IARIA

ICSEA 2016

The Eleventh International Conference on Software Engineering Advances

ISBN: 978-1-61208-498-5

August 21 - 25, 2016

Rome, Italy

ICSEA 2016 Editors

Luigi Lavazza, Universita dell'Insubria - Varese, Italy
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology,
Sweden
Krishna M. Kavi, University of North Texas, USA
Radek Koci, Brno University of Technology, Czech Republic
Stephen Clyde, Utah State University, USA

ICSEA 2016

Forward

The Eleventh International Conference on Software Engineering Advances (ICSEA 2016), held on
August 21 - 25, 2016 in Rome, Italy, continued a series of events covering a broad spectrum of software-
related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

e Advances in fundamentals for software development

e Advanced mechanisms for software development
Advanced design tools for developing software

Software engineering for service computing (SOA and Cloud)
Advanced facilities for accessing software

Software performance

Software security, privacy, safeness

Advances in software testing

Specialized software advanced applications

Web Accessibility

Open source software

e Agile and Lean approaches in software engineering

e Software deployment and maintenance

e Software engineering techniques, metrics, and formalisms
e Software economics, adoption, and education

e Business technology

e Improving productivity in research on software engineering

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2016 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2016. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2016 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2016 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope Rome provided a pleasant environment during the conference and everyone saved some time
for exploring this beautiful historic city.

ICSEA 2016 Advisory Committee

Herwig Mannaert, University of Antwerp, Belgium

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Universita dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Abo Akademi University, Finland
Davide Tosi, Universita dell'Insubria - Como, Italy

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, iteratec GmbH, Germany

Krishna M. Kavi, University of North Texas, USA

Radek Koci, Brno University of Technology, Czech Republic
Stephen Clyde, Utah State University, USA

ICSEA 2016 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Gunma University, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2016 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2016 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Testing and Validation
Florian Barth, University of Mannheim, Germany

Web Accessibility
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

Software engineering for service computing
Muthu Ramachandran, Leeds Beckett University, UK

ICSEA 2016 Publicity Chairs

Sébastien Salva, University of Auvergne, Clermont-Ferrand, France

ICSNC 2016

Committee
ICSNC Advisory Committee

Eugen Borcoci, University Politehnica of Bucarest, Romania
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Leon Reznik, Rochester Institute of Technology, USA

Masashi Sugano, Osaka Prefecture University, Japan

Zoubir Mammeri, IRIT, France

Xavier Hesselbach, UPC, Spain

Svetlana Boudko, Norsk Regnesentral, Norway

Ben Lee, Oregon State University, USA

ICSNC 2016 Research Institute Liaison Chairs

Song Lin, Yahoo! Labs / Yahoo Inc. - Sunnyvale, USA
Habtamu Abie, Norwegian Computing Center - Oslo, Norway

ICSNC 2016 Industry/Research Chairs

Rolf Oppliger, eSECURITY Technologies - Guemligen, Switzerland

Jeffrey Abell, General Motors Corporation, USA

Christopher Nguyen, Intel Corp., USA

Javier Ibanez-Guzman, RENAULT S.A.S. / Technocentre RENAULT - Guyancourt, France

ICSNC 2016 Special Area Chairs

Mobility / vehicular
Maode Ma, Nanyang Technology University, Singapore

Pervasive education
Maiga Chang, Athabasca University, Canada

ICSNC 2016 Technical Program Committee

Habtamu Abie, Norwegian Computing Center - Oslo, Norway

M. llhan Akbas, University of Central Florida, USA

Fakhrul Alam, Massey University, New Zealand

Jose M. Alcaraz Calero, University of the West of Scotland, UK

Pedro Alexandre S. Gongalves, Escola Superior de Tecnologia e Gest3o de Agueda, Lisbon
Mikulas Alexik, University of Zilina, Slovak Republic

Abdul Alim, Imperial College London, UK

Shin'ichi Arakawa, Osaka University, Japan

Seon Yeob Baek, The Attached Institute of ETRI, Korea

Michael Bahr, Siemens AG - Corporate Technology, Germany

Ataul Bari, University of Western Ontario, Canada

Jodo Paulo Barraca, University of Aveiro, Portugal

Mostafa Bassiouni, University of Central Florida, USA

Roberto Beraldi, "La Sapienza" University of Rome, Italy

Luis Bernardo, Universidade Nova de Lisboa, Portugal

Robert Bestak, Czech Technical University in Prague, Czech Republic
Carlo Blundo, Universita di Salerno - Fisciano, Italy

Eugen Borcoci, Politehnica University of Bucarest, Romania
Svetlana Boudko, Norsk Regnesentral, Norway

Martin Brandl, Danube University Krems, Austria

Thierry Brouard, University of Tours, France

Dario Bruneo, Universita di Messina, Italy

Francesco Buccafurri, University of Reggio Calabria, Italy

Dumitru Dan Burdescu, University of Craiova, Romania

Carlos T. Calafate, Universitat Politécnica de Valéncia, Spain
Juan-Carlos Cano, Universitat Politecnica de Valéncia, Spain
Aparicio Carranza, NYC College of Technology, USA

Jonathon Chambers, University Loughborough - Leics, UK

Maiga Chang, Athabasca University, Canada

Hao Che, University of Texas at Arlington, USA

Jen-Jee Chen, National University of Tainan, Taiwan, R.O.C.
Tzung-Shi Chen, National University of Tainan, Taiwan

Feng Cheng, Hasso-Plattner-Institute at University of Potsdam, Germany
Jong Chern, University College Dublin, Ireland

Stefano Chessa, Universita di Pisa, Italy

Stelvio Cimato, Universita degli studi di Milano - Crema, Italy
Nathan Clarke, University of Plymouth, UK

Jorge A. Cobb, University of Texas at Dallas, USA

Sebastian Damm, FH Aachen, Germany

Danco Davcev, University "St. Cyril and Methodius" - Skopje, Macedonia
Vanesa Daza, University Pompeu Fabra, Spain

Sergio De Agostino, Sapienza University, Italy

Jan de Meer, smartspace®lab.eu GmbH | | University (A.S.) of Technology and Economy HTW, Germany
Eli De Poorter, Ghent University - iMinds, Belgium

Carl James Debono, University of Malta, Malta

Edna Dias Canedo, Universidade Federal da Paraiba (UFPB), Brazil
Jawad Drissi, Cameron University - Lawton, USA

Jaco du Toit, Stellenbosch University, South Africa

Wan Du, Nanyang Technological University (NTU), Singapore
Gerardo Fernandez-Escribano, University of Castilla-La Mancha - Albacete, Spain
Carol Fung, Virginia Commonwealth University, USA

Marco Furini, University of Modena and Reggio Emilia, Italy

Pedro Gama, Truewind, Portugal

Thierry Gayraud, LAAS-CNRS / Université de Toulouse, France

Sorin Georgescu, Ericsson Research - Montreal, Canada

Katja Gilly, Universidad Miguel Hernandez, Spain

Hock Guan Goh, Universiti Tunku Abdul Rahman, Malaysia

Ruben Gonzalez Crespo, Universidad Internacional de La Rioja, Spain
Victor Goulart, Kyushu University, Japan

Rich Groves, A10 Networks, USA

Jason Gu, Singapore University of Technology and Design, Singapore
Alexandre Guitton, Université Blaise Pascal, France

Takahiro Hara, Osaka University, Japan

Pilar Herrero, Polytechnic University of Madrid, Spain

Xavier Hesselbach, UPC, Spain

Mohammad Asadul Hoque, Texas Southern University, USA

Chi-Fu Huang, National Chung-Cheng University, Taiwan, R.O.C.
Christophe Huygens, iMinds-KULeuven-DistriNet, Belgium

Javier Ibanez-Guzman, RENAULT S.A.S., France

Monica Aguilar Igartua, Universitat Politécnica de Catalunya (UPC), Spain
Georgi lliev, Technical University of Sofia, Bulgaria

Shoko Imaizumi, Chiba University, Japan

Muhammad Imran, King Saud University, Kingdom of Saudi Arabia

Atsuo Inomata, Nara Institute of Science and Technology, Japan

Imad Jawhar, United Arab Emirates University, UAE

Raj Jain, Washington University in St. Louis, U.S.A.

Shengming Jiang, Shanghai Maritime University, China

Miao Jin, University of Louisiana at Lafayette, USA

Michail Kalogiannakis, University of Crete, Greece

Yasushi Kambayashi, Nippon Institute of Technology, Japan

Sokratis K. Katsikas, Center for Cyber & Information Security - Norwegian University of Science &
Technology (NTNU), Norway

Donghyun (David) Kim, North Carolina Central University, USA

Peng-Yong Kong, Khalifa University of Science, Technology & Research (KUSTAR), United Arab Emirates
Abderrafiaa Koukam, Université de Technologie de Belfort-Montbéliard, France
Romain Laborde, University of Toulouse, France

Mikel Larrea, University of the Basque Country UPV/EHU, Spain

Gyu Myoung Lee, Liverpool John Moores University, UK

Wolfgang Leister, Norsk Regnesentral (Norwegian Computing Center), Norway
Helen Leligou, Technological Educational Institute of Chalkida, Greece
Tayeb Lemlouma, IRISA / IUT of Lannion (University of Rennes 1), France
Kuan-Ching Li, Providence University, Taiwan

Yaohang Li, Old Dominion University, USA

Wei-Ming Lin, University of Texas at San Antonio, USA

Abdel Lisser, Université Paris Sud , France

Damon Shing-Min Liu, National Chung Cheng University, Taiwan

Pascal Lorenz, University of Haute Alsace, France

Christian Maciocco, Intel, USA

Christina Malliou, Democritus University of Thrace (DUTH), Xanthi, Greece
Kami Makki, Lamar University, USA

Kia Makki, Technological University of America - Coconut Creek, USA
Amin Malekmohammadi, University of Nottingham, Malaysia

Zoubir Mammeri, IRIT, France

Herwig Mannaert, University of Antwerp, Belgium

Sathiamoorthy Manoharan, University of Auckland, New Zealand
Francisco J. Martinez, University of Zaragoza, Spain

Gregorio Martinez, University of Murcia, Spain

Mohammad Abdul Matin, Institute Teknologi Brunei, Brunei
Constandinos Mavromoustakis, University of Nicosia, Cyprus

Amin Malek Mohammadi, University of Nottingham, Malaysia Campus, Malaysia
Karol Molnar, Honeywell International, s.r.o. - Brno, Czech Republic
Boris Moltchanov, Telecom ltalia, Italy

Rossana Motta, University of California San Diego, USA

Fabrice Mourlin, LACL labs - UPEC University, France

Mohammad Mozumdar, California State University, Long Beach, USA
Abderrahmen Mtibaa, Texas A&M University, USA

Suresh Muknahallipatna, University of Wyoming, USA

Juan Pedro Mufioz-Gea, Universidad Politécnica de Cartagena, Spain

Jun Peng, University of Texas - Rio Grande Valley, USA

David Navarro, Lyon Institute Of Nanotechnology, France

Christopher Nguyen, Intel Corp., USA

Ronit Nossenson, Akamai Technologies, USA

Gerard Parr, University of Ulster-Coleraine, Northern Ireland, UK

Paulo Pinto, Universidade Nova de Lisboa, Portugal

Neeli R. Prasad, Aalborg University, Denmark

Francesco Quaglia, Dipartimento di Informatica - Automatica e Gestionale "Antonio Ruberti", Italy
Victor Ramos, UAM-Iztapalapa, Mexico

Saquib Razak, Carnegie Mellon University, Qatar

Piotr Remlein, Poznan University of Technology, Poland

Leon Reznik, Rochester Institute of Technology, USA

Saad Rizvi, University of Manitoba - Winnipeg, Canada

Joel Rodrigues, University of Beira Interior, Portugal

Enrique Rodriguez-Colina, Autonomous Metropolitan University — Iztapalapa, Mexico
Javier Rubio-Loyola, CINVESTAV, Mexico

Jorge S4 Silva, University of Coimbra, Portugal

Curtis Sahd, Rhodes University, South Africa

Demetrios G Sampson, University of Piraeus & CERTH, Greece

Ahmad Tajuddin Samsudin, Telekom Research & Development, Malaysia
Luis Enrique Sanchez Crespo, Sicaman Nuevas Tecnologias, Colombia
Carol Savill-Smith, City & Guilds, London, UK

Marialisa Scata, University of Catania, Italy

Marc Sevaux, Université de Bretagne-Sud, France

Hong Shen, University of Adelaide, Australia

Roman Shtykh, CyberAgent, Inc., Japan

Sabrina Sicari, Universita degli studi dell'Insubria, Italy

Ad3o Silva, University of Aveiro / Institute of Telecommunications, Portugal
Narasimha K. Shashidhar, Sam Houston State University, USA

Theodora Souliou, National Technical University of Athens, Greece
Mujdat Soyturk, Marmara University, Istanbul, Turkey

Weilian Su, Naval Postgraduate School - Monterey, USA

Xiang Su, Center of Ubiquitous Computing - University of Oulu, Finland
Masashi Sugano, Osaka Prefecture University, Japan

Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea
Jani Suomalainen, VTT Technical Research Centre of Finland, Finland

Tetsuki Taniguchi, University of Electro-Communications, Japan

Stephanie Teufel, University of Fribourg, Switzerland

Radu Tomoiaga, University Politehnica of Timisoara, Romania

Neeta Trivedi, Neeta Trivedi, Aeronautical Development Establishment- Bangalore, India
Tzu-Chieh Tsai, National Chengchi University, Taiwan

Thrasyvoulos Tsiatsos, Aristotle University of Thessaloniki, Greece

Mustafa Ulas, Firat University, Turkey

Manos Varvarigos, University of Patras, Greece

Costas Vassilakis, University of Peloponnese, Greece

Luis Veiga, INESC ID / Technical University of Lisbon, Portugal

Tingkai Wang, London Metropolitan University, UK

Yunsheng Wang, Kettering University, USA

Santoso Wibowo, School of Engineering & Technology - CQUniversity, Australia
Alexander Wijesinha, Towson University, USA

Riaan Wolhuter, Universiteit Stellenbosch University, South Africa

Ouri Wolfson, University of lllinois, USA

Hui Wu, University of New South Wales, Australia

Mengjun Xie, University of Arkansas at Little Rock, USA

Erkan Yiksel, Istanbul University - Istanbul, Turkey

Yasir Zaki, New York University Abu Dhabi, United Arab Emirates

Weihua Zhang, Fudan University, China

Fen Zhou, CERI-LIA, University of Avignon, France

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.

Table of Contents

The Uncomfortable Discrepancies of Software Metric Thresholds and Reference Valuesin Literature
Eudes Lima, Antonio Resende, and Timothy Lethbridge

CERTICS - A Harmonization with CMMI-DEV Practices for |mplementation of Technology Management
Competence Area
Fabricio W SGarcia, Sandro R B Oliveira, and Clenio F Salviano

An Investigation on the Relative Cost of Function Point Analysis Phases
Luigi Lavazza

A Pattern Language for Application-level Communication Protocols
Jorge Lascano and Sephen Clyde

A Concise Classification of Reverse Engineering Approaches for Software Product Lines
Rehman Arshad and kung-Kiu Lau

A UML-based Simple Function Point Estimation Method and Tool
Geng Liu, Xinggi Wang, and Jinglong Fang

Transaction-Aware Aspects with Trans: An Initial Empirical Study to Demonstrate Improvement in Reusability

Anas Al Sobeh and Sephen Clyde

Modeling and Formal Specification Of Multi-scale Software Architectures
[Them Khlif, Mohamed Hadj Kacem, Khalil Drira, and Ahmed Hadj Kacem

A Cost-benefit Evaluation of Accessibility Testing in Agile Software Development
Aleksander Bai, Heidi Camilla Mork, and Viktoria Stray

Toward Automatic Performance Testing for REST-based Web Applications
Chia Hung Kao, Chun Cheng Lin, and Hsin Tse Lu

Reports with TDD and Mock Objects: an Improvement in Unit Tests
Alan S C. Mazuco and Edna D. Canedo

FAST: Framework for Automating Software Testing

Ana Paula Carvalho Cavalcanti Furtado, Slvio Meira, Carlos Santos, Tereza Novais, and Marcelo Ferreira

Configuration Management to Tests Automaticsin a Software Factory
Marcelo Ferreira, Ana Paula Furtado, and Ivaldir Junior

10

16

22

31

39

55

62

68

72

78

86

An Exploratory Study of DevOps: Extending the Dimensions of DevOps with Practices
Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo

The Daily Crash: a Reflection on Continuous Performance Testing
Gururaj Maddodi, Singer Jansen, Jan Pieter Guelen, and Rolf de Jong

Formalization of Ergonomic Knowledge For Designing Context-Aware Human-Computer | nterfaces
Dorra Zaibi, Meriem Riahi, and Faouzi Moussa

COTS Adaptation Method — A Lifecycle Perspective
Waldemar Britts and Mira Kajko-Mattsson

Towards Easier Implementation of Design Patterns
Ruslan Batdalov and Oksana Nikiforova

Spider-DAR: A Tool to Support the Implementation of Decision Analysis and Resolution Process based on CMMI -

DEV and MR-MPS-SW Models
LuizO D Lima, Sandro R B Oliveira, Bleno W F V Slva, Gessica P Slva, and luri | SRaiol

Challenges of the Digital Transformation in Software Engineering
Michael Gebhart, Pascal Giessler, and Sebastian Abeck

An Approach to Generation of the UML Sequence Diagram from the Two-Hemisphere Model
Konstantin Gusarov, Oksana Nikiforova, and Anatoly Ressin

ReUse: A Recommendation System for Implementing User Stories
Heidar Pirzadeh, Andre de Santi Oliveira, and Sara Shanian

Combining Logistic Regression Analysis and Association Rule Mining viaMLR Algorithm
Ozge Yucel Kasap, Nevzat Ekmekcei, and Utku Gorkem Ketenci

Modeling System Requirements Using Use Cases and Petri Nets
Radek Koci and Vladimir Janousek

A Strategy for Statistical Process Control Education in Computer Science
Julio C C Furtado and Sandro R B Oliveira

Towards Applying Normalized Systems Theory to Create Evolvable Enterprise Resource Planning Software: A
Case Study
Ornchanok Chongsombut, Jan Verelst, Peter De Bruyn, Herwig Mannaert, and Philip Huysmans

A Three-level Versioning Model for Component-based Software Architectures
Abderrahman Mokni, Christelle Urtado, Sylvain Vauttier, and Marianne Huchard

91

100

108

115

123

129

136

142

149

154

160

166

172

178

Services for Legacy Software Rejuvenation: A Systematic Mapping Study
Manuel Goncalves da Silva Neto, Walquiria Castelo Branco Lins, and Eric Bruno Perazzo Mariz

A Framework with Agile Practices for Implementation of Project Portfolio Management Process
Lilian SF Slva and Sandro R B Oliveira

Software Evolution Visualization Tools Functional Requirements — a Comprehensive Understanding
Hani Bani-Salameh, Ayat Ahmad, and Dua'a Bani-Salameh

Development of Network System Based on Fiber-To-The-Desktop (FTTD) in a National University Hospital
Osamu Takaki, Kota Torikai, Shinichi Tsujimura, Ryoji Suzuki, Yuichiro Saito, Takashi Aoki, Kenta Maeda,
Ichiroh Suzuta, and Nobukuni Hamamoto

A CASE Tool for Modeling Healthcare Applications with Archetypes and Analysis Patterns
Andre Magno Costa de Araujo, Valeria Cesario Times, Marcus Urbano da Slva, and Carlos Andrew Costa
Bezerra

3D Human Heart Anatomy : Simulation and Visualization Based on MR Images
Chebbi Tawfik, Rawia Frikha, Ridha Ejbali, and Mourad Zaied

Towards a Smart Car Seat Design for Drowsiness Detection Based on Pressure Distribution of the Driver’s Body

Ines Teyeb, Olfa Jemai, Mourad Zaied, and Chokri Ben Amar

Detection and Classification of Dental Cariesin X-ray Images Using Deep Neural Networks
Ramz Ben Ali, Ridha Ejbali, and Mourad Zaied

Towards Agile Enterprise Data Warehousing
Mikko Puonti, Antti Luoto, Timo Aho, Timo Lehtonen, and Timo Aaltonen

Toward the Design and I mplementation of the Hosted Private Cloud
Chia Hung Kao and Hsin Tse Lu

A General Solution for Business Process Model Extension with Cost Perspective based on Process Mining
Dhafer Thabet, Sonia Ayachi Ghannouchi, and Henda Hajjami Ben Ghezala

Understandability Metric for Web Services
Usama Maabed, Ahmed Elfatatry, and Adel El-Zoghabi

Towards an Open Smart City Notification Service
Luiz Cajueiro, Slvino Neto, Felipe Ferraz, and Ana Caval canti

A Set of Support Tools to Software Process Appraisal and Improvement in Adherenceto CMMI-DEV

184

191

196

201

206

212

217

223

228

233

238

248

256

263

Leonardo P Mezzomo, Sandro R B Oliveira, and Alexandre M L Vasconcel os

A New Algorithm to Parse a Mathematical Expression and its Application to Create a Customizable Programming 272
Language

Vassili Kaplan

Proposed Data Model for a Historical Base Tool 278

Karine Santos Valenca, Edna Dias Canedo, Ricardo Ajax Dias Kosloski, and Sergio Antonio Andrade de Freitas

Analysis of Expectations of Students and Their Initial Concepts on Software Quality 284
Luis Fernandez-Sanz, Jose Amelio Medina Merodio, Josefa Gomez Perez, and Sanjay Misra

iGuard: A Personalized Privacy Guard System for Cloud Service Usage on Mabile Devices 289
Chien-Wel Hu, Hewijin Jiau, and Kuo-Feng Ssu

Trust-Oriented Protocol for Continuous Monitoring of Stored Filesin Cloud 295
Alexandre Pinheiro, Edna Dias Canedo, Rafael Timoteo de Sousa Junior, and Robson de Oliveira Albuquerque

Smart Cities Security Issues: An Impeding Identity Crisis 302
Felipe Ferraz, Carlos Ferraz, and Ademir Gomes

Predicting Unknown V ulnerabilities using Software Metrics and Maturity Models 311
Patrick Kamongi, Krishna Kavi, and Mahadevan Gomathisankaran

A Catalog of Best Practices about Supplier Agreement Management and Agile Practices 318
Elisiane M Soares, Sandro R B Oliveira, Melquizedequi C Santos, and Alexandre M L Vasconcel os

Integrating Service Design Prototyping into Software Development 325
Tanja Sauvola, Smo Rontti, Laura Laivamaa, Markku Oivo, and Pasi Kuvaja

Business Model Canvas as an Option for Co-Creation of Strategic Themes of SAFe Portfolio 333
Eriko Brito and Felipe Furtado

A Synchronous Agile Framework Proposal Combining Scrum and TDD 337
Marcia Maria Savoine, Vanessa Franca Rocha, Carlos Andrew Costa Bezerra, Andre Magno Costa de Araujo,
and Joyce Karoline Maciel Matias

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

The Uncomfortable Discrepancies of Software Metric Thresholds and Reference
Values in Literature

Eudes de Castro Lima, Antdnio Maria P. de Resende

Department of Computer Science
Universidade Federal de Lavras (UFLA)
Lavras, Minas Gerais, Brasil
e-mail: comp.eudes@gmail.com, tonio@dcc.ufla.br

Abstract— Software metrics perform a crucial role in the
software industry because they provide measures needed to
control software process and product, such as software quality,
complexity, maintainability, and size. Measuring software allows
one to diagnose whether the project is within expected norms or
there is a deviation. However, many publications present metrics
but omit thresholds or reference values that would give guidance
about their ideal limits and range. Metrics might be used more
frequently and effectively if they were accompanied by reliable
reference values. We therefore present a Systematic Literature
Review to find research that presents such reference values and
thresholds. The keyword search phase of the systematic review
generated 6.654 articles from IEEE Xplore, ACM Digital
Library, Ei Compendex, SCOPUS, and Elsevier Science Direct.
Further filtering narrowed this to only 19 articles actually
disucssing thresholds and reference values. We present an
analysis of these papers, including a comparison highlighting
discrepancies in the reference values and thresholds. The results
serve as a starting point to guide further research.

Keywords- software metrics; software measures; thresholds;
reference values; systematic literature review.

. INTRODUCTION

In medicine, when a blood test is done, the values obtained
are compared with their respective reference intervals printed
beside the results. If there is any abnormality in the results then
the doctor makes a diagnosis, defines the disease, and
determines the type and dose of medicine the patient should
take. There are reference values for most tests, allowing the
diagnosis of patients. However, in software engineering, there
is still a long journey to obtain these values and achieve
maturity based on measures.

Software metrics perform an important role in the software
industry because they provide measures for software features,
such as maintainability, reusability, portability, readability,
correctness, complexity and so on. These measures provide the
software engineer, software architects and project managers the
current state of the software. The measures allow diagnosing of
projects, products and processes, and check whether the values
of measures are within the expected norm or there is
unexpected deviation.

Over the years, a variety of software metrics [1]-[11] and
automated tools for measuring [12][13][14] have been
proposed. However, despite the importance of software
metrics, most have not been widely applied in industry

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Timothy C. Lethbridge

School of Information Technology and Engineering
University of Ottawa
Ottawa, Canada
e-mail: tcl@eecs.uottawa.ca

[15][16]. It is believed that one reason is the lack of reference
values and thresholds for most metrics [17].

A threshold defines a point that should (or not) be exceeded
due to (un)desirable effects involved. A reference value or
range gives objectives for what should be achieved or defines
value sets classified qualitatively; for instance the classification
could be bad, regular and good. In this paper, the term
‘reference value’ will be used for both in most of what follows,
unless context requires otherwise.

In some cases, the reference values are known, but not
widely accepted. This causes an uncertainty which, according
to [16], inhibits the popularization of software metrics.

Reference values for metrics enable interpretation of the
results of measurement. It is through comparing measures to
reference values that software engineers can verify that the
project, product and process meets a desired standard or, that
the project is improving, worsening or stable.

Various authors [18]-[22] have proposed reference values
for software metrics and techniques for deriving them. There
are articles, such as [19][21][23], which provide benchmarks
based on "experience" (tacit knowledge) without any statistical
or technical analysis that supports the claim. However, since
they were obtained in a specific context, published reference
values tend not to be generalizable beyond the context of their
inception.

In this work, the results of a systematic literature review
(SLR) of software metrics are presented, focusing on reference
values. The SLR selection process resulted in selection of 19
articles, out of 6.654 considered. In subsequent sections we
summarize these articles and present the reference values cited
or calculated in the articles . We discuss certain differences in
metric interpretations. We also comment on the amount and
type of software used to calculate and validate the reference
values. We then present a comparison of the discrepancies
among reference values proposed in those articles. Finally, we
suggest future work that would promote improvements in
software metrics and measurements.

The SLR methodology has proven very useful software
engineering researchers. It provides a documented and
repeatable process to identify the state of the art about some
issues of researchers’ interest.

The structure of this paper is as follows. Section Il
describes SLRs in general, the SLR construction process, the
protocol used and the results obtained from this SLR. Section
V presents the comparison analysis and discussion of the

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

articles as a group. Section VI presents the main conclusions
obtained in this work, as well as contributions and future work.

Il. SYSTEMATIC REVIEW PROCESS

A systematic literature review is an evidence-based
technique originating in medicine and medical sciences [24].
This technique has been employed in several areas including
software engineering.

An SLR involves several distinct activities [25]. In the
literature, it is possible to find different suggestions for the
number and order of activities undertaken in a systematic
review. In [24][25][26] the authors present an SLR process
consisting of three main phases: planning, execution and
analysis of results. This section presents the application of the
SLR, following the three-phase approach.

1. Planning

This section presents the planning phase.

e Objectives: To perform a survey of scientific papers
that discusses software metrics that have ranges or
specific reference values associated with them.

e Research questions: What software metrics have
values or ranges of reference assigned to them? What
values or ranges have been identified in the literature?

e Keywords: The following keywords were adopted:
Software metric, measure, measuring, threshold,
reference value, value, range, limit.

Search string: the search string was compiled from the
keywords, linking them logically: (software) AND
(metric OR metrics OR measure OR measures OR
measuring) AND ("reference value" OR "reference
values" OR ranges OR thresholds OR limits OR range
OR threshold OR limit).

e Search method sources: Web sites of virtual scientific
libraries.

e List of research sources: IEEE Xplore
(http://ieeexplore.ieee.org), Elsevier Science Direct
(www.sciencedirect.com), Scopus (Www.scopus.com),
ACM Digital Library (http://dl.acm.org), and
EiCompendex (www.engineeringvillage2.org).

e Types of articles: Papers considered are those relating
to software metrics, including comparisons and
analyzes.

e Language of articles: The articles must be in English.

e Criteria for inclusion or exclusion of articles: Articles
should: i) Be available for download as full papers; ii)
Provide reference values for software metrics; and iii)
Have been published between the years 1990 and
2015.

It is known that the search string used can return a lot of
articles or limit the results as well. So, in this investigation, the
results expected are papers that contain the words present in
search string. A string search containing the name of a specific

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

metrics was not used. For instance, Depth Inheritance Tree,
Response for Classes, Coupling Between Objects, Number of
Children, Weighted Methods per Class, LCOM and others
could be inserted in the search string. Considering the amount
of metrics, the length of the search string, the volume of
articles that need to be retrieved and the data need to be
processed, the work must be separated for each metric.

2. Execution

The execution was divided into four steps, as suggested in
[27] called initial selection, primary selection, secondary
selection, and obtaining and evaluation of scientific papers.

e Initial selection (obtaining of articles): Searches are
conducted in databases defined in the protocol; then
the results are summarized according to previously
established criteria. This process is iterative, i.e. the
search can be readjusted and run again, if the results
are not reasonable.

e Primary selection: This is the first filtering of the
results. Usually the Title and Keywords of articles are
read to verify compliance with the criteria for inclusion
and exclusion.

e Secondary selection: This is the second filtering of the
results. This step aims to eliminate irrelevant results by
reading the abstracts and conclusions of the articles,
and checking compliance with the criteria for inclusion
and exclusion.

e Results organization: The results are tabulated in a
way that favors a quick visual analysis.

Step 1 — Initial selection

The initial selection was conducted by searching in the
databases mentioned above. Filters were carried out during
searching activity to restrict the results according to year (the
period between 1990 and 2015), language (English), and
discipline (computer science and/or software engineering).
Scientific articles were searched for using our search strings
applied to titles, abstracts and keywords.

Because of the characteristics of the search engines for
some databases, the search strings defined in the protocol
required slight change, but their semantics were retained. In
some situations, it was necessary to include the query string
parameters. For instance, in the ACM Digital Library it was
necessary to divide the search string into three, to obtain a
plausible result for analysis. The searches were performed on
November 10 and 26, 2014.

Table | presents the exact search strings used in the SLR for
each database.

As a result of that search, 6.654 scientific articles were
found, as shown in the second column of Table Il. The tool
JabRef version 2.7.2 [28] was used to manage the list of
articles.

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE I. SEARCH STRINGS USED IN PRIMARY SELECTION

Databases Search strings

|EEE ((software) AND (metric OR metrics OR measure OR measures OR
measuring) AND ("reference value" OR "reference values" OR

Xplore ranges OR thresholds OR limits OR range OR threshold OR limit))
Elsevier pub-date > 1989 and TITLE-ABS-KEY ((software) AND (metric OR
Science metrics OR measure OR measures OR measuring) AND (“ref_er(_ence
Direct value" OR "reference values" OR ranges OR thresholds OR limits

OR range OR threshold OR limit))[All Sources(Computer Science)]

(((((software) AND (metric OR metrics OR measure OR measures
Ei OR measuring) AND ("reference value" OR "reference values" OR
ranges OR thresholds OR limits OR range OR threshold OR limit))

criteria. In other words, 19 papers were found that had clearly
stated an intent to define or analyze thresholds or reference
values in their title, abstract or introduction. Table Il presents a
summary of the results in its rightmost four columns.

Step 4 - Obtaining and evaluation of scientific papers

Those 19 papers were read and discussed one by one, and
data were gathered in order to show the state of the art around
the research theme. Table Ill presents the relevant scientific
articles that answer the research questions set out in the
protocol. Section 3 presents the analysis and discussion of

Compendex WN KY) AND (({computer software} OR {software engineering}) papers identified.
WN CV)) AND (((english) WN LA) AND (1990-2015) WN YR))
TITLE-ABS-KEY ((software) AND (metric OR metrics OR measure
OR measures OR measuring) AND ("reference value” OR 3. Results analysis
Scopus "reference values" OR ranges OR thresholds OR limits OR range) L) .
p OR threshold OR limit)) AND PUBYEAR > 1989 AND (LIMIT- This SLR indicates that the number of papers discussing
Igé'—MAP'ﬂ)G)UAGEv “English’)) AND (LIMIT-TO(SUBJAREA, reference values for software metrics has increased in recent
a1 | CooRware measure™) AND (reference value®” O years. One of the factors co_ntrlbuted to that increase is likely
ing range* OR threshold* OR limit*) the market demand for quality products. The SLR shows that
ACM String 2 (“software measuring”) AND (“reference value*” OR 57.8% of scientific papers were publlshed since 2009.
Library 9 range* OR threshold* OR limit*)
String3 | ((software metric*”) AND (“reference value*” OR TABLE IV - RELEVANT INFORMATION OF ARTICLES IDENTIFIED IN SLR.
range* OR threshold* OR limit*)
Articles or Values
ID | Classification tools empirically Technique | Context
referenced validated
TABLE II- RESULTS AFTER APPLYING SELECTIONS Typel 3] no experience | _specific
P - ; distribution .
Initial Primary Secondary Selection B Type Il [10] no ; generic
Data Bases Selection | Selection | Irlvt | Rpt | Incompl Selected 3233?3;
IEEE 3.266 91 80 0 0 1 Type | [18] no analysis | SPecific
Elsevier 180 27 24 0 0 3 D Type | [9][21] negative experience | specific
Compendex 1.254 33 19 11 0 3 Tvoe Il a1 i statistical i
Scopus 1.687 54 37 16 0 1 ype [31] negative analysis specitic
ACM 267 37 33 3 0 1 F T logistic ifi
ype | ISM no . specific
Total 6.654 242 193 | 30 0 19 regression
distribution .
A) Type 1l - yes analysis specific
Step 2 — Primary selection) .
Type | [44] no experience generic
P . | Type Il R yes statistical specific
After the initial selection was performed (step 1), the analysis
scientific articles were submitted to primary selection, where 3 Type Il 21] yes 5;22.5‘32' specific
titles, keywords and abstracts were filtered and analyzed T
manually. K Typell) no analysis specific
_During filtering, it was found that a large pro_portion of the L Type Il } ves S;f]gls;;;i' specific
articles belonged to other areas of computer science and did ROC —
not meet the purposes of this SLR. Hence, the number of M Typell - no courves | SPecific
scientific articles decreased from 6654 (obtained in the initial N Type Il - no experience | _generic
selection) to 242. This is shown in column 3 of Table II. o Type Il [45] o ROC. | specific
Inan SLR, it is usual for the initial search to return a large P Typeli p” experience | specific
number of irrelevant articles that neither respond to the o Tvoe 5] - statistical oneric
research questions nor are unrelated to the theme in question P analysis | ¢
31][46 learnin, -
[26]. R Type | [[23}][[9]] no machin% specific
Step 3_ Secondary selection S Type Il [13] no experience specific

In secondary selection, the 242 scientific articles selected in
the primary selection (Step 2) passed an inspection in which
both introductions and conclusions were read. At this stage,
relevance, repetitiveness and completeness were checked.

Out of 242 articles selected earlier, 193 papers were
considered irrelevant, because they did not correspond to the
objectives of this SLR; 30 articles were considered repeated,
because they were found in more than one database; no article
was considered incomplete, and all items surveyed were
available. Finally, 19 scientific articles passed the selection

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

A total of 66 metrics having thresholds were identified
from the 19 papers. Among the metrics identified, there are
metrics specific to the OO paradigm as well as traditional
metrics adapted to the OO paradigm, such as LOC and
cyclomatic complexity. In total, 57.4% of the papers refer to
OO metrics specifically and 82.5% of them come from the CK
metrics suite [4].

The IEEE Xplore database presented the most relevant
articles for this research, with 58% of studies. The databases
with the lowest number of relevant studies were Scopus and

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

the ACM Library, with 5% of scientific articles each. Table IV
summarizes the articles analyzed. The first column gives the
reference number (see Table I11).

TABLE Ill. RELEVANT ARTICLES THAT ANSWER THE RESEARCH QUESTIONS
SET OUT IN THE PROTOCOL.

ID | Year Title Ref. Base
An outlier detection algorithm based on

A 2009 object-oriented metrics thresholds [29] IEEE
Deriving metric thresholds from

B 2010 benchmark data [18] IEEE
Benchmark-Based Aggregation of

¢ 2011 Metrics to Ratings [30] IEEE

D 2000 Thresholds for object-oriented measures [31] |IEEE
The optimal class size for object-oriented

E 2002 software [32] IEEE
Clustering and Metrics Thresholds Based

F 2009 Software Fault Prediction of Unlabeled [33] |IEEE
Program Modules

G 2003 A metrics suite for measuring reusability 34] |EEE
of software components
Observing Distributions in Size Metrics:

H 2007 Experience from Analyzing Large [35] |IEEE
Software Systems

I 1997 Software metrics model for quality [36] |EEE
control
A Quantitative Investigation of the
Acceptable Risk Levels of Object-

J 2010 Oriented Metrics in Open-Source (371 IEEE
Systems

K 2014 Extracting_ relative thresholds for source 138] \EEE
code metrics

L 2011 Identifying thresholds for object-oriented [20] Elsevier
software metrics
Class noise detection based on software .

M 2011 metrics and ROC curves [39] Elsevier

N 2011 Improvmg the appllgablllty c_)f object- [40] Elsevier
oriented class cohesion metrics
Finding software metrics threshold

0 2010 values using ROC curves (22] Compendex

P 1992 Software metrics for object-oriented [19] Compendex
systems
An empirical exploration of the

Q 2005 distributions of the Chidamber and [41] Compendex
Kemerer object-oriented metrics suite
Calculation and optimization of

R 2011 thresholds for sets of software metrics [42] Scopus

s 2010 Estl(natno_n of Software Reusability: An [43] ACM
Engineering Approach

The second column categorizes the papers into: i) Type I -
studies that use existing reference values to achieve a goal,
such as outlier detection and predicting failures, and ii) Type-
Il studies that aim to establish or optimize reference values.
Among the identified articles, 31.6% use existing thresholds
and 68.4% aim to identify or optimize thresholds as shown in
Table IV.

The thresholds classified as Type | and presented by
selected papers were gathered from tool documentation or
from other studies that they had referenced. The thresholds
obtained from tools such as: McCabe 1Q, or ISM are hard to
reproduce because the tools are not readily available and some
thresholds were determined “by authors experience”.

The labels "no", "yes" and "negative" shown in Table IV
mean respectively that "there was no validation", "there was
validation", or "there was validation, but the result states that
the reference values are bad values". Articles D and E [31][32]
had negative validation, representing 10.5% of the articles. A
total of 21.1% of articles validated the thresholds and

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

reference values, and 68.4% did not validate them. These
results are undesirable, because only 21.1% validated values
and only article L [20] out of 21.1% were classified as general
context. The other articles were considered neither validated
nor general. Software engineering should have well validated
thresholds in order to support software engineers during the
development process.

Other articles had used the thresholds to validate only the
method used to discover thresholds, but they did not validate
their own thresholds as presented. This was the case for
articles R and S [42][43].

Regarding the techniques used to obtain the thresholds, as
Lanza and Marinescu indicated in [16], there are two main
approaches: professional experience and statistical analysis.
Of the articles analyzed, 31.6% obtained thresholds through
experience, i.e., the authors determined arbitrarily and
subjectively the thresholds, and 68.4% obtained them through
statistical analysis. Methods like machine learning and error
models were classified as statistical analysis approaches.

The context was classified as generic and specific. The
‘generic’ label indicates the reference values fulfill all of the
following criteria: a) Three or more systems; b) more than
50% of systems are developed by people different from the
authors, ¢) more than one domain, and d) more than one
programming language. Otherwise the label 'specific' is used.
A total of 79% of selected papers were classified as specific,
and 21% were classified as general.

During the analysis process, several methods were found
to calculate thresholds. These include experience, statistical
analysis, error models, clustering, distribution analysis, and
machine learning.

Most of the papers would not be amenable to replication
due to incomplete details such as missing versions of systems,
names of systems, details about applied metric interpretation
to measure software and so on. Those details should be
included in articles. In fact, it is necessary to establish a
protocol to guide authors to supply that information, allowing
replication and validation of research of this kind.

Several articles did not define precise instructions for how
metrics were counted in papers. For instance, what is the
difference between ‘comments’ and ‘lines of comments’?
How were lines of comment blocks counted? And how were
lines counted that had both code and comment?

Another difficulty faced was determining whether a value
refers to a minimum or maximum, for instance in
Schneidewind’s article (1997) [36].

In [37], the authors used three versions of Eclipse to
determine values. However, using different versions of the
same software will not result in the same level of generality as
if completely different systems had been used. The same
argument can be made when multiple systems in the same
domain are analyzed.

In next section, some metrics are analyzed considering the
values found in the articles. The reference values presented by
article E [32] are results from a negative validation meaning
that values are invalid to use.

I1l. COMPARING REFERENCE VALUES PRESENTED BY PAPERS

After reading all selected papers, the gathered reference
values are presented in tables below with columns labelled

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

metric, reference, value, and nature of measure. Respectively,
each table contains the name of the metric evaluated, the
reference to the paper that presented the reference value, the
reference value presented or proposed to the metric mentioned,
and the nature of measure that represents the meaning of the
value presented like maximum, minimum, desirable, good,
bad, typical, etc.

In this section, the reader will note the existence of
different reference values for the same metric.

1. Weighted Methods per Class (WMC)

Two interpretations for the WMC metric were found. The
first interpretation, called here WMCL, is calculated by
summing the complexity of each method in a class and
assuming the complexity of each method is 1. That means the
WMC is a simply counting the number of methods (each
method has complexity 1). The second interpretation, called
here WMC2, is calculated by summing the McCabe
Cyclomatic Complexity of the methods.

Table V presents just one reference value that was found
for WMC1 and several different values for WMC2. For the
same interpretation, the WMC2 threshold could be 20 or 100 as
cited and calculated, respectively, in [22]. This situation makes
the work of software engineers difficult, since they will not
know what value should be used as a threshold in their
projects.

TABLE V - VALUES OF WMC METRIC

TABLE XII - VALUES OF CICLOMATIC COMPLEXITY METRICS.

Metrics Ref. Value Nature of Measure
<=6 low risk
B 16;8] moderate risk
18;14] high risk
>14 very-high risk
It was impossible check it,
F 10 because original reference
on web is not available
Cyclomatic Complexity Per P1-3
Method P2-5 Best value for each dataset
M P3-5 P1,P2,..., P5
P4-3 N
P5-4
P 10 Max
C-24
R C++-10 Max
C#-10
Max Value, considering
Cyclomatic Complexity per 10 methods and each one
P 100 .
Module supporting max
complexity equal 10.
P1-3
Design Complexity Per Module P2-3
- Number of paths including M P3-3 Best V?Te;gr eacpsdataset
calls to other modules P4 -3 c T
P5-3

4. Number of Children (NOC)

NOC represents the number of children that any given class
has. In Table VIII, it is observed once again that there are
different values for the maximum value or upper threshold
ranging from 3 to 10.

TABLE VIII - VALUES OF NOC METRICS.

Ref. Value Nature of Measure
A 3 Max
Q 10 Max
Q 14, 6[Java and <6 C++ Desirable and Max

Metric Ref. Value Nature of Measure
WMCL - Counting methods A 14 Max
D 100 Max
K 100 Max
K 20 Max
WMC2 - Sum complexities N 24 Max
N 100 Max
R 100 Max

S 20 and 100 Desirable and Max

. 80% quantiles
WMC - not defined K % (relative threshold)

2. Depth of Inheritance Tree (DIT)

The papers presented moderate differences among
suggested DIT thresholds. This metric measures the maximum
depth of the inheritance hierarchy in a system. In Table VI, it is
observed that values from 6 to 10 are most commonly found to
be the maximum suggested value or upper threshold. This is

5. Lack Of Cohesion Methods (LCOM)

LCOM measures lack of cohesion and has several
interpretations and different names as shown in Table IX. As
different cohesion views appeared over time, new metrics were
developed. Article [40] explains the subtle difference among
the various LCOM metrics.

TABLE IX - VALUESOF LCOM 1, 2, 3, 4,5 AND LOCM METRICS.

still a large range, so further research is needed to determine Metric Ref. Value Nature of Measure
how much worse a system would be if it had a DIT of 10 vs. 6. LCOML N 42 and 21 Mean and 75th percentile
L 0, [10;20] and >20 Intervals mean:
LCOM2 ' ' Good, Regular and Bad
TABLE VI - VALUES OF DIT METRIC. N 27 and 8 Mean and 75th percentile
LCOM3 N 1.67 and 2 Mean and 75th percentile
Ref. Value Nature of Measure LCOM4 N 162and 2 Mean and 75th percentile
A 7 Max LCOMS5 N 0.76 and 1 Mean and 75th percentile
D 6 Max LOCM
L 2 Typical (McCabe Tools) A ® Max
Q 10 Max LCOM K 3 80% quantiles
Q 6 (in Java or C++) Max (not defined) (relative threshold)
S 3and 6 Desirable and Max

3. Cyclomatic Complexity (CC)

The Cyclomatic Complexity metric is the number of
linearly independent paths in program flow and has
significantly different reference values in the papers studied, as
shown in Table XII.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

6. Operator and Operand Countings

Halstead’s metrics count Unique Operators, Unique
Operands, Total Operators and Total Operands as shown in
Table X. There are different reference values for each dataset
from NASA in [39] called P1,..., P5 in this paper. Halstead
used these direct measures to calculate indirect measures, for
instance, volume of software can be used to indicate

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

complexity. The higher the volume of software, the higher its
complexity.

TABLE X - VALUES OF COMPLEXITY OPERATOR AND OPERAND METRICS.

Value to UNIQUE Value to TOTAL
Ref Operator Operand Operator Operand
Count Count Count Count
F 25 0 125 70
| 10 33 26 21
P1-7 P1-7 P1-13 P1-8
P2-12 P2-17 P2 - 42 P2 -27
M P3-15 P3-19 P3 - 54 P3 - 36
P4 -18 P4 -21 P4 - 53 P4 - 57
P5 - 15 P5 - 20 P5 - 50 P5 - 34

7 Response For a Class (RFC), Coupling Between Object
Classes (CBO), Fan-in, Afferent Coupling (AC) and
Number of Function Calls (NFC)

Metrics shown in Table XI to Table XIII are related to
method calling. Fan-in is known as afferent coupling and Fan-
out is known as efferent coupling.

There are different values for the same metric in this case
too. For instance, Table XI shows in its first line the maximum
value is 2 and in line 6 the maximum value is 13.

TABLE XI - VALUES OF CBO AND METRICS.

Ref. Value Nature of Measure
A 2 Max
D 5 Max
J 5 Max
J 9 Max
[¢] 5 Max
[¢] 13 Max
R 5 Max

In Table XII, there are discrepancies among values. For
instance, the RFC maximum value starts with 0 and ends with
222,

TABLE XII - VALUES OF RESPONSE FOR CLASS (RFC).

Ref. Value Nature of Measure
A 100 Max
D 100 Max
J 100 Max
J 40 Max
K 49 80% quantiles - relative threshold
e} 100 Max
[¢] 44 Max
R 100 Max
S [50;100] and 222 Desirable and Max

TABLE XIII - VALUES OF FAN-IN, AFFERENT COUPLING (AC) AND
NUMBER OF FUNCTION CALLS (NFC) METRICS.

Metric Ref. Value Nature of Measure
0, 0, 0,
FAN-IN B 10, 22 and 56 70%, 80 A’.’ 90%
percentiles
AC L 1, [2:20] and >20 Intervals mean:

Good, Regular and Bad
R 5 Max

NFC- Number of
Function Calls

8. Number of Attributes, Methods and Parameters

Metrics shown in Table XV measure characteristic related
to classes and methods like number of attributes and methods
per class and the number of parameters in a method signature.
Some variations are considered, such as whether modifiers are
public or private . The maximum value of 0 for the public

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

attributes measure was presented in paper H, due to suggested
good practices for OO modeling. Values originating from good
practices could be called theoretical recommendations.
However, paper H considers 0 as good, but accepts up to 10 as
the regular situation, when considering the distribution analysis
of dozens of open source systems. Those values could be called
practical recommendations.

TABLE XV - VALUES OF NUMBER OF ATTRIBUTES, NUMBER OF METHODS
AND NUMBER OF PARAMETERS.

Metric Ref. Value Nature of Measure
Invalid Threshold. Do not
E 39
Number of use.
Attributes K 01 75th percentile
) (relative threshold)
. Intervals mean:
. L 0, [1;10], >10 Good, Regular and Bad
Number of Public
. H 0 Max
Attributes -
K 01 75th percentile
) (relative threshold)
B 29,42 and 73 70%, 80% 90% quantiles
Invalid Threshold. Do not
E 1
Number of use
Methods (NM) R 20 Max
80% quantiles
K 16 (relative threshold)
Number of Public H [5:10] MIT;Q?VZ:‘;!:TM
Methods L [0;10], [11;40], >40 Good, Regular and Bad
Number of 0 2004 ONO :
Parameters (NP) B 10, 22, 56 70%, 80% 90% percentiles

These reference values have not been widely accepted for
the following main reasons: a) The thresholds that have been
found cannot distinguish ‘good’ from ‘bad’ values, they just
present statistical results; b) the thresholds originate from
studies of only one (or a few) application domains,
geographical regions, or groups of companies, reducing the
generalizability of results; c) There are important discrepancies
among thresholds proposed in different scientific papers; d)
The papers do not explain why a new threshold proposed is
better (or worse) than older ones. They just show numbers and
assert their new numbers as new suggested thresholds.

Acrticle [20] seems to have reference values that are more
reliable, considering the number of systems and domains, but it
considers only Java systems.

Some reference values that were proposed omit
explanations of how they were calculated or the reason for
those values. Sometimes, it was stated that the values were
established based on author’s experience [13][19], suggesting
for us to close our eyes and just trust. Therefore, there is a
long distance to be walked in this journey to improve metrics
and their use.

During this analysis, no evidence was found regarding
whether different kinds of software (e.g., CPU bound vs. I/O
bound) should have the same thresholds or reference values. A
similar question arises regarding whether software employing
particular frameworks, or generated by code-generation tools
should be expected to have reference values consistent with
software that does not employ such technologies. For example,
such software might contain attributes and methods that are
empty or not used.

In [33] the authors showed different values for five projects
(Table X). There were significant differences among the values
for certain metrics in different articles. So, the question arises

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

of whether it is even possible calculate a single threshold or
reference value in many cases.

Furthermore, in articles [31] and [32] the authors show
negative results for those validations. The first one [31]
demonstrates that there was no threshold effect (sudden effect
change at some threshold) in some metrics. The second one
[32] demonstrates there is no empirical evidence for the
“Goldilocks Conjecture” that there is a ‘sweet spot’ for a given
metric. Even if these are valid conclusions, surely there must
be negative effects at some extreme values. In other words,
even if Goldilocks found that all the beds were comfortable,
she likely still would not have wanted to sleep on a board or on
quicksand.

This context, without reference values that are generic,
brings to mind learning processes like machine learning, neural
networks, fuzzy systems, and so on. Those methods, without
generic values for training, have to be trained in each context
and must have their application limited to that context only.

Considering the current scenario without generic thresholds
and reference values, more effort needs to be applied to find
reasonable values.

We found no articles presenting values of metrics that
simultaneously take into consideration dimensions such as
domain, architecture, language, size of system, size of
developer teams, modeling approach, code generation
technology, build system, or delivery system. We believe that
reference values may be quite different depending on where
systems are situated in the space defined by the above
dimensions. Additionally, there were no papers comparing
metrics in several independent systems or different versions of
the same system. By independent systems, we are referring to
systems produced by others than those that are collecting,
calculating or validating thresholds or reference values. In
some cases, it was not clear whether the systems studied were
independent of the evaluators.

Many reference values found should be used only with
caution, because, for instance, either they do not have
validation, or their measurement cannot be repeated, or they
might be specific to a certain type of system, and hence not
generic.

