage, and the results obtained will be
presented in the following section.

IV. RESULTS

This study identified 10 primary studies [7][10]-[18]
dealing with a wide range of research topics and exploration
models for each different situation.

According to [13], it is possible to categorize the skills of
the Technology Executive into four main groups, namely,
Strategist, Innovator, Enabler, and Technologist. We were
able to find agreement in the primary studies with all four
above mentioned groups, including other groups of less
expressiveness, such as Leadership, Processes, and Business.
The Financial group also yield several references, similar in
number to the main groups indicated above. Studies that did
not fit into any of these groups were classified as General.
These last groups of categories are valid because they
register the tendency to be constituted in sub-categories or to
facilitate the comprehension of the responsibilities associated
with the Technology Executive, evaluated later in this work.

A. Quantitative Analysis

The proposed research process resulted in 10 primary
studies, written by 34 authors, linked to 15 institutions, based
in 10 different countries, spread over four continents, and
were published between the years of 2017 and 2020. The
combined keyword number from the studies assessed by this
paper yield a total of 49 distinct entries.

In what concerns the country of origin, there was no
highlight to be made. Chile, Indonesia, and China appear
with a somewhat higher result than the others (all with two
publications each). The remaining countries had one
publication only. Despite the small general amount of
publications found on the role of the Technology Executive
and the responsibilities associated with that role, we note that

the geographical distribution, which covers most continents,
illustrates the global interest in this subject.

The most common keywords used in the studies, by order
of frequency were CIO (4), CTO (3), IT Executive (2), Role
(3), Chief Information Officer (2), Technology (2),
Technology Management (2). All other items were cited only
once. The first 4 keywords, namely: CIO, CTO, IT
Executive, and Role, indicate precisely the research object
sought by this work.

V. DISCUSSION

First and foremost, it was possible to identify that the
responsibilities associated with this role are constantly
changing, which reflects in the need to constantly reconstruct
the definition and attributions of that role. Secondly, we
observed in many of the works, the statement that the fashion
in which the profile for the Technology Executive is
categorized is influenced by the type of exposure that the
company has to Technology. The focus and performance of
the executives vary, according to the company's orientation
and exposure concerning technology, as well as its definition
as a strategic asset or as an infrastructure base for operational
efficiency. This comes to show that this research field is very
extensive and that requires a continuous effort to contribute
to its development.

The analysis also pointed to a shortage of supply capable
of playing this role, associated with the need for specific
training to accommodate the demand for Technology
Executives. This is because there is still a misalignment
between the expected performance of these Executives, by
companies (demand), and the type of professional profile
available to exercise this role (offer).

A. RQ1 – Assessment

We observed that most of the studies opted for the survey
based on interviews (7 studies) when evaluating what types
of studies have already been conducted to define the role of
the Technology Executive. Some works opted for the use of
forms or questionnaires, to qualify the moment of the
interview, or in the selection of the interviewee (4 studies).
The Literature Review was also used to qualify the interview
step (3 studies). Other methods were used, to select the target
audience and to analyze the profile characteristics, to define
the role of the Technology Executive, and to answer this
research question, but which were mentioned only once.

By grouping the types of automation used to select
candidates for the interview and to effectively collect data
for analysis, we found that most studies opted for some
manual method of assessing requirements and profile
characteristics. Another smaller group opted to use
automated data selection and extraction techniques, with a
highlight on the use of Natural Language Processing (NLP)
[15] and on the analysis of public data sources in Social
Networks [13].

To answer this research question, each work could
contribute with more than one type of study, therefore, the
total number of types of studies is not relevant when
compared with the number of primary papers. Out of all
primary papers selected for the final analysis, a single one

157Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 168 / 191

failed to identify an acceptable answer to this research
question.

B. RQ2 - Assessment

Only half of the studies analyzed indicated some type of
formalization concerning the definition of responsibilities for
the role of the Technology Executive. We understand that
the interest in this area of study has taken a more accelerated
pace over the past few years, when the attributions of this
role were no longer restricted to the issues of the companies'
operational infrastructure, and started to have an impact on
strategic business objectives [7][13].

The concern with the alignment between the
responsibilities of the Technology Executive and the
strategic performance of companies, without neglecting
traditional structuring, operational and support activities,
became clear among the answers found. It was also possible
to identify the growth in requirements for soft skills and
negotiation, indicating that the main target audience for this
role is increasingly closer to the top-level executives (C-
Suite), and to the external client for the businesses.

"The Chief Technology Officer (CTO) is responsible
for linking technology with strategy, market issues, and
top management guidelines; it is also responsible for
promoting innovation and facilitating the intersection
among research, development, technology innovation,
and leadership vision." [18]

C. RQ3 – Assessment

An important highlight that arises as a result of this
research is the finding, in the role of the Technology
Executive, of many requirements commonly associated with
the Business Executive. It is traditional to find technology
profiles that play the role of the main executive; however, we
find several positions occupied by professionals with first
training in business [17].

This work found 43 different terms for category grouping
of the Technology Executive profile. From these, the
Technologist and the Strategist profiles (both with 7 citations
each) stood out. The first profile can be traced back to the
first moments of technology development. It is the technical
role best known for its alignment with operational and
structuring responsibilities. However, the latter describes a
profile further aligned with the strategic business objectives,
the Strategist profile. The other noticeable categories found
in this work are gradually located between the first two
described above. As they have a more technical or business
tendency, they are the Innovator, Financial, and Enabler
(each with 4 citations each). The last terms worth mentioning
are Processes and Leadership (with 2 citations each), and 12
other categories that had only one citation each.

VI. CONCLUSION

According to the result of this literature review, the skills
of the Technology Executive can be divided into five main
groups, namely, Technologist, Strategist, Enabler, Financial,
and Innovator. The purpose of this review was to identify
previous studies on the role of the Technology Executive,
which would allow us to categorize their main

responsibilities and competencies. In the search phase, 2848
studies were found, of which 10 were classified as primary
studies after applying the exclusion criteria.

Some limitations should be noted in the present study.
First, the potential bias due to the design of the methodology
using a single researcher only, with the task of deciding the
selection criteria and analyzing the quality of the works by
himself. Second, the absence of data sources outside the
academic environment, such as social networks and
specialized market research companies (Garter Inc. or
McKinsey & Company as examples). The main focus of this
work was to find patterns in how to assess the competencies
and skills associated with the role of the Technology
Executive to offer an overview of the current state of the art.

In future works, we intend to perform studies including
other data sources, and the mapping of the specific duties of
each profile from the Technologist to the Strategist can be
outlined to support a proposal to develop a software
abstraction of the most operational skills of the Technology
Executive.

This work intended to provide an introductory overview
of the difficulty related to mapping roles, competencies, and
activities associated with the Technology Executive. The
development of this research in future works will include and
further explore other research databases to display these facts
and points more palpably.

REFERENCES

[1] Gartner Inc., “Nexus of Forces.” [Online]. Available:
https://www.gartner.com/en/information-
technology/glossary/nexus-of-forces. [retrieved: December,
2019].

[2] M. Hwang, An assignment for the nexus of forces. In:
AMCIS 2017 - America’s Conference on Information
Systems: A Tradition of Innovation, 2017.

[3] S. Ackx, “Emerging Technologies, Disrupt or be Disrupted,”
in ISSE 2014 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2014, pp. 177–187.

[4] Y. Duan et al., “Everything as a Service (XaaS) on the Cloud:
Origins, Current and Future Trends,” 2015 IEEE 8th
International Conference on Cloud Computing, pp. 621–628,
Jun. 2015.

[5] J. Pombinho, D. Aveiro, and J. Tribolet, “A Value-Oriented
Approach to Business/IT Alignment – Towards Formalizing
Purpose in System Engineering,” Advanced Information
Systems Engineering Workshops, pp. 555–566, 2012.

[6] A. Salim, “The c-suite is paralysed with fear, finds new report
on digital transformation | The Drum,” TheDrum, 2017.
[Online]. Available:
https://www.thedrum.com/news/2017/11/14/the-c-suite-
paralysed-with-fear-finds-new-report-digital-transformation.
[Retrieved: December, 2019].

[7] A. La Paz, J. Vasquez, and J. Miranda, “The CIO Gap and
Mismatch,” IT Prof., vol. 21, no. 2, pp. 66–72, Mar. 2019.

[8] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,”
Journal of Systems and Software, vol. 80, no. 4, pp. 571–583,
Apr. 2007.

[9] H.T. Harish, “Zotero: Bibliographic Reference Management
Software” Journal of Advanced Research in Library and
Information Science 05, no. 01, February 19, 2018, pp. 42–49.
doi:10.24321/2395.2288.201807.

158Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 169 / 191

[10] W. Noonpakdee, A. Phothichai, T. Khunkornsiri, and A.
Nuntree, “CIO Competency in Digital Era: A Comparative
Study between Government Organizations and Private
Enterprises,” 2020 IEEE 7th International Conference on
Industrial Engineering and Applications (ICIEA), pp. 948–
952, Apr. 2020.

[11] Y. Gong, M. Janssen, and V. Weerakkody, “Current and
expected roles and capabilities of CIOS for the innovation and
adoption of new technology,” in ACM International
Conference Proceeding Series, 2019, pp. 462–467.

[12] S. Kosasi, Vedyanto, and I. D. A. E. Yuliani, “Effectiveness
of IT Governance of Online Businesses with Analytical
Hierarchy Process Method,” in 2018 6th International
Conference on Cyber and IT Service Management, (CITSM),
Aug. 2018.

[13] A. La Paz, “How to Become a Strategist CIO,” IT
Professional, vol. 19, no. 1, pp. 48–55, Jan. 2017.

[14] D. A. Saputra, I. Alif, R. A. Wijaya, Y. G. Sucahyo, and M.
K. Hammi, “Role of IT in IT governance practices maturity

perspective,” International Conference on Advanced
Computer Science and Information Systems, ICACSIS 2019,
pp. 325–330

[15] A. Kumar, R. Mukundan, and K. Jain, “Technology
Management Practices of CTOs in Emerging Economy
India,” 2017 Portland International Conference on
Management of Engineering and Technology (PICMET), pp.
1–6, Jul. 2017.

[16] B. Lohmuller and A. Petrikhin, “The Growing Importance of
Technology Executives / Hidden Chief Technology Officers
and Their Organizational Roles,” 2018 IEEE International
Conference on Engineering, Technology and Innovation
(ICE/ITMC), Jun. 2018.

[17] D. J. Mazzola, R. D. S. Louis, and M. R. Tanniru, “The path
to the top,” Communications of the ACM, vol. 60, no. 3, pp.
60–68, Feb. 2017.