As mentioned earlier, it is also important to consider how a
metric is interpreted or implemented and what impact this has
on reference values. For instance, when the metric LOC is
applied, it is necessary to define how blank lines, comments,
and statements in more than one line will be counted.

There are also likely to be inherent differences in reference
values for different programming languages. For example,
some object-oriented languages might intrinsically need
different numbers of classes, or different depths of inheritance
due to such features as inner classes and multiple inheritance.
Other feature differences could lead to different numbers of
attributes, methods, and so on.

Thus, we recommend that a Metrics Research Protocol
should be developed. This would promote consistent research
and enable the exchange of ‘big data’ in this field among many
researchers. It would be similar to what has happened in
biology (e.g., genomics), particle physics, and so on.

There are some metrics for which there likely should be no
natural limit and for which a more complex system would
always have higher values. For instance, this would apply to

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

LOC, number of classes, number of methods, and number of
attributes in a system. For such metrics, the reference values
should suggest averages or medians per unit, where the unit
might be the class.

The situation described in this paper indicates that the
software engineering community must conduct considerable
additional research if it wants to be considered a true branch of
engineering.

1V. CONCLUSION AND FUTURE WORK

The main objective of this study was to conduct a survey of
software metrics that have reference values or thresholds
associated with them. For this, a systematic literature review
was performed to identify, interpret, and evaluate the relevant
scientific articles available.

During the conduct of the SLR, 6654 scientific articles
were identified after searching of IEEE Xplore, EiCompendex,
Elsevier Science Direct, Scopus and the ACM Library. The
primary selection obtained 242 papers, based on scanning titles
and keywords. With further refinement, 193 papers were
classified irrelevant, 30 were classified repeated, and none
were classified incomplete. Finally, the SLR resulted in 19
articles read and analyzed completely.

The original questions that motivated this SRL were: a)
What software metrics have reference values or ranges
assigned to them? b) What values or ranges were identified in
the literature? Both of these questions were answered, and
details were discussed throughout this paper. However, our
analysis showed that the values are not yet generic enough or
sufficiently validated to be useful.

The major contributions of this work are: i) the
identification of a set of measures that have reference values ii)
the summary of measures, values, systems evaluated, domains
and languages involved, and technical validation, of these iii)
critical evaluation of 19 articles.

The main conclusions of this paper are: i) There are
conflicts among the most reference values; ii) There are several
non-reproducible research papers in the field; iii) There are
reference values based on weak or absent validation; iv) The
selected reference values are for the most part not
generalizable; v) There is little comparison between reference
values and discussion of how one value is better than another;
vi) The thresholds found cannot be used to distinguish ‘good’
from ‘bad’ values, they mainly represent statistical results; and
vii) The scientific community should establish a protocol to
determine what authors should consider minimum information
and procedures that a paper must have when they study and
purpose thresholds and reference values for software metrics.

Thus, the values presented in papers should not be trusted.
The lack of reference values for software metrics persists.
Additional investigation involving other articles not covered in
this SLR and new statistical analysis involving multiple
software systems must be conducted. Considering the
discrepancies among values presented in this paper, we assert
that the issue involving metrics and their thresholds and
reference values is completely open and deserves more effort.

The possible threats to validity of this study include the
limitations of search engines of the digital libraries, and lack of
retrieval due to insufficient detail in the title, abstract or
keywords of the papers. Other valid articles without keywords

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

in the titles or provided keywords might not have been found.
The authors will conduct a new SLR involving the name of
each metric and also conduct a statistical analysis of more than
100 open source software projects.

Software metrics have played a key role in organizations.
Even though there has been a growth of research related to
software metrics and thresholds in the last few years, this issue
still needs further research and publications that provide
support to software engineers.

Various actions should be taken as future work:

i) Perform a backward and foward SLR considering the
set of articles discussed in this paper as the starting point. This
might uncover important information that may have been
abandoned over time, as well as complementary data about
thresholds and methods.

ii) Perform a comparative analysis in order to identify
discrepancies among thresholds selected in the literature,
considering software both within various domains and across
domains.

iii) Study and conduct research to establish thresholds for
metrics of interest, creating quality protocols useful as for
reference.

iv) Evaluate evolution of measures between different
versions of the same software, of the same domain and
different domains in order to get average values and uncover
discrepancies.

v) Compare different metrics tools in order to look for
discrepancies in the same metrics applied in the same projects,
to understand why they produce different values, and to enable
creation of warnings and advice about their use.

vi) Develop and propose a protocol to facilitate research
into reference values for various metrics and software types,
and for specific software instances to assure sharing of data
and replicability.

vii) Model thresholds as an n-dimensional problem
considering different domains, sizes, languages, paradigms,
kinds of system and so on.

viii) Develop a comparative analysis about correlation
among similar metrics in order to identify distinct behaviors
even though those metrics assess the same software attribute
(characteristic).

The software engineering research groups from UFLA and
UOttawa continue their work in advancing all these proposals.
In particular, we are extending the Umple technology [47, 48]
to compute metrics for state machines and networks of
associations embedded in code, and will develop systematic
reference values for these metrics.

Finally, the results obtained in this SLR served to
understand the state of the art and serve to guide subsequent
studies related software metrics and thresholds.

ACKNOWLEDGMENT

The authors thank the CNPq / Brazil for financial support
and the Research Groups on Software Engineering, Federal
University of Lavras (PQES / UFLA) and the University of
Ottawa is research environment.

REFERENCES

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

(1]

(2]

(3]

(4]

(5]

(6]

(71
(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

F. B. E. Abreu and R. Carapuga, “Object-Oriented Software
Engineering: Measuring”, in Proc. of 4th Int. Conf. on Software Quality.
Milwaukee: American Society for Quality, pp. 1-8, 1994.

A. J. Albrecht, “Measuring Application Development Productivity”, in
Proc. of first IBM Application Development Symposium, New York:
IBM, pp. 83-92, 1979.

J. Bieman and B. Kang, “Cohesion and Reuse in an Object-Oriented
System”, in Proc. of Symposium on Software Reusability (SSR'95), New
York: ACM, pp. 259-262, 1995.

S. Chidamber and C. Kemerer, "A metrics suite for object oriented
design“, IEEE Transactions on Software Engineering, v. 20, n. 6, pp.
476-493, 1994.

J. A. Dallal and L. C. Briand, “A Precise Method-Method Interaction-
Based Cohesion Metric for Object-Oriented Classes”, ACM
Transactions on Software Engineering and Methodology, v. 21, n. 2,
pp. 1-34, 2012.

G. Gui and P. D. Scott, "New Coupling and Cohesion Metrics for
Evaluation of Software Component Reusability”, In Proc. of 9th Int.
Conf. for Young Computer Scientists (ICYCS’ 2008), Hunan: IEEE,
pp.1181-1186, 2008.

M. Halstead, Elements of software science. New York: Elsevier, 1977.

S. Henry and D. Kafura, "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Engineering, v. -7,
n. 5, pp. 510-518, 1981.

M. Lorenz and J. Kidd, Object-oriented software metrics. Englewood
Cliffs, NJ: PTR Prentice Hall, 1994.

T. McCabe, "A Complexity Measure”, IEEE Transactions on Software
Engineering, v. -2, n. 4, pp. 308-320, 1976.

H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A Metrics Suite for
Measuring Reusability of Software Components”, in Proc. of 9th Int.
Symposium on Software Metrics, Sydney: IEEE Computer Society, pp.
211-223, 2003.

CCCC - Cccc.sourceforge.net, "Software Metrics Investigation”, 2015.
[Online]. Available: http://cccc.sourceforge.net/. [accessed: 13-July-
2016].

McCabe 1Q. “MaCabe software”. Available:
http://www.mccabe.com/pdf/McCabe%201Q%20Metrics.pdf. [accessed:
13-July-2016].

A. Terceiro et al, “Analizo: An Extensible Multi-Language Source Code
Analysis and Visualization Toolkit”, in Proc. of the Brazilian Conf. on
Software 2010, Salvador: SBC, pp. 1-6, 2010.

N. Fenton and M. Neil, "Software metrics: successes, failures and new
directions", Journal of Systems and Software, v. 47, n. 2-3, pp. 149-157,
1999.

M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. New York: Springer, 2006.

E. Tempero, “On Measuring Java Software”, in Proc. of 3ilth
Australasian Computer Science Conference, Wollongong: CRPIT, pp.
7-7,2008.

T. L. Alves, C. Ypma, and J. Visser, “Deriving Metric Thresholds from
Benchmark Data”, in Proc. of the 10th IEEE Int. Conf. on Software
Maintenance, Timisoara: IEEE Computer Society, pp. 1-10, 2010.

J. C. Coppick and T. J. Cheatham, “Software Metrics for Object-
Oriented Systems”, in Proc. of 20th ACM Computer Science
Conference, New York: ACM, pp. 317-322, 1992.

K. Ferreira, M. Bigonha, R. Bigonha, L. Mendes, and H. Almeida,
"ldentifying thresholds for object-oriented software metrics”, Journal of
Systems and Software, v. 85, n. 2, pp. 244-257, 2011.

L. H. Rosenberg, R. Stapko, and A. Gallo, “Risk-Based Object Oriented
Testing”, in Proc. of 24th Annual Software Engineering Workshop,
Greenbelt: NASA, 1 CD-ROM, 1999.

R. Shatnawi, W. Li, J. Swain, and T. Newman, "Finding software
metrics threshold values using ROC curves”, Journal of Software
Maintenance and Evolution: Research and Practice, v. 22, n. 1, pp. 1-
16, 2010.

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Copyright (c) IARIA, 2016.

V. A. French, “Establishing Software Metric Thresholds”, in Proc. of
9th Int. Workshop on Software Measurement, Mont-Tremblant, pp. 1-10,
1999.

J. Biolchini et al, Systematic review in software engineering. Rio de
Janeiro: UFRJ, Technical Reports RT - ES, 679/05 , 31 p., 2005.

B. Kitchenham, Procedures for performing systematic reviews. Keele:
Keele University, Technical Report TR/SE-0401; NICTA Technical
Report, 0400011T.1, 33 p., 2004.

B. Kitchenham and S. Charters. Guidelines for performing systematic
literature reviews in software engineering. Keele: EBSE Technical
Report EBSE-2007-01, 57 p., 2007.

T. Dyba, T. Dingsoyr, and G. K. Hanssen, “Applying Systematic
Reviews to Diverse Study Types: An Experience Report”, in Proc. of 1st
Int. Symposium on Empirical Software Engineering and Measurement,
Washington: IEEE Computer Society, pp. 225-234, 2007.

Jabref, "JabRef reference manager”, 2015. [Online].
http://www.jabref.org. [accessed: 13-July-2016].

O. Alan and C. Catal, “An Outlier Detection Algorithm Based on
Object-Oriented Metrics Thresholds”, in Proc. of the 24th Int.
Symposium on Computer and Information Sciences, Guzelyurt: IEEE
Computer Society, pp. 567-570, 2009.

T. L. Alves, J. P. Correia, and J. Visser, “Benchmark-Based
Aggregation of Metrics to Ratings”, in Proc. of the 21th Int. Workshop
on Software Measurement; Int. Conf. on Software Process and Product
Measurement, Nara: IEEE Computer Society, pp. 20-29, 2011.

S. Benlarbi, K. EI Emam, N. Goel, and S. Rai, “Thresholds for Object-
Oriented Measures”, in Proc. of 11th Int. Symposium on Software
Reliability Engineering, San Jose: IEEE Computer Society, pp. 24-38,
2000.

K. El Emam et al., "The optimal class size for object-oriented software",
IEEE Transactions on Software Engineering, v. 28, n. 5, pp. 494-509,
2002.

C. Catal, U. Sevim, and B. Diri, “Clustering and Metrics Thresholds
Based Software Fault Prediction of Unlabeled Program Modules™, in
Proc. of 6th Int. Conf. on Information Technology New Generations, Las
Vegas: IEEE Computer Society, pp. 199-204, 2009.

H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A Metrics Suite for
Measuring Reusability of Software Components”, in Proc. of 9th Int.
Symposium on Software Metrics, Sydney: IEEE Computer Society, pp.
211-223, 2003.

R. Ramler, K. Wolfmaier, and T. Natschlager, “Observing Distributions
in Size Metrics: Experience From Analyzing Large Software Systems”,

Auvailable:

ISBN: 978-1-61208-498-5

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

in Proc. of 31th Annual Int. Computer Software and Applications
Conference, Beijing: IEEE Computer Society, pp. 299-304, 2007.

Schneidewind, N. F. “Software Metrics Model for Quality Control”, in
Proc. of 4th Int. Software Metrics Symposium, Albuquerque: IEEE
Computer Society, pp. 127-136, 1997.

R. Shatnawi, "A Quantitative Investigation of the Acceptable Risk
Levels of Object-Oriented Metrics in Open-Source Systems", IEEE
Transactions on Software Engineering, v. 36, n. 2, pp. 216-225, 2010.

P. Oliveira, M. T. Valente, and F. L. Paim, "Extracting Relative
Thresholds for Source Code Metrics", Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week - IEEE Conference on, pp.254-263, 2014.

C. Catal, O. Alan, and K. Balkan, "Class noise detection based on
software metrics and ROC curves”, Information Sciences, vol. 181, no.
21, pp. 4867-4877, 2011.

J. Al Dallal, "Improving the applicability of object-oriented class
cohesion metrics", Information and Software Technology, vol. 53, no. 9,
pp. 914-928, 2011.

G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, "An
Empirical Exploration of the Distributions of the Chidamber and
Kemerer Object-Oriented Metrics Suite”, Empirical Software
Engineering, v. 10, n. 1, pp. 81-104, 2005.

S. Herbold, J. Grabowski, and S. Waack, "Calculation and optimization
of thresholds for sets of software metrics”, Empirical Software
Engineering, v. 16, n. 6, pp. 812-841, 2011.

T. R. G. Nair and R. Selvarani, “Estimation of Software Reusability: An
Engineering Approach”. ACM SIGSOFT Software Engineering Notes,
New York, v. 35, n. 1, p. 1-6, 2010.

K. Wolfmaier and R. Ramler, “Common Findings and Lessons Learned
from Software Architecture and Design Analysis”, in Proc. of 11th
IEEE Int. Software Metrics Symposium, Como: IEEE Computer Society,
pp. 1-8, 2005.

L. H. Rosenberg, “Applying and Interpreting Object Oriented Metrics”,
in Proc. of 10th Software Technology Conference, Utah, pp. 1-18, 1998.

T. Copeland, PMD applied. Alexandria, Va.: Centennial Books, 2005.

T. C. Lethbridge, A. Forward, and O. Badreddin, “Umplification:
Refactoring to Incrementally Add Abstraction to a Program”, in
Conference on Reverse Engineering, Boston, pp. 220-224, 2010.

Cruise Group, "Umple: Merging Modeling with Programming", 2016.
[Online]. Available: http://www.umple.org. [accessed: 13-July-2016].

M. Young, The Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

CERTICS - A Harmonization with CMMI-DEYV Practices for Implementation of
Technology Management Competence Area

Fabricio Wickey da Silva Garcia
Faculty of Computing
Federal University of Para
Castanhal, Para, Brazil
e-mail: fabriciowgarcia@gmail.com

Sandro Ronaldo Bezerra Oliveira
Graduate Program in Computer
Science
Federal University of Para
Belém, Para, Brazil

Clénio Figueiredo Salviano
“Renato Archer” Information
Technology Center
Campinas, Sao Paulo, Brazil
e-mail: clenio.salviano@cti.gov.br

e-mail: stbo@ufpa.br

Abstract—This paper proposes a harmonization between a
product quality model and a software process model used in
the industry, CERTICS (a national Brazilian model) and
CMMI-DEV (an international model). The focus of this
harmonization is on the Competence Area of Technology
Management of CERTICS, which addresses the key question
of whether “the software is Kkept autonomous and
technologically competitive”. The results of the harmonization
are examined step by step, as well as including a review of the
harmonization, and were assisted by an expert on the
CERTICS and CMMI-DEV models. Thus, this paper aims to
correlate the structures of the two models to reduce the
implementation time and costs, and to stimulate the execution
of multi-model implementations in software development.

Keywords-software engineering; software quality; technology
management; CERTICS; CMMI-DEV; harmonization.

I. INTRODUCTION

The growing use of software in companies means that
most manual work is now automated, as well as most
business routines [1]. This can be regarded as a benefit
since the adoption of software products generates a greater
demand for goods and services. The increase in demand
leads to a proportional increase in customer requirements.
Thus, the requirement for greater quality in software
products is increasing, since these customers are becoming
more selective with regard to the software products they
find acceptable [2].

There are several certified models on the market to
ensure the quality of the software products, such as the
Capability Maturity Model Integration (CMMI) [3], the
International Organization of Standardization / International
Electrotechnical Commission (ISO / IEC) 15504 [4] and Six
Sigma [5]. In Brazil, there are two models that are gaining
prominence, which are Brazilian Software Process
Improvement (MPS.BR) [6], and the Certification of
National Technology Software and Related Services
(CERTICS) [7].

Brazil is a country, which has one of the world’s largest
range of software products, and every day the requirements
of customers regarding the quality and complexity of
products is increasing. From this standpoint, it can be
observed that companies are increasingly seeking maturity
in their software processes so that they can reach
international standards of quality and productivity, which

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

are essential for survival in the IT market. However, the
cost of certification for a company can be up to US$
400,000, which is not feasible for micro, small and
medium-sized firms, and is a characteristic of Brazilian IT
Enterprises. Because of this, the Department of Information
Technology of the Ministry of Science, Technology and
Innovation launched a number of Government and
marketing initiatives, which led to a more aggressive stance
to export-oriented software. These involved the creation of
models to comply with the features required by national
companies, and the recent investment policies for the
training and expertise of professionals [6][7].

Despite the wide range of certification models, many
companies seek to make improvements in their processes
and products by using more than one of these models. The
reason for this is that the practices included in a single one
cannot fully comply with their requirements for
improvement. The great difficulty in the implementation of
more than one model is that each has a different kind of
structure, which causes conflicts and problems about how to
understand the models, which will be implemented in the
company. These implementation problems that are found in
more than one model can only be reduced by achieving a
harmonization between them. This task will help to identify
the similarities and differences between the models [8]. This
harmonization is fully accepted by the regulatory bodies as
a means of obtaining quality in the products and services
related to software.

The research question of this paper is about how
CERTICS (product quality model) and CMMI-DEV
(process quality model) can help to bring about an
organizational improvement in an integrated way by using
the assets (practices, processes and others) that these models
possess. Thus, this research is driven by the need for
materials that guide the implementation process of the
multi-models (CERTICS and CMMI-DEV) in companies,
by providing assets to identify their strengths and
weaknesses. Furthermore, this research aims to show the
relationship between the CERTICS and CMMI-DEV
quality models, by harmonizing their features to show the
level of adhesion between their structures and support
organizations that want to implement them together. The
description of the main objective concerns the application
of the practices defined in the quality models for the
software process and product.

The extent of the business / scientific problem and its

10

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

challenges is revealed by the number of existing models that
focus on improving the quality of software development.
The harmonization can help to identify the common features
of these models, by providing the software company with
an instrument to guide the joint implementation of its
practices, and thus reduce time and costs. Thus, the means
of tackling this problem is to determine how many assets
(practices, processes and others), which are needed to
support the implementation of different models, can be
applied together in the software company.

In this paper, there are discussions related to the details
of the harmonization of the CERTICS model of technology
management competence area with the CMMI-DEV model.
In describing the similarities between the structures of the
models, the coverage criteria and evaluation are performed
to validate the correctness of the harmonization between the
models. Thus, the purpose of this paper is to design an
instrument that can guide the joint implementation of the
practices contained in the two models (CMMI and
CERTICS).

Several questions need to be addressed in this research:
these include the way the nature and scope of the
investigated problem are related to the software quality and
the improvement of the process and product. They also
involve an attempt to ensure that, within the scope of the
process improvement in practice, the improvement of the
software products can be achieved.

According to CTI Renato Archer [7], the model of
CERTICS provides benefits to Brazilian software
development companies that seek to gain preference in
government procurement and market differentiation, and
thus create a positive image of the company as an innovator
of software development and technological progress in the
country. Until April 2016 this model had 29 products
certified and registered on the site [7].

CERTICS is composed of four competence areas. The
choice of the Technology Management area for this work
was based on the fact that it involves establishing action-
driven strategies for research and development (R&D). This
includes the absorption and / or acquisition of existing
software to be embedded in technologies, based on
autonomous and technological innovation. This area makes
use of the results of R&D in domain ownership software,
together with the relevant technologies used in software.
This means that the technological innovations and decision-
making capacity in the key software technologies must be
introduced to ensure that the software remains
technologically competitive [7].

Thus, it is expected that the results of this research will:
a) reduce the burden of companies with joint
implementation models, b) reduce inconsistencies and
conflicts between models, and c) reduce costs through this
kind of implementation. The difficulty is how to harmonize
two models that are defined by different organizations and
decide which practices should be integrated. Finally, this
research is constrained by being concentrated in one
CERTICS competence area and, for this reason, an expert
has been invited to evaluate the harmonization.

This paper is structured as follows. Section II examines

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

some related works, which carry out the harmonization of
two or more models, and the two models of this research are
discussed in detail. Section III outlines the harmonization of
the Technology Management Competence Area of
CERTICS with regard to CMMI-DEV practices. Finally,
Section IV concludes with some final considerations. These
include the results obtained and the limitations of this
research, followed by some suggestions for possible future
work.

1I. RELATED WORKS AND BACKGROUND

This section provides an overview of the concepts of the
CMMI-DEV and CERTICS models and some related
works.

A. Related Works

The work of Baldassarre er al. [9] proposes a
harmonization model that aims to support and guide
companies in the integration, management and alignment of
software development and quality management practices, or
those that are concerned with improving existing ones. This
is possible by mapping the ISO 9001 and Capability
Maturity Model Integration for Development (CMMI-DEV)
model, using the Goal Question Metrics (GQM) for the
definition of operational goals. In this work, the statements
of ISO 9001 can be reused in the CMMI assessments.

In [10], Pelszius and Ragaisis put forward a scheme for
mapping and matching the maturity levels of the CMMI-
DEV model and ISO / IEC 15504. The authors investigated
which maturity level of a model was ensured by each level
of another one. Thus, the mapping was divided into the
following stages: (i) the elements of the CMMI-DEV
Process Areas were mapped with the ISO / IEC 15504
process indicators, (ii) a summary of each level mapped by
the models, i.e. the CMMI practices were mapped in
relation to the ISO / IEC 15504 outputs, (iii) calculating the
percentage of the ISO / IEC 15504 process attributes, (iv)
defining the indicators that express the capability of each
process, such as N for Non-Performed, P for Partially
Performed, L for Largely Performed and F for Fully
Performed, (v) establishing the capabilities of the ISO / IEC
15504 processes, and (vi) determining the organizational
maturity of the ISO / IEC 15504, by ensuring a CMMI-
DEV maturity level.

In [11], Garcia-Mireles et al. show the results of
harmonizing the processes and product quality models. A
different approach is adopted in this work, where guidance
is given by the improvement goals of the software product
quality control. Four stages were defined for the mapping
between the process models, which are: (i) analysis models,
(ii) definition of mapping, (iii) implementation of mapping,
and (iv) evaluation of mapping results.

Finally, in Araujo’s work [8] there are two mappings:
the first is between the MPS Reference Model for Software
(MR-MPS-SW) [6] and the Brazilian Test Process
Improvement (MPT.Br) [12] models, and the second is
made with the MR-MPS-SW and CERTICS models. On the
basis of the results of this research, it was found that the
first mapping showed a great adherence to the models used,

11

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

while the second mapping showed that the MR-MPS-SW is
only slightly adherent to the CERTICS model.

The existence of many frameworks and works dealing
with the harmonization of practices included in different
quality models, led to the joint implementation and
evaluation of these models. It also helped the regulatory
bodies to accept the existence of practices that are not yet
present in the versions of their models. This brings about
improvements in the the organizational process without the
need for individual interventions by the large number of
models.

B. The CERTICS Model

CERTICS is a Brazilian evaluation methodology that
seeks to determine whether or not software is the result of
technological development and innovation in the national
sphere. In this way, it seeks to assess whether the product
developed “creates or expands technological skills that are
related to the country, or contributes to the creation of
business based on knowledge. This leads to an increase in
technological autonomy and innovative capacity.” [7].

The CERTICS methodology was designed on the basis
of the ISO / TIEC 15504-2 standard [4] and aims to define a
minimum set of requirements related to technological
development and innovation in the country [7].

The CERTICS model is composed of four Competence
Areas and sixteen Outcomes. The Competence Areas
include the details about the concepts of the resulting
software that is used for technological innovation and the
development of the country. Each Competence Area has a
key feature that describes characteristics that must be
reached in order to fulfil the requirements of the model. The
competence areas are as follows:

* Technological Development (DES), key question -

“Is the software the result of technological
development in Brazil?”,

* Technology Management (TEC), key question -
“Does the software remain technologically
autonomous and competitive?”,

* Business Management (GNE), key question -
“Does the software leverage knowledge-based
business and is it driven by these business?”, and

¢ Continuous Improvement (MEC), key question -
“Is the software the result of continuous
improvement originating in the management of
personnel, processes and knowledge to support and
enhance their development and technological
innovation?”.

The Competence Areas have a set of outcomes, which,
when implemented, must satisfy the goals of the model. The
model also provides guidance about how to implement each
outcome, as well as a list of examples of work products that
illustrate what is desirable to fulfill each outcome [7]. In the
domain of this work area, the Outcomes of the Technology
Management Competence Area are:

¢ TEC.1. Use of Results from Technological R&D -
the software development uses results from
Technological Research and Development,

e TEC.2. Appropriation of Relevant Technologies,

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

the relevant technologies used in software are
appropriated by the Organizational Unit,

* TEC3. Introduction of Technological
Innovations, - the introduction of technological
innovations in software are stimulated and kept at
the Organizational Unit, and

* TEC4. Decision-Making Capacity - the
Organizational Unit has a decision-making capacity
for the key technologies in the software.

C. The CMMI-DEV Model

CMMI is a maturity model for process improvement
that is created by Software Engineering Institute (SEI) to
integrate knowledge areas in a single model, such as
Systems Engineering (SE), Software Engineering (SW),
Integrated Products and Process Development (IPPD) and
Supplier Sourcing (SS) [3].

Currently the CMMI is in version 1.3 and is composed
of three models, which are: CMMI for Development
(CMMI-DEV), which is concerned with development
processes, CMMI for Acquisition (CMMI-ACQ), whose
focus is on acquisition processes, as well as product and / or
services sourcing, and CMMI for Services (CMMI-SVC),
which deals with service processes such as maintenance and
evolution.

The CMMI structure consists of several elements that
are grouped into three categories, which are: a) required
components (Specific and Generic Goals), b) expected
components (Specific and Generic Practices) and c¢)
informative components (Subpractices, Examples of Work
Products, and others). These components assist in the
interpretation of the model requirements. Thus, the CMMI-
DEV is composed of twenty-two process areas, which
consist of its purpose and specific goals for each area
supplemented by generic goals, since they are related to all
the process areas. The specific goals define unique
characteristics for each process area, while the generic goals
define characteristics that are common to all the process
areas. Each specific goal has a set of specific practices,
which are activities that must be taken into account to
ensure that the goal is satisfied. Similarly, the generic goals
have generic practices.

III. THE HARMONIZATION BETWEEN CERTICS AND CMMI-
DEV MODELS

The CERTICS and CMMI-DEV models have different
structures, each of which has a set of specific requirements,
however, despite the particular features of each model, it
can be inferred that the models have elements that can
influence the fulfillment of some of the requirements that
can be found in both models, according to Table I.

The CERTICS model is formed of Competence Areas,
which have a set of practices (outcomes) that must be
implemented so that it can fulfill the requirements of the
model. Similarly, the CMMI-DEV model has an element
called Process Area, which is also composed of many
practices that must be implemented to fulfill their goals;
these practices are called Specific and Generic Practices.

12

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE 1. ELEMENTS THAT CAN INFLUENCE THE FULFILLMENT OF

THE CERTICS AND CMMI-DEV REQUIREMENTS.

CERTICS Elements
Competence Area

CMMI-DEYV Elements
Process Area

Key Questions Specific Goals | Generic Goals
(S16)) (GG)
Outcomes Specific Practices | Generic Practices
(SP) (GP)
Guidelines Subpractices Generic Practice
Elaborations

Evidences from Processes
related with Software

The Key Questions of the CERTICS model are similar
in some respects to the Specific Goals and Generic Goals of
CMMI-DEV, because these three elements have a set of
characteristics that must be identified in a company to
ensure that it fulfills the requirements of the model. Thus,
the Outcomes of the CERTICS model have goals that can
be equated with the Specific Practices and Generic Practices
of CMMI-DEV, since these features represent the details of
the requirements with regard to what should be performed
as a practice to ensure the goals of these models are
achieved.

It should be noted that when guiding the implementation
process of these models, both have some elements that help
to bring about a correct implementation of the requirements
of the models. In the CERTICS model there are Guidelines
and in CMMI-DEVthere are Subpractices and Generic
Practice Elaborations, which offer guidance about how to
implement each kind of model item.

Similarly, it was found that the Evidence of the
CERTICS model also had goals that can be equated with
the Example Work Products of CMMI-DEV, because these
elements can act during the implementation of the models
as a reference-point for what can be used so that it can
provide evidence that the requirements of each model have
been fulfilled.

The set of supporting concepts adopted in this paper
defines a set of technologies that can be integrated to assist
in the software process appraisal and improvement. In this
domain, there are tools, techniques, procedures, processes,
roles, methodologies, frameworks, languages, standards,
patterns, and so on.

Example of Work Products (WP)

A. The Conformance Analysis of the Competence Area of
Technology Management

The competence area of Technology Management has
four outcomes, which are designed to ensure that the
software remains autonomous and technologically
competitive [7].

1) TEC.I: Use of Results from Technological R&D

The TEC.1 outcome seeks to analyze the technologies
used in the software development to find out whether the
results of the research and technological development
(R&D) were applied to the development of the software
product.

For this reason, when the CMMI-DEV model was
analyzed, it was noted that the CMMI-DEV does not cover

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

this outcome because the model does not require the results
of the research and development (R&D) results in its
implementation. To obtain this outcome, it would be
necessary for the CMMI-DEV practices to provide the use
of technological resources, such as those of any project that
seeks to define the technical solutions based on R&D,
partnerships or investment indicators in R&D related to the
software product.

2) TEC.2: Appropriation of Relevant Technologies

The TEC.2 outcome seeks to determine whether the
relevant technologies in software development that have
been used, are appropriate for the organizational unit. In
assessing whether this outcome has been achieved, the
organizational unit must demonstrate that action taken for
the appropriation of technological knowledge is present in
the software, (such as the training of its professionals).
Thus, this outcome needs a set of CMMI-DEV Process
Areas and Practices to achieve its goals.

In the Project Planning (PP), the SP.2.3 focuses on
data management planning, and the SP.2.5 and SP.2.6
ensure that the planning of the professionals involved in the
project is based on their professional profiles and skills as
well as the involvement of the stakeholders.

In the Project Monitoring and Control (PMC), the
Specific Practice SP.1.1 allows the monitoring of the
practices that were planned in PP.SP.2.5 and PP.SP.2.6,
while the SP.1.4 allows the monitoring of data management
based on the project plan.

In the Organizational Training (OT), the SP.1.1 seeks
to maintain the training on the basis of organizational
strategies and needs. The SP.1.2 determines what the
training needs are in the business and what the projects are,
while the SP.1.3 seeks to establish and maintain the tactical
training plans, as well as the quality of this training to meet
the needs that are fulfilled by the SP.1.4. Moreover, with
the SP.2.1 it can ensure that the training takes place in
accordance with the tactical training plan. The records of
these training sessions can be kept by the SP.2.2, while the
SP.2.3 makes it possible to evaluate the effectiveness of the
training in the company.

The Generic Practice GP.2.5 seeks to ensure that the
professionals are able to handle the technology used in the
company, by providing training that is suited to the needs of
the company.

The coverage in TEC.2 was complete, because the
CMMI-DEV had met the requirements of this outcome.

3) TEC.3: Introduction of Technological Innovations

The focus of this outcome is on technological
innovation, because it seeks to find out whether the
organizational unit has taken steps to introduce and
encourage the use of technological innovation in software
development. To this extent, this outcome needs a CMMI-
DEV Process Area and Practice to achieve its goals.

In the Organizational Performance Management
(OPM), with the SP.2.1 it can initiate and categorize the
suggested improvements.

The coverage in TEC.3 was not complete because the

13

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

CMMI-DEV does not have practices for conducting the
professional activities for members of the project that set up
the schemes for technological innovation. Another
requirement is the incorporation of innovative ideas that
arise from joint ventures with R&D teams, as well as the
software made available for technological innovation.

4) TEC.4: Decision-Making Capacity

The TEC.4 outcome seeks to determine whether the
organizational unit has decision-making powers with regard
to the relevant technologies that are presented in the
software product. Hence, to ensure that this outcome is
fulfilled, it is necessary for the organizational unit to prove
that it has the authority to make changesin the relevant
technologies that are present in the software. Thus, this
outcome needs a set of Process Areas and Practices of
CMMI-DEV to achieve its goals.

In the Organizational Performance Management
(OPM), the Specific Practice SP.2.2 allows the
improvements to be analyzed with regard to the possible
effects of achieving the quality goals of the organizational
process performance. The SP.2.3 is concerned with
validating the improvements selected. In the case of the
SP.2.4, it can select and prepare the improvements for
implementation in the company, on the basis of an
evaluation about costs, benefits and other factors.

The coverage of this outcome was partial because the
CMMI-DEV has practices that allow the suggested
improvements to be analyzed by selecting, implementing
and validating these improvements, but the CMMI-
DEVprovides no evidence to support the updates of the
relevant technologies that can be found in the software and
that can allow a decision to be made in the organizational
unit.

B. The Evaluation of the Harmonization of Technology
Management

The peer review technique was employed to evaluate the
harmonization between the requirements of the CERTICS
and CMMI-DEV models outlined in the last section, This
was overseen by an expert, who has over five years of
experience with the implementation of quality models in
software development companies, and has recognized
certification in CERTICS and CMMI-DEV models. The
expert received the document that contains the
harmonization of CERTICS and CMMI-DEV models, and
carried out the review in accordance with a set of criteria,
which were defined on the basis of Araujos’s work [8], as
shown in Table II.

When reviewing the harmonization of Technology
Management (TEC) Competence Area, the expert detected a
problem, which was classified as General (G). It was
suggested that an analysis should be conducted of all the
CMMI-DEV specific and generic practices that have been
mapped in the TEC area with the aim of determining
whether they are listed and described at the end of the
document. If any mapped practice had not been listed, the
expert suggested that it should be included in the document,
as a means of enabling the goal of these practices to be

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

understood.
TABLE II. CRITERIA DEFINED FOR THE HARMONIZATION
EVALUATION.
Criteria Definition
TH (Technical | Indicates that a problem in a harmonization item
High) was found and, if not changed, would impair the

system.

Indicating that a problem in a harmonization item
was found and a change would be appropriate.
Indicating that a Portuguese language error was
found or the text can be improved.

Indicating that there were doubts about the content.

TL (Technical
Low)
E (Editorial)

Q (Questioning)
G (General)

Indicates that in general a commentary is needed.

In TEC 2, the expert found a problem that was classified
as TL. Since in this outcome a Generic Practice was
unnamed, the expert suggested that its name should be
included in the harmonization document.

The expert did not find any problem classified as TH, E

or Q.
C. How should the Harmonization be used?

The purpose of the harmonization of CERTICS and
CMMI-DEV models is to help businesses that wishing to
obtain certifications through multi-model implementations
or even by making evaluations of the two models. The use
of harmonization can optimize costs, time and effort
because the models now have their structures harmonized
and interrelated.

It was possible to find and highlight the differences and
similarities included in the requirements of CERTICS and
CMMI-DEV models. In this way, it can be seen that
although some requirements of the models are similar or
even complementary, it is not always possible for them to
fulfil their goals in the same way. According to Association
for Promoting Excellence in Brazilian Software (SOFTEX)
[6], this may occur because of the different level of
requirements found in some of the practices, outcomes and
expected results of the models.

The harmonization spreadsheets have become an
important support tool in the joint evaluation or
implementation of the models, because they provide inputs
that allow adaptation / harmonization in the frameworks of
the models and in their expected results, practices and
outcomes. This can enable the multi-models to be
implemented in companies.

As a result, the company saves time from the
implementation of joint models, because it will not have to
spend time on separately analyzing the frameworks of the
models. This means that it has to determine in what way a
model can suit another one. This is because all the
structures and requirements, which are the same for all the
models, have been identified, harmonized and documented
in the harmonization spreadsheet of the models.

IV. CONCLUSION AND FUTURE WORK

This research study has examined the harmonization of
Technology Management Competence Area included in
CERTICS with CMMI-DEYV practices. To achieve its goals,

14

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

this research sought to identify the similarities and
differences between the CERTICS and CMMI-DEV
frameworks by investigating their harmonization. To avoid
problems of understanding and inconsistencies, an expert in
the models evaluated the harmonization by the peer review
technique. The results of this review were analyzed and
suggested changes should be implemented to eliminate
inconsistencies and problems of understanding problems,
which were detected by the expert. The document with the
complete harmonization generated after the peer review,
including all the CERTICS Competence Areas is available
in [13].

The usability of the harmonization of the two models
can be corroborated by numerous certifications registered in
the CERTICS website [7] about products developed by
Brazilian software companies that have also made
appraisals of their processes that are outlined in the CMMI
website [3]. This shows that there is national interest in the
two models.

The lessons learned from this research stem from the
fact that there is an analytical and comparison domain
between the models. Thus, it is recommended that more
than one person perform it, so that any conflicts or
uncertainties can be discussed and solved by a peer review.

One drawback of this study is that the harmonization has
not been evaluated in a software development company; it
has only been evaluated by peer review. An evaluation of
the harmonization in a company is being completed in
Brazil, and its processes are in accordance with the practices
of CMMI-DEV Maturity Level 3. As a result, it is possible
to determine whether the harmonization -contributed
positively or negative to a multi-model implementation.
Another drawback is the fact that the peer review has only
been performed by a single expert, which means that it can
only be a limited view of the results obtained from the
research. However, this expert is a part of a team that
specifies the CERTICS model, and he has extensive
experience with the implementation of the CMMI-DEV
model, and reduces the bias of the results obtained from the
review.

In the future, we intend to continue expanding this
research, and apply it to other enterprises, and thus allow
the positive and negative aspects of the use of
harmonization in a CERTICS multi-model implementation
with the CMMI-DEV to be quantified. Another future study
concerns the definition of the complete cycle of a
harmonization based on the research results of Araujo’s
work [8] and the SOFTEX guide [14].

So far now that the case study has not been completed, it
is possible to perceive that the benefits of joint
implementation are as follows: a reduction in costs and time
to fulfill the expected results and practices in CERTICS and
CMMI-DEV models, creation of unified and standardized
evidences to achieve the two models, and the
standardization of technical language, which is employed in
these models, to define the software development process.

ACKNOWLEDGMENT
The authors would like to thank the Dean of Research

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

and Postgraduate Studies at the Federal University of Para
(PROPESP/UFPA) by the Qualified Publication Support
Program (PAPQ) for the financial support.

REFERENCES

[11 A. G. Cordeiro and A. L. P. Freitas, “Prioritization of requirements
and evaluation of software quality as perceived buyers”, Ciéncia da
Informacdo, v. 40, n. 2, Brazil, pp. 24-35, 2012.

[2] itSMF UK, “An Introductory Overview of ITIL® 20117, The IT
Service Management Forum UK, London, 2011.

[3] SEI, “CMMI for Development (CMMI-DEV)”, Version 1.3, Software
Engineering Institute, Carnegie Mellon University, USA, 2010,
Available in http://www.cmmiinstitute.com. Retrieved: july/2016.

[4] ISO/IEC, “ISO/IEC 15504-2: Information Technology — Process
Assessment - Part 2 -Performing an Assessment”, Geneve, 2003.

[5] G. Tennant, “Six Sigma - SPC and TQM in Manufacturing and
Services”, Gower Publishing, Burlington, 2001.

[6] SOFTEX, “Brazilian Software Process Improvement (MPS.BR) -
General Guide: 2016”, Brazil, 2016.

[71 CTI Renato Archer, “Reference Model for the CERTICS Evaluation —
Detailing Document”, Centro de Tecnologia da Informagdo Renato
Archer, Brazil, 2013, Available in http://www.certics.cti.gov.br.
Retrieved: july/2016.

[8] L. L. Aratjo, “Mapping between MPS.SW and MPT.BR and
CERTICS”, Dissertagdo de Mestrado, COPPE/UFRJ, Brazil, 2014.

[91 M. T. Baldassarre, D. Caivano, F. J. Pino, M. Piattini, and G.
Visaggio, “Harmonization of ISO/IEC 9001:2000 and CMMI-DEV
from a theoretical comparison to a real case application”, Springer
Science+Business Media. v.20 pp. 309-335, 2011.

[10]S. Pelsdziusand S. Ragaisis, “Comparison of Maturity Levels in
CMMI-DEV and ISO/IEC 15504”, Applications of Mathematics and
Computer Engineering, pp. 117-122, 2011.

[111G. A. Garcia-Mireles, M. A. Moraga, F. Garcia, and M. Piattini,
“Towards the Harmonization of Process and Product Oriented
Software Quality Approaches”, Springer-Verlag Systems, Software
and Services Process Improvement, pp.133-144, 2012.

[12] SOFTEX RECIFE, “MPT.Br Brazilian Test ProcessImprovement —
Model Reference Guide”, s.1. : SOFTEX RECIFE, 2011.

[13]1F. W. da S. Garcia, “An Approach to Software Quality Multi-Models
Implementation adopting CERTICS and CMMI-DEV”, Dissertagdo de
Mestrado, PPGCC/UFPA, Brazil, 2016.

[14] SOFTEX, “Implementation Guide - Part 11: Implementation and
Evaluation of MR-MPS-SW: 2012 Together with CMMI-DEV v1.3”,
Brazil, 2012.

15

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

An Investigation on the Relative Cost of Function Point Analysis Phases

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate
Universita degli Studi dell’Insubria
Varese, Italy
email: luigi.lavazza@uninsubria.it

Abstract— Function Point Analysis (FPA) is widely used,
especially to quantify the size of applications in the early stages
of development, when effort estimates are needed. However,
the measurement process is often too long or too expensive, or
it requires more knowledge than available when development
effort estimates are due. To overcome these problems, early
size estimation methods have been proposed, to get
approximate estimates of Function Point (FP) measures. In
general, early estimation methods (EEM's) adopt measurement
processes that are simplified with respect to the standard
process, in that one or more phases are skipped. EEM's are
considered effective; however there is little evidence of the
actual savings that they can guarantee. To this end, it is
necessary to know the relative cost of each phase of the
standard FP measurement process. This paper presents the
results of a survey concerning the relative cost of the phases of
the standard FP measurement process. It will be possible to use
data provided in the paper to assess the expected savings that
can be achieved by performing an early estimation of FP size,
instead of properly measuring it.

Keywords- functional size measurement; Function Point
Analysis; IFPUG Function Points; measurement process; cost of
measurement.

1. INTRODUCTION

FPA [1][2][3][4] is widely used. Among the reasons for
the success of FPA is that it can provide measures of size in
the early stages of software development, when they are
most needed for cost estimation.

However, FPA performed by a certified FP consultant
proceeds at a relatively slow pace: between 400 and 600 FP
per day, according to Capers Jones [5], between 200 and 300
FP per day according to experts from Total Metrics [6].
Consequently, measuring the size of a moderately large
application can take too long, if cost estimation is needed
urgently. Also, the cost of measurement can be often
considered excessive by software developers. In addition,
cost estimates may be needed when requirements have not
yet been specified in detail and completely.

To overcome the aforementioned problems, EEM's that
provide approximate values of FP measures have been
proposed. A quite comprehensive list of such methods is
given in [7].

The goal of the work presented here is to assess the cost
of the measurement activities (detailed in Section II.B).
However, as mentioned in the introduction, there is little

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

agreement on the cost of FP measurement: for instance,
Capers Jones [5] and Total Metrics [6] provide quite
different evaluations. Therefore, it appeared more viable to
pursue an evaluation of the relative cost of the measurement
phases. In this way, we will be able to assess how much we
save -in terms of measurement effort, hence ultimately of
money- by skipping a measurement phase, i.e., by not
performing one of the activities of the standard measurement
process. In fact, if a manger knows that applying the standard
measurement process in her organization takes X
PersonHours per FP, and a simplified measurement process
allows for saving 70% of the effort, she can easily conclude
that in her organization the application of the simplified
process will take 0.7X PersonHours.

The paper is structured as follows. Section II reports a
few basic concepts of FPA. Section III describes how the
surveys was carried out, illustrates the results of the survey
and discusses the threats to the validity of the study. Section
IV accounts for related work. Finally, Section V draws
conclusions and briefly sketches future work.

II. FUNCTION POINT ANALYSIS CONCEPTS

FPA aims at providing a measure of the size of the
functional specifications of a given software application.

A. The model of the software being measured according to
FPA

FPA addresses functional specifications that are
represented according to a specific model. The model of
functional specifications used by FPA is given in Fig. 1.
Briefly, Logical files are the data processed by the
application, and transactions are the operations available to
users. The size measure in FP is computed as a weighted
sum of the number of Logical files and Transactions. The
weight of logical data files is computed based on the Record
Elements Types (RET), i.e., subgroups of data belonging to a
data file, and Data Element Types (DET), i.e., the elementary
pieces of data; besides, the weight depends on whether the
data file is within the boundaries of the application, i.e., it is
an Internal Logic File (ILF) or it is outside such boundaries,
ie., it is an External Interface File (EIF). The weight of
transactions is computed based on the Logical files involved
—see the FTR (File Type Referenced) association in Fig. 1-
and the DET used for I/O; besides, the weight depends on
the "main intent" of the transaction. In fact, depending on the

16

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

main intent, transactions are classified as External Inputs
(ED), External Outputs (EO) or External Queries (EQ).

SW application functional specifications

Logical file Transaction

?

Record Element Type

FTR

1/0

Data Element Type

Figure 1. The model of software used in FPA.

B. The FPA measurement process

According to the International Function Point User
Group (IFPUG) measurement manual [3][4], the
measurement process includes the following phases:

1. Gathering the available documentation concerning
functional user requirements;

2. Identifying application boundaries;

3. Determining the measurement goal and scope;

4. Identifying Elementary Processes (Transactions) and
Logical Data Files;

5. Classifying transactions as EI, EO or EQ; classifying
files as ILF or EIF; identifying RET, DET, FTR and
determining complexity;

6. Calculating the functional size;

7. Documenting and presenting the measurement.

The EEM's tend to skip as many as possible of the steps
listed above. The idea is straightforward: the less phases
have to be performed, the faster and cheaper is the process.
However, some activities —namely, those involved in phases
1, 2 and 4- are preparatory of the real measurement and
cannot be skipped. Similarly, phase 7 can hardly be avoided.
In any case, it should be noted that the simplification of the
measurement process can affect phases 1 and 7 as well: on
the one hand, a simplified process requires less
documentation concerning Functional User Requirements
(FUR); on the other hand, documenting and presenting a
simplified measurement is easier and faster than
documenting the full-fledged measurement.

As a final observation, the extent of phase 7 depends on
the context and the goal of measurement: for instance, if an
organization is measuring the size of the application to be
developed for "internal" purposes, the documentation can be
kept to a minimum; on the contrary, if the functional size
measures have to be used in a bid or in establishing the price
of a contract, the documentation to be produced has usually

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

to be quite detailed, and the presentation of the measures and
measurement has also to be accurate. In practice, the cost of
phase 7 depends more on the context and goal of the
measurement than on the fact that the standard process or a
simplified process were used.

In conclusion, EEM's address mainly phases 4, 5 and 6.
However, there is hardly any evidence of how much you
save if you skip any of these phases. On the contrary, some
evidence exists that by simplifying the measurement process,
some measurement error is introduced [19].

III. EXPERIMENT AND RESULTS

A. The survey

The investigation described here was performed via a
questionnaire, which was filled by people that are
experienced in IFPUG Function Point measurement.

The questionnaire was published on the kwiksurveys site
[20]. The questionnaire was publicized via several channels:
® An invitation to fill out the questionnaire was sent to the

Italian Function Point User Association (www.gufpi-

isma.org);

e A similar invitation was sent to the Nesma association
(21];

e Finally, a question was published on ResearchGate [22],
and experts were redirected to the questionnaire URL.

The questionnaire is reported in the appendix. It can be
noticed that the questionnaire targets both the IFPUG [3][4]
and the Nesma [9] measurement processes. In fact, according
to Nesma, "[Since 1994,] owing to [...] the intensive
cooperation between the Nesma and the IFPUG, the
counting guidelines of the NESMA and the IFPUG
continuously came closer and closer. [...] With the
publication of IFPUG CPM 4.2 (2004) the last major
differences between IFPUG and NESMA disappeared.”
Therefore, mixing data concerning the current IFPUG and
Nesma measurement processes is perfectly safe, and the
results found apply equally well to both measurement
methods.

The questionnaire was published in November 2014, and
answers were collected until April 2015.

B. The Results of the survey

31 answers were collected. Even if the number is not
very large, it is nonetheless sufficient to get a reasonably
reliable assessment of the relative cost of FP measurement
activities.

Of the respondents, 21 are certified Function Point
Specialist (CFPS), and 4 are certified Function Point
Practitioner (CFPP). Only 6 have no certification; however,
of these, 2 use NESMA Function Points, therefore it is
reasonable that they do not need an IFPUG certification.

The experience of the respondents is also quite
reassuring: 20 respondents have been using FP measurement
for over 10 years; only two for less than 5 years.

It should be noted that the questionnaire does not ask for
a specific percentage for each phase; instead, it asks to
specify in what range the actual percentage of effort belongs.
This choice was due to two reasons: 1) the free version of the

17

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

questionnaire provided by kwiksurveys does not support the
collection of numeric values, and 2) it is unlikely that a
respondent knows the exact fraction of effort that is spent in

each phase, while it is much more probable that he/she can
indicate the correct range.

TABLE L ANSWERS CONCERNING RELATIVE PHASE COSTS

Respondent | Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7
1 11-15% | 0-5% 0-5% 26-30% 36-40% 0-5% 16-20%
2 16-20% | 6-10% 0-5% 36-40% 6-10% 0-5% 16-20%
3 6-10% 0-5% 0-5% 6-10% 46-50% 0-5% 11-15%
4 0-5% 0-5% 0-5% 66-70% 0-5% 0-5% 0-5%

5 0-5% 6-10% 6-10% 36-40% 16-20% 0-5% 0-5%

6 0-5% 0-5% 46-50% 31-35% 0-5% 0-5% 0-5%

7 6-10% 6-10% 0-5% 21-25% 26-30% 0-5% 11-15%
8 26-30% | 11-15% 6-10% 11-15% 11-15% 0-5% 11-15%
9 16-20% | 0-5% 0-5% 21-25% 21-25% 0-5% 11-15%
10 0-5% 0-5% 0-5% 46-50% 31-35% 0-5% 0-5%
11 31-35% | 0-5% 0-5% 21-25% 16-20% 11-15% 0-5%
12 0-5% 0-5% 0-5% 16-20% 0-5% 0-5% 11-15%
13 0-5% 0-5% 0-5% 21-25% 46-50% 0-5% 0-5%
14 0-5% 0-5% 0-5% 41-45% 26-30% 0-5% 0-5%
15 11-15% | 6-10% 0-5% 36-40% 11-15% 0-5% 0-5%
16 6-10% 0-5% 0-5% 51-55% 16-20% 0-5% 0-5%
17 6-10% 6-10% 0-5% 26-30% 6-10% 36-40% 6-10%
18 0-5% 0-5% 0-5% 36-40% 36-40% 0-5% 0-5%
19 6-10% 6-10% 0-5% 11-15% 11-15% 0-5% 41-45%
20 31-35% | 16-20% 6-10% 26-30% 11-15% 0-5% 0-5%
21 16-20% | 6-10% 6-10% 16-20% 11-15% 6-10% 16-20%
22 16-20% | 0-5% 0-5% 61-65% 0-5% 0-5% 0-5%
23 0-5% 56-60% 16-20% 66-70% 51-55% 0-5% 11-15%
24 6-10% 6-10% 11-15% 26-30% 11-15% 11-15% 0-5%
25 11-15% | 6-10% 0-5% 21-25% 21-25% 11-15% 6-10%
26 6-10% 0-5% 0-5% 41-45% 21-25% 0-5% 6-10%
27 41-45% | 6-10% 0-5% 6-10% 6-10% 6-10% 11-15%
28 6-10% 16-20% 6-10% 31-35% 11-15% 0-5% 16-20%
29 11-15% | 0-5% 0-5% 66-70% 11-15% 0-5% 0-5%
30 21-25% | 0-5% 0-5% 21-25% 21-25% 6-10% 0-5%
31 0-5% 0-5% 0-5% 6-10% 6-10% 0-5% 0-5%

The collected data concerning the relative effort required
by each measurement phase are given in Table I.