[18] A. Farina et al., “The role of chief technology office (CTO) in
a modern defense company,” IEEE Aerospace and Electronic
Systems Magazine, vol. 32, no. 3, pp. 52–56, Mar. 2017.

159Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 170 / 191

Teaching Agile Software Engineering Practices Using Scrum and a Low-Code
Development Platform – A Case Study

José Carlos Metrôlho1,2, Fernando Reinaldo Ribeiro1,2, Pedro Passão2
1R&D Unit in Digital Services, Applications and Content

2Polytechnic Institute of Castelo Branco
Castelo Branco, Portugal

e-mail: metrolho@ipcb.pt, e-mail: fribeiro@ipcb.pt, e-mail: pedropassao@ipcb.pt

Abstract— Following the recent trends in software engineering
regarding the growing adoption of agile methodologies and
low-code development platforms, and considering the results of
surveys, we carried out on students, alumni and some IT
companies, we adapted the software engineering teaching of a
computer engineering course to the needs and new trends of
the IT industry. The Scrum methodology and the OutSystems
low-code development platform were used in a project-based
learning approach for teaching agile software engineering
practices. This approach was complemented with the
presentation and discussion of several topics during the
theoretical classes, lectures given by professionals from IT
companies and study visits to an IT company that uses agile
methodologies and low-code platforms. This approach aims to
enhance the technical skills, namely development skills on a
widely used low-code platform and other software engineering
skills, but also to reinforce some non-technical skills of
students like teamwork and communication, today highly
valued by IT companies. The first results are quite positive.

Keywords- agile methodologies; education; Low-code
platforms; software engineering; Scrum; teaching.

I. INTRODUCTION
Several approaches have been used for teaching software

engineering. The way they propose to do it differs. However,
regardless of the proposed approach, there are some aspects
that already seem to be well accepted and that seem to be a
common trend for several approaches: there is an effort to
make the teaching of software engineering as close as
possible to what is done in IT companies; Most strategies try
to provide students with practical experience in a software
engineering project using methodologies and tools also used
in IT companies; and there is a growing concern on
empowering students with the non-technical skills required
in a software project. To achieve this, it is important to be
aware of the needs and trends of the market. It is important
to understand how the main concepts of the software
engineering subject are assimilated by the students and
understand the point of view of the companies which employ
and develop activities in this area.

Following the recent trends in software engineering, with
regard to the growing adoption of agile methodologies and
low-code development platforms, and considering the results
of surveys carried out in some IT companies [1], we made
some changes in the teaching of the software engineering
subject. In this paper, we describe an experience in teaching

software engineering. An agile development methodology
and a low-code development platform were used in a project-
based learning approach. This approach aims to enhance the
technical and non-technical skills of students, today highly
valued by IT companies, without, of course, neglecting other
methodologies and topics related to software engineering.

The remainder of this paper will be as follows: Section II
presents a brief review of related work; Section III presents a
background about agile development and low-code
development platforms; in Section IV, we present an
overview of our methodology for teaching undergraduate
software engineering using Scrum and a low-code
development platform; Section V presents some lessons
learned and challenges faced and finally, in Section VI we
present some conclusions and we outline the future work.

II. RELATED WORK
Several approaches and strategies have been followed to

provide students with the best training in software
engineering. Some of them are more theoretical, more
focused on the study of theory, concepts, methods and
methodologies, while others are more practical, fostering
practical experimentation to students, and often carried out in
collaboration with companies. Some are more traditional, in
the sense that they privilege traditionally used practices,
others are more avant-garde and encourage contact with the
most innovative practices and new market trends. All of
them aim to give students the appropriate knowledge and
skills for their professional activity in software engineering.
However, the way they propose to do it differs.

Emulating the workplace using distributed software
development projects, involving various courses or
institutions, is an approach proposed by several authors
(e.g., [2][3]). The Distributed and Outsourced Software
Engineering course [2] proposed teaching software
engineering using globally distributed projects. The projects
were developed in collaboration with eleven universities in
ten different countries providing students with the
experience of working with different cultures, native
languages and time zones. This approach also helped to alert
students to the importance of understanding typical software
engineering issues, such as the importance of software
requirements for specifications, or the relevance of adequate
system design. However, they also identify some time
scheduling inconveniences, and difficulties in keeping teams

160Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 171 / 191

committed to their peers. In [3], students work on real
distributed open-source projects as full members of software
development teams. Students use the same software
development processes as regular team members and are
provided with explicit mentorship from mentors from each
project. With this approach students integrate and apply the
skills they have learned in their courses and they develop
and improve their technical communication skills in a real
development setting.

The use of simulations and gamification to provide
students with a variety of experiences that would not be
possible in an academic environment, is an alternative
proposed by other authors (e.g.,[4]–[6]). Usually, these
approaches propose to gamify some phases of the software
life cycle and some tasks associated to each of them. The
goal is to increase the user's engagement, motivation and
performance when carrying out specific tasks. However,
these approaches also have some disadvantages. After two
periods of teaching using Scrum with gamification to learn
and train agile principles, Schäfer [5] identified some
lessons learned. Gamification is motivating and helps to
bring together participants with different experiences in
project teams.

Several project-oriented approaches have been proposed
in several software engineering training programmes (e.g.,
[7]–[10]. A project-based learning experience based on the
formation of small heterogeneous teams was presented in
[7]. Through a strategy of role rotation and documentation
transfer, all students perform different tasks and face
different challenges throughout the project. This is the case
they decided not to include any external stakeholder. In [8],
software engineering concepts are taught using the Scrum
framework in real life projects. The requirements are
discussed with external customers during a kick-off
meeting. During the project, students work together as self-
organized teams. They chose a project management and
team coordination process and they are only asked to use
some core tools that are needed to monitor the projects.

From a different perspective, the teaching of software
engineering has been adapting to new developments and
trends namely the agile methodologies. This topic has
deserved the attention of many authors who have published
several studies that address this subject. Usually, teaching
agile methodologies has focused on teaching a specific
method like Scrum (e.g., [11]–[13]) or XP (e.g., [14] [15]). A
project-based learning approach using the Scrum framework
in real life projects is presented in [11]. The module starts
with a kick-off where external stakeholders introduce their
topics, students apply for their preferred topics and the
supervisors define the teams of 5–7 persons. After 3 weeks,
the students must provide a project proposal which has to be
presented and defended face-to-face against customer
comments. The project proposal requires the definition of a
clear aim of the project, as well as a backlog of requirements
with an estimation and prioritization of the relevant user
stories. The projects are run in sprints, with a final
presentation and the hand-over of the results. An outline of

the literature related to Scrum in software engineering
courses [16] shows that providing students with practical
experience is of vital importance when teaching Scrum in
software engineering courses. It also states that most Scrum
courses require students to work in teams in order to develop
a non-trivial software project or practice simulation games.
A study on the impact of using agile methods in software
engineering education [17] concluded that using Agile
practices would positively influence the teaching process and
that they could stimulate communication, good relationships
among students, active team participation, and motivation for
present and future learning.

In fact, several approaches have been used for teaching
software engineering. However, and as mentioned in [18], it
is not clear which should be the best approach do follow
because there are different perspectives on the different
proposed approaches. Some of them propose to emulate the
workplace using distributed projects or using simulations and
games to simulate different scenarios. Others propose
project-based learning where students can train the various
stages of project development, following different
methodologies, and develop non-technical skills. However,
regardless of the approach followed, some aspects seem to
already be well accepted and seem to be a common trend for
several approaches. There is an attempt to bring teaching
closer to business reality. Many of these strategies include
providing students with hands-on experience in a software
engineering project using methodologies and tools that are
also used in IT companies. At the same time, many of these
strategies have also focused on empowering students with
the non-technical skills required in a software project. It is
also true that more traditional approaches, in which students
take on a more passive role and that place a higher priority
on teaching students to follow instructions and rules, do not
produce the intended results. Most current approaches, for
teaching software engineering, try to help students develop
their own ideas and strategies. They promote project-based
learning and they try to engage students in the problem
definition, design process and system thinking.

III. AGILE DEVELOPMENT AND LOW-CODE PLATFORMS
The growing spread of agile software development

methodologies, the increasing attention they have attracted
and their growing adoption by IT companies, seem to ensure
that they will play an important role in the future. Some
recent surveys demonstrate the importance and the high level
of adoptions of these methodologies. A survey presented in
the 14th annual state of agile report [19] shows that 95% of
respondents report that their organizations practice agile
development methods. Accelerating software delivery,
enhancing ability to manage changing priorities, increasing
productivity, and improving business alignment are the top
reasons stated for adopting Agile. Scrum and related variants
are the most common agile methodologies used by
respondents’ organizations (referred by 58% of the
respondents). Another survey [20], which involved 3300 IT
professionals, mentions an even higher percentage, stating
that Scrum and related variants are used in 76% of
companies. Additionally, some studies have demonstrated

161Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 172 / 191

the greater satisfaction of companies and professionals who
have adopted these methodologies. For individual
professionals, they found that agile development seams to
led to greater satisfaction mainly because of collaborative
practices and business influences [21]. Another study [22]
points out several benefits that were identified by companies
that adopted agile methodologies namely: improving project
monitoring and tracking, improving interaction and
collaboration and fosters sharing knowledge.

Another trend that has been noted is the growing
adoption of low-code development platforms by IT
companies. The State of Application Development [20] refer
that 41% of respondents said their organization was already
using a low-code application platform and, a further 10%
said they were about to start using one. This growing interest
is also corroborated by the Low-Code Development Platform
Market [23]. It reports that the global low-code development
platform market size is projected to grow from USD 13.2
billion in 2020 to USD 45.5 billion by 2025, at a Compound
Annual Growth Rate of 28.1% during the forecast period.
The top reported reasons for adopting agile [20] are the
ability to manage changing priorities, project visibility,
business alignment, delivery speed/time to market and team
morale. These reasons are in line with the advantages that are
usually associated with the use of low-code development
platforms: They comprise many of the same tools
functionalities that developers and teams use to design, code,
deploy and manage an application portfolio [24]; A
significant part of the job can be done through a drag-and-
drop interface and although developers may still need to do
some coding this is just for specific tasks [25]; They are able
to accelerate the delivery of new software and applications,
allowing to update and deliver new features in short time
periods, they allow build apps for multiple platforms
simultaneously, and cross-platform support and data
integration capabilities have already been built and can be
customized easily [26]. In fact, these platforms have become
quite popular and are currently spread across many
companies around the world. A report from Forrester [27]
evaluated the 13 most significant low-code platforms
suppliers and identified Microsoft, OutSystems, Mendix,
Kony and Salesforce as leaders.