When information is collected via questionnaires, it is
always possible that some respondents do not provide correct
data. Therefore, before proceeding to the analysis of the
collected data, it is necessary to remove unreliable answers
from the dataset. In our case, the following problems were
considered:

1) The sum of the efforts spent in each phase must be
100%. Having asked for ranges, we expect that the sum
of the lower bounds of the ranges is < 100% (but close
to 100%) and that the sum of the upper bounds is >
100% (but close to 100%). Respondents 12, 23 and 31
do not satisfy these conditions: total effort is in [27%,
60%] range for respondent 12, in [200%, 230%] range
for respondent 23 and in [12%, 45%] range for
respondent 31. These are clearly meaningless

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

2)

3)

indications, therefore they have been excluded from the
dataset.

Among the remaining respondents, it is easy to spot a
few outliers. Respondent 19 declared a fraction of effort
for phase 7 (Documenting and presenting the
measurement) that is almost half the total effort and
more than double than the other respondents'.
Respondent 27 declared an abnormally large amount of
effort dedicated to phase 1 (Gathering the available
documentation concerning FUR): such a large effort
may be required in specific contexts, but is not
representative of the general case (as other respondents
clearly show). To preserve the representativeness of the
data, the answers provided by the mentioned
respondents have been excluded from the dataset.
Respondents 4 and 5 declared that they use (EEM's).
Their answers were removed from the dataset, since we

18

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

are interested in the relative cost of the standard

measurement process.

To analyze the data in Table I, the following procedure
was adopted:

1) For every phase, the mean values of the lower bound
and upper bound of the given ranges were computed.
Let MLB; and MUB; be the means of the upper and
lower bound, respectively, for phase i.

2) For every phase, M; = (MLB; + MUB,)/2 was computed.
Being the midpoint between MLB; and MUB;, M;
indicates the more likely value for the fraction of effort
spent in the i phase, according to respondents.

3) It was then found that Xi-;7 M; = 91.4%. This is not
acceptable, since the sum of the efforts dedicated to the
measurement phases must equal the total measurement
effort. Therefore, we computed a weighted version of
M;: WM; = 100 Mi/91.4, so that Zi=1,7 WM; = 100%.
WM is assumed to indicate the most likely value for the
fraction of effort spent in the i phase.

The values of MLB;, MUB; M; and WM; are given in

Table II.

TABLE IL MEAN VALUES OF PHASE RELATIVE COSTS

Phase | MLB; MUB; M; WM
1 10.8% 15.0% | 12.9% 14.1%
2 3.5% 8.1% | 5.8% 6.4%
3 3.4% 8.1% | 5.8% 6.3%
4 30.8% 34.8% | 32.8% 35.9%
5 18.8% 22.9% | 20.9% 22.8%
6 3.4% 8.1% | 5.8% 6.3%
7 5.3% 9.8% | 7.5% 8.2%

Since in general the mean is affected by the smallest and
largest values in the observed population, we repeated the
procedure described above using the medians of upper and
lower bounds. The results obtained are given in Table III.

TABLE III. MEDIAN VALUES OF PHASE RELATIVE COSTS
Phase MLBi MUBi Mi WMi
1 8.5% 12.5% | 10.5% | 15.8%
2 0.0% 5.0% | 2.5% 3.8%
3 0.0% 5.0% | 2.5% 3.8%
4 26.0% | 30.0% | 28.0% | 42.1%
5 16.0% | 20.0% | 18.0% | 27.1%
6 0.0% 5.0% | 2.5% 3.8%
7 0.0% 5.0% | 2.5% 3.8%

The results of the analyses provide some useful
indications concerning the relative cost of the phases of FP
measurement, performed according to the IFPUG or Nesma
process.

The results concerning the relative efforts derived using
the means and the medians are fairly close: this fact supports
the hypothesis that values reported in Tables II and III are
actually representative of the real relative effort per phase.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

The fact that more than half the effort is concentrated in
phases 4 and 5 also appears to confirm the reliability of
results. In fact, it is popular wisdom that most measurement
effort is required by the analysis of data and processes,
which is concentrated in phases 4 and 5.

C. Threats to validity

A first threat to the validity of the study is due to the
number of datapoints that were collected. Although it was
possible to collect only 31 datapoints, we strived to
guarantee the representativeness of the collected data by
eliminating outliers, as well as data that appear incorrect. In
any case, the size of the dataset that was finally analyzed
(containing 24 datapoints) is not smaller than many datasets
used for empirical software engineering studies.

Concerning the statistical analyses that were performed
in this study, they are so simple that it is unlikely that any
serious threat to statistically validity actually applies. One
could observe that confidence intervals for the mean values
could have been computed, but having already asked for
ranges rather than specific values, computing confidence
intervals would have been sort of overkilling.

Most respondents (23) are from Italy, four are form the
Netherlands and the remaining ones are from Brazil,
Switzerland and Belgium. The lack of geographic dispersion
could be a limit for the generalizability of results. However,
most respondents are certified Function Point Specialists or
certified Function Point Practitioners, thus we can assume
that they all follow the process specified in the official
manuals [3][4][8][9]. If so, our results should be applicable
to all the measurements performed according to the standard
counting practices.

IV. RELATED WORK

There is not much literature concerning the cost of
functional size measurement. A couple of documents report
about the total cost of FP measurement [5][6], but none
provides information concerning how the total effort is
spread among the various measurement phases.

Some indications are provided by the proposers of
EEM's. For instance, it was reported that "the E&Q size
estimation technique has been proved in practice to be quite
effective, providing a response within + 10% of the real size
in most real cases, while the savings in time (and costs) can
be between 50% and 90% (depending on the comprised
aggregation level) with respect to corresponding standard
measurement procedures." [18]

It was also reported that "the results found with NESMA
estimated fall within a reach of -6% to +15% of the
corresponding result found with a NESMA detailed
approach, and NESMA estimated FSM is performed 1,5
times as fast as a NESMA detailed FSM." [12]

These evaluations are probably optimistic to some extent.
However, they are not precise enough to be used for decision
making: for instance, it is not clear if the reported savings are
evaluated with respect to the whole measurement process or
only with respect to the core part (phases 4-6).

19

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

V. CONCLUSIONS

The measurement process of IFPUG (and Nesma) FP is
often considered too expensive and time consuming. To
overcome this problem, EEM's have been proposed, to
obtain faster and cheaper approximate measure estimates.

However, it is quite difficult to estimate how much
measurement effort can be actually saved by using an EEM
instead of the standard measurement process. This
knowledge would be clearly quite important for managers
who have to choose whether to perform a full-fledged
measurement or an approximate estimation.

Since EEM's indicate what phases of the measurement
process they allow to skip, to be able to evaluate the saving
yielded by EEM's we need to know the relative cost of the
measurement phases that compose the standard IFPUG
measurement process. To this end, a questionnaire was
proposed to professional measurers, and the collected
answers were analyzed.

The results of the analysis are reported in this paper (see
Section B).

Most EEM's allow for skipping phases 5 and 6. Among
such methods are the NESMA estimated [8][11][12],
Early&Quick Function Point [10], simplified Function Point
[14] (not to be confused with the Simple Function Point
method, which is a proper functional size measurement
method, not an EEM method[17][15][16]), ISBSG average
weights (which assigns to each basic functional component
the average weight that type of component has in the ISBSG
dataset [13]).

According to the values given in Tables II and III, we can
see that EEM's that allow to skip phases 5 and 6 are expected
to save 28-30% of the measurement effort. Actually, as
previously mentioned, also phases 1 and 7 are expected to
become faster and simpler when EEM's are used. However,
the analysis reported here does not support the evaluation of
savings in phases 1 and 7, which are largely dependent on
the context.

Future work includes:

e Extending the dataset, especially with answers from
non-European countries, to make the dataset
representative of a larger community of IFPUG users.

e [f possible, collecting real effort data from the field,
instead of subjective indications provided by
measurers. This would make it possible to analyze not
only the relative cost of measurement phases, but also
the actual cost of measurement.

e Characterizing the contexts in which measurement is
performed, to support the empirical evaluation of the
dependency of the relative cost of measurement phases
on the context.

ACKNOWLEDGMENT

The work presented here has been partly supported by the
FP7 Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission and by the
“Fondo di Ricerca d’Ateneo” of the Universita degli Studi
dell’Insubria.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES
A. J. Albrecht, “Measuring Application Development
Productivity”, Joint SHARE/ GUIDE/IBM Application

Development Symposium, pp 83-92, 1979.

A.J. Albrecht and J. E. Gaffney, “Software function, lines of
code and development effort prediction: a software science
validation”, IEEE Trans. on Software Eng., vol. 9, pp. 639—
648, 1983.

International Function Point Users Group, “Function Point
Counting Practices Manual - Release 4.3.1”, 2010.

ISO/IEC 20926: 2003, “Software engineering — IFPUG 4.1
Unadjusted functional size measurement method — Counting
Practices Manual”, ISO, Geneva, 2003.

C. Jones, “A new business model for function point metrics”,
http://concepts.gilb.com/d1185, 2008. Last access June 12%,
2016.

“Methods for Software Sizing — How to Decide which
Method to Use”, Total Metrics, www.totalmetrics.com/
function-point-resources/downloads/R185_Why-use-
Function-Points.pdf, August 2007. Last access June 12,
2016.

L. Santillo, “Easy Function Points — ‘Smart’ Approximation
Technique for the IFPUG and COSMIC Methods”, IWSM-
MENSURA, pp. 137-142, 2012.

ISO/IEC, ISO/IEC 24750:2005, Software Engineering
“NESMA Functional Size Measurement Method, Version 2.1,
Definitions and counting guidelines for the application of
Function Point Analysis. International Organization for
Standardization, Geneva, 2005.

NESMA, “Counting Practice Manual, Version 2.17, 2004.

“Early & Quick Function Points for IFPUG methods v. 3.1
Reference Manual 1.17, April 2012.

nesma, Early Function Point Analysis, July 15, 2015,
http://nesma.org freedocs/early-function-point-analysis/ Last
access June 121, 2016.

H. S. van Heeringen, E. W. M. van Gorp, and T. G. Prins,
Functional size measurement accuracy versus costs is it really
worth it? Software Measurement European Forum, May 2009.

ISBSG, Worldwide Software Development—the Benchmark.
Release 5, International Software Benchmarking Standards
Group, 1998.

R. Meli and L. Santillo, Function Point Estimation Methods: a
Comparative Overview, FESMA conference, pp. 2009.

L. Lavazza and R. Meli. "An Evaluation of Simple Function
Point as a Replacement of IFPUG Function Point." IWSM-
MENSURA 2014. IEEE, pp. 196-206, 2014.

F. Ferrucci, C. Gravino, and L. Lavazza, “Assessing Simple
Function Points for Effort Estimation: an Empirical Study”,
31st ACM Symposium on Applied Computing — SAC 2016,
Pisa, April 4-8, pp. 1428-1433, 2016.

Simple Function Point Association, Simple Function Point -
Functional Size Measurement Method Reference Manual
v01.01, March 2014, http://www.sifpa.org/en/sifp-
method/manual.htm. Last access June 12, 2016.

L. Santillo, M. Conte, and R. Meli. "Early & Quick function
point: sizing more with less." 11th IEEE International
Symposium on Software Metrics, 2005. IEEE, 2005.

L. Lavazza and G. Liu, An Empirical Evaluation of
Simplified Function Point Measurement Processes, Int.
Journal on Advances in Software, vol. 6, n. 1-2, pp. 1-13,
2013.

Kwiksurveys site, https://kwiksurveys.com/s.asp?sid=
aazttngx 1iibno6450647#/ Last accessed June 12, 2016.

nesma association, www.nesma.org. Last accessed June 12,
2016.

20

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[22] ResearchGate, http://www.researchgate.net/ Last accessed
June 12, 2016.
APPENDIX - THE QUESTIONNAIRE

A survey about the relative effort required by the phases
of Functional Size Measurement

A. About you...

Question Possible answers
Are you a certified Function | Yes/No

Point Specialist (CFPS)?

Are you a certified Function | Yes/No

Point Practitioner (CFPP)?

How many years of | Lessthan$
experience do have in FP | Between 5 and 10
counting? More than 10

No more than 200
Between 200 and 1000
Between 1000 and 5000
More than 5000

How many FP per year do you
count on average?

B. Relative effort required by the phases of functional size
measurement

According to your experience, what is the relative effort
required by the phases of functional size measurement?
Please, specify how big is the percentage effort for each
phase, according to your experience. Please note that here we
consider the measurement performed at the beginning of the
project, based on functional user requirements.

Thanks a lot for your answers! If you have any additional
comment or remark, or if you want to be informed on the
results of the survey, please send an email to:
luigi.lavazza@uninsubria.it

Question

Possible answers

Phase 1: gathering the available documentation concerning
functional user requirements

0-5%, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%,
36-40%, 41-45%, 46-50%, 51-55%, 56-60%, 61-65%, 66-
70%, 71-75%, 76-80%, 81-85%, 86-90%, 91-95%, 96-100%

Phase 2: Identifying application boundaries

0-5%, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%,
36-40%, 41-45%, 46-50%, 51-55%, 56-60%, 61-65%, 66-
70%, 71-75%, 76-80%, 81-85%, 86-90%, 91-95%, 96-100%

Phase 3: Determining the measurement goal and scope

0-5%, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%,
36-40%, 41-45%, 46-50%, 51-55%, 56-60%, 61-65%, 66-
70%, 71-75%, 76-80%, 81-85%, 86-90%, 91-95%, 96-100%

Phase 4: Identifying Elementary Processes (Transactions)
and Logical Data Files

0-5%, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%,
36-40%, 41-45%, 46-50%, 51-55%, 56-60%, 61-65%, 66-
70%, 71-75%, 76-80%, 81-85%, 86-90%, 91-95%, 96-100%

Phase 5: Classifying transactions as EI, EO or EQ;
classifying files as ILF or EIF; identifying RET, DET, FTR
and determining complexity

0-5%, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%,
36-40%, 41-45%, 46-50%, 51-55%, 56-60%, 61-65%, 66-
70%, 71-75%, 76-80%, 81-85%, 86-90%, 91-95%, 96-100%

Phase 6: Calculating the functional size

0-5%, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%,
36-40%, 41-45%, 46-50%, 51-55%, 56-60%, 61-65%, 66-
70%, 71-75%, 76-80%, 81-85%, 86-90%, 91-95%, 96-100%

Phase 7: Documenting and presenting the measurement

0-5%, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%,
36-40%, 41-45%, 46-50%, 51-55%, 56-60%, 61-65%, 66-
70%, 71-75%, 76-80%, 81-85%, 86-90%, 91-95%, 96-100%

Please, specify what measurement method the given data
you gave apply to

IFPUG
NESMA
Other

Please, specify if the given data take into account some type
of simplification

No simplification
Nesma estimated

Nesma indicative

Early & Quick FP
Other

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

21

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A Pattern Language for Application-level Communication Protocols

Jorge Edison Lascano'?, Stephen Wright Clyde!
!Computer Science Department, Utah State University, Logan, Utah, USA
2Departamento de Ciencias de la Computacion, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
email: edison_lascano@yahoo.com, Stephen.Clyde@usu.edu

Abstract—Distributed applications depend on application-layer
communication protocols to exchange data among processes and
coordinate distributed operations, independent of underlying
communication subsystems and lower level protocols. Since such
protocols are application-specific, developers often must invent
or re-invent solutions to reoccurring problems involving sending
and receiving messages to meet specific functionality, efficiency,
distribution, reliability, and security requirements. This paper
introduces a pattern language, called CommDP, consisting of
nine design patterns that can help developers understand
existing reusable solutions and how those solutions might apply
to their situations. Consistent with other pattern languages, the
CommDP patterns are described in terms of the problems they
address, their contexts, and solutions. The problems and
consequences of the solutions are evaluated against four
desirable qualities: reliability, synchronicity, longevity, and
adaptability for scalable distribution.

Keywords-design patterns; pattern languages; communication
protocols.

l. INTRODUCTION

At the application level, a distributed system is two or
more processes sharing resources and working together via
network communications to accomplish a common goal
[1][2]. Such systems are ubiquitous in today’s Internet-
connected world and are found in virtually every application
domain, such as personal productivity tools, social media,
entertainment, research, and business. Even single-user
software systems that appear to be non-distributed may in fact
communicate with other processes in the background to
download updates, track usage statistics, or capture error logs,
and are therefore actually distributed systems.

In general, the developers of a distributed system try to
increase its overall throughput, reliability, and scalability by
hosting data and/or operations on multiple machines, while
minimizing network traffic, congestion, and turn-around
times. Exactly how they do this depends heavily on the nature
and requirements of the application. In some cases, developers
may choose to distribute instances of one type of resource,
e.g., image files in a peer-to-peer shared photo library. In other
situations, developers may group resources such that all
instances of a single type are on one server. Still in other cases,
developers can take hybrid approaches, distributing certain
types of resources among peers and hosting other types on
dedicated servers. A closely related design issue deals with the
granularity of the distributed resources, i.e., data and
operations. From a data perspective, the possible choices
range from whole databases to individual records or even
individual fields within records. From an operations

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

perspective, the choices range from entire subsystems to
atomic operations. With today’s programming languages,
many developers follow the object-oriented paradigm,
encapsulating operations with data and making choices for
granularity that range from entire sets of objects to object
fragments [3].

Besides deciding on the granularity and distribution of
resources (data, operations, or objects), developers often have
to consider requirements for security, fault tolerance,
maintainability, openness, extensibility, scalability, and
dynamic quality of service [2]. The degree to which an
application possesses these desirable characteristics is
primarily a consequence of architectural design choices,
which, in turn, place new requirements on inter-process
communications.

The problem is not that existing application-level
communications protocols are poorly designed and
implemented; rather, the problem is that application developer
has to re-invent or re-design them for every new application.

In this paper, we will refer to an exchange among two or
more processes for a particular purpose as a conversation. A
single conversation may be short and simple, like querying a
stock’s price, or it could be long and complex, like the
streaming of a video. The rules that govern a particular type
of conversation are a communication protocol and a collection
of protocols is called a protocol suite [4][5].

Application-layer communication protocols (ACPs) are
often defined on top of other protocols. For example, the
Hypertext Transfer Protocol (HTTP), which is an ACP, is
defined on top of the Transmission Control Protocol (TCP)
[1]. Many higher level ACPs, like webservice-based ACPs,
are in turn defined on top of HTTP [1]. Section Il provides
additional background on protocols and protocol suites, as
well as a brief discussion on layered communication
subsystems.

Because requirements for ACPs can come from an
application’s (a) functional requirements, (b) architectural
design, and (c) use of lower layer protocols, coming up with
effective designs can be challenging. Fortunately, the
problems that developers are likely to encounter are not
uncommon and have known solutions. The key is to capture
this knowledge in a way that developers can easily find it and
adapt it to a new application. This is precisely what design
patterns can do [6].

Unfortunately, design patterns for communication
protocols at application layer have yet not been gathered,
correlated, and formally organized into a cohesive and
thorough collection. To this end, this paper introduces a
system of design patterns, i.e., a pattern language, for ACPs,

22

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

called CommDP. The patterns in CommDP come from a
variety of sources and are by themselves not new ideas, as is
the case for all newly documented design patterns [7]. Section
I11 provides more background information on design patterns
and pattern languages, as well as information about related
work.

Since designing ACPs is different from designing
executable software, it is necessary to discuss desirable
qualities for protocols. Section IV introduces four, namely
reliability, synchronicity, longevity, and adaptability for
scalable distribution. Section V presents a design pattern
template that incorporates these characteristics into the
definition of communication problems and the consequences
of pattern solutions.

Section VI-A introduces three communication idioms that
act as conceptual building blocks for all the ACP patterns in
CommDP. We then provide an overview of the ACP patterns
in Section VI-B. Additional details for the CommDP patterns
are available on-linet.

Patterns are rarely used in isolation; instead, developers
typically weave multiple pattern instantiations together to
create complete solutions [8]. A system of patterns, i.e., a
pattern language, not only includes a collection of patterns,
but relationships among them that help developers know how
they might be effectively combined [9]. Section VI-C
provides a digest of these relationships for CommDP. Finally,
in Section VII, we summarize the value of CommDP and
outline our future research direction.

Il. PROTOCOLS AND PROTOCOL SUITES

Software and electrical engineers model, design, and
implement inter-process communications in layers. Fig. 1
shows a simple 5-layer model commonly favored by those

Process 1 Application-level Process 2
. . conversations . .
Application Application
TCP Streams or UDP
Transport Datagrams Transport
IP Packet
Network s Network
Packet: .
Data Link =R Data Link
Physical Link Raw Data Physical Link

Figure 1. 5-Layer Model for IP-based Communications

who work with IP-based protocols [1][10]. There are several
other common models, such as the 7-layer OSI model [11]. A
conversation between Process 1 and Process 2 can be
discussed at any layer and, for each layer, it must adhere to
agree upon protocol(s) for that layer. For example, if Process
1 were a web browser, Process 2 were a web server, and the
conversation a simple web-page request, then the application-

! http://commdp.serv.usu.edu/

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

layer protocol would be HTTP, the Transport-layer protocol
would be TCP, and the Network-layer protocol would be IP.

Besides providing a convenient way for discussing
protocols, layered models establish a basis for creating
substitutable software communication subsystems. Since we
are addressing ACPs in this paper, we do not deal directly with
design and implementation of these software components.
Nevertheless, we assume that appropriate communication
subsystems exist at the transport layer for streaming of
unstructured data and transmitting datagrams (semi-structured
data). Section V relies on this reasonable assumption to define
four communication idioms.

At the application layer, a protocol governs why, when,
and how processes interact with each other to accomplish a
common goal. Specifically, an ACP should define the
following:

1. the processes involved in the interaction in terms of
the roles they play during a conversation;

2. the possible sequences of messages for valid
conversations;

3. the structure of the messages;

4. the meaning of the messages; and

5. relevant behaviors of the participating processes.

Because processes in a distributed system typically have
to communicate with each other for many different tasks, e.g.,
authentication, resource sharing, and coordination, it is
common for a distributed system to require multiple ACPs,
i.e., an ACP suite.

I1l. DESIGN PATTERNS AND PATTERN LANGUAGES

Christopher Alexander et al. defined a pattern as a reusable
solution to a reoccurring problem [9]. Kent Beck and Ward
Cthe detailsunningham started to apply the concept of pattern
languages to software engineering in 1987 [12], and the idea
was later popularized by Eric Gamma et al. with their
landmark language of 23 patterns [6]. Since then, pattern
languages have been documented for many areas of software
engineering, including architectural design [13][14], user-
interface design [15], event handling [16][17][18], and
concurrency [19]-[25]. There are even patterns specifically for
distributed computing [8], distributed objects [26][27][28],
communication software [29][30], RESTful and SOAP web
services [31], cloud computing [32], and distributed real-time
and embedded systems [33]. However, to date, no pattern
language has been published specifically for ACPs.

There are two hoped-for benefits of pattern languages that
are important to ACP design. First, they create a vocabulary
that enables developers to discuss complex ideas in a few
words [28]. Second, they allow developers of all experience
levels to benefit from expert reusable solutions [34].

IV. QUALITIES OF COMMUNICATION PROTOCOLS

Like software, ACP suites, as whole, should possess
certain desirable qualities that contribute to the overall success
of a system. Some of these desirable qualities come directly

23

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

from the software arena. For example, cohesion is the degree
to which the elements of a software component align with a
single purpose [35]. Cohesion and its definition can apply
almost directly to ACPs, but this is a subject for future
research (see Section VII). Another desirable software quality
directly applicable to ACPs is modularization. Modularization
is the degree to which a system is divided up into independent
components [36]. When a system has good modularization,
developers do not have to look very far beyond a component
to understand it or reason about it. We believe the same to be
true for ACPs, but the details of modularization applied to
ACPs are also a subject for another paper (see Section VII).

Although we believe cohesion and modularization are
important qualities for ACPs, they do not directly help in
describing reoccurring communication problems nor are they
good discriminators for reusable solutions, because all pattern
solutions should, by definition, have good cohesion and
modularization. So, we turn our attention to four other
qualities with discriminating definitions for ACPs, namely:
reliability, synchronicity, longevity, and adaptability for
scalable distribution.

A. Reliability

For an ACP, reliability is the degree to which a process
that sends a message as part of a conversation obtains an
assurance that the intended recipient(s) received it, entirety
and uncorrupted, and reacted as prescribed in the ACP. At the
application level, reliability is typically achieved by the
recipients returning messages that provide the sender with
confirmation that the message was received and/or processed.
When such return messages fail to arrive in a timely fashion,
reliable ACPs will require the sender to retransmit the original
message.

In Section VI, where we present an overview of the ACP
patterns in CommDP, we rank each of the patterns in terms of
reliability using the following 3-point rubric:

Rank/Criteria

3 The problem (P) addressed by the pattern is primarily
concerned with reliability and the solution (S) can
make the following guarantees under normal and
extreme conditions:

a. The sender can distinguish between successful
and failed conversations.

b. The receiver can distinguish between successful
and failed conversations.

c. In successful conversations, any process X that
sends a message M to process Y, gives a timely
assurance to X (in some subsequent message)
that Y received M.

d. In successful conversations, for any process X
that sends a message M to process Y, if M is
supposed to trigger a non-trivial behavior in Y,
then X receives a timely assurance that Y
successfully handled M.

2 Pisconcerned with reliability and S can guarantee at
least (a) and (c) from above in normal situations.

1 Pisnotconcerned with reliability and S doesn’t limit
reliability.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Clearly, there are other conceivable problem/solution
criteria for reliability not listed above, such as a reoccurring
problem where reliability is a major concern and a solution
that doesn’t address it. However, we don’t include such
meaningless classifications because they wouldn’t help
classify patterns with expert, reusable solutions.

B. Synchronicity

In the most general sense, synchronization deals with the
coordinated execution of actions in a distributed system and
what the state information is necessary for that coordination.
This broad definition encompasses, but is not limited to, the
common view among programmers that synchronous
communications occur when the sender of a message stops
and waits for a response from the message receiver [37].
However, this is not the only way to achieve synchronization.
Some other common mechanisms are logical clocks [38][39],
vector clocks [40][41], vector timestamps [42], optimistic
concurrency controls [43], and timing signals.

To evaluate the synchronization requirements for ACPs,
we consider: (a) what are the actions that need to be
coordinated, (b) where will those actions be executed, and (c)
what kind of state information is needed to achieve the desired
coordination. A distributed system may perform many
different tasks comprised of numerous operations, but rarely
all of them have to be fully coordinated. In fact, the more
independent the individual operations are, the more a system
can maximize concurrency and increase throughput. From a
coordination perspective, where the operations take place is
actually more important than what the operations do. For
example, if all of the actions occur in just one process, then
that process may not need to know anything about the state of
the other process. Once developers know what operations
have to be coordinated and where they will execute, they can
consider what local or global state information the
coordination logic will need.

To rank synchronicity for ACP patterns, we will use the
following definitions:

e C is a conversation involving a closed set of processes,

C.P={p,,..,pn}, and a set of messages, C.M =
{my,..,m,} , such that sender(m;)€C.P A
receivers(m;) € C.P for 1<i<n where

sender(m;) is the process that sent message m; and
receivers(m;) is the set of processes that received m;.
o Aisaset of operations, {a,, ..., a,} that run on C. P and
whose execution requires coordination, e.g., ordering,
simultaneous execution, etc.
e h(a) is the host process for operation, a, where a € A
and h(a) EC.P
e s(a) is the state information that h(a) needs to coordinate
a’s execution with the rest of the operations in A.
o H(A) is the set of host processes for all operations in A
Below is an informal 3-point rubric for ranking
synchronicity for CommDP patterns using these definitions.
We believe that a more rigorous ranking system would have
value beyond the categorization of ACP patterns, and its full
definition is beyond the scope and purpose of this paper.

24

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Rank/Criteria

3 The problem (P) addressed by the pattern deals with
situations where |[H(A)| > 1 and the solution (S) can
guarantee that for all a € A, h(a) receives s(a) via
messages, m; € C. M, in time to do the prescribed
coordination.

2 P deals with situations where [H(A)| = 1 and S can
guarantee that for all a € A, h(a) receives s(a) via
messages, m; € C. M, in time to do the prescribed
coordination.

1 P isnot concerned with synchronicity, e.g., |A| = 0,
and S does not limit synchronicity.

C. Longevity

Longevity is the degree to which an ACP can support
long-running conversations caused by long-running
operations. The primary problem for conversation with long-
running operations is that there could be huge span of times
when processes are uncertain of each other’s states. Consider
a simple request/reply conversation where some process A
sends a request to B, but B takes a long time to execute the
requested operation and sends back a reply. While waiting for
the reply, process A doesn’t know if B received the request,
has failed, or is just taking a long time. ACPs that support
long-running operations include mechanisms for exchanging
state information independent of results.

We rank the longevity for ACP patterns according to the
following 3-point rubric:

Rank/Criteria

3 The problem (P) addressed by the pattern is primarily

concerned with long-running conversations and the

solution (S) can guarantee the following in
successful conversations:

a. Participants made aware of each other’s states in
periodically.

b. Each participant in the conversation can detect
when other participants are no longer available or
accessible.

2 Pisconcerned with long-running conversations and

S provides for (a).

1 P is not concerned with long-running conversations

and S doesn’t limit longevity.

D. Adaptability for Scalable Distribution

ACPs can support scalability by providing location
transparency and/or replication transparency [42], and by
allowing resources (data, operations, or objects) to be
distributed across multiple hosts. To understand location and
replication transparency, consider a website with a large
number of resources. It can support scalability by placing the
various resources on an expandable collection of backend
servers and use a front-end server to distribute requests from
browsers. If the browser doesn’t need to know where a
resource is actually located, then the system supports location
transparency. Similarly, as traffic increases, the system could
replicate resources across multiple backend servers. If the
client doesn’t have to know that replicas exist, then the system
supports replication transparency. Both location and
replication transparency simplify scalability.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Another technique for supporting scalability is allowing
complex resources to be broken up into smaller resources and
distributed across multiple servers. One approach for doing
this is to untangle cross-cutting concerns, like security or
logging, from complex operations and host these pieces of
functionality on proxies [44][42].

Here is a simple rubric for the adaptability for scalable
distribution.

Rank/Criteria
3 The problem (P) addressed by the pattern is primarily
concerned about scalability or the distribution of
action or resources and the solution (S) can provide
two or more of following:
a. Location transparency for shared resources
distributed across multiple hosts
b. Load balancing with shared resources replicated
across multiple hosts
¢. Untangling of cross-cutting concerns
separate actions
2 P is concerned with scalability or distribution of
resources and S provides at least one (a), (b), or (c).
1 Pisnotconcerned with scalability or distribution and
S doesn’t limit them.

into

V. TEMPLATE FOR COMMUNICATION-PROTOCOL
PATTERNS

To document the patterns in CommDP, we have
developed a template, loosely based on the way Gamma,
Helm, Johnson and Vlissides documented their patterns [34],
referred to here as the GoF template. The main goal is to keep
the documentation as simple as possible, while still capturing
the details of the pattern. Following are the elements of
CommDP pattern template.

A. Name

As with the GoF template, the name uniquely identifies the
pattern. Since the name will become part of the vocabulary for
the pattern language, it is important that it captures the essence
of the pattern, distinguishes it from other patterns, and is as
concise as possible.

B. Intent

The intent is an abstract for the pattern. It summarizes the
problem, the context, and the solutions, particularly in terms
of reliability, synchronicity, longevity, and adaptability for
scalable distributes.

C. Description

The description consists of three subsections that explain
the problem, context, and solution. The problem subsection
relates closely to the Motivation part in the GoF template, in
that it explains the nature of the reoccurring communication-
protocol design problem. This subsection should highlight the
problem’s need for reliable communications, synchronization,
long-running conversations, or scalable distribution. The
context subsection is like the Applicability in the GoF
template, capturing information when the pattern may or may
not be applicable and assumptions about distributed systems
in which the communications will take place. The solution is

25

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

analogous to the Structure in the GoF template. It focuses on
the describing protocol design ideas and how they can be
adapted.

D. Consequences

As with the GoF template, the consequences are important
part of CommDP pattern definitions because developers will
use them to determine if the pattern is a good fit for a particular
situation. The consequences of CommDP patterns are
described in terms of the qualities discussed in Section 4. The
rankings provide a general classification, and pros explain the
consequences in more detail.

E. Known Uses

Like the GoF template, this part references known
instances of the pattern in production systems

F. Aliases and Related Work

The section combines two elements of the GoF template
by the similar names.

G. References

This section contains a bibliography for the citations made
elsewhere in the pattern definition.

VI. ComMmMmDP

A design pattern is composed of a set of patterns and
idioms that are used together to solve a design engineering
problem.

A. ACP Idioms

Before launching into a description of CommbDP’s
patterns, it is important to first introduce three fundamental
building blocks for all ACPs: point-to-point send, multicast,
and broadcast. These are idioms instead of patterns because
their usage depends on the lower layer communication
protocols and because, by themselves, they do not address the
qualities discussed in Section 4.

A point-to-point send is the transmission of a single
message from one process to another, such as a message sent
over a TCP connection or via a UDP datagram. An underlying
communication subsystem may provide some reliability
relative to the transmission but, at the application-level, a
single message does not allow the sender to know if the
receiver processed the message or anything about the
receiver’s state, nor does it help with longevity or adaptability
for scalable distribution.

A multicast send is the transmission of a single message to
a set of receiving processes [45]. It can be implemented at
virtually any layer in communication hierarchy, including the
physical layer. Mechanisms for identifying the group of
receiving processes vary from sender determined to receiver
subscriptions. By themselves, multicast are idioms for ACPs.
The same is true for broadcasts, which also transmit messages
to multiple receivers [45].

B. ACP Patterns

Table I. COMMDP PATTERNS lists the nine patterns
currently in CommDP, along with their rankings from their

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

consequences relative to the characteristics discussed in
Section 4 (R=Reliability, S=Synchronicity, L=Longevity, and
A=Adaptability for Scalable Distribution). Their full
definitions are available on [http://commdp.serv.usu.edu].

The Request-Reply pattern is undoubtedly the most
common. It addresses the problem where a process, A, needs
to access or use shared resources in another process, B, with a
reasonable degree of reliability and synchronicity. The
solution consists of A sending B a message (i.e., a request)
and B sending back a message (i.e., a reply) after processing
the request, as you can see in Fig. 2. For A, this simple
mechanism provides a modest level of reliability and
synchronization, because the reply proves that B received the
request and can provide relevant information about B’s state.
Furthermore, if A does not receive a reply within a specific
amount of time (i.e., a timeout), it can resend the request. It
can continue to timeout and retry until it eventually receives a
reply or it exceeds some maximum number of retries. This
“timeout/retry” behavior is the essence of the request-reply
pattern.

TABLE |. COMMDP PATTERNS

Name Consequences
R|S|LJ|A

Request-Reply 2 (2|11
Request-Reply-Acknowledge 3 (3|11
Idempotent Retry 3 (1|11
Intermediate State Messages 3 (13|31
Second Channel 1]13[3]1
Front End 11113
Proxy 1]1]1]3
Reliable Multicast 3 (3|12
Publish-Subscribe 2 (1]1]3

A

request

/_

PR A T

BuULSS9I0.1d

PG
|

Waiting with
timeout/try

Figure 2. Request-Reply Message Sequence

The Request-Reply-Acknowledge pattern extends this
solution with a third message (an acknowledgement) that A
sends to B after receiving the reply, and gives B a
timeout/retry behavior with respect to its sending of the reply
and waiting for an acknowledgement, see Fig. 3. This pattern
is useful in situations were significant processing may occur
on A after receiving the reply or when it is problematic for B
to reprocess duplicated requests caused by A’s timeout/retry
behavior. With this pattern, instead of reprocessing a duplicate
request, B can simply cache its replies and resends them to A
when necessary. The acknowledgement tells B that A has
received the reply and, thus, can remove it from its cache. This
pattern offers more reliability and synchronization than
request-reply, but at the cost of an additional message.

26

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

B
request :

E\’:

| 1

1

I

- I>

waiting with
timeout/try
Bulssanoud

acknowledge

Figure 3. Request-Reply-Acknowledge Message Sequence

The ldempotent Retry pattern [46] captures a different
solution to the problem of processing duplicate requests. Like
Request-Reply, its solution consists of A sending a request to
B with a timeout/retry behavior and B sending a reply back to
A. But, unlike Request-Reply, the semantics of the protocol
dedicate the processing of the request must be idempotent.
This pattern applies to situations where the requested
processing is relatively light, i.e., less expensive than caching
replies.

The next pattern, Intermediate State Message, is also
similar to Request-Reply, but addresses the problem of long-
running conversations due to request actions taking
substantial amounts of time to complete. To solve this
problem, it has B send A one or more intermediate messages
that reflect its current state. For example, B may send a
message immediately after receiving the request to let A know
that it got the request, another message when the processing is
10%, another at 20% complete, and so on. Each intermediate
message provides state information about B, which improves
synchronization in the presence of time-consuming actions,
see Fig. 4.

B

1
3
]

- 1>

s 2
T
on 5 1
=S state,
= l‘_./”gl
g.g i |
- | Stat82 1
[(X
[8
1 [0]
1 1 A
I state, =
] 1 va
1
: reply !

Figure 4. Intermediate State Message Sequence
The Second Channel pattern is also for situations

involving long-running conversations, but ones dominated by
significant amounts of data transfers instead of time-

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

consuming actions. Because the large data transfers can delay
intermediate state messages, this pattern’s solution suggests
opening a second communication channel between A and B
that is dedicated to data transfer, leaving the original
communication channel available for intermediate state or
control messages, as it is shown in Fig. 5. The File Transfer
Protocol (FTP) and its variations are classical examples of this
pattern[10][45].

A B
: == Ch,
. ChyInfo ! :
Chy [<- - L
X I

Data messages

]
State or :
contol :
|
]

-'
I
1
|
1
[}
I
|
|
|
I
I
I

messages

s

> i

Figure 5. Second Channel Message Sequence

The Front End pattern addresses the problems of making
the location of shared resource transparent to the client,
allowing the number of resources to change dynamically. It
has a resource client send requests to a front-end process that
automatically redistributes them to appropriate resource
managers, B processes. After processing the request, a
resource manager replies back to the client directly, for a
graphic description of this pattern, you can see Fig. 6. The
front-end process can use a variety of criteria to decide how to
redistribute requests, including request type, resource type or
identity, and resource manager load. By itself, this pattern’s

- 1>
-n
m
lo=]

%’:
|
|

request

Buissanolg

]
=2
=

Waiting with
timeout/try

Figure 6. Front End Message Sequence

27

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

primary focus is on the distribution and scalability of
resources.

Like the Front End, the Proxy pattern, presented in Fig. 7,
introduces a process between a resource client and a resource
manager. However, the intermediate process, called a proxy,
serves other functional purposes besides re-distribution of the
requests, for example it may provide authentication, access
control, audit logging, and data transformation functionality.
Also, the resource manager returns replies through the proxy
to client, completely isolating the client from the resource
manager.

1>
o
\g

request

timeout/try
Processi n/

Waiting with

Bulssanold

ey :

Figure 7. Proxy Message Sequence

The Reliable Multicast pattern builds on the multicast
idiom to provide reliability and synchronization among a
group of processes. Its solution is a protocol that starts with a
process A sending a request message to a group of process,
B={bs, .., bn}. Each process bj sends a reply back to A when it
receives the request and is ready to process it. After A receives
reply from all B processes, then A will multicast a go-ahead
message back out to all B message indicating that they can
proceed with the processing of the request, shown in Fig. 8. In
this way, the execution of the request is synchronized among
all of the B processes. If A fails to receive a reply from every
B process, it can resend the request to some or all of them until
it gets a reply from all of them or terminates the conversation

- I
o

by | .| b
I
I
|
I

Waiting with
timeout/try

BUISS320.4

Figure 8. Reliable Multicast Message Sequence

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

as failed. This pattern focuses on providing strong reliability
and synchronization, but can also help with scalable
distribution of resources.

Finally, the Publish-Subscribe [8] pattern is a powerful
mechanism for decoupling message senders (publisher) from
message receivers (subscribers). With this pattern, an
intermediate process acts as a store-and-forward buffer for
message transmission with the capabilities for managing
subscribers and delivering individual message to multiple
subscribers.

C. CommDP: Pattern Relationships and Composition

Patterns are rarely used in isolation; instead, developers
combine their solutions to solve complex problems. Virtually
any of the CommDP patterns could be combined with any
other pattern, but the more useful combinations are ones that
have complimentary characteristics, like Request-Reply with
Second Data Channel or Request-Reply Acknowledge with
Front End.

To ensure that the CommDP pattern set was as minimal as
possible, we did not include in any pattern in CommDP that
was simply an aggregation of two or more patterns. For
example, there is a common type of distributed system that
deals with information flow and processing. In such systems,
a process A might send a request to B through a series of
intermediate proxy-like processes that transform or augment
data in request on its way to B. At each intermediate step, a
reply is sent back to A, informing it of the message’s process.
Eventually, when the transformed message arrives at B and
processes it, then B sends a final reply message back to A.
This particular solution offers good reliability,
synchronization, longevity, and adaptability to scalable
distribution, but it is actually just a composition of the Proxy
pattern (applied perhaps multiple times) and the Intermediate
State Message pattern.

VIlI. SUMMARY AND FUTURE WORK

CommDP pulls together reusable solutions to reoccurring
design problems with ACPs, filling a much needed gap in the
knowledge base for developers of distributed systems. We
have characterized the nature of the problems that the
CommDP patterns address and the consequences of their
solution in terms of four desirable qualities, namely:
reliability, synchronicity, longevity, and adaptability for
scalable distribution. These qualities are both instructive and
discriminating, in that they can help a developer understand
the solutions and choose the most appropriate solution for a
given situation. However, more work needs to be done to
formalize these qualities and to solidify their sufficiently and
completeness relative communication-protocol design. So this
is one of our research group’s immediate goals.

We also hope to investigate other qualities, like cohesion
and modularization that might be valuable for protocol design
even if they are not good discriminators for design patterns.
Being able to reason about assess, and teach these qualities
more formally will help developers create better distributed
systems.

Finally, over time, we hope the expand the patterns in
CommDP, without adding any that are just compositions of

28

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

existing patterns, to encompasses a boarder range of reusable
solutions for ACPs.

REFERENCES

[1] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,
Distributed Systems: Concepts and Design, 5 edition.
Boston: Pearson, 2011.

[2] “Distributed computing,”
encyclopedia. 27-Feb-2016.

[3] S. W. Clyde, “Object mitosis: a systematic approach to
splitting objects across subsystems,” in , Proceedings of
the Third International Workshop on Object Orientation
in Operating Systems, 1993, 1993, pp. 182-185.

[4] “Communications protocol,” Wikipedia, the free
encyclopedia. 10-Apr-2016.

[5] “protocol | computer science,” Encyclopedia Britannica.
[Online]. Available:
http://www.britannica.com/technology/protocol-
computer-science. [Accessed: 20-Apr-2016].

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G.
Booch, Design Patterns: Elements of Reusable Object-
Oriented Software, 1 edition. Addison-Wesley
Professional, 1994.

[7] J. O. Coplien and N. B. Harrison, Organizational
Patterns of Agile Software Development. Upper Saddle
River, NJ: Prentice Hall, 2004.

[8] F.Buschmann, K. Henney, and D. C. Schmidt, Pattern-
Oriented Software Architecture Volume 4: A Pattern
Language for Distributed Computing, Volume 4 edition.
Wiley, 2007.

[9] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel, A Pattern Language:
Towns, Buildings, Construction. New York: Oxford
University Press, 1977.

[10] C. White, Data Communications and Computer
Networks: A Business User’s Approach, 7 edition.
Boston, MA: Cengage Learning, 2012.

[11] “ISO/IEC 10026-1:1992 - Information technology --
Open Systems Interconnection -- Distributed
Transaction Processing -- Part 1: OSI TP Model.”
[Online]. Available:
http://www.iso.org/iso/iso_catalogue/catalogue_ics/cat
alogue_detail_ics.htm?csnumber=17979. [Accessed:
20-Apr-2016].

[12] K. Beck and W. Cunningham, “Using Pattern
Languages for Object-Oriented Programs,” in Object-
Oriented Programming, Systems, Languages, and
Application, Sep. 1987.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, Pattern-Oriented Software Architecture
Volume 1: A System of Patterns, Volume 1 edition.
Chichester ; New York: Wiley, 1996.

[14] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture Volume 2:
Patterns for Concurrent and Networked Obijects,

Wikipedia, the free

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Volume 2 edition. Chichester England; New York:
Wiley, 2000.

[15] J. Tidwell, Designing Interfaces, 2 edition. Sebastopol,
CA: O’Reilly Media, 2011.

[16] D. C. Schmidt, “Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Dispatching,”
in Pattern Languages of Program Design, New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co.,
1995, pp. 529-545.

[17] 1. Pyarali, T. Harrison, and D. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for
Efficient Asynchronous Event Handling,” in Proc. 3
Annual Conference on The Pattern Languages
Programs, 1997, pp. 1-7.

[18] I. Pyarali, T. Harrison, D. C. Schmidt, and T. D. Jordan,
“Proactor - An Object Behavioral Pattern for
Demultiplexing and Dispatching Handlers for
Asynchronous Events,” in Pattern Languages of
Program Design (J. O. Coplien and D. C. Schmidt, eds.),
Reading, MA: Addison-Wesley, 1995.

[19] M. K. Douglas C. Schmidt, “Leader/Followers - A
Design Pattern for Efficient Multi-threaded Event
Demultiplexing and Dispatching,” in 7th Pattern
Languages of Programs Conference, Allerton Park,
Illinois, 2000.

[20] D. C. Schmidt, “Strategized locking, thread-safe
interface, and scoped locking,” C Rep., vol. 11, no. 9,
1999.

[21] R. G. Lavender and D. C. Schmidt, “Active Object an
Object Behavioral Pattern for ~ Concurrent
Programming” in Pattern Languages of Program
Design 2 edited by John Vlissides, Jim Coplien, and
Norm Kerth., Boston, MA: Addison-Wesley, 1996.

[22] D. C. Schmidt, “Monitor Object,” in Pattern-Oriented
Software Architecture (F. Buschmann, K. Henney, D. C.
Schmidt), vol. 4, West Sussex PO19 8SQ, England: John
Wiley & Sons Ltd, 2007, pp. 368-369.

[23] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-
Async,” presented at the Second Pattern Languages of
Programs, Monticello, Illinois, 1995.

[24] D. C. Schmidt, N. Pryce, and T. H. Harrison, “Thread-
Specific Storage for C/C+,” More C Gems, vol. 17, p.
337, 2000.

[25] D. C. Schmidt and T. Harrison, “Double-checked
locking,” in Pattern languages of program design, vol.
3, 1997, pp. 363-375.

[26] L. Rising, Design Patterns in Communications
Software, 1 edition. Cambridge ; New York: Cambridge
University Press, 2001.

[27] P. Jain and D. C. Schmidt, “Service Configurator: A
Pattern for Dynamic Configuration of Services,” in
Proceedings of the 3rd Conference on USENIX
Conference on Object-Oriented Technologies (COOTS)
- Volume 3, Berkeley, CA, USA, 1997, pp. 16-16.

29

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[28] R. C. Martin, D. Riehle, and F. Buschmann, Pattern
Languages of Program Design 3, 1 edition. Reading,
Mass: Addison-Wesley Professional, 1997.

[29]1 L. Rising, Design Patterns in Communications
Software, 1 edition. Cambridge ; New York: Cambridge
University Press, 2001.

[30] D. C. Schmidt, “Using design patterns to develop
reusable object-oriented communication software,”
Commun. ACM, vol. 38, no. 10, pp. 65-74, 1995.

[31] R. Daigneau, Service Design Patterns: Fundamental
Design Solutions for SOAP/WSDL and RESTful Web
Services, 1 edition. Upper Saddle River, NJ: Addison-
Wesley Professional, 2011.

[32] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P.
Arbitter, Cloud Computing Patterns: Fundamentals to
Design, Build, and Manage Cloud Applications.
Springer Science & Business Media, 2014.

[33] “Patterns for Distributed Real-time and Embedded
Systems.” [Online]. Available:
https://www.dre.vanderbilt.edu/~schmidt/patterns-
ace.html. [Accessed: 04-Mar-2016].

[34] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G.
Booch, Design Patterns: Elements of Reusable Object-
Oriented Software, 1 edition. Addison-Wesley
Professional, 1994.

[35] E. Yourdon and L. L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design, 1st ed. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1979.

[36] “Modularity,” Wikipedia, the free encyclopedia. 11-
Apr-2016.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

[37] M. Burrows, “The Chubby Lock Service for Loosely-
coupled Distributed Systems,” in Proceedings of the 7th
Symposium on Operating Systems Design and
Implementation, Berkeley, CA, USA, 2006, pp. 335-
350.

[38] L. Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System,” Commun ACM, vol. 21, no. 7,
pp. 558-565, Jul. 1978.

[39] M. Raynal, “About Logical Clocks for Distributed
Systems,” SIGOPS Oper Syst Rev, vol. 26, no. 1, pp. 41—
48, Jan. 1992.

[40] F. Mattern, “Virtual time and global states of distributed
systems,” in Parallel and Distributed Algorithms, 1989,
pp. 215-226.

[41] C. Fidge, “Logical Time in Distributed Computing
Systems,” Computer, vol. 24, no. 8, pp. 28-33, Aug.
1991.

[42] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,
Distributed Systems: Concepts and Design, 5 edition.
Boston: Pearson, 2011.

[43] H. T. Kung and J. T. Robinson, “On Optimistic Methods
for Concurrency Control,” ACM Trans Database Syst,
vol. 6, no. 2, pp. 213-226, Jun. 1981.

[44] M. Voelter, “Patterns for Handling Cross-cutting
Concerns in Model-Driven Software Development,” in
ResearchGate, 2005.

[45] A. S. Tanenbaum and D. Wetherall, Computer networks,
5th ed. Boston: Pearson Prentice Hall, 2011.

[46] R. Daigneau, Service Design Patterns: Fundamental
Design Solutions for SOAP/WSDL and RESTful Web
Services, 1 edition. Upper Saddle River, NJ: Addison-
Wesley Professional, 2011.

30

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A Concise Classification of Reverse Engineering Approaches for Software
Product Lines

Rehman Arshad,Kung-Kiu-Lau
School of Computer Science, University of Manchester
Kilburn House, Oxford Road, Manchester, United Kingdom
e-mail: rehman.arshad, kung-kiu.lau @manchester.ac.uk

Abstract—Reverse engineering in product lines means identification
of feature locations in the source code or formation of the non-redundant
feature model from descriptive documents. The feature identification can
be represented by feature to code trace, graphical notations or tools based
view. For adopting a specific approach, it is very important to know how
it works, the kind of expertise needed to use it, the kind of tool support
that is there, the format of the required input for using that approach, the
output notation that it can provide, the related shortcomings that cannot
be avoided and the kind of pre-requisite work each approach demands.
Based on these parameters, this paper provides a classification of the
reverse engineering approaches related to software product lines. Such
classification can help the product line engineers or relevant researchers
to narrow down the practical options for their implementation and to
obtain the better understanding of reverse engineering in product lines.

Keywords: Product Line Engineering; Reverse Engineering;
Static Analysis; Dynamic Analysis; Textual Analysis; Hybrid Anal-
ysis; Feature Location.

I. INTRODUCTION

”The output of a reverse engineering activity is synthesized,
higher-level information that enables the reverse engineer to better
reason about the system and to evolve it in an effective manner”
[1]. Usually, the result of reverse engineering is in higher notation of
abstraction in order to understand the system. Output can be a model,
graphical chart, re-structured code or some notation that can express
the system in a feasible way.

The idea behind a software product line is to make different cus-
tomized software products by using same platform that can support
different variations in all the products. The process of constructing
and managing such common platform (product line) is known as
product line engineering [2].

A product line is usually composed of features ranging from
few dozens to several hundreds [2]. These features are related to
each other by well-defined constraints [3]. Without very extensive
documentation and trace, it is almost impossible for product line
engineers to understand the composition of code in terms of features.
The process of reverse engineering in product lines is used for finding
the feature locations in the code or for constructing a non-redundant
feature model from descriptive documentation. With the evolution of
the product line, the major purpose of reverse engineering is to keep
code and variability modelling synchronised and understandable.

One of the concerns for product line practitioners and pro-
grammers is to know the difference in applicability of different
reverse engineering approaches according to domain, available in-
house expertise, tool support and required notation of extraction after
reverse engineering. This short survey provides a basic classification
for software product line engineers and programmers to know the
difference between reverse engineering approaches for product lines,
the tools that come with some approaches, kind of output provided
by each approach, kind of input needed by each approach, associated
shortcomings to each approach, prerequisites for implementing an
approach and kind of expertise needed in order to implement an
approach. Such comparison between these approaches will help in
the selection of an approach over others on the basis of compatibility

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

with all such parameters. This classification can also help novices
to understand what it takes to do reverse engineering for software
product lines.

The term technique and approach should not be confused in this
survey. One approach can use various well-defined techniques for its
implementation where as an approach is the way in which a process
uses many techniques in order to get the results, e.g., Language
Independent Approach [4] is an approach of reverse engineering
that is based on techniques of Formal Concept Analysis (FCA)
and Latent Semantic Indexing (LSI). Similarly, Static Analysis is a
kind of analysis technique in reverse engineering and this technique
can be used by multiple software product line reverse engineering
approaches. The presented classification in this paper can help the
product line engineers and relevant researchers to narrow down the
practical options for their implementation instead of wasting time on
comparing all such options.

The remainder of this paper is organised as follows. Section
2 explains the related work. Section 3 includes the framework of
classification. Section 4 includes the classified approaches based on
the framework. Section 5 provides available tool support for each
approach and major shortcomings of approaches. Section 6 is the
final section that includes conclusion.

II. RELATED WORK

There are hundreds of approaches in the reverse engineering but
most of them are not applicable in the domain of product lines. In this
paper only the approaches that meet the following criteria have been
selected: they are for product lines in particular, related to product
variants, relevant to feature identification/formation in the complex
system families and tackle the variability of the product variants.
Therefore, many well-known general reverse engineering techniques
like LSI [5], Probabilistic Latent Semantic Indexing (PBLSI) [6] and
NL-Queries [7] are not part of this paper. These techniques can be
part of complex reverse engineering approaches related to software
product lines but as standalone techniques they are not relevant. This
is because a product line is constructed in terms of features and
their variations, and general techniques cannot produce results in
terms of features and variants. It is not the intention of this paper
to include the approaches that use (reuse) artefacts to construct a
product line. Approaches with the sole purpose of reverse engineering
are considered only, therefore approaches like clone and own are not
part of this classification because they are mainly used to reuse not
to reverse engineer.

This paper covers more than thirty approaches of reverse
engineering in the field of software product lines. Each approach
uses many techniques of reverse engineering. Techniques like LSI,
FCA, etc., do not belong to a specific domain. The way an approach
uses these techniques determines whether the approach is suitable for
product lines or not. Few surveys have classified reverse engineering
techniques but none have done it solely for software product lines
and their angle of interest is quite different, e.g., Bogdan Dit’s
survey [8] is the closest one because it covers the identification of

31

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

feature locations. Work of Michael L. Nelson [9] covers automation
of reverse engineering in legacy system. Purpose of M. Spiros and
K. Moshe’s survey [10] is to classify the tool support for specific
operating systems. Such classifications and surveys cannot help in
the domain of software product lines. They cannot help in deciding
the applicability of reverse engineering because they do not discuss
the classification parameters with respect to software product lines.
A classified tool of reverse engineering may be great from operating
system’s point of view but can be useless for software product lines
at the same time. Overall, no such survey exists at the moment that
has discussed the reverse engineering from software product line’s
point of view.

III. FRAMEWORK OF CLASSIFICATION

Table I. shows the framework of classification in terms of
different parameters. The parameters used for classification are;

o Analysis Technique

« Required input notation

¢ Generated output notation

e Phase Compatibility

¢ Required Expertise

o Pre-Requisite Implementation

These parameters are selected by considering their importance for
applicability of practical implementation. Analysis techniques define
the type of analysis used by an approach for reverse engineering.
Required input notation classifies the approaches based on the input
they require for execution. Generated output notation classifies the
approach based on the type of output produced by each approach.
Phase compatibility means whether an approach is suitable for con-
struction or maintenance of a product line. Required expertise groups
the approaches based on the kind of techniques they use and pre-
requisite implementation classifies the approaches based on the kind
of work they require before implementation. Further classification of
these parameters is presented in Table 1.

IV. CLASSIFICATION OF REVERSE ENGINEERING APPROACHES
FOR SOFTWARE PRODUCT LINES

This section will classify the reverse engineering approaches for
software product lines based on analysis technique, input notation
required by each approach, output notation, phase compatibility, pre-
requisite implementation required by each approach and expertise
required by each approach. All these classification parameters are
presented in the following sections.

A. Classification based on Analysis Technique

Analysis techniques in reverse engineering are classified as
follows: [8]

o Static Analysis Techniques

o Textual Analysis Techniques

e Dynamic Analysis Techniques

o Hybrid Analysis Techniques

1) Static Analysis Techniques: Static feature location tech-

niques are based on structural information of the code. They consider
control flow, data flow and dependencies in the code to identify
features. These techniques work by building a model of states of
the program and then determine all possible routes of the program
at each step. To design such approach one has to keep the balance
between preciseness and granularity and some abstraction is used to
consider which steps should be added in the static analysis model
[11].

These techniques are based on the control structure of the

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

TABLE I. REVERSE ENGINEERING: FRAMEWORK OF
CLASSIFICATION

Parameter of Classifi- | Classification

cation

Static

Textual
Dynamic
Hybrid
Source Code
Feature Set
Description
Feature Model
Code

Analysis Technique

Req. Input Notation

Output Notation Concept
Lattices
Graphs

Feature to

Code Trace

View Based and

Construction
Maintenance
Profiling

FCA

LSI

Vector Space
Modelling
(VSM)
Domain
Knowledge
Natural
Language
Processing
(NLP)
Profiling (Code
Instrumenta-
tion)

Approach Cen-
tric

Phase Compatibility

Required Expertise

Pre-Requisites

source code, hence their result has very good recall but the major
drawback is lack of precision. False positive results are very common
in static techniques as these techniques work on user-defined model of
control flow rather than the actual trace of the program. The biggest
advantage is the future re-usability.

The output of such techniques can be a configuration matrix, a
dependency graph or re-formation of the actual source code. Usually,
these techniques are used to extract a dependency matrix between the
source code and features in order to understand the relation between
code and the variability model composed by features. RecoVar [12],
Language Independent Approach [4], Dependency Graph [13], Con-
cern Graph [14], Automatic Generation [15], Concern Identification
[16] and Semi-Automatic Approach [17] are some of the approaches
related to the product line engineering based on static analysis.

2) Textual Analysis Techniques: Few researchers [18] referred
textual as a static technique but it is quite different from a standard
static technique. Textual analysis does not need any abstraction model
and uses the query-based input to match the words with identifiers
and comments in the code.

Most textual analysis reverse engineering techniques produce
feature locations as an output. These code locations are displayed
either by concept lattices (if Formal Concept Analysis is used) or
by dependency graphs. Examples of such approaches are Combining

32

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

FCA with IR [18] and Source Code Retrieval [19]. Few approaches
produce feature models from the provided description or the feature-
set as description. Examples of these approaches include Evolutionary
Algorithms [20], Reverse Engineering Feature Models [40] and
Feature Models from Software Configurations [21]. Few textual based
approaches also extract and show the code in terms of variability,
e.g., Product Variants [22] and few represent domain concepts after
extracting them from the code in order to provide understanding of
the code in simple domain terms, e.g., Natural Language Parsing [23].

The biggest problem is the user designed queries that are
responsible for almost the whole analysis and quality or accuracy of
the output. Another problem is polysemy and implicit implementation
of the feature across many locations.

3) Dynamic Analysis Techniques: Dynamic analysis uses exe-
cution trace of the program to follow and identify the feature locations
by following running code. Test scenarios or profiling is needed in
order to design an execution trace with respect to some feature.
Profiling is instrumentation of the code and it is a difficult task.
Usually one scenario can only involve one feature, hence in case
of hundreds of features, dynamic analysis becomes more complex.
For every new profiling, old results are useless whereas in static we
can reuse the rules of abstraction as many times as we want with
continuous refinement.

Dynamic analysis output is always a trace that shows feature
locations in the code. This relation is represented either as concept
lattices or view-based tools. The abstraction level of code in the
trace varies from approach to approach. Dynamic Feature Traces
[24], Feature to code trace [25], Focused views on Execution Traces
[26], Software evolution Analysis [27], Trace Dependency Analysis
[28], Featureous [29], Embedded Call-Graphs [30], Scenario-Driven
Dynamic Analysis [31] and Concept Analysis [32] are examples of
product line approaches based on dynamic analysis.

4) Hybrid Analysis Techniques: A hybrid analysis in reverse
engineering can be a combination of Dynamic-Static, Dynamic-
Textual, Textual-static or Dynamic-Textual-static analysis. Hybrid
analysis can join recall of static and precision of dynamic analysis.
Recall is required in order to make dynamic analysis reusable in
the future. So a static analysis can obviate the collection of certain
information and dynamic can run over that collection in order to
get better results. Also, many approaches like [33] use one analysis
technique just to rank the elements of the code so this ranking of
feature relevancy will be considered in the final results in order to
increase accuracy.

Hybrid techniques provide feature locations either by using
concept lattices or graphs. Static and Dynamic Analysis [34], Cer-
berus [33], Sniafl [35], Locating Features in Source Code [36], Using
Landmarks and Barriers [37] and A Heuristic-Based Approach [38]
are examples of reverse engineering approaches based on hybrid
analysis.

Few approaches that cannot be fit in the classification are
the ones that are dependent on pure data mining in order to cor-
relate product variants to dependency graphs in order to predict
the influence of one feature on others, e.g., [39]. The selection of
analysis technique is based on many parameters like availability of
the abstraction model, trade-off between false positive and accuracy,
availability of profiling to run every feature and most importantly the
kind of reverse engineering needed. The whole classification of this
section is summarised in Table II.

B. Classification based on Input and Output

After selecting an appropriate analysis technique on grounds
of compatibility and associated shortcomings, it is very important to

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

TABLE II. REVERSE ENGINEERING:CLASSIFICATION OF REVERSE
ENGINEERING APPROACHES BASED ON ANALYSIS

Reverse Engineering Classifica-
Approaches

RECoVar [12], Language Indepen-
dent Approach [4], Dependence
Graph [13], Concern Graphs [14],
Concern Identification [16], Au-
tomatic Generation [15], Semi-
Automatic Approach for Extraction
[17]

Product Variants [22], Natural lan-
guage Parsing [23], Evolutionary Al-
gorithms [20], Software Configurations
using FCA [21], Source Code Retrieval
[19], Combining FCA with IR [18],
Reverse Engineering Feature Models
[40]

Dynamic Feature Traces [24],
STRADA [25], Call-Graphs [30],
Focused views on Execution Traces
[26], Concept Analysis [32], Trace
Dependency Analysis [28], Scenario
Driven Dynamic Analysis [31],
Featureous [29], Software Evolution
Analysis [27]

Static and Dynamic Analysis [34], Cer-
berus [33], Heuristic-Based Approach
[38], Landmarks and Barriers [37], Lo-
cating Features in Source Code [36],
SNIAFL [35]

Analysis
tion

Static

Textual

Dynamic

Hybrid

know about required input notation and generated output notation
of each approach. Some input notations are not compatible with
some product lines implemented form and a lot of work is needed
in order to transform code into specific input notation. To avoid
extra work, one can select an approach that is most appropriate
for the environment. The required input notation can be classified
as Source Code, Feature Set and Description Based Input. Feature
Set means configuration matrix or product-feature mapping in some
notation where Description includes user Queries, Document-Corpus
and Textual Input like natural language text etc.,

Similarly, output can also be classified into Feature Model,
Generated Code and View Based Output. View Based Output can
further be classified into concept Lattices or graphical notations and
ranked Based Mapping or Feature to Code Trace.

Few approaches produce feature models as output [20] [21]
[40]. Few transform code into core and variability parts [4] [22]. Few
approaches generate feature-code trace [15] [17] [19] [23]- [25] [28]
[31]- [36] [38]. Few generate output in the form of concept lattices
or graphs [12]- [14] [16] [18] [27] [30] [37]. Concept lattices are
different from general graphs because they are generated by defining
the FCA and can be manipulated by changing the formal contexts
whereas general graphs usually show variability models extracted
from the code.

Hybrid approaches in this category use one analysis technique to
reinforce the results and then use another technique on the generated
output of the first one. Such hybrid approaches show results in the
form of ranked based mapping where each mapping has a value based
on its validity. Ranked based mapping is also a trace but it includes
the ranking of the traces. Few approaches like [26] [29] generate both

33

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE III. REVERSE ENGINEERING: CLASSIFICATION BASED
ON REQUIRED INPUT

TABLE IV. REVERSE ENGINEERING: CLASSIFICATION BASED ON
GENERATED OUTPUT

tomatic Generation [15], Reverse Engi-
neering Feature Models [40]

trace and graphical views. Table III. and IV. show the classification
based on these parameters.

C. Classification based on Phase Compatibility, Pre-requisite Imple-
mentation and Required Expertise

Table V. shows the pre-requisites for implementing an approach.
Pre-requisites have classified into approach centric process, i.e.,
macro constant’s selection, landmarks method selection, domain con-
cepts, corpus extraction and profiling. Profiling is the most common
pre-requisite. RECoVar [12] is an approach that requires selection of
the macro constants before it can be applied. It shows code based
variability by extracting a model from the code. Users have to define
the macro constants in the code to use them in conditional compiling
while generating the model. Such macro constants can be if-def
blocks or anything that can define a variation in pre-compilation and
they are called variation points. Another approach Landmarks and
Barriers [37] demands selection of landmark methods. Landmark
methods are those that have a key role in execution of a feature.
Hence, in order to select landmark features one must have to know
that feature composition in terms of code. Barrier methods are those
methods that do not have major importance from a feature point of
view and they have to be selected in order to decrease the size of
generated variability graph. Combining FCA with IR [18] demands
generation of the document corpus by LSI. Document corpus is the
generation of the part of the code that matches the user queries and
it should be in vector space form which is a well known form in
LSI. FCA uses this notation to start matching and producing the
output in the form of concept lattices. Dependence Graph [13] needs
identification and selection of the nodes that should be included

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Required Input Reverse Engineering Tech- Generated Output Reverse Engineering
niques Techniques
RECoVar [12], Call-Graphs Feature Model Evolutionary Algorithms
[30], Concern Identification [16], [20], Software
Scenario Driven Dynamic Analysis Configurations using FCA
[31], Featureous [29], Language [21], Reverse Engineering
Independent Approach [4], Semi- Feature Models [40]
Automatic Approach for Extraction Code Product Variants [22],
[17], SNIAFL [35], Static and Language Independent
Source Code Dynamic Analysis [34], Cerberus [33], App%oafh [4] b
Bug Localization [19], Focused views Concept Combining FCA with
on Execution Traces [26], Heuristic- View-Based Lattices or | IR [18], Landmarks
Based Approach [38], Dependence Graphical and Barriers [37], Call-
Graph [13], Software Evolution notations Graphs [30], Concern
Analysis [27], Concern Graphs [14], Identification [16],
Concept Analysis [32] Dependence Graph
Product Variants [22], Natural lan- [13], Concern Graphs
guage Parsing [23], Dynamic Feature [14], Software Evolution
Feature Set Traces [24], Evolutionary Algorithms Analysis [27], RECoVar
[20], Software Configurations using [12], Focused views on
FCA [21], Static and Dynamic Anal- Execution Traces [26],
ysis [34], STRADA [25] Featureous [29]
Description Cerberus [33], Landmarks and Barriers Cerberus [33], SNIAFL
(Queries, [37], Locating Features in Source Code [35], Source Code
Document- [36], Source Code Retrieval [19], Trace Retrieval [19], Scenario
Corpus, Dependency Analysis [28], SNIAFL Driven Dynamic Analysis
Textual input) [35] Combining FCA with IR [18], Au- [31], STRADA [25],

Natural language Parsing

[23], Trace Dependency
Analysis [28], Concept
Analysis [32], Dynamic

Ranked Based Feature Traces [24], Static

Manpin or and Dynamic Analysis

pping [34], Locating Features
Feature to in Source Code [36]
Code Trace ’

Heuristic-Based Approach
[38], Semi-Automatic
Approach for Extraction
[17], Focused views
on Execution Traces [26],
Featureous [29], Automatic
Generation [15]

in the search graph in order to search the implementation of a
feature. The relevant code parts cannot be selected unless one has
the knowledge and some familiarity with the domain and composition
of the features in terms of code. So some code understanding and
domain knowledge is must before executing this approach. In case
of Reverse Engineering Feature Models [40], domain knowledge is
needed because domain expert have to select the parent of each
feature at each step and correct decisions require code and domain
knowledge.

Table VI. shows the phase compatibility classification. Phase
Compatibility shows whether an approach is suitable to use in the
construction of a product line or in the maintenance of a product
line. There are several approaches that are not designed for the
maintenance or evolution but for the construction of a product line
and hence they should be used for this purpose, e.g., approaches
that can produce Feature Models are more appropriate to use in

34

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE V. REVERSE ENGINEERING: PRE-REQUISITE

TABLE VI. REVERSE ENGINEERING: PHASE COMPATIBILITY WITH

REQUIREMENTS SOFTWARE PRODUCT LINES
Pre-Requisite Implemen- | Reverse Engineering Techniques Approaches Phase Compatibil-
tation ity
Dynamic Feature Traces [24], Sce- RECoVar [12], Dependence Graph
nario Driven Dynamic Analysis [13], Concern Graphs [14], Concern
[31] Trace Dependency Analy- Identification [16], Automatic Gener-
sis [28], Featureous [29], Lo- ation [15], Natural language Parsing
cating Features in Source Code [23], Bug Localization [19], Combin-
Profiling [36], Static and Dynamic Analy- ing FCA with IR [18], Dynamic Fea-
sis [34], Cerberus [33], STRADA ture Traces [24], STRADA [25], Call-
[25], Call-Graphs [30], Focused Graphs [30], Focused views on Ex-
views on Execution Traces [26], ecution Traces [26], Concept Analy- .
. . . . Maintenance
Concept Analysis [32], Heuristic- sis [32], Trace Dependency Analysis
Based Approach [38], Software [28], Scenario Driven Dynamic Anal-
Evolution Analysis [27] ysis [31], Featureous [29], Software
Macro Constants Selection | RECoVar [12] Evolution Analysis [27], Static and Dy-
Selection of Landmark | Landmarks and Barriers [37] namic Analysis [34], Cerberus [33],
Methods Heuristic-Based Approach [38], Land-
Document corpus extrac- | Combining FCA with IR [18] marks and Barriers [37], Locating Fea-
tion for LSI tures in Source Code [36], SNIAFL
Understanding of Domain | Dependence Graph [13], Reverse [35]
Concepts Engineering Feature Models [40] Product Variants [22], Semi-Automatic
Approach for Extraction [17], Evo-
lutionary Algorithms [20], Software .
Construction

constructing a product line rather than maintaining one because a
non-redundant Feature Model can be achieved from requirement text
or product lines initial product-feature documentation. Evolutionary
Algorithm [20], Software Configuration using FCA [21] and Reverse
Engineering Feature Models [40] are examples of such approaches.

Table VII. shows required expertise that are grouped as FCA,
LSI, NLP, Profiling, VSM and Domain Knowledge. Product Variants
[22], Concept Analysis [32], Combining FCA with IR [18] and Lo-
cating Features in Source Code [36] require the knowledge of FCA.
FCA demands the designing of a formal context in which objects
are defined in order to generate the model. Product Variants [22],
Cerberus [33], Combining FCA with IR [18] and Heuristic-Based
Approach [38] require the knowledge of LSI. LSI is a well known
textual technique, mostly used in search engines. Natural language
Parsing [23] requires Natural Language Processing which is a well
established research domain on its own. Dynamic Feature Traces
[24], Scenario Driven Dynamic Analysis [31], Trace Dependency
Analysis [28], Featureous [29], Locating Features in Source Code
[36], Static and Dynamic Analysis [34], Cerberus [33], STRADA
[25], Call-Graphs [30], Focused views on Execution Traces [26],
Concept Analysis [32], Heuristic-Based Approach [38] and Software
Evolution Analysis [27] require profiling. SNIAFL [35] requires
the knowledge of VSM. VSM is a special kind of LSI. Finally,
Dependence Graph [13] and Reverse Engineering Feature Models
[40] need the domain knowledge and the reasons are as stated in the
previous section.

V. AVAILABLE TOOL SUPPORT, LANGUAGE CONSTRAINT AND
SHORTCOMINGS

This section explains Primary Tool, Secondary Tool, Evaluation
Language and Major Shortcoming related to each approach. Primary
Tool attribute means tools that are specifically made for the approach
where secondary Tool means third party tools that are not designed
for the specific approach but help in implementing one. Most of the
tools are academic where Reverse Engineering Feature Models [40],
Focused views on Execution Traces [26] and Featureous [29] have
professional tools. Table VIII. and Table X. show the primary tools

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Configurations using FCA [21], Lan-
guage Independent Approach [4], Re-
verse Engineering Feature Models [40]

TABLE VII. REVERSE ENGINEERING: REQUIRED EXPERTISE

Approaches Required Exper-
tise

Product Variants [22], Concept Analy-

sis [32], Combining FCA with IR [18], | FCA

Locating Features in Source Code [36]

Product Variants [22], Cerberus

[33], Combining FCA with IR [18], | LSI

Heuristic-Based Approach [38]

Natural language Parsing [23] NLP

Dynamic Feature Traces [24], Scenario

Driven Dynamic Analysis [31], Trace

Dependency Analysis [28], Feature-

ous [29], Locating Features in Source

Code [36], Static and Dynamic Analy- Profiling

sis [34], Cerberus [33], STRADA [25],
Call-Graphs [30], Focused views on
Execution Traces [26], Concept Anal-
ysis [32], Heuristic-Based Approach
[38], Software Evolution Analysis [27]
SNIAFL [35]

Vector Space Mod-

elling
Dependence Graph [13], Reverse En- .
. . Domain
gineering Feature Models [40] Knowledge

and secondary tools availability for each approach.

Evaluation language shows the language in which an approach
has been experimented and validated. Approaches that generate
feature models and require description based documents as input are
language independent, e.g., Evolutionary Algorithms [20] and Soft-
ware Configurations using FCA [21]. Few approaches like RECoVar

35

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE VIII. REVERSE ENGINEERING: PRIMARY TOOL SUPPORT

TABLE IX. REVERSE ENGINEERING: EVALUATION LANGUAGE OF

APPROACHES
Approach Primary Approach Evaluation
Tool Language
RECoVar [12], Evolutionary Algo- Product Variants [22], RECoVar [12], Evolu- | Language Inde-
rithm [20], Feature Models from Soft- tionary Algorithm [20], Feature Models from | pendent
ware Configurations [21], CERBERUS Software Configurations [21]
[33], Source Code Retrieval [19], Com- Natural Language [23], Language Independent
bining FCA with IR [18], Heuristic- NA [4], Semi Automatic Approach [17], Dynamic
Based Approach [38], Dependence Feature Traces [24], Static and Dynamic Anal-
Graph [13], SNIAFL [35], Trace De- ysis [34], CERBERUS [33], STRADA [25],
pendency Analysis [28], Locating Fea- Source Code Retrieval [19], Combining FCA
: JAVA
tures in Source Code [36], Scenario- with IR [18], Heuristic-Based Approach [38],
Driven Dynamic Analysis [31] Software Evolution Analysis [27], Concern
Product Variants [22] Progmodel Graph [14], Automatic Generation [15], Con-
Natural Language [23] Patch Tool cern Identification [16], Featureous [29], Using
Language Independent [4] ExtractorPL Landmarks and Barriers [37]
Semi Automatic Approach [17] CIDE Concept Analysis [32], Embedded Call-Graphs
Dynamic Feature Traces [24] DFT [30], Locating Features in Source Code [36], | C
Static and Dynamic Analysis [34] Customised SNIAFL [35], Dependence Graph [13]
BIT Source Code Retrieval [19], Focused Views
STRADA [25] STRADA on Execution Traces [26], Reverse Engineer-
Focused Views on Execution Traces [26] | CGA-LDX ing Feature Models [40], Scenario-Driven Dy- | C++
Concept Analysis [32] Customised namic Analysis [31], Embedded Call—Graphs
GCC [30], Trace Dependency Analysis [28]
Software Evolution Analysis [27] Trace Scrapper
Concern Graphs [14] FEAT
Automatic Generation [15] EclipsePlug- TABLE X. REVERSE ENGINEERING: SECONDARY TOOL SUPPORT
in
Concern Identification [16] CoDEx
Featureous [29] Featureous Approach Secondary
Using Landmarks and Barriers [37] Prototype Tool Tool
Embedded Call Graphs [30] Call Graph Product Variants [22], Natural Language [23],
Prototype Language Independent [4], Semi Automatic
Reverse Engineering Feature Models [40] | CDT Approach [17], Dynamic Feature Traces [24],
TOOLS STRADA [25], CERBERUS [33], Focused
(LVAT) Views on Execution Traces [26], Dependence
Graph [13], Software Evolution Analysis [27], NA
. Lo Concern Graphs [14], Automatic Generation
[12] are methodologle{s and hence thf':y can be appllec! in any language [15], Locating Features in Source Code [36],
but the approaches like Focused views on Execution Traces [26_], Featurcous [29], Concern Identification [16],
Featureous [29] and Call Graph [30] .are language dependent as. their Embedded Call Graphs [30], Using Landmarks
tools are dependent on the progrémmlng language they have designed and Barriers [37], Reverse Engineering Feature
for. Table IX. shows the evaluation language of each approach. Models [40]

One major shortcoming is the inability of an approach to con- RECoVar [12] Treeviz,
sider cross cutting constraints (CTC), e.g., Semi-Automatic Approach Orange
for Extractiog [17] and Language In'dependvent Approach [4]. Eew Feature Models from Software Configurations [21] | FAMA,
approaches like Software Configurations using FCA [21] consider SPLOT
CTC but they cannot produce feature model beyond two levels of Source Code Retrieval [19] Gibbs
hierarchy. Results of Dynamic Feature Traces [24], STRADA [25], LD A+’+
Source Code Retrieval [19], Concept Analysis [32], Combining FCA — -
with IR [18], Heuristic-Based Approach [38] and Trace Dependency Combining FCA with IR [18] SreML,
Analysis [28] are highly dependent on the user defined input. This - Collumbus
. . . . Trace Dependency Analysis [28] Rational
input is approach centric and can be code knowledge, profiling, test
scenarios or setting the formal context. More detail is expressed _ _ _ _ Coverage
in Table XI. Language constraint, availability of tool and relevant SCCnaI.IO-Drlven D}fnamlc Analysis [31] JGraph
shortcomings are the primary factors to consider one approach over Evolutionary Algorithm [20] BETTY
the others. Static and Dynamic Analysis [34] SA4]

Concept Analysis [32] Graphlet
VI. CONCLUSION Heuristic-Based Approach [38] MoDeC

This paper has presented a concise classification of reverse SNIAFL [35] SMART
engineering approaches in software product lines. Individual reverse
Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5 36

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE XI. REVERSE ENGINEERING: MAJOR SHORTCOMING OF
APPROACHES

Approach Major Shortcoming
Language Independent Ap- | CTC not considered
proach [4], Semi Auto-
matic Approach [17]
Dynamic Feature Traces
[24], STRADA [25],
Source code Retrieval
[19], Concept Analysis
[32], Trace Dependency | Result dependency on user
Analysis [28], Heuristic- | defined input

Based Approach [38],
Combining FCA with IR

[18]
RECoVar [12], Reverse
Engineering Feature

Models using Landmarks | Require code understand-
and Barriers [37], | ing

Dependence Graph [13]
Natural Language [23], | High computation cost
Evolutionary ~ Algorithm
[20]

Product Variants [22] Non-re-usability if feature
set changes

Feature Models from Soft- | Extract Feature Model for

ware Configurations [21] two levels of hierarchy
Static and Dynamic Analy- | Work for only one feature
sis [34] at a time

CERBERUS [33], Locating | No tool support
Features in Source Code
[36]

Focused Views on Execu- | Only work for C/C++ code
tion Traces [26]
Software Evolution Anal- | Method implementation
ysis [27], SNIAFL [35], | neglected

Scenario-Driven Dynamic
Analysis [31]

Concern Graphs [14], Con- | Intra-method flow of calls

cern Identification [16] neglected

Automatic Generation [15] | Implicit features neglected
Featureous [29] JAVA tool dependency
Embedded Call-Graphs | C/C++ tool dependency
[30]

engineering techniques that cannot produce results in terms of fea-
tures and variants of a product line were not considered. The primary
aim of this short guide is to present such information that can narrow
down the practical options of implementation for the product line
engineers so they can discard the non-feasible options of reverse
engineering. The reverse engineering in product lines is considered
as extraction of artefacts from the code of a product line. However,
current approaches do not propose to extract something architectural
or in a component notation. Reverse engineering is focused on
variability management and features locations at the moment. Future
work in this domain can include the approaches that can extract
executable architecture from a product line code in order to reuse
it across many systems. Hence, the concept of reverse engineering in
software product lines should consider the architectural extraction in
future.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

[1]

[2

—

[3]

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

REFERENCES

A. C. Telea, “Reverse engineering—recent advances and applications,”
Ed. Intech 2012.

K. Pohl, G. Bockle, and F. Van Der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, 2005.
F. vd Linden, K. Schmid, and E. Rommes, “Software product lines
in action: The best industrial practice in product line engineering.
secaucus.”

T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. Le Traon, “Towards
a language-independent approach for reverse-engineering of software
product lines,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing, pp. 1064—-1071, ACM, 2014.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, p. 391, 1990.
T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 50-57, ACM, 1999.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Proceedings of the 31st International Conference on Software Engi-
neering, pp. 232-242, IEEE Computer Society, 2009.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53-95, 2013.

M. L. Nelson, “A survey of reverse engineering and program compre-
hension,” arXiv preprint ¢s/0503068, 2005.

J. Raymond, J. Canzanese, O. Matthew, M. Spiros, and K. Moshe, “A
survey of reverse engineering tools for the 32-bit microsoft windows
environment,” Drexel University, 2005.

M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA 2003: ICSE Workshop on Dynamic Analysis, pp. 24-27, Citeseer,
2003.

B. Zhang and M. Becker, “Recovar: A solution framework towards
reverse engineering variability,” in Product Line Approaches in Software
Engineering (PLEASE), 2013 4th International Workshop on, pp. 4548,
IEEE, 2013.

K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph.,” in IWPC, pp. 241-247, Citeseer, 2000.

M. P. Robillard and G. C. Murphy, “Concern graphs: finding and describ-
ing concerns using structural program dependencies,” in Proceedings of
the 24th international conference on Software engineering, pp. 406416,
ACM, 2002.

M. P. Robillard, “Automatic generation of suggestions for program
investigation,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 11-20, ACM, 2005.

M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” in Software Maintenance and Reengineering, 2009. CSMR’09.
13th European Conference on, pp. 109-118, IEEE, 2009.

M. T. Valente, V. Borges, and L. Passos, “A semi-automatic approach
for extracting software product lines,” Software Engineering, IEEE
Transactions on, vol. 38, no. 4, pp. 737-754, 2012.

D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in
Program Comprehension, 2007. ICPC’07. 15th IEEE International
Conference on, pp. 37-48, IEEE, 2007.

S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Source code retrieval for
bug localization using latent dirichlet allocation,” in Reverse Engineer-
ing, 2008. WCRE’08. 15th Working Conference on, pp. 155-164, IEEE,
2008.

R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura, and
A. Egyed, “Reverse engineering feature models with evolutionary algo-
rithms: An exploratory study,” in Search Based Software Engineering,
pp. 168-182, Springer, 2012.

R. Al-Msie’Deen, M. Huchard, A.-D. Seriai, C. Urtado, and S. Vauttier,
“Reverse engineering feature models from software configurations using
formal concept analysis,” in CLA 2014: Eleventh International Confer-
ence on Concept Lattices and Their Applications, vol. 1252, pp. 95-106,
2014.

Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of
product variants,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, pp. 145-154, IEEE, 2012.

S. L. Abebe and P. Tonella, “Natural language parsing of program
element names for concept extraction,” in Program Comprehension
(ICPC), 2010 IEEE 18th International Conference on, pp. 156—159,
IEEE, 2010.

37

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

A. D. Eisenberg and K. De Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” in Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, pp. 337-346,
IEEE, 2005.

A. Egyed, G. Binder, and P. Grunbacher, “Strada: A tool for scenario-
based feature-to-code trace detection and analysis,” in Companion to
the proceedings of the 29th International Conference on Software
Engineering, pp. 41-42, IEEE Computer Society, 2007.

J. Bohnet, S. Voigt, and J. Dollner, “Locating and understanding features
of complex software systems by synchronizing time-, collaboration-and
code-focused views on execution traces,” in Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on, pp. 268—
271, IEEE, 2008.

O. Greevy, S. Ducasse, and T. Girba, “Analyzing feature traces to
incorporate the semantics of change in software evolution analysis,” in
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pp. 347-356, IEEE, 2005.

A. Egyed, “A scenario-driven approach to trace dependency analysis,”
Software Engineering, IEEE Transactions on, vol. 29, no. 2, pp. 116—
132, 2003.

A. Olszak and B. N. Jgrgensen, “Featureous: a tool for feature-centric
analysis of java software,” in Program Comprehension (ICPC), 2010
IEEE 18th International Conference on, pp. 4445, IEEE, 2010.

J. Bohnet and J. Déllner, “Analyzing feature implementation by visual
exploration of architecturally-embedded call-graphs,” in Proceedings of
the 2006 international workshop on Dynamic systems analysis, pp. 41—
48, ACM, 2006.

M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta, “Scenario-driven
dynamic analysis for comprehending large software systems,” pp. 71-80,
IEEE, 2006.

T. Eisenbarth, R. Koschke, and D. Simon, “Derivation of feature com-
ponent maps by means of concept analysis,” in Software Maintenance
and Reengineering, 2001. Fifth European Conference on, pp. 176-179,
IEEE, 2001.

M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “Cerberus:
Tracing requirements to source code using information retrieval, dy-
namic analysis, and program analysis,” in Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on, pp. 53—
62, IEEE, 2008.

A. Rohatgi, A. Hamou-Lhadj, and J. Rilling, “An approach for mapping
features to code based on static and dynamic analysis,” in Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference
on, pp. 236-241, IEEE, 2008.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “Sniafl: Towards a
static noninteractive approach to feature location,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 15, no. 2,
pp. 195-226, 2006.

T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” Software Engineering, IEEE Transactions on, vol. 29, no. 3,
pp. 210-224, 2003.

N. Walkinshaw, M. Roper, and M. Wood, “Feature location and ex-
traction using landmarks and barriers,” in Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on, pp. 54—63, IEEE, 2007.
F. Asadi, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A heuristic-
based approach to identify concepts in execution traces,” in Software
Maintenance and Reengineering (CSMR), 2010 14th European Confer-
ence on, pp. 31-40, IEEE, 2010.

B. Zhang and M. Becker, “Reverse engineering complex feature corre-
lations for product line configuration improvement,” in Software Engi-
neering and Advanced Applications (SEAA), 2014 40th EUROMICRO
Conference on, pp. 320-327, IEEE, 2014.

S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in 2011 33rd International Conference on
Software Engineering (ICSE), pp. 461-470, IEEE, 2011.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

38

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A UML-based Simple Function Point Estimation Method and Tool

Geng Liu, Xinggi Wang, Jinglong Fang
School of Computer Science and Technology
Hangzhou Dianzi University
Hangzhou, China
email:{liugeng, xqwang, fjl}@hdu.edu.cn

Abstract—Function Point Analysis (FPA) is used to measure
the size of functional user requirements of software applications.
However, the measurement process of FPA is slow, expensive and
complex. The Simple Function Point (SiFP) method has been
proposed as a replacement of FPA that is much faster and
cheaper to apply. However, no tools supporting Simple Function
Point measurement have yet been proposed. In this paper, we
aim at building a tool to facilitate SiFP measurement.
Specifically, we propose a measurement based on UML models of
requirements, including use case diagrams and domain model
(class diagrams). The proposed methodology —including a set of
guidelines for domain modeling and the mapping between SiFP
measure components and UML elements - makes SiFP
measurement much easier to perform. In fact, the proposed
methodology is usable in the early requirements definition stage,
when only use case diagram and the primary class diagram
illustrating the domain model (including classes' names and
relationship among classes) are available. We used 17 academic
sample applications to validate our proposal. The result shows
that our method and tool can be used to replace manual Simple
Function Point measurement in the early phases of the software
development cycle to measure the functional size of software
project.

Keywords— Functional Size Measures; Simple Function Point;
SiFP; UML,; Object-oriented measures.

I INTRODUCTION

Function Point Analysis (FPA) [1][2][3] aims at measuring
the size of Functional User Requirements (FUR) of software
applications. Being based on FUR, which are available in the
early phases of development, these measures are widely used
to estimate the effort required to develop software applications.
FPA was originally introduced by Albrecht to measure data-
processing systems by quantifying the functionality the
software provides to the user, from the information view, by
quantifying the volume of data flow and the storage [4].

The basic idea of FPA is that the "amount of functionality"
released to the user can be evaluated by taking into account the
data used by the application to provide the required functions,
and the transactions (i.e., operations that involve data crossing
the boundaries of the application) through which the
functionality is delivered to the user. Data are user identifiable
groups of logically related data, and are classified as Internal
Logical Files (ILF) or External Interface Files (EIF). A

transaction is a set of actions seen as one cohesive unit of work.

FPA differentiates three types of transactions: External Input
(El), External Output (EO), and External Inquiry (EQ). The
size of each data function depends on the type of contents; the
size of each transaction depends on the number of data files
used and the amount of data exchanged with the external. The

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

sum of the sizes of data and transactions is the size of the
application in Unadjusted Function Points (UFP).

Organizations that develop software are interested in
Function Point measurement process that is reliable, rapid and
cheap, and that fits well in their development processes.
However, performing FPA requires a thorough exploration of
FUR, to identify and possibly weigh basic functional
components. Therefore, the measurement process can be quite
long and expensive. In fact, FPA performed by a certified
function point consultant proceeds at a relatively slow pace:
between 400 and 600 function points (FP) per day, according
to Capers Jones [5], between 200 and 300 FPs per day
according to experts from Total Metrics [6]. Consequently,
measuring the size of a moderately large application can take
too long, if cost estimation is needed urgently. Also, the cost of
measurement can be often considered excessive by software
developers.

In addition, at the beginning of a project, size estimation
would be necessary for bidding and planning. But, FURs have
not yet been specified in detail and completely, namely the
available information is often incomplete and insufficient. So
the customer is only able to do approximate measurements.
The accuracy of a FP measure grows with the completeness
and precision of FUR specifications. When we can measure
with the highest accuracy, we no longer need that measure. The
situation is described by the paradox illustrated in Fig. 1.

Fig. 1. Paradox of estimation and informations about estimation

Given the above situation, many simplified methods, such
as Early & Quick Function Points (E&QFP) [7], Estimated
NESMA [8], Simplified FP[9], ISBSG [10], ILF model [11],
and Early FP [12], have been proposed. The SiFP method
[13][14][27] is different from the other methods mentioned
above, as it does not aim at providing approximate estimation
of FP measures; rather, it defines a brand new functional size
measure, to be used in place of traditional FP.

In this paper, we propose some rules for building UML
models in a SiFP-oriented way. Since SiFP counting is based
on the identification of Unspecified Generic Elementary
Process (UGEP) and Unspecified Generic Data Group
(UGDG), which basically correspond to system data and

39

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

process, we exploit the ability of UML to represent such
information by establishing an explicit relation between SiFP
elements and UML language constructs. We also define some
rules to measure the SiFP size of an application from use case
diagrams and the domain model, and develop a tool to
automatically measure SiFP on the base of XMI/XML files
abstracted from UML model. Throughout the paper we take for
granted that the reader knows at least the basics of FPA
measurement and is familiar with basic UML concepts.

The rest of the paper is organized as follows: Section Il
explains the background knowledge about SiFP. Section Il
describes the empirical study. The validity of the study is
discussed in Section IV. Related work is presented in Section
V. Finally, Section VI draws some conclusions and outlines
future work.

Il. BACK GROUND KNOWLEDGE-SIFP

This section presents a brief summary of the SiFP method.
For full details and explanations of the method, see the
reference manual [13].

SiFP method was proposed by the Simple Function Point
Association, Italy. Its basic idea is that a notion of complexity
based on the number of logical data file or cross reference
among transaction and file or subgroup of data in a file is not
significant to the goal of representing functional size and of
estimation effort or cost. In order to measure the functional size
of an application, it is not necessary to identify several types of
transactions and files.

The SiFP method defines the generic software model as
shown in Fig.2, which highlights the components related to the
functional requirements of "moving" data, "processing” data
and data "storage".

Fig. 2. Theory of SiFP [13]

The SiFP method defines and uses only two basic
functional components (BFCs): UGEP and UGDG, see Fig.3.
An UGEP is defined as: "An atomic set of functional user
requirements conceived for processing purposes. It refers to an
informational or operational goal considered significant and
unitary by the user and includes all automated, mandatory and
optional activities needed to meet the goal. After an UGEP is
concluded, the measurable software application (MSA) to
which it belongs must be in a logically consistent state." [13]
An UGDG is defined as: "An atomic set of user requirements
having a storage purpose. It refers to a single logical data set
of interest to the user, for which information must be kept
persistently."[13]

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Fig. 3. BFC Types [14]

In the case of the UGEP, the term "unspecified" highlights
that it is not necessary to distinguish whether a process is
mainly for input, or output, or what is its primary intent of data
processing. Similarly, in the case of the UGDG, it means that it
is not necessary to distinguish between internal and external
logical storage with respect to the boundary of the MSA.

On the other hand, the term "Generic" indicates that for any
BFC there is no need to identify subcomponents in order to
determine BFC's complexity: all the BFCs weight equally
within the same type of BFC. Future developments of the
methodology may lead to define different functional weights
for each specific BFC depending on elements related to the
processing component of transactional BFCs that, at present, is
not quantitatively taken into account.

Fig. 4. SiFP measurement process [13]

The SiFP measurement process is represented in Fig.4. It is
a 6-step process:

— Gather the available documentation,;

— Identify application boundary;

— Determine the measurement goal and scope;

— Locate elementary processes (UGEP) and logical data
files (UGDG);

— Calculate the function size using function SiFP = 4.6
UGEP + 7 UGDG;

— Document and present the measurement.

I1l. THE EMPIRICAL STUDY

In this section, we introduce UML-based SiFP estimation
method through a case study and present briefly the Tool
SiFPOQOTool developed by us.

40

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A. The case introduction

We use as the case a reduced version of a real Information
System by Lavazza [15], since it is concise and its size is
appropriate. Its functional size in FP is already measured, so
we do not need to do it again. In our case, a system class
diagram that involves composition and
specification/generalization meets our needs. The only
drawback of this system for our study is that the use case
diagram is relatively simple; the relationships among the use
cases just involve the general association. But, overall, it is
suitable for our objectives.

This GymIS is an information system for Gym
management. The application offers annual and monthly
subscriptions. The client who subscripts the annual service
only needs to pay 12 times the cost of a month but have the
right of receiving 13 months service. The client and
subscription data are stored in the system database. The former
is characterized by name, age, profession, address, and SSN.
Clients can also be updated, but, once inserted, they are never
removed from the system. A subscription is characterized by
the duration, the subscription date, the subscribing client, the
set of optional services to which the client subscribed (their
cost adds up to the cost of the basic subscription). Among the
optional services there is the possibility to get a monthly
medical check.

The functions that the application must provide are the
following: record a new client, update the client data, record a
new subscription, record the payment by a given client for a
given month, compute and print how much is due by every
client for the previous months, compute the number of
subscriptions that include the given service in a given period,
and record the results of a health check. The detailed
requirements for the transactions are not presented here. The
complete FURs of the GymlS can be found in [15]; they were
measured according to FPA rules on the basis of a traditional
description. The result was that the application is 67 FP.

B. SiFP-oriented modeling

UML-based SiFP estimation method works well only if the
given models incorporate all the required information at the
proper detail level and the modeling and measure rules are
defined according to the SiFP theory. In this sub-section we
define the SiFP-Oriented modeling methodology as a set of
guidelines. For the purpose of modeling, we use UML as
defined in [16]. We do not define extensions or force the
semantics of the language. This choice contributes to
minimizing the impact of the measurement-oriented modeling
on the development process, and to make the adoption of the
method as seamless as possible.

Usually, the activity of creating OO models is not
sequential; rather, it is often iterative, with several refinements,
deletions, extensions, and modifications of the model. In order
to keep the presentation clear, we present the modeling
methodology as a sequence of conceptual steps.

Step 1: Present application boundary

The first objective of the model is to represent the
application boundaries and the external elements that interact
with the system to be measured.

A use case diagram is a graphic depiction of the
interactions among the elements of a system. A use case

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

diagram contains four components. The boundary defines the
system of interest in relation to the world around it. The actors
are usually individuals involved with the system defined
according to their roles. The use cases are the specific roles
played by the actors within and around the system. The last
component is the relationships between and among the actors
and the use cases. UML provides use case diagrams, which are
well suited for our purposes. The boundary of the use case
diagrams can be directly taken as the boundary of the MSA.
The correspondence between the SiFP concepts and the
elements of UML use case diagrams is schematically described
in Table I.
TABLE I. MAPPING OF THE ELEMENTS BETWEEN SIFP AND UML
SiFP UML

Boundary of the object that
owns the use cases

Application boundary

UGEP Use case
User Actor
UGDG locating out of the Actor

system boundary

Step 2: Present UGEP using use case

Use Case Diagrams indicate —as actors— the elements
outside the boundary with which the application interacts; most
important, use case diagrams show the transactions. We
represent each UGEP as a use case.

Rule 1: Each use case must represent the smallest unit of
activity that is meaningful to the user(s), and must be self-
contained and leave the business of the application being
counted in a consistent state.

Rule 2: Relationship among the use case, extension, include,
generalization, must be correctly presented.

Rule 3: A use case that cannot be instanced must be noted
as "abstract" stereotype. The base use case of a cluster of use
case formatted by generalization must be noted as "abstract"
stereotype.

By applying the rules above to the GymlIS the use case
diagram reported in Fig. 5 is obtained.

System

Add_new_diient

Add_new_subscription

Record_health_check
1 =
% E — %

Operator
5ewice_freﬂV Serviceespricves
Payment_due

Fig. 5. Use case diagram of the GymIS

Step 3: Present UGDG using domain class

Usually, the methods proposed in the literature for
measuring the functional size of UML models map the concept
of data functions onto (sets of) classes. The difficulties in
matching classes and logic files are exemplified very well in
[18], where four different manners of identifying logical files
are defined, according to the different possible ways to deal
with aggregations and generalization/specializations
relationships.

41

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Although in several cases it is possible to identify a class as
a logic file, it is also quite common that a single logic file
corresponds to a set of classes.

In object-oriented development process, such as ICONIX
processes [17], the modeling process of static model can be
split into three stages: 1) requirements definition, 2) analysis,
conceptual design and technical architecture, 3) design and
coding. The obtained models are domain model, updated
domain model and Class model -as shown in Fig. 6- which
separately correspond to three types of diagram: domain class
diagram, updated domain class diagram and class diagrams.

Domain Model Class Model

Fig. 6. Static domain model of OO development using ICONIX process

Information presented by domain diagram contains names
of the entity objects, and the relationships among these entity
objects; updated domain class diagram is added boundary
objects and controllers. Also the attributes of each entity class
abstracted from use case specification are equipped; Class
diagram contains all the information mentioned above, and
some controllers are changed into one or more operations and
those operations are assigned to corresponding class. Analysis
and comparison about different types of objects at different
stages is shown in Table II. Through the above analysis we can
see the domain class diagram already fully meets the demand
for measuring the data "storage" part of SiFP except that it
doesn't have the ability to present the UGDG located outside
the system boundary.

TABLE II. ANALYSIS ADN COMPARISON ABOUT DIFFERENT TYPES OF
OBJECTS
Domain ggr(rjgii Class
Model Model Model
Entity Yes Yes Yes
Stereotype Controller / Yes Yes
of Class
Boundary / Yes Yes
Class Name Yes Yes Yes
Information | Relationship Yes Yes Yes
about entity -
class Attributes / Yes Yes
Methods / / Yes
Suitable for SiFP measure Yes Yes Yes

Since for any BFC there is no need to identify
subcomponents in order to determine BFC complexity. We
define some rules as following:

Rule 4: SiFP does not distinguish between internal and
external UGDG, but in order to facilitate the later statements,
we divided UGDG into two types: external UGDG and internal
UGDG. Internal UGDG is the UGDG that locates inside of the
system boundary, external UGDG locates outside of the system
boundary.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Rule 5: Entity classes that appear in the domain model
diagram are the candidates for UGDG. Entity classes appear in
domain model must be complete, namely, no entity class be
missed. Each entity class should have its name, and the
relationships among the entity classes should be complete.

Rule 6: Each entity class must be noted as stereotype
<<Entity>>.

Rule 7: In general, a UGDG corresponds to an entity class
(see the class User and Payments in Fig.7). A relevant
exception is given by clusters of classes that are connected by
composition relations (see the set classes consist of
HealthRecord and Result in Fig.7), or generalization relations
(see the classes Subscription, MonthScription and
AnnualScription in Fig.7). A cluster of classes that are
connected by composition or generalization relations is defined
as one UGDG.

TABLE Il MAPPING OF THE ELEMENTS
SiFP UML Class(es) #UGDG

UGDG association 1 1

UGDG aggregation 1 1

UGDG composition a cluster of 1

UGDG generalization a cluster of 1
UGDG locating out of logic data 1 1
the system boundary component

Rule 8: When necessary, add to the domain model one or
more special class(es) to present the external system logical
data: these class(es) are named as external UGDG(s) and are
stereotyped <<XUGDG>> (see class otherSystem in Fig.7). A
class diagram with added special classes is called an extended
class diagram.

By applying the rules above to the Gym IS, the extended
class diagram reported in Fig. 7 was obtained.

<<Entity>> <<XUGEDG>>
User otherSystem
N — Entity=>
=<Entity>> Subscription S
Payments Pt HealthRecord
<<Entity> <<Entity>> <<Entity>>
MonthScription AnnualScription Result

Fig. 7. Extended Class diagram of the Gym IS

C. Counting and summing

Here our SiFP counting procedure is redefined with respect
to the UML model with the following goals: it must be
coherent with the principles reported in SiFP reference manual
[13]; it must be precise, without ambiguities, thus leaving no
space to the measurer for interpretation; it must require little
effort; it must be executable by people without big skill in FP
counting and with little knowledge of the requirements.

As mentioned earlier, a UGEP is represented as a use case,
but not every use case should be counted as a UGEP. By
analyzing the role and the characteristics of each use case
belonging to a set of use cases connected by include, extension

42

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

or generalization relations (see Table 1V), and according to
SiFP rules, we define rule 9.

TABLE IV. COMMON ELEMENTS FROM GENERAL MODEL AND FPA
ORIENTED UML MODEL
for
Type of UC Role of UC Complete Abstract measure
unit
Base UC Yes No Yes
Include -
Inclusion Yes No Yes
. Base UC Yes No Yes
Extension -
Extension Yes No Yes
general UC No Yes No
Generalization [Specialized Ves No Ves
ucC

Rule 9: In general, a use case is counted as a UGEP. A
relevant exception is that the use case noted as abstract is not
counted as a UGEP.