Another important aspect is that low-code platforms have
often been associated with agile development
methodologies. The adoption of agile development
methodologies, platforms and tools has been a way of
improving the ease and speed at which applications can be
developed. But, as referred in [28], there is still room for
improvement and in particular when it comes to education
and training, management commitment and staffing. There
is also a need for greater involvement from the wider
business, which agile and the use of tools such as low-code
both encourage while, at the same time, enhancing
developer productivity. The State of Application
Development [20] revealed that companies that have
adopted low-code have an 8% higher organizational agility
score compared to those not using low-code. They also refer
that this result seems to be related to the fact that a highly

mature agile culture helps organizations maximize the
benefits of low-code development platforms by combining
the fast decision-making of agile with fast development
speeds. However, to maximize agile teams’ performance
with a low-code platform, there are some aspects that must
be followed with particular attention. Some of these aspects
are identified in the document Adapting Agile to Build
Products with Low-Code: Tips and Tricks [29] and are
related to: the difficulty for teams in maintaining a sufficient
backlog of user stories ready for development due to the
faster development speed; the difficulty of new teams in low
code to achieve the necessary quality from the beginning of
the process; the significant difference in development
velocity between co-dependent teams; the need for a strong
product owner who is engaged, empowered and responsive;
and the need for collaboration between developers and
business analysts from the start of the development cycle,
especially for complex user stories.

IV. OVERVIEW OF OUR APPROACH
The software engineering subject is part of the second

year of a computer science course (undergraduate course). It
is a subject that has a semester load of 30 hours for
theoretical classes and 45 hours for laboratory classes. The
focus of our approach is to combine theory and practice and
ensure that the topics covered remain appropriate to
whatever the needs of employers and current trends in the
area of software engineering are. A project-based approach
is used in practical classes for teaching Software
engineering.

The teacher of theoretical classes presents the concepts
and methodologies and promotes discussion about them. In
these classes, several aspects related to the software
development cycle are taught and discussed. Students are
provided with an introduction to several software
development methodologies namely Waterfall, Extreme
Programming, Scrum, Spiral, Rapid Application
Development, Rational Unified Process, Feature Driven
Development, Behaviour Driven Development, etc. Other
topics analysed include quality and metrics in software
engineering, requirements analysis, software design,
implementation, testing, configuration management, among
others. In addition to the presentation and discussion of
several topics during the classes, other initiatives are
organized and implemented, namely lectures given by
professionals from software development companies and
study visits to software development companies. These
initiatives provide students with the contact and interaction
with real software engineering projects with real
stakeholders. They are carried out in the final weeks of the
semester, so by that time the students have already acquired
significant knowledge that will then allow them to get the
most out of them.

In practical classes, students acquire some practice of
software engineering through the process management,
specification, design, implementation and validation of a

162Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 173 / 191

software application, as a project for teams. Scrum is the
adopted agile software development methodology. The
teacher has experience with Agile methodologies and holds
a professional certification in the adopted low-code
platform. He was able to provide support during the initial
learning phase of application development on the low-code
platform, but also to support the various teams of students
during the scrum sprints of development of their projects.
The teacher acts as a product owner. Each team member has
a specific role (e.g., Scrum Master, developer, etc.). Each
team develops a different project. We have used Scrum
because several employers of companies in the software
development area, with whom we have had contact, use
agile methodologies [1], namely Scrum and because our
graduates have told us that it is clearly one of the
methodologies they use most [30]. In addition, we also aim
to improve students' teamwork, and this methodology is one
that fits well with this goal. These skills of teamwork have
been highly valued by employers and therefore they deserve
to be worked on in this subject as well. We have been using
Scrum in practical classes for years and the recent survey
[1] only reinforced it and that is why we continue to use it.

In past editions of this subject, the projects were related
to the development of games (using Unity) or even to
continue work started earlier in other subjects of the course
(developed in java). The new trends and the feedback we
obtained in a survey [1] led us to, in the previous academic
year, choose to introduce the development of projects in
practical classes using a low-code platform. This is an area
of great demand by our students' employers, so with this
approach we also wanted to provide new skills at the level
of coding competence. In other words, the survey we carried
out [1] was clear as to the importance of coding skills, but
also of other aspects such as requirements analysis and
development methodologies. So, on the one hand, with this
new approach we give students new coding skills using one
of these development platforms widely used by several
recruiting companies in the software development area. On
the other hand, due to the characteristics of these low-code
platforms, it allows us to emphasize and work with students
on other different and important aspects of the development
of software projects, such as requirements analysis, project
design, project management project, development
methodology, quality assurance, testing, planning, etc.
When students complete the entire course, they obviously
have much more comprehensive skills because in other
subjects they learn to program in various other languages
and paradigms (Java, PHP, Html, SQL, etc.). This subject of
software engineering is not a programming subject but a
subject in which the coding stage is only part of a whole.
The whole concerns the cycle of software development and
therefore it is also important to address and emphasize what
is not so addressed in other subjects of the course. Namely
the importance of development methodologies, planning,
requirements analysis, software quality, testing,
maintenance, documentation, etc. Considering this reality, it

seemed to us that the use in this subject of a low-code
platform in practical classes could bring advantages, and
after having implemented it, we remain convinced.

To keep students motivated, the themes and objectives of
the projects could be defined by the teams of students or
alternatively by carrying out themes proposed by the teacher
of the practical classes. With this new approach, projects
include the development of web and mobile applications
using a low-code platform. In practical classes Scrum is the
development process used. The teacher of the practical
classes monitors weekly the evolution of each of the
projects. This monitoring allows for the assigning of grades
between teams but also being able to differentiate the grades
of each element of a team. Monitoring is weekly, during
contact classes with students. The student teams, in addition
to the weekly class time, also work outside of classes. Tasks
are all registered in Trello, allowing the teacher and the
whole team to have a permanent record of the progress of
the respective project. Trello is used for project management
and to track progress on tasks.

During the semester, the project evolves over several
sprints (of two weeks), in which the teacher (acting as
product owner) evaluates with the respective team what was
achieved in the previous sprint and what should be the sprint
backlog of the sprint that follows.

The final grade of the subject, in terms of the practical
part, results from an intermediate evaluation of each student
based on the work presented in the middle of the semester
and from a second evaluation made at the end of the
semester. In these two stages, a demo is made by each team,
resulting in grades and feedback given by teachers to the
various teams. The grades result from the application of
parameters related to various aspects of the various phases
of the project's development and the Scrum methodology.
Some of the parameters are: Requirements analysis,
software development process (e.g. roles, artefacts, timings,
hits and misses), task scheduling, modelling (e.g. user
stories, storyboards), implemented features, conclusions and
future work, user interface, documentation, and final
presentation and discussion. In the past academic year, due
to Covid-19, classes were provided using video
conferencing for teacher-student or teacher-team interaction.
The fact that low-code platforms provide several online
teaching materials (webinars, tutorials, examples, etc.) was
also useful to successfully overcome the limitations
mentioned above. This complementary material helped all
teams to quickly and timely assimilate necessary knowledge
about development in the adopted platform, in order to
implement their projects.

We also noticed that the learning and adaptation to the
use of low-code platform by students was overall very good.
The developed projects resulted in applications with
practically all user stories implemented and validated. The
students in their final reports addressed aspects about the
various stages and timings of the work developed, as far as
software engineering is concerned. Some of the projects

163Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 174 / 191

resulted in web applications with good user interfaces.
Throughout the semester, we verified a high activity and
motivation by practically all students. All projects resulted
in functional applications, some of which reached quality
close to the maximum score.

The low-code platform that we used in practical classes
was the OutSystems. We choose this platform because it is a
platform widely used by software development companies
in Portugal and because we have had a collaboration
protocol with that company for several years, under which
we have accessible software licenses. Another important
fact in the choice is that this platform can easily coexist with
agile methodologies such as Scrum [31] and it is one of the
leaders in the low-code market [27].

V. LESSONS LEARNED AND CHALLENGES FACED
Even considering the entropy caused by the effects of

Covid-19 (videoconference classes and student/team
meetings also via videoconference), in the end it resulted in
good results from both the theoretical and practical parts.
The inclusion of the low-code platform in practical classes,
allowed students to develop web applications, and to
develop new skills in one of the low-code platforms widely
used in software development companies. Additionally, and
very importantly, this approach allowed us to meet the
findings of the survey that was carried out on IT companies
[1]. It allows to strengthening students with other skills
related to software engineering like development
methodologies, requirements analysis, project management,
schedules, testing, etc. As mentioned before, this subject is
not focused on coding, for that there are several others in the
course where several programming skills are covered. We
also believe that this approach contributes to the
improvement of the non-technical skills of students, namely
teamwork and communication.

It is also important to consider that Low-code platforms
have some advantages and are suitable in the context of this
subject of software engineering. However, they do not
replace the need for the knowledge covered in other subjects
to prepare our students for a wider range of knowledge,
about other approaches and technologies that are also very
useful and often necessary.

VI. CONCLUSION AND FUTURE WORK
After listening to several stakeholders with the aim of

keeping the themes and methodologies taught in the subject
of Software engineering updated, we share in this paper an
update done recently. This update consisted in making the
projects developed in the practical classes using Scrum and
a low-code platform. This decision was to reinforce students
development skills (on a low-code platform currently
highly used in the labour market) and lead students to a
greater focus on other software engineering skills
(teamwork, communication, requirements, software quality,
schedules, documentation, among others). The results
achieved were positive, and the feedback from the students
was very rewarding. In a survey conducted at the end of the

semester, on a scale of 0 to 6, students rated the overall
satisfaction in relation to the subject with 5.4.

In the future, we will continue to be attentive to
stakeholder feedback, to keep materials and methodologies
updated in order to prepare students as best as possible and
close to what is followed in the software development
industry.

REFERENCES
[1] J. C. Metrôlho and F. R. Ribeiro, “Holistic Analysis of the

Effectiveness of a Software engineering Teaching
Approach,” Int. J. Adv. Softw., vol. 12, no. 1 & 2, pp. 46–
55, 2019.

[2] M. Nordio et al., “Teaching Software engineering Using
Globally Distributed Projects: The DOSE Course,” in
Proceedings of the 2011 Community Building Workshop
on Collaborative Teaching of Globally Distributed
Software Development, 2011, pp. 36–40, doi:
10.1145/1984665.1984673.

[3] R. Holmes, M. Craig, K. Reid, and E. Stroulia, “Lessons
Learned Managing Distributed Software engineering
Courses,” in Companion Proceedings of the 36th
International Conference on Software engineering, 2014,
pp. 321–324, doi: 10.1145/2591062.2591160.