Rule 10: As defined by the rules 4-8, whether it is a single
class or a group of classes, as long as it is defined as a UGDG,
it is counted as a UGDG.

Rule 11: A class stereotyped <<XUGDG>> is counted as
a UGDG.

Once the UGEP and UGDG lists are complete, the scores
are assigned to the individual BFCs and added together as
shown below. The scores to assign to each individual BFC are:
UGDG =7.0 SiFP and UGEP = 4.6 SiFP.

So the size of a whole application is:

SiFP=M(UGEP)+M(UGDG)= #UGEP*4.6 + # UGDG*7.0.

Here #X means the number of X.

According to the conversion between SiFP and UFP
defined in the SiFP reference manual, we can draw the
following equation to calculate the FPA functional size from
the SiFP value:

UFP = #SiFP /0.998

D. Measure Tool for SiFP

There are several UML modeling tools which support OO
modeling, such as Visio, Rational Rose, Power Designs, EA
and StarUML. These tools not only provide a graphical
modeling function, but also export the model as XMI and/or
XML file. Measurement tools can be designed by parsing
XMI/XML document and using measurement rules. We
designed a measure tool SiFPOOTool to automatically
measure the SiFP size of an application by its UML model,
precisely use case diagram and class diagram. The high-level
structure of the tool is shown in Fig.8.

Info. about SW

Measurement

FUR ;
SiFPOOTool Wpon

StarUML SOMI/XMI

Measuremeant
records

Fig. 8. Theory of SiFPOOTool

The tool provides some functions, such as, reading and
parsing XML file derived from UML model, recording and
reporting the measure result. Moreover, the related
information about the application being measured, the

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

company which holds the application (see Fig. 9), the measurer
that carries out the measurement are all recorded by the tool to
meet the needs for analysis and inquiries.

Holder Info

SWiProducer Info

Name: Name: ’7 SWID:

size: size: ’7 SoftwareTitle:
Address(City)! Address(City): ’7 App Domain:
Tele. N.: Tele. Nz ’7 Application Type:
Internet Site: Internet Site: ’7 Language:
Measurer: Developer:

Fig. 9. Information input interface of the tool

We measure the GymlS software application using our tool
SiFPOOTool: 5 UGDG and 7 UGEP were identified, thus the
total size is 67.2 SiFP.

IV. EMPIRICAL VALIDATION

We aimed to validate the two issues: the first one is
whether the tool can be used to replace the manual SiFP
measurement, when a UML requirement model is available.
The second is to validate whether our SiFP-oriented UML
modeling rules are correct. The validation overview is shown
in the Fig.10.

Manual Measurement

SiFP- #SiFP h
oriented Valdating |
UML the tool
R Model XML #siee o FR |0 —
Valdating
Using SiFPOOTool L he
modgling and
FPA-oriented _ | measurerules
UML Model

Fig. 10. Validation overview

We used 17 projects' models mainly prepared during
previous work [19]. The FURs, UML models (use case
diagram, class diagram, components diagram, and sequence
diagram) and size measures (in UFP) of those projects are
available.

The experimental validation procedure was organized as
follows:

—Firstly, for each project, the use case diagrams are
reviewed and modified according to the rules 1, 2 and 3
defined in Section I11.B.

—Second step: the class diagrams are reviewed and
modified according to the rules 4-8 in Section I11.B.

—Third step: The activities involved in steps 1 and 2 are
repeated until all the projects’ use cases and class diagrams
comply with the rules 1-8 in Section I11.B. Using StarUML, the
XMI/XML files are exported from UML model.

— The fourth step: those 17 projects are manually measured
using the SiFP method: the results are given in columns 2-4 of
Table V. The correspond SiFP and UFP are also calculated
automatically and inserted in the 4th and 5th columns of the
Table V. The UFP values are computed according to the

43

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

function SiFP = #UFP*0.998 described in the reference manual
[13].

— Then we use our tool SiFPOOTool to measure each
model XMI/XML file obtained at step 4. The results and their
corresponding UFPs are inserted in columns 6-8 of Table V.
To automatically obtain the UFP values, the previous function
SiFP=#UFP*0.998 was used in our tool.

— Finally, we copied into Column 10 the functional size
measures in UFP manually measured in the previous work.

When all the preparatory work was finished, we performed
three paired sample t-Tests on the datasets of manual
measurement (Column 5), of the measurement based on
SiFPOOTool (Column 9) and of UFP values (Column 10)
obtained in the previous work. As usually the level of
significance is set as 5%. Test results are as follows: on the
datasets of manual measurement (Column 5) and of the
measurement based on SiFPOOTool (Column 9), the two-
tailed test p-value is approximately 0.104. For the datasets of

the manual measurement(Column 5) and the UFP(Column 10),
the datasets of measurement based on the tool(Column 9) and
UFP(Column 10), both the two-tailed test p-values are
approximately 0.001. Then we analyzed the average of
absolute value of the ratio of UFP based on the tool(Column 9)
and the UFP(Column 10), it is approximately 9.95%, which is
less than 10%, so the results obtained based on the tool is
acceptable. Our approach (based on UML model) belongs to
the third level, detailed measurement level, of the six accuracy
levels for software sizing defined in [20][21].

In conclusion, our estimation tool SIFPOOT ool can be used
to replace manual SiFP measurement in the early phases of the
software development cycle, namely domain modeling phase,
to measure the functional size of software project. As it turns
out, our modeling and measure rules (Rules 1-11 presented in
Section I11. B, C and D) lead to good experiment results.

TABLE V. DATASETS OF MEASUREMENTS BY HAND, USING SIFFOOTOOL
Manual Measurement Measurement Using SiFPOOTool Ratio of Ratio of Ratio of
P.ID - - UFP 5th/9th 5th/10th 9th/10th
#UGEP | #UGDG | SiFP | UFP | #UGEP | #UGDG | SiFP UFP column column column
1 15 13 160 160.3 15 13 160 160.3 160 0.00% 0.20% 0.20%
2 15 15 174 174.3 15 14 167 167.3 140 4.19% 24.53% 19.52%
3 12 6 97.2 97.4 12 3 76.2 76.4 84 27.56% 15.95% -9.10%
4 22 10 171.2 1715 22 11 178 178.6 163 -3.93% 5.24% 9.54%
5 20 6 134 134.3 20 6 134 134.3 128 0.00% 4.90% 4.90%
6 18 8 138.8 139.1 18 9 146 146.1 130 -4.80% 6.98% 12.38%
7 16 3 94.6 94.8 16 3 94.6 94.8 78 0.00% 21.53% 21.53%
8 15 8 125 125.3 15 6 111 111.2 107 12.61% 17.06% 3.95%
9 17 7 127.2 1275 17 5 113 1134 102 12.37% 24.96% 11.20%
10 7 8 88.2 88.4 7 8 88.2 88.4 79 0.00% 11.87% 11.87%
11 18 7 131.8 132.1 18 5 118 118.0 105 11.88% 25.78% 12.42%
12 28 4 156.8 157.1 28 4 157 157.1 138 0.00% 13.85% 13.85%
13 22 5 136.2 136.5 22 5 136 136.5 124 0.00% 10.06% 10.06%
14 13 2 73.8 73.9 13 2 73.8 73.9 73 0.00% 1.30% 1.30%
15 20 3 113 113.2 20 3 113 113.2 106 0.00% 6.82% 6.82%
16 27 6 166.2 166.5 27 6 166 166.5 159 0.00% 4.74% 4.74%
17 14 5 99.4 99.6 14 5 99.4 99.6 86 0.00% 15.81% 15.81%

V. RELATED WORK

The generic concepts of FPA were published in the late
1970s. Later, more detailed measurement rules were developed
to improve consistency of measurement. Due to lack of good
software documentation, it is not always possible to apply all
the detailed rules, and measurers must fall back on
approximation techniques [22].

In [22] M. Lelli and R. Meli announced this as a paradox:
Size estimation is necessary when we do not have enough
information (thus, early estimation methods must be used to
obtain it). When we can measure with the greatest accuracy,
we no longer need that information any more.

In order to figure out whether FPA in the early phases is a
realistic option, the committee "FPA" in the early phases” was

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

established in September 1989. The committee investigated
whether FPA can be used to perform an indicative size
estimate before a complete logical (detailed) design is available
[23].

Many techniques for early size estimation have been
proposed for FP, such as component sizing technique by
Putnam and Myers [24] and the Early and Quick Function
Point size estimation techniques by Conte et al. [25]. These
methods — such as Estimated NESMA method [8], ISBSG
average weights, simplified FP [13], prognosis of CNV AG [11]
and so on - do not require the weighting of functions; instead
each function is weighted with average values.

Some methods extrapolated the FP counts from the
countable components (usually the ILFs) using statistical
methods (mostly regression analysis). Some simplified

44

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

methods — Mark 1I, NESMA’s Indicative FP, Tichenor ILF
Model, Prognosis by CNV AG, and ISBSG Benchmark — were
constructed according to such technique.

In [15] Lavazza et al. proposed a FPA-oriented UML
modeling technique that can make FPA performed in a
seamless way, while yielding reliable results. In [26] del
Bianco et al. introduced the model-based technique into
COSMIC method and suggested a simplified model-based cost
estimation models. By using the data from a large popular
public dataset Lavazza and Meli confirmed that SiFP can be
effectively used in place of IFPUG [14]. However, there has
been no measure tool for SiFP so far.

VI. CONCLUSIONS AND FUTURE WORK

Performing Function Point measurement according to the
traditional process is expensive and time consuming. The SiFP
was proposed as a replacement of FPA. Functional size is
mainly used for estimating development costs and project
planning. Many software developers use UML, hence they are
interested in basing functional size measurement on UML
models. In principle, UML-based estimation can be used
effectively at the earliest stage of software: our proposal makes
this possibility practical and viable. Additional researches
(concerning both measurement technology and measurement
tools) are necessary to support functional size measurement in
different stages of software development.

ACKNOWLEDGMENT

The authors thank Prof. Luigi Antonio Lavazza from the
University of Insubria in Varese, Italy, for his constructive
suggestions and comments on this research. The authors also
thank Jun Wu for his contribution to the implementation of the
first version of the tool. The research presented in this paper
has been supported by the Start Project Foundation of
Hangzhou Dianzi University under Grant No. KYS105614069,
by the Defense Industrial Technology Development Program
under Grant No. JCKY2013415C001 and Grant No.
JSZ1.2014415B002, and by Weapon Equipment Pre-Research
Foundation under Grant No. 9140A15040214DZ04221.

REFERENCES

[1] A. J. Albrecht, "Measuring Application Development Productivity",
Joint SHARE/ GUIDE/IBM Application Development Symposium, pp.
83-92, 1979.

[2] International Function Point Users Group, “Function Point Counting
Practices Manual - Release 4.3.1", January 2010.

[3] ISO/IEC 20926: 2003, "Software engineering — IFPUG 4.1 Unadjusted
Functional Size Measurement Method — Counting Practices Manual”,
Geneva: I1SO, 2003.

[4] A.J. Albrecht and J.E. Gaffney, "Software function, Source Lines of
Code and Development Effort Prediction: a Software Science
Validation", IEEE Transactions on Software Engineering, vol. 9(6),
pp.639-648,1983.

[5] C. Jones, "A New Business Model for Function Point Metrics",
http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones
/FunctPtBusModel2008.pdf, retrieved: June, 2016.

[6] Total Metrics, "Methods for Software Sizing — How to Decide which
Method to Use", http://www.totalmetrics.com/function-point-
resources/downloads/R185_Why-use-Function-Points.pdf, retrieved:
June, 2016.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

"Early & Quick Function Points for IFPUG Methods v.3.1 Reference
Manual 1.1", April 2012.

ISO/IEC 24570: 2004, "Software Engineering-NESMA Functional Size
Measurement Method version 2.1 - Definitions and Counting Guidelines
for the Application of Function Point Analysis”, International
Organization for Standardization, Geneva, 2004.

J. Geraci and C. Tichenor, "The IRS Development and Application of
the Internal Logical File Model to Estimate Function Point
Counts,"1994. Presented at the Fall 2000 IFPUG Conference.

L. Bernstein and C. M. Yuhas, "Trustworthy Systems Through
Quantitative Software Engineering”, John Wiley & Sons, 2005.

M. Bundschuh, "Function Point Prognosis Revisited”, FESMA 99,
Amsterdam, The Netherlands, October 4-8, 1999, pp. 287-297.
http://www.academia.edu/1024603/FUNCTION_POINT_PROGNOSIS
_REVISITED, retrieved:June, 2016.

R. A. Monge, F. S. Marco, F. T. Cervigon,V. G. Garcia, and G. U. Paino,
"A Preliminary Study for the Development of an Early Method for the
Measurement in Function Points of a Software Product"”, Eprint Arxiv
Cs, 2004.

SiFPA, "Simple Function Point Functional Size Measurement Method -
Reference Manual, V. SiFP-01.00-RM-EN-01.01",
http://www.sifpa.org/en/index.htm, retrieved: June, 2016.

L. Lavazza and R. Meli, "An Evaluation of Simple Function Point as a
Replacement of IFPUG Function Point", in 9th Int. Conf. on Software
Process and Product Measurement (Mensura) IWSM-MENSURA 2014,
October 6-8, 2014, Rotterdam.

L. Lavazza, V. del Bianco, and C. Garavaglia, "Model-based Functional
Size Measurement”, 2nd International Symposium on Empirical
Software Engineering and Measurement (ESEM 2008), Oct. 9-10, 2008,
Kaiserslautern, Germany.

OMG-Object Management Group, "Unified Modeling Language:
Superstructure”, version 2.1.1, OMG formal/2007-02-05, February
2007. (available from http://www.omg.org)

D. Rosenberg and M. Stephens, "Use Case Driven Object Modeling
with UML Theory and Practice", Apress, Berkeley, USA, 2007.

G. Antoniol, C. Lokan, G. Caldiera, and R. Fiutem, "A Function Point-
Like Measure for Object-Oriented Software", Empirical Software
Engineering , Volume 4, Issue 3, pp 263-287, Sept. 1999.

G. Liu, "Towards Making Function Size Measurement Easily Usable in
Practice", PhD thesis, University of Insubria, Varese, Italy, 2014.

P. Hill, "Software early lifecycle- Function sizing", SoftwareTech, June
2006, Vol. 9, No.2.

Total Metrics, "Levels of Function Points, Version 1.3", January 2004,
http://www.totalmetrics.com/total-metrics-articles/levels-of-function-
point-counting, Total Metrics, 2004.

M. Lelli and R. Meli, "from Narrative User Requirements to Function
Point", IN: Proceedings of Software Measurement European Forum-
SMEF 2005, Mar. 16-18, 2005, Rome, Italy.

NESMA, "The Application of Function Point Analysis in the Early
Phases of the Application Life Cycle - A Practical Manual: Theory And
Case Study, V. 2.0",
http://www.nesma.nl/download/boeken_NESMA/N20_FPA _in_Early_P
hases_(v2.0).pdf, retrieved:June, 2016.

L. H. Putnam and W. Myers, "Measures for Excellence: Reliable
Software on Time within Budget", Prentice Hall, UpperSaddle River,
1992.

M. Conte, T. lorio, R. Meli, and L. Santillo, "E&Q: An Early & Quick
Approach to Function Size Measurement Methods", In Proceedings of
Software Measurement European Forum-SMEF 2004, January 28-30,
2004, Rome, ltaly.

V. del Bianco, L. Lavazza, and S. Morasca, "A Proposal for Simplified
Model-Based Cost Estimation Models"”, In Proceedings of 13th Int.
Conf. on Product-Focused Software Development and Process
Improvement, pp. 59-73, June 13-15, 2012, Madrid, Spain.

F. Ferrucci, C. Gravino, and L. Lavazza, "Assessing Simple Function
Points for Effort Estimation: an Empirical Study", 31st ACM
Symposium on Applied Computing, April 4-8, 2016, Pisa, Italy.

45

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Transaction-Aware Aspects with TransJ: An Initial Empirical Study to
Demonstrate Improvement in Reusability

Anas M.R. AlSobeh

Computer Information Systems-Yarmouk University
Irbid, Jordan
Email: anas.alsobeh@yu.edu.jo

Abstract—TransJ is an extension to AspectJ for encapsulating
transaction-related cross-cutting concerns in modular aspects.
This paper presents an empirical study to evaluate the
reusability and performance cross-cutting concerns
implemented with TransJ compare to Aspect] alone. As part
this study, we define a reuse and performance quality model as
an extension to an existing quality model. We then formalize
eight hypotheses that can be tested using metrics from the
quality model. Finally, to assess the hypotheses, we compare
implementations of different sample applications across two
study groups: one for TransJ and another for AspectJ. Results
from the study show improvement in reusability when using
TransJ, while preserving the performance.

Keywords-Transaction-related ~ Aspects; Aspect-Oriented
Programming (AOPL); Abstractions; Transaction Joinpoint;
Dynamic Weaving; Pointcuts; Transaction-related Contexts
(TCC's); software reuse; and performance.

l. INTRODUCTION

The implementation of complex applications using Aspect-Ori-
ented Software Development (AOSD) —as a modern modularization
technique— results in a better implementation structure relative to es-
sential application qualities, such as maintainability, reusability,
modularity, and reduce complexity [1]. One of the recognized
strengths of Aspect-Oriented Programming Languages is the separa-
tion of concerns (SoC’s) through the definition of modular abstrac-
tions, called Aspects, that reduce scattering and tangling of crosscut-
ting concerns (CC’s) in the application code. By definition, CC’s im-
pact multiple components of an application’s core code. Common
examples include logging, enforcement of real-time constraints, con-
currency controls, transaction management, access controls, and so
on. Implementing these such concerns directly into a Distributed
Transaction Processing System (DTPS) can cause the scattering and
tangling of code and, thus, make the code unnecessarily complex and
difficult to understand, reuse, maintain, and evolve.

Aspect] is considered the de facto standard and the most widely
used Aspect-Oriented Programming (AOP) framework for modeling
CC’s. It extends Java with mechanisms for supporting logic related
to CC’s, starting with aspect, which are first-class programming con-
structs for CC’s [2][3]. Aspects encapsulate advice, pointcuts, and
type-introduction declarations. An advice is a method that embodies
some piece of CC functionality, but it is not called explicitly like class
or object methods. Instead the execution of an advice method is wo-
ven into the core application according to specifications, called
pointcuts. A pointcut is a predicate that defines where to weave ad-
vice at compile time and when to execute at runtime. More specifi-
cally, it is a pattern that identifies a set of joinpoints, which are best
characterized as intervals within the program’s execution flow. A
joinpoint represents places (intervals or times) in execution on pro-
gram and advice run before, after, or around these intervals [2].

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Stephen W. Clyde

Computer Science-Utah State University
Logan, Utah, USA
Email: stephen.clyde@usu.edu

Aspect) supports many different kinds of joinpoints, such as
fields, methods, constructors, and catch blocks in exception handling,
but they only related to program-language abstractions and their con-
texts are limited to single-threaded execution flows. The problem is
that AspectJ does not inherently handle higher level abstractions or
application-level contexts, like transactions, which may be tied to
runtime objects and used by multiple execution threads or processes.
Hence, Aspect] cannot directly support the dynamic weaving of ad-
vice into transaction abstractions or directly leverage transaction con-
text information.

TransJ is an extension to Aspect] that introduces transaction-
aware aspects, independent of any specific transaction-processing
framework. With TransJ, developers can weave Transaction-Related
Crosscutting Concerns (TCC’s) into a DTPS in a modular and reus-
able way, while preserving core functionality, and obliviousness to
those TCC’s. (See Section II).

In this paper, we report on a study that investigated the impact of
TransJ on the reuse of DTPS code while preserving performance. It
does so by evaluating certain desirable characteristics and attributes
defined in an extended quality model (see Section II1) using a set of
computable metrics. Based on an initial theoretically investigation,
we hypothesized that developers would see improvement reuse im-
provements while preserving the software performance when using
TransJ. We formalize this notion into eight specific hypotheses (see
Section 1V). Section V explains our experiment methodology; selec-
tion of the sample software application; and identification of interest-
ing TCCs that would provide good coverage. The methodology also
included supporting activities such as recruitment and training of the
developers as test subjects. After the experiment, we collected and
analyzed data from the code, journals, questionnaires, and surveys.
From the results (see Section V1) of the study, we conclude that ap-
plication using TransJ have less coupling (less scattered), less com-
plex, and required less effort and time to enhance. Also, they are more
cohesive (less tangling) and oblivious without sacrificing the perfor-
mance. These preliminary results lead us to believe that further ex-
perimentation with TransJ and refinement of its framework could
prove to be very beneficial to a wide range of software applications.

Il. HIGH-LEVEL OVERVIEW OF TRANSJ

Fig. 1 provides a high-level overview the TransJ’s layered design
[6], in which each layer embodies reusable functionality and provides
services to the layer above it and uses the services of the layer below
it.

One component at the lowest layer is the Unified Model for Join-
points in Distributed Transactions (UMJDT), first introduced in a
2014 ICSEA paper [5]. The UMJDT is a conceptual model for weav-
ing advice into distributed transactions that captures key events and
context information, and use that ideas to define interesting join-
points relative to transaction execution and context data for woven
advice.

AspectJ and some transaction-processing framework, like JTA,
are two components at the lowest level.

46

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Application
|
RAL
| |
CTIL
‘ Pointcuts | |BaseAdvices |
Base Aspects
| l
Context Tracking Joinpoint Tracking
| | |

Figure 1. TransJ Architectural Block Diagram.

The Core TransJ Infrastructure Layer (CTIL) is a library that im-
plements a transaction joinpoint model on top of an AspectJ joinpoint
model. It defines transaction abstractions, transaction-events join-
points, a collection of pointcuts for gathering context information that
can be used in the advice code, and mechanisms to track transaction
contexts and joinpoints. This library allows developers to treat trans-
actions as first-class concepts into which aspects can be woven, pro-
moting greater enhancements, obliviousness, and localization, along
with code reusability.

The Reusable Aspect Layer (RAL) is a toolkit-like collection of
transaction-related aspects that application programmers should find
useful in many different kinds of applications with significant trans-
action requirements. These reusable aspects can decrease the devel-
opment time; make CC’s more understandable, reusable, and predict-
able; and ensure that the core application is oblivious to the CC’s.

Application-level Aspect Layer is where application developers
implement transaction-related aspects using the abstractions pro-
vided by TransJ directly or by specializing the aspects from the RAL.
These aspects can encapsulate complex TCC behaviors in under-
standable, predictable and reusable software components, without
sacrificing obliviousness or efficiency [6].

I1l. EXTENDED-QUALITY MODEL FOR TRANSACTIONAL
APPLICATION (EQMTA)

Many empirical studies have found that different soft-ware fac-
tors influence the quality of a software system [7][8][9]. Of these, we
picked reusability and performance as important qualities to consider
initially because of potential for cost savings that they both represent.
To formalize the reuse and performance qualities, we adapt and ex-
tend the Extended-Quality Model [9], which was based on the Com-
parison Quality Metrics (Sant’Anna quality model) [1][7] to include
quality factors and internal attributes specific for DTPS’s, forming
EQMTA.

EQMTA consists of four elements: Qualities, Factors, Quality
Attributes, and Metrics. The qualities, i.e., reusability and perfor-
mance, are the most abstract concepts in the model and represent the
ultimate goals of “good” software. Each quality is affected by one or
more factors, which are in turn determined by quality attributes (in-
ternal attributes). The quality attributes describe the internal view of
the system attributes with a set of quality metrics that are de-fined
and used to provide a scale and method for measurement.

Fig. 2 shows the specific qualities, quality factors, and quality
attributes of the EQMTA’s suite, and Fig. 3 shows the metrics. A
single star (*) next to an element in either of these figures tags a con-
cept that not exist in the original EQM [8] or Comparison Quality
Model [1]. Double stars (**) mark elements that are in the previous

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

— SoTC*™
- Factors: —| Coupling
% Understandability,
© — Extensibility*, (- Cohesion
2 Localization,
i Code
< Obliviousness ||)
Complexity
— Aspects
Throughput*
*
g Factors: Efficiency* Transaction
© : ’ Volume*
E Predictable*, T=reaction
o Scalability*
= y Velocity*
o
Productivity*

Figure 2. Extended-Quality Model for Transactional Applications
(EQMTA)

models, but have been modified to be a measure quality in transaction
systems.

The quality factors are the secondary quality attributes that influ-
ence the defining primary qualities and associated with well-estab-
lished internal quality attributes of the soft-ware systems as shown in
Fig. 2. Raza [8] proposes three important characteristics of modular
code, namely understandable, obliviousness and localization of de-
sign decisions. Hence, reasoning reusability in terms of understanda-
bility, localization of design decisions, and obliviousness are not
complete. Introduction of efficiency, predictability, and scalability
are also equally important. At the time Parnas [11] and Coady [12]
proposed that the definition of reusable modular code, obliviousness
and extensibility has not been documented as fundamental design
principles. How-ever, in the context of our research experiment, they
are critical to understanding the impact of TransJ.

A. EQMTA Metrics

The EQMTA contains 29 design and code metrics for the 9 inter-
nal attributes shown in Fig. 3. In some cases, we had to adapt the
metrics to better evaluate the attributes in DTPS. Twelve of the met-
rics can be computed automatically from the code written by the sub-
jects. The others have to be computed by hand. Below are brief de-
scriptions of these metrics, so the reader can better understand the

CDTA* CDTO* cbLoC * New Metrics
* * * ** Modified Metrics

cim*

MLOC

Code N " N, WoTC .
Vs Loc OC S T10¢ » NTO o cC > RFM
m NTD cpa ASTC astor

Ll Total Computations: 348
W >Manua\:204)

T RTPM Automated: 144)
~ S
m PT* AT* NoB* Nocts MNOCA®

Figure 3. Measurement Metrics in EQMTA

47

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

results presented in Section VI. For space considerations, the full
definitions of all metrics are not shown.
1) Separation of Transaction Concern (SoTC)/ Scattering
Metrics

SoTC defines the ability to capture, encapsulate and manipulate
unnecessary complexities of transaction system that are relevant to
a particular concern [13]. The Concern Diffusion in Transaction Ap-
plication (CDTA), Concern Diffusion over Transaction Operations
(CDTO) and Concern Diffusion over Line of Code (CDLOC) are
SoTC metrics. CDTA number of primary transaction components
(class or aspect) whose main purpose is to contribute to the imple-
mentation of a concern. CDTO counts the number of methods and
advices that access any primary transaction component to pull all
relevant operation context information by calling their methods or
using them in formal parameters, local variables, return types, and
throws declarations. Constructors also are counted as operations.
CDLOC counts the total lines of primary transaction components
whose main purpose is to contribute to the implementation of a sin-
gle transaction-related concern.
2) Transaction-related Coupling Metrics

It is an indication of the strength of interconnections between
the transaction components in a DTPS [10][14]. Coupling between
Components (CBC), Depth Inheritance Tree (DIT), and Coupling
on Intercepted Modules (CIM) are coupling metrics. CIM counts the
number of classes, aspects or interfaces explicitly named in
pointcuts of a given aspect. High values of these metrics indicate
tight coupling, due to high crosscutting.
3) Transaction-related Cohesion and Tangling Metrics

The cohesion of a transaction is a measure of the degree fitness
between its internal pieces [7]. Lack of Cohesion in Transaction Op-
erations (LCTO) measures the lack of cohesion of a class or aspect
in terms of the occurrences of the method and advice pairs that do
not access the same context variable and hence should be reasonably
separated [15]. High cohesion often correlates with loose coupling,
and vice versa [10]. Low coupling is often an indicator of a well-
structured DTPS and a good design, and when combined with high
cohesion, supports the general goals of high reusability.
4) Complexity Metrics

The EQMTA defines metrics that are concerned with the differ-
ent aspects of the DTPS complexity. It measures how transaction
components are structurally interrelated to one another and
measures the size of a software system’s design and code [1]. In
EQMTA, the Vocabulary Size (VS), Line of Code (LOC), Method
Lines of Code (MLOC), Transaction Lines of Code (TLOC), Num-
ber of Transaction Operations (NTO), and Weighted Operations per
Transaction Component (WOTC), McCabe’s Cyclomatic Complex-
ity (CC), and Response for Module (RFM) are complexity and size
metrics in EQMTA. VS counts the number of classes and aspects
into the DTPS. Sant’ Anna mentioned that if the number of compo-
nents increases, it is a clue of more cohesive and less tangled set of
abstract datatype concepts [1]. NTO counts the number of transac-
tion-related operations. A transaction contains with more operations
are less likely to be reused and assumed to have more complex col-
laboration with other components. Sometimes LOC is less, but NTO
is more, which indicates that the transaction component is more
complex. The number of advices and methods and complexity is an
indication of how much time and effort is required to develop and
maintain the transaction-related components. The larger the value of
WOTC, the more complex the program would be [15][16]. CC is
intended to measure system complexity by examining the software
program’s flow graph [17]. In practice, CC amounts to a count of
the decision points present in the software system. The high value
of CC affects transaction components reuse. RFM counts the num-
ber of methods and advices that are executed by a given transaction

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

in response to the request received by another transaction or system.
Transactions with a higher RFM value are more complex and com-
plicated.
5) Aspects/Obliviousness Metrics

The EQMTA involves metrics on concerns that evolve into con-
crete pieces of code, i.e., Aspects, and contribute directly to the core
functionality of the transaction software system [8]. This model de-
fines the following aspect metrics: Number of Inter-type Declara-
tions (NITD), Crosscutting Degree of an Aspect (CDA), Aspect
Scattering over Transaction Components (ASTC), and Aspect Scat-
tering over Transaction Operations (ASTO).
6) Transaction Throughput Metrics

Transaction throughput is the rate at which transactions are pro-
cessed by the system. The EQMTA defines the rate of the Mean Re-
sponse Time (MRT) to measure the performance of an individual
transaction, in milliseconds. MRT represents the amount of time re-
quired for transaction completion, i.e., commit or abort. The re-
sponse time for a transaction tends to decrease as you increase over-
all throughput.
7) Transaction Volume Metrics

Transaction volume is an indication of the efficiency of transac-
tion system to handle huge data volume, which determine the
amount of transactions processed by the system over the defined pe-
riod of time, i.e., second. The EQMTA defines the following trans-
action volume metrics: Number of the Committed Transactions
(NCT), Number of the uncommitted (aborted) Transactions
(NUCT), and Timed-out Transaction (ToT).
8) Transaction Velocity Metrics

Transaction Velocity gives an indication of the performance of
the transaction system. Rate of the Transaction Per Minute (RTPM)
is the only velocity metric in EQMTA that measures velocity of a
transaction in our model. RTPM is the average number of transac-
tions that are begin completed, either committed, aborted, or timed-
out, per minute on the transaction system.
9) Productivity Metrics

Productivity is a measure of the amount of effort needed to un-
derstand, implement and debug the transaction system components.
It considers the amount of bugs, and total development time into ac-
tive and passive times. Active Time (AT), Passive Times (PT),
Number of Bugs (NoB), Number of Changes in Concern at the ap-
plication level (NoC), and Number of Changes in Concern and its
Application (NoCA) are productivity metrics. NoC and NoCA count
the number of changes required to reuse the concern for another ap-
plication, and to maintain the concern, respectively. The difference
among them is that the NoC only considers changes in the concern;
however, the NoCA considers changes both in the concern and ap-
plication. A lower value of PT, AT, NoB, NoC and NoCA is more
desired to increase the efficiency of the development transaction-
related components.

IV. EXPERIMENTAL HYPOTHESES

The theoretical ideas underpinning TransJ lead to the following
eight hypotheses. All of these hypotheses have the same premise and
are tested using the EQTMA metrics. Let S represent a software
system that has TCC’s and is implemented in Aspect]. Also, let S’
be an implementation of same system using TransJ. The premise is
implementation of the TCC in S’ make reasonably effective use of
TransJ.

A. S’ has better encapsulation and Separation of Concerns (SoCs)
and less scattering than S.

S’ has a lower coupling than S.

S’ has higher cohesion and less tangling than S.

S’ not significantly larger or complex S.

S’ is significantly more oblivious to TCC’s than S.

moow

48

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

The runtime of S’is no worse than S

The implementation TCC’s in S’ requires a smaller number of
changes to reuse compared to S.

H. The total programming hours for S’ is less than S, indicating
that S” is less complex and more readable than S.

V. EXPERIMENTAL PROCEDURE

The research experiment consisted of the following steps:

1. Experiment Approval: We submitted an application for con-
ducting this Human Research Experiment to the USU IRB and
got its approval [4]. Before submitting this application, all the
researchers passed the online human research experiment-
training course offered through the Collaborative Institutional
Training Initiative (CITI) [18].

2. Selection of Applications: we developed three non-trivial soft-
ware applications that were diverse in the way they imple-
mented transactions; used JTA API, X/Open standards, Jboss
Application Server; multithreaded; and therefore provide a
good coverage of different types of distributed transactions as
shown in Table 1. We used Java 2 Enterprise Edition (J2EE) to
build these non-trivial applications. They include classes for
distributed resources and make used Enterprise Java Bean
(EJB), Java Persistence (JPA), Maven, Hibernate, Jboss, JTA,
Arjuna, and MySql database drivers. The current EJB architec-
ture supports flat transactions only, but the Arjuna supports
nested transactions in the application. Most of the implementa-
tion details are not relevant to the contributions of this paper,
and are there omitted for space considerations.

3. Selection of TCC's: we picked three common TCC's for the ex-
perience such that they were applied to all the sample applica-
tions and the various concepts of transactions, as shown in Ta-
ble 2. To reduce chaos in our data, we wanted to make sure that
these CC's were adequately simple to a novice developer could
understand and integrate them into the selected sample appli-
cations in less than 15 hours, regardless of whether TransJ or
Aspect] is used.

4. Recruitment of Developers: To transparently recruit the devel-
opers, we sent invitation letters and then recruited four devel-
opers who were experienced OO and AOP software develop-
ment, Java, transaction, and software-engineering design prin-
ciples such as reusability and performance. We randomly orga-
nized them into two study groups: 1 and 2. Group 1 imple-

®m

TABLE 1. CATEGORIES OF SELECTED APPLICATIONS

Applications Gadget Conference Local
Manufac- Registra- Bank
turing tion System System
System
1 Distributed * *
Local *
2 Flat * *
Nested *
3 Few Resources * *
Many Resources *
4 Low Concur- *
rency
High Concur- * *
rency
5 | Low Potential for * *
Conflict
High Potential *
for Conflict

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

TABLE 2. SELECTED TRANSACTION-RELATED CROSSCUTTING
CONCERNS (TCC)

| Aspect Name

1 | Measuring
Performance

Description
It measures some performance-related
statistics for transaction-based applica-
tions between a client and server, such
as turn-around time (i.e., response
time).
It shares context information across
hosts only when necessary.
It records a history of actions executed
by transactions and users in order to
monitor transaction activities and pro-
vide assurance that meet the predefined
minimum requirements.

2 | Data-Sharing
Optimization
3 | Audit Trail

mented using an AOP approach and Group 2 used TransJ fash-
ion. Next, the participants completed a survey that assessed
their background and skill levels. We also provided JTA, Ar-
juna library, Jboss, AOP training to developers in Groups, and
had them worked through some practice applications. Simi-
larly, we trained Group 2 developers with TransJ, and had them
worked through some practice applications. Next, each devel-
oper filled a pre-implementation questionnaire, developed the
application using initial requirements, recorded hourly journals
and completed a post implementation questionnaire.

5. We analyzed the understanding of the requirements, familiarity
with the language and tools, and debugging the most prominent
challenges. They also recorded hourly journals of productivity.
At the end of implementation, each developer filled the post-
implementation questionnaire. Observation of this question-
naire indicated that all developers correctly understood the re-
quirements, familiarized with the language, tools, and de-
bugged the challenges.

We measured EQMTA code metrics using both manual-
based and automated tool-based methods [19][20]. Total meas-
urements include following: experiment input variables in-
cluded a total of four developers and three applications with
each; experiment generated a total of 12 software systems
against which the metrics need to be applied; the 29 code met-
rics of EQMTA, which will have a total of 348 measurements.
Of these, 144 measurements from 12 metrics were generated
using tools, and 204 measurements from 17 metrics were cal-
culated manually.

VI. EXPERIMENT RESULTS

This section presents empirical results relevant to the eight hy-
potheses. We analyzed and evaluated the reusability and perfor-
mance using the code developed by the student participants, ques-
tionnaires, hourly journals, and maintenance history. In the follow-
ing graphs, the vertical axes represent the measurements, and the
horizontal axes represent the three activities of the experiment. For
each activity, there are two bars: a blue bar for the results of AspectJ
group and an orange bar for the results of TransJ group. For space
limitation, we did not show all results.

A. S'has better encapsulation and Separation of Concerns
(SoCs) and less scattering than .5

From the graphs in Fig. 4, we found that the interest average of
CDTA, CDTO and CDLOC values for TransJ went to zero in all
three activities of the experiment, and the result was significantly
different from AspectJ in the all activities. The reason for this phe-
nomenon is that Trans) pointcuts provide total obliviousness be-
tween the transaction application and TCC's. AspectJ, transaction

49

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

35

30

25

20

15

10 I

| NN
0 | '

Actl Act2 Act3 Actl Act? Act3 Actl Act? Act3

AVERAGE CDTA, CDTO, COLOC IN
TRANSACTION APPLICATION

COTA COTO CoLoC

W Aspect] Transl

Figure 4. CDTA, CDTO, and CDLOC Coverage over Applications

components and their operations for CC's were significantly more
diffused in the transaction application because the pointcuts had to
be tied to programming constructs instead of transaction abstrac-
tions. From these results, we can conclude that the first hypothesis
holds true for better separation of concerns in TransJ than in As-
pectJ.

B. $"has a lower coupling than .5

Fig. 5 shows that TransJ implementation decreased the values of
CBC, DIT, and CIM in all the three activities of the experiment.
TransJ removed dependencies and did not maintain any direct rela-
tionship between TCC's and the core transaction application compo-
nents. In AspectJ, unnecessary coupling of TCC's with the core ap-
plication components increased CBC, which hindered reuse and
code understandability.

On the one hand, wide variations were found in DIT and CIM
metrics from TransJ group and AspectJ group. The most significant
indicator of the decrease in coupling between aspects and the core
code is the impact of TransJ’s joinpoints on the CIM metric. This
metric counts the number of modules explicitly named in pointcuts.
Compared to the AspectJ activities, the TransJ activities have a re-
duction of 100%, 100% and 100% in CIM (i.e., all of the three ac-
tivities have an average value of zero for CIM metric). This was
caused by providing a comprehensive set of pointcuts, which fully
encapsulates the distributed transaction abstractions. This allows
participant programmers to reuse the pointcuts directly, so they did
not need to override or inherit the aspect components to name in the
pointcuts of a given class. In contrast, the AspectJ programmers suf-
fered from a lack of clarity of relationship among TCC's and appli-
cation components, wherein aspects acquire context information
from one of more classes. Thus, they preferred to inherit all of the
attributes and operations from parent (superclass) methods in CC's
to share context data across aspects and distributed transaction ap-
plication components.

= 15
g 14
o, 1
= =10
<o g
EE
=1 S &
Jg 5 4
0z
g 2 I I
- | |
g Actl Act2 Act3 Actl Act2 Act3 Actl Act2 Act3
w
B cac om cim
m Aspect] Transl

Figure 5. CBC, DIT and CIM Coverage over Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Average Lack of Cohesion Per
programming Activity
o
.
&

0.4
FCES]
03

02
0.15
0.1
0.05

0

Act.1 Act.2 Act.3

W Aspect) Trans)

Figure 6. LCTO Coverage over Applications

In consonance with these results, we can confidently conclude
that the second hypothesis holds true for reduced coupling in TransJ
compared with AspectJ.

C. S’has higher cohesion and less tangling than .§°

In Fig. 6, the result reveals that TransJ maintains a lower value
for LCTO than AspectJ in all the three activities of the experiment.
Thus, TransJ promoted encapsulation with implementing a more in-
dependent component that implements a single logical function
(more cohesive) than implemented with Aspect]. Compared to the
AspectJ group, the TransJ group improved cohesion in all activities,
sometimes significantly (from 8% to 75%). The decrease in the co-
hesion of the AspectJ activities is caused by the need to extract new
methods to expose advisable joinpoints i.e., multiple transaction
joinpoints cannot be advised as an atomic unit (e.g., begin —commit,
begin — abort, or lock — release). From these results, we conclude
that the third hypothesis holds true for increased cohesion in TransJ
than in Aspect].

D. S notsignificantly larger or complex

Figures 7 (a) through 7 (€) show that TransJ implementations de-
creased the metric values for LOC, MLOC, TLOC, NOT, WOTC,
CC and RFM and increased VS value in all the three activities of the
experiment. In comparison with TransJ, Aspect) programmers
found the aspects and application code tends to contain very terse
pointcuts, advices and extra code, especially, when combined with
transaction constructs, such as transaction demarcations, to pull all
relevant context information. In TransJ, two induced factors affect
these metrics: the UMJDT model captures various general distrib-
uted transaction abstractions in meaningful, reusable joinpoints and
a set of base aspects, which help developers implement the TCC's in
simpler and logical method bodies, i.e., advice, with no extra lines
of codes and less number of operations and advices, thus this re-
duced the RFM value. Second, TransJ’s joinpoints referenced by
broad contexts and stable pointcut definitions, therefore, applica-
tions did not need additional context information, such as an identi-
fier or lock snapshot. This allowed the reusable and application-
level aspects to inherit or reuse pointcuts to apply the logic of TCC'
in appropriate transaction places. Hence, TransJ reduced the values
of MLOC, TLOC, NTO, WOTC, and RFM. Fig. 7 (d) shows that
the value of CC is smaller for TransJ than AspectJ, because TransJ
hides complex transaction abstractions, as mentioned, which result
in simple conditional statements and less tangled code. As predicted
by the above hypothesis, results shown in Fig. 7 (e) give sufficient
evidence that the average VS value of all programs was more for
TransJ than AspectJ, due to inlined code in transaction scopes being
extracted and gathered to inner classes, i.e., contexts and base as-
pects (caused improvements of 12% to 23%). Although the number
of components were more in TransJ implementations, but they were
more cohesive. From these results, we can confidently conclude that

50

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

" ra
n 151
&

AVERAGE LOC, MLOC, TLOC AND WOTC IN APPLICATIONS
B .
o
5]

Act.1|Act.2 |Act3 Act.l|Act2|Act3 Actl|Act2|Act3 Act1|Act.2 |Act3

MLOC TLOC ‘WOTC

mAspect] mTrans)

Figure 7 (a) Average LOC, MLOC, TLOC and WOTC over
Applications

mAspect) mTransl

20 I
. | m |

ACT.1 ACT.2 ACT.3

AVERAGE OF RESPOMSE FOR
TRANSACTION MODULE
I
!

Figure 7 (b) Average RFM over Applications

mAspect! mTransl
70

50
30

20
10
0 || ||

ACT.1 ACT.2

AVERAGE NURMBER OF ADVICES
CORSSCUTTIONG COMCERN

AND METHODS IN ASPECTS PRE

ACT.2

Figure 7 (c) Average NTO over Applications

B Aspect) ® Trans)

L O> 15
CEE
w < X

osy 1
EOQ_

ng 0.5

>q ¥
<00

0

ACT.1 ACT.2 ACT.3

Figure 7 (d) Average CC over Applications

the fourth hypothesis hold true for less complex and a small code
size software in TransJ compared with AspectJ.
E. J”is significantly more oblivious to TCC'’s than S

Fig. 8 shows that TransJ implementations significantly reduced
the values of NITD, CDA, ASTC and ASTO metrics. Compared to

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

20
15
10
| -
0

Act.2 Act.3

AVERAGE VOCABOLOARY SIZE

Act.1

B Aspect) M Trans)

Figure 7 (e) Average VS over Applications

the Aspect), NITD and CDA for all TransJ activities differed by
100%. The reason for having this result, i.e., zero value, TransJ pro-
grammers directly used transaction abstractions and did not need to
use Inter-Type Declarations (ITDs) for sharing of context infor-
mation between application and aspect components. Significant re-
duction in ASTC and ASTO was due to the layers of indirections
among the transaction application and aspect components, which
TransJ provides but are missing in AspectJ. In a nutshell, the im-
provement of the TransJ activities verse the AspectJ activities was
caused by (a) the higher level of reuse of base aspects, and (b)
scoped joinpoints, i.e., contexts, eliminating the need to create oper-
ations to expose new joinpoints. From these results, we can confi-
dently conclude that the fifth hypothesis hold true for less oblivious
software CC's in TransJ compared with AspectJ.

F. The runtime of .§"is no worse than .8’

Figures 9 (a) through 9 (c) show that TransJ implementation
slightly decreased the metric values for MRT, NUCT, ToT, and
slightly increased NCT with maintaining the RTPM in all three ac-
tivities of the experiment. TransJ allows dynamic weaving of as-
pects at run-time by looking up to the contexts instead of needing to
programing by hand as done in AspectJ. Figures 9 (a) and 9 (b) in-
dicate that the TransJ group performed very slightly better than the
AspectJ group for Act.1 and Act.2 with almost 0% improvement for
Act.3. This lack of improvement for Act.3 was caused by the over-
head of creating a transaction and transaction operation thread in-
stances, synchronization and the high concurrent potential for con-
flicts over the shared resource. In other words, there are no major
differences between the efficiency of TransJ activities and AspectJ
activities.

Fig. 9 (c) shows that the results for the NUCT and ToT metrics
remained the same for the Act.1 and Act.2. However, in Act.3
TransJ decreased very slightly the potential of having better ToT and
NUCT values. The decrease in NUCT and ToT values in TransJ at
Act.3 was caused by exposing advisable joinpoints, i.e., lockingJP
and resourceLockedJP and dynamic weaving of aspects on them.

2
6
o [l

ActlAct. 2Act.3) At lAact.2Act3 JAct.lAct. 2ACS Act.LACt.2ACL.3

AVERAGE NITD, CDA, ASTC AND ASTO

m Aspect] W Transl

Figure 8. Average NITD, CDA, ASTC and ASTO over Applications

51

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

= 250
28 0
Gdeo
8 =g 150
2=
<3
«] 100
w =z j
O 8 5 50
::(a 0 — — e
g o
< Act.1 Act.2 Act.3
m Aspect) ™ Trans)
Figure 9 (a) Average MRT over Applications
__15
O un
=3
w un
o X510
(e
w O o
w o =
o n =
3 == 5
00O
=Ga
S52 o0
<z<
< o Act.1 Act.2 Act.3
o =
S

W Aspect) ETrans)

Figure 9 (b) Average Transaction Velocity (RTPM) over
Applications

Actl Act2 Act3

AVERAGE NC, NUC AND TO
TRANSACTIONS PER SECONDS

Actl Act2 Act3 Actl Act2 Act3

NCT NUCT ToT

W Aspect) M Trans)

Figure 9 (c) Average NCT, NUCT and ToT over Applications

= 40 g 22

% 35 @ E 18

E o 16
N =

=" S E 14

5 S T

= - s 81|
et [Q
o - = LA -

= 20 o c 10

= o T I g
B15 | e 2§ 8

2 1 g8 o

g sl 4| e
woog . L 1] = 7 &
£ e - o

[T I By, = 0 La
= LA B & & = C =
g o 5 10 S 0

@ Aspectl Act.l @ Transl Act.1 @ Aspect] Act.2

ra
e}

=]
=

=
n

wn

Act.2

Actl

Actl Act2

ABERAGE NUMBER OF CHANAGES
TO REUSE AMND ADAPT A CONCERM
=

Mol MoCA

m Aspect] mTrans

Figure 10 (a) Average Number of Changes of Performance
Measurement Concern over Conference Registration System and Bank
System Applications

These joinpoints represented an indication of the benefits that can
come when concurrent operations access the shared resource. How-
ever, there are no major differences between the throughput of
TransJ activities and AspectJ activities. In a nutshell, the results of
figures do not give sufficient evidence to claim that the benefits of
improving software performance. But from these results, we can
confidently conclude that the sixth hypothesis holds true: preserving
runtime performance in TransJ compared to AspectJ.

G. The implementation TCC's in S requires a smaller number of
changes to reuse compared to .5

From the results shown in Fig. 10 (a), we can see that TransJ
implementation significantly reduced the changes required to reuse
the performance measurement concern implementations in Act.1
and Act.2. This means that the application is more amenable to ex-
tension.

Compared with AspectJ, the presence of joinpoints in the base
aspect of TransJ allows the implementation of the CC' logic in reus-
able and application-level aspects, which allow contexts and CC's to
be explicitly communicated. Fig. 10 (a) presents the percentage of
CC's that were implemented by abstract aspects (in base aspect). The
data confirm that significant increases in reusability can be gained
by applying TransJ's joinpoints where appropriate.

Fig. 10 (b) provides another graphical representation of the anal-
ysis of reuse for AspectJ and TransJ. The orange-colored graphs rep-
resent scattering in TransJ (aspects only) and the blue-colored
graphs represent scattering in Aspect) implementations. The scat-

I
3

[=

o @
&35
m E
9 = 30
o =
g @25
==
2 £ 20
0 ° kE g 15
.. £ £ 10 _
e @ 5= - o %0
S e ©
Qo000 L T T
5 10 0 5 10
& Trans) Act.2 ® Aspectl Act3 @ Trans) Act3

Figure 10 (b) ASTC, ASTO, CDA, NITD, CDTA, CDTO and CDLOC over Applications of AspectJ and TransJ

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

52

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

{OUR) and NoBs
B

WAspect] W Trans)

Figure 11. Average AT, PT and NoBs over Applications

tered points in the graph indicate that the number of changes re-
quired for reusing a concern with TransJ and AspectJ in different
activities, respectively. The scattered points represent ASTC,
ASTO, CDA, NITD, CDTA, CDTO, and CDLOC metrics results.
Overall, activities of TransJ (highly reusable and more extensible),
but were highly scattered for AspectJ. The reason for less scattering
is discussed above. From these results, we can conclude that the sev-
enth hypothesis holds true: more reusability and extensibility in
TransJ compared to AspectJ.

H. The total programming hours for .5”is less than .5, indicating
that $7 is less complex and more readable than .§°

From the results shown in Fig. 11, we can see that TransJ signif-
icantly reduced the period that required to read, understand, imple-
ment, and debug the implementations of TCC's in all activities of
the experiment compared to AspectJ. These results confirm that the
applications were more flexible to implement with TransJ and were
robust with respect to bugs and error compared to the Aspect] im-
plementation. In addition, this figure indicates that TransJ partici-
pants performed significantly better than the AspectJ participants for
all activities.

PT represents the amount of time they spent on reading the
source code, understanding secondary requirements and looking for
bugs. The increases in the PT in the AspectJ activities are caused by
the need to study the whole code to find new pointcuts to expose
advisable joinpoints and to gather the relevant information to a spe-
cific context that is required to weave the CC's of appropriate join-
points. In contrast, TransJ provides pointcuts that help developers
code the CC's obliviously. In addition, they do not need to create
shared data structures, i.e., contexts, to have an explicit cooperation
between base application code and aspects. This one simple benefit
in the mindset of programmers can drastically reduce the number
and seriousness of bugs, i.e., NoBs. From these results, we can con-
fidently conclude that the eighth hypothesis hold true: less software
development time is required for TransJ than for AspectJ.

VII. SUMMARY

In ICSEA 2014, we presented the new conceptual model, i.e.,
UMJDT, to define interesting joinpoints relative to transaction exe-
cution and context data for woven advice. TransJ is a new abstract
framework, which allows developers to encapsulate TCC's in reus-
able and cohesive modules [6]. This paper presents a preliminary
research experiment on hoped-for benefits of TransJ in comparison
with AspectJ. It defines an extended-quality model for transactional
application, then setup an experiment methodology, involving 8 hy-
potheses and data collection from 12 applications. Initial findings
provide sufficient evidence to conclude that TransJ is capable of en-
capsulating a wide range of TCC's and that it can provide more mod-
ular, reusable distributed transaction software without sacrificing
the performance. We hope to gather more empirical evidences of the

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

TransJ’s value by increasing the number of aspects in the reusable
aspect library and by continuing to expand the number and types of
applications that use TransJ. Our future research will include more
formal software-engineering productivity experiments to verify the
performance belief. TransJ can be extended for distributed remote
pointcuts that would simplify the implementation of even more com-
plex crosscutting concerns, such as recovery, or multithreaded in a
distributed system.