[4] M. Yampolsky and W. Scacchi, “Learning Game Design
and Software engineering Through a Game Prototyping
Experience: A Case Study,” in Proceedings of the 5th
International Workshop on Games and Software
engineering, 2016, pp. 15–21, doi:
10.1145/2896958.2896965.

[5] U. Schäfer, “Training scrum with gamification: Lessons
learned after two teaching periods,” in 2017 IEEE Global
Engineering Education Conference (EDUCON), 2017, pp.
754–761, doi: 10.1109/EDUCON.2017.7942932.

[6] W. Ren, S. Barrett, and S. Das, “Toward Gamification to
Software engineering and Contribution of Software
Engineer,” in Proceedings of the 2020 4th International
Conference on Management Engineering, Software
engineering and Service Sciences, 2020, pp. 1–5, doi:
10.1145/3380625.3380628.

[7] B. Pérez and Á. L. Rubio, “A Project-Based Learning
Approach for Enhancing Learning Skills and Motivation
in Software engineering,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education,
2020, pp. 309–315, doi: 10.1145/3328778.3366891.

[8] A. Heberle, R. Neumann, I. Stengel, and S. Regier,
“Teaching agile principles and software engineering
concepts through real-life projects,” in 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp.
1723–1728, doi: 10.1109/EDUCON.2018.8363442.

[9] M. L. Fioravanti et al., “Integrating Project Based
Learning and Project Management for Software
engineering Teaching: An Experience Report,” in

164Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 175 / 191

Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, 2018, pp. 806–811, doi:
10.1145/3159450.3159599.

[10] M. Gordenko and E. Beresneva, “A project-based learning
approach to teaching software engineering through group
dynamics and professional communication,” in Actual
Problems of System and Software engineering.
Proceedings of the 6th International Conference Actual
Problems of System and Software engineering, 2019, pp.
278-288.

[11] A. Heberle, R. Neumann, I. Stengel, and S. Regier,
“Teaching agile principles and software engineering
concepts through real-life projects,” in 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp.
1723–1728, doi: 10.1109/EDUCON.2018.8363442.

[12] G. Wedemann, “Scrum as a Method of Teaching Software
Architecture,” in Proceedings of the 3rd European
Conference of Software engineering Education, 2018, pp.
108–112, doi: 10.1145/3209087.3209096.

[13] I. Bosnić, F. Ciccozzi, I. Čavrak, E. Di Nitto, J. Feljan,
and R. Mirandola, “Introducing SCRUM into a
Distributed Software Development Course,” 2015, doi:
10.1145/2797433.2797469.

[14] J. J. Chen and M. M. Wu, “Integrating extreme
programming with software engineering education,” in
38th International Convention on Information and
Communication Technology, Electronics and
Microelectronics, 2015, pp. 577–582, doi:
10.1109/MIPRO.2015.7160338.

[15] B. S. Akpolat and W. Slany, “Enhancing software
engineering student team engagement in a high-intensity
extreme programming course using gamification,” in 27th
Conference on Software engineering Education and
Training, 2014, pp. 149–153, doi:
10.1109/CSEET.2014.6816792.

[16] V. Mahnic, “Scrum in software engineering courses: An
outline of the literature,” Glob. J. Eng. Educ., vol. 17, no.
2, pp. 77–83, 2015.

[17] S. Al-Ratrout, “Impact of using Agile Methods in
Software engineering Education: A Case Study,” in 2019
6th International Conference on Control, Decision and
Information Technologies (CoDIT), 2019, pp. 1986–1991,
doi: 10.1109/CoDIT.2019.8820377.

[18] S. Beecham, T. Clear, D. Damian, J. Barr, J. Noll, and W.
Scacchi, “How Best to Teach Global Software
engineering? Educators Are Divided,” IEEE Softw., vol.
34, no. 1, pp. 16–19, 2017, doi: 10.1109/MS.2017.12.

[19] Digital.ai, “14th annual state of agile report,” 2020.
https://stateofagile.com/ (accessed Aug. 20, 2020).

[20] OutSystems, “State of Application Development Report,”

2019.
[21] M. Kropp, A. Meier, C. Anslow, and R. Biddle,

“Satisfaction, Practices, and Influences in Agile Software
Development,” in Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software
engineering, 2018, pp. 112–121, doi:
10.1145/3210459.3210470.

[22] F. Kamei, G. Pinto, B. Cartaxo, and A. Vasconcelos, “On
the Benefits/Limitations of Agile Software Development:
An Interview Study with Brazilian Companies,” in
Proceedings of the 21st International Conference on
Evaluation and Assessment in Software engineering,
2017, pp. 154–159, doi: 10.1145/3084226.3084278.

[23] Marqual IT Solutions Pvt. Ltd (KBV Research), “Global
Low-Code Development Platform Market By Component
By Application By Deployment Type By End User By
Region, Industry Analysis and Forecast, 2020 - 2026,”
Report, 2020. [Online]. Available:
https://www.kbvresearch.com/low-code-development-
platform-market/.

[24] OutSystems, “Low-Code Development Platforms,” 2019.
https://www.outsystems.com/low-code-platforms/
(accessed Jul. 30, 2020).

[25] C. Boulton, “What is low-code development? A Lego-like
approach to building software,” CIO (13284045), 2019.
http://search.ebscohost.com/login.aspx?direct=true&db=b
th&AN=134645048&site=eds-live (accessed Aug. 07,
2020).

[26] J. Idle, “Low-Code rapid application development - So,
what‘s it all about?,” Platinum Business Magazine, pp.
52–53, 2016.

[27] J. R. Rymer and R. Koplowitz, “The Forrester WaveTM:
Low-Code Development Platforms For AD&D
Professionals, Q1 2019,” 2019.

[28] I. Media, “Agile is as agile does. Understanding the role
of agile development and low-code solutions in the
delivery of digital transformation.” Incisive Media, 2018.

[29] T. Huff, “Adapting Agile to Build Products with Low-
Code: Tips and Tricks,” 2019.
https://www.outsystems.com/blog/posts/adapting-agile-to-
low-code/ (accessed Jul. 28, 2020).

[30] J. Metrôlho and F. Ribeiro, “Software engineering
Education: Sharing an approach, experiences, survey and
lessons learned,” in Thirteenth International Conference
on Software engineering Advances, 2018, pp. 79–84.

[31] T. Huff, “Agile and Scrum: Understanding the
Differences,” 2019.
https://www.outsystems.com/blog/posts/agile-and-scrum/
(accessed Jul. 12, 2020).

165Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 176 / 191

Integrating Two Metaprogramming Environments:
An Explorative Case Study

Herwig Mannaert

University of Antwerp
Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Chris McGroarty

U.S. Army Combat Capabilities Development Command Soldier Center (CCDC SC)
Orlando, Florida, USA

Email: christopher.j.mcgroarty.civ@mail.mil

Scott Gallant

Effective Applications Corporation
Orlando, Florida, USA

Email: Scott@EffectiveApplications.com

Koen De Cock

NSX BV
Niel, Belgium

Email: koen.de.cock@nsx.normalizedsystems.org

Abstract—The automated generation of source code, often
referred to as metaprogramming, has been pursued for decades in
computer programming. Though many such metaprogramming
environments have been proposed and implemented, scalable
collaboration within and between such environments remains
challenging. It has been argued in previous work that a meta-
circular metaprogramming architecture, where the the metapro-
gramming code (re)generates itself, enables a more scalable
collaboration and easier integration. In this contribution, an
explorative case study is performed to integrate this meta-circular
architecture with another metaprogramming environment. Some
preliminary results from applying this approach in practice are
presented and discussed.

Index Terms—Evolvability; Normalized Systems; Simulation
Models; Automated programming; Case Study

I. INTRODUCTION

The automated generation of source code, often referred
to as automatic programming or metaprogramming, has been
pursued for decades in computer programming. Though the
increase of programming productivity has always been an
important goal of automatic programming, its value is of
course not limited to development productivity. Various dis-
ciplines like systems engineering, modeling, simulation, and
business process design could reap significant benefits from
metaprogramming techniques.

While many implementations of such automatic program-
ming or metaprogramming exist, many people believe that au-
tomatic programming has yet to reach its full potential [1][2].
Moreover, where large-scale collaboration in a single metapro-
gramming environment is not straightforward, realizing such
a scalable collaboration between different metaprogramming
environments is definitely challenging.

In our previous work [3], we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture enables a scalable collaboration

between various metaprogramming projects. In this contri-
bution, we perform an explorative case study to perform a
first integration with another metaprogramming environment.
To remain generic, the two metaprogramming environments
are aimed at generative programming for completely different
types of software systems, and based on totally different meta-
models. At the same time, they are suited for this study, as
they both pursue a more horizontal integration architecture.

The remainder of this paper is structured as follows. In
Section II, we briefly present some aspects and terminology
with regard to metaprogramming, and argue the relevance of
two related concepts: meta-circularity and systems integra-
tion. In Section III, we explain the need for collaborative
metaprogramming and the issues that need to be solved.
Section IV presents the architecture and meta-model of both
metaprogramming environments whose integration is explored
in this contribution. Section V elaborates on the possible
integration of these metaprogramming environments, detailing
the possibilities, progress, and remaining issues. Finally, we
present some conclusions in Section VI.

II. METAPROGRAMMING, META-CIRCULARITY,
AND SYSTEMS INTEGRATION

The automatic generation of source code is probably as old
as software programming itself, and is in general referred
to by various names. Automatic programming, stresses the
act of automatically generating source code from a model or
template, and has been called ”a euphemism for programming
in a higher-level language than was then available to the
programmer” by David Parnas [4]. Generative programming,
”to manufacture software components in an automated way”
[5], emphasizes the manufacturing aspect and the similarity to
production and the industrial revolution. Metaprogramming,
sometimes described as a programming technique in which

166Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 177 / 191

”computer programs have the ability to treat other programs as
their data” [6], stresses the fact that this is an activity situated
at the meta-level, i.e., writing software programs that write
software programs.

Academic papers on metaprogramming based on intermedi-
ate representations or Domain Specific Languages (DSLs), e.g.,
[7], focus in general on a specific implementation. Also related
to metaprogramming are software development methodologies
such as Model-Driven Engineering (MDE) and Model-Driven
Architecture (MDA), requiring and/or implying the availability
of tools for the automatic generation of source code. Today,
these model-driven code generation tools are often referred to
as Low-Code Development Platforms (LCDP), i.e., software
that enables developers to create application software through
configuration instead of traditional programming. This field is
still evolving and facing criticisms, as some question whether
these platforms are suitable for large-scale and mission-critical
enterprise applications [1], while others even question whether
these platforms actually make development cheaper or eas-
ier [2]. Moreover, defining an intermediate representation or
reusing DSLs is still a subject of research today. We mention
the contributions of Wortmann [8], presenting a novel concep-
tual model for the systematic reuse of DSLs, and Gusarov et.
al. [9], proposing an intermediate representation to be used for
code generation.