REFERENCES

[1] C. Sant'Anna, A. F. Garcia, C. F. G. Chavez, C. J. de Lucena, and A.
Staa, “On the Reuse and Maintenance of Aspect-Oriented Software:
An Assessment Framework,” In Proc. 17th Brazilian Symp. Software
Engineering, Manaus, Brazil, pp. 19-34, 2003, doi: PUCRIoInf,
MCC26/03.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.M.
Loingter, and J. Irwin, “Aspect-Oriented Programming.” Proceedings
of ECOOP '97, Springer Verlag, pages 220--242, 1997.

[3] G. Kiczales and M. Mezini, “Aspect-Oriented Programming and
Modular Reasoning,” in ICSE 2005, pp. 49-58, 2005.

[4] Office of Research and Graduate Studies at Utah State University,
Institutional Review Board [Online]. [retrieved: June, 2015],
Available: http://rgs.usu.edufirb/.

[5] A. AlSobeh and S. Clyde, “Unified Conceptual Model for Joinpoints
in Distributed Transactions.” ICSE’14. The Ninth International
Conference on Software Engineering Advances. Nice, France.
October, pp. 8-15, 2014, ISBN: 978-1-61208-367-4.

[6] A. AlSobeh, “Improving Reuse of Distributed Transaction Softwares
with Transaction-aware Aspects,” in Ph.D. Dissertation, Computer
Science Department, Utah State University 2015. Paper 4590.
http://digitalcommons.usu.edu/etd/4590

[7] C.Nunes, U. Kulesza, C. Sant’Anna, |. Nunes, and C. Lucena, “On the
Modularity Assessment of Aspect-Oriented Multiagent Architectures:
a Quantitative Study.” International Journal of Agent-Oriented
Software Engineering, v. 2, pp. 34- 61, 2008.

[8] A. Razaand S. Clyde, “Communication Aspects with CommJ: Initial
Experiment Show Promising Improvements in Reusability and
Maintainability,” ICSEA'14, pp. 48-55, 2014, Nice, France, Oct. 2014.

[9] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into Inter-
process Communications (IPC) in Aspect),” ICSEA 2013. Venice,
Italy, pp. 234-240, 2013, ISBN: 978-1-61208-304-9.

R. Burrows, A. Garcia and F. Taiani, “Coupling Metrics for Aspect-
Oriented Programming: A Systematic Review of Maintainability
Studies,” In Evaluation of Novel Approaches to Software Engineering,
volume 69 of Communications in Computer and Information Science,
pp. 277-290, 2010.

L. Parnas, “On the Criteria to be used in Decomposing Systems into
Modules,” Commun. ACM, vol. 15, no.12, pp. 1053-1058, Dec. 1972.

Y. Coady et al., “Can AOP Support Extensibility in Client-Server
Architecture?” In European Conference on Object-Oriented
Programming (ECOOP), Aspect-Oriented Programming Workshop,
June 2001.

C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. P. Lucena, “On the
Modularity of Software Architectures: A Concern-Driven
Measurement Framework.” In Proc. ECSA, pp. 24-26, 2007, Madrid,
Spain.

J. Zhao, “Measuring Coupling in Aspect-Oriented Systems”, Int.Soft.
Metrics Symp. 2004.

S.R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Softw. Eng., vol. SE-20, no. 6, pp. 476—
493, June 1994

T.J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., vol.
2, no. 4, pp. 308-320, Dec. 1976.

G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward,
"Cyclomatic Complexity and Lines of Code: Empirical Evidence of a

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

53

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Stable Linear Relationship,” Journal of Software Engineering and
Applications, vol. 3, no. 2, pp. 137-143, 2009.

[18] Collaborative Institutional Training (CI1T), 2014, Social & Behavioral
Research Modules [Online], [retrieved: June, 2015], Available:
https://www.citiprogram.org.

[19] Narayana, Narayana Transaction Anaylser (NTA) Tool [Online],
[retrieved: Septemeper, 2015], Available: http://narayana.jboss.org/

[20] SourceForge, Eclipse Metrics Project 1.3.6 [Online]. [retrieved: Jul,
2015] Awvailable: http://metrics.sourceforge.net.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

54

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Modeling and Formal Specification Of Multi-scale Software Architectures

Ilhem Khlif"?3, Mohamed Hadj Kacem', Khalil Drira?>? and Ahmed Hadj Kacem!
1 University of Sfax, ReDCAD Research Laboratory, Sfax, Tunisia
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
3 Univ de Toulouse, LAAS, F-31400 Toulouse, France

ikhlif@laas.fr, mohamed.hadjkacem@isimsf.rnu.tn,
Abstract—Modeling correct complex systems architecture is a
challenging research direction that can be mastered by providing
modeling abstractions. For this purpose, we provide an iterative
modeling solution for a multi-scale description of software archi-
tectures. We define a step-wise iterative process starting from a
coarse-grained description, and leading to a fine-grained descrip-
tion. The refinement process involves both system-independent
structural features ensuring the model correctness, and specific
features related to the expected behavior of the modeled domain.
We provide a visual notation extending the graphical UML
(Uniform Modeling Language) notations to represent structural
as well as behavioral features of software architectures. The
proposed approach mainly consists of two steps. In the first step,
the architecture is modeled graphically according to the UML
notations. In the second step, the obtained graphical models are
formally specified using the Event-B method. We implement the
resulting models describing structural and behavioral properties
using the Rodin platform and prove their correctness. We apply
our approach for a methodological design of a smart home
scenario for the homecare monitoring of disabled and elderly
persons.

Keywords—Software; Architecture; multi-scale; iterative; model-

ing; UML; formal; specification; structural; behavioral; refinement;
Event-B.

I. INTRODUCTION

Software architecture design has become the key factor
for the success of the development of large and complex
software systems, for mastering the costs and the quality of
their development. The design of a software architecture is a
complex task. On the one hand, we have to describe the system
with enough details for understanding without ambiguity and
implementing in conformance with architects requirements and
users expectations. On the other hand, we have to master
the complexity induced by the increasing model details both
at the human and automated processing levels. Some high
level properties can be expressed on informal descriptions
with a high level of abstractions and checked on simple
formal descriptions. Some other properties need more detailed
descriptions to be expressed and deep specifications to be
elaborated. Description details may be application-independent
and mainly structural such as component decomposition, or
system-specific and mainly behavioral, such as message or-
dering in interaction protocols. An iterative modeling process
that helps architects to elaborate complex but yet tractable
and appropriate architectural models and specifications can be
implemented by successive refinements. Different properties
of correctness and traceability have to be maintained between
the models and the specifications at the different levels of
iterations. Providing Rules for formalizing and conducting
such a process is our objective, which we implemented in

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

khalil.drira@laas.fr,

visual modeling notations and formally specified in a formal
description technique. For this purpose, we propose to con-
sider different architecture descriptions with different levels
of modeling details called “the scales”. We define a step-wise
iterative process starting from a coarse-grained description and
leading to a fine-grained description. The proposed approach
mainly consists of two steps. In the first step, multi-scale
architectures are modeled graphically using UML notations.
In the second step, the obtained models are formalized with
the Event-B method, and validated by its supporting Rodin
platform [11]. In order to illustrate our solution, we experiment
our approach with a case study dedicated to the smart home
system for the homecare monitoring of elderly and disabled
persons. The remainder of the paper is organized as follows.
We describe the UML modeling approach in Section II. In
Section III, we present the generated Event-b specifications.
Section IV presents the case study. In Section V, we present
a survey of related work. We conclude and outline some
perspectives in Section VI.

II. ITERATIVE MODELING

At the level of abstraction, a software architecture is repre-
sented as a collection of interconnected components, and it is
at this level that the structural and behavioral properties of soft-
ware systems are addressed. We define multi-scale modeling
as an incremental process where we constantly refine software
systems descriptions. We propose to illustrate UML notations
for describing software architectures at different description
levels. In the first iteration, an abstract model is defined.
At each iteration, design modifications are made and new
details are added. We consider both structural and behavioral
descriptions. In model-driven engineering, traceability links are
established from the application requirements. The traceability
links specify which parts of the design contribute to the
satisfaction of each requirement [9].

A. Structural modeling

We propose structural modeling for describing software
architectures using a visual notation based on UML. To de-
scribe the structure of a multi-scale architecture, we model the
first scale by a given coarse-grained description using a UML
component diagram. This model is refined until reaching a
fine-grained description representing the necessary modeling
details. We define a vertical description scale “S,y1” as
a model that provides additional details of the design, that
pertain to “S, ;" and more abstraction related to “S,yo.p”.
A vertical scale can be further refined into several horizontal
description scales (“Sy.1”, “Sy.n+1”s--.) thus providing more
details. We consider that v, resp. h, represents the vertical and

55

ahmed.hadjkacem@fsegs.rnu.tn

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

; =
C
Sog

(%2}

g

5| Su

S

j<5)

=

©

(&)

=

&

>
/1 Sa4

Horizontal Iterations

Figure 1. Structural modeling

horizontal iterations (v,h > 0). We, first, elaborate an initial
abstract architecture description from the user requirements.
At the first scale Sy, application requirements are specified
(a unique component Cj is identified). This is the beginning
of the traceability. A first vertical iteration from Sy to S7.1
is required in order to provide details on the application, and
refine it with several components. In Figure 1, two components
named C; and C5 are added. At the same scale, an hori-
zontal iteration is needed to specify the interactions between
components. We represent a link between C; and C5 in the
scale S7.2. A second vertical iteration is helpful for refining
components with new sub-components, and checking that at
the scale So1, the components identification is preserved, as
we keep traceability of a component from one scale to another.
This notation is used for identifying a component: C,,, where
m represents a cursor on the current component (m > 0). It can
be decomposed in the next scale. The component C'y, is refined
with two sub-components identified as Cj 1, Ci9, etc. The
component C5 is refined with two sub-components (C3; and
('5.5). Several horizontal iterations are needed in the second
vertical scale to show more specific details (related to the UML
description). An horizontal iteration called S5 o adds details
on data relating to the components: roles are associated with
components such as “Event-Dispatcher”, “Producer”, “Con-
sumer”, “Producer-Consumer”, “Client”, “Service”, etc. The
scale Ss o is inserting communication ports and more details;
the scale S 3 allows the addition of component interfaces.
Finally, we obtain the model S5, where connections are
established between components to define the architectural
style of the application. In the illustrated example, we are
limited on three vertical iterations to show the necessary
details. However, the iterative process continues while there are
still components to refine. The number of iterations depends on
the application requirements. Each new iteration does not only
include new sub-components but also adds necessary design
details on the information flow between components. In the
scale S5 4, we propose to refine the interaction (link) between
the two components C7 and Cs illustrated at the scale Si o
with respect to the following traceability constraints: if the
component C performs the role of an “Event-Dispatcher” and
the component Cs is a “Producer-Consumer”, the link between
C7 and C5 in S;; will be decomposed into a double assembly
connection in the scale S5 4 connecting (Cy.; and C51). We

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

preserve the model traceability from one scale to another by
decomposing links, at the abstract scale, and refining them,
at the next scale, to show possible connections established
between components. Traceability is a desired characteristic
for software management. However, it is not always possible
to trace every design (or architectural) component back to
requirements. To ensure this property, we check during the
iterative process that the interface compatibility is preserved
in the multi-scale architecture: First, we verify through added
details on component roles that each required interface is asso-
ciated with a producer component and each provided interface
is associated with a consumer component. The main issue
is to ensure the well-typed and the well-connected in UML
component diagram. For this purpose, we have implemented
a tool supporting our approach in visual modeling notation
as an Eclipse plug-in to providethe designerwith an editor for
UML modeling architecture. Using this editor, we make sure
that refined models are correct by design. Second, we check
the interface compatibility through constraints on different
scales using the OCL (Object Constraint Language) interactive
console associated with the Eclipse.

B. Behavioral modeling

To specify behavioral features, we use UML sequence
diagram that provides a graphical notation to describe dynamic
aspects of software architectures [7]. The application is ini-

£ S0.0
7 ML1. Transmit Message M 1

M2. Return ACK Message M 2 D

. €& ——

/ S1z ’ '
cu | |cw | Gy |

{ par ‘M1.1. Transmit Message M 1.1 !
| M1.2. Transmit

par M2.1 Return ACK Message M |1
Pttt) S

|M2.2. Return ACK Message M

Figure 2. Behavioral modeling

tialized (at the first scale), and after successive iterations, the
sets of components and interactions among them are identified
in a way that supports the required behavior of the abstract
application level. We describe the specified behavior of an
application using the UML sequence diagram in Figure 2.
The sequence diagram is helpful for describing the message
ordering in interaction protocols during the iterative modeling.
In the first scale, the whole application is presented as a
black box to illustrate the System Sequence Diagram (SSD)
named “Cy”. The main issue here is to secure the message
transmission and how elements cooperate to ensure correct
information propagation. Several events may refine an abstract
event: The single message (M) between actors in the scale
(S1) is refined with a set of messages (M1.1, M;. 2, M> 1, and

56

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

My 5) in the scale (S3), or the content of translated messages
depends on earlier received message. The sequence diagram,
represented in Figure 2, specifies the behavioral features of the
publish-subscribe architecture. When the Producer-Consumer
component C7 sends a message (M) to the Event dispatcher
component C'y at the scale S1, the Event-dispatcher tracks this
message and, it replies to the Event-dispatcher by sending an
acknowledgement message (M>). At the next scale So, the two
messages will be refined into a parallel sequence of messages
while keeping track of the type of message sent or received in
the abstract scale.

Our approach is based on a multi-scale modeling that helps
to automate the construction of correct design architectures.
So, we need to specify the software architecture model that
describes the software components and their composition. In
fact, each model is represented as a set of scales, and each
scale denotes a set of architectures. Following our approach,
the designer starts by modeling the first scale architecture
which is refined to give one or many architectures for the next
scale. Then, these architectures are refined in turn to give the
following scale architectures and so on until reaching the last
scale. The transition between scales is ensured by applying
specific rules defined using the Event-B specifications. After
constructing the architectures of software architecture model,
we apply the relation between the two models in order to obtain
model-based architectures with different description levels.

III. EVENT-B FORMAL SPECIFICATION

The aim of formal modeling is to achieve a precise specifica-
tion of the intended structures and behaviors in the design [1].
The advantage of such specifications is to determine whether
a modeled structure can successfully satisfy a set of given
properties derived from the user requirements. We consider
here specifying a multi-scale architecture using the refinement-
based formal method: the Event-B [11]. We use the Event-
B method and its event based definition to formalize UML
models. Our approach facilitates layering and mapping the
informal requirements to traceable formal models. An Event-
B model is made of two types of components: contexts and
machines [2]. The obtained UML models are mapped to Event-
B specifications: the component diagram constitutes the static
part of the architecture, it is specified with the Event-B method
in the Context part. The sequence diagram constitutes the
dynamic part of the architecture, it is specified with the Event-
B method in the Machine part. A context describes the static
part of a model, and a machine describes the dynamic behavior
of a model. Each context has a name and other clauses like
“Extends”, “Constants”, “Sets” to declare a new data type
and “Axioms” that denotes the type of the constants and the
various predicates which the constants obey. Machines and
contexts can be inter-related: a machine can be refined by
another, can see one or several contexts, while a context can be
extended by another [8]. A multi-scale software architecture
is described with structural features and behavioral features.
Structural features are specified with one or several contexts
and behavioral features are specified with one or several
machines.

A. Structural specifications

In the component diagram we specify components that con-
stitute the architecture, their types and their connections. This

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

diagram constitutes the static part of the defined architecture. It
is specified in the Context part. In the first scale Sy, the graph-
ical model is transformed into an Event-B specification called
Context0. In the Context0, we specify the whole application
with a Component as constants. The component, that composes
the architecture at scale Sy o, is named Cj. This is specified
by using a partition in the AXIOMS clause (CO_partition).

CONTEXT
ContextO
SETS
Component
CONSTANTS
Co
AXIOMS
CO_partition : partition(Component, {C0})
END

In the next scales, we use the refinement techniques to gradu-
ally add details until obtaining the final scale specification.
A new context named Contextl extends the Context0 and
specifies new components in the application. We define two
components C; and C5 as constants and the established link
between them. Formally, links are specified with an Event-B
relation between two components (Link_partition).

CONTEXT
Contextl
EXTENDS
ContextO
CONSTANTS
C1,C2, Link
AXIOMS
Cl1_partition : partition(Component, C0, {C1}, {C2})
Link_partition : Link € C1 <> C2
END

A Context2 is extending the previous Contextl, and is adding
sub-components of each component. We specify the role of
each component (producers, consumers and event-dispatcher)
as constants. Connectors are specified with an Event-B relation
between two components. The set of Connectors is specified
formally with two partitions (Ctl_part, Ct2_part).

CONTEXT
Context2
EXTENDS
Contextl
SETS
Role
CONSTANTS
C1.1,C1.2,C2.1,C2.2, Prod,
Cons, EventDis, Prodl, Prodn,
Consl, Consn, ED1, EDn, Connectorl, Connector2
AXIOMS
C2_partition :
partition(Component, {C1.1},{C1.2}, {C2.1}, {C2.2})
Ctl_part : Connectorl € C1.1 <+ C2.1
Ct2_part : Connector2 € C1.2 < C2.2
Role_part :
partition(Role, { Prod}, {Cons}, {EventDis})
Cons = {C1,.,Cn} ANC1#C2AN.N#Cn
EventDis = {ED1,..,EDn} AN ED1 # ED2A ..A # EDn
Prod = {P1,..,Pn} NP1 # P2A.A# Pn
END

B. Behavioral specifications

The Event B machine is used formally, to find structural
errors and to verify the semantic of the UML model. To specify
behavioral features, we specify the abstract description scale
with a machine at a high level of abstraction. Then, we add all

57

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

necessary details to the first machine by using the refinement
process. In the first machine, we only specify the modeled
application by extending Context0.

MACHINE
Machine0
SEES
Context0
VARIABLES
Cco
INVARIANTS
inv : CO € BOOL
EVENTS
INITIALISATION
BeginAct
act : CO:=TRUE
EndAct
END

Machinel is a refinement of the Machine0, using the context
Context] and adding communication between the components
C7 and (5. The behavior is described as follows: the compo-
nent C; sends a Message to the component Co. When the
component Cs becomes available, it receives the Message,
processes it and sends the Acknowledgement Message. When
the component C; becomes available, it receives the ACK-
Message. The invariants (Send_Message, Receive_Ack) spec-
ifies what is the sent message, who is the sender and the
receiver. The Machinel has a state defined by means of a
number of variables and invariants. Some of variables can be
general as the variable Send, which denotes the sent message
and the variable Receive, which denotes the received message.
The variable Send is defined with the invariant (Send_Msg)
which specify that Send is a relation between two components
so that the sender, the receiver and the message are known.

MACHINE
Machinel
REFINES
Machine0
SEES
Contextl
VARIABLES
Send, Receive
INVARIANTS
Send_Message : Send € BOOL
Receive_ACK : Receive € BOOL
EVENTS
INITIALISATION
BeginAct
actl : Send := FALSE
act2 : Receive := FALSE
EndAct
EVT
initl : Send € C1 — C2
init2 : Receive € C1 — C2
init3 : Transmit := C1 — True, C2 — False
END

We follow the same method to specify a second ma-
chine named Machine2 which refines Machinel, using the
context Context2 and adding communication between the
sub-components Cj 1, Ci.2, Co1 and Cs,. The invariants
(SendMsgl.1, SendMsgl.2 , ReceiveAck2.1 , ReceiveAck2.2)
are specified in the INVARIANTS clause to check that each
sub-component can’t send a message or receive an acknowl-
edgment only if it is authorised.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

MACHINE
Machine2
REFINES
Machinel
SEES
Context2
VARIABLES
SendMsgl.1, SendMsgl.2, ReceiveAck2.1, Receive Ack2.2
INVARIANTS
Send_Message : SendMsgl.1, SendMsgl.2 € BOOL
Receive_ACK : ReceiveAck2.1, ReceiveAck2.2 € BOOL
EVENTS
INITIALISATION
BeginAct
al : SendMsgl.1l := FALSE
a2: SendMsgl.2 := FALSE
a3 : ReceiveAck2.1 := FALSE
a4 : ReceiveAck2.2 := FALSE
EndAct
EVT
initl : SendMsgl.1 € C1.1 — C2.1
init2 : SendMsgl.2 € C1.2 — C2.2
init3 : ReceiveACK2.1 € C1.1 — C2.1
initd : ReceiveACK2.2 € C1.2 — C2.2
inith : transmitl := C1.1 — True, C2.1 — False
init6 : transmit2 := C1.2 — True, C2.2 — False
END

The Event-B machine is used formally, to find structural errors
and to verify the semantic of the UML model. Besides, behav-
ioral properties are checked like liveness and reachability. The
reachability means that the components are able to capture all
exchanged messages. We formulate those properties as predi-
cates (INVARIANTS, AXIOMS). We check that each compo-
nent only sends a message if it is authorised. This is controlled
by the invariants (Send-Msg, Receive-ACK). Reaching the last
scale description by using refinement techniques, we guarantee
that refined models are not contradictory and we ensure that
they are correct by design. The multi-scale modeling helps to
automate the construction of correct design architectures. The
aim is to derive those UML models by applying correctness
preserving transformations, i.e. refinements, that conform to
the constraints defined by the application and by the adopted
architecture styles. The refinement techniques proposed by this
method allow to represent architectures at different abstraction
levels and are implemented using the Rodin platform.

IV. APPLICATION TO THE SMART HOME

This section focuses on modeling the smart home system
for the homecare monitoring of elderly and disabled persons.
The main issue is to ensure efficient management of the
optimized comfort, and the safety of the elderly and disabled
person at home [5]. We illustrate, in Figure 3, the constituent
elements of the smart home application. The monitoring center
is composed of three systems: the Environment Control and
Comfort Management, the Emergency Surveillance Center,
and the Medical Surveillance Center. The Home Care Actor
interacts with the monitoring center, by setting medical or
emergency conditions; the Equipment includes sensors and
house devices; the emergency surveillance center controls
critical situations using the activity sensors. Activity sensors
include fall sensors, presence sensors, video camera and micro-
phone. The medical surveillance center monitors physiological
sensors. While there are problems, the center requires the med-
ical assistant intervention (the doctor, the nurse). The comfort
management and the environment control system guarantees a
comfort life for the users. This center enables communications
between users, control the environment sensors (Humidity

58

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Equipement Monitoring Center HomeCare Actor
—— Activity Sensor — Emergency Surveillance
3 > “ X Center @ Emergency
0 ﬂ Video ! & e P, Service
v Camer Y X el ésl g \
Fall Presence . l = gt
Sensor Sensor _Microphone | “?}(\
B . Wifi w
Device P Environment Control &
W | N Comfort Managemint ﬁ
—_— Aon 353 — User
i iti Convector . g Tablet |),
AAir Conditionner g N "“ § v l{l
— : .\\ 8] \ v
Environment Sens%r N M a Is
Smart £l deryRelatlves
-
Humidi .) Phone
;m'dlty Temperature Medical Surveillance Person
ensor Sensor Center ;
— f Ji Medical
[Physiological Sensor =~ = ‘ - Assistanteg,
7 g | PC o] L
Blood SR | — i N
Pressure', Weiaht ! y = i/
| Oximeter WeightSCale 4 J
Sensor N0 censor e Doclor Nurse

Figure 3. Smart Home application

and Temperature Sensors), and commands the house devices
(Convectors, Air conditioners).

A. Smart Home Model

We experiment our approach by applying successive iter-
ations to the smart home application. We obtained then the

/Sog

SmartHome a
HomeCare-&J itori R g |/
/ Monitoring3] Equipement
i Center
IS
«Publish-Subscribe » |

SmartHome

«Producer-Consumer>
Equipement

«Network-Dispatchel r»a]
Monitoring-Center
Medical &1ry
eillanceCentr

«Producer-Consumer »&]
Homecare-Actor
Medical €3 lﬁl
Assistant F—>5rO

Sz

« Publish-Subscribe» a]
SmartHome

«Producer-Consumers-~
Homecare-Actor
User 8]

I:% Rela\tivE'_‘gL 4
g isabledea]
L /Eldery —>p—o

Person |

«Network-Dispatcher‘?L';I
Monitoring-Center

B —2¢iHumidityS &

Environement s<2—%—32t{TemperatureS®J

Control&Comfort HouseDevice &]
Management >§Convec®d
s

PhysiologicalS &
(fOximeter]|

>{PressureS =]
—$2423 WeightScales!

ActivitySensora]
Thot—boddpresences. &1

Emergency b o Lo T Sensof]

Emergency g]
Surveillance

Emergef] N
Center System VideoCames |

e {MicrBphons]|

Il

Medical g
Assistant

nJ DoctBr:
Leopd Nured

. g
Medical et —03—4
Surveillance —
Center b—>4—

[

[

e W = 1

L)

Figure 4. The Smart Home model

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

following results: In Sy, we define the application named
“SmartHome”. The constituent systems of the smart home
are described (in Sy;): HomeCare-Actor, Equipment, and
MonitoringCenter). Those systems communicate with each
other via the monitoring center. Those relationships are rep-
resented (in S12) as links. In Figure 4, We illustrate the
iterative process applied to the smart home system. In the
next scale, the three components are refined and specified
with an associated role as shown in Figure 4. The Mon-
itoringCenter plays the role of an “EventDispatcher”. The
HomeCare-Actor and Equipment play the role of “Producer-
Consumer” in the application. We briefly describe the list of
required/provided services of the HomeCare-Actor component.
The MedicalAssistant receives information about the patient’s
situation from the MedicalSurveillanceCenter, he manages the
patient’s medical care (provides) and returns a report after the
care. The EmergencyService receives information about a crit-
ical situation EmergencySurveillanceCenter, reacts to save the
patient (provides), and returns a report after the intervention.
The User receives not only emergency and medical services
but also comfort services like online communication or house
device command provided by the EnvironementControl And
ComfortManagement component. During the iteration process,
we apply the link decomposing rule with respect to the
component role: if Cy plays the role of an “Event-dispatcher”
and C5 acts as a “Producer-Consumer”, the link in the scale
S1.0 between C5 which is related to “HomeCareActor” or
“Equipment” and C; in the scale S;o will be decomposed
into a double assembly connection in the scale Sy 4 between
(.1 which is related to “MonitoringCenter” and C5; which
is related to ‘HomeCareActor” or “Equipment”. While there
are still components to refine in the smart home, we move
to the third scale to add more design details. We focused on
mastering the system complexity description details through
including the third scale. This scale has not only included
new sub-components but also detailed the information flow
between them. Each added sub-component (e.g. the doctor) is
important for the design process. It influences the abstract level
where smart home requirements are specified. We illustrate the
last horizontal scale S5 4 adding new sub-components (Doctor,
Emergency Service, Video Camera, etc), and their connections.

B. Smart Home system-specific properties

In Figure 5, we present one of three fragments of the
UML sequence diagram to demonstrate the behavior of con-
stituent elements. The sequence diagram shows the instances
participating in the interaction having two dimensions: the
vertical dimension represents time; the horizontal dimension
represents different objects which is related to the behavior
of the smart home components. We illustrate the first scale
So.0 using the SSD named “Smart Home” to show the whole
system (as a black box). A vertical refinement called S o
allows to describe the objects HomeCare-Actor, Equipment,
and MonitoringCenter) and the exchanged messages in the
diagram “Sd Monitoring”. An object of class Equipment starts
the behavior by sending an alert message to an object of class
MonitoringCenter). This object responds by an acknowledg-
ment message to the equipment and sets the Sleep mode.
The monitoring center sends the information to the object
HomeCare-Actor that will respond immediately and send re-
turn message describing the situation after the care.

59

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[Sd Monitoring]
HomeCareActor] MonitoringCenter Equipement]

| i 1.Send Status/Alert
4. Respond] 3.5end Information |[2.Send-ACK & set Sleep Mod!ﬂ
.Send a report after the [care 7
Sl 2
Sd EmergencySurveillance

EmergencyService S Er_nergenc:y ActivitySensoﬁ

1.1 SendAlert on an accident

2.1Send-ACK & set Sleep Mode|

ﬁ4'1 Respond | [3.1.Send an alert tq feact
to save 5.1 Send a report |

on the patient situation

o

Sz4

Sd Emergency Surveillance

Eldery || Emergency || EmergencySurveillance
person Center Center

Video
Camera

Presence]
Sensor

Fall
Sensor

Microphone

1.1.1 Send alert on an/accident]
1.1.2 Send signal on { |e preseence of the person in @ place
1.1.3 Send video aler||on a def |cted emergency situation

[1.1.4 Send sound aler |on a de| icted e rgency situg fion

2.1.1 Send ACK & S¢ | Sleep Jode for | | the Presend| | sensor
2.1.2 Send ACK & Sq | Sleep | Jode for|| the Fall ser sor
2.1.3 Send ACK & SUt Sleep Mode for] | the video ¢ jmera
411.1Respond 2.1.4 Send ACK & Set Sleep Mode for| the microp jone
3.1.1Send anal| [t on an

|

|
o emergency case {) react |
| .1.1 Send arepq |t on the :
| patient situd ion |

Figure 5. Fragment of the UML Sequence Diagram

C. Event-B specifications

We apply the Event-B refinement techniques to check the
correctness of the multi-scale architecture applied to the Smart
Home. We illustrate the Context2 that is extending the previous
Contextl, and is adding all sub-components in the smart home.
They are specified with three partitions: equipment-partition,
Monitoring-partition and Actor-partition. We specify in the
Context2 the components type role (producer-consumers and
event-dispatcher) as constants. There are many connections
between components. The Connectors are specified with con-
stants in the CONSTANTS clause. The set of Connectors is
composed of all Connectors. This is specified formally with a
partition (Connector-partition).

CONTEXT
Context2
EXTENDS
Contextl
CONSTANTS
ActSensor, Device, EnvSensor, PhysSensor,
EmerSurvCenter, EnvControl, MedSurvCenter,
User, MedAssistant, EmerService, Connectorl, ..
AXIOMS
Eq_partition :
partition(Component, { ActSensor}, { Device},
{EnvSensor}, {PhysSensor})
Eq_partition :
partition(Component, { EmerSurvCenter
{EnvControl}, { MedSurCenter})
Connector = Connectorl,..,Connectorl5T
END

To specify behavioral features, we have two steps. First,
we specify the first machine at a high level of abstraction.
Second, we add all necessary details by using the refinement
technique. We illustrate an example of machines called Ma-
chinel that is refining the Machine0, adding communication
between the Smart Home components. The behavior is de-

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

scribed as follows: the Monitoring-Center sends a Message to
Equipment and then remains released from resources. When
the component Equipment becomes available, it receives the
Message, process it and sends the Acknowledgement Message.
When Monitoring-Center becomes available, it receives the
ACK-Message, process it and then becomes deactivated. The
invariants (Send_Message, Receive_Ack) specifies what is the
sent message, who is the sender and the receiver (The same
description for the message from the Monitoring-Center to the
HomeCare-Actor Component).

MACHINE
Machinel
REFINES
Machine0
SEES
Contextl
VARIABLES
Send, Receive
INVARIANTS
Send_Message : Send € BOOL
Receive_ACK : Receive € BOOL
EVENTS
INITIALISATION
EVT
il : Send € MonitoringCenter — Equipment
i2 : Receive € MonitoringCenter — Equipment

i3 : transmit := MonitoringCenter — True,
Equipment — False
i4 : transmit := MonitoringCenter — True,

HomeCareActor — False
END

During the refinement process, we check the correct transmis-
sion of messages between actors and we prove the correctness
property using the Event-B specifications. We demonstrate
that there is no conflict problem between messages sent and
received in parallel sequence which is not possible and correct
with UML notations. Dispatchers cooperate together to route
information from the producer-consumers to the subscribed
event-dispatcher (Monitoring-Center). This interaction is gov-
erned by a principle of information dissemination requiring
that produced information have to reach all subscribed con-
sumers. This is to check the correct message transmission
between dispatchers and producer-consumers.

The Event-b specifications allow to guarantee a correct
by construction architectures. This formal method provides
three steps. At the first step, the designer describes the nec-
essary information for the software architecture model and
the relation between them. Then, the second step consists in
generating automatically all the correct design architectures
following a multi-scale modeling approach. In fact, for each
model, a scale is defined by the designer. Then, it is refined
by successively adding smaller scale details. This refinement
process is performed by applying specific rules. Finally, the
third step is the selection of the efficient architecture according
to resource constraints.

V. RELATED WORK

Considerable research studies have been proposed on the
description of software architectures. Multi-level modeling
approaches [10] have been proposed to represent the different
abstraction levels. Baresi et al. [3] presented a UML based
approach and proposed formal verification and validation of
embedded systems. The approach is implemented using the
“CorrettoUML”: a formal verification tool for UML models.
Other research studies have been proposed for the specification

60

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

of software systems using formal methods. Model verification
activity [12] is performed to ensure the correctness of model.
Formal verification means that any errors found in the design
of the system should be corrected. Ben Younes et al. [4]
proposed a meta-model transformation between UML Activity
Diagram and Event B models. A formal framework is defined
to ensure the correctness of the proposed transformations,
and the event B method is used for the formal verification
of applications. Bryans et al. [6] presented a model-based
approach to assist in the integration of new or modified con-
stituent systems into a System of Systems. The authors defined
two levels for system composition, the high-level structural
view that considers the connections within the system, and
the low-level behavioral view that deals with the behavior of
contractual specifications. They treated an industrial case study
for modeling Audio/Video system.

We can note that the research activities [3], [4], [6] deal
only with structural features during the design of the architec-
ture. They do not take into account the respect of behavioral
featuress to validate the architecture. Whereas, in our work,
we deal with both structural and behavioral features.

We analyze that several studies have been performed on
the modeling of multi-level architectures based on UML.
These semi-formal approaches did not, however, include the
concept of refinement. Although formal techniques and, more
specifically, works based on graph transformations allow the
architecture refinement, they require certain expertise in mathe-
matics for architects. Moreover, only few studies have provided
a clearly defined process that takes the compatibility between
different description levels into account, a challenging condi-
tion for the multi-level description of software architectures.
Model-based methods have addressed significant challenges
in software Engineering. Semi-formal models are used in
the architectural description of complex software systems.
This representation has advantages, mainly with regard to
comprehension, and can help to clarify areas of incompleteness
and ambiguity in specifications.

In this study, we have considered that a given modeling
level can be described by both vertical and horizontal scales.
Our work will help the architect to design a correct and
elaborated solutions for modeling multiple different levels of
description of the same modeling level through the scales.
Thus, we applied our model-based approach for describing
multi-scale architecture , defining both the structure and the
behaviour of the complex system and interactions between
them. Event-B as a formal method support an interactive and
an automatic theorem proving so that the resulted specification
after the transformation process can be proved automatically.
With the notion of refinement, we can to perform successive
refinement to the Event-B model in order to specify different
description scales.

VI. CONCLUSION

In this paper, we have presented a multi-scale modeling
and specification approach for software architectures. We have
proposed UML notations to represent the structure and the
behavior for modeling different description scales, and second
formally specified the models with the Event-B method. The
formalisation phase allows to formally specify both structural
and behavioural features of these architectures at a high level
of abstraction using Event-B method. We implemented the

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

elaborated specifications under the Rodin platform. We have
also presented the application of our approach to the smart
home scenario. Finally, we have presented some research
studies discussing multi-level modeling for software architec-
tures using semi-formal and formal methods. Currently, we
are working on the improvement of the formal verification
of architectural properties, and the model transformation from
UML to Event-B. In our future work, we expect to apply the
multi-scale approach to other use-cases for modeling complex
systems architectures (e.g. System of Systems (SoS)) and
implement a tool supporting the approach.

REFERENCES

[1] Compatibility and inheritance in software architectures.
Computer Programming, 41(2):105 — 138, 2001.

[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[3] L. Baresi, G. Blohm, D. S. Kolovos, N. Matragkas, A. Motta, R. F.
Paige, A. Radjenovic, and M. Rossi. Formal verification and validation
of embedded systems: The UML-based mades approach. Softw. Syst.
Model., 14(1):343-363, Feb. 2015.

[4] A. Ben Younes, Y. Hlaoui, and L. Jemni Ben Ayed. A meta-model
transformation from uml activity diagrams to event-b models. In Com-
puter Software and Applications Conference Workshops (COMPSACW),
2014 IEEE 38th International, pages 740-745, July 2014.

[S] S. Bonhomme, E. Campo, D. Esteve, and J. Guennec. Methodology and
tools for the design and verification of a smart management system for
home comfort. In Intelligent Systems, 2008. IS ’08. 4th International
IEEE Conference, volume 3, pages 24-2-24-7, Sept 2008.

[6] J. Bryans, J. Fitzgerald, R. Payne, A. Miyazawa, and K. Kristensen.
Sysml contracts for systems of systems. In System of Systems Engi-
neering (SOSE), 2014 9th International Conference on, pages 73-78,
June 2014.

[7]1 S. Cimpan, F. Leymonerie, and F. Oquendo. Software Architecture:
2nd European Workshop, EWSA 2005, Pisa, Italy, June 13-14, 2005.
Proceedings, chapter Handling Dynamic Behaviour in Software Archi-
tectures, pages 77-93. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[8] T. S. Hoang, H. Kuruma, D. Basin, and J.-R. Abrial. [Integrated
Formal Methods: 7th International Conference, IFM 2009, Diisseldorf,
Germany, February 16-19, 2009. Proceedings, chapter Developing
Topology Discovery in Event-B, pages 1-19. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009.

[9] I Omoronyia, G. Sindre, S. Biffl, and T. Stilhane. Relating Software
Requirements and Architectures, chapter Understanding Architectural
Elements from Requirements Traceability Networks, pages 61-83.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[10] P. Petrov, U. Buy, and R. Nord. The need for a multilevel context-
aware software architecture analysis and design method with enterprise
and system architecture concerns as first class entities. In Software
Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on,
pages 147-156, June 2011.

[11] W. Su, J. Abrial, and H. Zhu. Formalizing hybrid systems with event-b
and the rodin platform. Sci. Comput. Program., 94:164-202, 2014.

[12] B. Uchevler and K. Svarstad. Assertion based verification using psl-like
properties in haskell. In Design and Diagnostics of Electronic Circuits
Systems (DDECS), 2013 IEEE 16th International Symposium on, pages
254-257, April 2013.

Science of

61

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A Cost-benefit Evaluation of Accessibility Testing in Agile Software Development

Aleksander Bai, Heidi Camilla Mork

Norwegian Computing Center, Oslo, Norway

Email: {aleksander.bailheidi.mork}@nr.

Abstract—Accessibility testing in software development is test-
ing the software to ensure that it is usable by as many people as
possible, independent of their capabilities. Few guidelines exist
on how to include accessibility testing in an agile process, and
how to select testing methods from a cost-benefit point of view.
The end result is that many development teams do not include
accessibility testing, since they do not know how to prioritize the
different testing methods within a tight budget. In this paper, we
present an evaluation of four accessibility testing methods that
fits in an agile software development process. We discuss the
cost of each method with regards to resources and knowledge
requirements, and based on a cost-benefit analysis, we present
the optimal combinations of these methods in terms of cost and
issues discovered. Finally, we describe how accessibility testing
methods can be incorporated into an agile process by using the
agile accessibility spiral.

Keywords—Accessibility testing; Agile software development;
Cost-benefit analysis; Usability.

I. INTRODUCTION

The past decades have seen an increased interest in integrat-
ing usability in the software development process. However,
far to little attention has been paid to the field of accessibility.
Accessibility focuses on letting people with the widest range
of capabilities be able to use a product or service [1]. There
is an increased focus on accessibility from governments and
the United Nations with “Convention on the Rights of Persons
with Disabilities” [2].

Studies show that doing usability testing is costly and can
take around 8-13% of the project’s total budget [3]. Much
of the cost goes to recruiting participants and evaluators
in addition to the man-hours required for conducting and
evaluating the results [4]. For accessibility testing, the cost can
be even higher than usability testing, since recruitment and ac-
commodation of participants usually have more requirements.

However, by not doing accessibility testing at all or by
postponing testing until the end of the project, the cost can
be extremely high, and it might not even be possible to do
accessibility adjustments at a late stage [5] [6]. Many studies
show that software that is hard to use, or have features that
are hard to understand, make users find better alternatives [7].
There might also be legal requirements to provide accessibility.

We argue that developers and testers in software teams
can take more responsibility for accessibility testing, and thus
lower the total testing cost of the project and at the same time
deliver a better product that is both more usable and accessible.
Our approach is targeted towards agile software development,
since it has become the mainstream development methodology

(81 [9].

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Viktoria Stray
University of Oslo, Oslo, Norway
Email: stray@ifi.uio.no

During our evaluations, we have investigated different ac-
cessibility testing techniques, and we discuss the cost-benefit
aspect of these in an agile development process. We argue
that accessibility testing does not necessarily require a high
cost. We describe where in the process the methods can
be used and how they can be combined in optimal ways.
Consequently, the impact from accessibility testing towards
the end of the project will be minimized, and thus reduce
the cost of retrofitting [5]. Our suggested approach is not a
substitute for doing user testing, but an addition, incorporated
into the agile development process, to reduce the overall cost
and increase the usability and accessibility of the software.

The remainder of this paper is organized as follows. Section
IT summarizes related work, and section III gives an overview
of accessibility testing methods. Section IV describes the
evaluation approach and the issues that were found during
the evaluations. Section V reports our cost-benefit analysis of
the accessibility testing methods and Section VI discusses the
results. Finally, we summarize and conclude in Section VIIL.

II. RELATED WORK

Zimmermann and Vanderheiden [10] have proposed a
method for integrating accessible design and testing in the
development of software applications, both iterative and non-
iterative processes. However, the proposed method’s main
focus is on how to gather accessibility requirements and does
not contain much details on how to actual perform testing in
an iterative process. There has been some focus on integrating
an agile development process with usability testing [11], and
in recent years, there has been an increasing interest in Agile
UX (User Experience) [12]. Bonacin et al. [13] propose how
to incorporate accessibility and usability testing into an agile
process, but do not discuss which accessibility testing methods
that are optimal to use or how to combine them in an efficient
setup.

A recent systematic review of usability testing methods for
software development processes [7] request more research into
evaluating the different testing methods and how they affect
the testing outcome. To the best of our knowledge, there are no
evaluations of accessibility testing methods in an agile process,
and there are no studies of which accessibility testing methods
that are most effective compared to resources and knowledge
available in a agile team. We address the latter issue in this
paper by showing a cost-benefit approach on how to select
accessibility testing methods in an agile process.

62

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

III. BACKGROUND

There are several methods for testing usability [7] and
accessibility [10] in software development: automated tools,
guidelines, expert walkthrough, interviews and user testing to
name a few. There are different alternatives of grouping these
methods [14], and we have chosen to divide them into five
groups based on the resources and knowledge required when
using the methods in software development, as shown in Table
Tablel.

The amount of resources and knowledge required is cate-
gorized as either low, medium or high. In terms of resources,
low means that none or little prerequisites (tools, setup,
administration) are required to conduct the method; medium
means that some prerequisites are required, and they are
relatively cheap (under $1000); high means that the method
requires considerably investments in terms of setup, purchase,
administration or maintenance. In terms of knowledge, low
means that no or very little prior knowledge is required;
medium require some prior knowledge, either technical (usage,
commands) or domain (knowledge or experience with the
impairment); high means that extensive or expert training is
required to conduct the evaluation.

TABLE I. ACCESSIBILITY TESTING GROUPS.

Group Resource Knowledge
requirements requirements

1 Automated tools Low Low

2 Checklist and guidelines Low Low

3 Simulation using wearables ~ Medium Low

4 Expert walkthrough Low High

5 User testing High Medium

Automated testing tools require fewer resources in terms
of time, knowledge and resources, compared to other testing
methods. It is quite feasible for a developer or tester to install
a tool and run an evaluation, and most of the tools are also
free to use. There are numerous alternatives out there, like the
NetBeans accessibility module [15] that integrate directly into
the developer’s tools, but most automated tools only support
simulation of visual impairments or a limited variant of other
impairments. Overall, the automated testing tools are low in
resources required to acquire and use them. The automated
tools usually explain the evaluation results in great details to
the operator, and give suggestions on how to fix or improve the
problems that have been found. This means very little prior
knowledge is required from the operator, and explains why
we have also labeled the automated tools methods with low
knowledge requirements in Table 1.

Checklists and guidelines provide the evaluator with a
set of instructions and criteria to evaluate, and the WCAG
(Web Content Accessibility Guidelines) 2.0 standard [16] is
a common choice. It is easy to find both checklists and
guidelines on the Internet, and they have good and detailed
documentation on how to perform the evaluation and how
to assess the results from the evaluation. This is why we
have labeled checklists and guidelines methods with low for
resource and knowledge requirements. Even though these

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

methods require little resources and knowledge, studies have
shown that guidelines are hard to understand and follow, and
have not increased accessibility as much as anticipated [17].

There are many different tools or wearables that an able-
bodied person can use in a simulation. The motivation is to let
a person experience an impairment so the person might be able
to gain some insight into the issues that an impairment might
have with a certain design or solution [18]. It is important to
note that the intention of a simulation kit is not to simulate the
disability in itself, which is highly criticized [19]. Simulation
kits are fairly cheap to purchase and setup, but it requires some
planning; the simulation kits must be evaluated to discover
which is most suitable, and the simulation kits must also
be purchased. The planning and cost aspect is the reason
for labeling the simulation methods as medium. However,
simulation kits come with good instructions on how to operator
them and normally requires no prior knowledge, which is
reflected by low knowledge requirements in Table I.

Expert walkthrough, also called persona walkthrough or
persona testing approach [20], is where an expert simulates
or play-acts a persona while carrying out tasks. The more
knowledge the expert has about the disability that a particular
persona has, the easier it is to do a realistic and credible
acting while testing the solution. The approach is informal and
relatively quick to do, but is heavily dependent on the selected
personas and the experience that the expert has with the
particular type of disability. All expert walkthrough methods
requires expert knowledge (as the name indicates) and is
thus marked with high knowledge requirements. However,
there are few resource requirements for expert walkthrough
methods, and this is why they are labeled with low for resource
requirements.

The best approach for accessibility testing is user testing,
since the actual users are involved and the testers does not
have to do any approximation of impairments or mental states
[21] [22]. However, it is also an expensive method because
it requires much planning, recruitment and management [4].
Examples of user testing involves inquiry, interview, focus
group and questionnaire. This means that resource require-
ments are high as indicated in Table 1. User testing methods
requires some prior knowledge on how to recruit, organize and
conduct user testing, and we have indicated this with medium
knowledge requirements.

IV. ACCESSIBILITY EVALUATIONS

We conducted eight evaluations. The goal of the evaluations
was to investigate what kind of issues the different test
methods can discover, and how the test methods differ from
each other. The findings of the evaluations were then used in a
cost-benefit analysis, to suggest where in an agile development
process the methods might be most valuable.

The system used for evaluation was a pilot for electronic
identification, developed during the EU project FutureID. The
pilot uses a software certificate or an ID card with a card
reader for the authentication process. The pilot uses both a

63

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Java client and a web front end, and consists of around ten
different user interfaces with varying complexity.

A. Selected Methods

We selected methods from the groups in Table I suitable
to be performed by a person working in an agile team, i.e.,
from all groups except user testing and testing with automated
tools. Table II shows the selected method types; Simulation kit
(group 3), VATlab (group 2), Persona (group 4) and Manual
WCAG (group 2).

The four types of methods were selected based on a
combination of resources and knowledge required to perform
a method. Ideally, in a development cycle, one wants to use
as little resources as possible on accessibility testing, but at
the same time discover the most critical accessibility issues
that exists in the software. Therefore, we focused on testing
methods that are relatively inexpensive to conduct in terms of
time and resources. This is why user testing was omitted, since
it is an expensive method to conduct. Automated tools were
also omitted, since they are limited in what they can actually
test.

Almost all methods are labelled as low with regards to
resources. The only method with prerequisites is the simulation
kit because some hardware must be purchased ahead of testing.
This is usually a one-time purchase, but it must also be stored
and assembled before usage, so we think it qualifies as medium
resource demanding compared to the others.

Most of the methods require very little prior knowledge.
Method 3 involves using a screen reader that requires knowl-
edge on how to operate it, but almost everyone can learn how
to use a screen reader in a short amount of time, and therefore
we labelled it medium. However, our level of using screen
readers cannot compare with the expert level of people that use
screen readers daily and are dependent of them. The persona
testing methods requires much more prior knowledge, both in
terms of the method itself, but also on the impairments that is
being play-acted. Thus, the persona testing methods are high
in knowledge demands.

TABLE II. OVERVIEW OF THE EIGHT EVALUATIONS

Method Impairments Resources Knowledge
1 Simulation kit Reduced vision Medium Low

2 Simulation kit Reduced dexterity ~ Medium Low

3 VATLab Blindess Low Medium

4 VATLab Light sensitivity Low Low

5 VATLab Multiple Low Low

6 Persona Dyslexia Low High

7 Persona Being old Low High

8 Manual WCAG Multiple Low Low

For the simulation kit approach, two impairments were

selected that cover both visual and physical dimensions. We
used Cambridge inclusive design glasses [23] for simulating
reduced vision, and the Cambridge inclusive design gloves
[23] to simulate dexterity reduction. These gloves are typically
used for testing a physical products, but they were included
in our evaluation since there was a card reader involved.

We used a Virtual Assistive Technology Lab (VATLab) to
test various assistive technologies [24]. The VATLab contains

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

two different screen readers; NVDA and SuperNova. These
tools are used by blind people, and give a good indication of
how accessible the solution is for this type of impairment. We
also used the built-in high contrast mode in Windows. The
VATLab project also includes a checklist for evaluating web
pages for screen readers, and we used this checklist in the
evaluation [24].

For the persona walkthrough we defined two personas
that we had experience with, one being old and one with
dyslexia. For each persona there was an expert play-acting
the particular persona while performing the predefined test-
scenarios. To make it more realistic, the persona testing of
being old was also conducted with two layers of Cambridge
glasses to simulate reduced vision that often comes with age.

Finally, we conducted a manual testing of the WCAG
checklist. The testing was performed with supportive use of
available browser plugins to check for instance color contrast.

B. Participants

Six different participants performed the evaluations, where
the participants’ knowledge on accessibility testing ranged
from beginner to expert. All the participants had technological
background, their age ranged from 35 to 61, and there were
both males and females in the group. Two of the participants
where recruited based on their experience with persona testing
and their knowledge on dyslexia and aging.

C. Procedures

Before we started the evaluation, we defined whether an
issue was critical or cognitive. We defined a critical issue
as an issue that prevents the participant from continuing or
completing a task; e.g. difficult to read images or text because
of poor contrast or resolution. A cognitive issue was an issue
caused by confusing or missing information for the given
context; e.g. not understanding the purpose of a screen or not
understanding how to operate a controller. A problem can thus
belong to both the critical and cognitive category, as it was
often the case.

All the evaluations were conducted on the same machine
with the same setup to ensure an equal test environment.
Each evaluation also had a coordinator who wrote down the
issues reported by the tester, and the coordinator also made
notes when difficulties, that were not verbally expressed, were
observed. All the evaluations were conducted by at least two
different participants, and the results were aggregated.

A short initial test was conducted before the evaluations
started, in order to verify that the overall setup, the scenarios
and the ordering of them were best possible. The goal of
all the scenarios was to successfully log into the system.
Each participant performed five different scenarios in the same
order: 1) Invalid digital certificate 2) Valid digital certificate
3) Invalid smart card 4) Valid smart card, but incorrect PIN
code 5) Valid smart card and correct PIN code

The participants were unaware that they were given invalid
certificate, invalid smart card and invalid PIN (Personal Iden-
tification Number) code. The scenarios were also executed in

64

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

the listed order to avoid biasing the participants as they should
gradually progress a little further in the logging process.
Each method took under two hours to complete for a single
participant for all the scenarios.

D. Evaluation results

As can be seen from Table III, a high number of critical
issues were discovered with most of the methods. It should be
noted that a critical issue might only be critical in the context
of a given disability. For instance, incorrect HTML tags can be
critical for blindness, but may not be relevant for impairments
like reduced dexterity. However, for the solution as a whole, all
critical issues are equally relevant since an issue might exclude
some users if nothing is done to improve the problem.

TABLE III. ISSUES FOUND.

Method | Issues Critical — Cognitive
1 54 14 9
2 4 0 0
3 33 26 0
4 10 4 0
5 19 17 0
6 34 15 15
7 27 13 9
8 32 7 5
213 96 38

The simulation kit methods found fewer critical issues than
VATLab and persona testing, and this is mostly because most
of the issues reported were visual problems that were annoying
at best and in most cases problematic, but not marked as
critical since it did not hindered further progress. Of the
critical issues discovered with simulation kit, almost all were
also marked as cognitive. Note that a relative few number of
issues were found when simulating reduced dexterity, and we
believe this is mainly because the application did not require
much motoric precision. This is of course highly related to the
software that is evaluated.

WCAG also reported few critical issues, however this was
mostly because the WCAG evaluations criteria are high level.
For instance did a single criteria in WCAG cause over 17
critical issues to be reported in the VATLab methods since
it has a much finer granularity. WCAG also reported few
cognitive issues for the same reason.

VATLab methods reported on average the most critical is-
sues, and many of the issues were related to poor compatibility
for screen readers. We suspect that more issues could be found
if there had not been so many critical problems which made
further investigate in many screens impossible.

Persona testing methods found the most cognitive issues,
and this is not unexpected since the persona used in the
evaluations had focus on usability and understanding the
context. Most of the issues reported by persona testing were
directly related to the participant not understanding the context
of a screen and what was expected from the participant. A high
number of the cognitive issues were also marked as critical
since it is impossible for the participant to complete his task,
and this explains the high number of critical issues discovered
by persona testing.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

V. RESULTS

Based on the evaluation results in Section IV, we performed
an cost-benefit analysis (CBA) of what combinations of ac-
cessibility testing methods that discovered most issues with
regards to resources and knowledge. The motivation for doing
a CBA is to get a more objective evaluation of the different
testing methods, so it is easier to evaluate when to include a
testing method in the process. CBA is a systematic approach
for comparing strengths and weaknesses for different options
[25]. It has not been used for comparing accessibility testing
methods to our knowledge, but it is a well known technique
that is used in many fields [26].

In order to do a CBA, we first defined the cost to be the
combination of resources and knowledge where resources
and knowledge € {1,2,3} where low corresponds to 1,
medium to 2 and high to 3. This makes sense since both
variables contributes equally to the cost of executing a testing
method. We argue that the most beneficial accessibility testing
methods are those that find a high number of issues, but also
many critical and cognitive issues. We can then define the
benefit as the sum of found, critical and cognitive issues. Based
on the the definition of cost and benefit we can then define
the cost-benefit relationship accordingly:

OB — 1 total® + critical® + cognitive? 0
V/n resources x knowledge

Where total is the total number of issues for n methods,
cognitive is the total number of cognitive issues for n method,
critical is the total number of critical issues for n method
and n is the number of methods. We have included squared
weighting of both cognitive and critical issues since we argue
that these issues are more important to discover than minor
issues. We used +/n instead of n as a penalty for the number
of evaluations, since using only n gave a too big penalty when
using multiple methods.

We calculated CB for all permutations of the different
accessibility testing methods to identify the combinations that
gives most benefit compared to cost. The top results in addition
to some selected results are shown in Table IV ordered by CB.

Combining all methods (except method 2) gives a very
high coverage (almost 100%), but comes at a high cost, as
shown with #20. The CB found 19 better alternatives when
considering the costs. The optimal combination of methods
that maximize benefit compared to cost is using methods 5,
8, 3 and 1 (#1). This combination has a relatively low cost,
and discovered almost 65% of all issues in addition to a
high number of both critical and cognitive issues (66.7% and
36.8%).

It is not surprising that if more methods are combined then
the results are better, but at a higher cost, as for instance
shown with combination #5 and #8 in Table IV. However,
a combination of two methods (#3) gives reasonable good
results of discovering around 40% of the known issues, and a
large number of both critical and cognitive issues (21.9% and
36.8%).

65

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE IV. COST BENEFIT RESULTS.

Methods Cost Issues Critical ~ Cognitive
1 5,83, 1 6 64.8% 66.7% 36.8%
2 83,1 5 55.9% 49.0% 36.8%
3 8,1 3 40.4% 21.9% 36.8%
4 58,1 4 49.3% 39.6% 36.8%
5 5,8,6,3,1 9 80.8% 82.3% 76.3%
6 8,6,31 8 71.8% 64.6% 76.3%
7 5,8,4,3,1 7 69.4% 70.8% 36.8%
8 5,8,7,6,3,1 12 93.4% 95.8% 100%
9 5,3, 1 5 49.8% 59.4% 23.7%
10 58,73, 1 9 77.5% 80.0% 60.5%
20 5,8,7,6,4,3,1 13 98.1% 100.0% 100.0%
53 | 5,8,7,6,4,2,3,1 15 100.0% 100.0% 100.0%

With a small increase in cost using three testing methods,
around 50% of all issues were discovered, as shown with
combination #2 and #4. Combination #2 finds 55.9% of
all issues, and almost half the known critical issues. It is
also worth noting that this testing method combination use
three different accessibility testing method types (simulation
kit, VATLab and Manual WCAG testing) to discovery many
different issues.

VI. DISCUSSION

Based on the results in Table IV we found that the combi-
nation of several methods provides good results compared to
the investment. Our CBA shows that combining the testing
methods 5, 8, 3 and 1 is the most profitable combination
of methods. The cost is moderate, and yet, the combination
of methods discover a large number of the issues with the
software we evaluated. However, the results does not say
anything about when to apply the different methods during
a development process.

Testing accessibility using simulation kit with reduced vi-
sion (method 1) is the only method which is always part
of top ten results. Manual WCAG (method 8) is part of the
combinations a total of 9 times, while testing blindness using
VATLab (method 3) is part of top ten a total of 8 times.
VATLab with checklist (method 5) is part of the top 10 results
7 times, while dyslexia persona testing (method 6) is part of
the top results three times. Based on these results we can make
some general recommendations on which methods to include
in accessibility testing during an agile process, and the order
in which they should be included.

In Figure 1 we have illustrated how to prioritize the different
accessibility testing methods in an agile development process,
and we call this the agile accessibility spiral. The circular
layers represents the testing methods, and start from the
center with automated tests and expands outwards to show
the priority of the testing methods. The red arrow illustrates
an agile process that spirals outwards and cover the same
activities in different iterations, and the motivation behind the
agile accessibility spiral is that the different testing methods
can be included in all the activities. The total cost increase as

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

review

ubTssg
3sal

DS‘/@lopme‘“c

FIGURE 1. AGILE ACCESSIBILITY SPIRAL.

more testing methods are included in testing, but the number
of issues discovered also increases.

The different process activities are shown at the edge of the
circle with blue separations between the different activities.
The activities are gradual and not necessarily clearly sepa-
rated as shown in the illustration, and they often happen in
parallel. We have illustrated four common activities (design,
development, test, review) that usually occur in agile software
development.

Automated tests are always a vital part of any development
process and are thus in the center of the spiral, but we argue
that the first accessibility testing method that should be added
to automated tests is the simulation kit for reduced vision. This
is supported by our results in Table IV, and by the knowledge
required as shown in Table I. It is a method that can be
performed many times without affecting the bias of the tester
too much, since it is a wearable gadget that is used by the
tester and not so much a mental testing approach.

Other testing methods like persona testing should be per-
formed less often since the cost is quite high, but also because
it is a mental process which might be biased if performed too
often by the same person. After the simulation kit method
with reduced vision the methods follow successive with man-
ual WCAG, VATLab and blindness, VHL checklist, persona
dyslexia. We have not illustrated more methods in Figure 1,
since these 5 methods cover over 80% of known issues as
shown in Table IV. As a minimum at least two different testing
method should be included during testing [27].

During the first iterations in an agile development process, a
prototype is often developed, and since the motivation behind
a prototype is to show a concept and not necessarily think
about all possible outcomes or users, it is still beneficial to do
some accessibility testing to avoid costly adjustment at a later
stage [5]. However, not all accessibility testing methods are
suitable for testing against prototypes or even design sketches.
The agile accessibility spiral in Figure 1 also incorporate this
in the ordering.

Simulating reduced vision with simulation kit can be done

66

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

against both prototype and design sketches, and parts of
WCAG can also be tested at an early stage. Further out in the
agile accessibility spiral layers, when testing blindness with
VATLab and screen readers, a more stable software version
should be tested instead of design sketches or prototypes. This
is because screen readers requires elements to be marked so
the screen readers can find the required information.

VII. CONCLUSION

Based on our results, we recommend to use the agile
accessibility spiral, as a reference for accessibility testing in
agile development. We recommend to start from the center
and gradually apply more testing methods as the project pro-
gresses. The cost and knowledge of testing methods increase
from the center and outwards, but the discovery of issues also
increases when moving outwards from the center. Ideally, if
the team has access to staff that can perform persona testing,
or are willing to invest the resources to train one or more
in persona testing, then we strongly recommend to include
persona testing as part of the development cycle.

The different testing methods should be adjusted to the
software and the expertise of the development, so they fit
into the agile process. The more knowledge and experience
an agile team gains, the smaller the circles in the agile
accessibility spiral will become. And as stated before, we
strongly recommend to do testing with actual users at some
point in the software development. No amount of automated
tools, checklist and guidelines, simulation using wearables
or expert walkthrough can replace feedback from real users.
However, we argue that developers and testers can contribute
more with accessibility testing to deliver a better end product.

Our study of accessibility testing methods was limited in
number of participants and the size of the evaluated applica-
tion, hence, future work should explore the different accessibil-
ity testing methods for other software solutions. More research
on cost benefit evaluation in accessibility testing should be
done, and it would be interesting to evaluate more testing
methods and place these in the agile accessibility spiral.

ACKNOWLEDGMENT

This research was partially funded as part of the FutureID
project. The FutureID project is funded by the EU FP7
program (Grant agreement no: 318424).

REFERENCES

[1] H. Petrie and N. Bevan, “The evaluation of accessibility, usability and
user experience,” The universal access handbook, 2009, pp. 10-20.

[2] United Nations, “Convention on the Rights of Persons with Disabilities,”
http://www.un.org/disabilities/convention/conventionfull.shtml.

[3] J. Nielsen, “Return on investment for usability,” Jakob Nielsen’s Alert-
box, January, vol. 7, 2003.

[4] L. C. Cheng and M. Mustafa, “A reference to usability inspection
methods,” in International Colloquium of Art and Design Education
Research (i-CADER 2014). Springer, 2015, pp. 407-419.

[5] M.-L. Sanchez-Gordén and L. Moreno, “Toward an integration of web
accessibility into testing processes,” Procedia Computer Science, vol. 27,
2014, pp. 281-291.

[6] B. Haskins, B. Dick, J. Stecklein, R. Lovell, G. Moroney, and J. Dabney,
“Error Cost Escalation Through the Project Life Cycle,” in Incose -
Annual Conference Symposium Proceedings- Cd Rom Edition; 2004,
2004.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

[7]1 F. Paz and J. A. Pow-Sang, “A systematic mapping review of usability
evaluation methods for software development process,” International
Journal of Software Engineering and Its Applications, vol. 10, no. 1,
2016, pp. 165-178.

[8] D. Bustard, G. Wilkie, and D. Greer, “The maturation of agile soft-
ware development principles and practice: observations on successive
industrial studies in 2010 and 2012,” in Engineering of Computer
Based Systems (ECBS), 2013 20th IEEE International Conference and
Workshops on the. IEEE, 2013, pp. 139-146.

[9] T. Dingsgyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of
agile methodologies: Towards explaining agile software development,”
Journal of Systems and Software, vol. 85, no. 6, 2012, pp. 1213 — 1221.

[10] G. Zimmermann and G. Vanderheiden, “Accessible design and testing
in the application development process: considerations for an integrated
approach,” Universal Access in the Information Society, vol. 7, no. 1-2,
2008, pp. 117-128.

[11] J. C. Lee and D. S. McCrickard, “Towards extreme (ly) usable software:
Exploring tensions between usability and agile software development,”
in Agile Conference (AGILE), 2007. IEEE, 2007, pp. 59-71.

[12] D. Salah, R. F. Paige, and P. Cairns, “A systematic literature review
for agile development processes and user centred design integration,”
in Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, ser. EASE ’14. New
York, NY, USA: ACM, 2014, pp. 5:1-5:10. [Online]. Available:
http://doi.acm.org/10.1145/2601248.2601276 [Accessed: 1. June 2015].

[13] R. Bonacin, M. C. C. Baranauskas, and M. A. Rodrigues, “An agile
process model for inclusive software development,” in Enterprise infor-
mation systems. Springer, 2009, pp. 807-818.

[14] K. S. Fuglerud and T. H. Rgssvoll, “An evaluation of web-based voting
usability and accessibility,” Universal Access in the Information Society,
vol. 11, no. 4, 2012, pp. 359-373.

[15] NetBeans, “Accessibility Checker,” http://plugins.netbeans.org/plugin/
7577/accessibility-checker.

[16] W3C, “Web Content Accessibility Guidelines,” https://www.w3.org/TR/
WCAG20/.

[17] C. Power, A. Freire, H. Petrie, and D. Swallow, “Guidelines are only
half of the story: accessibility problems encountered by blind users on
the web,” in Proceedings of the SIGCHI conference on human factors
in computing systems. ACM, 2012, pp. 433-442.

[18] C. Cardoso and P. J. Clarkson, “Simulation in user-centred design: help-
ing designers to empathise with atypical users,” Journal of Engineering
Design, vol. 23, no. 1, 2012, pp. 1-22.

[19] A. M. Silverman, J. D. Gwinn, and L. Van Boven, “Stumbling in
their shoes disability simulations reduce judged capabilities of disabled
people,” Social Psychological and Personality Science, vol. 6, no. 4,
2015, pp. 464-471.

[20] T. Schulz and K. S. Fuglerud, “Creating Personas with Disabilities,”
in Computers Helping People with Special Needs, ser. Lecture Notes
in Computer Science, K. Miesenberger, A. Karshmer, P. Penaz, and
W. Zagler, Eds., vol. 7383. Linz, Austria: Springer Berlin / Heidelberg,
2012, pp. 145-152.

[21] J. S. Dumas and J. Redish, “A practical guide to usability testing”.
Intellect Books, 1999.

[22] R. G. Bias and D. J. Mayhew, “Cost-justifying usability: An update for
the Internet age”. Elsevier, 2005.

[23] Cambridge, “Inclusive Design
inclusivedesigntoolkit.com.

[24] K. S. Fuglerud, S. E. Skotkjerra, and T. Halbach, “Héandbok i testing av
websider med hjelpe-middel-program-vare, Virtuell hjelpe-middellab,”
2015.

[25] M. M. Mantei and T. J. Teorey, “Cost/benefit analysis for incorporating
human factors in the software lifecycle,” Communications of the ACM,
vol. 31, no. 4, 1988, pp. 428-439.

[26] A. E. Boardman, D. H. Greenberg, A. R. Vining, and D. L. Weimer,
“Cost-benefit analysis: concepts and practice,” 2006.

[27] K. S. Fuglerud, “Inclusive design of ICT: The challenge of diversity”.
Dissertation for the Degree of PhD, University of Oslo, Faculty of
Humanitites, 2014.

Toolkit,” http://www.

67

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Toward Automatic Performance Testing for REST-based Web Applications

Chia Hung Kao

Department of Applied Mathematics
National Taitung University
Taitung, Taiwan
Email: chkao@nttu.edu.tw

Abstract—Nowadays, more and more web applications are devel-
oped to provide their services over the Internet. In addition to
functionalities, performance characteristics, including response
time, throughput, latency, stability etc., are key factors when
selecting appropriate web applications. However, complex archi-
tectures, fast changing requirements, strict quality criteria and
time to market pressure all impose difficulties and complexities
on testing activities. Therefore, for software testers, how to
evaluate and ensure performance characteristics systematically
and efficiently becomes a critical challenge. In this paper, an
approach for automatic performance testing for Representational
State Transfer (REST)-based web applications is introduced.
Based on Application Programming Interface (API) document
and test cases, the proposed approach employs natural language
processing (NLP) to parse, match and generate test scripts for
performance testing tool automatically. It not only eases the
burden of test scripts design, implementation and maintenance
efforts on software testers, but also facilitates the execution of
performance testing tasks.

Keywords—Performance testing; web application; software test-

ing.

I. INTRODUCTION

Software companies and service providers develop more
and more web applications to provide their services over the
Internet. In addition to functionalities, potential users will
consider performance characteristics, including response time,
throughput, latency, stability, etc. when selecting appropriate
web applications for their tasks [1]. Nowadays, in order to
fulfill various functional and quality requirements from users,
the complexity of web applications is increasing dramatically.
Multi-tier considerations, the composition of different soft-
ware components, architecture concerns, distributed or cluster
designs, and data processing mechanisms, all impose design
and implementation complexities on web applications. Thus,
the difficulties of testing activities arise correspondingly [2].
Furthermore, fast changing requirements and time to market
pressure could worsen the situation. In such circumstances,
software testers need to frequently create or refine test cases,
redesign and implement corresponding test scripts, and execute
test scripts to acquire results for further actions. Therefore, how
to evaluate and ensure the performance characteristics of web
applications systematically and efficiently is a critical issue for
software testers [3].

In this paper, an approach for automatic performance
testing for REST-based web applications is introduced. It
aims to provide software testers with an integrated process
from test cases design, automatic test scripts generation, to

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Chun Cheng Lin

CloudCube Co., Ltd
Taipei, Taiwan
Email: jimlin@cloudcube.com.tw

Hsin Tse Lu

DATA, Institute for Information Industry
Taipei, Taiwan
Email: 0liu@iii.org.tw

test execution. Two major software artifacts, including APIs
document and test cases, generated from the software de-
velopment process are used in the proposed approach. APIs
document describes information about functionalities provided
by specific web application. On the other hand, test cases
depict the test scenarios designed by software testers. Through
the composition of necessary APIs, the test scenario can be
achieved for testing tasks. Based on APIs document and test
cases, the proposed approach uses NLP [4] to parse and match
corresponding test cases and API, and then generate test scripts
for performance testing tool automatically. On the one hand,
it eases the burden of test scripts design, implementation
and maintenance efforts on software testers. On the other
hand, software testers can focus more on the design of test
cases and the analysis of test results. Finally, it facilitates the
execution of performance testing tasks through automation.
Thus, the performance characteristics of web applications can
be identified efficiently for further actions on development,
operation and maintenance tasks.

The remainder of this paper is organized as follows. Section
II reviews related studies. Section III describes the design of
the proposed architecture and Section IV presents the usage
of the architecture. Finally, Section V presents conclusion and
future works.

II. RELATED WORK

In this Section, related studies about automatic test
cases generation are introduced. Nébut, Fleurey, Traon, and
Jézéquel [5] proposed an approach for automating the gener-
ation of test scenarios from use cases. Through the developed
transition system, the approach synthesized and generated
test cases based on use cases extended with contracts. Jiang
and Ding [6] also designed a framework for automatically
generating test cases from textual use cases. By using use cases
in specific format, the framework built an activity table for
constructing EFSM (Extended Finite State Machine), which is
the base for test cases generation. Lipka et al. [7] presented a
method for semi-automated generation of test scenarios based
on textual use cases. The method derived the scenarios from
use cases with annotations and then generated the sequence of
method invocations for testing. Landhidufler and Genaid [8]
proposed the usage of ontology to present the relationship
among source code, natural language elements of user stories
and test scripts. Through the ontology, the test steps and
related artifacts (e.g., APIs and test scripts) can be identified
and reused for testing new user stories. Wang et al. [9]
proposed an approach that automatically generates executable

68

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

manage

n -

Software Testers

Test Case Test Case Parser

update

—

APl Mapper
Test Parameter l load
Configurator

|

Test Script generate
Builder I >
-—

Test Scripts

l execute

Software Developers AP| Catalog API Parser Test Script Generator
commit deploy
N~
S——

Code Repository

Test Target

Figure 1. Overview of the automatic performance testing architecture.

system test cases from use case specifications and a domain
model. NLP is also used in the approach to extract behavioral
information from use cases for test automation. Chen and
Miao [10] presented an automatic approach to generate test
scripts automatically against JavaScript. The study parsed test
cases in XML format and generated Java code for Selenium
to execute testing tasks.

To sum up, several studies discussed about the automatic
generation of test cases for testing tasks. Based on previous
studies, the gap between test scenarios and test scripts is
considered in this study through the matching of test cases
and APIs document to achieve more automatic testing. In
addition, the integrated environment and process for facilitating
automatic testing is designed and introduced in this paper.

III. ARCHITECTURE DESIGN

Fig. 1 depicts the design of the automatic performance test-
ing architecture. Major actors and components are described
as follows.

e Software Testers: Software testers are responsible
for all the testing activities throughout the software
development process. Generally, the testing activities
include (1) identify test environment, (2) identify per-
formance acceptance criteria, (3) plan and design tests,
(4) configure the test environment, (5) implement the
test design, (6) execute the test, and (7) analyze results,
report and retest [11]. In the proposed approach,
software testers can focus on the planning and the
design of test cases based on requirements or quality
criteria. The implementation and the execution of tests
can be achieved automatically.

e Software Developers: Based on specific software
development process, software developers perform re-
quirement analysis, design, implementation and main-
tenance tasks to web applications. The implementation
will be committed to code repository for version
control and continuous delivery. Besides, software
developers should update modifications to the API
Catalog in the proposed architecture correspondingly.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Test Case: Software testers are responsible for the
design, implementation and maintenance of test cases
based on requirements and specifications. Generally,
test cases include preconditions, test steps, postcondi-
tions, and expected results. Test cases can be preserved
and managed by test case management systems. In
addition, several test case management systems (e.g.,
Testopia [12]) provide APIs for external access of
specific contents within test cases. In the architecture,
the test case will be retrieved and analyzed by a test
case parser.

Test Case Parser: The test case parser is responsible
for analyzing the test steps written in test case. By
using NLP, major components can be analyzed and
identified, including cardinal number (CD), singular
noun (NN), plural noun (NNS), verb (VB), determiner
(DT), to (TO), etc. Basically, CD can be considered
as the configurations (e.g., number of users and work-
load) in the performance test case. NN and NNS could
be actors, specific objects and the system, respectively.
Finally, VB may indicate specific operations of the
system. The analysis result can be used to match
corresponding APIs and determine configurations in
test scripts.

API Catalog: The API catalog helps software de-
velopers to create, update, query and maintain API
documents for software systems. Famous API cata-
logs [13] or API management services [14] include
Swagger, WSO2 API Management, Apigee, 3Scale,
etc. It is anticipated that software developers update
API documents to the API catalog once changes
happen. Thus, the API information will be kept up to
date with the committed code and the deployed test
target.

API Parser: The API parser is responsible for ana-
lyzing components in an API document. In recent web
applications, REST has emerged as the foundation and
development principle of the web architecture [15]. A
RESTful web service contains three major aspects: the

69

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Q SEERHFBESEIN R

attraction Show/Hide

/attraction/{id}

/attraction/findByTheme
/attraction/findByCounty
/attraction/findTopTen Get Top 10 altractions infomation
m /attraction/findByCriteria

List Operations ~ Expand Operations
Get the attraction infomaticn by ID

Get the attractions infomation by theme class id

Get the atiractions infomation by county id

Get the atfractions infomation by some criterias

Response Content Type | applicationfjson | v

Parameters

Response Messages

Try it out!

Request URL

http://1iidata-prod.apigee.net/smartTourisn/attraction/FindTopTen?apikey=SuUHMVHRNOLKUT7KAIET4EYNHLKKNTNCF

Figure 2. API catalog for web application Smart Tourism Taiwan.

URL of the service, the communication data, and the
operations supported by HTTP methods. Through the
parsed result, the information about how to invoke the
service can be identified.

e Test Script Generator: The test script generator is
used to generate corresponding test scripts based on
test case and API documents. Three major compo-
nents, the API Mapper, the Test Parameter Configu-
rator and the Test Script Builder, are included in the
test script generator. Firstly, the API mapper analyzes
the parsed result of test case, searches and maps cor-
responding APIs based on the information extracted
from API catalog. If a specific API is matched, the
information described in the API document is parsed
and obtained. Secondly, test parameter configurator
helps to identify configurations (e.g., number of users
and workload) described in test case. Finally, based
on the information extracted from test case and API
document, the performance test script conformed to
specific format of test tool is generated by the test
script builder.

e Test Tool After the generation of performance test
script, the test tool loads and executes the test script
to test the target system. In current design, Apache
JMeter [16] is selected as the test tool in the perfor-
mance testing architecture.

IV. CASE DEMONSTRATION

A web application “Smart Tourism Taiwan” [17] is used
to describe the usage of the automatic performance testing
architecture. The information of all the APIs are managed
by Swagger, and Fig. 2 depicts the screenshot of partial
API information. The test case is “1000 users find top ten
attractions.” Through NLP, “1000” can be identified and
used as the input of “ThreadGroup.num_threads” for thread
configuration (number of users) in jmx for JMeter. On the
other hand, based on the information (API classification,
URL and description) from Swagger and NLP result, the
API ’/attraction/findTopTen’ can be identified. Then, the in-
formation of “Request URL” can be parsed and used as
the input of “HTTPSampler.domain,” “HTTPSampler.path,”
“Argument.name,” and “Argument.value” in jmx for JMeter.
Based on the content parsed and retrieved from test case and
API document, the test script can be built for JMeter for
performance testing tasks.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

V. CONCLUSION

Performance characteristics are important factors when
users select and use web applications. Due to growing com-
plexity of web applications and the fast changing requirements,
efficient and systematic performance evaluation will be the
key for further development, operation and maintenance tasks.
In this paper, an approach for automatic performance testing
for REST-based web applications was introduced. It used
NLP to parse and match test cases and API document, and
then generate test scripts for the performance testing tool
automatically. Through the approach, the burden of software
testers can be eased and the performance testing tasks can
be facilitated efficiently. A demo case was also introduced to
describe the feasibility of the design. Future works include
the identification and modeling of test cases to better analyze
and realize the purpose of testing tasks. In addition, the API
document can be indexed (e.g., by Apache Solr [18]) for
better identification, setting and deployment for more flexible
and complex test scenarios. Furthermore, the precision of API
matching will be analyzed quantitatively and the false positive
should be handled. Finally, the overall design will be deployed
and evaluated in the development process of various REST-
based web applications.

ACKNOWLEDGMENT

This study is supported by the Ministry of Science and
Technology of the Republic of China under grant MOST 105-
2218-E-143 -001 -.

REFERENCES

[1] E.J. Weyuker and F. I. Vokolos, “Experience with Performance Testing
of Software Systems: Issues, an Approach, and Case Study,” IEEE
Transactions on Software Engineering, vol. 26, no. 12, Dec. 2000, pp.
1147-1156.

[2] A. Bertolino, “Software Testing Research: Achievements, Challenges,
Dreams,” Proceedings of the 2007 Future of Software Engineering, May
2007, pp. 85-103.

[3] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” Proceedings of the 2007 Future of Software
Engineering, May 2007, pp. 171-187.

[4] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly Media, 2009.

[5] C. Nébut, F. Fleurey, Y. L. Traon, and J. M. Jézéquel, “Automatic
Test Generation: A Use Case Driven Approach,” IEEE Transactions
on Software Engineering, vol. 32, no. 3, Mar. 2006, pp. 140-155.

70

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]
[14]

[15]

[16]
[17]

(18]

M. Jiang and Z. Ding, “Automation of Test Case Generation From
Textual Use Cases,” Proceedings of the 4th International Conference
on Interaction Sciences, Aug. 2011, pp. 102-107.

R. Lipka, T. Potudk, P. Brada, P. Hnetynka, and J. Vindrek, “A Method
for Semi-automated Generation of Test Scenarios based on Use Cases,”
Proceedings of the 41st Euromicro Conference on Software Engineering
and Advanced Applications, Aug. 2015, pp. 241-244.

M. LandhduBer and A. Genaid, “Connecting User Stories and Code
for Test Development,” Proceedings of the 2012 Third International
Workshop on Recommendation Systems for Software Engineering, June
2012, pp. 33-37.

C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Igbal, “Automatic
Generation of System Test Cases from Use Case Specifications,”
Proceedings of the 2015 International Symposium on Software Testing
and Analysis, July 2015, pp. 385-396.

R. Chen and H. Miao, “A Selenium based Approach to Automatic
Test Script Generation for Refactoring JavaScript Code,” Proceedings
of the 2013 IEEE/ACIS 12th International Conference on Computer
and Information Science, June 2013, pp. 341-346.

J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, ‘“Perfor-
mance Testing Guidance for Web Applications,” Microsoft Corpo-
ration, Tech. Rep., Sept. 2007, URL: https://msdn.microsoft.com/en-
us/library/bb924375.aspx[accessed: 2016-06-24].

Testopia, URL: https://wiki.mozilla.org/Testopia [accessed: 2016-06-
24].

Swagger, URL: http://swagger.io [accessed: 2016-06-24].

A. Acharya, P. Kodeswaran, P. Dey, S. Sharma, and S. Agrawal,
“The Talking Cloud: A Cloud Platform for Enabling Communication
Mashups,” Proceedings of the 2014 IEEE International Conference on
Services Computing, July 2014, pp. 496-503.

R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web
Architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2,
May 2002, pp. 115-150.

Apache JMeter, URL: http://jmeter.apache.org [accessed: 2016-06-24].
Smart Tourism Taiwan, URL: http://www.vztaiwan.com [accessed:
2016-06-24].

Apache Solr, URL: http://lucene.apache.org/solr [accessed: 2016-06-
24].

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

71

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Reports with TDD and Mock Objects:
an Improvement in Unit Tests

Alan S. C. Mazuco
Department of Computer Science
Masters in Applied Computing
University of Brasilia (UnB)
Campus Darcy Ribeiro
Brasilia, DF, Brazil
Email: alanmazuco@hotmail.com

Abstract—The construction of reports in software engineering,
although considered a simple task, is sometimes extremely
difficult for the developer, especially if the report has a rich
amount of detail and web software as a backdrop. This article
will show how you can reduce the stress of developers using
agile methodologies, such as Test Driven Development (TDD)
associated with Mock Objects. Software testing is gaining the
attention of software scholars because of the huge impact on the
quality they produce and of the reduced delivery time. This study
was driven by a shortage of literature and comes, as appropriate,
to demonstrate how it is possible to reduce the drudgery of
creating reports using open source tools like Jaspersoft and
their implementers, such as IReport, along with the Eclipse
IDE. The study was based on experiments carried out in the
Brazilian Army’s Performance Management Project, with a team
of professionals who used mock objects to save time and improve
performance gain speed and which also used performance in
conducting their work and also the TDD Methodology as the
main reference. From the results, empirical observation showed
us the best and worst aspects encountered by participants during
their work.

Keywords—TDD, Test Driven Development; Mock Objects;
Reports.

I. INTRODUCTION

The Brazilian Army’s Performance Management project,
materialized in a corporate system of the same name, the
“SGD”, or “PMS” - Performance Management System, came
into the world in order to carry out and follow the evaluations
of its internal public, whose final destination is the subsidy
decision-making of subsidies for several finalistic programs.
The project has become a priority in the high command of
the Brazilian Army, and there were several factors that led to
such a distinction. However, what most drew attention was how
quickly it got off the ground and won the web pages in the form
of robust and efficient software. The system was completed in
six months of development. In the seventh month, the system
went into production as planned. The project’s success was
due to the fact that the project manager had decided to use
agile methodologies, such as Test Driven Development (TDD),
throughout the project development phase.

This case study will permeate some definitions, guiding
and reinforcing the experiences developed along the Brazilian
Army’s Performance Management project, and showing why
the TDD process has been tenaciously important in the
software development process.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Edna Dias Canedo
Faculdade UnB Gama - FGA
University of Brasilia (UnB)

Brasilia, DF, Brazil
Email: ednacanedo@unb.br

What caught the eye with the production of reports using
mock objects was the increased pace of implementation,
as well as the reduced fatigue of programmers. Such
improvements led to an increase in the satisfaction of business
owners due to the high demand for increasingly rich reports.

The results were obtained by performing an experiment
conducted in the General Headquarters of the Brazilian Army,
Such experiment followed empirical methodologies, allowing
us to observe the best and worst aspects encountered by
members of the participating teams.

For a better understanding, this paper is structured as
follows: Section 2 presents several concepts on the subject at
hand, as well as some major works reported in the community.
This is very important because we found basis in the research
literature that supports the experiments that were conducted.
The Section 3 describes how the experiment was conducted,
the subject of this study, the methodologies used and the
composition of the teams that performed in it. The Section
4 presents the results, collected in the light of the experiment,
using previously selected indicators.

II. RELATED WORKS

The utilization of Mock Object simulates the behavior of
complex real objects and are therefore very useful when used
in conjunction with TDD practices. This section explores some
of the literature on the subject.

A. The Problem of Errors

A study published by the National Institute of Standards
and Technology[1] and also by the United States Department
of Commerce reveals that software errors cost around $60
billion to the US economy each year. Much has been said
about techniques to minimize the catastrophic effect caused
by software errors, as we see in Borges [1]. Such techniques
include reusing code that has been widely tested and is trusted,
as well as exhaustive verification techniques and validation
tests performed by a team of testers.

As reported in Leon and Kochs [2], agile methodologies
create ever-growing controversy, having their true effectiveness
auestioned and putting their advocates in a heated battle
of claims. However, the practice has shown that processes
arising from the agile methodology bring many benefits for
development, culminating in the satisfaction of clients.

72

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Fig. 1 shows that the use of agile methodologies can
systematically reduce the cost of making code changes.
Regarding this, Beck [3] believes that the following are key
aspects of agile methodologies:

e Effective (fast and adaptive) response to
change;

e Effective = communication
stakeholders;

e Drawing the customer onto the team;

e Organizing a team so that it is in control
of the work performed; Quick, incremental
delivery of software.

among all

According Baumeister and Wirsing [4], there are benefits
to an evolutionary approach in which the developer writes the
test before they write the functional code needed to satisfy that
test.

Below, we can see a graphical representation of this study.

B

=

o

-

5

E cost of change

% using comventional

® software processes x
3

o

cast of change
using agife processes

X eaiodd eost of change using
agile process

—
o

development schedule progress

Figure 1. Agility and the Cost of Change [3]

B. The TDD as Tonic

TDD is defined as a set of techniques of Extreme
Programming (XP) associated with agile methodologies.

According to Beck [5], an agile method could be compared
to driving a car, where the driver has the task of driving the
vehicle to his destination safely, without committing traffic
offenses.

According Baumeister and Wirsing [6], there are benefits
to an evolutionary approach in which the developer writes the
test before he writes the functional code needed to satisfy that
test.

According to Marrero and Settle [7], TDD is a way
to reflect on modeling before writing the code itself. But
as reported by Baumeister and Wirsing [6], the testdriven
development is a programming technique where the main goal
is to write clean functional code from a test that has failed.

According to a manifesto published in 2001 [3], we see
that:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

e Individuals and interactions over processes

and tools;

e Working software over comprehensive
documentation;

e Customer collaboration over contract
negotiation;

e Responding to change over following a plan
That is, while there is value in the items on
the right, we value the items on the left more.

As Fowler has shown in [8] developers should worry about
performing a refactoring of the code in order to optimize it
more and more, and TDD processes are perfectly consonant
with this approach.

Fig. 2 illustrates the TDD methodology. Note that, while
the traditional approach first encodes the main business rule
for later testing, the general idea of the TDD is to mitigate
the code through unit testing until it passes the test [9], where
frameworks like JUnit (Java) are often used by more savvy
developers.

| Start

h 4

Add test case |

A 4

Test the code |

Rework the
code

Test the code |

| Add new feature |

y
Done

Figure 2. Concept of the TDD, in general lines [10]

| Pass I

Fail

C. Mock Objects par Excellence

The main ground of TDD is to use intensive testing, even
before coding the main object. Therefore, the concept of Mock
Objects fits like a glove, from which false objects could be
created and tested with the main code, to obtain the desired
result.

A mock object, according Mackinnon et al [11], is a
substitute implementation to emulate another domain code.
It has to be simpler than the actual code, not a duplicate
implementation, and allow you to set your status to help the
test.

As seen in Stroustrup and Lenkov [12], it can be difficult to
conceive detailed unit testing in scoped languages such as Java,

73

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

without breaking the scope. To remedy that, the unit testing
technique for field packs was created.

Fowler is emphatic when he says [13]:

“The term Mock Objects has become a popular
one to describe special case objects that mimic real
objects for testing. Most language environments now
have frameworks that make it easy to create mock
objects. What’s often not realized, however, is that
mock objects are but one form of special case test
object, one that enables a different style of testing”.

From what we can presume, and as we pointed out in
the text above, the use of Mock Objects is not limited to
performing unit testing using JUnit or similar frameworks.
Rather, Mock Objects are flexible enough to perform tests for
various purposes. In the case of our experiment, it was used
to build reports. The results were measured and scientifically
proven, and have brought many benefits to our team of
developers, allowing greater flexibility in the process.

Testing with Mock Objects has been the key to solving
problems, as it transfers the actual behavior of the object to
a close-to-real fictional situation, being in perfect conformity
with the principle of Demeter Law [14]:

“Code with the encapsulation of ideas and
modularity, easily following the object-oriented
technique to the programmer... while minimizing
code duplication, the number of method arguments,
and the number of methods per class.”

Nevertheless, Freeman et al. [15] state the following:

“Mock Objects is an extension to Test-Driven
Development that supports good Object-Oriented
design by guiding the discovery of a coherent system
of types within a code base. It turns out to be less
interesting as a technique for isolating tests from
third-party libraries than is widely thought.”

According to Brown and Tapolcsanyi [16], Mock Objects
are divided into patterns, as we can see in Table 1:

TABLE 1. PATTERNS CATALOG FOR MOCK OBJECTS [16].

Pattern Name Synopsis

MockObject Basic mock object pattern
that allows for testing
a unit in isolation by
faking communication with
collaborating objects.

Test Stubs

MockObject via Factory A way of generating mock
objects, utilizing existing
factory methods.

Unit Test code serves as the
mock object by passing an
instance of itself.

Pass in a mock object in place
of the actual collaborating

Self Shunt

Pass in Mock Collaborator

object.

Mock Object via Delegator Creates a mock
implementation of a
collaborating interface in

the Test class or mock object.

The following patterns will be added next year for
2004 PLOP:
-Mock Objects via CrossPoints;

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

-Write Testable Code; and
-Mock Object with Guard.

During the experiments conducted in this study, as seen in
the table, we used the Mock Object described below.

III. THE EXPERIENCE

1) The Mock Object used: According to Brown and
Tapolcsanyi [16] and Fowler [13] Mock Objects can be used
to build repeatable, automated, and highly leveraged Unit
Tests. In many cases, setting up Mock Object frameworks that
“emulate” the real world objects is necessary. Thus, the pattern
used in the experiment was the Self Shunt. This pattern fit like
a glove, as the Java report-creation operations are extremely
repetitive, bringing some fatigue obstacles and construction
time.

Fig. 3 shows the report to be created in the experiment,
just to get an idea of the complexity of development. From
there, a mock object containing all the data would be used to
create form this report using fictitious data.

Departamento Geral do Pessoal
Diretoria de Avaliagéo e Promogdes
PERFIL DO DESEMPENHO DO AVALIADO 2016

St Avaliado
A Sintese do Desempenho considera somente as avaliagdes SIV/SEV do Sistema de Gestao do Desempenho

Posto/Grad/Nome: Ten Cel »._ B
QAS-QMS: ARMA DE ARTILHARIA
Identidade

OoMm: DAProm
Data Formagao: 28/11/1992
Data Nascimento:
Idade: 46
Nr de FA Consideradas: 1
- « | DESCRICAQ DAS FAIXAS DO DESEMPENHO*
COMPETENCIAS SINTESE DO DESEMPENHO" 'MPG; Media por Competéndia
CAMARADAGEM
DEDICACAO

Excep Hnal
MPC 29,5

DISCIPLINA
INICIATIVA
INTEGRIDADE
RESISTENCIA FISICA

BASICAS

RESPONSABILIDADE
TECNICO-PROFISSIONAL
AUTOAPERFEICOAMENTO
COMUNICAGAO!
CONHECIMENTO INSTITUCIONAL
CORAGEM MORAL
CRIATIVIDADE

CULTURA GERAL

DIREGAO E CONTROLE
DISCRICAO

ESTABILIDADE EMOCIONAL
[FLEXIBILIDADE

LIDERANCA

[OBJETIVIDADE

PERSISTENCIA

POSTURA E APRESENTACAO
PRODUTIVIDADE
SOCIABILIDADE

TATO

ZELO

Muito Bom

* 85<MPC <95

Bom
6,0<MPC <85

ESPECIFICAS

Oportunidade de
MPC <6,0

X|X|[D|x[D|x[(x|D[x|x|x|D|D|x|D(D|D[X|D[D|D|(®|D|®|D|D|

x Desempenho néo

OBSERVACOES:
* Somente avaliagdes do Sistema de Gestdo do Desempenho (SGD).
** A média do perfl 2016 considera o Sist Avl anterior a 2015 (2011, 2012, 2013, 2014) e as Avl SIVISEV 2015 do SGD. No ano seguinte,
‘exclui as Av mais antigas do Sist anterior (2011) e acrescenta mais um ano de avaliagdo SIV/SEV do SGD.
Ex: Perfil 2016: (Soma Avl 2011, 2012, 2013, 2014 antigas + Avl SGD 2015) /5
Perfil 2017: (Soma Av| 2012, 2013, 2014 antigas + Soma Av SGD 2015 & 2016) / 5
Perfil 2018: (Soma Av| 2013, 2014 antigas + Soma Av SGD 2015, 2016 & 2017)/ 5
Perfil 2019: (Soma Avi 2014 antigas + Soma Avl SGD 2015, 2016, 2017 & 2018)/ 5

Brasiti=-DF, 1 de Maio de 2016

Gen Div . -
Diretor ae Avaliagao e Promogoes

Figure 3. Report template that served as “guide” to build the report.

Professionals in JasperReports know the difficulty in
formatting a report as complex as this, so much so that some
prefer not to venture. However, reports provide a lot of function
points as a measure to estimate the system size, ensuring larger,
more rewarding results from a financial point of view [17].
Therefore, no software factory will ignore this practice.

74

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

To aid in the experiment, the stakeholders have provided
a psychologist, whose main function would be to analyze the
developers over of the more cognitive aspects, such as fatigue,
while also monitoring of the interviews.

2) Description of Experiment: The team of the Brazilian
Armys Performance Management Project performed the
experiment. It was conducted in an isolated room, and carried
out by three pairs of certified developers, all of which were
timed, in accordance to the following:

TABLE II. DESCRIPTION OF EXPERIENCE.

OBIJECT OF THE EXPERIMENT Create a complex report of one of the
system’s activities, SGD, containing a

relatively heavy image and 45 attributes.

USED TOOLS Programming language: Java other
tools: IDE Eclipse, JUnit and IReport.

METHODOLOGY Alpha team: Development using TDD
only.
Beta team: Development using TDD
with Mock Object;

TIMING The stopwatches were linked at

the beginning of implementation
experiment, but had no finishing time
preset.

A. Sequence of Activities

First, we conceived the construction of a report, where the
sequence of the activities of developers should rotate around
through the steps shown in Fig. 4:

COMPILE

REFACTORING Eclipse

REFRESH

TEST

Figure 4. Report construction with TDD

Performing that activity to build reports with the
aforementioned tools is extremely strenuous, since the
developer uses a lot of manual effort to draw pictures, frames,
lines and put texts in places previously defined by the template
that serves as a guide, see Fig. 3. The time spent on the activity
could harm the progress of timelines, creating frustrations and
stress. Because of this, the developer should focus their tasks
exactly in this manual effort, not worrying about the collection
and processing of data, and thus gaining additional time.

When using Eclipse IDE, developer reports required the
execution of a “refresh” in preparation for the report, after
refactoring and recompiling the report. Only after that could
they call the run-time report. Such process is tiresome and
time-consuming. When running a report he needed to go to

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

the database and bring the data to fill the report. This does not
seem very productive.

Before connecting the chronometers, each team received
the complete description for making the Mock Object and the
corresponding business rules, consisting of:

1) Alpha Team: The report should present the data from
a database, consisting basically of an object with 45
attributes and one more consisting of type byte array
- an image. It was delivered to staff together with the
business rules for the connection and information, as
well as a report template as a guide, Fig. 3.

2) Beta Team: The report should present the data from a
Mock Object, consisting basically of an object with
45 attributes and one more consisting of type byte
array - an image. It was explained also that this object
should be an identical copy of the original object. The
names of the attributes for making the Mock Object
were delivered along with the business rules as well
as the report template as a guide, Fig. 3.

IV. RESULTS

For a better understanding, we have grouped the results
into two subsections, with the metrics in the first subsection
and the analysis in the second.

A. Presentation

Prior to the experiment, we created an index to measure
the work of developers around seven items we deem relevant
for the study. This index was scaled from 2 to 10 points. To
understand it better, Table 3 shows this index in more detail.
Fig. 5, along with Table 4, present the final result of the
experiment.

TABLE III. DESCRIPTION AND CONTENT OF THE INDEXES.

Index Orientation index

10 Higher than expected.

8 Sometimes higher than expected.
6 Expected.

4 Sometimes lower than expected.
2 Below expected.

10

Evaluated rulings
o ~ IS @ o

4 &
« ¢ & F s & o
® & (c4 & R
¢ © & & &
) 3% &
< \&Q 8
D Equipe Alfa - Equipe Beta

Figure 5. Results with seven variables.

75

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Where:

1) Time: Average Results of chronometers after delivery
of work, marked to the accuracy of seconds;

2) Fatigue: The developer reported extreme tiredness,
often interpreted as a painful sensation, result of
physical and mental effort;

3) Difficulty: The developer reported feeling some
difficulty performing the work required;

4) Hits: By examining the code, the developer has
submitted correct answers;

5) Visual quality: On visual inspection, the work
presented refinements;

6) Implementation: correct implementation of the
business rules and alignment with the template which
was the implementation guide;

7) Interruptions: The developer
proceedings to ask questions.

interrupted the

Table 4 shows the final result of the experiment, the time
spent per each participant to carry out the work, and the
number of interruptions of each to the removal of doubts.

TABLE IV. TIMEKEEPING TEAMS.

Team Developer Time Interruptions

A 1 3h35m 37s 6
2 3h 15m 08s 5
3 3h 25m 15s 7
B 4 1h 35m 47s 4
5 1h 15m 22s 6
6 1h 40m 57s 4

The Time column displays the time, we measurements for
all developers and the Interruptions column shows the stops
made to clear doubts from developers in relation to business
rules considered by them as confusing. Each participant
possessed their corresponding timer, in order not to invalidate
the experiment.

B. Analysis

Analyzing the results, we confirmed our suspicions and
were not surprised that the Beta Team presented the best
performance, both from a qualitative point of view, as well as
quantitative. The disparities are more relevant in the following
items: Fatigue, Time and Difficulty. Notably, the Fatigue
presented by Alpha Team was most notorious.

TIME

In relation to the measured time, we see that no individual
participant fulfilled the expectations. However, the Beta Team,
which used Mock Objects, spent nearly half the time of the
Alpha Team to solve the problem. Fig. 6 shows the data of
Table 4 in a chart showing the real-time taken from their
stopwatches on the y-axis, where we can see more clearly the
disparity. The developer 6 from Beta Team has most experience
among the other.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

4 Dev 6
Dev 5
B Dev 4
2 Dev 3
1 Dev 2
Dev 1
0

Time

HDevl mDev?2 Dev 3 Dev4 mDev5 mDevb

Figure 6. Analysis of time developers.

FATIGUE

Fig. 7 shows the measurement of fatigue. Such
measurement was done empirically, by conducting interviews
with developers. The score was measured based on reports
and on a psychological evaluation. To this regard, a second
interview was necessary, this time with a psychologist, to
evaluate the general conditions of the participants and greater
accuracy of the calculation. The graph below is materializing
these indexes.

10 Dev b6
8 Dev 5
6 Dev 4
Dev 3
Dev 2

Dev 1
Fatigue

HmDevl mDev2 Dev 3 Dev4 mDev5 mDevb

Figure 7. Analysis of fatigue developers.

TIME x FATIGUE

Analyzing fatigue and time, side by side, we can see a
huge disparity between the teams. It can be seen quite clearly
that the Beta Team, represented by the participants 4, 5 and
6, showed less wear than the Alfa team. It was a result we
expected, since the Beta team was the one who was using
Mock Object in the experiment. This analysis can be seen in
detail in Fig. 8.

76

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Dev 6

Fatigue

mDevl mDev2 mDev3 Dev4 mDevS mDeve

Figure 8. Relationship between time and fatigue.

V. CONCLUSION

In this paper, we present the use of Mock Objects with
TDD, a few quotes on the subject and an experiment in the
laboratory which demonstrates the practice of this activity. The
experiment had two multidisciplinary teams that conducted a
study, consisting of the preparation of a report considered quite
complex, using the IReport and Eclipse IDE tools, the use of
timing and direct observation of the leader.

For the experiment, seven items were submitted for
evaluation: elaboration time, fatigue presented by the
developers, perception of difficulty reported by the
participants, number of hits, visual quality of the work,
correct implementation of business rules and the number of
interruptions per participant. Each of the items were measured
empirically by using a scale of 2 to 10. For the analysis
of results, we infer that the adoption of Mock Objects
can be a good strategy when work requires great effort
from developers. However, one more refined analysis of the
situation may provide better subsidies for decision-making.

There is strong evidence for the growth of TDD practice
in future. In recent years, the academic community has been
conducting various experiments to show empirically that TDD
helps the software development process. Some of these studies
are done by professors well known in the community, such
as prof. Laurie Williams (North Carolina State University)
[18] and Prof. David Janzen (California Polytechnic State
University) [19].

The Brazilian Army collaborated with researchers
providing the means to carry out this work, bringing an
important contribution to the science of Software Engineering.
Based on the studies in this field, we believe that the TDD
process will continue to be of interest to researchers.

REFERENCES

[11 E. N. C. Borges, “Benefits of test driven development,” Universit of
Rio Grande do Sul/Computer Institute, 2006.

[2] A. Leon and A. S. Koch, Agile software development evaluating the
methods for your organization. Artech House, Inc., 2004.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

(3]
(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

K. Beck et al., “Manifesto for agile software development,” 2001.

K. Beck, “Embracing change with extreme programming,” Computer,
vol. 32, no. 10, 1999, pp. 70-77.

——, “Extreme programming explained: embrace change,” 2000.

H. Baumeister and M. Wirsing, “Applying test-first programming
and iterative development in building an e-business application,” in
International Conference on Advances in Infrastructure for e-Business,
e-Education, e-Science, and e-Medicine on the Internet, SSGRR 2002,
LAgquila, Italy, 2002.

W. Marrero and A. Settle, “Testing first: emphasizing testing in early
programming courses,” in ACM SIGCSE Bulletin, vol. 37, no. 3. ACM,
2005, pp. 4-8.

M. Fowler, “Refactoring: Improving the design of existing code,” in
11th European Conference. Jyviskyld, Finland, 1997.
K. Beck, Test-driven development: by example.
Professional, 2003.

S. Yenduri and L. A. Perkins, “Impact of using test-driven development:
A case study.” in Software Engineering Research and Practice, 2006,
pp. 126-129.

T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: unit testing with
mock objects,” Extreme programming examined, 2001, pp. 287-301.

Addison-Wesley

B. Stroustrup and D. Lenkov, “Run-time type identification for
c++(revised yet again),” document X3J16/92-0121, American National
Standards Institute Accredited Standards Committee, Tech. Rep., 1992.
M. Fowler, “Mocks arent stubs,” 2007.

K. Lieberherr, I. Holland, and A. Riel, “Object-oriented programming:
An objective sense of style,” in ACM SIGPLAN Notices, vol. 23, no. 11.
ACM, 1988, pp. 323-334.

S. Freeman, T. Mackinnon, N. Pryce et al., “Mock roles, objects,”
in Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications.
ACM, 2004, pp. 236-246.

M. Brown and E. Tapolcsanyi, “Mock object patterns,” in The 10th
Conference on Pattern Languages of Programs, Monticello, USA, 2003.
G. C. Low and D. R. Jeffery, “Function points in the estimation
and evaluation of the software process,” Software Engineering, IEEE
Transactions on, vol. 16, no. 1, 1990, pp. 64-71.

W. Laurie, “Laurie Williams - profile,” http://collaboration.csc.ncsu.edu/
laurie/, 2016, [Online; accessed 08-August-2016].