Concepts somewhat related to metaprogramming are ho-
moiconicity and meta-circularity. Both concepts refer to some
kind of circular behavior, and are also aimed at the increase of
the abstraction level, and thereby the productivity of computer
programming. Homoiconicity is specifically associated with a
language that can be manipulated as data using that language,
and traces back to the design of the language TRAC [10],
and to similar concepts in an earlier paper from McIlroy
[11]. Meta-circularity, first coined by Reynolds describing his
meta-circular interpreter [12], expresses the fact that there is
a connection or feedback loop between the meta-level, the
internal model of the language, and the actual models or code
expressed in the language. Such circular properties have the
potential to be highly beneficial for metaprogramming, as they
could enable a unified view on both the metaprogramming
code and the generated source code, thereby reducing the
complexity for the metaprogrammers.

Based on a generic engineering concept, systems integration
in information technology refers to the process of linking
together different computing systems and software applica-
tions, to act as a coordinated whole. Systems integration is
becoming a pervasive concern, as more and more systems
are designed to connect to other systems, both within and
between organizations. Due to the many, often disparate,
metaprogramming environments and tools in practice, we
argue that systems integration should be explored and pursued
more at the metaprogramming level. Just as traditional systems
integration often focuses on increasing value to the customer
[13], systems integration at the metaprogramming level could
provide value to their customers, i.e., the software developers.

III. TOWARD SCALABLE COLLABORATIVE
METAPROGRAMMING

Something all implementations of automatic programming
or metaprogramming have in common, is that they perform
a transformation from domain models and/or intermediate
models to code generators and programming code. In general,

Fig. 1. Representation of the duplication of metaprogramming silos.

metaprogramming or code generation environments also ex-
hibit a rather straightforward internal structure. This structure
is schematically represented for a single metaprogramming
environment at the left side of Figure 1, and consists of:

• model files containing the model parameters.
• reader classes to read the model files.
• model classes to represent the model parameters.
• control classes selecting and invoking the different gen-

erator classes.
• generator classes instantiating the source templates, and

feeding the model parameters to the source templates.
• source templates containing the parameterised code.

Another metaprogramming environment will have a similar
internal structure, as schematically represented at the right
side of Figure 1. Such similar but duplicated architectures
exhibit a vertical integration architecture. In this architec-
ture, the functional entities are also referred to as silos, and
metaprogramming silos entail several significant drawbacks.
First, it is hard to collaborate between the different metapro-
gramming silos, as both the nature of the models and the
code generators will be different. Second, contributing to the
metaprogramming environment will require programmers to
learn the internal structure of the model and control classes
in the metaprogramming code. As metaprogamming code is
intrinsically abstract, this is in general not a trivial task.
And third, as contributions of individual programmers will
be spread out across the models, readers, control classes, and
actual coding templates, it will be a challenge to maintain a
consistent decoupling between these different concerns.

We have argued in our previous work that in order to achieve
productive and scalable adoption of automatic programming

167Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 178 / 191

techniques, some fundamental issues need to be addressed
[14][3]. First, to cope with the increasing complexity due to
changes, we have proposed to combine automatic program-
ming with the evolvability approach of Normalized Systems
Theory (NST) providing (re)generation of the recurring struc-
ture and re-injection of the custom code [14]. Second, to avoid
the growing burden of maintaining the often complex meta-
code and continuously adapting it to new technologies, we
have proposed a meta-circular architecture to regenerate the
metaprogramming code itself as well [3]. We will go into some
more detail on NST and the corresponding metaprogramming
environment in the next section.

As this meta-circular architecture establishes a clear decou-
pling between the models and the code generation templates
[3], it allows for the definition of programming interfaces at
both ends of the transformation. This should remove the need
for contributors to get acquainted with the internal structure
of the metaprogramming environment. It also enables a more
horizontal integration architecture, by allowing developers
to collaborate on both sides of the interface. Modelers and
designers are able to collaborate on models, gradually im-
proving existing model versions and variants, and adding on
a regular basis new functional modules. (Meta)programmers
can collaborate on coding templates, gradually improving
and integrating new insights and coding techniques, adding
and improving implementations of cross-cutting concerns, and
providing support for modified and/or new technologies and
frameworks. Moreover, an horizontal integration architecture
could facilitate collaboration between two metaprogramming
environments. Exploring such a collaboration is the purpose
of the case study in this paper.

IV. STRUCTURE OF THE METAPROGRAMMING
ENVIRONMENTS

In this section, we present the architectures and meta-models
of the two metaprogramming environments considered in this
integration case study. The first metaprogramming environ-
ment is the NST meta-circular architecture, as it explicitly aims
to realize horizontal integration and scalable collaboration.
The second metaprogramming environment is concerned with
a completely different application domain, i.e., models for
simulation systems, and is based on a totally different meta-
model. However, by clearly separating the modeling in the
front-end from the generative programming in the back-end,
it is also pursuing a more horizontal integration architecture.

A. Normalized Systems Elements Metaprogramming

Normalized Systems Theory (NST), theoretically founded on
the concept of stability from systems theory, was proposed
to provide an ex-ante proven approach to build evolvable
software [14][15][16]. The theory prescribes a set of theorems
(Separation of Concerns, Action Version Transparency, Data
Version Transparency, and Separation of States) and formally
proves that any violation of any of the preceding theorems will
result in combinatorial effects thereby hampering evolvability.

As the application of the theorems in practice has shown to
result in very fine-grained modular structures, it is in general
difficult to achieve by manual programming. Therefore, the
theory also proposes a set of design patterns to generate the
main building blocks of (web-based) information systems [14],
called the NS elements: data element, action element, workflow
element, connector element, and trigger element.

An information system is defined as a set of instances of
these elements, and the NST metaprogramming environment
instantiates for every element instance the corresponding de-
sign pattern. This generated or so-called expanded boiler plate
code is in general complemented with custom code or craft-
ings to add non-standard functionality, such as user screens
and business logic. This custom code can be automatically
harvested from within the anchors, and re-injected when the
recurring element structures are regenerated.

While the NST metaprogramming environment was origi-
nally implemented in a traditional metaprogramming silo as
represented in Figure 1, it has been evolved recently into a
meta-circular architecture [3]. This meta-circular architecture,
described in [3] and schematically represented in Figure 2,
enables both the regeneration of the metaprogramming code

Fig. 2. Closing the meta-circle for expanders and meta-application.

itself, and allows for a structural decoupling between the two
sides of the transformation, i.e., the domain models and the
code generating templates.

The domain models for the web-based information systems
are specified as sets of instances of the various types of
NS elements. While these elements can be entered in a
meta-application and/or graphical modeler, they are formally
specified in XML files, whose structure is defined in a corre-
sponding XML Schema.

As the NS meta-model is just another NS model [3], the
various types of elements can be specified in XML files,
just like any other instance of a data element. Aimed at the
automatic programming of multi-tier web-based information
systems, the meta-model of the NST metaprogramming en-
vironment is a model for web-based information systems.

168Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 179 / 191

Fig. 3. A graphical representation of the core part the NS (data) meta-model.

The core data model of this metaprogramming environment
is represented in Figure 3. This graphical representation, a
screenshot from the NST Modeler tool, is similar to most
ERD (Entity Relationship Diagram) visualizations, but uses
colors to distinguish between different types of data entities
[17]. The unit of an NS model is a component, and within
such a component model, we distinguish the various types of
NS elements [14], such as Data elements, Task elements, and
Flow elements. These elements, colored light blue and located
in the top row, can have options, e.g., Task options. Both the
entities representing elements and their corresponding options,
are characterized by a typing or taxonomy entity, e.g., Task
element type or Task option type, represented in light red. The
data elements contain a numer of attributes or Fields, where a
field can be either a data attributes or a relationship link, and
provide a number of Finders. Both fields and finders can have
options characterized by corresponding option types.

Every individual code generator or NS expander is declared
in an Expander XML file, specifying for instance the type of
element it belongs to, and the various properties of the source
artifact that it generates. For every such artifact expander,
one needs to provide a coding Template, based on the
StringTemplate (ST) engine library, and an XML expander
Mapping file, specifying the various template parameters in
terms of model parameters through Object-Graph Navigation
Language (OGNL) expressions.

B. Generative Programming of Simulation Models

The United States Army has developed and documented
hundreds of approved models for representing behaviors and

systems, often separate from the simulation environments
where they are to be implemented. The manual translation of
these models into actual simulation environments by software
developers, leads to implementation errors and verification dif-
ficulties, and is unable to avoid the workload of incorporating
these models into other simulation environments.

In order to address these potential drawbacks, a generative
programming approach is being examined, aiming to capture
military-relevant models within an executable systems engi-
neering format, and to facilitate authoritative models to operate
within multiple platforms. The goal of this work is to be able to
capture authoritative conceptual models and then to generate
software to implement those representations/behaviors. This
generated software can be quickly integrated into multiple
simulations regardless of their programming language thereby
saving development cost and improving the consistency across
simulation systems.

The architecture of this metaprogramming environment,
schematically represented in Figure 4, divides the problem
into two domains, i.e., the front-end and the back-end. In
the front-end, corresponding to the conceptual models at the
left column, the Subject Matter Experts (SME), scientists,
and software model developers are able record the model
definitions and behaviors or algorithms. In the back-end,
represented in the three other columns, those model defini-
tions and algorithms are transformed through templating and
metaprogramming into executable code, targeted at specific
architectures and implementations. To properly decouple these
parts, an Interchange Format (IF) was created that allows one
or more front-ends to be created to record models in a way that

169Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 180 / 191

Fig. 4. Schematic representation of the generative programming architecture for simulation models.

suits the needs of the front-end user community, and to pass
those models to be used for code generation in the back-end.

The interchange format between the front-end and the back-
end is based on XML documents, whose structure is defined by
an XML Schema or XSD (XML Schema Definition Language).
This interchange format structure, i.e., the XSD, is called the
Synthetic Training Environment (STE) Canonical Universal
Format (SCUF).

This meta-model is not intended to support a full program-
ming language, but rather to focus on the domain elements
used within the U.S. Army’s canonical descriptions of the sim-
ulation models. Nevertheless, it represents most concepts of
a traditional procedural programming language. Specifically,
these include the data type declarations, datastores, and various
elements of algorithms, such as conditions, expressions and
iterators. Figure 5 provides a class diagram of the SCUF meta-
model, anew similar to most ERD visualizations.

To capture the human readable text of the canonical sim-
ulation model descriptions along with executable code in
the front-end, the generative programming environment uses
PyFlow [18], which is an open source project that is similar
to other visual scripting frameworks including Unity’s Bolt
or Playmaker [19], and Unreal’s Blueprints [20]. The U.S.
Army added custom additions to PyFlow that includes both
the ability to execute the models, as well as the capability to
generate the SCUF code, the interchange format to transfer the
model from the front-end to the back-end. The back-end code
generator uses the Apache Velocity templating engine to create
the output files in multiple programming languages (C#, C++,
and Java currently).

V. TOWARD INTEGRATING THE
METAPROGRAMMING ENVIRONMENTS

The two metaprogramming environments target the auto-
matic programming of two different types of software systems:
multi-tier web-based information systems, and executable
(army) models for simulation systems. Consequently, the two
metaprogramming environments have a completely different
meta-model. Moreover, both the front-end technologies captur-

ing the models, and the target programming languages —even
the code templating engines— are different.

What both metaprogramming environments have in com-
mon is a structured decoupling between the definition of
models and the generation of code. Moreover, the interchange
format of the models is in both environments based on XML
documents, whose structure is defined by an XML schema.
This means that it is conceptually possible to map the gen-
erative programming environment for simulation models onto
the collaboration architecture represented in Figure 2.

A. Embracing the SCUF Meta-Model

The NST meta-circular metaprogramming environment al-
lows for the structural generation of all reader, writer, and
model classes of any model —or meta-model— that can be
expressed as a set of NST data elements. The SCUF meta-
model, based on XML and defined by an XML Schema,
satisfies this requirement. Based on the definition of the SCUF
data entities (as represented in the class diagram of Figure 5,
e.g., TypeDefinition, DatastoreType, ConditionalBlock, Expres-
sion, Declare, Statement, etcetera), NST data elements can
be created. For instance, Statement needs to be defined as
an NST data element with a name field which is a string, a
type field that is a link to the TypeDefinition data element,
and an expression field that is a link to the Expression data
element. These data elements can be specified in XML, or in
the user interface of the NST meta-application, or even directly
generated from the XML Schema. For every data element, the
various classes of the NST stack in the left part of Figure 2
can be generated. These include:

• Reader and writer classes to read and write the XML-
based SCUF files, e.g., StatementXmlReader and State-
mentXmlWriter.

• Model classes to represent and transfer the various SCUF
entities, and to make them available as an object graph,
e.g., StatementDetails and StatementComposite.

• View and control classes to perform CRUDS (create,
retrieve, update, delete, search) operations in a generated
table-based user interface.

170Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 181 / 191

Fig. 5. A graphical representation of the core part the SCUF (data) meta-model.

This implies that the various existing SCUF models, represent-
ing instances of the SCUF data entities and therefore instances
of the NST data elements, can be read and made available as
an object graph, allowing to evaluate model parameters using
Object-Graph Navigation Language (OGNL) expressions at
the emplating engine. Moreover, an additional application
with a table-based user interface is available to create, view,
manipulate, and write SCUF models.

B. Supporting the Templating Engine

Having defined the SCUF data entities as NST data el-
ements, the NST metaprogramming environment allows to
evaluate SCUF model parameters through OGNL expressions
in SCUF model graphs, and to make them available to
coding templates. In order to simply activate the existing
coding templates of the simulation models, and to use the
NST metaprogramming environment as a piece of evolvable
middleware to pass the SCUF models to the code templates
for the simulation models, two tasks remain to be performed.

• Every coding template needs to be declared in a separate
XML Expander definition.

• For every coding template, the appropriate OGNL expres-
sions to evaluate the relevant model parameters, need to
be defined in an XML Mapping file.

The fact that both metaprogramming environments use differ-
ent templating engines causes a final integration issue. A first
option would be to convert the Velocity templates of the simu-
lation software to the StringTemplate format supported by the

NST environment. In this scenario, the required effort would
be proportional to the template base of the simulation models,
and would need to be repeated for integration efforts with other
environments using this templating engine. Moreover, Velocity
templates allow more logic that would have to be ported to
Java helper classes in the StringTemplate environment.

A second and preferable option is to include support in
the NST metaprogramming environment for the Velocity tem-
plating engine. Considering the limited amount of templating
engines being used by metaprogrammers, this scenario seems
both manageable and worthwhile. Moreover, the effort would
not be proportional to the size of the template base. And as
there is virtually no logic in the current NST templates, i.e., all
model parameters are combined and processed in the software
that feeds the templating engine, it is reasonable to say that
we expect no major blocking issues.

VI. CONCLUSION

The automated generation of source code, often referred
to as metaprogramming, has been pursued for decades in
computer programming, and is considered to entail significant
benefits for various disciplines, including software develop-
ment, systems engineering, modeling, simulation, and business
process design. However, we have argued that metaprogram-
ming is still facing several issues, including the fact that it
is challenging to realize a scalable collaboration within and
between different metaprogramming environments due, to the
often vertical integration architecture.

171Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 182 / 191

In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture enables a scalable collaboration,
both within this environment and possibly with other metapro-
gramming environments. In this paper, we have explored such
a collaborative integration with another metaprogramming
environment. This second environment for metaprogramming
targets the generation of a different type of software systems,
and is based on a different meta-model, but also exhibits a
more horizontal integration architecture.

We have shown in this contribution how both metapro-
gramming environments can be integrated within the proposed
meta-circular architecture, by extending the generation of the
meta-code, i.e., the code that makes the actual parameter
models available to the coding templates, to the second
metaprogramming environement. We have explained that the
only reason that the coding templates of this second metapro-
gramming environment cannot be seamlessly integrated yet,
is that they use another templating engine. However, we have
also indicated that it should be relatively straightforward to
support this alternative templating engine.

This paper is believed to make some contributions. First, we
show that it is possible to perform an horizontal integration of
two metaprogramming environments, and to enable collabora-
tion and re-use between these environments. Such integrations
could significantly improve the collaboration and productivity
at the metaprogramming level. Moreover, we show that this in-
tegration is possible between metaprogramming environments
that are based on completely different meta-models. Second,
we explain that the horizontal integration of a second metapro-
gramming environment with the meta-circular architecture,
could largely remove the burden of maintaining the internal
classes of this metaprogramming environment.

Next to these contributions, it is clear that this paper is also
subject to a number of limitations. It consists of a single case
of integrating a second metaprogramming environment with
the meta-circular architecture. Moreover, the presented results
are quite preliminary, and the second metaprogramming envi-
ronment is not yet operational in the meta-circular architecture,
as its templating engine is not yet supported in this archi-
tecture. Therefore, neither the complete horizontal integration,
nor the productive collaboration between the two environments
has actually been proven. However, this explorative case study
can be seen as an architectural pathfinder, and we are planning
to both broaden and deepen the collaboration on the horizontal
integration of different metaprogramming environments.

REFERENCES

[1] J. R. Rymer and C. Richardson, “Low-code platforms deliver customer-
facing apps fast, but will they scale up?” Forrester Research, Tech. Rep.,
08 2015.

[2] B. Reselman, “Why the promise of low-code software platforms is
deceiving,” TechTarget, Tech. Rep., 05 2019.

[3] H. Mannaert, K. De Cock, and P. Uhnak, “On the realization of meta-
circular code generation: The case of the normalized systems expanders,”
in Proceedings of the Fourteenth International Conference on Software
Engineering Advances (ICSEA) 2019, 2019, pp. 171–176.

[4] D. Parnas, “Software aspects of strategic defense systems,” Communi-
cations of the ACM, vol. 28, no. 12, 1985, pp. 1326–1335.

[5] P. Cointe, “Towards generative programming,” Unconventional Program-
ming Paradigms. Lecture Notes in Computer Science, vol. 3566, 2005,
pp. 86–100.

[6] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,
tools, and applications. Reading, MA, USA: Addison-Wesley, 2000.

[7] L. Tratt, “Domain specific language implementation via compile-time
meta-programming,” ACM transactions on programming languages and
system, vol. 30, no. 6, 2008, pp. 1–40.

[8] A. Wortmann, “Towards component-based development of textual
domain-specific languages,” in Proceedings of the Fourteenth Interna-
tional Conference on Software Engineering Advances (ICSEA) 2019,
2019, pp. 68–73.

[9] K. Gusarovs and O. Nikiforova, “An intermediate model for the code
generation from the two-hemisphere model,” in Proceedings of the
Fourteenth International Conference on Software Engineering Advances
(ICSEA) 2019, 2019, pp. 74–82.

[10] C. Mooers and L. Deutsch, “Trac, a text-handling language,” in ACM
’65 Proceedings of the 1965 20th National Conference, 1965, pp. 229–
246.

[11] D. McIlroy, “Macro instruction extensions of compiler languages,”
Communications of the ACM, vol. 3, no. 4, 1960, pp. 214–220.

[12] J. Reynolds, “Definitional interpreters for higher-order programming
languages,” Higher-Order and Symbolic Computation, vol. 11, no. 4,
1998, pp. 363–397.

[13] M. Vonderembse, T. Raghunathan, and S. Rao, “A post-industrial
paradigm: To integrate and automate manufacturing.” International Jour-
nal of Production Research, vol. 35, no. 9, 1997, p. 2579–2600.

[14] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[15] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[16] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[17] P. De Bruyn, H. Mannaert, J. Verelst, and P. Huysmans, “Enabling
normalized systems in practice : exploring a modeling approach,”
Business & information systems engineering, vol. 60, no. 1, 2018, pp.
55–67.

[18] M. Senthilvel and J. Beetz, “A visual programming approach
for validating linked building data.” [Online]. Available:
https://publications.rwth-aachen.de/record/795561/files/795561.pdf

[19] “How to make a video game without any coding experience.” [Online].
Available: https://unity.com/how-to/make-games-without-programming

[20] B. Sewell, Blueprints Visual Scripting for Unreal Engine. Packt
Publishing, 2015.

172Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 183 / 191

Computer-Project-Ontology

Construction, Validation and Choice of Knowledge Base

Raja Hanafi Lassad Mejri Henda Hajjami Ben Ghezala

National School of Computer Science Faculty of Science of Bizerte National School of Computer

University of Manouba Carthage University University of Manouba,
Manouba, Tunisia Bizerte, Tunisia Manouba, Tunisia

e-mail : rajarajahanafi@yahoo.com e-mail : Mejrilassad@gmail.com e-mail : hhbg.hhbg@gmail.com

Abstract—The ontology design has developed within the

framework of approaches of acquisition and capitalization of

knowledge. In this case, we are talking about the design of the

domain ontology which models the knowledge of a particular

domain whose bounded terms are specified, mostly coming

from controlled vocabularies. This ontology makes it possible

not to encroach on another field of expertise. This has the

advantage of being reused for applications designed within a

defined domain. In this paper, we propose domain ontology(C-

P-Onto: Computer-Project-Ontology) to represent knowledge

in the field of computers projects. "Protégé" tool is the most

popular and widely used tool for ontology development. Thus,

we use this device for developing, validating and questioning

the proposed ontology. In order to test it in a real field, the

"HAL" will be applied as our knowledge base.

Keywords-Computer project; Knowledge Capitalisation;

Domain Ontology; Ontology Test; Ontology Validation.

I. INTRODUCTION

Recently, project management has been well established
in companies, but the project's success in terms of quality,
costs and deadlines is still difficult to reach. There are many
failures, and one of them is the lack of capitalization of
feedback during projects: learn lessons and reuse knowledge
or acquired skills. The problem here is that these
experiences are not always available in companies. This can
be explained by the absence of the concept of capitalization,
the lack of structuring of their experiments, or the outflow
of experts [1].

During the realization of the projects, particularly the
computer ones, project leader encountered many problems
during the design phase. In the aim of solving these
difficulties, designers either contact the old experts of the
company or they look for similar projects in the market [2].

However, this process is not always efficient because it
can be a waste of time, an exceeding of deadlines and a rise
of cost.

In this context, we will propose a capitalization approach
of memory knowledge of computer design projects. This
approach presents a supporting decision in the project
management phase of the design phase. Our decision-
support process will not only help structure, formalize and
capitalize knowledge, but also provide a dashboard in the

form of indicators, information and a guide for the project
leader.

In this paper, we will introduce our approach by
focusing on its modeling part which is defined and
explained by the proposition of domain ontology. This
ontology describes all the concepts and relations associated
to the computer project management term. After examining
the coherence and the consistency of the proposed ontology,
we will move to the process of creating a knowledge base in
order to confirm our tests on a real level.

This paper is composed of four major sections. The first
Section introduces the main works existing in the literature
as well as a comparative study. Then, we describe our
proposed approach architecture. The second Section
involves the presentation the notion of ontology and the
construction of the domain ontology. The third Section
presents our analysis and reveals our knowledge base
(HAL). The last and the four Section summarizes the main
points mentioned in this article and open new horizons for
future works.

II. PROPOSED APPROACH

We introduce in the following sub-section some of the
most important contributions and capitalization models
related to our research study.

A. Literature Review

1) Description Of The Models : In the literatures,

various works addressed the project memory models which

aim at the capitalization of knowledge and the construction

of project memory.
IN [3] Ermine described the knowledge management

processes. The proposed processes are based on a model
that is called “margerite model”. These processes can be
internal or external. What interests us is the internal process
of capitalization and sharing of knowledge within the
company.

Harani [4] presents a design assistance tool whose main
objective is the capitalization of knowledge involved in the
design of a product for reuse.

Bekhti in [5] proposed a dynamic project definition and
reuse process named DyPKM. This approach is based on a
method that provides a structured trace of a project memory

173Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 184 / 191

containing the context in which the design takes place and
the logic resolution.

Zacklad [6] propose a groupware "MEMO-net" using
the DIPA problem solving method for capitalization and
knowledge management in design projects. This groupware
is a tool that has two modules (design and diagnostic) that
allows a project group to solve problems encountered during
the design (capitalization of the design logic) and to
preserve the characteristics related to such a product.

Serrano [7] proposed a global system of capitalization of
knowledge allowing the actors of the company to exploit the
important mass of information. This system also makes it
possible to capitalize events in the field of Open Source
Intelligence (OSI) based on the Web Lab platform.

2) Comparative Study Of The Studied Approaches :
After we have studied these different approaches, we
decided to propose our own classification (Table I). This
comparative study is based on a set of criteria, namely:

• Simplicity of the method: This criteria means that
the models must be used in an easy way and without
the intervention of any other methods.

• Resource: Includes the data representing the
constraints to be considered and the data of the
project organization. The resource used in our
contribution must be the memory project.

• Application domain: This criterion gives a global
vision on the field of application. In our research
study, we focus on the field of computer projects.

• Use of case based reasoning (CBR): We have
introduced this criterion because we believe that it is
crucial to use the CBR in the learning part.

• Capitalization level: This criterion is proposed in
order to check the importance of the conception
level. We try to determine, for each model, the level
or the part concerned by the capitalization (context,
design, realization, etc).

 TABLE I. COMPARATIVE STUDY OF APPROACHES

Model Simplicity of the method Resource Application domain Use of Capitalization

(CBR) level

Ermine's process [3] Complex (marguerite model) Corporate memory Area of economy No Design

Zacklad ‘s model [6]
Complex Collective

Diverse For all design projects No
Conception

Software (DIPA) and context

Serrano [7]
Global + wave (weblab Open source (blog,

Field of defense No Event

platform) internet, site,etc)

Harani Model [4] Simple help tool Company knowledge
Computer, mechanical,

No Design + Feature

industrial

Design project (all Context

Bekhti model [5] Simple process Project memory No + design

areas)

rational

Based on our comparative study we will define in the

next section our approach to capitalize knowledge of project
memory. This approach aims to provide decision support in
project management from the design phase to the
implementation.

B. Towards a knowledge Capitalization Approach

Our goal is to present an approach that helps the leader
to deal with its new project by referring to the experiences
and knowledge which are stored in a project memory. This
section introduces the architecture of our approach and in
particular the modeling part which is composed of three
models: the project class model, the project model and the
rational design model. The architecture of our approach
contained three main parts (Fig.1):

• The offline process: It is from modelization (models
+ ontology) to the project excavation. This part
starts with the proposal of the models to identify
and to classify projects.

• An online process: It is from the acquisition of new
project until the project learning. This part presents
CBR reasoning cycle, which are development,
remembering, adaptation, revision, validation and
learning.

• A base case: It contains all the instances of the
ontology, projects, project classes, problems,
solutions and suggestion.

In the following subsections we will start with the
offline process description. We will explain the proposed
models namely project model, project class model and
rational design model, and then we will introduce the
proposed ontology.

174Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 185 / 191

Figure 1. Architecture of the proposed approach.

1) The Project Class Model : In the same organization,

we can distinguish different classes of computer project

such as security, software engineering, imaging, data base,

artificial intelligence, etc. It is in this context, that we

propose this model to allow the leader to classify, from the

beginning, the project. This process can be done by

specifying the project knowledge, its resolution method

such as Scrum [8] and Pert [9], its reasoning rule and its

architecture.
The Project class model (Fig.2) is composed of three

elements:

• Project class: This element is composed of two lists:
a list of projects belonging to the same class, and a
list of common denominators such as rules and
keywords.

• Project class knowledge: All the knowledge related
to the project class in question are associated to all
the rules used in the reasoning phase for this type of
project class.

• Point of view: This component presents the method
of conducting project class and the type of
architecture used.

2) The project model: We have proposed this model to

identify the project itself. When the user is in front of a

new project he will first determine the characteristics of

each project. These will be used as indexes to select

similar ones. The proposed project model (Fig. 2) has

three dimensions. The choice of components of this

model is inspired from the composition of the project

memory:

• Project identifier: This pillar gives general
information about the project. It includes the project
name, abstract, project team.

• Project features: This component reflects all the
characteristics that a project can have during its
realization. Among these characteristics, we can
quote the size, scope, cost, time, complexity, type,
team project, scheduling, etc.

• Deliverable: This class is composed of two sub-
classes:

-Type of deliverable: It can be a service, a product
(software, hardware), etc.
-Rational design: Contains the list of problems, suggestions
and solutions for each computer project.

3) Rational Design Model : Once the project has been

identified, the user must see the logical design part to

distinguish similar problems and select solutions. For the

purpose of presenting this part, we have suggested the

design logic model explained below.
The design rationale, in the project memory, consists of

modeling the process of decision-making through all the
elements characterizing this process. These elements are the
problem objects, suggestions, and participants [10]. This
model (Fig.2) is presented using three essential components:

• Problem list: Each problem is described by its
name, its textual description and its attributes.

175Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 186 / 191

• Suggestion list: Before reaching the final solution
the designers have proposed a set of suggestion.

• Solution list: For each problem there are one or
more solutions that are defined (text) and argued
(arguments).

Figure 2. Knowledge Modelisation (Proposed Models)

By studying the components and elements of the
proposed models we have noticed that the field of
information projects contains a huge quantity of concepts
and terms which relate to each other. It is in this context
that we decided to present the important mass of this
knowledge with one of the techniques of knowledge
representation. In this research study, we will propose
domain ontology relative to the notion "computer project"
in order to present concepts composing this domain and
relations between them.

III. ONTOLOGY

Using ontology and other related knowledge has also
become very important for storing, and managing of huge
amount of research data [11]. Ontology is essentially
defined by a set of business concepts and relationships.
The instantiation of these different concepts gives birth to
a new case to study in the future (new project, new
thesis).

A. Components Of Ontology

To describe a domain with ontology, knowledge of
this domain should be defined by the following five
components [13]:

• Concepts: (concepts also called class)
representing the meaning of a field of
information, whether by the metadata of a
namespace or the elements of a given domain of
knowledge.

• Relations also called properties: It translates the
associations existing between the concepts. These
relationships allow us to see the structuring of
concepts, the ones compared to the others.

• Function: Presents special case of relations, of
which an element of the relation can be defined
according to the preceding elements.

• The axioms: Also called rules are used to describe
assertions of the ontology in order to define the
meaning of the components of the ontology.

• Instance or individual: Constituting the
extensional definition of ontology; these objects
convey knowledge about the domain of the
problem.

A. The Methodology Of Ontology Construction

The construction of ontology is a difficult task
requiring the implementation of an elaborate process to
extract the knowledge of a domain, manipulated by
computer systems and interpreted by human being. There

176Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 187 / 191

are many methods of ontology construction. Different
types of ontology construction approaches are
distinguished according to the support on which they are
based: from texts, dictionaries, knowledge bases, semi-
structured diagrams, relational diagrams, etc. In what
follows we present some methods of ontology
construction.

• The Text To Into [14] methodology is an
application for extracting ontologies from corpora
or web documents and it also allows the reuse of
existing ontologies.

• The Onto Builder methodology [15] allows us to
build ontology from web resources.

• METHONTOLOGY [16] is a structured method
to build ontologies from scratch. It is based on the
experience acquired in developing ontology in a
special domain.