D. Janzen, “David Janzen - profile,” http://users.csc.calpoly.edu/
~djanzen/, 2016, [Online; accessed 08-August-2016].

7

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

FAST: Framework for Automating Software Testing

Ana Paula Furtado®?, Silvio Meira

Informatics Centre — Cin
Federal University of Pernambuco
Recife, Brazil
e-mail: {apccf, srim}@cin.ufpe.br

Abstract—— The automation of software testing has played an
important role in assessing the quality of software prior to
delivering the product to the market. Several practices to
introduce test automation are found both in the literature and
in practice. However, most of these are not directly related to
how automation practices could be systematically introduced
into a software development context. Therefore, this paper
describes a study which is still in progress on the best practices
of test automation and how they can be systematically
introduced into the software development process. It is in this
context that this article presents and describes FAST -
Framework for Automating Software Testing and does so by
defining automation levels, areas and practice areas. The
methodology used for this research is based on a systematic
review of the literature, empirical research, a focus group and a
case study. The initial general approach of the framework has
been defined and will undergo this method of evaluation in
order to collect feedback and identify improvements that need
to be made in order to produce the complete version of the
framework.

Keywords - software testing automation; software testing;
process improvement; software quality.

l. INTRODUCTION

Test automation is the use of software to support test
activities. It is considered an important topic of research and
has been intensively studied in the literature [25]. However,
despite its wide use, there are still gaps between existing
approaches to test automation and its use in the software
industry. The process of test automation needs time to mature:
the creation of an infrastructure for tests for automation
requires time and for automation-related processes to mature
[25]. If the strategy for introducing automation in a project
were to be inappropriate, this would not allow the company to
reap the benefits related to test automation. Moreover, a large
amount of time and resources is needed to support testing
activities in the software development process [21]. For
example, based on the model developed by Kit [17], it is
estimated that software testing uses up to 80% of the total cost
of software development, while the use of test automation
could reduce the software development effort by up to 50%.
Fewster [8] states that automating the running of tests is
becoming more popular due to the need to improve the quality
of software, whilst the complexity of software systems is
becoming greater.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Carlos Santos, Tereza Novais, Marcelo Ferreira

2Recife Centre for Advanced Studies and Systems —
CESAR
Recife, Brazil
e-mail: {carlosdombosco,terezanovais,
marsantosfer}@gmail.com

Despite the need to provide test automation techniques,
there is still a lack of approaches and guidelines to assist with
the design, implementation, and maintenance of test
automation approaches [33]. Based on the gaps derived from
observations in the software industry and on academic
research, the problem related to this study can be stated as:
How should software test automation be introduced in the
software development process?

The main goal of this research is to produce a framework
for software testing that could be used by the software industry
to support the systematic introduction of test automation in the
software development process. More specifically, we propose
a test automation framework to reduce costs and improve
product quality during the life-cycle of software development.

The rest of this paper is organized as follows. Section 2
gives a review of the literature followed, in Section 3, by a
description of the research methodology. Section 4 introduces
the technical approach and how it has been assessed so far.
Finally, Section 5 contains some concluding remarks and
offers suggestions for future studies.

Il. LITERATURE BACKGROUND

This study is based on the concepts and theory associated
with testing in the software engineering domain, more
precisely in the area of test automation. Many of the tasks and
activities of tests can be automated, as can aspects of testing
techniques. Many additional test tasks and activities can be
supported by software-based tools, such as test case
management; test monitoring and control; test data
generation; static analysis; test case generation; test case
execution; test environment implementation and
maintenance; and session-based testing [14].

With a view to improving software quality, some studies
present technical approaches to introduce testing within the
software development context, by defining maturity models.
Over the years, some maturity models and approaches have
been developed, including models specifically related to the
software testing area (those related to this study), as well as
generic ones.

The first model to appear was the Software Capability
Maturity Model — CMM-SW [23]. From that point on, some
models appeared in order to present maturity models in the
test process, such as MMAST [20], TAP [29], TMM [30],
TCMM [2], TIM [7], TPI [19], TOM [32], TSM [11], TMMI
[31], MPT.Br [10], and TAIM [6]. Besides these, some

78

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

maturity models mention best practices for software
development processes, without specifically focusing on
testing discipline, such as CMM-SW [23], CMMI [28] and
MPS.Br [27]. However, most of the test automation-related
studies are defined as maturity models. These require levels of
implementation and maturity assessment and this is one of the
differences between these models and the one set out in this
article.

In addition, except for Test Automation Improvement
Model (TAIM), these models do not directly address
techniques to introduce test automation into software
development and therefore they do not answer the research
question that this paper poses. On the other hand, TAIM
presents a model based on measurement to support
automation and the steps for improvement to be followed in
10 key areas and 1 general area. This approach is defined as a
maturity model but it does not show what steps towards
maturity must be taken in order to introduce automation.

Another approach related to this is the Maturity Model for
Automated Software Testing (MMAST). This is a model that
was developed for manufacturers of computerized medical
equipment and its purpose is to define the appropriate level of
automation into which an equipment manufacturer fits. It has
four maturity levels: Level 1 - accidental automation, level 2
- beginning automation, level 3 - intentional automation and
Level 4 - advanced automation. Despite being a maturity
model, it has neither key areas nor process areas and its
description is very broad and does not include matters as to
how test automation can, in fact, be performed.

The Testing Assessment Program (TAP) is a maturity
model which consists of 5 maturity levels, namely: initial and
ad hoc (chaotic); repeatable and intuitive; defined qualitative;
quantitative managed; and optimizing continuous
improvement. Maturity is evaluated based on four key areas,
namely: goals, people, management and techniques. however,
the literature has only superficial descriptions of the model
that impede it from making a more detailed analysis.

Test Maturity Model (TMM) is a model with 5 maturity
levels: Level 1 - initial, Level 2 - phase definition, Level 3 -
integration, Level 4 - management and measurement and
Level 5 - optimization/ defect prevention and quality control.
However, TMM does not discuss any issue directly related to
test automation.

Testing Capability Maturity Model (TCMM) consists of 5
maturity levels: initial, repeatable, defined, managed and
optimizing. The model includes key areas for each maturity
level. However, the little information available does not
describe TCCM appropriately so that what automation issues
are present in the model can be analyzed.

Testability Support Model (TSM) was developed with a
view to identifying actions that can improve the ability that a
system has to be testable. This has three levels of maturity and
6 Key Support Areas, namely: Software Engineering
Infrastructure, Project plans, Product information, Software
design, Testware and Test environments. However, there is
little information available on the model that enables it to be
analyzed in greater depth.

Test Improvement Model (TIM) is a model intended to
guide testing functions in their improvement work which has

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

a four-step improvement ladder. The initial level has been
given the number zero, as it is a non-compliance level and the
other levels are numbered from 1 to 4, namely: Level 1 —
optimizing, Level 2 — risk-lowering, Level 3 — cost-
effectiveness and Level 4 — baseline. It has 5 key areas,
namely: organization; planning and tracking; test case,
testware and reviews. In its scope, testware deals with the
actual testing procedures that are run, the support software, the
data sets that are used to run the tests, and the supporting
documentation. It includes managing the configuration of
testware and the use of testware and tools. The model also
mentions that tools can assist in performing non-creative and
repetitive tasks, such as running the same test cases several
times and automating testing activities. However, no
guidelines are presented to support them

The Test Process Improvement Model (TPI) has 3 levels
and 14 scales. Each level consists of a number of scales and
these indicate which key areas need to be improved. The
levels are: controlled, efficient and optimizing. The model
also has 20 key areas, 1 of which is testware management. The
model states that testing products (testware) should be
maintainable and reusable and so they must be managed. Yet,
test automation itself is absent in the model.

The objective of the Organization Testing Maturity Model
(TOM) is to identify and prioritize organizational bottlenecks
and generate solutions to these problems. A questionnaire is
used to identify and prioritize both the symptoms and
suggestions for improvement. Despite its name, it is not
characterized as maturity model, as its focus is to solve
problems and not improve testing in the organization, and
there is no information on test automation.

The Test Maturity Model Integration (TMMi) is a model
for improving the testing process developed as a guide and
reference framework. It follows the staged version of CMMI,
and also uses the concepts of maturity levels for evaluating
and improving the testing process. TMMi consists of 5
maturity levels, namely: Level 1 - initial; Level 2 - managed;
Level 3 - defined; Level 4 - measured; and Level 5 -
optimization. Each level of maturity presents a set of process
areas that must maturity at that level, in which each level of
maturity is the starting point for the next level.

Despite being a maturity model specifically for the test
area and its having systematic ways to enter the practice of
software testing in the context of projects under development,
it does not have a process area specifically dedicated to tools
and/or test automation, nor does it include systematic
suggestions for improving testing automation.

The Brazilian Maturity Model for Testing (MPT.BR) is a
reference model that defines, implements and improves
testing processes based on its being continuously improved. It
also tackles the same approach to improving the testing
process by using process areas that include the best practices
of testing activities throughout the testing life cycle of the
product. The model has 5 maturity levels, namely: Level 1 -
partially managed; Level 2 - managed; Level 3 - defined;
Level 4 - prevention of defects and Level 5 - automation and
optimization.

Within the ambit of test automation, the model shows the
process area of Automation of Executing the Test (AET), the

79

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

purpose of which is to develop and maintain a strategy to
automate the running of the test. This process area comprises
the following list of specific practices:

o Defining the objectives of the automation regime;

o Defining criteria for selecting test cases for

automation;

Defining a framework for automating testing;
Managing automated testing incidents;

Ensuring adherence to the objectives of automation;
and

e Analyzing the return on investment in automation.

Although the specific practices have a systematic way for
introducing testing, they are still vague as to identifying the
moment at which automation is to be performed. There is no
specific information on introducing automation into the
software development process, besides its not saying which
testing levels can be automated. The written format is generic
and comprehensive, into which every type of automation can
fit. However, it does not help choosing where automation
should start and what benefits can be achieved.

Therefore, this article puts forward a framework that can
fill this gap in current research and aids taking a more flexible
approach, for which there are no strict steps for introducing
practices as this is in a maturity model. In this context, the next
section will detail the research methodology associated with
this study.

I1l. RESEARCH METHODOLOGY

The research methodology planned for this study has three
phases. The first is a Bibliographical Review, which
comprises an exploratory review and a systematic review and
the second is that of defining the Proposal. The latter is
developed, underpinned by an empirical research including
conducting interviews in the industry. The third phase is
Evaluation, which will be conducted by using a focus group
and a case study. Fig. 1 illustrates this approach.

1. BIBLIOGRAPHICAL REVIEW

EXPLORATORY

RV

2. PROPOSAL

SYSTEMATIC
REVIEW

EMPIRICAL RESEARCH WITH
INTREVIEW

NS

3. EVALUATION

FOCUS GROUP CASE STUDY

Figure 1. The design of the research activities | Source: author.

A. Exploratory Review

An exploratory review, or a bibliographical review, is a
critical, meticulous and comprehensive analysis of current
publications in a given field of knowledge. It is an important

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

step in the research, since it supports understanding the subject
of research and assessment, if this is worth studying, and
provides insights into how a researcher can define the scope
for a particular area of interest [4]. The literature review
correlates the research to the ongoing dialogue in the
extensive literature, thereby filling in gaps and extending prior
studies [22].

The main objective of this research instrument is to
identify and explore publications related to the area being
studied in order to learn how this problem has been
approached and analyzed in previous studies with a view to
reaching a better understanding of the research problem being
investigated.

An ad-hoc bibliographical review has been undertaken by
conducting searches of the scientific libraries available, such
as IEEE Explorer, Engineering Village (including Inspec and
Compendex), Scopus, ACM, Google Scholar and Springer.

B. Systematic Review

According to Kitchenham [18], a systematic review of the
literature is a way to identify, assess and interpret all relevant
research available on a specific research question, or related
phenomena of interest.

In order to achieve these benefits, a systematic review is
under development which will be used to help assess the
benefits and limitations of software testing automation and to
analyze how the cost and quality of software is affected as a
result of introducing automation practices.

In this research, an analysis is made of material published
between 2005 and 2015, based on the main libraries such as
IEEE Explorer, Engineering Village (including Inspec and
Compendex), Scopus, ACM, Google Scholar and Springer. In
addition, several relevant journals and conference proceedings
are examined under the manual method. This is work-in-
progress, during which data are being extracted by automatic
searches. These data will be used to synthesize this study and
report the results.

This systematic review is very important because it will
ensure that all relevant studies in the literature are mapped.
This will underpin how best to define the strategy needed to
introduce test automation and guarantee that all related work
is known and assessed in this research.

C. Empirical Research with Interview

The empirical research with interview, based on experts’
opinion, was one of the methods chosen to support this study.
This consists of a comprehensive system for collecting
information to describe, compare or explain knowledge,
attitudes and behavior [24].

A group of experts in software testing automation was
selected in order to collect their opinions, attitudes and
expectations about the research questions for this study.

The survey was organized in three parts. The objective of
Part 1 was to gather personal information and information on
the professional background. The goal of Part 2 was to
validate the problems of test automation, and this included
analyzing the challenges, problems, benefits of the testing
automation area and determining what gaps there are. Part 3
focused on analyzing the automation strategy used in the

80

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

companies, and included questions about the test strategy,
levels of automation and technologies used. Finally, the aim
of Part 4 was to evaluate what opinions experts have as to the
hypothesis of this study.

This survey was applied to 4 experts on testing, 2 of whom
work in England and the other 2 in Brazil. They work directly
on test activities in their companies and each of them has had
more than ten years’ experience in testing.

The results from Part 2 mainly showed that there is a
shortage of qualified professional who can engage on test
automation and this makes it harder to introduce automation
practices into a project. Moreover, the lack of senior
management support also makes it more difficult to include
automation practices in a project. Moreover, the difficulties
faced in setting up an automation environment is also an
impediment, as is the need for rework on tests assets due to
changes made in requirements.

In Part 2, the benefits gained from test automation were:
an increase in the team’s velocity; more frequent delivery of
working software; code continuous integration; fast execution
of a group of test cases; parallel work can be done while tests
are running; better visibility of code test coverage; and
increasing the likelihood of finding new errors before
delivering software to the market.

In Part 3, the intention was to collect experiences on how
test automation was first introduced into a project. No results
could be reached from this question, which re-emphasized the
hypothesis of this study that there are no systematic ways to
introduce test automation in a project that has not
implemented this practice when that project was under
development.

D. Focus Group

Using a focus group is an approach in which a group of
people gather to evaluate concepts and/or problems [3], and
consists of a survey to obtain qualitative insights and feedback
from experts in certain subjects. A focus group meeting
involves semi-structured group interviews, in which the
interactions in the group are explicitly used to generate data.
Participants offer personal opinions but can also interact based
on the response of other participants while the interviewer acts
as moderator so that the interview remains focused on its
objectives [9].

The objective of the focus group in the context of this
paper is to evaluate the proposal of this thesis with a view to
collecting suggestions for improving and developing the
proposal prior to conducting the case study.

E. Case Study

A case study can be defined as a research strategy on
understanding the dynamics present in a given environment,
in accordance with the view of Eisenhardt [5]. A case study is
an empirical method that targets analyzing a phenomenon in
a given context. The purpose of the case study is to seek pieces
of formal evidence by using variables that can be measured
and to draw inferences coming from the example for a given
population.

Case studies are appropriate when the boundaries between
the phenomenon and the context are not clearly defined, and

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

the type of evidence is considered to be very rich and
contextualized [9].

In this context, a case study should be used as a tool to
validate the solution proposed, and will be conducted as
proposed by Runeson and Host [26], based on the following
steps:

e Designing the case study;

e Preparing for data collection;

e Collecting evidence;

e Analyzing the data collected; and

e Writing a Report.

The case to be applied will be in a software development
company that has an academic management product that
integrates all areas of the educational institution. The data
collection method will start from the principle that the
researcher will have direct contact with the data and collect
them in real-time (first degree data), by using interviews and
focus groups.

Data analysis shall be conducted quantitatively, using
correlation analysis, which describes how a given
measurement of a process activity is related to the same
measurement in a previous process, and thus compare them.
The measurement being compared is the cost of testing, by
assessing whether it decreases when automated testing is
introduced into the software development process. In addition,
the quality of the software shall also be analyzed from when
automated testing was introduced in the software development
process.

Based on all observations so far gathered, in line with the
steps defined in the research methodology, the technical
approach has been developed and will be detailed in the
following Section.

IV. TECHNICAL APPROACH

The approach developed to support the objective of this
study and to answer the research questions is the Framework
for Automating Software Testing (FAST).

According to ISO/IEC/IEEE [16], a framework can be
defined as “a reusable design (models and/or code) that can be
refined (specialized) and extended to provide some portion of
the overall functionality of many applications”.

Although conceptually, the term ‘framework’ is more
related to the technical component of a software, this study
uses this term in order to make it clearer how a group of best
practices can be adapted to a project in accordance with its
specific needs so as to reap the best benefits of software testing
automation. FAST differs from a maturity model in that the
practice areas are not mandatory and there is no need to certify
a company in the framework; and in accordance with the
needs of a specific environment, each process area can be
applied to a project.

Therefore, FAST is defined in accordance with the
components shown in Fig. 2 and described as follows:

e Automation level. Determining this is a separate test
effort that has its own documentation and resources
[15]. This represents the scope within which
automation activities will be welcomed in a project;

81

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

e Areaisageneral range of interest in which FAST is
divided into two parts, Technical and Support, as
shown in Fig. 3. It includes what is needed to
introduce testing automation techniques into a
project and consists of process areas;

e Process Area This is a group of related practices in
an area that, when implemented collectively, satisfies
a set of goals considered important for enhancing that
area [28]. Each process area is assigned a specific
purpose, has guidelines that must be implemented,
and suggested work products that must be produced
by engaging on such practices.

FAST

Automation
Level

Area

Process
Area

‘ Objective I

Purpose Guidelines

Work
products

Figure 2. FAST components | Source: author.

The relationship between the areas were defined in
accordance with CMMI-DEYV [28], where the support process
areas address processes that are used in the context of
performing other processes. In this case, the Support Area
comprises a fundamental support function and relies on the
processes of the Technical Area for input. For example, the
process area for Project Planning will plan the test strategy for
the Process Area of Unit Testing.

TECHNICAL AREA SUPPORT AREA

ACCEPTANCE TESTING

SYSTEM TESTING

MANAGEMENT
MEASUREMENT AND
ANALYSIS
REQUIREMENT

INTEGRATION TESTING

AUTOMATION LEVEL
PROJECT PLANNING
PROJECT MONITORING
CONFIRGURATION
INCIDENT MANAGEMENT

UNIT TESTING

Figure 3. FAST areas | Source: author.

Fig. 3 presents the overall structure of FAST, together with
the process areas for each area. The framework can be applied
by instantiating it in a project context, where the process areas
can be adapted to best fit the environment where it will be
applied. The objectives and process areas will be described in
the following section.

A. FAST Support Area

The objective of the FAST Support area is to cover
essential mechanisms to support establishing and maintaining
the automation environment. It was developed based on the

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

reference model of both CMMI-DEV, which covers a generic
view of best practices for software development projects, and
TMMI, which has a group of guidelines specific to test
projects. The objective of process is to undertake practices that
are fundamental to systematically introducing automation
practices but are not specifically directed towards automation
practices. The objective and guidelines of the process areas
from the support area are given below.

Project Planning

The purpose of Project Planning is to define a plan to
support setting up an automated test project for which the
guidelines are as follows:

e Plan test project;
Define test strategy;
Make estimates;
Analyze project and product risks; and
Obtain commitment to the plan.

The work products related to this process area can be a
test plan which has the information required by the guidelines.
Project monitoring

The purpose of Project Monitoring is to provide an
understanding of the project’s progress so that appropriate
corrective actions can be taken when the project’s
performance significantly diverges from the plan [28].

It has the following guidelines:

e Monitor progress against the plan;

e Monitor product quality;

e Conduct corrective actions as per the demand; and
e Manage corrective actions to closure.

The work products related to this process area can be
defined as project monitoring sheets, together with systems to
track adherence to the project schedule and issues from start
to closure.

Configuration management

One reason maintainability is so important is that without
it tests cannot be accumulated. Therefore, the purpose of
Configuration Management is to establish and maintain the
integrity of testware by defining the management system for
the configuration, for which there are the following
guidelines:

Establish project baselines;

e Control and track changes; and
e Establish the integrity of the project.

The main work products related to this process area are
the configuration management system together with its plan.
Measurement and analysis

The purpose of this process area is to define, collect,
analyze and apply measurements to support an organization in
objectively evaluating the effectiveness and efficiency of the
test process [31]. In this case, all indicators defined are
specifically aligned to the automation strategy, in order to best
achieve its desired objectives. The guidelines for this are as
follows:

e Define test indicators for the project;
e Specify test measures in terms of data collection and
storage procedures;

82

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Specify analysis procedures;
Collect test measurement data;
Analyze test measurement data;
Communicate results; and
Store data and results.

The main work product here is the measurement and
analysis plan, together with the data collected and formally
analyzed.

Requirement

The purpose of this process area is to clearly define the test
automation requirements and the following guidelines area
associated with this process area:

e Define what products need to be automated,;

e Prioritize requirements; and

e Maintain the traceability of requirements.

The work products in this case are those on the list of
requirements, for which tests will be automated in the
software development process.

Incident management

The purpose of this is process area is to objectively define
the mechanism and procedures to formally monitor all product
incidents derived from test automation activities. It supports
testers in the investigation and documentation of test incident
reports and the retesting of defects when required [10].

In order to achieve this, the following guidelines are
suggested:

e Establish incident management system;

e Register, classify and prioritize incidents;

e Solve and track incident upon its closure; and

e Escalate non-solved incidents.

The main work product related to this process area is the
incident management system.

B. FAST Technical Area

The objective of the FAST Technical area is to establish
and maintain automated mechanisms for testing software
applications throughout test levels in order to produce test
environments that can be developed, managed and maintained
efficiently. The technical area consists of four process areas,
in accordance with the automation levels that a software can
undergo, and its objective is to describe practices to support
automation activity. The details of the processes areas of the
technical area re given below.

Unit Testing

The objective of this process area is to provide
mechanisms so that unit tests are implemented in a systematic
and documented way in order to maximize the benefits of
automation in the test project. This area has the following
guidelines:

e Design the test suite;
Implement the refined plan and test design;
Measure the test unit;
Run the test procedures;
Evaluate test completion; and
Evaluate the effort and test unit.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

The work products related to this process area are the test
items, the design of the test specification [15], test summary
report [15], and reporting the failures found.

Integration Testing

The purpose of the Integration Testing process area is to
evaluate the integration between software components, to
ensure that the architectural design of the system is
implemented correctly [13][13]. It tests the interface between
components and interactions in different parts of the system,
such as operating system, the file system and the interface
between the systems [1]

This process area has the following guidelines:

e Design the integration approach (bottom-up or top-
down), in accordance with the system’s
requirements;

Design the set of integration tests;

Implement the design of the integration tests:

Run the test procedures;

Assess whether the tests have been completed and
whether they have achieved the required coverage of
the requirements; and

e Formally record and direct the non-conformities and

restrictions arising from the integration actions.

The work products related to this process area are the set
of integration tests and formally reported results.

System Testing

The purpose of the System Testing process is to test the
integrated and complete systems so as to assess its ability to
communicate with each other and validate whether the
systems are in accordance with the specifications of the
requirements [15].

The objective of this process area is to test the finalized
system and analyze the behavior of the system as a whole in
order to analyze compatibility with the specified
requirements, and can be performed in line with the testing
approach selected, such as risk-based products, business
processes or other description of the behavior of a high-level
system [1].

This process area has the following guidelines:

Establish the testing approach of the system;
Select the testing techniques of the system;
Design the set of system tests;

Implement the system tests;

Run the system tests;

Assess whether the test was completed; and
Register, formally, and direct non-conformities.

This process area needs to address questions about the
selection of requirements so as to generate a group of test
cases to be automated and run in the context of a project. The
related work products are the set of test cases, and the formal
record in a specific tool of the results.

Acceptance Testing

The objective of the Acceptance Testing process area is to
ensure that the product is working and that it can be presented
for acceptance, in which the customer and/or user is expected
to be involved [12]. At this level of automation, the object to
be tested is the complete system and this must address

83

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

activities in order to demonstrate the customer’s acceptance
regarding the final system.

The objective of this process area is to ensure that the suite
of acceptance tests, planned in accordance with the strategy
and needs of the end user, is implemented so that it can run
automatically. To this end, this process area has the following
guidelines:

e Define acceptance criteria;
Define the acceptance plan;
Prepare the testing acceptance environment;
Assess the conditions of acceptance; and
Conduct the closure of acceptance.

The work products related to this process area are the
acceptance plan, the acceptance environment, the suite of
acceptance tests, the due register of the test results and
incidents recorded and followed upon until closure on the
appropriate tool.

In this context, this section presented the FAST way to
include the theoretical structure and its process areas. The
following section presents the conclusions and future studies
planned for this research.

V. CONCLUSIONS

This paper proposes a framework to support the systematic
introduction of test automation in the context of software
development. The approach was defined by describing
automation levels, technical and support areas, and practice
areas.

In order to evaluate this general approach, a plan was
drawn to conduct a focus group and a case study, in
accordance with the descriptions given in the methodology
Section, in order to gather feedback on the value of FAST
being feasible, complete and adequate. After this phase, it was
expected that the description of the framework would be
enhanced in order to finalize how to define the framework.

Some threats to this study were identified and are being
dealt with in order to minimize side effects to the expected
results. The first threat is the possibility of bias while
analyzing data from the case studies, since the results of
introducing FAST may vary according to the domain of
application. In order to minimize this threat, three different
scenarios and domains were planned to be part of the scope of
the case study, in which the absence of information in a
specific context can be complemented by having it in another.

Another threat would be to focus the definition of the
framework upon the perspective of the very few authors found
in the literature review. Hence, to diminish this possible
problem, a systematic review of the literature is being
developed to guarantee that all research studies are taken into
consideration when developing this project.

Therefore, this work-in-progress offers contributions to
research on test automation and its practice, whereby a
framework is compiled from a combination of experience,
practice and a systematic review of the literature in the form
of best practices, which can be applied when running tests in
software development.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ACKNOWLEDGMENT

This research work was supported by the Brazilian
National Research Council (CNPq) of the Ministry of Science,
Technology and Innovation of Brazil, process #206328/2014-
1. The international cooperation with the Open University was
part of the Science without Borders program
(http://www.cienciasemfronteiras.gov.br/web/csf).

REFERENCES

[1] R. Black, E. Veenendaal and D. Graham, Foundations of Software
Testing ISTQB Certification. 3rd Edition, Reino Unido, January 2012.

[2] S. M. Burgess and R. D. Drabick, “The L.T.B.G.testing capability
maturity model (TCMM)”, 1996, available from
https://wwwbruegge.informatik.tu-
muenchen.de/lehrstuhl_1/files/teaching/ws0708/ManagementSoftwar
eTesting/12-4-1-FPdef.pdf, retrieved: July, 2016.

[3] S. Caplan, “Using focus group methodology for ergonomic design.
Ergonomics”, v. 33, n. 5, p. 527-33, 1990.

[4] J. Creswell, Research design: qualitative, quantitative and mixed
methods approaches, 4th Edition, Washington D.C., 2014.

[5] K, Eisenhardt, Building theories from case study research. The
Academy of Management Review, October 1989.

[6] S.Eldh, K. Andersson, A. Ermedahl and K. Wiklund, “Towards a test
automation improvement model (TAIM)”, in 014 IEEE Seventh
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Cleveland, pp. 337-342, April 2014.

[7] T. Ericson, A. Subotic and S. Ursing, “TIM - A test improvement”,
Software Testing Verification and Reliability 7(4), pp. 229-246,
December 1998.

[8] M. Fewster, Common Mistakes in Test Automation, Grove Consultant,
2011.

[9]1 S. Fincher and M. Petre, Computer Science Education Research.
Taylor and Francis, January 2004.

[10] A. P. Furtado, M. Gomes, E. Andrade and I. Farias, “MPT.BR: A
Brazilian maturity model for testing”, in The 12th International
Conference on Quality Software (QSIC), Xi’an, pp. 220-229, August
2012.

D. Gelperin, “A testability support model (TSM)”, in the fifth
International Conference On Software Testing, Analysis & Review,
Orlando, Florida, pp. 13-17, May 1996.

[12] A. M. Hass, Guide To Advanced Software Testing, Artech House,
London, 2008.

IEEE 610.12 Standard Glossary of
Terminology, IEEE Computer Society, 1990.

[14] IEEE 29119-1: Software and Systems Engineering — Software Testing
— part 1: Concepts and Definitions, IEEE Computer Society, 2013.

IEEE 829 Standard for Software and System Test Documentation,
IEEE Computer Society, 2008.

ISO/IEC/IEEE 24765 International Standard, Systems and Software
Engineering Vocabulary, 2010.

E. Kit and S. Finzi, Software testing in the real world: improving the
process, Addison-Wesley Publishing Co., New York, 1995.

B. Kitchenham and S. Charters, Guidelines for Performing Systematic
Literature Reviews in Software Engineering, Software Engineering
Group, School of Computer Science and Mathematics, Keele
University, Tech. Rep. EBSE-2007-01, July 2007.

[19] T. Koomen and M. Pol, Test Process Improvement (TPI), A Practical
Step-by-step Guide to Structured Testing, Addison-Wesley, 1999.

M. E. Krause, “A maturity model for automated software testing”, in
Medical Device & Diagnostic Industry Magazine, December 1994,
available from https://wwwbruegge.informatik.tu-
muenchen.de/lehrstuhl_1/files/teaching/ws0708/ManagementSoftwar
eTesting/12-4-1-FPdef.pdf, retrieved: July, 2016.

[11]

[13] Software Engineering
[15]
[16]
[17]

(18]

[20]

84

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Copyright (c) IARIA, 2016.

H. K. Leung and L. White, “A cost model to compare regression test
strategies,” in 1991 Conference on Software Maintenance, Sorrento,
pp. 201-208, October 1991.

C. Marshall and G. Rossman, Designing Qualitative Research, SAGE
Publications, Washington, DC, USA, 2011.

M. Paulk, C. Weber, S. Garcia, M. Chrissis and B. Bush, “The
Capability Maturity”, version 1.1., IEEE Software 10, no3 pp. 18-27,
1993.

S. L. Pfleeger and B. A. Kitchenham, “Principles of survey research:
part 1: turning lemons into lemonade”, ACM SIGSOFT Software
Engineering Notes, 26(6), pp. 16-18, 2001.

D. M. Rafi, K. R. K. Moses, K. Petersen and M. V. Méntyla, “Benefits
and limitations of automated software testing: systematic literature
review and practitioner survey”, in 2012 7th International Workshop
on Automation of Software Test (AST), Zurich, p.p. 36-42, June 2012.

P. Runeson and M. Hdst, “Guidelines for conducting and reporting case
study research in software engineering”, In: Empirical Software
Engineering Journal, Volume 14, Issue 2, pp. 131-164, April 2009.

Softex, “MPS.BR — Brazilian software process improvement”, General
Guide, V1.2., Rio de Janeiro, Softex, 2007.

ISBN: 978-1-61208-498-5

(28]

[29]

(30]

(31]

(32]

(33]

Software Engineering Institute (SEI). CMMI for Software
Development, version 1.3, staged representation, Pittsburgh, PA, 2010.
Available from: www.sei.cmu.edu/reports/10tr033.pdf, CMU/SEI-
2010-TR-033, retrieved: July, 2016.

TAP, Testing Assessment Program (TAP), Software Futures Ltd and
|E Testing Consultancy LTD, 1995.

TMM, Test Maturity Model, Illinois Institute of Technology. ,
Auvailable from http://science.iit.edu/computer-
science/research/testing-maturity-model-tmm 2014.08.11 retrieved:
July 2016.

TMMI, Test Maturity Model Integration, Release 1.0, TMMi
Foundation, Ireland, 2012, Available from
http://www.tmmi.org/pdf/TMMi.Framework.pdf 2014.08.11,

retrieved: July 2016.

TOM apud R. Swinkels, A Comparison of TMM and Other Test
Process Improvement Models, Project Report 12-3-1-FP, 2000.

K. Wiklund, S. Eldh, D. Sundmark and K. Lundgyvist , “Technical debt
in test automation”, in 2012 IEEE Fith International Conference on
Software Testing, Verification and Validation (ICST), Montreal, pp.
887-892, April 2012.

85

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Configuration Management to Tests Automatics in
a Software Factory

Marcelo dos Santos Ferreira

C.E.S.AR - Educational
Recife Center for Advanced Studies and Systems
Recife, Brazil
e-mail: marsantosfer@gmail.com

Abstract—Artifact traceability during software development
allows reusability and increases quality and productivity.
Software requirements should be traceable because they
represent the needs of a certain product. In several processes
during software development cycle, requirements are related
to other artifacts such as test suites and automation scripts.
Configuration management assures the usage of an input file
version corresponding to a software requirements version
during automated tests. This research proposes an integrated
process for software development, using configuration
management from requirements up to test suites for automated
tests. This article describes the effect of absence of
configuration management on the control over software
artifacts versions.

Keywords-configuration management; tests
automations; traceability; sotware requirements;

reuse;

l. INTRODUCTION

The increasing demand for high quality products, made
in shorter time, and at lower cost, requires from both
academic world and industry innovative strategies and
actions. Because software production is an industry of
intangible goods, it has strong challenges in its production
line as compared to conventional industry, which has fixed
process input, tools, techniques and defined output [1].
Software production is tailor-made work, to fit client needs,
with demands on functional and non- functional
requirements. These requirements form input artifacts to
several processes in a software factory.

During software development, the requirements might
change due to variable market needs or legal regulation.
Therefore artifacts traceability is necessary during the
software building process [1].Configuration management
assures artifacts traceability and keeps it in storage to control
artifacts versions.

This article describes the impact of lack of configuration
management on tools for test automation, and therefore
legitimating the research on integrated process applied to
software production.

This article has 5 sections, wherein the first section is an
introduction. The motivation and problem definition are
described in the second section. The third section addresses

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Ana Paula Cavalcanti Furtado

Informatics Center — C.1.n
Federal University of Pernambuco
Recife, Brazil
E-mail: anapaula.cavalcanti@gmail.com

the methodology and its phases, and the proposed integrated
process is discussed in the fourth section. Finally, in the fifth
section, we have conclusion and future works.

Il. LITERATURE REVIEW

Rework, low-quality products, demotivated teams, high
software production and delays are symptoms caused by the
absence of configuration management during software
development, which directly affect users and development
team [2]. This absence of configuration management creates
the possibility for a software product does not meet the
requirements.

The lack of version control of test suits and/or automatic
test script to for the software requirements automation tests
tools [1], reduces the reliability of such tools. In this way,
software products can present nonconformities affecting
directly the product acceptance by the client.

Configuration management (CM) should be active during
whole software development, from infrastructure definition
to information generation and maintenance. CM will support
requirements changes during the development process
resulting in flexibility during development. In addition to
information and content of software requirements [3], the
development process in software factories should perform
requirements validations in all process sub-phases in order to
guarantee continuous information and its understanding.
Isolation of requirements after initiation phase can lead to
wrong validation of content and its changes, consequently
affecting the product that will be create.

The reusability of artifacts originated from software
requirements, as well as source codes, tests suits and/or
automatized scripts [4], is impaired by lack of relationship
dependence between artifacts. This generates uncertainty
concerning completeness of available artifacts, versions, and
compatibility to project characteristics [5]. In this way, at
each new automated test cycle, a new tests suite and/or
automated scripts should be create to validate the most actual
software requirements

Configurations management has only as unit control the
configuration items [6] that are identified, controlled and
kept, according the configurations management plan. The
control realized in order to manage configurations does not
include dependences and relationships between artifacts, in

86

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

other words, are isolated unit controls, without dependence
relationship with other software artifacts. This configurations
management approach has only a data and code reposition
function.

The software tests that have as input software
requirements to created test plans and tests projects are
impaired by the lack of requirements traceability if requested
changes are accepted included in requirements during
development phase and the information is discontinued [2].
In this case, we might have scenarios where we will obtain
software products having old versions of requirements. This
affects products certification, as it does not meet their
specifications. The tests automation tests when used in
software process development [7], has as main function the
coverage of regression tests and test suit. At one side, this
will open the opportunity for the tests analysts to follow and
test new features or to perform exploratory tests. On the
other side, the use of automation test tools becomes a risk
when tests suites and/or automatized scripts do not
correspond to the actual version of software requirements.
This will lead to loss of computation and human resources,
which should be used to repair the missing update due to
lack on artifacts traceability. The losses of computational and
human resources reflect on delays in the product delivery
and quality.

Based on these scenarios, we formulated the following
research question: How to introduce a product-guided
configuration management for automation tests in the
development process of software factories?

Software requirements traceability was subject of study
for Gotel [5] and Antoniol [3]. They realized interviews and
surveys to identify support to requirements traceability. In
addition, they identified problems related to providers or
users of the software requirements. However, the research
focus was limited to the requirement creation phase. Our
research has the objective show how use configuration
management [3] of software requirements and test suites for
tests automatization tools will be able to solve several
problems found in software factories.

Ill. RESEARCH METODOLOGY

The research approach was divided in four phases, as
shown in Figure 2. The first phase corresponds to a literature
review, that comprising bibliographical review and
systematic review. In the second phase, we will postulate a
proposal. Afterwards, we will evaluate the proposal with a
case study and survey research. Finally, phase four should
lead to suggestions for improvement.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

1. LITERATURE REVIEW

BIBLIOGRAPHICAL REVIEW] SYSTEMATIC REVIEW

2. PROPOSAL

3. EVALUATION
CASE STUDY

4. IMPROVEMENTS

Figure 1. Schematic flow research activities.

A. Bibliographical Review

The review has as main objective the identification and
exploration of scientific publications related to this study
area. It will give an analysis of the previous studies in the
field.

This review will be based on articles in the period of
2010 and 2015 available at IEEE digital libraries, ACM,
Scopus, and Science Direct.

B. Systematic Review

The systematic review provides interpretation of relevant
research in the field [8], followed by structure analysis [9]
leading to gaps identification which might guide future new
investigations in the field [10].

C. Case study

The case study has as main objective the analysis of a
phenomenon within its context. The experimentations is an
attempt to replication the phenomenon, taking into account
factors, which affect software engineering results [11].

Software engineering involves development, operation,
and maintenance of software and related artifacts [12]. The
case study applies the research proposal and experimentation
to determine the applicability of proposed solution, and to
solve issues that prior application to process were not
possible to predict.

D. Improvements

The activities performed in this phase are evaluation of
current process in the software factory, development of a
configuration management plan, implementation and
validation. This will be followed by a process of continuous
improvements. In short:

e Process implementation, identification of deviations

and followed by continuous improvement

e Finally, analysis of proposed process impact.

This process has a requirements information update flow
directly affecting the test suits and automated scripts as its
differential. In other words, changes realized in software
requirements will be able available during the whole

87

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

software development cycle, and consequently having an
efficient management of automation tests.

The research approach presented here will result in a
structured research process, which allows more control over
activities and as scientific research process, will be
applicable to new researches.

In the next session, we will present a proposal of
integrated process to insert configuration management in
automation tests, including phases, input and output artifacts,
roles and responsibilities.

IV. PROPOSAL

The proposal presented here is partially a process of
configuration management that might be implemented in a
software development company in such way that it includes
configurations items updates related to automatic tests. The
proposed process objective is to maintain integrity,
traceability of artifacts that affects automatic tests, and reuse
of software components.

The process presented here was divided in two steps: The
first step consists in evaluating the actual process of
configuration management of a software factory; this will be
used as study case resulting in the identification and analysis
of gaps in the process. In the second step, we have a creation
of integrated process of configuration management with the
purpose to maintain integrity of artifacts during the whole
software development cycle, developing the capacity to
incorporate project scope changes. Bellow, we have a more
detailed description of these two steps.

A. Actual configurations management process evaluation
in a software factory

An analysis is performed to identify gaps related to items
configuration control, and their impact in the utilization of
automation tests tools; this step has two phases:

e Actual configuration management evaluation in a
software factory chosen as study case. During this
phase, we will use quality assurance such as process
analysis and quality audits.

e Software development process evaluation. During
this phase, we will use quality controls such as root
cause diagrams, Pareto diagram, management of
change revision and evaluation

B. Preparation of an integrated configuration
management process

After the first step, we will create an integrated
configuration management process to maintain integrity of
the software requirements and automatic tests employed
during the software development process. As part of the
proposed process, we will define activities, roles, artifacts
and tools, according description in Figure 2.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Figure 2. Integrated process flow chart. Source: Autor.

The integrated process is explained bellow

The process is divided in between the two phases in
a software development cycle, known as Planning
and Execution Phase.

During planning phase, we have as start point the
changes request. The changes request might be
initiated due to market reasons or regulation. The
business analyst is responsible for the translation of
the changes request into artifacts requirements. The
change control is recorded in a bug tacker tool,
making it possible to follow its evolution.

Impact evaluation activities are performed by the
project management that uses techniques such as
learned lesson and expert opinion, as a technical
evaluation of the changes request impact is needed.
The changes request will be updated in a bug tracker
tool.

88

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

e The options creation activity has as goal to generate
many scenarios to fulfill the changes request, taking
into consideration risk mitigation and impact into the
product and finally project objectives. This activity
is realized with the whole project team.

e Options validation has as purpose to simulate the
implementation results obtained by the different
proposed scenarios. After that, an unbiased selection
process is possible, discarding the options that do not
fit to the boundaries of project. The whole project
team will realize this activity.

e After options validation, the next step is the internal
acceptance, where consensus and finally approval
and consensus of team on the solution to be applied
to the changes request is obtained. The project
management looks for consensus within project
team.

e External acceptance is the final control activity in the
integrated process; this activity has the purpose to
obtain approval of project sponsor. The Project
management is responsible to present and get
approval from project sponsor.

o After the external acceptance of the integrated
process for changes control is obtained, the software
requirements will be updated. The System Analyst
will be responsible for modification in software
requirements. The approved change request is used
as input for this activity, and as output, the software
requirements updated should be available for the
team in a repository. To finalize this activity, an
automatic communication will be send to quality
administration, reporting the requirements that were
updated, and the modifications applied.

e The execution phase of project will be start when the
communication on the software requirements update
arrives.

e The software quality administration should analyze
the changes, in order to guarantee the quality of the
software development process. As responsible for
this activity, we have a Quality Analyst. This activity
has the updated software requirements as input. The
analyst uses inspection and validation techniques.
The updated software requirements keep a pendent
status, as it reference sessions will have to wait for
the new product version and new version to scripts
designation to perform automatic tests.

o After Quality analysis, Systems Analysts modify the
applications source code conform the updated
software requirements. For this activity, we have the
updated and QA verified software requirements as
input. As output for this activity, we have a new
software component for a new product baseline
generation to be performed by the configuration
management.

e In parallel to the changes implementation activity,
the tests analysts will build the test suits and scripts
for automatic tests. This activity has as input the

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

updated software requirements, and previous
versions test suits and scripts for automatic tests.

e The baseline generation activity, which has a
configuration management as responsible, should
update in the software requirements documents the
product version that fulfills the requirements. , In
addition, he should make the new package available
as repository. In case of Release, it is necessary to
send a package to distribution.

e The Tag creation activity for test suites and scripts
used for automatic tests will be realized by
Configuration Management, who should updated in
software requirements document the artefacts
version used for tests suites and scripts for automatic
tests that attend this software requirements, in
addition to verify, this item configuration in the
repository.

e The Release notes creation activity, has as input the
updated software requirements, test suites and scripts
for automatic tests, product version, as well as
components necessary to demonstrate it. The
responsible to build this note is configuration
management this activity finalizes the proposed
process.

V. CONCLUSION AND FUTURE WORKS

This article presented a process proposal to support
configuration management in automated software tests
environments. The main objective was to provide better
specific items configuration management between software
requirements and automatic tests. Besides that, we aimed to
improve artifacts traceability artifacts throughout software
development cycle. The literature review has been finalized
and we are working on the proposal implementation.

As this is a work in progress, we planned the proposal
validation through a case study and survey, in order to
evaluate the adherence and applicability this process. This
will be combined with the identification of possible
adjustment points in in view of its application to software
development process.

The main obstacle in this proposal is the resistance
against changes to the current software development process,
and the absence of tools that support infrastructure of the
proposed process. We used as constraints the minimization
of the changes that impact the software development cycle
inside the software factory used for case study. Other phases
in the software development cycles are out of the scope of
this research, e.g. project closure, business and software
implementation processes.

The next step in this research is the implementation and
evaluation of the proposed process in a software factory that
builds payment applications and has a safe software
development cycle.

REFERENCES

[1] M. Ferreira, C. Santos, T. Novais, and C. Albuquerque, “Geréncia de
Configuragdo para Testes Automatizados em uma Fabrica de

89

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[2]

(3]

(4]

(5]

(6]

(7]

(8]

Copyright (c) IARIA, 2016.

Software : Um estudo de caso Configuration Management to Tests
Automations in a Software Factory : A case study.

U. Ali and C. Kidd, “Barriers to effective configuration management
application in a project context: An empirical investigation,” Int. J.
Proj. Manag., vol. 32, no. 3, pp. 508-518, 2014.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Trans. Softw. Eng., vol. 28, no. 10, pp. 970-983, 2002.

W. B. Frakes and S. Isoda, “Success factors of systematic reuse,”
Software, IEEE, vol. 11, no. 5, pp. 14-19, 1994,

0. C. Gotel, A. C. W. Finkelstein, and L. Sw, “An Analysis of the
Requirements Traceability Problem Imperial College of Science |,
Technology & Medicine Department of Computing , 180 Queen ’ s
Gate,” pp. 94-101, 1994.

T. View, C. M. Plans, and T. View, “IEEE Standard for Software
Configuration Management Plans,” IEEE Std, vol. 2005, no. August,
pp. 0{ }1-19, 2005.

K. Petersen and M. V. Mantyla, “Benefits and limitations of
automated software testing: Systematic literature review and
practitioner survey,” 2012 7th Int. Work. Autom. Softw. Test, pp. 36—
42, 2012.

O. C. Gotel, A. C. W. Finkelstein, and L. Sw, “An Analysis of the
Requirements Traceability Problem Imperial College of Science ,

ISBN: 978-1-61208-498-5

[]

[10]

[11]

[12]

[13]

[14]

Technology & Medicine Department of Computing , 180 Queen ’ s
Gate,” pp. 94-101, 1994.

B. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature Reviews in Software Engineering,”
Engineering, vol. 2, p. 1051, 2007.

P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud Migration Research: A
Systematic Review,” IEEE Trans. Cloud Comput., vol. 1, no. 2, pp.
142-157, 2013.

F. Selleri Silva, F. S. F. Soares, A. L. Peres, I. M. De Azevedo, A. P.
L. F. Vasconcelos, F. K. Kamei, and S. R. D. L. Meira, “Using
CMMI together with agile software development: A systematic
review,” Inf. Softw. Technol., vol. 58, pp. 2043, 2015.

P. Runeson and M. Hést, “Guidelines for conducting and reporting
case study research in software engineering,” Empir. Softw. Eng.,
vol. 14, no. 2, pp. 131-164, 2009.

A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experiments
in software engineering,” Guid. to Adv. Empir. Softw. Eng., pp. 201-
228, 2008.

D. Tofan, M. Galster, P. Avgeriou, and D. Weyns, “Software
engineering researchers’ attitudes on case studies and experiments:
An exploratory survey,” Eval. Assess. Softw. Eng. (EASE 2011),
15th Annu. Conf., no. 638, pp. 91-95, 2011.

90

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

An Exploratory Study of DevOps
Extending the Dimensions of DevOps with Practices

Lucy Ellen Lwakatare, Pasi Kuvaja, Markku Oivo,

M3S, Faculty of Information and Electrical Engineering
University of Oulu,
P.O. Box 3000, 90014 Oulu, Finland
Email: firstname.lastname @oulu.fi

Abstract—Software-intensive companies constantly try to improve
their software development process for better software quality
and a faster time to market. The DevOps phenomenon emerged
with the promise of easing the process of putting new software
changes to production at a fast rate whilst also increasing the
learning and innovation cycles of their products. However, the
DevOps phenomenon lacks clear definition and practices, and
this makes it difficult for both researchers and practitioners
to understand the phenomenon. In this paper, we focus on
consolidating the understanding of DevOps and its practices
as described by practitioners using multivocal literature and
interviews. The study contributes to a scientific definition of
DevOps and patterns of DevOps practices to help identify and
adopt the phenomenon.

Keywords—DevOps; Continuous Deployment; Agile.

I. INTRODUCTION

Innovative online companies, such as Amazon, Google
and Facebook, have fuelled customers expectations for great
services at fast speed due to their quick response times to
customer demands. Consequently, more companies from most
fields are learning and emulating their capabilities in order to
cope with competition and technological changes in the field
of IT [1]. Today’s technology landscape and advances, such
as cloud computing, have changed the ways in which soft-
ware products are developed and delivered to customers. For
instance, in the cloud environment, providers of Software-as-a
Service (SaaS) applications are expected to update software
frequently and in much faster release cycles to customers.

The recent paradigm shift towards fast and frequent de-
livery of software updates to customers is referred to as
continuous deployment (CD) [2]. CD has been described as an
evolutionary step after Agile and continuous integration (CI)
practices [2] [3]. CD is a practice whereby software features
and updates are rapidly rolled out to production as soon as
they are developed, whilst also rapidly learn from real-time
customer usage of software [2] [3]. The advantage is that
companies can proactively identify and validate assumptions
of customer needs by applying practices, such as feature
experimentation, that tightly integrate runtime-monitored data
fromEmphsi production into the software development activi-
ties [4].

Responsiveness to customer needs achieved through CD
can put a strain on functional teams within an organisation
[2]. Consequently, the DevOps phenomenon emerged with the
aim of breaking down organisational silos and encouraging
cross-functional collaboration among stakeholders involved
in software development and delivery processes—especially

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

development and IT operations. The DevOps phenomenon,
despite its growing interest in software industry, faces several
challenges such as the lack of a clear definition [5]. This lack
of clear a definition has resulted to a number of problems and
criticisms, including tensions as to whether DevOps is about
culture, technical solution or, alternatively, an entirely new role
within a software development organisation [6].

The goal of this research is to consolidate the understanding
of DevOps phenomenon as described by practitioners. We use
an exploratory case study technique that involves a review of
multivocal ’grey’ literature and interviews. Our work extends
other previous studies that have tried to characterise the De-
vOps phenomenon. Multivocal literature review and interviews
were selected as appropriate approaches for this study because
DevOps is very much driven by practitioners, and as such,
contribution from non-scientific community are worthwhile.
The contribution of this paper is twofolds. First, to validate
and improve the scientific definition of DevOps proposed by
Penners and Dyck [7]. Second, to extend our work on the
dimensions of DevOps [8] with a set of examplary practices
and patterns of DevOps. The following research questions are
addressed in this study:

e RQI: How do practitioners describe DevOps as a
phenomenon?

e RQ2: What are the DevOps practices according to
software practitioners?

This paper is organized as follows: Background and related
work, including a scientific definition of DevOps, are presented
in the next section. Section 3 presents our research methodol-
ogy. The results of the study are presented in Section 4, which
is followed by a discussion and conclusions in Section 5 and
7, respectively. Section 6 presents validity threats including
limitations of the study.

II. BACKGROUND AND RELATED WORK

According to Humble and Molesky [9], DevOps— a blend
of two words Development and Operations— is about align-
ing incentives of everybody involved in delivering software,
with particular emphasis on developers, testers and operations
personnel. The problems resulting from misalignment between
development and operations are not new, though their appear-
ance in the literature is scarce [10]. Prior studies investigating
cooperation between developers and operations personnel in
real contexts have revealed that very often development and
operational activities are not tightly integrated [10] [11]. The
latter, according to Iden, Tessem and Piivirinta [11], results

91

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

to a number of problems, including IT operations not being
involved in requirements specification, poor communication
and information flow between the two groups, unsatisfactory
test environments, lack of knowledge transfer between the two
groups, systems put into production before they are complete
and operational routines not established prior to deployment.
These problems were identified from a delphi study consisting
of 42 experts grouped in three panels representing the roles of
developers, operations personnel and systems owners. In the
latter study, the authors [11] concluded that operations person-
nel are to be regarded as important stakeholders throughout
system development activities, especially in systems require-
ment, testing and deployment.

The closest similar work, though different in terms of
the studied phenomenon, is by Tom, Aurum and Vidgen
[12]. Using a multivocal literature review (MLR) approach
supplemented by interviews, the authors of the latter study [12]
examined a