• KACTUS [17] designed to be applied in more
general settings. This methodology, which aims to
reuse existing ontologies, is interesting since it
avoids building an ontology from scratch.

By studying these four methods, we have proposed a
new method for the construction of our ontology. Our
methodology is based on METHONTOLOGY
methodology. It is a method of building ontology from
scratch which is related to computer projects domain
experiences. To apply the proposed methodology, we will
follow these three steps:

1. Choice of the relevant terms of the field, favoring the

semantic normalization and specify the relations
between the different terms.

2. Formalization of knowledge and the construction of a
referential ontology.

3. Evaluation, testing, validation and documentation of
the proposed domain ontology. In our situation, we
used the ontology editor "Protégé" [18] to formalize
our ontology.

C. Basic Steps For Building Ontologies

• Step 1 ꞌclasses and class hierarchyꞌ: The first step
as illustrated in Fig. 3 gives the computer project
and management project related classes or
concepts. All the concepts shown in the figure
are focusing on the project-concept, project-team-
project-features and rational-design.

• Step 2 ꞌobject properties of ontology (Fig. 4) ꞌ: We
define it according to relationship which we want
to add between classes.

• Step 3 ꞌdata properties of ontologyꞌ: In this step
we display data properties of proposed ontology
which show the relationship between individuals.

• Step 4: In this step we add the details of the
instances, relations, classes and properties. These
details present the definition, description and the
type of each element.

• Step 5 ꞌthe axioms of ontologyꞌ: Axioms are used
to describe the relationship between classes,
attributes and individuals.

• Step 6 ꞌthe instance of ontologyꞌ: Defining the
instance (individual), first one should select the
right class, and then create its instances for the
class. The final instantiation of this ontology
(individuals + instances) is actually the new case
on which our reasoning is based (Fig. 6). They
help to establish a common vocabulary to
describe the case, or the model knowledge needed
to index and organize the event. We have
advanced our thesis research topic to instantiate
our proposed ontology.

• Step 7 ꞌthe reasoning of ontologyꞌ: To have a
consistent ontology and ready to be properly
interrogated and without contraction we carried
out a reasoning using the automatic reasoner of
the “Protégé tool”.

Figure 3. Classes of the Proposed Ontology.

177Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 188 / 191

Figure 4. Property and Relationship.

IV. RESULT AND ANALYSIS

In order to validate our ontology (especially the choice
of concepts and relations between concepts) we carried
out two types of validations:

• A first validation made by a professional who is
an expert in the computer field. He is a computer
project manager in a company located in France.

• A second validation was made technically by the
standard tool "Protégé"[18]. This validation is
done using three tests: consistency test, coherence
test and query test.

In this section, we will describe the main tests used to
verify the coherence and the consistency of the proposed
ontology.

A. Knowledge Base

The first goal in this part of the research study is to
create a knowledge-base that contains all instances of the
concept defined by the proposed ontology. To achieve this
goal, we decided to work with real examples of computer
research projects. It is in this context that we decided to
test our ontology with the help of the dozen end-of-study
projects that we have supervised.

The second objective is to be able to question our
ontology. This step is also due to two other sub-phases:
The validation of the coherence and the consistency of the
created ontology. It is in this context that in the following
sub-sections we will present our procedures to carry out
these tests.

B. Coherence test :Reasoner tab

The great advantage of using Protégé is the possibility
of checking whether the ontology created does not contain
contradictory definitions. From the Reasoner menu, we
can select FaCT++ or HermiT, then select Reasoner or
Start Reasoner to classify the active ontology. We can
also select Reasoner or Synchronize Reasoner to classify
again at any time.

Once we validate that our ontology is classified by
selecting the entities tab and then the "Class hierarchy
(inferred)" tab that appears in the "Class hierarchy" view.
It should contain classes that sub-class Thing. Once we
have validated that our ontology is classified, you can
execute a query using Dl-Query tab.

Figure 5. Coherence Test (Ontology ‘ s Reasoning)

C. Consistency test : Dl-Query tab

We have utilized the DL Query to check the
consistency of the ontology hierarchy. The DL-Query tab
provides a powerful and easy-to-use feature for searching
a classified ontology. So we can only execute a query on a
classified ontology. Before attempting to execute a query,
we should run a classifier: Using the DL, we can have as a
result a list of super classes, subclasses, instances or direct
subclasses of a class expression. In our case we have to
display all the projects (fig.6) which are instances of the
class "project_name". The complete display (without
failure) of the results of the query requested shows that
our ontology is well classified.

Figure 6. Example of Test With Dl-Query.

178Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 189 / 191

D. Query an ontology via a sparql query Request:

After we have tested our ontology we can now request
it by several methods: either we load it into an RDF
database like JENA [19], Sesame [20], Stardog [21], etc,
or we can simply use the SPARQL-query (Fig.7) option
automatically integrated in the "Protégé tools" [21].

Here we used the SPARQL-query to request our
ontology. We have launched an example of a query in
SPARQL-query that allows us to display all the classes
and subclasses of the created ontology. The result is
displayed on two columns "subject and project" as
indicated in the request (Fig. 8).

These results are still modest and weak. The
application of SPARQL-query does not allow us to
display, for example, all individuals of such a class with a
given condition. It is in this context that we are going to
orient our future work on the interrogation of ontology
using API such as JENA and Sesame. In addition, even if
our ontology is consistent and well classified but the
shortcomings of interrogation by SPARQL-query shows
the weakness of inferences especially at the instances
level.

Figure 7. Example of a Sparql Query is Request).

Figure 8. Example of a Sparql Query result.

V. CONCLUSION AND FUTURES WORKS

The main objective of this research study was to
propose a domain ontology that helps to present a
computer project field (concept and relation). Moreover,
we described multiple methodologies in the construction
of ontology and we ended this section by proposing a
method of construction of a domain ontology based on
METHONTOLOGY methodology.

Given the importance of the information and
knowledge of the website of publication and archiving,
we chose to apply it to feed our knowledge base. For
future works, we will focus on interrogating by utilizing
the API "JENA"[19]. Also, we will try to complete the
on-line process of our approach to apply the concept of
case-based reasoning (CBR).

REFERENCES

[1] J.Stal-Le Cardinal, J.-L.Giordano and G.Turré,“ Les

Retours d'expérience du Projet, Réduire les Risques,
Augmenter les Performances Collectives (From The Project
Reduce Risks, Increase Collective Performance)”,
https://hal.archives-ouvertes.fr/hal-01482335, 2014.

[2] B.Francois, “ La Capitalisation Des Connaissances Dans un
Contexte de Projet (The Capitalization of Knowledge in A
Project Context)”, Thesis submitted as part of the project
management master's program, University of Quebec at
Rimouski, 2014.

[3] J-LErmine, “Knowledge Management(Gestion de
Connaissance)”,HeLavoisier, p.166, https://hal.archives-
ouvertes.fr/hal-00997696/file/. pdf,2003.

[4] Y.Harrani, “A Multi-model Approach For the
Capitalization of Knowledge In The Field of
Design”,Thesis, specialty in Industrial Engineering, 1997.

[5] S.Bekhti, “A Dynamic Process For Definig And Reusing
Project Memories" ,University of Technology Troyes,
France,2003.

[6] M.Lewkowicz and M.Zacklad, “Using Problem-Solving
Models to Design Efficient Cooperative Knowledge-
Management Systems Based on Formalization and
Traceability of Argumentation”, EKAW '00: Proceedings
of the 12th European Workshop on Knowledge
Acquisition, Modeling and Management, Pages 288–295,
2000.

[7] L.Serrano, “Vers Une Capitalisation Des Connaissances
Orientée Utilisateur: Extraction et Structuration
Automatiques d'informations à Partir de Sources Ouvertes“:
(Towards user-oriented knowledge capitalization:
Automatic Extraction and Structuring of Information
From Open Sources), Thesis, 2014.

[8] M. Sliger, “Agile Project Management with Scrum”, paper
presented at PMI® Global Congress2011—North America,
Dallas, TX. Newtown Square, PA: Project Management
Institute, 2011.

[9] N.Mahfouf and B.Ramdhani, “Planification et
ordonnancement d'un projet avec des moyens limités au
sein d'ENGTP”, (“Planning and Scheduling of a Project
with limited Means Within ENGTP”), thesis , 2014.

[10] S.I.Hyder, J.Ansari, M.S.Ramish and M.Y.T.Fasih,
“Emerging Role of Ontology Based Repository in Business
Management Research”, Journal of Organizational
Knowledge Management, p.17, 2017.

179Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

 190 / 191

[11] B.Chabot,“Ontologies-Pourquoi-Quoi
Comment(Ontologies:Why?What?How?), Published on
October 26, 2017.

[12] J. Busse, B. Humm, C. Lubbert and F. Moelter, “Actually,
What Does Ontology Mean? A Term Coined by Philosophy
in the Light of Different Scientific Disciplines”, Journal of
Computing and Information Technology, vol. 1, no. CIT
23, p. 29–41, 2015.

[13] J.Chaumier, “Les Ontologies Antécédents, Aspects
Techniques et Limites (Ontologies History, Technical
Aspects And Limits)“, Documentalist-Information Sciences
», Vol. 44, pages 81 to 83 ISSN 0012-4508, 2007.

[14] A.Maedche, E.aedche, S.Staab, “The TEXT-TO-ONTO
Ontology Learning Environment”, a Software
Demonstration at ICCS-2000 Eight International
Conference on Conceptual Structures, 2000.

[15] H.Roitman, A.Gal, “OntoBuilder: Fully Automatic
Extraction and Consolidation of Ontologies from Web
Sources Using Sequence Semantics”, Technion, Israel
Institute of Technology Technion City, 2004.

[16] M.Fernandez,A.Gómez-Pérez,N.Juristo,“From Ontological
Art Towards Ontological Engineering”, Acte of AAAI,
1997.

[17] G.Schreiber, B-J.Wielinga, W.Jansweijer, “The kactus view
of the ’o’ word.”, IJCAI’1995, Workshop on Basic
Ontological Issues in Knowledge, 1995.

[18] V.Giudicelli, “Ontologies et l’éditeur Protégé - Application
à la Formalisation des Concepts de Description d’IMGT-
ONTOLOGY (Ontologies And The Protected Editor -
Application To The Formalization Of IMGT-ONTOLOGY
Description concepts)”, 2010,

[19] https://jena.apache.org/documentation/ontology/accessed
August 06, 2018.

[20] https://websemantique.developpez.com/tutoriels/francart/de
buter-avec-sesame/, March 25, 2018.

[21] About: Stardog, http://dbpedia.org/page/Stardog, March 22,
2018.

180Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 191 / 191

http://www.tcpdf.org

